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Abstract

The purpose of this work is to present a version of the Loewner theory, without the requirement of

analyticity of the functions belonging to the chain and the evolution families or transition functions.

This approach is made in two parts.

In the first part, we introduce two new concepts of subordination in the class of harmonic univalent

functions. Then, we introduce two new types of harmonic Loewner chains according to the already

given concepts of subordination. A characterization for one type of these harmonic Loewner chains

is presented. The compactness of this family of harmonic Loewner chains is proved. For the other

type of harmonic Loewner chains an ordinary differential equation is established in a particular case.

Actually, a Loewner theory for complex-valued harmonic functions, whose real and imaginary parts

not necessarily satisfy the Cauchy-Riemann equations, is constructed.

The second part is taken into consideration, because enforcing that the composition of two harmonic

functions is harmonic, is a very restrictive condition. Therefore, we have obtained interesting, but

not very “fruitful” results. In this part, we just study the evolution families or transition functions in

the class of nonexpansive functions with respect to a certain metric. We shown that these evolution

families can be obtained by solving an ordinary differential equation for a certain vector field. The

concept of an infinitesimal generator for these evolution families is given. Some characteristics

of such infinitesimal generators are established. The nonlinear resolvent for a kind of functions is

treated. An ordinary differential equation, which is satisfied by these evolution families, is obtained

with some additional assumptions.
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Introduction

The relationship between embedding simply-connected regions in the complex plane, the Hele-

Shaw free boundary problem, Laplacian growth and their applications, is well-known [1]. In fact,

The Hele-Shaw free boundary problem consists of describing the evolution of a region occupied by

a fluid that is surrounded by another fluid, both fluids in a Hele-Shaw cell [39]. For incompressible

fluids in addition with Darcy’s law imply that the pressure of the fluid is a harmonic function. It

is worth recalling that a Hele-Shaw cell consists of two flat plates that are parallel to each other

and separated by a small distance. At least one of the plates is transparent and has a hole. On

the other hand, Laplacian growth is a process in which the growth of the domain is governed by a

harmonic function, with appropriate boundary conditions. Nowadays, the Hele-Shaw cell is widely

used as a powerful tool in several fields of natural sciences and engineering, for example, material

science, crystal growth and, of course, fluid mechanics [29, 30, 39]. For example, one of the basic

manufacturing processes used in the plastics industry is injection moulding.

Another kind of domain evolution is related to the well-known Loewner theory. This theory was de-

veloped in 1923 as a tool to embed a slit domain of the complex plane into a family of domains also

in the complex plane with a certain order. We are going to recall some basic facts, and recent con-

tributions about this growing theory below. For example, an interesting application is the Stochastic

Loewner Evolution (SLE) introduced by O. Schramm, replacing the driving term in the radial and

chordal Loewner equation with a Brownian motion. The Stochastic Loewner Evolution was used to

prove the Mandelbrot conjecture about the fractal dimension of a planar Brownian motion [22, 23],

more applications can be found in [1].

All these applications motivated this work, as well as the theoretical aspects. For example, the con-
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nection with integrable systems and other branches of mathematics such as differential equations,

potential theory, variational calculus, et al [4, 18, 24, 26, 35, 45, 46].

Charles Loewner began his research in the theory of conformal mappings, then he focussed on the

composition semigroups of conformal mappings. At this point, he introduced the most celebrated

result of his investigation, the now well-known Loewner parametric methods and the well-known

Loewner differential equations. Later, P. P. Kufarev [21] and C. Pommerenke [34] fully developed

the original theory. We believe that this theory was developed in order to solve the Bieberbach

conjecture, which states or provides estimates for the Taylor coefficients an of functions f : D =

{|z|< 1} −→ C in the class:

S =

{
f (z) = z+ ∑

n≥2
anzn : f is a one-to-one analytic map in D

}
.

More explicitly, this conjecture states that |an| ≤ n for each n ≥ 2 if f ∈ S. Loewner was able to

prove that |a3| ≤ 3. This conjecture was proved by L. de Branges [12] in 1985 based on some ideas

of the Loewner theory.

The idea of the Loewner method, was to enclose simply-connected domains Ωt in the complex plane

with a certain order to estimate the Taylor coefficients an of each function f in S linearly associated

to the Riemann mapping of each simply-connected domain. The Riemann mappings of a complex

domain need not belong to S, but they can be written as w0 + r0eiα f , with f ∈ S. In [34] we can

find a one-to-one relationship between Loewner chains, which we denominate classical Loewner

chains, and families of domains Ωt satisfying:

1. 0 ∈Ωs ⊂Ωt , if 0≤ s < t <+∞, and

2. Ωtn −→ Ωt0 , if tn −→ t0 < +∞; Ωtn −→ C, if tn −→ +∞, as n −→ +∞. In the sense of

the Carathéodory kernel convergence (see [34]).

The classical Loewner chains are functions f (z, t) = etz+a2(t)z2+ · · · (z∈D,0≤ t <+∞), analytic

and one-to-one in D for each t ≥ 0, such that f (z,s) ≺H f (z, t), if 0 ≤ s ≤ t < +∞, i.e., f (z,s) is

subordinate to f (z, t), if 0 ≤ s ≤ t < +∞ (see Definition 1.3.1). The simplest example of classical

Loewner chain is f (z, t) = etz with z ∈ D, and 0≤ t <+∞.
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These classical Loewner chains can be described by a differential equation, the well-known Loewner-

Kufarev equation. Also, there are close connections between the classical Loewner chains and the

functions which make the subordination, sometimes called transition functions or the evolution

family (see Theorem 1.2.2). Moreover, the class P consisting of analytic functions of positive real

part, normalized by P(0) = 1, is also related with the classical Loewner chains (see Theorem 1.2.1).

On the other hand, the transition functions, or the evolution families, satisfy a semigroup property,

which Loewner used as the starting point of his theory.

Now, we are going to recall some facts about semigroups of analytic functions, which are related to

the classical Loewner theory and recent works about this topic.

A one-parameter semigroup in the class of functions defined on U , F closed under the composition,

is a mapping t ∈ R∗ −→ φt ∈F , with R∗ = R+∪{0}, that satisfies the following three conditions:

(see [5])

S1. φ0 is the identity in F ,

S2. φs ◦φt = φs+t , if s, t ≥ 0,

S3. For each x0 ∈U , the function φt(x0) is continuous on R∗.

In [5], Berkson and Porta proved that every semigroup of analytic functions in an open set U ⊂ C

has an infinitesimal generator. This means that if {φt} is a semigroup of analytic functions in U ,

then there exists an analytic function G, which is called the infinitesimal generator of {φt}, such

that
∂ φ(z, t)

∂ t
= G(φ(z, t)) for t ∈ R+, z ∈U .

Moreover, if U = D, is the unit disc then, there exist β ∈ D and P ∈P , such that

G(z) = (z−β )(β̄ z−1)P(z).

In [6], the authors F. Bracci, M. Contreras and S. Díaz-Madrigal introduced the concept of Ld-

evolution families with the help of an integral condition instead of the locally uniform condition
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used by Goryaı̌nov [15] in his work with evolution families. These Ld-evolution families are more

general than semigroups and the families used by Loewner, Kufarev and Pommerenke in their stud-

ies. The authors related such families to the Herglotz vector field of order d ≥ 1, which have the

form of the more general Berkson-Porta infinitesimal generator in D [6]. On the other hand, M.

Contreras, S. Díaz-Madrigal and P. Gumenyuk [11] proposed a general setting for the Loewner

theory. They called these new objects Ld-Loewner chains, with d ≥ 1, which work also on com-

plete hyperbolic manifolds, and encloses the classical theory as a special case, when d = +∞. A

one-to-one correspondence between Ld-Loewner chains and Ld-evolution families was shown [11].

Furthermore, a relationship with the Herglotz functions of order d ≥ 1 was also obtained. The Her-

glotz functions of order d ≥ 1 play the role of the functions in P . This Loewner theory has been

extended to complete hyperbolic complex manifolds [2, 7] and to the higher dimensional unit ball

in Cn [16, 17, 32, 33].

The aims of this work is to present a version of the Loewner theory, without the requirement of

analyticity of the functions belonging to the chain and the evolution families or the transition func-

tions. This goal is made in two parts. First, the functions belonging to the chain are considered to

be harmonic functions and we consider two cases for the evolution families or transition functions.

Second, we just study the evolution families or transition functions in the class of non-expansive

functions with respect to a certain metric.

The first part is based on the work by J. Clunie and T. Sheil-Small [8], W. Hengartner and G. Schober

[19], et al., [13, 14, 31, 36]. An analogue class to S for the case of harmonic functions was defined

in [8] and also was proved other results. In [36], some necessary and sufficient conditions for the

composition of harmonic mappings to be harmonic were found. Further, in [31], the analogue to the

class P was introduced and studied. Finally, in [19], a version of the Riemann mapping theorem

for complex-valued univalent harmonic functions was proved. In Chapter 1, we develop a theory

of harmonic Loewner chains following the ideas of Ch. Pommerenke [34]. First, we introduce two

new concepts of subordination of harmonic functions in Section 1.3. Then, in Section 1.4, we study

examples of semigroups and evolution families of harmonic functions. We finish the chapter, in

Section 1.5, introducing and studying the two types of harmonic Loewner chains.

In the second part, we approach our investigation following the results about semigroups in the
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class Nρ(D), given in [37, 38, 41]. In Chapter 2, we introduce the concepts of evolution families

of nonexpansive functions, and ρ−monotone weak vector fields. Also, under a certain condition,

we establish a one to one relation between these two latter concepts. In Section 2.3, the evolution

families of nonexpansive functions is defined. The ρ−monotone weak vector fields and their prop-

erties are given in Section 2.4. The infinitesimal generators of ρ−nonexpansive evolution families

and the nonlinear resolvent is studied in Section 2.5. Finally, in Section 2.6 we establish a condition

that an evolution family has an infinitesimal generator, which is a ρ−monotone weak vector fields.

We finish this thesis with some conclusions and a list of problems that we consider as future work.
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Chapter 1

Harmonic Loewner Chains in R2

1.1 Introduction

Let us first recall basic objects of Loewner theory. Let f and g be analytic in D := {|z| < 1}. We

say that f is subordinate to g if there exists a function φ(z) analytic (not necessarily univalent) in D

satisfying φ(0) = 0 and |φ(z)| < 1, such that f (z) = g(φ(z)), if |z| < 1. Subordination is denoted

by f (z)≺ g(z) [34].

The function f (z, t), z ∈ D, 0≤ t <+∞, is called a classical Loewner chain if

f (z, t) = etz+a2(t)z2 +a3z3 + . . . , |z|< 1, (1.1)

is analytic and univalent in D for each t ∈ [0,+∞), and if f (z,s)≺ f (z, t) whether 0 ≤ s ≤ t <+∞

(subordinated) [34].

The subordination condition means that there exists a function ϕ(z,s, t), sometimes called a

transitive function or an evolution family, such that f (z,s) = f (ϕ(z,s, t), t), 0 ≤ s ≤ t < +∞. The

transitive function ϕ(z,s, t) = es−tz+α2(s, t)z2 + . . . is univalent in D and satisfies |ϕ(z,s, t)|< |z|.

Moreover, it satisfies a semigroup property: ϕ(z,s,τ) = ϕ(ϕ(z,s, t), t,τ). See [34] for more details.

In this chapter, we present a first attempt to a harmonic setting for the Loewner theory. This

construction is made in two parts, according to two new concepts of subordination of harmonic

mappings. In the first part, the transitive function is considered to be an analytic function. In the
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second part, the functions are harmonic functions. We start in Section 1.2 with definitions, notation

and results that will be used throughout this work. Particularly, we recall two theorems, 1.2.1 and

1.2.2, which characterize the classical Loewner chains by means of a differential equation and the

transitive function or evolution family associated to them, respectively. In Section 1.3, two new

concepts about subordination are introduced. A characterization for each case is also given here.

The definition of conjugation is given. Two results which generalize Theorems 1.2.1 and 1.2.2 are

proved. The section finishes with the study of composition of harmonic functions using Dirichlet

and Neumann problems. Section 1.4 is devoted to examples of semigroups and evolution families of

harmonic functions. In Section 1.5, the concept of classical Loewner chains is extended to the case

of harmonic functions. A partial differential equation, which is satisfied by this family of functions,

is established. The compactness of this new class of functions is proved.

1.2 Preliminary Results

We start by introducing some essential facts as well as the notation that will be used in the remaining

sections.

The complex-valued harmonic functions in a domain U (open and connected), i.e., functions

f : U −→ C such that f = u+ iv and ∆ f = ∆u+ i∆v = 0 in U , are our main object of study. We

are differing from the analytic case, because we are omitting the Cauchy-Riemann equations. So,

we denote the set of complex-valued harmonic functions in U by A (U ,C), whereas H (U ,C) will

denote the set of complex-valued analytic functions in U . If U is a simply-connected domain we

can write (see [8, 13])

A (U ,C) = H (U ,C)⊕H̄ 0(U ,C), (1.2)

where we denote H̄ 0(U ,C) := {ω : U −→ C : ω ∈H (U ,C), ω(0) = 0} and ω̄ denotes the func-

tion z−→ ω(z). The decomposition (1.2) means that if f ∈A (U ,C) then f = h+ ḡ where h,g are

analytic. From a result of Lewy (see [13]) it can be shown that f ∈A (U ,C) is locally one-to-one

and sense-preserving if and only if the Jacobian of f is positive, i.e.,

J f (z) = |h′(z)|2−|g′(z)|2 > 0.
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We call such mappings locally univalent, and we say that f is univalent in U if f is one-to-one

and sense-preserving in U . If f = h+ ḡ we call h and ḡ the analytic part and co-analytic part of f ,

respectively.

We finish this section by recalling two well-known theorems. The first theorem relates the clas-

sical Loewner chains with the Loewner-Kufarev partial differential equation. The second theorem

establishes the Loewner-Kufarev ordinary differential equation. Moreover, the evolution family as-

sociated to the classical Loewner chain satisfies this ordinary differential equation. Furthermore,

that the classical Loewner chains can be obtained form this family by solving an initial value prob-

lem (IVP) is established.

Theorem 1.2.1 ([34]). The function f (z, t) is a classical Loewner chain if and only if the following

two conditions are satisfied:

1. There exist r0 > 0 and K0 > 0 such that the function f (z, t) = etz+a2(t)z2 + · · · is analytic in

|z|< r0 for each t ≥ 0, absolutely continuous in t ≥ 0 for each |z|< r0 and satisfies

| f (z, t)| ≤ K0et |z|< r0, t ≥ 0.

2. There exists a function P(z, t) analytic in D and measurable in t ≥ 0 that satisfies Re(P)> 0,

and such that

∂ f (z, t)
∂ t

= z
∂ f (z, t)

∂ z
P(z, t); |z|< r0, for almost every t ≥ 0. (1.3)

Equation (1.3) is called the linear Loewner-Kufarev partial differential equation.

Theorem 1.2.2 ([34]). Suppose that P( · , t) belongs to P for each t ≥ 0 and is measurable in t ≥ 0.

Then for z ∈ D and s≥ 0, the initial value problem


∂ W
∂ t

=−WP(W , t), for almost every t ≥ s

W (s) = z.
(1.4)

has a unique absolutely continuous solution W (t) = ϕ(z;s, t). Moreover, the functions ϕ(z;s, t) are
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univalent in z ∈ D and

f (z,s) := lim
t→∞

et
ϕ(z;s, t) z ∈ D,s≥ 0, (1.5)

exists locally uniformly in D and is a classical Loewner chain satisfying (1.3).

Conversely, if f (z, t) is a classical Loewner chain and ϕ(z;s, t) is determined by f (z,s) =

f (ϕ(z;s, t), t), then W (t) = ϕ(z;s, t) is a solution of (1.4) and (1.5) is satisfied.

Equation in (1.4) is also called Loewner-Kufarev equation. We recommend to see [34] for more

details about these two theorems, where the reader can also find their proofs.

1.3 New concepts of subordination

In this section, we introduce two new types of subordination. Hence, the section is divided in two

subsections. In the first subsection, we consider how the subordination of two harmonic functions

is made by means of an analytic function. In the second subsection, we use the Dirichlet prob-

lem and Neumann problem in order to find classes of harmonic functions which are closed under

composition. Then, we define a type of subordination using such classes.

1.3.1 H −Subordination

This subsection begins with a definition of subordination between harmonic functions which need

not be analytic.

Definition 1.3.1. Let f ,g : D −→ C be complex-valued harmonic functions. We say that f is

H −subordinate or analytically subordinate to g if:

There exists an analytic function φ : D−→ D satisfying φ(0) = 0, such that

f (z) = g(φ(z)), z ∈ D.

This fact will be denoted by f (z)≺H g(z).

Example 1. A example of H −subordination is the classical subordination between analytic func-

tions.
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Example 2. If S is an injective analytic function, then f (z)≺H g(z) implies

( f ◦S)(z)≺H (g◦S)(z), ( f ◦S−1)(z)≺H (g◦S−1)(z).

In particular, this holds for the mappings

Sβ (z) =
z−β

1− β̄ z
, S−1

β
(w) =

w+β

1+ β̄w
, β ∈ D, (1.6)

which are analytic automorphisms of D.

Example 3. Let us suppose a,b,c, p,q,r ∈ C. Let us consider

f (z) = az+ c+bz̄, and w = g(z) = pz+ r+qz̄, with |p|2−|q|2 6= 0.

We can find the inverse function of g by solving a system of algebraic equations, and we get

g−1(w) =
p̄w+(qr̄− p̄r)−qw̄

|p|2−|q|2
.

Thus, for the composition g−1 ◦ f , we obtain

φ(z) = g−1( f (z)) =
(ap̄− b̄q)z+(bp̄− āq)z̄+ p̄(c− r)−q(c− r)

|p|2−|q|2
.

Hence, the last mapping is analytic if and only if bp̄− āq = 0.

Now, we proceed with a lemma which gives a condition that generalizes Example 3.

Lemma 1.3.1. Let f , g be harmonic in D and such that g−1 ◦ f is well defined and differentiable on

D. Then, φ = g−1 ◦ f is analytic if and only if

f ′2(z) =
g′2(z)
g′1(z)

f ′1(z), z ∈ D, (1.7)

where f = f1 + f2 and g = g1 +g2 (according to the decomposition (1.2)).

Proof. Let us suppose that f and g satisfy all the conditions in order for φ := g−1 ◦ f to be a well
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defined and differentiable function. Then, if w = f (z), we have

∂z̄φ = ∂wg−1
∂z̄ f +∂w̄g−1

∂z̄ f̄ = ∂wg−1 f ′2 +∂w̄g−1 f ′1. (1.8)

On the other hand, by solving a system of algebraic equations and using the Inverse Function

Theorem, see for example [13] page 146, we obtain

∂wg−1(w) =
g′1

|g′1|2−|g′2|2
=

g′1
Jg(z)

,

∂w̄g−1(w) =−
g′2

|g′1|2−|g′2|2
=−

g′2
Jg(z)

.

Then, by replacing the last two expressions in (1.8), we have

∂z̄φ =
g′1 f ′2−g′2 f ′1
|g′1|2−|g′2|2

. (1.9)

Hence, Equation (1.9) implies Lemma 1.3.1.

In [19], the Riemann mapping theorem in the harmonic case is studied. This theorem stablishes

the existence, under additional conditions, of a harmonic mapping for a given domain. This mapping

can be considered as the harmonic Riemann mapping for such a domain, and satisfies a similar

equation as (1.7). Hence, the existence of functions satisfying (1.7) is assured.

On the other hand, it is not difficult to see that if Ω0 ⊂ C is a simply-connected domain with

g(0) ∈ Ω0 ⊂ g(D) for a given harmonic univalent function g then, there is at least one harmonic

function f (z) with f (D) = Ω0, such that f (z) ≺H g(z) (See [8] page 9). For a more general case

we have the following proposition.

Proposition 1.3.2. Let g be a univalent harmonic in D. Then f (z)≺H g(z) if and only if

1. f (D)⊂ g(D), f (0) = g(0),

2. Equation (1.7) holds.

Proof. If we assume that f (z) ≺H g(z) then, φ(D) ⊂ D and φ(0) = 0, for some analytic function
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φ . Thus, it follows that f (D) = g(φ(D)) ⊂ g(D), f (0) = g(0) and φ = g−1 ◦ f . Since ∂z̄φ = 0,

Equation (1.7) follows from Equation (1.9).

Conversely, since g is a univalent function then, its inverse function exists g−1. Also, since

f (D) ⊂ g(D) then, we can define the function φ(z) := g−1( f (z)) for z ∈ D. Evidently |φ(z)| < 1

and φ(0) = 0. From Equations (1.9) and (1.7), it follows that ∂z̄φ = 0. Therefore, φ is analytic and

g(φ(z)) = f (z).

Proposition 1.3.2 gives us the sufficient and necessary conditions under which the H −subor-

dination occurs.

Definition 1.3.2. Let f be a function defined on D. For each β ∈ D, the function

h(β )(z) := f (Sβ (z)), (1.10)

defined for all z∈D is called the conjugation of a given function f (z), with respect to β ∈D. Where

Sβ (z) is given by Equation (1.6).

Note that from the previous Definition 1.3.2, Example 2, we have that if f1(z) ≺H f2(z) then,

their conjugations with respect to every β ∈ D are also H −subordinated, that is, h(β )1 (z) ≺H

h(β )2 (z).

Now, we establish a partial differential equation for the conjugation of classical Loewner chains.

This equation has the form of a linear Loewner-Kufarev equation where the right hand side has the

form of the more general Berkson-Porta infinitesimal generator. Also, we establish an ordinary

differential equation for the transitive function, with the last-mentioned infinitesimal generator.

Theorem 1.3.3. Let β ∈ D be given. The univalent function h(β )(z, t) is the conjugation of a clas-

sical Loewner chain with respect to β if and only if it satisfies the two following conditions:

a.) There exist z0 ∈D, R0 > 0 and K > 0 such that h(β )(z, t) is analytic in D(z0,R0) for each t ≥ 0,

absolutely continuous in t ≥ 0 for each z ∈ D(z0,R0) and

|h(β )(z, t)| ≤ Ket , for t ≥ 0, z ∈ D(z0,R0),
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where D(z0,R0) = {z : |z− z0|< R0}.

b.) There exists an analytic function P(z, t) in D and measurable in t ≥ 0 satisfying

Re(P(z, t))> 0 z ∈ D, t ≥ 0,

such that, for almost every t ≥ 0

∂ h(β )(z, t)
∂ t

= (z−β )(1− β̄ z)Pβ (z, t)
∂ h(β )(z, t)

∂ z
, z ∈ D(z0,R0), (1.11)

with Pβ (z, t) = P(Sβ (z),t)
1−|β |2 .

Theorem 1.3.4. Suppose that P( · , t) belongs to P for each t ≥ 0, and is measurable in t and β ∈D.

Then, for z ∈ D and s≥ 0, the following initial value problem


∂ V
∂ t

= (V −β )(βV −1)Pβ (V , t), for almost every t ≥ s,

V (s) = z,
(1.12)

with (1− |β |2)Pβ (z, t) = P(Sβ (z), t) has a unique absolutely continuous solution Vz(t) = ψ(z;s, t)

in t ≥ s for each z ∈ D. Moreover, the functions ψ(z;s, t) are univalent in z ∈ D,

h(β )(z,s) = lim
t→∞

etSβ (ψ(z;s, t)) z ∈ D,s≥ 0, (1.13)

exists locally uniformly in D and h(β )(z,s) is the conjugation of a classical Loewner chain with

respect to β ∈ D and also satisfying (1.11).

Conversely, if h(z, t) is the conjugation of a classical Loewner chain given with respect to β ∈D

and ψ(z;s, t) is determined by h(z,s) = h(ψ(z;s, t), t) then Vz(t) = ψ(z;s, t) is the solution of (1.12)

and satisfies (1.13).

Before giving the proof of these two theorems, we state a lemma, which relates the solution of

the IVP (1.4) with the more general case of the Berkson-Porta infinitesimal generator. The lemma

is based on the fact:
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• If {φt}t≥0 is a semigroup on U ⊂ C and T : U −→ C is one-to-one, then {T ◦φt ◦T−1}t≥0 is

also a semigroup over T (U)⊂ C.

Lemma 1.3.5. Let P( · , t) : D−→C satisfy Re(P(z, t))> 0 in D and P(0, t) = 1 for each t ≥ 0. Let

us denote Pβ (z, t) =
P(Sβ (z), t)

1−|β |2
, and let s≥ 0 be fixed.

(a) Uz(t) is a solution of (1.4) if and only if Vz(t) = S−1
β
(USβ (z)(t)) is a solution of (1.12).

(b) The function Uz(t) is absolutely continuous in t ≥ s for each z ∈ D if and only if Vz(t) =

S−1
β
(USβ (z)(t)) is absolutely continuous in t ≥ s for each z ∈ D as well.

Proof. (a) Let us suppose that Vz(t) is a solution of (1.12), w = Sβ (z) and consider Uw(t) =

Sβ (Vz(t)). We are going to show that Uz(t) is a solution of (1.4). In fact,

∂ Uz(t)
∂ t

= S′
β
(Vz(t))

∂ Vz(t)
∂ t

=−
(1−|β |2)(Vz(t)−β )

(
1− β̄Vz(t)

)
(1− β̄Vz(t))2

Pβ (Vz(t), t)

=−
(

Vz(t)−β

1− β̄Vz(t)

)(
1−|β |2

)
Pβ (Vz(t), t)

=−Sβ (Vz(t))
(
1−|β |2

)
Pβ (Vz(t), t)

=−Uz(t)P(Uz(t), t).

In addition, if Vz(s) = z, then Uw(s) = w. Therefore, Uz(t) = Sβ (Vz(t)) is a solution of (1.4).

In a similar way we can show the converse.

(b) It is not difficult to see that S−1
β
(z) satisfies

|(S−1
β
)′(z)| ≤ 1−|β |2

(1−|β |)2 =
1+ |β |
1−|β |

=: Kβ , for z ∈ D.

A similar inequality holds if we use S′
β
(z) instead of (S−1

β
)′(z). Furthermore, from the con-

vexity of D we have

|S−1
β
(z1)−S−1

β
(z2)| ≤ |(S−1

β
)′(z2 +λ0(z1− z2))||z1− z2| ≤ Kβ |z1− z2| for z1,z2 ∈ D.
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Also, the function Sβ satisfies the same inequality. Now, it is easy to check that Uz(t) is

absolutely continuous in t ≥ s for each z ∈ D if and only if Vz(t) = S−1
β
(USβ (z)(t)) is also

absolutely continuous in t ≥ s for each z ∈ D.

Proof of the theorem 1.3.3.

It is a straightforward consequence of Theorem 1.2.1 and Lemma 1.3.5.

Proof of the theorem 1.3.4.

It is a straightforward consequence of Theorem 1.2.2 and Lemma 1.3.5.

We would like to indicate that to the best of our knowledge the present work and [6, 11] con-

stitute the first works, in which one can find an explicit relation, between the solutions of the more

general Berkson-Porta equation and some types of Loewner chains and evolution families. We dif-

fer from [6, 11] because the authors of these works added an integral condition which is not used

here. Instead of that condition, we do it by means of conjugations.

1.3.2 A−subordination

It is clear that the composition of two analytic functions is always analytic. In the harmonic case,

it is easy to verify that if f and g are harmonic mappings, with domain g ⊇ range f , then g ◦ f is

not “in general” harmonic. Trivial exception occur when f or its conjugate are analytic and g is an

arbitrary harmonic mapping. We have a similiar result when f is an arbitrary harmonic mapping

and g is affine, i.e., g(z) = az+ c+bz̄, where a,b,c are complex constants. See [36] for more non-

trivial examples. However, it is not easy to find families of harmonic functions which are closed

under composition. In this section we use the Dirichlet and Neumann problem to find families of

harmonic functions closed under composition.

Study of the composition of harmonic functions using the Dirichlet problem

Let us recall that the complex-valued Dirichlet problem in the unit disc consists of finding a con-

tinuous complex-valued function in D̄, which is harmonic in D and its boundary value is given.
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This means, for u0(eis) ∈ C[0,2π] ⊂ L2[0,2π], we want to find a function u : D −→ C and u ∈

C(D̄)∩C2(D,C), such that  ∆u = 0, in D;

u = u0, on ∂D.
(1.14)

This problem has a unique solution of the form:

u(z) =
1

2π

∫ 2π

0
P(z,s)u0(eis)ds =

∞

∑
k=0

akzk +
∞

∑
k=1

a−kz̄k,

with

u0(eis) =
∞

∑
k=−∞

akeiks and ak =
1

2π

∫ 2π

0
u0(eis)e−iksds,

where ak are the Fourier coefficients of u0, and

P(z,s) =
1−|z|2

|eis− z|2
= PH (z,s)+PH̄ 0(z,s),

is the so-called Poisson kernel.

On the other hand, P. Duren and G. Schober [13, 14] established that the closure of the family

of all sense-preserving harmonic mappings on D onto itself, is precisely the family of all functions

ω of the form

ω(z) =
1

2π

∫ 2π

0
P(z,s)eiθω (s)ds, (1.15)

where θω(s) is a circle mapping, defined as a left continuous nondecreasing function on [0,2π) with

θω(2π−)−θω(0) ≤ 2π , see [13, 14] et al. Furthermore, the functions ω of the form (1.15) are a

particular case when Ω = ω(D) is a convex set, and ∂Ω is a Jordan curve. In this more general case,

we have

ω(z) =
1

2π

∫ 2π

0
P(z,s)ϕω(eis)ds, (1.16)

where ϕω is a homeomorphism from ∂D onto ∂Ω, and ω is univalent in D. Moreover, ω is the

solution of the Dirichlet problem with initial condition u0(eis) = ϕω(eis), see for example, [13]. Let

us denote by K the family of functions ω of the form (1.16).

Also, it is worthy recalling the harmonic Hardy space on D, denoted by h2(D), containing all
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the harmonic functions u on D, such that

sup
r∈[0,1)

M2(u,r)<+∞, with M2(u,r) =
1

2π

∫ 2π

0
|u(reiθ )|2dθ .

This space h2(D), can also be identified as the class of power series

∞

∑
k=0

akzk +
∞

∑
k=1

a−kz̄k, with
∞

∑
k=−∞

|ak|2 <+∞,

that is, {ak} ∈ l2(Z). Furthermore, it is shown (see [3]) that the application f −→ P[ f ] is a linear

isometry from L2[0,2π] onto h2(D), where

P[ f ](z) =
1

2π

∫ 2π

0
P(z,s) f (eis)ds, for f (eis) ∈ L2[0,2π].

This integral P[ f ](z) is called the Poisson Integral of f (eis) ∈ L2[0,2π].

Let FD be the family of functions which are solutions of a Dirichlet problem in D, this means

FD := {u is a solution of (1.14) for some u0(eis) ∈C[0,2π]},

and let F̃D be the set of functions belonging to FD such that u(D) D.

Now, let us consider ΛD the closure in L2[0,2π] of the subspace generated by

AD =

{
φ(s) = ∂µµP(µ(z),s) =

eis

(eis−µ(z))3 : µ(z) ∈ F̃D, |z|< 1
}

,

and Λ⊥D its orthogonal complement. It is not difficult to show that AD ⊂ L2[0,2π] (see [13]). Finally,

let us consider the following set

GD = {ω ∈ F̃D : α(s),β (s) ∈ Λ
⊥
D , where ω0(eis) = α(s)+ iβ (s)}.

We show some examples of functions in GD.

Example 4. Let a,b ∈ R be fixed, and satisfy max{|a+ b|, |a− b|} < 1. If we define the function
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ω(z) = az+bz̄, for z ∈ D then, ω(z) ∈ GD. In fact, we know that

P(z,s) =
∞

∑
n=0

e−inszn +
∞

∑
n=1

einsz̄n.

Then,

1
2π

∫ 2π

0
P(z,s)(aeis +be−is)ds =

a
2π

∫ 2π

0
P(z,s)eisds+

b
2π

∫ 2π

0
P(z,s)e−isds

=
a

2π

∫ 2π

0

(
∞

∑
n=0

e−inszn +
∞

∑
n=1

einsz̄n

)
eisds

+
b

2π

∫ 2π

0

(
∞

∑
n=0

e−inszn +
∞

∑
n=1

einsz̄n

)
e−isds

=
∞

∑
n=0

azn

2π

∫ 2π

0
e−i(n−1)sds+

∞

∑
n=1

az̄n

2π

∫ 2π

0
ei(n+1)sds

+
∞

∑
n=0

bzn

2π

∫ 2π

0
e−i(n+1)sds+

∞

∑
n=1

bz̄n

2π

∫ 2π

0
ei(n−1)sds

= az+bz̄ = ω(z).

Therefore, ω0(eis) = aeis+be−is. Now, let us suppose that µ = µ(z)∈ F̃D and |z|< 1. From simple

calculations we obtain

∂zzP(z,s) =
∞

∑
n=2

n(n−1)e−inszn−2 = ∂z̄z̄P(z,s).

Then,

1
2π

∫ 2π

0
∂µµP(µ(z),s)ω0(eis)ds =

1
2π

∫ 2π

0
∑
n≥2

n(n−1)e−ins
µ

n−2(aeis +be−is)ds

= ∑
n≥2

n(n−1)
(

1
2π

∫ 2π

0
e−ins(aeis +be−is)ds

)
µ

n−2

= ∑
n≥2

n(n−1)
(

a
2π

∫ 2π

0
e−i(n−1)sds+

b
2π

∫ 2π

0
e−i(n+1)sds

)
µ

n−2

= 0.
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In a similar way we have

1
2π

∫ 2π

0
∂µ̄ µ̄P(µ(z),s)ω0(eis)ds = 0.

Therefore,

1
2π

∫ 2π

0
∂µµP(µ(z),s)ω0(eis)ds = 0 =

1
2π

∫ 2π

0
∂µ̄ µ̄P(µ(z),s)ω0(eis)ds,

which implies that Re(ω0(eis)), Im(ω0(eis)) ∈ Λ⊥D . Thus, ω(z) ∈ GD.

Example 5. In a similar way as in Example 4, we can show that ω(z) = az + c + bz̄ ∈ GD, if

a,b,c ∈ R satisfy max{|a+b+ c|, |a−b+ c|}< 1.

We present now a property that has the family GD, which establishes that the composition of

functions in GD is harmonic.

Theorem 1.3.6. The family GD satisfies the following conditions,

1. If u,v ∈ GD, then u◦ v ∈A (D,D),

2. GD = {u(z) = az+ c+bz̄ : a,b,c ∈ C, u(D) D},

3. GD is closed under composition.

Proof.

1. Let us suppose that

u(z) =
1

2π

∫ 2π

0
P(z,s)u0(eis)ds, and µ = v(z).

Since µ ∈ F̃D, from the definition of GD it follows

∫ 2π

0
∂µµP(µ(z),s)u0(eis)ds = 0 =

∫ 2π

0
∂µ̄ µ̄P(µ(z),s)u0(eis)ds.

Here, we have used that ∂zzP= 1
2(∂

2
xxP− i∂ 2

xyP) and ∂z̄z̄P= ∂zzP.
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Also, we know that ∆ = 1
4 ∂z∂z̄ =

1
4 ∂zz̄ then,

∂zz̄(u◦ v)(z) =
1

2π

∫ 2π

0

{
∂z̄µ∂zµ∂µµP(µ ,s)+∂zµ̄∂z̄µ̄∂µ̄ µ̄P(µ ,s)

}
u0(eis)ds,

=

(
∂zµ∂z̄µ

2π

)∫ 2π

0
∂µµP(µ ,s)u0(eis)ds+

(
∂zµ̄∂z̄µ̄

2π

)∫ 2π

0
∂µ̄ µ̄P(µ ,s)u0(eis)ds,

= 0.

This implies that (u◦ v)(z) is harmonic.

2. Now, we want to show the second statement. From the definition of GD, we have that u ∈ GD

implies
1

2π

∫ 2π

0
∂µµP(µ ,s)u0(eis)ds = 0 =

1
2π

∫ 2π

0
∂µ̄ µ̄P(µ ,s)u0(eis)ds,

for every µ(z) ∈ F̃D. But, as we have seen before

∂zzP(z,s) =
∞

∑
n=2

n(n−1)e−inszn−2 = ∂z̄z̄P(z,s).

Thus, for every µ ∈ F̃D, we have

0 =
1

2π

∫ 2π

0
∂µµP(µ ,s)u0(eis)ds =

1
2π

∫ 2π

0
∑
n≥2

n(n−1)e−ins
µ

n−2u0(eis)ds

= ∑
n≥2

n(n−1)
(

1
2π

∫ 2π

0
e−insu0(eis)ds

)
µ

n−2.

Therefore,

∑
n≥2

n(n−1)
(

1
2π

∫ 2π

0
e−insu0(eis)ds

)
µ

n−2 = 0. (1.17)

In a similar way, it can be shown

∑
n≥2

n(n−1)
(

1
2π

∫ 2π

0
einsu0(eis)ds

)
µ

n−2 = 0. (1.18)
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Furthermore, if u is the solution of a Dirichlet problem then,

u(z) = ∑
k≥0

akzk + ∑
k≥1

a−kz̄n, with u0(eis) =
∞

∑
k=−∞

akeiks.

Thus,

1
2π

∫ 2π

0
e−insu0(eis)ds =

1
2π

∫ 2π

0
e−ins

(
∞

∑
k=−∞

akeiks

)
ds

=
∞

∑
k=−∞

ak

(
1

2π

∫ 2π

0
ei(k−n)sds

)
= an. (1.19)

From the particular case µ(z) = z ∈ F̃D, and Equations (1.17), (1.18), and (1.19), we obtain

that

∂zzu(z) = ∑
n≥2

n(n−1)anzn−2 = 0,

∂z̄z̄u(z) = ∑
n≥2

n(n−1)bnz̄n−2 = 0.

Therefore,

u(z) = a1z+a0 +b1z̄.

Thus, we conclude that

GD = {u(z) = az+ c+bz̄ : a,b,c ∈ C,u(D) D}.

3. Note that if u,v ∈ GD then u◦ v ∈ GD. Thus, GD is a family of harmonic functions which is closed

under compositions.

Remark 1.1. From Example 5, we have that |a+ c|+ |b| < 1 is a sufficient condition in order to

a function u = az+ c+bz̄, with real coefficients, belongs to GD. In the case, when the coefficients

a,b,c are complex numbers, a sufficient condition that the function u = az+ c+bz̄ belongs to GD,

is |a|+ |b|+ |c|< 1.
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Study of the composition of harmonic functions using the Neumann problem

Here, we are going to consider the Laplace equation with a Neumann boundary condition instead

of a Dirichlet condition. We reason in a similar way as before, in order to find a family which is

closed under composition. Note that these two boundary conditions are different and in principle

(see Theorem 1.3.8) lead to different harmonic functions.

Let L be the family of solutions of the Neumann problem for the Laplace operator for some

function h(eis) ∈C[0,2π], that is, u ∈L if there exists a function h(eis) ∈C[0,2π], such that


∆u = 0, in D;

∂u
∂n

= h, on ∂D,

where
∂u
∂n

denotes the normal derivative of u. In this case, we write hu(eis) := h(eis).

Since hu(eis) ∈C[0,2π], we can write this function in the following form

hu(eis) =
∞

∑
n=−∞

aneins, with a0 = 0,

where an are the Fourier coefficient of hu. Therefore, the functions in L have the form

u(z) =
∞

∑
n=1

an

n
zn +

∞

∑
n=1

a−n

n
z̄n.

On the other hand,

u(z) =
∞

∑
n=1

(
1

2π

∫ 2π

0
hu(eis)e−insds

)
zn

n
+

∞

∑
n=1

(
1

2π

∫ 2π

0
hu(eis)einsds

)
z̄n

n

=
1

2π

∫ 2π

0

(
∞

∑
n=1

zn

n
e−ins +

∞

∑
n=1

z̄n

n
eins

)
h(eis)ds

=
1

2π

∫ 2π

0
Q(z,s)hu(eis)ds,
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where

Q(z,s) =
∞

∑
n=1

(ze−is)n

n
+

∞

∑
n=1

(z̄eis)n

n
.

Note that

∂zQ(z,s) = e−isPH (z,s), and ∂z̄Q(z,s) = eisPH (z,s),

where P(z,s) = PH (z,s)+PH̄ 0(z,s) is the Poisson kernel.

Also, note that if u(z) is a solution of some Neumann problem, then u(z)+c is a solution of the

same problem as well.

Actually, we are interested in subfamilies of L , which are closed under composition. To get a

family with this property, let us define L̃ to be the family of function u ∈L such that u(D)  D.

Now, let us consider ΛN to be the closure in L2[0,2π] of the subspace generated by

AN =

{
ϕ(s) = ∂µµQ(µ(z),s) =

eis

(eis−µ(z))3 : µ(z) ∈ L̃ , |z|< 1
}

,

and Λ⊥N its orthogonal complement. It is not difficult to see that also AN ⊂ L2[0,2π].

Finally, let GN be the following set

GN = {u ∈ L̃ : a(s),b(s) ∈ Λ
⊥
N , where hu(eis) = a(s)+ ib(s)}.

As a consequence of this definition we have,

Proposition 1.3.7. If φ ,ψ ∈ GN , then φ ◦ψ ∈A (D,D).

Proof. It can be shown in a similar way as Proposition 1.3.6.

Theorem 1.3.8. The set GN is closed under the composition. Moreover, GN = GD.

Proof. From the definition of GN , we have that for functions u ∈ GN it follows

1
2π

∫ 2π

0
∂µµQ(µ ,s)hu(eis)ds = 0 =

1
2π

∫ 2π

0
∂µ̄ µ̄Q(µ ,s)hu(eis)ds
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for every µ ∈ L̃ and |z|< 1. But, these equations are equivalent to:

1
2π

∫ 2π

0
∂µP(µ ,s)e−ishu(eis)ds = 0 =

1
2π

∫ 2π

0
∂µP(µ ,s)eishu(eis)ds.

Then,

0 =
1

2π

∫ 2π

0
∂µP(µ ,s)e−ishu(eis)ds =

1
2π

∫ 2π

0

∞

∑
n=0

ne−ins
µ

n−1e−ishu(eis)ds

=
∞

∑
n=0

n
(

1
2π

∫ 2π

0
e−i(n+1)shu(eis)ds

)
µ

n−1

=
∞

∑
n=0

n

(
1

2π

∫ 2π

0
e−i(n+1)s

(
∞

∑
k=−∞

akeiks

)
ds

)
µ

n−1

=
∞

∑
n=0

n

(
∞

∑
k=−∞

ak

(
1

2π

∫ 2π

0
e−i(n+1−k)sds

))
µ

n−1

=
∞

∑
n=0

nan+1µ
n−1.

In particular, for µ(z) = z, we have

∂zzu(z) =
∞

∑
n=0

nan+1zn−1 = 0.

In a similar way it can be shown that

∞

∑
n=0

na−(n+1)µ̄
n−1 = 0.

Thus,

∂z̄z̄u(z) =
∞

∑
n=0

na−(n+1)z̄
n−1 = 0.

Therefore, u(z) = a1z+a−1z̄. But, u(z)+c is a solution of the same Neumann problem as well.

Thus,

GN = {u(z) = a1z+ c+a−1z̄ : a1,c,a−1 ∈ C, u(D) D},

which is closed under composition and GN = GD.
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Subordination

By considering the family G = {u(z) = a1z+ c+a−1z̄ : a1,c,a−1 ∈ C}, we are able to introduce a

type of subordination for harmonic functions. In the previous section, the fucntion which makes the

subordination, was considered to be analytic. In this case, that function is harmonic.

Definition 1.3.3. Let f ,g : D −→ C be complex-valued harmonic functions. We say that f is

A−subordinate or harmonically subordinate to g if:

There exists a harmonic mapping ψ on D satisfying |ψ|< 1 and ψ(0) = 0, such that

f (x,y) = g(ψ(x,y)), (x,y) ∈ D.

This will be denoted by f ≺A g.

Remark 1.2. Note that for every harmonic function f with f (0) = 0 and f (D) bounded, there is at

least one g ∈ G such that f ≺A g.

Furthermore, we have the following lemma.

Lemma 1.3.9. Let g ∈ G be given. Then, f ≺A g if and only if f (0) = g(0) and f (D)⊂ g(D).

Proof. Assuming that f (z) ≺A g(z) then φ(D) ⊂ D and φ(0) = 0 from Definition 1.3.3. Thus, it

follows that f (D) = g(φ(D))⊂ g(D) and f (0) = g(0).

Conversely, we introduce the function

φ(z) := u(z)+ v(z), with u(z) =
a f1(z)−b f2(z)
|a|2−|b|2

, v(z) =
a f2(z)−b f1(z)
|a|2−|b|2

,

where f (z) = f (0)+ f1(z)+ f2(z), and g(z) = az+g(0)+bz̄. Note that φ is harmonic in D, φ(0) = 0

and φ(D)⊂ D. Further, f (z) = g(φ(z)). Therefore, f ≺A g.

Let us see an example of this subordination.

Example 6. Let us consider the functions:

f (z) =
eα1 + eβ1

2
z+

eα1− eβ1

2
z̄ = eα1x+ ieβ1y,
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g(z) =
eα2 + eβ2

2
z+

eα2− eβ2

2
z̄ = eα2x+ ieβ2y,

with α1 < α2 and β1 < β2, then f ≺A g. More precisely, ψ(x,y) = eα1−α2x+ ieβ1−β2y.

We will continue dealing with this concept in posterior sections, where it will be used to define

a certain class of harmonic chains.

1.4 Semigroups and evolution families in GD

In the 3 we established the definition of a one-parameter semigroup. Here, we study a semigroup of

harmonic functions, more precisely in GD. Also, we present the more general concept, that is, the

concept of evolution families and examples.

Definition 1.4.1. A family {ϕs,t}0≤s≤t<+∞ of harmonic functions on D, is an evolution family of

harmonic functions (in short, an A−evolution family), if

EF1. ϕs,s = IdD,

EF2. ϕs,t = ϕτ ,t ◦ϕs,τ , for all 0≤ s≤ τ ≤ t <+∞,

EF3. For each z ∈ D, the function ϕ∗(s, t) = ϕs,t(z) is continuous in R+×R+ if s≤ t.

Example 7. It is clear that if {φt}t≥0 is a semigroup of harmonic functions then, the set {ϕs,t(z) =

φt−s(z)}0≤s≤t<+∞ is an evolution family of harmonic functions. In fact, EF1 and EF2 follow from

S1 and S2, respectively. Note that S3 implies that for each z ∈ D and l0 > 0, φl(z) −→ φl0(z) as

l −→ l0. So, if (s0, t0) ∈ R+×R+ with s0 ≤ t0 and setting l = t− s > 0 and l0 = t0− s0, we obtain

EF3. If l0 = 0, we can only consider the lateral limit l −→ l+0 .

We have introduced the family GD in order to guarantee that the composition of two harmonic

mappings is harmonic. What follows is to present examples of semigroups and evolution families

of harmonic functions.

Consider {φt(z)}t≥0 ⊂ GD such that φt(D)⊂ D and satisfying the semigroup conditions S1, S2

and S3. Then,

φt(z) = a(t)z+ c(t)+b(t)z̄,
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where a(t),b(t),c(t) are continuous functions at zero and a(0) = 1, b(0) = 0 and c(0) = 0. We are

interested in studying the next question in a explicit way.

What are the conditions that a(t), b(t) and c(t) must satisfy in order to obtain the equality

φt+s(z) = φt(φs(z))?

To answer this question first of all, we have

φt(φs(z)) = a(t)φs(z)+ c(t)+b(t)φs(z)

= a(t)[a(s)z+ c(s)+b(s)z̄]+ c(t)+b(t)[a(s)z+ c(s)+b(s)z̄]

= [a(t)a(s)+b(t)b(s)]z+[a(t)c(s)+ c(t)+b(t)c(s)]+ [a(t)b(s)+a(s)b(t)]z̄.

On the other hand, we have

φt+s(z) = a(t + s)z+ c(t + s)+b(t + s)z̄.

Then,

a(t + s) = a(t)a(s)+b(t)b(s),

c(t + s) = a(t)c(s)+ c(t)+b(t)c(s),

b(t + s) = a(t)b(s)+a(s)b(t).

Therefore,

a(t + s)−a(t)
s

= a(t)
[

a(s)−1
s

]
+b(t)

b(s)
s

,

c(t + s)− c(t)
s

= a(t)
[

c(s)
s

]
+b(t)

[
c(s)

s

]
,

b(t + s)−b(t)
s

= a(t)
b(s)

s
+

[
a(s)−1

s

]
b(t).

Let us assume that ȧ(t), ċ(t), and ḃ(t) exist, for every t ≥ 0. Since a(0) = 1, c(0) = 0, and
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b(0) = 0, we get the following system of equations

ȧ(t) = a(t)ȧ(0)+b(t)ḃ(0),

ḃ(t) = a(t)ḃ(0)+b(t)ȧ(0),

ċ(t) = a(t)ċ(0)+b(t)ċ(0).

This means,

d
dt


a

b

c

=


a0 b0 0

b0 a0 0

c0 c0 0




a

b

c

 , with a0 = ȧ(0), b0 = ḃ(0), c0 = ċ(0).

At this point, we are going to present two cases:

1. The first case, when the all coefficients are real-valued functions.

Let us assume a(t),b(t),c(t) ∈ R, we obtain

d
dt


a

b

c

=


a0 b0 0

b0 a0 0

c0 c0 0




a

b

c

 , with a0 = ȧ(0), b0 = ḃ(0), c0 = ċ(0).

Then,

a(t) =
e(a0+b0)t + e(a0−b0)t

2
= ea0t cosh(b0t),

b(t) =
e(a0+b0)t − e(a0−b0)t

2
= ea0t sinh(b0t),

c(t) =
c0

a0 +b0

(
e(a0+b0)t −1

)
.

Moreover, a straightforward calculation shows that φt(z) satisfies the following equation

∂tφt(z) = G(φt(z)), with G(z) = a0z+ c0 +b0z̄.
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2. For the second case, we consider that the coefficients are complex and φt(0) = 0.

Now, if we suppose that a(t),b(t) ∈ C and c(t)≡ 0, we obtain

d
dt

 a

b

=

 a0 b0

b0 a0

 a

b

 with a0 = ȧ(0), b0 = ḃ(0).

But,  a0 b0

b0 a0

=

 1 1

−b0(Γ+iβ )
|b0|2

b0(Γ−iβ )
|b0|2

 α−Γ 0

0 α +Γ

 Γ−iβ
2Γ

− b0
2Γ

Γ+iβ
2Γ

b0
2Γ

 ,

where a0 = α + iβ and Γ =
√
|b0|2−β 2. Thus,

a(t) =
(Γ− iβ )e(α−Γ)t +(Γ+ iβ )e(α+Γ)t

2Γ
=

eαt

Γ
{Γcosh(Γt)+ iβ sinh(Γt)} , (1.20)

b(t) =
b0(Γ

2 +β 2)(e(α+Γ)t − e(α−Γ)t)

2Γ|b0|2
=

b0eαt

Γ
sinh(Γt).

Also, we have that {φt(z)} satisfies the following equation

∂tφt(z) = G(φt(z)), with G(z) = a0z+b0z̄.

In both cases, we have seen that the semigroup {φt(z)}t≥0 ⊂ GD satisfies an evolution equation

of the following form

∂tφt(z) = G(φt(z)).

Furthermore, {φt(z)} is a group, since it can be defined for all t ∈ R.

Now, let us consider {ϕs,t(z)}0≤s≤t<∞ ⊂ GD such that ϕs,t(D) ⊂ D, satisfying EF1, EF2, and

EF3, and

ϕs,t(z) = a(s, t)z+b(s, t)z̄.

Then a(s, t) and b(s, t) are continuous with a(s,s) = 1 and b(s,s) = 0. Thus, working in a similar
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way as before we can obtain that: from EF2, if s≤ τ ≤ t, we have

(ϕτ ,t ◦ϕs,τ)(z) = a(τ , t)ϕs,τ(z)+b(τ , t)ϕs,τ(z)

= a(τ , t)[a(s,τ)z+b(s,τ)z̄]+b(τ , t)[a(s,τ)z+b(s,τ)z̄]

= a(τ , t)a(s,τ)z+a(τ , t)b(s,τ)z̄+b(τ , t)a(s,τ)z̄+b(τ , t)b(s,τ)z

= [a(τ , t)a(s,τ)+b(τ , t)b(s,τ)]z+[a(τ , t)b(s,τ)+b(τ , t)a(s,τ)]z̄

We want this equal to

ϕs,t(z) = a(s, t)z+b(s, t)z̄.

Thus, we need that

a(s, t) = a(τ , t)a(s,τ)+b(τ , t)b(s,τ), (1.21)

b(s, t) = a(τ , t)b(s,τ)+a(s,τ)b(τ , t). (1.22)

If we add a suitable term in each previous equation and divide by t− τ , we obtain

a(s, t)−a(s,τ)
t− τ

= a(s,τ)
{

a(τ , t)−a(τ ,τ)
t− τ

}
+b(s,τ)

{
b(τ , t)−b(τ ,τ)

t− τ

}
,

b(s, t)−b(s,τ)
t− τ

= b(s,τ)
{

a(τ , t)−a(τ ,τ)
t− τ

}
+a(s,τ)

{
b(τ , t)−b(τ ,τ)

t− τ

}
.

Setting ∆τ = t− τ , we obtain

a(s,τ +∆τ)−a(s,τ)
∆τ

= a(s,τ)
{

a(τ ,τ +∆τ)−a(τ ,τ)
∆τ

}
+b(s,τ)

{
b(τ ,τ +∆τ)−b(τ ,τ)

∆τ

}
,

b(s,τ +∆τ)−b(s,τ)
∆τ

= b(s,τ)
{

a(τ ,τ +∆τ)−a(τ ,τ)
∆τ

}
+a(s,τ)

{
b(τ ,τ +∆τ)−b(τ ,τ)

∆τ

}
.

Let us assume that ∂2a(s, t) and ∂2b(s, t) exist, for every t ≥ s, where ∂2 denotes the derivative with
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respect to the second variable. If we let ∆τ −→ 0, we have

∂2a(s,τ) = a(s,τ)∂2a(τ ,τ)+b(s,τ)∂2b(τ ,τ), (1.23)

∂2b(s,τ) = b(s,τ)∂2a(τ ,τ)+a(s,τ)∂2b(τ ,τ), (1.24)

with, ∂2a(τ ,τ) = ∂2a(ζ ,τ)|
ζ=τ

, and similarly for ∂2b(t, t). Equations (1.23), and (1.24) imply that

ϕs,t(z) satisfies the following equation:

∂tϕs,t(z) = G(ϕs,t(z), t), where G(z, t) = ∂2ϕσ ,t(z)|σ=t = ∂2ϕt,σ (z)|σ=t .

Let us consider xs(τ) = a(s,τ), and ys(τ) = b(s,τ) for an arbitrary s ∈ R fixed. Then, we can

rewrite Equations (1.23), and (1.24) as follows

d
dτ

xs(τ) = α(τ)xs(τ)+β (τ)ys(τ),

d
dτ

ys(τ) = α(τ)ys(τ)+β (τ)xs(τ),

with α(τ) = ∂2a(τ ,τ), and β (τ) = ∂2b(τ ,τ). Equivalently, these equations can be written as a

non-autonomous linear system of differential equations

d
dτ


xs(τ)

ys(τ)

xs(τ)

ys(τ)

=


α(τ) 0 0 β (τ)

0 α(τ) β (τ) 0

0 β (τ) α(τ) 0

β (τ) 0 0 α(τ)




xs(τ)

ys(τ)

xs(τ)

ys(τ)

= B(τ)~x(τ), (1.25)

with~x(τ) = (xs(τ),ys(τ),xs(τ),ys(τ))
T . Therefore, for each s≥ 0 we have the IVP


d

dτ
~x(τ) = B(τ)~x(τ), τ ≥ s,

~x(s) = e1 + e3,

(1.26)

where e j = (δi j).
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In a similar way, but now for the first variable, we add other suitable terms in Equations (1.21),

and (1.22) and dividing by s−τ , also assuming that ∂1a(s, t) and ∂1b(s, t) exist, for every 0≤ s≤ t,

where ∂1 denotes the derivative with respect to the first variable, we obtain

a(s, t)−a(τ , t)
s− τ

= a(τ , t)
{

a(s,τ)−a(τ ,τ)
s− τ

}
+b(τ , t)

{
b(s,τ)−b(τ ,τ)

s− τ

}
,

b(s, t)−b(τ , t)
s− τ

= a(τ , t)
{

b(s,τ)−b(τ ,τ)
s− τ

}
+b(τ , t)

{
a(s,τ)−a(τ ,τ)

s− τ

}
.

Since a(τ ,τ) = 1, and b(τ ,τ) = 0. If we set ∆τ = s− τ , we obtain

a(τ +∆τ , t)−a(τ , t)
∆τ

= a(τ , t)
{

a(τ +∆τ ,τ)−a(τ ,τ)
∆τ

}
+b(τ , t)

{
b(τ +∆τ ,τ)−b(τ ,τ)

∆τ

}
,

b(τ +∆τ , t)−b(τ , t)
∆τ

= a(τ , t)
{

b(τ +∆τ ,τ)−b(τ ,τ)
∆τ

}
+b(τ , t)

{
a(τ +∆τ ,τ)−a(τ ,τ)

∆τ

}
.

Let us denote ∂1a(τ ,τ) = ∂1a(τ ,ζ )|
ζ=τ

, and ∂1b(t, t) = ∂1b(τ ,ζ )|
ζ=τ

, as before. If we let ∆τ −→ 0,

we have

∂1a(τ , t) = a(τ , t)∂1a(τ ,τ)+b(τ , t)∂1b(τ ,τ), (1.27)

∂1b(τ , t) = a(τ , t)∂1b(τ ,τ)+b(τ , t)∂1a(τ ,τ). (1.28)

Since ∂1a(τ ,τ)+∂2a(τ ,τ) = 0, and ∂1b(τ ,τ)+∂2b(τ ,τ) = 0, it follows

∂1a(τ , t) =−α(τ)a(τ , t)−β (τ)b(τ , t), (1.29)

∂1b(τ , t) =−β (τ)a(τ , t)−α(τ)b(τ , t). (1.30)

So, from Equations (1.29), and (1.30) it follows that ϕs,t also satisfies another evolution equation

∂sϕs,t(z) =−{G(z,s)∂zϕs,t(z)+G(z,s)∂z̄ϕs,t(z)}. (1.31)
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Now, if ut(τ) = a(τ , t), and vt(τ) = b(τ , t) with a fixed t ∈ R, then

d
dτ

ut(τ) =−α(τ)ut(τ)−β (τ)vt(τ),

d
dτ

vt(τ) =−β (τ)ut(τ)−α(τ)vt(τ).

Equivalently,

d
dτ

 ut(τ)

vt(τ)

=−

 α(τ) β (τ)

β (τ) α(τ)

 ut(τ)

vt(τ)

 . (1.32)

In this way, we obtain another non-autonomous linear system of differential equations. But, this

2×2 system can also be written as the following 4×4 system

d
dτ


ut(τ)

vt(τ)

ut(τ)

vt(τ)

=−


α(τ) β (τ) 0 0

β (τ) α(τ) 0 0

0 0 α(τ) β (τ)

0 0 β (τ) α(τ)




ut(τ)

vt(τ)

ut(τ)

vt(τ)

=−A(τ) ~u(τ), (1.33)

with~u(τ) = (ut(τ),vt(τ),ut(τ),vt(τ))
T . Thus, once again for each t ≥ 0 we have the following IVP


d

dτ
~u(τ) =−A(τ)~u(τ), τ ≤ t,

~u(t) = e1 + e3.

(1.34)

In the autonomous case of the IVP (1.34), and (1.26), we can show that a(s, t) and b(s, t) have

the following form

a(s, t) =
eλ1(s−t)

Γ
{Γcosh(Γ(s− t))+ iλ2 sinh(Γ(s− t))} , (1.35)

b(s, t) =
βeλ1(s−t)

Γ
sinh(Γ(s− t)),

where α = λ1 + iλ2,β ∈ C and Γ =
√
|β |2−λ 2

2 .
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In the more general case, note that

A(τ) = JB(τ)J, with J = J−1 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 . (1.36)

Also, there are inverse matrices ΠB(s,τ), ΠA(τ , t) (see [44]), called the principal matrices solution

associated to the IVP (1.26), and (1.34), respectively. The principal matrix solution is defined in

such a way that

∂τΠA(τ , t) =−A(τ)ΠA(τ , t),

∂τΠB(s,τ) = B(τ)ΠB(s,τ),

ΠB(s,s) = IId = ΠA(t, t), IId is the matrix identity.

For more details see G. Teschl [44]. Then, Equation (1.36) implies that

ΠB(s, t) = JΠ
−1
A (s,−t)J = JΠA(−t,s)J.

Moreover, the solutions φA(τ , t), and φB(s,τ) for the IVP’s (1.34), and (1.26), respectively, are given

by

φA(τ , t) = ΠA(τ , t)(e1 + e3)

φB(s,τ) = ΠB(s,τ)(e1 + e3) = JΠA(−τ ,s)J(e1 + e3)

= JΠA(−τ ,s)(e1 + e3) = JφA(−τ ,s).

The latter equations guarantee the solutions of both systems by simply solving the IVP (1.32).
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Example 8. If α(t) = β (t) ∈C(R,R), then the IVP (1.32) is written as

d
dτ

 ut(τ)

vt(τ)

=−α(τ)

 1 1

1 1

 ut(τ)

vt(τ)

 ,

 ut(t)

vt(t)

=

 1

0

 .

The solution of this system is given by

 u(s, t)

v(s, t)

=
1
2

 p(s, t)+1

p(s,y)−1

 , p(s, t) = e−2
∫ t

s α(σ)dσ .

Finally,

ϕs,t(z) = u(s, t)z+ v(s, t)z̄ = xp(s, t)+ iy, z = x+ iy,

is an evolution family in G .

Example 9. If α(t),β (t) ∈C(R,R) then, the IVP (1.32) is rewritten as

d
dτ

 ut(τ)

vt(τ)

=−

 α(τ) β (τ)

β (τ) α(τ)

 ut(τ)

vt(τ)

 ,

 ut(t)

vt(t)

=

 1

0

 .

The solution of this system is given by

 u(s, t)

v(s, t)

=
1
2

 e−
∫ t

s [α(σ)+β (σ)]dσ + e−
∫ t

s [α(σ)−β (σ)]dσ

e−
∫ t

s [α(σ)+β (σ)]dσ − e−
∫ t

s [α(σ)−β (σ)]dσ

 .

Finally,

ϕs,t(z) = u(s, t)z+ v(s, t)z̄ = xp(s, t)+ iyq(s, t), z = x+ iy,

where p(s, t) = e−
∫ t

s [α(σ)+β (σ)]dσ and q(s, t) = e−
∫ t

s [α(σ)−β (σ)]dσ . This ϕs,t(z) is also an evolution

family in G .
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1.5 Harmonic Loewner chains

In this section we introduce a notion of Loewner chains for harmonic functions taking into account

the decomposition (1.2) given in [8]. Note that, the classical case is obtained if the co-analytic part

is null. This idea is developed in two cases. The first case is made considering the evolution family

of analytic functions. The second case, the evolution family is in the space of harmonic functions.

1.5.1 H −Loewner chains and A−Loewner chains

We have two types of subordination then, according to each type, we can introduce a notion of

chains. Firstly, we attempt to develop an analogous of the classical Loewner theory in the case

when only the elements of the chain are harmonic mappings. Then, we assume that the associated

evolution families are also considered harmonic mappings.

H −Loewner chains

Definition 1.5.1. The sense-preserving harmonic function ft(z) = f (z, t), with z ∈ D, and t ≥ 0,

such that

f (z, t) = ∑
n≥1

an(t)zn +α

(
∑
n≥1

a−n(t)z̄n

)
with |α|< 1, (1.37)

with a1(t) = et for t ≥ 0, is called a H −Loewner chain, if the following two conditions hold,

1. For each t ≥ 0, its analytic part is one-to-one,

2. fs(z)≺H ft(z), if 0≤ s≤ t <+∞.

The following results are consequences of the definition.

Proposition 1.5.1. Let f (z, t) = h(z, t)+g(z, t) be an H −Loewner chain. Then,

1. For s≤ t, h(z,s)≺H h(z, t) and g(z,s)≺H g(z, t),

2. The function h(z, t) is a classical Loewner chain,

3. There exists an evolution family φ(z,s, t) of one-to-one analytic functions from D into D,
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4. For 0≤ s≤ t ≤ τ <+∞,

|h(z, t)−h(z,s)| ≤ 8|z|
(1−|z|)4 (e

t − es), |z|< 1, (A)

|g(z, t)−g(z,s)|< 8|z|
(1−|z|)4 (e

t − es), |z|< 1, (B)

|φ(z,s,τ)−φ(z, t,τ)| ≤ 2|z|
(1−|z|)2 (1− es−t), |z|< 1. (C)

Proof. Assertion 1. follows from Definition 1.5.1 together with the decomposition (1.2). The proof

of 2. is obtained from the subordination in 1. and Definition 1.5.1. The existence of an evolution

family φ(z,s, t) and the inequalities (A) and (C) are consequences of the fact that h(z, t) is a classical

Loewner chain (see [34] page 157). Moreover, it was proved [34] that for t ≥ 0, and |z|< 1 we have

et |z|
(1+ |z|)2 ≤ |h(z, t)| ≤ et |z|

(1−|z|)2 , (A*)

|h′(z, t)| ≤ et(1+ |z|)
(1−|z|)3 ≤

2et

(1−|z|)3 , (B*)

|z−φ(z,s, t)| ≤ 2|z|1+ |z|
1−|z|

(1− es−t)≤ 4(1− es−t)

1−|z|
. (C*)

Finally, the inequality (B) will be proved following the steps used in [34] to prove (A), and

using simultaneously that f is sense-preserving, and the inequalities (B*) and (C*).

First of all, we have |g′(z, t)| < |h′(z, t)| since f is sense-preserving. From (B*) and (C*) we

obtain

|g(z, t)−g(z,s)|=
∣∣∣∣∫ z

φ(z,s,t)
g′(w, t)dw

∣∣∣∣< 2et

(1−|z|)3 |z−φ(z,s, t)|

≤ 8|z|
(1−|z|)4 (e

t − es).

Thus, we conclude the proof of (B).

Example 10. The classical Loewner chains are clearly examples of H −Loewner chains.

Convenient representation of the H −Loewner chains is established in the next theorem.
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Theorem 1.5.2. Let f (z, t) = h(z, t)+ g(z, t) be an H −Loewner chain, then there is an analytic

function F :
⋃

t≥0
h(D, t)−→ C such that

f (z, t) = h(z, t)+F(h(z, t)) z ∈ D, t ≥ 0

Proof. Let {φ(z,s, t)} be the evolution family which makes the subordination. From Remark 1.5.1,

the function h(z,s) is a classical Loewner chain and one-to-one. Thus, φ(z,s, t) = h−1(h(z,s), t). If

we study the co-analytic part of f (z,s), we obtain

g(z,s) = g(h−1(h(z,s), t), t), if s≤ t. (1.38)

Let us define F(·, t) = g(h−1(·, t), t) : N −→ C, with N :=
⋃

t≥0
h(D, t). Then, (1.38) implies

F(z,s) = F(z, t). Thus, F is independent of t and g(z, t) = F(h(z, t)).

Remark 1.3. From the Koebe 1/4 theorem we have that ∪t≥0h(D, t) = C, see, for examples, [34]

pages 22-23. Therefore, F is an entire function.

We now present some analogous results to the classical case, including the compactness of the

family of H −Loewner chains, and a partial differential equation satisfied by the H −Loewner

chains.

This first proposition states that the set of H −Loewner chains is compact.

Proposition 1.5.3. Let { fn(z, t)} be a sequence of H −Loewner chains. Then, there exists a subse-

quence of { fn(z, t)} that converges to an H −Loewner chain locally uniformly in D for each fixed

t ≥ 0.

Proof. Suppose that fn(z, t) = hn(z, t)+Fn(hn(z, t)) is a sequence of H −Loewner chains. Then,

{hn(z, t)} is a sequence of classical Loewner chains and contains a subsequence {hnk(z, t)} converg-

ing to a classical Loewner chain h(z, t) locally uniformly in D for each fixed t ≥ 0 (see [34] page

158). Then, in particular h(z, t) is one-to-one.

Now, we are going to prove that {Fn}n∈N is a normal family. In fact, the function fn(z,s) is
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sense-preserving, for every n ∈ N. Thus,

|h′n(z, t)|2−|F ′n(hn(z, t))|2|h′n(z, t)|2 > 0.

Since hn is one-to-one, for every n ∈ N, we have |F ′n(w)| < 1 for every n and w ∈
⋃

n∈N
Nn

fixed. Thus, from Montel’s Theorem {F ′n}n∈N is normal. But, if w ∈
⋃

n∈N
Nn and r > 0, such that

D(w,r)⊂
⋃

n∈N
Nn then,

Fn(w) =
1

2πi

∫
∂D(w,r)

F ′n(ζ )
(w−ζ )2 dζ , for each n ∈ N,

which implies that |Fn(w)|< 1/r2 for every n∈N. Therefore, once again Montel’s Theorem implies

that the family {Fn}n∈N is normal. Moreover, {Fn}n∈N is compact because Fn(0) = 0.

Thus, the subsequence { fnk(z, t) = hnk(z, t)+Fnk(hnk(z, t))}k∈N contains a subsequence converg-

ing to h(z, t)+F(h(z, t)), which is an H −Loewner chain.

The representation of the H −Loewner chains as the sum

f (z, t) = h(z, t)+F(h(z, t)),

where h(z, t) is a classical Loewner chain, helps us to show an analogue differential equation to the

Loewner-Kufarev equation in the following form. In fact, if we derive in both sides with respect to

t, we obtain

∂ f (z, t)
∂ t

=
∂h(z, t)

∂ t
+

∂F(h(z, t))
∂ t

=
∂h(z, t)

∂ t
+F ′(h(z, t))

∂h(z, t)
∂ t

= G(h(z, t), t)
∂h(z, t)

∂ z
+G(h(z, t), t)F ′(h(z, t))

∂h(z, t)
∂ z

= G(h(z, t), t)
∂h(z, t)

∂ z
+G(h(z, t), t)F ′(h(z, t))

∂h(z, t)
∂ z

= G(h(z, t), t)
∂ f (z, t)

∂ z
+G(h(z, t), t)

∂ f (z, t)
∂ z̄

. (1.39)
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Now, we establish a partial differential equation type Loewner-Kufarev equation which is satis-

fied by these H −Loewner chains.

Theorem 1.5.4. Suppose that the harmonic function f (z, t) defined by (1.37) is sense-preserving

for each t ≥ 0. Then f (z, t) is an H −Loewner chain if and only if the following two conditions are

satisfied:

CL. I.) There exist K0 ≥ 0 and r0 > 0 such that h(z, t) is analytic in |z|< r0 for each t ≥ 0, absolutely

continuous in t ≥ 0 for each |z|< r0 and satisfies

|h(z, t)| ≤ K0et , |z|< 1; t ≥ 0. (1.40)

CL. II.) There exists an analytic function G(z, t) = zP(z, t) with P(z, t) ∈P and measurable on t ≥ 0

for each z ∈ D, such that

∂ f (z, t)
∂ t

= G(z, t)
∂ f (z, t)

∂ z
+G(z, t)

∂ f (z, t)
∂ z̄

, (1.41)

for |z|< r0 and almost every t ≥ 0.

Proof. Let us suppose f (z, t) = h(z, t)+g(z, t) is a harmonic function for each t ≥ 0 which satisfies

CL. I.) and CL. II.). We will reason as in the proof of Theorem 1.2.1 Pommerenke [34]. Let φ(z,s, t)

be the solution of the IVP (1.4) according to Theorem 1.2.2 where s≤ t. From (1.4) and (1.41) we

have

∂

∂ t
{ f (φ(z,s, t), t)}= ∂ f (φ , t)

∂ z
∂φ(z,s, t)

∂ t
+

∂ f (φ , t)
∂ z̄

∂φ(z,s, t)
∂ t

+
∂ f (φ , t)

∂ t

=
∂ f (φ , t)

∂ z
∂φ(z,s, t)

∂ t
+

∂ f (φ , t)
∂ z̄

∂φ(z,s, t)
∂ t

+
∂ f (φ , t)

∂ t

=−∂ f (φ , t)
∂ z

G(z, t)− ∂ f (φ , t)
∂ z̄

G(z, t)+
∂ f (φ , t)

∂ t

= 0.

Here, we have used (1.40) and the sense-preserving property of f to guarantee the existence of

h′(z, t) and g′(z, t) uniformly in every bounded interval of t ≥ 0. This implies that the right hand
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side does not depend on t. In particular,

f (φ(z,s, t), t) = f (z,s), s≤ t.

Thus, h(z,s) = h(φ(z,s, t), t). Moreover, from CL.II) if |z|< 1,

∂h(z, t)
∂ t

= G(z, t)h′(z, t) = zP(z, t)h′(z, t) for almost every t ≥ 0,

for an analytic function P(z, t) ∈P .

By the condition CL. I.) and Theorem 1.2.1, it follows that h(z, t) is a classical Loewner chain

and h(z, t) is one-to-one.

The reciprocal follows from Definitions 1.5.1 and Equation (1.39).

Although one might suspect that the evolution family, which makes the subordination of an

H −Loewner chain, and at the same time the subordination of its analytic part (that is a classical

Loewner chain), could satisfy two different partial differential equations, this is not the case. The

evolution family essentially satisfies only one equation, as is established in the following proposi-

tion.

Proposition 1.5.5. The evolution family φ(z,s, t) associated to the subordination of an H −Loew-

ner chain f (z, t) and its analytic part h(z, t) which is a classical Loewner chain, satisfies essentially

only one equation. That is, there exists essentially a unique P ∈P measurable in t ≥ 0 for each

z ∈ D, such that

∂φ(z,s, t)
∂ t

=−φ(z,s, t)P(φ(z,s, t), t), z ∈ D, for almost every t ≥ 0.

In this context, the term essentially means that P ∈P is unique up to a null set (set of measure

zero).

Proof. Since f (z, t) is an H −Loewner chain then, by Theorem 1.5.4 there exists an analytic func-
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tion G(z, t) = zP1(z, t) for some P1 ∈P measurable in t ≥ 0 for each z ∈ D, such that

∂s f (z,s) = zP1(z,s)h′(z,s)+ zP1(z,s)g′(z,s), |z|< 1; s ∈ R+ \E1, (1.42)

where E1 is a null set. Also, we have that h(z, t) is a classical Loewner chain. So, by Theorem 1.2.1,

there exists another function P2 ∈P measurable in t ≥ 0 for each z ∈ D, such that

∂sh(z,s) = zP2(z,s)h′(z,s), |z|< 1; s ∈ R+ \E2, (1.43)

where E2 is a null set.

On the other hand, there exists another null set E3, such that ∂sg(z,s) exists for every s∈R+ \E3,

and the following equality holds

∂s f (z,s) = ∂sh(z,s)+∂sg(z,s). (1.44)

Now, if s ∈ R+ \{E1∪E2∪E3}, from Equations (1.42), and (1.44), we obtain that

∂sh(z,s) = zP1(z,s)h′(z,s), (1.45)

we have used the decomposition (1.2). Finally, from Equations (1.43), and (1.45), we have P1(z,s)=

P2(z,s) for almost every s ∈ R+.

There exists a one-to-one relation between the conjugation of H −Loewner chains and Equation

(1.11) as follows:

Corollary 1.5.6. The univalent harmonic function W (β )(z, t) = u(β )(z, t)+ v(β )(z, t) is the conjuga-

tion of an H −Loewner chain with respect to β ∈D given if and only if the following two conditions

are satisfied:

1. There exist z0 ∈D, R0 > 0 and K > 0 such that u(β )(z, t) is analytic in D(z0,R0) for each t ≥ 0,

absolutely continuous in t ≥ 0 for each z in D(z0,R0) and

|u(β )(z, t)| ≤ Ket , for t ≥ 0, z ∈ D(z0,R0).
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2. There exists an analytic function G(z, t) = (z−β )(1− β̄ z)Pβ (z, t) with P(z, t) and Pβ (z, t) as

in Theorem 1.3.3, such that

∂W (z, t)
∂ t

= G(z, t)
∂W (z, t)

∂ z
+G(z, t)

∂W (z, t)
∂ z̄

, (1.46)

for |z|< r0 and almost every t ≥ 0.

Proof. The result follows from Theorems 1.3.3 and 1.5.4.

A−Loewner chains

We proceed, in this part, to introduce the Loewner chains when all the elements are considered to

be harmonic functions. In particular, the evolution families.

Definition 1.5.2. The sense-preserving harmonic function ft(z) = f (z, t), with z ∈ D, and t ≥ 0,

such that

f (z, t) = ∑
n≥1

an(t)zn +α

(
∑
n≥1

a−n(t)z̄n

)
, with |α|< 1, (1.47)

where a1(t) 6= 0 for t ≥ 0, and lim
t−→∞

a1(t) = +∞, is called an A−Loewner chain if the following

two conditions hold,

1. For each t ≥ 0, f (z, t) is univalent,

2. fs(z)≺A ft(z), if 0≤ s≤ t <+∞.

Remark 1.4. There exists an evolution family φ(z,s, t) of one-to-one harmonic functions from D

into D associated to each A−Loewner chain. Moreover, φ(z,s, t) = f−1( f (z,s), t).

Example 11. The following family of functions is an example of an A−Loewner chain:

f (z, t) =
eαt + eβ t

2
z+

eαt − eβ t

2
z̄, with α ,β > 0.

Moreover, the evolution family in GD associated to the A−subordination of these functions is:

φ(z,s, t) =
eα(s−t)+ eβ (s−t)

2
z+

eα(s−t)− eβ (s−t)

2
z̄.
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Now, we establish a partial differential equation, which is satisfied by the A−Loewner chains,

assuming additional conditions.

Theorem 1.5.7. Let f (z, t) be an A−Loewner chain that satisfies the following two conditions

A1. Its associated evolution family is in GD,

A2. There exist K0 ≥ 0 and r0 > 0 such that h(z, t) is analytic in |z|< r0 for each t ≥ 0, absolutely

continuous in t ≥ 0 for each |z|< r0, and satisfies

|h(z, t)| ≤ K0et , |z|< r0; t ≥ 0. (1.48)

Then, there exists a harmonic function G(z, t) measurable in t ≥ 0 for each z ∈ D, such that

∂ f (z, t)
∂ t

= G(z, t)
∂ f (z, t)

∂ z
+G(z, t)

∂ f (z, t)
∂ z̄

,

for |z|< r0 and almost every t ≥ 0.

Proof. Note that condition A2 implies that h(z, t) and g(z, t) are absolutely continuous in t for each

|z|< 1. Then, f (z,s) is absolutely continuous in t for each |z|< 1. Thus, ∂t f (z, t) exists for almost

every t ≥ 0.

Defining tn = s+ 1/n with n ∈ N, and fixed s > 0. Now, using the definition of subordination

we can write

f (z, tnk)− f (z,s)
tnk − s

=
h(z, tnk)−h(z,s)

tnk − s
+

(
g(z, tnk)−g(z,s)

tnk − s

)
=

h(z, tnk)−h(φ , tnk)

z−φ

z−φ

tnk − s
+

z−φ

tnk − s

(
g(z, tnk)−g(φ , tnk)

z−φ

)
. (1.49)

We have that h(z, tnk)−→ h(z,s) and g(z, tnk)−→ g(z,s) locally uniformly in |z|< r0 as nk −→

∞, where {h(z, tnk)} and {g(z, tnk)} are the subsequences of {h(z, tn)} and {g(z, tn)}, respectively,

which convergent locally uniformly due to the Montel theorem applied to the families {h(z, tn)} and

{g(z, tn)}, taking into account that they are normal families. This latter statement follows from A2,
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and the Cauchy integral formula. Thus, we obtain h′(z, tnk)−→ h′(z,s), and g′(z, tnk)−→ g′(z,s) as

nk −→ ∞. Also, φ(z,s, tnk)−→ z as nk −→ ∞. Therefore,

h(z, tnk)−h(φ , tnk)

z−φ(z,s, tnk)
=
∫ 1

0
h′(z+ γ[φ(z,s, tnk)− z])dγ −→ h′(z,s), as nk −→ ∞,

g(z, tnk)−g(φ , tnk)

z−φ(z,s, tnk)
=
∫ 1

0
g′(z+ γ[φ(z,s, tnk)− z])dγ −→ g′(z,s), as nk −→ ∞.

Let s≥ 0 be fixed such that ∂ f (z,s)
∂ s exists. If we let nk −→ ∞ in Equations (1.49), and (1.31), we

obtain

∂ f (z,s)
∂ s

= lim
nk−→∞

{
z−φ

tnk−s
h(z,tnk )−h(φ ,tnk )

z−φ(z,s,tnk )

}
+ lim

nk−→∞

{
z−φ

tnk−s

(
g(z,tnk )−g(φ ,tnk )

z−φ(z,s,tnk )

)}
= h′(z,s)G(z,s)+g′(z,s)G(z,s)

=

{
G(z,s)

∂ f (z,s)
∂ z

+G(z,s)
∂ f (z,s)

∂ z̄

}
.

This theorem extends and establishes a partial differential equation of Loewner-Kufarev type for

the case of harmonic functions. Although, we have supposed that the associated evolution family is

in the class GD, we hope to extend this result to a more general case.
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Chapter 2

Evolution families in the space of ρ−nonexpansive mappings

2.1 Introduction

This chapter is inspired by the results given in the previous chapter. We are actually interested in

extending the Loewner theory to non-analytic functions. This chapter is written following the setting

given by F. Bracci, M. Contreras, and S. Díaz-Madrigal [6, 7], where the evolution mappings are

introduced and studied before introducing the Loewner chains. Although here, we only study the

evolution families of ρ−nonexpansive functions, we hope to extand aur study in future works.

In [41] Shoikhet studied the semigroups of analytic functions, and ρ−nonexpansive functions.

He characterized the infinitesimal generator of both types of semigroups. In this study, he used the

nonlinear resolvent of continuous functions on D. Furthermore, one characteristic of the infinitesi-

mal generator of semigroups is the following autonomous IVP

 d
dt u(t) = F(u(t)), t ∈ [0,+∞),

u(0) = z,

where the solution is a semigroup and the vector field is its infinitesimal generator.

On the other hand, the main result in [6, 7] is to relate the concept of evolution families of

analytic functions defined on D or on a complex hyperbolic manifold, respectively, with a certain

type of holomorphic functions, that the authors called Herglotz vector fields. This relation is done
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by means of the following non-autonomous IVP

 ω̇ = G(ω , t), for almost every t ∈ [s,+∞),

ω(s) = z0,
(2.1)

where the solution is an evolution family and G(z, t) is a Herglotz vector field.

In this chapter we define the space Nρ(D) of ρ−nonexpansive functions on D, and the concept

of a ρ−nonexpansive evolution family in D is introduced as well, where ρ is the Poincaré hyper-

bolic metric on D. These sets of functions are more general than the sets of harmonic functions

and analytic functions. Also, we define a type of weak vector fields, which we call ρ−monotone

weak vector field (ρ−WVF). The purpose of this chapter is to study the relation between these two

given concepts by means of a non-autonomous IVP as before. Also, we introduce the infinitesimal

generators of ρ−nonexpansive evolution families and the nonlinear resolvent for a certain class of

functions. We establish some of their characteristics.

We begin by recalling some properties of the Poincaré hyperbolic metric and the ρ−non-

expansive mappings in Section 2.2. In Section 2.3 the concept of a ρ−nonexpansive evolution

family in D is introduced, and some properties of these families are shown. Section 2.4 is devoted

to study the ρ−monotone weak vector fields. The introduction and the analysis of the infinitesimal

generators of ρ−nonexpansive evolution families, and the nonlinear resolvent is made in Section

2.5. Finally, in Section 2.6, we establish a condition for the evolution family to have an infinitesimal

generator.

2.2 Preliminaries

Let ρ denote the Poincaré hyperbolic metric. This section is devoted to recall the space of ρ−nonex-

pansive functions, some properties of the Poincaré hyperbolic metric, and results that will be used

in the following sections.

Definition 2.2.1. A mapping F : D−→ D, is said to be ρ−nonexpansive if for each pair z,w ∈ D,

ρ(F(z),F(w))≤ ρ(z,w).
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Here, ρ(z,w) denotes the Poincaré hyperbolic metric and it is defined as

ρ(z,w) = tanh−1
(∣∣∣∣ z−w

1− zw̄

∣∣∣∣) .

Let us denote by Nρ(D) the class of all ρ−nonexpansive mappings on D.

An equivalent formula that defines ρ(z,w), and is useful, is the following

ρ(z,w) = tanh−1(|S−z(w)|) = ρ(0, |S−z(w)|),

where as before S−z(w) = w−z
1−z̄w is a Möbius transformation.

Some properties of the Poincaré hyperbolic metric are listed in the next propositions.

Proposition 2.2.1 (see [41]). The Poincaré metric ρ on the unit disc D satisfies the following

properties:

1. If z,w ∈ D are different points, then for each k ∈ (0,1)

ρ(kz,kw)< kρ(z,w).

2. If z,w,u ∈ D are different points, then for each k ∈ (0,1)

ρ((1− k)z+ ku,(1− k)w+ ku)< αρ(z,w),

where α = (1− k)+ k|u|< 1.

3. If z,w,u,v ∈ D are different points, then for each k ∈ [0,1]

ρ((1− k)z+ ku,(1− k)w+ kv)≤max{ρ(z,w),ρ(u,v)}.

Proof. See [41], page 47.

The previous four properties can be considered as geometrical properties. The next list contains

more topological properties. Their proofs can be found in [41] as well.

49



Proposition 2.2.2 (see [41]). The Poincaré metric ρ on the unit disc D satisfies the following

topological properties

1. If a ∈ D and r > 0 then,

|S−a(w)|< r, if and only if |w−S−r2a(a)|< S−r|a|2(r).

2. If we define Bρ(a,R) = {z ∈ D : ρ(z,a) < R}, and B(a,r) = {z ∈ D : |z− a| < r} then,

Bρ(a,R) = B(λa,η tanhR), where

λ =
1− (tanhR)2

1− (tanhR)2|a|2
, η =

1−|a|2

1− (tanhR)2|a|2
.

Moreover, Bρ(a,R) = Sa(B(0,r)).

3. For every compact set K ⊂ D, there are constants mK ,MK > 0, such that

mK |z−w| ≤ ρ(z,w)≤MK |z−w|, for all z,w ∈ K. (2.2)

That is, the metrics | · | and ρ are equivalent on compact sets.

4. If zn ∈D, for all n∈N then, lim
n−→+∞

ρ(0,zn) =+∞ if and only if |zn| −→ 1− as n−→+∞, i.e.,

if zn −→ ∂D.

5. If z,zn ∈ D, for all n ∈ N then,

lim
n−→+∞

ρ(zn,z) = 0, if and only if lim
n−→+∞

|zn− z|= 0.

Remark 2.1. 1. Let us denote by C0(U ,V ) the space of all continuous mappings on U into V ,

and C0(U) =C0(U ,U). Then, the class Nρ(D) is a closed convex subset of the space C0(D).

Further, Nρ(D) is a semigroup with respect to the composition, see [41] for more details.

2. The Schwartz-Pick Lemma, implies that H (D), the set of all holomorphic self-mappings of

D, is a subset of Nρ(D). Also, it is not difficult to see that f̄ ∈ Nρ(D) if f ∈ Nρ(D). Then,
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the convexity of Nρ(D) implies that Re[ f ] = f+ f̄
2 ∈ Nρ(D) if f ∈H (D), and f+ḡ

2 ∈ Nρ(D)

if f ,g ∈H (D). Thus, A (D) the set of all complex-valued harmonic self-mappings of D is

contained in Nρ(D).

2.3 Evolution families in Nρ(D)

Definition 2.3.1. The family {ϕs,t}0≤s≤t<+∞ in Nρ(D) is called an evolution family if

EF1. ϕs,s = Iid ,

EF2. ϕs,t = ϕτ ,t ◦ϕs,τ , for all 0≤ s≤ τ ≤ t <+∞,

EF3. For each compact set K ⊂D and T > 0, there exists a constant CK,T =C(K,T ) depending on

K and T such that

ρ(ϕs,t(z),ϕs,τ(z))≤CK,T (t− τ) ,

for every z ∈ K, and 0≤ s≤ τ ≤ t ≤ T .

Direct consequences of the definition are given in the next remark.

Remark 2.2. Let {ϕs,t}0≤s≤t<+∞ be an evolution family. Then,

1. From Remark 2.1 we have that, for every s≤ t, the mapping ϕs,t(·) is continuous in D. That

is, each element of an evolution family is continuous in D.

2. Condition EF3 implies that, for all z ∈ D and for all s≥ 0, the mapping

ϕs,·(z) : [s,+∞)−→ C

t −→ ϕs,t(z),

is continuous in [s,+∞). Furthermore, it is absolutely continuous on [s,T ], for all T > s. In

fact, if z ∈ D and s ≥ 0 are given, we define y(t) = ϕs,t(z) with t ≥ s. To prove the first part,

let us suppose t > s, and ε > 0. Now, let us consider a compact set K ⊂ D containing z, and
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T > 2t− s. Then, there exists a constant CK,T > 0, such that

ρ(y(t),y(τ)) = ρ(ϕs,t(z),ϕs,τ(z))≤CK,T (t− τ), if 0≤ s≤ τ ≤ t ≤ T .

Let δ = min{C−1
K,T ε , t− s}> 0 be fixed. If |τ− t|< δ then, in both cases either τ ≤ t or t ≤ τ ,

we obtain

ρ(y(t),y(τ))< ε .

Thus, y(t) is continuous in t > s. If t = s, all calculations work as well, but in this case, we

only have t ≤ τ obtaining a similar result.

The second assumption follows from the fact that the metric ρ(z,w) and |z−w| are equivalent

on compact sets. Since K = {ϕs,t(z) : t ∈ [s,T ]} is a compact set then, 0 ≤ s ≤ τ ≤ t ≤ T

implies

|ϕs,t(z)−ϕs,τ(z)| ≤m−1
K ρ(ϕs,t(z),ϕs,τ(z))≤m−1

K CK,T (t− τ).

Thus, ϕs,·(z) is absolutely continuous on [s,T ].

Lemma 2.3.1. Let {ϕs,t}0≤s≤t<+∞ be an evolution family, s0 ≥ 0, and t0 > 0 be fixed.

1. If tn→ t−0 as n→+∞ then, ϕtn,t0 → Iid as n→+∞ uniformly on compact sets.

2. If sn→ s+0 as n→+∞ then, ϕs0,sn → Iid as n→+∞ uniformly on compact sets.

Proof. Let {ϕs,t}0≤s≤t<+∞ be an evolution family, s0 ≥ 0, and t0 > 0 be fixed. Then,

1. Let us suppose tn −→ t−0 as n−→+∞. Let K be a compact subset of D and T > t0. Then, for

z ∈ K, and n≥ 1, we have

ρ(ϕtn,t0(z),z) = ρ(ϕtn,t0(z),ϕtn,tn(z))≤CK,T (t0− tn).

Setting n→+∞, we obtain ρ(ϕtn,t0(z),z)→ 0. Equivalently, |ϕtnt0(z)− z| → 0.

2. Let us suppose that sn −→ s+0 as n−→+∞. Since {sn} converges, then it is bounded. Let K
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be a compact subset of D and T > max{sn,s0 : n ∈ N}. Then, for z ∈ K, and n≥ 1, we have

ρ(ϕs0,sn(z),z) = ρ(ϕs0,sn(z),ϕs0,s0(z))≤CK,T (sn− s0,).

If we set n−→+∞, we obtain ρ(ϕs0,sn(z),z)−→ 0. Equivalently, we have |ϕs0,sn(z)−z| −→ 0.

The following proposition states the uniform joint continuity on compact sets of evolution fam-

ilies.

Proposition 2.3.2. Let {ϕs,t}0≤s≤t<+∞ be an evolution family. For each compact set K ⊂D and two

convergent sequences {sn} and {tn} in [0,+∞), with 0≤ sn ≤ tn, such that sn −→ s, and tn −→ t, as

n−→+∞. Then, |ϕsn,tn−ϕs,t | −→ 0 uniformly on K, as n−→+∞.

Proof. Let {sn} and {tn} be two sequences in [0,+∞), with 0 ≤ sn ≤ tn, such that sn −→ s, and

tn −→ t, as n −→ +∞. Since {sn} and {tn} are convergent, they are bounded. Let us take T >

2max{{sn},{tn},s, t} > 0 fixed, and K ⊂ D be a compact set. At this point, we have that {sn} and

{tn} satisfy one of the following three options:

Case I. sn ≤ tn ≤ s for all n ∈ N,

Case II. s≤ sn ≤ tn for all n ∈ N,

Case III. sn ≤ s≤ tn for all n ∈ N.

In Case I, we have s = t. Then, EF1 and EF3 imply,

ρ(ϕsn,tn(z),ϕs,t(z)) = ρ(ϕsn,tn(z),ϕsn,sn(z))≤CK,T (tn− sn)−→ 0 as n−→+∞,

uniformly on K. Therefore, |ϕsn,tn(z)−ϕs,t(z)| −→ 0 uniformly on K.
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In Case II, using EF1, EF2, EF3 and the ρ-nonexpansivity of ϕs,t , we have

ρ(ϕsn,tn(z),ϕs,t(z)) = ρ(ϕsn,tn(z),ϕs,tn(z))+ρ(ϕs,tn(z),ϕs,t(z))

= ρ(ϕsn,tn ◦ϕs,s(z),ϕsn,tn ◦ϕs,sn(z))+ρ(ϕs,tn(z),ϕs,t(z))

≤ ρ(ϕs,s(z),ϕs,sn(z))+ρ(ϕs,tn(z),ϕs,t(z))

≤CK,T{(sn− s)+ |tn− t|} −→ 0 as n−→+∞,

uniformly on K. Therefore, |ϕsn,tn(z)−ϕs,t(z)| −→ 0 uniformly on K.

In Case III, using ϕsn,sn = Iid , EF2, EF3 and the ρ-nonexpansivity of ϕs,t , we obtain

ρ(ϕsn,tn(z),ϕs,t(z)) = ρ(ϕsn,tn(z),ϕs,tn(z))+ρ(ϕs,tn(z),ϕs,t(z))

= ρ(ϕs,tn ◦ϕsn,s(z),ϕs,tn ◦ϕsn,sn(z))+ρ(ϕs,tn(z),ϕs,t(z))

≤ ρ(ϕsn,s(z),ϕsn,sn(z))+ρ(ϕs,tn(z),ϕs,t(z))

≤CK,T{(s− sn)+ |tn− t|} −→ 0 as n−→+∞,

uniformly on K. Therefore, |ϕsn,tn(z)−ϕs,t(z)| −→ 0 uniformly on K.

Thus, we obtain that the mapping (s, t)−→ ϕs,t is jointly continuous.

Remark 2.3. If {ϕs,t(z)}0≤s≤t<+∞ is a evolution family in Nρ(D). Then, for each compact K ⊂ D

and T > 0, there is a constant CK,T > 0 such that

ρ(ϕs,t(z),ϕr,u(z))≤CK,T (|r− s|+ |t−u|),

for all z ∈ K and r,s, t,u ∈ [0,T ], with s ≤ t and r ≤ u. For instance, if r,s, t,u ∈ [0,T ], with s ≤ t

and r ≤ u then, we have three options:

1. 0≤ s≤ r ≤ u≤ t ≤ T ,

2. 0≤ s≤ t ≤ r ≤ u≤ T ,

3. 0≤ s≤ r ≤ t ≤ u≤ T .
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The other cases are equivalent to these cases. Let us suppose 0≤ s≤ r ≤ t ≤ u≤ T . The other two

cases can be proved in a similar way as this case.

ρ(ϕs,t(z),ϕr,u(z))≤ ρ(ϕs,t(z),ϕr,t(z))+ρ(ϕr,t(z),ϕr,u(z))

≤ ρ(ϕr,t(ϕs,r(z)),ϕr,t(ϕs,s(z)))+CK,T (u− t)

≤ ρ(ϕs,r(z),ϕs,s(z))+CK,T (u− t)

≤CK,T (r− s)+CK,T (u− t) =CK,T (|r− s|+ |t−u|).

Remark 2.4. For each z ∈ D, and t > 0, the function s ∈ [0, t] −→ ϕs,t(z) is absolutely continuous

on [0, t].

2.4 ρ−Monotone weak vector fields

In this section, we introduce the vector field, corresponding to the right hand side of the Loewner-

Kufarev ordinary differential equation, associated to the evolution families in Nρ(D).

First, we are going to recall the well-known Carathéodory Theorem (see [9]), which guarantees

the existence of an interval and a solution in an extended sense of an initial value problem, as

follows:

Suppose f is a complex-valued (not necessarily continuous) function defined in some set R

of the (z, t)−space, containing the given point (z0,s) ∈ D× [0,+∞). We can formulate the next

problem.

Problem E. To find an absolutely continuous function ω defined on a interval I, such that


(ω(t), t) ∈ R, whenever t ∈ I;

ω̇ = f (ω , t), for almost every t ∈ I;

ω(s) = z0.

(2.3)

If such an interval I and such a function ω exist then, ω is said to be a solution of (E) in the extended

sense on I.
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To solve this problem, we can reformulate the Carathéodory Theorem as follows, where R∗ =

R+∪{0}.

Theorem 2.4.1 (Carathéodory Theorem). Let f be a function defined on R = K× [a,b]⊂ D×R∗,

and R containing (z0,s) in its interior. Assume that f is measurable in the variable t on [a,b], for

each fixed z ∈ D, continuous in z for each fixed t ∈ [a,b].

If there exists a non-negative Lebesgue-integrable function m(t) on [a,b], such that

| f (z, t)| ≤ m(t), (z, t) ∈ R, (2.4)

then, there exist IR(z0,s) > s, and a function φ such that the initial value problem (2.3) holds.

Furthermore, if f (·, t) is Lipschitz on K then, this solution is unique.

See (A.2) for the proof and [9] for more details.

Next, we introduce the definition of the corresponding vector fields. Finally, we apply the

Carathéodory Theorem to show that these vector fields have always associated a unique evolution

family in Nρ(D).

Definition 2.4.1. A ρ-monotone weak vector field (ρ−WVF, for short) on the unit disc D is a

function G : D× [0,+∞)−→ C which satisfies the following properties:

VF1. For all z ∈ D, the function G(z, ·) is measurable on [0,+∞),

VF2. The function G(0, ·) : [0,+∞)→ C is bounded on [0,T ] for all T > 0,

VF3. For all t ≥ 0, the function G(·, t) is ρ-monotone, that is, if for each pair z,w ∈D the following

condition holds:

ρ(z− rG(z, t),w− rG(w, t))≥ ρ(z,w),

for all r ≥ 0 such that z− rG(z, t),w− rG(w, t) ∈ D and each fixed t ≥ 0.

VF4. For any compact set K ⊂ D and T > 0, there exists a constant FK,T such that

|G(z, t)−G(w, t)| ≤ FK,T |z−w|, for all z,w ∈ K, t ∈ [0,T ]. (2.5)

56



Let us denote by Hρ(D) the set of all ρ-monotone weak vector field on the unit disc D.

Actually, in the last definition we have thought of imposing, instead of VF4, the following

condition:

VF4* For each compact set K and T > 0, there exists a bounded, non-negative (therefore Lebesgue-

integrable) function MK,T : [0,T ]−→ R+, such that

|G(z, t)| ≤MK,T (t), for all z ∈ K, t ∈ [0,T ]. (2.6)

This condition, in order to apply Carathéodory’s Theorem to an initial value problem as (2.3) where

the right hand side is a ρ−WVF. We could note that (2.6) ensures the existence of “a” solution of

such an IVP. But, we do not have uniqueness of the solution.

In the analytic case, it is possible to show that condition VF4 follows from VF4*. This im-

plication is due to the Cauchy integral formula. In our case, there is no result such as the Cauchy

formula. But, condition VF4* follows from VF4. The following lemma states such a implication.

Lemma 2.4.2. Let G(z, t) be a ρ−WVF. For any compact set K ⊂D and T > 0, there exists MK,T :

[0,T ]−→R+ bounded, non-negative, and measurable function (and therefore Lebesgue-integrable)

such that inequality (2.6) holds.

Proof. If K ⊂ D is a compact set and T > 0, let us consider K1 = K ∪{0}. Then, VF4 implies the

existence of a constant FK1,T such that (2.5) holds. For z ∈ K ⊂ K1 and t ∈ [0,T ], Equation (2.5)

implies

|G(z, t)| ≤ |G(z, t)−G(0, t)|+ |G(0, t)| ≤ FK,T |z|+ |G(0, t)|

≤ FK,T + |G(0, t)|.

Thus, Equation (2.6) holds with MK,T (t) = FK,T + |G(0, t)|, which is bounded and measurable on

[0,T ], therefore Lebesgue-integrable on [0,T ], because |G(0, t)| is bounded and measurable on

[0,T ].
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Remark 2.5. Carathéodory’s Theorem and Lemma 2.4.2 imply that if G ∈ Hρ(D) then, for every

z ∈ D and s ≥ 0 there exist a unique number I(z,s) > s, and a unique function ω : [s, I(z,s)) −→

C, such that (ω(t), t) ∈ D× [s, I(z,s)), satisfying ω(t) −→ ∂D, as t −→ I(z,s) (see, for example,

Theorem 1.3, page 47 [9]) such that

 ω̇ = G(ω , t), for almost every t ∈ [s, I(z,s))

ω(s) = z.

The number I(z,s) is called the escaping time and ω is called the positive trajectory of G. We define

I(z,s) := sup IKr×[0,N](z,s),

the sup is taken over all compact sets Kr := {z∈D : |z| ≤ r} containing z in its interior with r∈ (0,1),

and N ∈ N. Note that I(z,s) could be infinity.

Remark 2.6. If G ∈ Hρ(D) and z,w ∈ D are different points, note that condition VF3 implies

(dρ)(z,w)(G(z, t),G(w, t))≤ 0, for each t ≥ 0, (2.7)

where (dρ) denotes the total differential of ρ . Indeed, let z,w ∈ D be given, with z 6= w. Let us

choose r > 0 fixed, such that z− rG(z, t),w− rG(w, t) ∈ D. By convexity,

h(λ ) = ρ(z−λG(z, t),w−λG(w, t)), λ ∈ [0,r]

is well defined and differentiable at 0. Then,

h′(0) = (dρ)(z,w)(−G(z, t),−G(w, t)) =−(dρ)(z,w)(G(z, t),G(w, t)).

But VF3 implies that h(λ ) ≥ h(0), for all λ ∈ [0,r], so that h′(0) ≥ 0. Therefore, Equation (2.7)

holds.

The next theorem establishes a first relation between the elements of Hρ(D) and evolution

families. More precisely, we show that every G ∈ Hρ(D) is a semi-complete vector field, i.e.,
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I(z,s) = +∞, and its positive trajectory is an evolution family.

Theorem 2.4.3. Let G(z, t) ∈ Hρ(D) be a ρ−WVF. Then, there exists a unique evolution family

ϕs,t(z) in Nρ(D), which is the solution of the initial value problem

 ω̇ = G(ω , t), for almost every t ∈ [s,+∞)

ω(s) = z0,
(2.8)

for all given s≥ 0, and z0 ∈ D.

Proof. From Remark 2.5, we guarantee the existence of I(z,s) and the positive trajectory ω(t) =

ϕs(z, t) of G, with t ∈ [s, I(z,s)), for each given z ∈ D and s ≥ 0. Our aim is to verify I(z,s) = +∞

for all z ∈ D and s≥ 0.

1. First, we are going to prove that I(z,s) = I(w,s) for all z,w ∈D, and s≥ 0. In fact, let us consider

z,w ∈ D, s≥ 0, and define

g(t) = ρ(ϕs(z, t),ϕs(w, t)), t ∈ [s,min{I(z,s), I(w,s)}).

Then, g is absolutely continuous on [s,min{I(z,s), I(w,s)}). In fact, if {(xi,yi)}n
i=1 is a finite collec-

tion of non-overlapping intervals of [s,min{I(z,s), I(w,s)}), then there exists a compact set K0 ⊂D,

such that

{ϕs(z,xi),ϕs(z,yi),ϕs(w,xi),ϕs(w,yi) : i = 1,2, . . . ,n} ⊂ K0.

Moreover,

|g(xi)−g(yi)|= |ρ(ϕs(z,xi),ϕs(w,xi))−ρ(ϕs(z,yi),ϕs(w,yi))|

≤ |ρ(ϕs(z,xi),ϕs(w,xi))−ρ(ϕs(z,yi),ϕs(w,xi))|

+ |ρ(ϕs(z,yi),ϕs(w,yi))−ρ(ϕs(z,yi),ϕs(w,xi))|

≤ ρ(ϕs(z,xi),ϕs(z,yi))+ρ(ϕs(w,xi),ϕs(w,yi))

≤MK0 {|ϕs(z,xi)−ϕs(z,yi)|+ |ϕs(w,xi)−ϕs(w,yi)|} .

Since ϕs(z, ·) and ϕs(w, ·) are absolutely continuous on [s,min{I(z,s), I(w,s)}), then for ε > 0
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there exists δ > 0 such that if ∑
n
i=1 |xi − yi| < δ , then ∑

n
i=1 |ϕs(z,xi)− ϕs(z,yi)| < ε/2MK0 and

∑
n
i=1 |ϕs(w,xi)−ϕs(w,yi)|< ε/2MK0 . Therefore,

n

∑
i=1
|g(xi)−g(yi)|< ε .

Now, for almost every t ∈ [s,min{I(z,s), I(w,s)}), we have that g′(t) exists, and

g′(t) = (dρ)(ϕs(z,t),ϕs(w,t))(ϕ̇s(z, t), ϕ̇s(w, t))

= (dρ)(ϕs(z,t),ϕs(w,t))(G(ϕs(z, t), t),G(ϕs(w, t), t))≤ 0.

Hence g is a decreasing function in [s,min{I(z,s), I(w,s)}). Therefore,

ρ(ϕs(z, t),ϕs(w, t))≤ ρ(z,w). (2.9)

If we assume that I(z,s) < I(w,s) then, ϕs(z, t) −→ ∂D from Remark 2.5, while ϕs(w, t) −→

ϕs(w, I(z,s)), as t −→ I(z,s)−. Therefore, ρ(ϕs(z, t),ϕs(w, t)) −→ +∞ as t −→ I(z,s)−, due to

Proposition 2.2.2 4., which contradicts (2.9). If we suppose I(w,s) < I(z,s) and interchanging

the rolls, z with w, and w with z, in a similar way we also obtain a contradiction. Therefore,

I(z,s) = I(w,s) or equivalently, I does not depend on z, i.e., I(s) = I(z,s).

2. Let us define I = I(0). The second step is to show that I(s) = I, if s < I. For instance, let us take

s < I, and w = ϕ0(z,s) ∈ D. Then, ϕs(w, t) and ϕ0(z, t) are the solutions of an IVP with the same

initial condition w then, ϕs(w, t) = ϕ0(z, t) from the uniqueness of the solution. From Equation (2.9)

we obtain

ρ(ϕs(z, t),ϕ0(z, t)) = ρ(ϕs(z, t),ϕs(w, t))≤ ρ(z,w).

Arguing as in Step 1. we show that I = I(s).

3. In this step we show that I =+∞. Let us suppose that I <+∞, and let us choose r < 1. Applying

Lemma 2.4.2 and VF4 with T = I +2, and K = {|z| ≤ r}, we have a constant FK,T , and a function
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MK,T : [0,T ]−→ R+, such that

|G(z, t)−G(w, t)| ≤ FK,T |z−w|, and |G(z, t)| ≤MK,T (t), (2.10)

for all z,w ∈ K, and a.e. t ∈ [0,T ].

Let us define M : [0, I +2]−→ R+, and m : [0, I +2]−→ R+, as follow

M(t) =
∫ t

0
FK,T dτ = FK,T t, m(t) =

∫ t

0
MK,T (τ)dτ .

Note that, M and m are non-decreasing on [0,T ]. From the integrability of MK,T on [0,T ], we

have that m(t) is absolutely continuous on [0,T ], and M(t) is absolutely continuous on [0,T ] as well.

Then, there exits a δ1 > 0 such that

∫ s+δ

s
FK,T dτ = M(s+δ )−M(s)≤ r, (2.11)∫ s+δ

s
MK,T (τ)dτ = m(s+δ )−m(s)≤ r, (2.12)

for all δ < δ1, and s+δ1 ≤ T . In particular, for δ0 =
1
2 min{δ1,1}, and s∈ [0, I+1], we always have

that s+δ0 ≤ T .

On the other hand, for a fixed s ∈ [0, I +1], let us define by induction

 xs
0(t) = 0,

xs
n(t) =

∫ t
s G(xs

n−1(τ),τ)dτ , t ∈ [s,s+δ0].

Now, by induction we prove that |xs
n(t)| ≤ r for all n≥ 0 and t ∈ [s,s+δ0]. In fact, |xs

0(t)|= |0| ≤ r.

Assuming that |xs
n−1(t)| ≤ r for all t ∈ [s,s+δ0] then, from (2.10) and (2.12), we have

|xs
n(t)| ≤

∫ t

s
|G(xs

n−1(τ),τ)|dτ ≤
∫ t

s
MK,T (τ)dτ ≤ r.

Moreover, the last equation shows that {xs
n(t)}n≥0 is well defined for all t ∈ [s,s+δ0].

If we define αn = max
t∈[s,s+δ0]

{|xs
n(t)− xs

n−1(t)|} for n ≥ 1, we obtain αn ≤ α1rn−1 ≤ rn. In fact,
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note that if n≥ 1, Equations (2.10) and (2.11) imply

|xs
n(t)− xs

n−1(t)| ≤
∫ t

s
|G(xs

n−1(τ),τ)−G(xs
n−2(τ),τ)|dτ

≤
∫ t

s
FK,T (τ)|xs

n−1(τ)− xs
n−2(τ)|dτ

≤ αn−1

∫ t

s
FK,T (τ)dτ ≤ αn−1r.

Thus, αn ≤ αn−1r. By repeating the same argument, we obtain αn ≤ αn−1r ≤ αn−2r2 ≤ . . . ≤

α1rn−1 ≤ rn, which implies our assertion.

Since r < 1 then, the {xs
n(t)}n≥0 is a Cauchy sequence in the Banach space C0([s,s+ δ0],C).

Therefore, {xs
n(t)}n≥0 converges uniformly on [s,s+δ0], let us say to xs(t). By Equation (2.10) and

the Lebesgue Dominated Converge Theorem it follows that

xs(t) =
∫ t

s
G(xs(τ),τ)dτ , t ∈ [s,s+δ0].

By the uniqueness of the solution of ODEs,

ϕs(0, t) = xs(t) for all t ∈ [s,s+δ0],

which proves that I(s)≥ s+δ0 with δ0 > 0 and s≤ I+1. But, in Step 2. it was proved that I(s) = I

for all s < I. Then, taking I− δ0 < s < I we have I < s+ δ0 ≤ I(s) = I obtaining a contradiction.

Therefore, I =+∞.

4. The family ϕs,t(z)=ϕs(z, t) is in fact an evolution family in Nρ(D). Indeed, Equation (2.9) implies

that ϕs,t ∈ Nρ(D) for all 0 ≤ s ≤ t < +∞. On the other hand, ϕs,s(z) = z for all z ∈ D and for all

s≥ 0 by the initial condition of the IVP. If 0≤ s≤ τ ≤ t <+∞ and z ∈ D, we define u(t) = ϕs(z, t)

and v(t) = ϕτ(ϕs,τ(z), t). Note that, both functions are the solution of the following IVP:

 ω̇ = G(ω , t), for almost every t ∈ [s,+∞),

ω(τ) = ϕs,τ(z).

By the uniqueness of the solution of ODE’s we obtain ϕs,t(z) = ϕτ ,t(ϕs,τ(z)).
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Let K ⊂D be a compact set and T > 0. For fixed s ∈ [0,T ), let us prove that there is R = RK,T ∈

(0,1), such that

|ϕs,l(z)| ≤ R, for all z ∈ K, and l ∈ [s,T ]. (2.13)

If this assertion is not true, then there exist two sequences {zn} ⊂ K and {ln} ⊂ [s,T ], such that

|ϕs,ln(zn)| −→ 1− as n−→+∞. Moreover, there exist two convergent subsequences znk −→ z0 and

lnk −→ l0 as k −→+∞. Since G(·, t) is ρ−monotone, from Inequality 2.9, we have

ρ(ϕs,lnk
(znk),ϕs,lnk

(z0))≤ ρ(znk ,z0)−→ 0, as k −→+∞.

Then,

1 > |ϕs,lnk
(z0)| ≥ |ϕs,lnk

(znk)|− |ϕs,lnk
(znk)−ϕs,lnk

(z0)| −→ 1−, as k −→+∞.

Thus, |ϕs,lnk
(z0)| −→ 1−, as k −→+∞. Furthermore, the mapping t −→ ϕ0,t(z0) is continuous and

ρ(ϕ0,lnk
(z0),ϕs,lnk

(z0)) = ρ(ϕs,lnk
(ϕ0,s(z0)),ϕs,lnk

(z0))≤ ρ(ϕ0,s(z0),z0)<+∞.

But, this is a contradiction because ϕ0,lnk
(z0)−→ϕ0,l0(z0)∈D, and |ϕs,lnk

(z0)| −→ 1−, as k−→+∞.

Therefore, (2.13) holds. Consider K1 = {z ∈ D : |z| ≤ R} and s ≤ τ ≤ t ≤ T . Since ϕs(z, ·) is

absolutely continuous then, it is differentiable almost everywhere. Thus, Equation (2.6) implies

|ϕs,t(z)−ϕs,τ(z)|=
∣∣∣∣∫ t

τ

∂ϕs,σ (z)
∂σ

dσ

∣∣∣∣
≤
∫ t

τ

|G(ϕs,σ (z),σ)|dσ

≤
∫ t

τ

MK1,T (σ)dσ ≤CK1,T (t− τ).

Hence, condition EF3 follows from Equation (2.2). Therefore, by the uniqueness of the solution of

ODEs this {ϕs,t(z)}0≤s≤t<+∞ is the unique evolution family in Nρ(D) associated to G(z, t).

We state in the following proposition one property that evolution families, obtained by means

of (2.8) and the ρ−WVFs, satisfies.
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Proposition 2.4.4. Let {ϕs,t(z)}0≤s≤t<+∞ be an evolution family obtained by means of (2.8) and a

ρ−WVF. Then, for each compact set K ⊂ D and T > 0, there exists a constant MK,T > 0 such that

|ϕs,t(z)−ϕs,t(w)| ≤ (1+MK,T (t− s))|z−w|,

for all z,w ∈ K, and s, t ∈ [0,T ].

Proof. In fact, if K ⊂ D is a compact set and T > 0 and z,w ∈ K, and s, t ∈ [0,T ], we have

ϕs,t(z) = z+
∫ t

s
G(ϕs,σ (z),σ)dσ .

Then,

|ϕs,t(z)−ϕs,t(w)| ≤ |z−w|+
∫ t

s
|G(ϕs,σ (z),σ)−G(ϕs,σ (w),σ)|dσ

≤ |z−w|+FK,T

∫ t

s
|ϕs,σ (z)−ϕs,σ (w)|dσ

≤ |z−w|+ FK,T MK

mK
|z−w|

∫ t

s
dσ =

(
1+

FK,T MK

mK
(t− s)

)
|z−w|.

Therefore, the proof is complete.

We have shown that every ρ−monotone weak vector field has a unique evolution family as-

sociated by means of the initial value problem (2.8). In a Section 2.6 we are going to establish a

condition to show the reciprocal implication.

2.5 Infinitesimal generator of evolution families, and nonlinear resol-

vent

At this point, we want to approach this work with the help of the nonlinear resolvent, as in the

approach by D. Shoikhet in his study of semigroups and their infinitesimal generators. He charac-

terizes the continuous functions which are infinitesimal generators of a semigroup. This approach

was also used to study semigroups of holomorphic functions, and ρ−nonexpansive functions on
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certain domains in complex Banach spaces, and their infinitesimal generators [37, 38]. We recall

some basic definitions used in the case of semigroups given in [41], and at the same time we intro-

duce the analogue to such definitions for evolution families.

Firstly, we are interested in some types of infinitesimal generators as in the case of one-para-

meter semigroups. So, we give the next definition.

Definition 2.5.1. Let {ϕs,t}0≤s≤t<∞ be an evolution family in Nρ(D). If for almost every t ∈ [0,+∞)

there exists a sequence {hn}n∈N ⊂ (0,1) satisfying hn −→ 0+ as n−→+∞, such that the limit

G(z, t) = lim
n→+∞

Ghn(z, t), with Gh(z, t) =
ϕt,t+h(z)− z

h
, (2.14)

exists uniformly on compact sets K ⊂D, we say that the family is generated by G and G is called the

infinitesimal generator of the family. By GEFNρ(D) we denote the set of all continuous functions for

almost everywhere t ∈ [0,+∞) and all z ∈ D, which are generators of evolution families in Nρ(D).

F. Bracci, M. Contreras, and S. Díaz-Madrigal [6] show that if {ϕs,t}0≤s≤t<∞ is an evolution

family of holomorphic functions then there exists the infinitesimal generator G(z, t) of this family,

where G(·, t) is holomorphic on D and G(z, ·) is measurable on [0,+∞).

A direct consequence of this definition is the following proposition, which establishes that the

infinitesimal generators of an evolution family can be considered as vector fields of the evolution

equations.

Proposition 2.5.1. If G ∈ GEFNρ(D) then, for every z ∈ D, and s≥ 0 the IVP

 ω̇ = G(ω , t), for almost every t ∈ [s,+∞)

ω(s) = z,
(2.15)

has a solution, which is an evolution family in Nρ(D).

Proof. Since G ∈ GEFNρ(D), there exist an evolution family {ϕs,t}0≤s≤t<∞ in Nρ(D), and a null set

I∗ ⊂ [0,+∞) such that 2.14 holds. Let us prove that this evolution family is the solution of the given

IVP. Let z∈D and s≥ 0 be given. Let us consider K⊂D a compact set containing z, T ∈N such that
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T > s, and the compact set K1 := {ϕs,t(z) : z ∈ K, t ∈ [s,T ]}. Since, ϕs,·(z) is absolutely continuous

on [s,T ] then, it is differentiable almost everywhere on [s,T ], i.e., there exists a null set IT ⊂ [s,T ]

such that ∂ϕs,t(z)
∂ t exists, whenever t ∈ [s,T ]\ IT . Let us consider the null set I := ∪T∈NIT . Therefore,

ϕs,·(z) is differentiable almost every where on [s,+∞). If t ∈ [s,T ]\{I∪ I∗} and ϕs,t(z) ∈ K1 then,

∂ϕs,t(z)
∂ t

= lim
h−→0

ϕs,t+h(z)−ϕs,t(z)
h

= lim
hn−→0+

ϕt,t+hn(ϕs,t(z))−ϕs,t(z)
hn

= lim
n−→+∞

Ghn(ϕs,t(z), t)

= G(ϕs,t(z), t).

Further, ϕs,s(z) = z. Therefore, ω(t) := ϕs,t(z) is a solution of the IVP.

Now, we recall the nonlinear resolvent of a continuous function F : D −→ C given in [41].

Then, we extend this definition for continuous functions G : D× [0,+∞)−→ C.

Definition 2.5.2. Let F : D −→ C be a continuous function. We say that F satisfies the range

condition (RC) if, for each r > 0 the nonlinear resolvent Jr := (I− rF)−1 is well defined on D and

belongs to Nρ(D).

Now, we extend the previous definition as follows.

Definition 2.5.3. Let G : D× [0,+∞) −→ C be a continuous function. We say that G satisfies the

strong range condition (SRC) if G satisfies the range condition for all fixed t ≥ 0, and for each

compact subset K ⊂ D, T > 0, and for r > 0 small enough, we have

|Jt
r(z)− Js

r (z)| ≤ |t− s|, (2.16)

for all s, t ∈ [0,T ], and z ∈ K.

In other words, the function G satisfies the strong range condition if, for each t ≥ 0, r > 0, and

z ∈ D the equation

w− rG(w, t) = z,
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has a unique solution w = Jt
r(z) in D, such that

ρ(Jt
r(z1),Jt

r(z2))≤ ρ(z1,z2),

if z1,z2 ∈ D. Also, there exists δK,T > 0, such that if r ∈ (0,δK,T ), the function J(·)r (z) satisfies the

uniform Lipschitz condition (2.16) in the variable t on compact sets.

Remark 2.7. Let G be a continuous function on D× [0,+∞) such that for each t ≥ 0, Gt(·)≡G(·, t)

satisfies the RC. For each compact K ⊂D and T > 0, there is another compact set K ⊂ K∗ ⊂D and

δ > 0, such that

Jt
r(z),J

t(k)
r
n
(z) ∈ K∗, for all r ∈ (0,δ ), n ∈ N, k = 1,2, . . . ,n,

whenever z ∈K and t ∈ [0,T ]. Here, Jt(k)
r denotes the k−fold iterate of the mapping Jt

r. For instance,

let K⊂D be a compact set and T > 0. Let us consider δ =min{ d
M1

,R0}, where 0< d < dist{K,∂D},

M := sup{|G(z, t)| : z ∈ K, t ∈ [0,T ]},

R0 := max{r : z− rG(z, t) ∈ D, |G(z, t)| ≤M,z ∈ K}.

Let us set w = z− rG(z, t) ∈ D for z ∈ K, t ∈ [0,T ] and r ∈ (0,δ ), we have z = Jt
r(w) and |z−w|<

rM < d. Then,

ρ(Jt
r(z),z) = ρ(Jt

r(z),J
t
r(w))≤ ρ(z,w)≤MK∗ |z−w| ≤MK∗ Mr,

where K∗ :=
⋃

z∈K
B(z,d)∪K and M1 := max{M,M MK∗}. Furthermore, if l ∈ N then,

ρ(Jt(l)
r (z),z)≤

l−1

∑
i=0

ρ(Jt(i+1)

r (z),Jt(i)
r (z))≤

l−1

∑
i=0

ρ(Jt
r(z),z) = lρ(Jt

r(z),z)≤ l MK∗ Mr.

Definition 2.5.4. Let F : D−→ C be a continuous function. The function F is called ρ-monotone
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on D if for each pair z,w ∈ D the following condition holds:

ρ(z− rF(z),w− rF(w))≥ ρ(z,w), (2.17)

for all r > 0 such that z− rF(z),w− rF(w) ∈ D.

The last definition can be extended as follows.

Definition 2.5.5. Let G : D× [0,+∞) −→ C be a continuous function. We say that G is strongly

ρ-monotone on D× [0,+∞) if for fixed t ≥ 0, the function Gt(·)≡G(·, t) is ρ-monotone on D, and

for each compact subset K ⊂ D and T > 0, there is a constant FK,T > 0 such that

|G(z, t)−G(w,s)| ≤ FK,T (|z−w|+ |t− s|), (2.18)

for all z,w ∈ K and s, t ∈ [0,T ].

The reader can find the following three results and more details about these results in Shoikhet

[41].

Lemma 2.5.2 ([41]). For any given four points u,v,z,w in D the following statements are equivalent:

1. The function φ : [0,1]→R+, φ(t) = ρ((1− t)z+ tu,(1− t)w+ tv) is not decreasing on [0,1];

2. φ(0)≤ φ(t), t ∈ [0,1];

3. φ ′(t)≥ 0, t ∈ [0,1];

4. Re
[
(z−u)z̄
1−|z|2 +

(w−v)w̄
1−|w|2

]
≤ Re

[
z̄(w−v)+w(z−u)

1−z̄w

]
.

The next result is called the numerical range lower bound (see, Lemma 3.4.1 page 80, D.

Shoikhet [41]).

Lemma 2.5.3 (The numerical range lower bound [41]). Let α : [0,1]→ R be a continuous func-

tion on [0,1] such that α(0)≤ 0 and the equation

s+ rα(s) = λ
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has a unique solution s = s(λ ) ∈ [0,1) for each λ ∈ [0,1) and r > 0. Suppose that f : D→ C is a

continuous function on D which satisfies the following condition:

Re[ f (w)w̄]≥ α(|w|)|w|, w ∈ D.

Then, for each z ∈ D and r ≥ 0, the equation w+ r f (w) = z has a unique solution w = w(z), such

that

|w(z)| ≤ s(λ ),

for |z| ≤ λ .

Proposition 2.5.4. Let G : D× [0,+∞) −→ C be a continuous function. Then, for fixed t ≥ 0,

Gt(·)≡ G(·, t) is ρ-monotone if and only if it satisfies the range condition.

Proof. Let t ≥ 0 be fixed and Gt satisfy the range condition. Then, for all r > 0 the nonlinear

resolvent Jt
r := (I− rGt)−1 is well defined and ρ−nonexpansive self mapping of D, i.e.,

ρ((I− rGt)−1(ξ1),(I− rGt)−1(ξ2)) = ρ(Jt
r(ξ1),Jt

r(ξ2))≤ ρ(ξ1,ξ2),

for all ξ1,ξ2 ∈ D. Now, if we take z,w ∈ D and let r > 0 be such that ξ1 := z− rG(z, t) = (Jt
r)
−1(z)

and ξ2 := w− rG(w, t) = (Jt
r)
−1(w) belong to D. Then, by definition z = Jt

r(ξ1) and w = Jt
r(ξ2).

Thus,

ρ(z,w) = ρ(Jt
r(ξ1),Jt

r(ξ2))≤ ρ(ξ1,ξ2) = ρ(z− rG(z, t),w− rG(w, t))

Therefore, G is ρ-monotone.

Conversely, let us fix t ≥ 0. If z,w ∈ D denote u = z−G(z, t) and v = w−G(w, t). For r > 0

sufficiently small we have

ρ(z,w)≤ ρ(z− rG(z, t),w− rG(w, t)) = ρ((1− r)z+ ru,(1− t)w+ rv).

Let us denote φ(r) := ρ((1− r)z+ ru,(1− r)w+ rv). Thus, φ(r)≥ φ(0). By Lemma 2.5.2, the last
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inequality is equivalent to

Re
[
(z−u)z̄
1−|z|2

+
(w− v)w̄
1−|w|2

]
≤ Re

[
z̄(w− v)+w(z−u)

1− z̄w

]
.

Substituting z−u = G(z, t) and w− v = G(w, t) in the last equation, we have

Re
[

z̄G(z, t)
1−|z|2

+
G(w, t)w̄
1−|w|2

]
≤ Re

[
z̄G(w, t)+wG(z, t)

1− z̄w

]
.

Now, if we consider z = 0, we obtain

Re
[

G(w, t)w̄
1−|w|2

]
≤ Re

[
wG(0, t)

]
= Re [w̄G(0, t)] ,

for all w ∈ D. Then,

Re [G(w, t)w̄]≤ Re [w̄G(0, t)] (1−|w|2), w ∈ D.

But, Re[z]≤ |z|. Thus,

Re [−G(w, t)w̄]≥−|w||G(0, t)|(1−|w|2) = |w|αt(|w|), w ∈ D,

with αt(s) = −|G(0, t)|(1− s2). Then, applying the numerical range lower bound with f ≡ −Gt ,

we obtain that for each z ∈ D and r > 0 equation

w− rG(w, t) = z,

has a unique solution w = Jt
r(z) = (I− rGt)−1(z). Furthermore, the function Jt

r is ρ−nonexpansive.

Indeed, if z,w ∈ D consider u = Jt
r(z) and v = Jt

r(w). Thus, z = u− rG(u, t) and w = v− rG(v, t).

Since G is ρ-monotone we have

ρ(z,w) = ρ(u− rG(u, t),v− rG(v, t))≥ ρ(u,v) = ρ(Jt
r(z),J

t
r(w)).
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Thus, the proof is completed.

This result can be extended to functions depending on two parameters, and the strong definitions

given above, assuming an additional condition.

Theorem 2.5.5. Let G : D× [0,+∞)→C be a continuous function. Then, G is strongly ρ-monotone

if and only if the following two conditions hold:

SRC. G satisfies the strong range condition.

ASRC. For each compact subset K ⊂ D, T > 0, and R > 0, there exists a function LK,T ,R : (0,R)−→

R+ satisfying 0 < lim
r−→0+

LK,T ,R(r)<+∞ such that

LK,T ,R(r)ρ(z,w)≤ ρ(Jt
r(z),J

t
r(w)), (2.19)

for all t ∈ [0,T ], and z,w ∈ K.

Proof. From Proposition 2.5.4, we only have to show that Equation (2.18) is equivalent to Equations

(2.16) and (2.19).

Let us suppose that Equation (2.18) holds. Let K ⊂ D be a compact subset of D, T > 0, and

R > 0. To show that Equation (2.16) holds, let us consider s, t ∈ [0,T ] and z ∈ K then,

z = Jt
r(z)− rG(Jt

r(z), t), z = Js
r (z)− rG(Js

r (z),s).

Subtracting these equations, we have

|Jt
r(z)− Js

r (z)|= r|G(Jt
r(z), t)−G(Js

r (z),s)|

≤ rFK,T (|Jt
r(z)− Js

r (z)|+ |t− s|)

= rFK,T |Jt
r(z)− Js

r (z)|+ rFK,T |t− s|.

The last inequality implies that,

|Jt
r(z)− Js

r (z)| ≤
rFK,T

1− rFK,T
|t− s|, if r <

1
FK,T

.
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But, if we assume r ≤ 1
2FK,T

we obtain

|Jt
r(z)− Js

r (z)| ≤ |t− s|.

Thus, Equation (2.16) holds. Now, we show that Equation (2.19) holds. If t ∈ [0,T ] and z,w ∈ K

then, for r ∈ (0,R) we have

z = Jt
r(z)− rG(Jt

r(z), t), w = Jt
r(w)− rG(Jt

r(w), t).

Subtracting these equations, we have

1
MK∗

ρ(z,w)≤ |z−w| ≤ |Jt
r(z)− Jt

r(w)|+ r|G(Jt
r(z), t)−G(Jt

r(w), t)|

≤ |Jt
r(z)− Jt

r(w)|+ rFK,T |Jt
r(z)− Jt

r(w)|

= (1+ rFK,T )|Jt
r(z)− Jt

r(w)| ≤
(1+ rFK,T )

mK∗
ρ(Jt

r(z),J
t
r(w)).

Thus,
mK∗

MK∗(1+ rFK,T )
ρ(z,w)≤ ρ(Jt

r(z),J
t
r(w)).

Therefore, the first part is shown.

Conversely, let K ⊂ D be a compact subset and T ≥ 0. We have to show that there is a constant

FK,T > 0, such that

|G(z, t)−G(w,s)| ≤ FK,T (|z−w|+ |t− s|),

for all z,w ∈ K and s, t ∈ [0,T ]. If z,w ∈ K and s, t ∈ [0,T ], let us consider z0 = (Jt
r0
)−1(z), and

w = Js
r0
(w0) with fixed r0 ∈ (0,min{1,δ}), where δ > 0 is given by the SRC and R = 1. Then,

z0 = z− r0G(z, t), w0 = w− r0G(w,s).
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Thus, r0|G(z, t)−G(w,s)| ≤ |z−w|+ |z0−w0|. Then, by SRC and ASRC, we obtain

r0|G(z, t)−G(w,s)| ≤ |z−w|+ MK∗
mK∗ LK,T (r0)

|Jt
r0
(z0)− Jt

r0
(w0)|

≤ |z−w|+ MK∗
mK∗ LK,T (r0)

(
|Jt

r0
(z0)− Js

r0
(w0)|+ |Js

r0
(w0)− Jt

r0
(w0)|

)
≤ |z−w|+ MK∗

mK∗ LK,T (r0)
(|z−w|+ |t− s|)

≤
(

1+ MK∗
mK∗ LK,T (r0)

)
(|z−w|+ |t− s|).

Therefore, setting FK,T ≥
1
r0

(
1+ MK∗

mK∗ LK,T (r0)

)
we complete the proof.

In the next proposition we establish one way to construct functions satisfying SRC.

Proposition 2.5.6. Let {φt : t ≥ 0} ⊂ Nρ(D) be a family of ρ−nonexpansive functions on D that

satisfies the following condition: for each compact subset K ⊂ D and T > 0 there exists a constant

CK,T > 0, such that

|φt(z)−φs(z)| ≤CK,T |t− s|, for all z ∈ K, s, t ∈ [0,T ].

Then, the functions G(z, t) := φt(z)− z, and more generally γG(z, t) for γ > 0, satisfy the strong

range condition.

Proof. For each t ≥ 0, z ∈ D and r > 0 the equation

z = w− r(φt(w)−w), (2.20)

has a unique solution w = Jt
r(z), and Jt

r : D −→ D is a ρ−nonexansive mapping. In fact, if t ≥ 0,

z ∈ D and r > 0 the last equation can be written as

w = (1−λ )z+λφt(w) = Ht
r(w), λ =

r
r+1

.
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Then,

ρ(Ht
r(w1),Ht

r(w2)) = ρ((1−λ )z+λφt(w1),(1−λ )z+λφt(w2))

≤ ((1−λ )|z|+λ )ρ(φt(w1),φt(w2))

≤ ((1−λ )|z|+λ )ρ(w1,w2) = αρ(w1,w2), α < 1.

From the Banach Fixed Point Theorem we have that the function Ht
r has a unique fixed point in D,

which is the unique solution to Equation (2.20) and we denote by Jt
r. Now, let us see that for fixed

r > 0, and t ≥ 0, the mapping Jt
r : D −→ D is a ρ−nonexansive mapping. Indeed, this fixed point

w = Jt
r(z) can be obtained by the iteration:

w(n+1)(z, t) = Ht
r(w

(n)(z, t)) = . . .= (Ht
r)

(n+1)(w(0)(z)),

where w(0)(z) is an arbitrary element in D. Then, setting w(0)
h (z) = z, we obtain that

Jt
r(z) = lim

n→∞
(Ht

r)
(n)(z).

By induction and Proposition 2.2.1 (3), we have

ρ

(
(Ht

r)
(n+1)(z1),(Ht

r)
(n+1)(z2)

)
= ρ

(
(1−λ )z1 +λφt

(
(Ht

r)
(n)(z1)

)
,(1−λ )z2 +λφt

(
(Ht

r)
(n)(z2)

))
≤max

{
ρ(z1,z2),ρ

(
φt

(
(Ht

r)
(n)(z1)

)
,φt

(
(Ht

r)
(n)(z2)

))}
≤max

{
ρ(z1,z2),ρ

(
(Ht

r)
(n)(z1),(Ht

r)
(n)(z2)

)}
≤ . . .≤max

{
ρ(z1,z2),ρ

(
(Ht

r)
(0)(z1),(Ht

r)
(0)(z2)

)}
= ρ(z1,z2),

which implies that Jt
r(·) is a ρ−nonexansive mapping.

It remains to show the uniform Lipschitz condition in the variable t on compact sets. In fact, let
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K ⊂ D be a compact set T > 0, z ∈ K, and s, t ∈ [0,T ]. Since,

Jt
r(z) = λφt(Jt

r(z))+(1−λ )z, λ =
r

r+1
.

Then, w = Jt
r(z) ∈ K∗, and

|Jt
r(z)− Js

r (z)|= λ |φt(Jt
r(z))−φs(Js

r (z))|

≤ r
{
|φt(Jt

r(z))−φs(Jt
r(z))|+ |φs(Jt

r(z))−φs(Js
r (z))|

}
≤ r
{
|φt(w)−φs(w)|+ |φs(Jt

r(z))−φs(Js
r (z))|

}
≤ r
{

CK∗,T |t− s|+ 1
mK∗

ρ
(
φs(Jt

r(z)),φs(Js
r (z))

)}
≤ r
{

CK∗,T |t− s|+ MK∗

mK∗

∣∣Jt
r(z)− Js

r (z)
∣∣} .

Thus, if r < mK∗
MK∗

, we have

|Jt
r(z)− Js

r (z)| ≤
rCK∗,T mK∗

mK∗−r MK∗
|t− s|.

Finally, considering r ≤ mK∗
CK∗ ,T mK∗ +MK∗

, we obtain

|Jt
r(z)− Js

r (z)| ≤ |t− s|,

which implies the strong range condition for the function G(z, t). To prove the assertion for the

function γG(z, t), is just to replace λ = r
r+1 with λ = γr

γr+1 or equivalently γr instead of r.

Remark 2.8. The functions constructed in the previous proposition also satisfy the condition ASRC

given in Proposition 2.5.5. In fact, let K ⊂ D be a compact subset, T > 0, and R > 0 be given. If

z,w ∈ K and t ∈ [0,T ], for r < 1, we have

Jt
r(z) = λφt(Jt

r(z))+(1−λ )z, Jt
r(w) = λφt(Jt

r(w))+(1−λ )w.
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Then,

(1−λ )ρ(z,w)≤ (1−λ )MK∗ |z−w|

≤MK∗ |Jt
r(z)− Jt

r(w)|+MK∗ λ |φt(Jt
r(z))−φt(Jt

r(w))|

≤ MK∗

mK∗
ρ(Jt

r(z),J
t
r(w))+

λ MK∗

mK∗
ρ(φt(Jt

r(z)),φt(Jt
r(w)))

≤ MK∗

mK∗
ρ(Jt

r(z),J
t
r(w))+

λ MK∗

mK∗
ρ(Jt

r(z),J
t
r(w))

≤ 2MK∗

mK∗
ρ(Jt

r(z),J
t
r(w)).

Therefore,
MK∗

2mK∗(r+1)
ρ(z,w)≤ ρ(Jt

r(z),J
t
r(w)).

Thus, the desired result is proved.

We follow with some interesting results which will be used in the following section and it will

help us to associate evolution families with ρ−monotone vector fields.

Theorem 2.5.7. If G∈GEFNρ(D) then, for each h∈ (0,1), the functions Gh(z, t) given by Definition

2.5.1, satisfy the strong range condition, and the function G(·, t) satisfies the range condition for

almost every fixed t ≥ 0.

Proof. Let us suppose that the function G∈ GEFNρ(D) then, it is continuous on D and almost every

t ∈ [0,+∞), and has associated an evolution family {ϕs,t}0≤s≤t<∞ in Nρ(D), for which, for almost

every t ∈ [0,+∞) there is a sequence {hn(t)}n∈N ⊂ (0,1) satisfying hn(t)−→ 0+ as n−→+∞, such

that the limit

G(z, t) = lim
n−→+∞

Ghn(t)(z, t), with Gh(z, t) =
ϕt,t+h(z)− z

h
, (2.21)

exists uniformly on compact sets K ⊂ D. Then, for t ≥ 0, h ∈ (0,1) and z ∈ D, let us consider

φt,h(z) = ϕt,t+h(z), then Gh(z, t) =
φt,h(z)− z

h
.
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Note that φt,h ∈ Nρ(D) for all t ≥ 0 and h ∈ (0,1). Further, from Remark 2.3, for each h ∈ (0,1)

|φt,h(z)−φs,h(z)|= |ϕt,t+h(z)−ϕs,s+h(z)| ≤ 2CK,T |t− s|, for all z ∈ K, s, t ∈ [0,T ].

By Proposition 2.5.6, for each h ∈ (0,1) the function Gh satisfies the strong range condition then,

Jt
r,h : D −→ D is well defined, belongs to Nρ(D), and for each compact subset K ⊂ D, T > 0, and

exist δh > 0 such that if r ∈ (0,δh) then,

|Jt
r,h(z)− Js

r,h(z)| ≤ |t− s|, (2.22)

for all s, t ∈ [0,T ], z ∈ K.

Let us see that G(·, t) satisfies the range condition for every t ∈ [0,+∞), that is, for every fixed

r > 0, t ∈ [0,+∞), and z ∈ D, the equation

w− rG(w, t) = z, (2.23)

has a unique solution w = Jt
r(z), where Jt

r : D−→ D belongs to Nρ(D).

Since Jt
r,h(z) is the fixed point of the function

Ht
r,h(w) := λφt,h(w)+(1−λ )z, λ =

r
r+h

.

Then, this fixed point can be obtained by the iteration:

w(n+1)
h (z, t) = Ht

r,h(w
(n)
h (z, t)) = . . .= (Ht

r,h)
(n+1)(w(0)

h (z)),

where w(0)
h (z) is an arbitrary element in D. Then, setting w(0)

h (z) = z we obtain that

Jt
r,h(z) = lim

n→∞
(Ht

r,h)
(n)(z).
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Now, we claim that for every z ∈ D, exists Az <+∞ such that

ρ(z,Jt
r,h(z))≤ Az, as h−→ 0+.

In fact, since

Jt
r,h(z) = Ht

r,h(J
t
r,h(z)) = λφt,h(Jt

r,h(z))+(1−λ )z,

we have, from Proposition 2.2.1 3. with α = λ +(1−λ )|z|

ρ(z,Jt
r,h(z)) = ρ(λ z+(1−λ )z,λφt,h(Jt

r,h(z))+(1−λ )z)

≤ αρ(z,φt,h(Jt
r,h(z)))

≤ α[ρ(z,φt,h(z))+ρ(φt,h(z),φt,h(Jt
r,h(z)))]

≤ α[ρ(z,φt,h(z))+ρ(z,Jt
r,h(z))].

Then, this implies

ρ(z,Jt
r,h(z))≤

α

1−α
ρ(z,φt,h(z)) =

r+h|z|
1−|z|

ρ(ϕt,t(z),ϕt,t+h(z))
h

≤CK,T
r+h|z|
1−|z|

,

where K ⊂ D is a compact set containing z and t ≤ T . Consequently, we have the estimate

limsup
h−→0+

ρ(z,Jt
r,h(z))≤

rCK,T

1−|z|
, (2.24)

which implies our assertion. Further, this implies that Jt
r,h(D)⊂ D, for all h ∈ (0,1).

We now prove that for each r > 0, and almost every t ∈ [0,+∞), the sequence { fhn}n∈N, contains

a uniform convergent subsequence on every compact set K ⊂ D, where the sequence {hn}n∈N ⊂

(0,1) is the sequence given by Definition 2.5.1, which satisfies hn −→ 0 as n −→ +∞, and fhn :=

Jt
r,hn

: D −→ D. Indeed, if K ⊂ D is a compact set, and z ∈ K, inequality (2.24) implies that the

closure of { fhn(z) : n ∈ N} is a compact subset of D. Moreover, { fhn}n∈N is equicontinuous on

K. Then, { fhn}n∈N contains a uniform convergent subsequence on K (see, for example, [40]). Let
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{ fhn j
} j∈N be such a subsequence, and let us consider

Jt
r(z) = lim

j−→+∞
Jt

r,hn j
(z).

Note that Jt
r(z) is a solution of

w− rG(w, t) = z.

Furthermore, Jt
r(·) is a ρ−nonexpansive function on D. Therefore, G(·, t) satisfies the range condi-

tion.

Considering K ⊂ D a compact set and T > 0 then, for each h ∈ (0,1), we have that for all

s, t ∈ [0,T ], z ∈ K,

|Jt
r,h(z)− Js

r,h(z)|= λ |ϕt,t+h(Jt
r,h(z))−ϕs,s+h(Js

r,h(z))|

≤ λ
{
|ϕt,t+h(Jt

r,h(z))−ϕs,s+h(Jt
r,h(z))|+ |ϕs,s+h(Jt

r,h(z))−ϕs,s+h(Js
r,h(z))|

}
≤ λ

{
2CK∗,T |t− s|+ MK∗

mK∗
|Jt

r(z)− Js
r (z)|

}
≤ r

h

{
2CK∗,T |t− s|+ MK∗

mK∗
|Jt

r(z)− Js
r (z)|

}
.

Hence, if r ≤ αεh < mK∗
MK∗

h, with αε =
mK∗

2CK∗ ,T mK∗ /ε+MK∗
< 1, and ε > 0, we obtain

|Jt
r,h(z)− Js

r,h(z)| ≤ ε|t− s|.

Theorem 2.5.8. If G is strongly ρ-monotone on D× [0,+∞) then, G ∈ GEFNρ(D).

Proof. Note that if G is strongly ρ-monotone on D× [0,+∞) then, G ∈ Hρ(D). Theorem 2.4.3,

ensures the existence of an evolution family ϕs,t(z), such that (2.8) holds. It remains to show the

uniform convergence of the Definition 2.5.1. I in fact, if K ⊂ D is a compact set and T > 0, let us

consider z ∈ K and t ∈ [0,T ], then we have

ϕt,t+h(z) = z+
∫ t+h

t
G(ϕt,σ (z),σ)dσ .
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Thus,

1
h
|ϕt,t+h(z)− z−hG(z, t)|= 1

h

∣∣∣∣∫ t+h

t
G(ϕt,σ (z),σ)dσ −

∫ t+h

t
G(z, t)dσ

∣∣∣∣
≤ 1

h

∫ t+h

t
|G(ϕt,σ (z),σ)−G(z, t)|dσ

≤ FK,T

h

∫ t+h

t
(|ϕt,σ (z)− z|+ |σ − t|)dσ

≤ FK,T

h

∫ t+h

t

(
CK,T

mK
|t−σ |+ |σ − t|

)
dσ

≤ FK,T

h

(
CK,T

mK
+1
)∫ t+h

t
|σ − t|dσ

≤ FK,T

(
CK,T

mK
+1
)∫ t+h

t
dσ

= FK,T

(
CK,T

mK
+1
)

h−→ 0, h−→ 0+.

This implies the uniform convergence on K ⊂ D, and almost every t ∈ [0,T ]. Therefore, G(z, t) is

the infinitesimal generator of the evolution family ϕs,t(z).

Corollary 2.5.9. Let G : D× [0,+∞) −→ C be a function defined on D× [0,+∞), satisfying that

for any compact set K and T > 0, there exists a constant FK,T such that

|G(z, t)−G(w,s)| ≤ FK,T (|z−w|+ |t− s|), for all z,w ∈ K, a.e.,s, t ∈ [0,T ]. (2.25)

Then, the following conditions are equivalent:

1. The function G ∈ GEFNρ(D).

2. For almost every t ≥ 0, the function G(·, t) satisfies the range condition.

3. For almost every t ≥ 0, the function G(·, t) is ρ-monotone on D.

4. The Cauchy problem


∂u(z, t)

∂ t
= G(u(z, t), t), for almost every t ≥ s

u(z,s) = z,
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has a unique solution u(z, t) = ϕs,t(z) for all s ≥ 0 and z ∈ D; where ϕs,t(z) is an evolution

family in Nρ(D).

Proof.

(2)⇔ (3) It follows from Proposition 2.5.4.

(3)⇒ (4) It follows from Theorem 2.4.3.

(4)⇒ (1) It follows from proof of Theorem 2.5.8.

(1)⇒ (2) It follows from proof of Theorem 2.5.7.

Proposition 2.5.10. Let G : D× [0,+∞)−→ C be a continuous function which satisfies the strong

range condition. Then, the sequence {Jt(n)
r
n
}n∈N is a Cauchy sequence on compact sets of D in the

Poincaré metric in D with fixed t ≥ 0. Therefore, the limit

lim
n−→+∞

Jt(n)
r
n
(z),

exists uniformly on compact sets of D.

Proof. Let us assume that G is a continuous function which satisfies the strong range condition. We

claim that for each r > 0 small enough, the sequence {Jt(n)
r
n
}n∈N is a Cauchy sequence on compact

subsets of D in the Poincaré metric in D with fixed t ≥ 0.

Let K ⊂ D be a compact set, T > 0. From Remark 2.7 we have, for z ∈ K, r ∈ (0,δ ) and

t ∈ [0,T ],

ρ(Jt
r(z),z) = ρ(Jt

r(z),J
t
r(w))≤ ρ(z,w)≤MK∗ |z−w| ≤MK∗ Mr.

This shows that the family {Jt
r}r∈(0,δ ) converges to the identity uniformly on compact sets of D as

r −→ 0+. Furthermore,

ρ(Jt(l)
r (z),z)≤

l−1

∑
i=0

ρ(Jt(i+1)

r (z),Jt(i)
r (z))≤

l−1

∑
i=0

ρ(Jt
r(z),z) = lρ(Jt

r(z),z)≤ l MK∗ Mr.

In a similar way, we obtain

ρ(Jt(l)
r/n(z),z)≤

r · l
n

MK∗ M, and ρ(Jt(l)
r (z),Jt(k)

r (z))≤ |l− k|MK∗ Mr.
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Let us take R > 0 such that K∗ ⊂ Bρ(a,R) with fixed a ∈ D. Consider ε > 0 and z ∈ K. By

Lemma 3.3.3, (D. Shoikhet, page 73 [41]), there are µ > 0, n0,m0 ∈ N such that

ρ(Jt
r
n
(z),Jt(m)

r
mn

(z))<
2rε

n
, and ρ(Jt

r
m
(z),Jt(n)

r
mn
(z))<

2rε

m
,

when n≥ n0, m≥ m0 and z ∈ Bρ(a,R).

On the other hand, we have

ρ(Jt(n)
r
n
(z),Jt(mn)

r
mn

(z))≤
n−1

∑
j=0

ρ

(
Jt(n− j)

r
n

(Jt( jm)
r

mn
(z)),Jt(n− j−1)

r
n

(Jt(( j+1)m)
r

mn
(z))
)

=
n−1

∑
j=0

ρ

(
Jt(n− j−1)

r
n

(Jt
r
n
(Jt( jm)

r
mn

(z))),Jt(n− j−1)
r
n

(Jt(( j+1)m)
r

mn
(z))
)

≤
n−1

∑
j=0

ρ

(
Jt

r
n
(Jt( jm)

r
mn

(z)),Jt(( j+1)m)
r

mn
(z)
)

=
n−1

∑
j=0

ρ

(
Jt

r
n
(Jt( jm)

r
mn

(z)),Jt(m)
r

mn
(Jt( jm)

r
mn

(z))
)

=
n−1

∑
j=0

ρ

(
Jt

r
n
(w),Jt(m)

r
mn

(w)
)
=

n−1

∑
j=0

2rε

n
= 2rε .

In a similar way we obtain

ρ(Jt(m)
r
m

(z),Jt(mn)
r

mn
(z))≤ 2rε .

Hence,

ρ(Jt(n)
r
n
(z),Jt(m)

r
m

(z))≤ ρ(Jt(n)
r
n
(z),Jt(mn)

r
mn

(z))+ρ(Jt(m)
r
m

(z),Jt(mn)
r

mn
(z))≤ 4rε .

Therefore, the sequence {Jt(n)
r
n
(z)} is a Cauchy sequence on K and since (D,ρ) is a complete metric

space then,

F(z,r, t) = lim
n−→+∞

Jt(n)
r
n
(z),

exists uniformly on compact sets of D.
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We can show the continuity of Jt
r in the variable r > 0. In fact, if r+ s < δ

ρ(Jt
r(z),J

t
r+s(z))≤ ρ

(
Jt

r(z),J
t
r

(
r

r+ s
z+

s
r+ s

Jt
r+s(z)

))
≤ ρ

(
z,

r
r+ s

z+
s

r+ s
Jt

r+s(z)
)

≤MK∗

∣∣∣∣z− r
r+ s

z+
s

r+ s
Jt

r+s(z)
∣∣∣∣

≤ sMK∗

r+ s

∣∣z− Jt
r+s(z)

∣∣≤ sMK∗

(r+ s)mK∗
ρ
(
z,Jt

r+s(z)
)

≤ sMK∗

(r+ s)mK∗
MK∗ M(r+ s) = sC̃K∗ −→ 0,

as s−→ 0. Also, we have for t, t1 ∈ [0,T ], and r > 0 small enough

ρ(Jt
r(z),J

t1
r+s(z))≤ ρ(Jt

r(z),J
t1
r (z))+ρ(Jt1

r (z),J
t1
r+s(z))

≤ ρ(Jt
r(z),J

t1
r (z))+ sC̃K∗

≤MK∗ |Jt
r(z)− Jt1

r (z)|+ sC̃K∗

≤MK∗ |t− t1|+ sC̃K∗ .

Definition 2.5.6. We say that a family {F t
r : 0 ≤ r ≤ t < +∞)}, of self-mappings of D satisfies

the approximate evolution property if for each compact subset K ⊂ D and T > 0 the following

conditions hold:

1. For each ε > 0, there is a positive δ1 = δ (D,ε)< T such that

sup
z∈K

ρ

(
F t

r (z),(F
t
r
n
)(n)(z)

)
< εδ1

for all positive integers n and all r ∈ (0,δ1);

2. For each 0≤ s≤ τ ≤ t ≤ T , there exist L = LK,T and δ2 = δ (K,T )> 0, such that

sup
z∈K

ρ
(
F t

t−s(z),F
t

t−τ

(
Fτ

τ−s(z)
))

< L
√

pq, p = t− τ , q = τ− s.
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if |p|, |q|< δ2.

We have the next result.

Proposition 2.5.11. If G : D× [0,+∞)→ C satisfies the strong range condition then, {Jt
r} satisfies

the approximate evolution property. Moreover,

F(z,r, t) = lim
n−→+∞

Jt(n)
r
n
(z),

exists uniformly on compact sets of D× [0,+∞) and fixed r > 0.

Proof. By Proposition 2.5.10, we have only to prove the condition (2). If s < τ < t ≤ T , consider

a = t− s, b = t− τ and c = τ − s, with |t− s| < δ2, and δ2 > 0 given by Definition 2.5.3. Then,

b≤ a and a = b+ c. Since

w =
b
a

z+
(

1− b
a

)
Jt

a(z) =
c
a

(
Jt

a(z)− z
)
+ z.

Then,

ρ
(
Jt

t−s(z),J
t
t−τ

(
Jτ

τ−s(z)
))

= ρ
(
Jt

a(z),J
t
b (J

τ
c (z))

)
= ρ

(
Jt

b(w),J
t
b (J

τ
c (z))

)
≤ ρ (w,Jτ

c (z))≤MK∗ |w− Jτ
c (z)|

=
MK∗

a

∣∣bz+ cJt
a(z)− (b+ c)Jτ

c (z)
∣∣

≤ MK∗

a

[
c
∣∣Jt

a(z)− Jτ
c (z)

∣∣+b |z− Jτ
c (z)|

]
≤ MK∗

a

[
c
∣∣Jt

a(z)− Jτ
a (z)

∣∣+ c |Jτ
a (z)− Jτ

c (z)|+b |z− Jτ
c (z)|

]
≤ MK∗

a

[
c|t− τ|+ c

C̃K∗

mK∗
|a− c|+b

MK∗ M
mK∗

c
]

≤ bc
a

MK∗

[
1+

C̃K∗

mK∗
+

MK∗ M
mK∗

]
≤ 1

2
FK∗,T

√
bc.

Thus, the desired result is obtained.
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2.6 The property LB

In this section, we want to establish a condition under which the infinitesimal generator, for a given

evolution family in Nρ(D), exists in Hρ(D) or GEFNρ(D).

Let ϕs,t(z) be an evolution family in Nρ(D), K ⊂ D, and T > 0. Let us recall from page 65

Gh(z, t) :=
ϕt,t+h(z)− z

h
, z ∈ K0, t ∈ [0,T ], h ∈ (0,1).

From Proposition 2.5.6, we have that for each h∈ (0,1), Gh(z, t) satisfies the strong range condition.

Then, Jt
r,h : D−→ D is well defined and belongs to Nρ(D). Furthermore,

Jt
r,h(z) = λϕt,t+h(Jt

r,h(z))+(1−λ )z, λ =
r

r+h
.

Furthermore, if K ⊂ D is a compact subset, and T > 0 then, for z,w ∈ K, t ∈ [0,T ], r > 0, and

h ∈ (0,1), we have

(1−λ )

MK∗
ρ(z,w)≤ (1−λ )|z−w|

≤ |Jt
r,h(z)− Jt

r,h(w)|+λ |ϕt,t+h(Jt
r,h(z))−ϕt,t+h(Jt

r,h(w))|

≤ 1
mK∗

ρ(Jt
r,h(z),J

t
r,h(w))+

λ

mK∗
ρ(ϕt,t+h(Jt

r,h(w)),ϕt,t+h(Jt
r,h(z)))

≤ 1
mK∗

ρ(Jt
r,h(z),J

t
r,h(w))+

λ

mK∗
ρ(Jt

r,h(w),J
t
r,h(z))

<
2

mK∗
ρ(Jt

r,h(z),J
t
r,h(w)).

Hence,
mK∗ h

2MK∗(r+h)
ρ(z,w)< ρ(Jt

r,h(z),J
t
r,h(w)).

Note that the lower bound of the factor
ρ(Jt

r,h(z),J
t
r,h(w))

ρ(z,w) goes to cero as h −→ 0+, but we do not

require that. Actually, we need that the limit results to be positive. So that, we impose a lower

bound (LB) condition on the family of nonlinear resolvent {Jt
r,h(z)}h∈(0,1), in order to show that an

evolution family is associated to a ρ−WVF in Hρ(D) by means of an ordinary differential equation.
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Definition 2.6.1. We say that the evolution family {ϕs,t(z)}0≤s≤t<+∞ satisfies the property LB, if

LB. For each compact subset K ⊂ D and T > 0 there exist r0 > 0 and a constant LK,T ,r0 > 0 such

that

LK,T ,r0ρ(z,w)≤ ρ(Jt
r,h(z),J

t
r,h(w)), (2.26)

for all r ∈ (0,r0), z,w ∈ K, s, t ∈ [0,T ], and h ∈ (0,1).

Examples of evolution families which satisfy the Property LB are the evolution families ob-

tained by means of ρ-WVFs. In fact, in such a case

ϕt,t+h(z) = z+
∫ t+h

t
G(ϕt,τ(z),τ)dτ .

Then,

(1−λ )Jt
r,h(z) = λ

∫ t+h

t
G(ϕt,τ(Jt

r,h(z)),τ)dτ +(1−λ )z.

Thus,

1
MK∗

ρ(z,w)≤ |z−w|

≤ |Jt
r,h(z)− Jt

r,h(w)|

+
λ

1−λ

∫ t+h

t
|G(ϕt,τ(Jt

r,h(z)),τ)−G(ϕt,τ(Jt
r,h(w)),τ)|dτ

≤ |Jt
r,h(z)− Jt

r,h(w)|+
rFK,T

h

∫ t+h

t
|ϕt,τ(Jt

r,h(z))−ϕt,τ(Jt
r,h(w))|dτ

≤ 1
mK∗

ρ(Jt
r,h(z),J

t
r,h(w))+

rFK,T

mK∗ h

∫ t+h

t
ρ(ϕt,τ(Jt

r,h(z)),ϕt,τ(Jt
r,h(w)))dτ

≤ 1
mK∗

ρ(Jt
r,h(z),J

t
r,h(w))+

rFK,T

mK∗ h
ρ(Jt

r,h(z),J
t
r,h(w))

∫ t+h

t
dτ

≤
(

1
mK∗

+
rFK,T

mK∗

)
ρ(Jt

r0,h(z),J
t
r,h(w)).

Therefore,

mK∗

MK∗(1+ r0FK,T )
ρ(z,w)≤ mK∗

MK∗(1+ rFK,T )
ρ(z,w)≤ ρ(Jt

r,h(z),J
t
r,h(w)),
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for all r ∈ (0,r0).

We present the following theorem that states that the evolution families which satisfy the Prop-

erty LB, have associated a ρ-monotone weak vector field.

Theorem 2.6.1. Let {ϕs,t(z)}0≤s≤t<+∞ be an evolution family in Nρ(D), which satisfies the Property

LB. Then, there exists a ρ−WVF, G(z, t) ∈ Hρ(D), such that for z ∈ D and s≥ 0, ω(t) = ϕs,t(z) is

the solution of the initial value problem

 ω̇ = G(ω , t), for almost every t ∈ [s,+∞)

ω(s) = z0.
(2.27)

Proof. Let U be an open set of D, K0 ⊂⊂U a relatively compact open subset of U and T > 0. By

the uniform joint continuity on compact sets of ϕs,t(z), there exists h0 = h0(K0,T )≤ 1, such that

{ϕt,t+h(z) : z ∈ K0, t ∈ [0,T ], h ∈ (0,h0]} ⊂U .

1. Let us consider

Gh(z, t) :=
ϕt,t+h(z)− z

h
z ∈ K0, t ∈ [0,T ], h ∈ (0,h0].

2. The function Gh(z, ·) : [0,T ]→ C is continuous for each h ∈ (0,h0] and z ∈ K0. In fact, for fixed

h ∈ (0,h0] and z ∈ K0, let ε > 0 be given. Then, by Proposition 2.3.2 there exists δ1 > 0 such that

if ‖(s, t)− (s0, t0)‖ < δ1 implies |ϕs,t(z)−ϕs0,t0(z)| < εh. Considering δ = δ1/
√

2 we have that

|t− s|< δ implies

|Gh(z,s)−Gh(z, t)|= |ϕs,s+h(z)−ϕt,t+h(z)|
h

< ε .

3. For every compact set K ⊂ K0, there exists AK,T > 0 such that |Gh(z, t)| ≤ AK,T for all h ∈ (0,h0];

z ∈ K0 and t ∈ [0,T ]. Indeed, if K is a compact set and T > 0, condition EF3 implies the existence

of CK,T such that ρ(ϕs,t(z),ϕs,τ(z)) ≤CK,T (t− τ), for every z ∈ K and 0 ≤ s ≤ τ ≤ t ≤ T . Now, if

h ∈ (0,h0]; z ∈ K and 0≤ t ≤ T then,

|Gh(z, t)|= |ϕt,t+h(z)−ϕt,t(z)|
h

≤m−1
K

ρ(ϕt,t+h(z),ϕt,t(z))
h

≤m−1
K CK,T =: AK,T .
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The equivalence of metrics on the compact set {ϕt,t+h(z) : z ∈ K, t ∈ [0,T ], t +h ∈ [0,T +h0]} guar-

antees the existence of m−1
K > 0.

4. For every compact set K ⊂ K0 and for every fixed h ∈ (0,h0], there exists PK,T > 0 such that

|Gh(z, t)−Gh(w, t)| ≤ PK,T

h
|z−w|,

for all z,w ∈ K, and t ∈ [0,T ]. In fact, if z,w ∈ K and t ∈ [0,T ],

|Gh(z, t)−Gh(w, t)|= |ϕt,t+h(z)− z−ϕt,t+h(w)+w|
h

≤ 1
h
{|ϕt,t+h(z)−ϕt,t+h(w)|+ |z−w|}

≤ 1
h
{m−1

K ρ(ϕt,t+h(z),ϕt,t+h(w))+ |z−w|}

≤ 1
h
{m−1

K ρ(z,w)+ |z−w|}

≤ 1
h
{m−1

K MK +1}|z−w| := PK,T

h
|z−w|.

5. For every h ∈ (0,h0], the map Gh : D× [0,+∞) −→ C satisfies the strong range condition. It

follows immediately from the definition of Gh(z, t) and Proposition 2.5.6. In particular, for each

t ∈ [0,T ], we have {Gh(·, t)}h∈(0,h0] ⊂ G Nρ(D), where G Nρ(D) is set of all continuous infinitesimal

generators of one-parameter semigroups in Nρ(D) (see [41]).

6. For every compact set K ⊂ K0, there exists FK,T > 0 such that

|Gh(z, t)−Gh(w, t)| ≤ FK,T |z−w|, (2.28)

for all z,w ∈ K and t ∈ [0,T ]. Indeed, if z,w ∈ K and t ∈ [0,T ], let us consider

z1 = z− r1Gh(z, t), and w1 = w− r1Gh(w, t),

where r1 ∈ (0,r0) is fixed, and taken such that z1,w1 ∈ D. Then,

z = Jt
r1,h(z1) and w = Jt

r1,h(w1).
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Thus, by the property LB, we have

r1|Gh(z, t)−Gh(w, t)| ≤ |z−w|+ |z1−w1| ≤ |z−w|+ 1
mK

ρ(z1,w1)

≤ |z−w|+ LK,T

mK
ρ(Jt

r,h(z1),Jt
r,h(w1))

≤ |z−w|+ LK,T MK

mK

∣∣Jt
r,h(z1)− Jt

r,h(w1)
∣∣

=

(
1+

LK,T MK

mK

)
|z−w|.

Therefore, Equation (2.28) holds with

FK,T =
mK r1 +LK,T MK

mK r1
.

7. Let {K j} j∈N be a compact exhaustion of K0 and T ∈ N. Let us define

ϒT :=

 f ∈C0(K0,C)∩G Nρ(D)

/ a. sup
z,w∈K j

| f (z)− f (w)|
|z−w| ≤ FK j ,T , j ∈ N

b. sup
z∈K j

| f (z)| ≤ AK j ,T , j ∈ N


where AK j ,T and FK j ,T are given by the steps 3 and 6, respectively. The space ϒT is equipped with

the compact open topology U0. We are going to show that (ϒT ,U0) is a metrizable space and we

also use the Ascoli-Arzelà Theorem to prove that (ϒT ,U0) is a compact space, see [20] page 234.

Recall that U0 is the topology of uniform convergence on compact sets. Moreover, U0 is the

topology generated by the collection of semi-norms {pK j : K j ⊂ K0}, where

pK j( f ) := sup
z∈K j

| f (z)|.

For every f ∈ ϒT , the set f +Σ := { f +V : V ∈ Σ} forms a neighborhood base at f , where Σ :=

{VK j ,ε : ε > 0} and VK j ,ε := {g ∈ ϒT : pK j(g) < ε}. Then, (ϒT ,U0) is a locally convex topological

vector space. In addition, (ϒT ,U0) is a Hausdorff and metrizable space.
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Another form to introduce the topology U0 is that generated by the subbase

{W (K,U) : K compact set of K0 and U is open of C},

with W (K,U) := { f ∈C0(K0,C) : f (K)⊂U}. Then, (ϒT ,U0) is a locally convex topological space.

Since C is regular and completely regular then, (ϒT ,U0) is regular and completely regular.

Let K ⊂ K0 be a compact set. If z ∈ K, there exists an open set Uz ⊂ Int(K jz)⊂ K0 containing z.

Note that

sup

{
sup
z∈Uz

| f (z)| : f ∈ ϒT

}
≤ AK jz ,N .

Since K is a compact set, there exist Uz1 ,Uz2 , . . . ,Uzk such that K ⊂Uz1 ∪Uz2 ∪·· ·∪Uzk . Then,

sup{pK( f ) : f ∈ ϒT} ≤max{AK j ,N : j = jz1 , jz2 , . . . , jzk}.

This is equivalent to say that (ϒT ,U0) is bounded.

If { fn}n∈N ⊂ ϒT , such that fn −→ f as n −→ +∞ uniformly on compact sets of K0. Since

GEFNρ(D) is a closed real cone with the uniform convergence on compact sets of D, see [41], then,

f is a continuous function, and f ∈ GEFNρ(D). Let K j be an element of the exhaustion of K0, and

z ∈ K j. Then,

| f (z)| ≤ | fn(z)− f (z)|+ | fn(z)| ≤ | fn(z)− f (z)|+AK j ,T .

Setting n −→ +∞, the last inequality implies that | f (z)| ≤ AK j ,N for all z ∈ K j. Now, if z,w ∈ K j

then,

| f (z)− f (w)| ≤ | fn(z)− f (z)|+ | fn(z)− fn(w)|+ | fn(w)− f (w)|

≤ | fn(z)− f (z)|+FK j ,T |z−w|+ | fn(w)− f (w)|.

Setting n −→ +∞, the last inequality implies that | f (z)− f (w)| ≤ FK j ,N |z−w| for all z,w ∈ K j.

Thus, f ∈ ϒT . Therefore (ϒT ,U0) is closed.

Let K ⊂ K0 be a compact set, ε > 0 and z ∈ K. Then, there exist j0 ∈ N such that K ⊂ Int(K j0).
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Thus, there is a δ1 > 0 such that B(z,δ1) ⊂ Int(K j0). Let us consider δ := min{δ1, ε

FK j0
,T
}. Now, if

|z−w|< δ then,

| f (z)− f (w)| ≤ FK j0 ,T |z−w| ≤ δFK j0 ,T ≤ ε , for all f ∈ ϒT .

Therefore, ϒT is equicontinuous on compact sets.

8. For each t ∈ [0,+∞) there exists a subsequence mk(t)−→ 0+ as k −→+∞, such that

G(z, t) := lim
k→+∞

Gmk(t)(z, t). (2.29)

Furthermore, G(z, t) ∈ Hρ(D). Indeed, for each T ∈ N, we have that (ϒT ,U0) is a compact metri-

zable subspace of (C0(K0),U0). We are going to apply the result of H. Luschgy [25] (see Ap-

pendix A.1), with X = ϒT , endowed with the natural structure of Fréchet space and M = B(X)

the σ−algebra of all Borel subsets of X . Thus, we have that there exist a measurable selection (see

Apendix A.1) σ2 : ϒNT −→ ϒT , defined by

σ2({xn}) =

 lim
n−→+∞

σ1(x)n, {xn} ∈Θ∗;

Iid , {xn} /∈Θ∗,

where {σ1(x)n}= σ1({xn}) is a convergent subsequence of {xn}.

Now, since for each t ∈ [0,T ], we have G1/n(·, t) ∈ ϒT for all n ∈ N. Thus, if we set

xn : [0,T ]−→ ϒT ; x : [0,T ]−→ ϒ
N
T

t −→ xn(t) := G1/n(·, t) t −→ x(t) := {xn(t)}n∈N,

we have that for all n∈N, the mapping xn(·) is continuous on [0,T ] from Proposition 2.3.2 and there-

fore, x(·) is continuous on [0,T ] as well. Applying the last result to the sequence {xn(t)}n∈N ∈ ϒNT ,

we obtain that for each t ∈ [0,T ] there exists a subsequence {nk(t)} ⊂ N, such that σ1({xn(t)}) =
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{xnk(t)(t)}. Let us define

GT (z, t) := σ2(x(t)) = σ2({G 1
n
(z, t)}) = lim

k−→+∞

G 1
nk(t)

(z, t). (2.30)

From the definition of measurable selection and the definition of GT (z, t), we have that GT (z, ·) is

measurable on [0,T ], in particular on [T − 1,T ), for each z ∈ K0. Further, GT (·, t) ∈ ϒT for each

t ∈ [0,T ]. Now, let us define the function G : D× [0,+∞)−→ C, as follows

G(z, t) = GT (z, t), if t ∈ [T −1,T ).

Note that, for each t ≥ 0; G(·, t) ∈ ∪T∈NϒT , and G(z, ·) is measurable on [0,+∞), for all z ∈ K0.

Thus, we have that G(z, t) satisfies VF1, VF3 and VF4. The condition VF2 is satisfied if we consider

K0 containing 0. Therefore, G(z, t) ∈ Hρ(D).

9. Let z ∈ K0 be fixed and s≥ 0 then,

∂ϕs,t(z)
∂ t

= G(ϕs,t(z), t), for almost every t ∈ [s,+∞). (2.31)

Let z∈K0 be fixed and s≥ 0. Since ϕs,·(z) is absolutely continuous on [s,T ], hence for almost every

t ∈ [s,+∞) (and ϕs,τ(z) ∈ K0 whenever τ ∈ [s, t]), we have, choosing mk(t) = 1/nk(t)

∂ϕs,t(z)
∂ t

= lim
h−→0+

ϕs,t+h(z)−ϕs,t(z)
h

= lim
h−→0+

ϕt,t+h(ϕs,t(z))−ϕs,t(z)
h

= lim
k−→+∞

ϕt,t+mk(t)(ϕs,t(z))−ϕs,t(z)
mk(t)

= lim
k−→+∞

Gmk(t)(ϕs,t(z), t)

= G(ϕs,t(z), t).

Therefore, the proof is completed.

Example 12. Note that the property LB is satisfied when {ϕs,t(z)}0≤s≤t<+∞ is an evolution family
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of holomorphic or analytic functions, because in this case Gh(z, t) is an analytic function for each h∈

(0,1), and the family {Gh(z, t)}h∈(0,1) is uniformly bounded on compact sets K× [0,T ]. Similarly,

the family {z− rGh(z, t)}h∈(0,1) is uniformly bounded on compact sets, for each r > 0. Then, the

Cauchy formula, implies

|[z− rGh(z, t)]− [w− rGh(w, t)]| ≤ (1+ rCK,T )|z−w|.

Since Jt
r,h := [I− rGh(·, t)]−1, and considering u = (Jt

r,h)
−1(z) and v = (Jt

r,h)
−1(w), we have

|u− v|= |[z− rGh(z, t)]− [w− rGh(w, t)]| ≤ (1+ rCK,T )|z−w|= (1+ rCK,T )|Jt
r,h(u)− Jt

r,h(v)|.

Therefore, the equivalence of the hyperbolic and Euclidean metrics on compact sets implies that for

every r ∈ (0,r0), we have

mK∗

MK∗(1+ r0CK,T )
ρ(u,v)≤ mK∗

MK∗(1+ rCK,T )
ρ(u,v)≤ ρ(Jt

r,h(u),J
t
r,h(v)).

Hence, the analytic evolution families have the property LB.

An interesting property of evolution families is that every element of an evolution family is

injective under certain conditions, as is stated in the next proposition.

Proposition 2.6.2. Let {ϕs,t}0≤s≤t<+∞ be an evolution family, which satisfies the Property LB.

Then, for all 0≤ s≤ t <+∞ the mapping ϕs,t(·) is injective.

Proof. We are going to proceed by contradiction. So, let us suppose that there exist 0 < s0 < t0, and

z 6= w in D, such that ϕs0,t0(z) = ϕs0,t0(w). Let us set

A = {τ ∈ [s0, t0] : ϕs0,τ(z) = ϕs0,τ(w)}.

Since t0 ∈ A then, A 6= /0. Further, s0 is a lower bound of A and s0 /∈ A. Then, rA = inf{A} exists and

s0 ≤ rA.

First, notice that s0 < rA. In fact, if s0 = rA then, there is a sequence {sn}n∈N ⊂ A with sn −→ s+0

as n −→ +∞. From Lemma 2.3.1, we have |ϕs0,sn − Iid | −→ 0 as n −→ +∞ uniformly on compact

93



sets. Let K ⊂D be a compact set, such that z,w∈K then, |ϕs0,sn(z)−z| −→ 0 and |ϕs0,sn(w)−w| −→

0 as n−→+∞. Then,

|z−w| ≤ |ϕs0,sn(z)− z|+ |ϕs0,sn(w)−w|.

Letting n−→+∞ in the previous equation we obtain z = w, which is a contradiction to the hypoth-

esis z 6= w. Therefore, s0 < rA.

Moreover, rA ∈ A. In fact, since rA = inf{A}, there exists a sequence {rn}n∈N ⊂ A, such that

rn −→ rA as n−→+∞. Then, by EF3,

ρ(ϕs0,rA(z),ϕs0,rA(w))≤ ρ(ϕs0,rA(z),ϕs0,rn(z))+ρ(ϕs0,rn(w),ϕs0,rA(w))

≤ 2CK,T |rn− rA| −→ 0, as n−→+∞.

This implies that ϕs0,rA(z) = ϕs0,rA(w).

Now, let us consider z1(τ) = ϕs0,τ(z) and w1(τ) = ϕs0,τ(w) for τ ∈ (s0,rA). Then, z1(τ) 6= w1(τ)

for all τ ∈ (s0,rA). Furthermore, condition EF2. implies

ϕτ ,rA(z1(τ)) = ϕs0,rA(z) = ϕs0,rA(w) = ϕτ ,rA(w1(τ)). (2.32)

Thus, for every τ ∈ (s0,rA), the function ϕτ ,rA is not injective on any compact set containing the

open curve z1(τ),w1(τ) with τ ∈ (s0,rA).

But, if K ⊂ D is a compact set containing z and w in its interior, from Proposition 2.3.2 we

choose τ0 ∈ (s0,rA) such that z0 := z1(τ0),w0 := w1(τ0) ∈ K and ϕτ0,τ(K) is contained in K1, a

compact subset of D, for all τ ∈ [τ0,rA]. Then, for the function γ(τ) := |ϕτ0,τ(z0)−ϕτ0,τ(w0)|, with

τ ∈ [τ0,rA], due to Equation 2.32 and Theorem 2.6.1, we have

γ(τ) = |(ϕτ0,τ(z0)−ϕτ0,rA(z0))− (ϕτ0,τ(w0)−ϕτ0,rA(w0))|

=

∣∣∣∣∫ rA

τ

(
G(ϕτ0,ξ (z0),ξ )−G(ϕτ0,ξ (w0),ξ )

)
dξ

∣∣∣∣
≤
∫ rA

τ

FK1,t0

∣∣ϕτ0,ξ (z0)−ϕτ0,ξ (w0)
∣∣dξ

= FK1,t0

∫ rA

τ

γ(ξ )dξ .
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Hence, the well-known Gronwall inequality implies that γ(τ) = 0, for all τ ∈ [τ0,rA]. Therefore,

z0 = w0, which is a contradiction because rA is the minimun of A.

Corollary 2.6.3. Let H(z, t) be another ρ−WVF, in Hρ(D), such that

∂ϕs,t(z)
∂ t

= H(ϕs,t(z), t), (2.33)

for almost every t ∈ [s,+∞) and s≤ t so that ϕs,τ(z)∈K0 whenever τ ∈ [s, t]. Then, G(z, t) = H(z, t)

for all z ∈ K0 and almost every t ∈ [s,+∞), with K0 as before.

Proof. Let us suppose z ∈ K0 and s > 0. Then, there exists a null set N1(z,s) ⊂ [s,+∞) such that
∂ϕs,t(z)

∂ t = H(ϕs,t(z), t), for all t ∈ [s,+∞)\N1(z,s). From Theorem 2.27, there is a null set N2(z,s)⊂

[s,+∞) such that ∂ϕs,t(z)
∂ t = G(ϕs,t(z), t), for all t ∈ [s,+∞)\N2(z,s). Now, if t ∈ [s,+∞)\ (N1(z,s)∪

N2(z,s)) then, for z = ϕs,t(w), by the injectivity

G(z, t) = G(ϕs,t(w), t) =
∂ϕs,t(w)

∂ t
= H(ϕs,t(w), t) = H(z, t).
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Conclusions

A very good first attempt to the harmonic Loewner theory is made. Though, we have emphasized in

two cases, in order to maintain the property of harmonicity, similar results to the classical case have

been obtained as a direct consequences. This same consideration has led us to study the cases, for

example, the linear case, et all. Based on [36], we could ask if the unique families F of harmonic

functions which are closed under the composition are:

1. The union of the families of analytic and co-analytic functions, that is,

F = { f : D−→ f (D)⊂ D : f ∈H (U ,C) or f̄ ∈H (U ,C)}

2. The family F = GD.

Although we defined the Loewner chain in a more general setting, these later two cases were only

considered in this work.

The condition of maintaining the property of harmonicity, resulted to be a restrictive, therefore,

we do not had diverse and fruitful results. Hence, this also guided us to focus on a wider class of

functions.

Following the ideas given by M. Contreras and S. Díaz-Madrigal, et al, [6, 7], and D. Shoikhet

[41], the concept of ρ−nonexpansive evolution families was introduced. Under an additional con-

dition an analogue theorem to the main result of F. Bracci, M. Contreras and S. Díaz-Madrigal

[6, 7] was proved. This result can be considered as a starting point in the setting for a non analytic

Loewner theory.
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The additional condition depends on the nonlinear resolvent for functions in a certain class of

functions. Further properties of the nonlinear resolvent had been proved. But, a Hille-Yoshida type

theorem, characterizing the infinitesimal generator of evolution families, could not be proved.

Further work in this direction is remaining. So, we consider the following points as future work

arising from our investigation.

1. To work in a higher dimension, and we have the following example of a type of subordination

which serves us as a motivation.

Example 13. Let us consider the following family of surface of revolution

r = f (z, t) = a(z− t)(1+ t− z), t ≥ 0; z ∈ [t, t +1]; a : constant, (2.34)

where r =
√

x2 + y2. Note that associated to this family of surface of revolution, we can find

the following family of functions

φ(z;s, t) = z+ t− s, for s≤ t,

which help us to write a member of the family of surface of revolution in terms of another,

and this family satisfies the conditions of semigroups. More precisely, we have the followings

properties:

(a) If we define φl(z) := φ(z;s, t) with l = t− s. Then, {φl} with l ≥ 0 form a semigroup of

functions. In fact, φ0(x) = φ(z;s,s) = z for every z ∈ R. Further, note that φl(z) = z+ l,

then φl+k(z) = z+ l + k = φk(z)+ l = φl(φk(z)).

(b) If s≤ t, then f (φ(z;s, t), t) = f (z,s). Indeed,

f (φ(z;s, t), t) = a(φ(z;s, t)− t)(1+ t−φ(z;s, t))

= a(z+ t− s− t)(1+ t− (z+ t− s))

= a(z+ t− s− t)(1+ t− z− t + s)

= a(z− s)(1+ s− z) = f (z,s).
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The family of surface of revolution given by (2.34) could be consider as a Loewner chain in

R3 in the following sense:

We can put in a certain order the family f (z, t) with respect to t, and reclaim a member of

the family from the another taking into account such order.

2. Since the analyticity is considered only in the cases of Cn or R2n, and the condition of being

harmonic can be studied in whatever Rk, our work could be a good starting point in order

to extend the harmonic Loewner theory to harmonic functions defined on any domain of Rk.

On the other hand, we would like to say that we intend to generalize this work to the case in

which one replaces the Laplace operator by a more general elliptic partial differential operator

of order two.

3. In the analytic case, it is well-known the one-to-one relation between two embedded simply-

connected domains Ω1 ⊂ Ω2 and the subordination of their associated conformal Riemann

mappings f1(z) ≺H f2(z). Now, based on the existence of the harmonic Riemann mapping

associated to certain domains which was established in [19], we can formulate the same

question for two domains given Ω1 ⊂ Ω2. In the harmonic case we have a similar relation if

Ω1 ⊂Ω2 are bounded. In fact, the principal result in [19] is:

Theorem (Harmonic Riemann mapping theorem). Let Ω⊂ C be a bounded simply-connect

domain whose boundary is locally connected. Fix z0 ∈Ω and let ω ∈H (D,C) satisfy |ω |<

1. Then, there exists a univalent, harmonic, sense-preserving mapping f with the following

properties:

(a) f maps D into Ω and f (0) = z0, ∂z f (0)> 0;

(b) f is a solution of ∂z̄ f = ω ∂z f ;

(c) the limits limr−→1 f (reiθ ) belong to ∂Ω for almost every θ .

Furthermore, if ‖ω ‖ := sup{ω(z) : z ∈ D}< 1 then f (D) = Ω.

Note that the f is not unique, because it depends on the choice of ω . Thus, if f1, f2 are

the harmonic Riemann mappings guaranteed by the previous theorem for Ω1,Ω2 respectively
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with ‖ω ‖< 1 given, then from Proposition 1.3.2 we have that f1(z)≺H f2(z). Moreover, this

relation can be extended to a family of domains. But, we have to take care that Carathéodory’s

kernel theorem is not true in the harmonic case.

4. One problem, which is closely related with 3.), is the following. In [35] a Hamiltonian for-

mulation of the Loewner-Kufarev equation leading to an integrable system is shown (see also

[26, 35, 46]). In our case, we intend to establish a similar relationship between Equation

(1.41) and the integrable systems.

5. According to [2, 11], and the results given here, to develop a non analytic Loewner theory.

The next step is to introduce a type of subordination or subordination chain in a certain space

of functions. Then, we have to study this space of function in order to establish a relation

between this same space of functions and the evolution families in Nρ(D).

6. In the case of getting a non analytic Loewner theory with respect to the later point, it will be

interesting to apply this theory in order to solve solve the harmonic analogue of the Bieber-

bach conjecture [8]:

||an( f )|− |a−n( f )|| ≤ n, n = 2,3, . . .

|a−n( f )| ≤ 1
6
(n−1)(2n−1), n = 2,3, . . . .

if f (z) =
∞

∑
n=0

an( f )zn +
∞

∑
n=1

a−n( f )z̄n is a harmonic function on D.
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Appendix A

Further preliminary results

A.1 Measurable Selectors

Let us recall that a multifunction or multivalued function Γ from A to nonempty set B, is a relation

Γ : A −→ 2B, such that DomΓ = A, where 2B represents the family of all subsets of B. That is,

a multifunction is a relation that associates every element in A with a subset of B. Denote by

Γ−(V ) := {x ∈ A : Γ(x)∩V 6= /0}, if V ∈ 2B.

Let us suppose that (A,M ) is a measurable space, and B is a complete separable metric space.

Then we say that a multifunction Γ is measurable if Γ−(U) ∈M , for every open set U ∈ 2B.

A selection or selector of the multifunction Γ is a map a σ : A−→ B such that σ(x) ∈ Γ(x), for

all x ∈ A. The selector σ of Γ is said to be measurable is σ−1(U) ∈M , for every open set U ∈ 2B.

Now, let us consider the following cases of multifunction: Let us suppose that (X ,M ) is a

compact metrizable space, and (XN,M N), with M N the product σ -algebra
∞⊗
1

M on XN. Let us

define the following multifunctions Γ1 : XN −→ XN and Γ2 : XN −→ X , where

Γ1({xn}) =

 M(xn), {xn} ∈Θ∗;

XN, {xn} /∈Θ∗,
Γ2({xn}) =

 L(xn), {xn} ∈Θ∗;

X , {xn} /∈Θ∗.

Here, we have used the following notation: XN := {{xn} : xn ∈ X}, i.e., the set of all sequences

of element in X ; Θ := {{xn} ∈ XN : L(xn) 6= /0}, where L(xn) is the set of the limit points of the
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sequence {xn}, more precisely,

L(xn) := {x ∈ X : there is {xnk} a subsequence of {xn}, such that xnk −→ x},

M(xn) := {{xnk} ∈ XN : {xnk} is a convergent subsequence of {xn}}.

In [25] Luschgy proved that there exist measurable selections of these multifunctions Γ1 :

XN −→ XN, and Γ2 : XN −→ X , (see Lemma 1. and Proposition 3 [25]). Let σ1 and σ2 be such

measurable selectors of Γ1 and Γ2, respectively. Then,

σ1 : XN −→ XN; σ2 : XN −→ X

{xn} −→ σ1({xn}) = {σ1(x)n} ∈ Γ1({xn}) {xn} −→ σ2({xn}) ∈ Γ2({xn}).

Moreover, it was shown that if x0 ∈ X is fixed, in particular for x0 = Iid , we have

σ2({xn}) =

 lim
n−→+∞

σ1(x)n, {xn} ∈Θ∗;

x0, {xn} /∈Θ∗.

A.2 Carathéodory Theorem

Let us suppose that f is a complex-valued (not necessarily continuous) function defined in some set

R of the (z, t) space, containing (z0,s) ∈ D× [0,+∞). We can formulate the next problem

Problem E. To find an absolutely continuous function ω defined on a interval I, such that


(ω(t), t) ∈ R, whether t ∈ I

ω̇ = f (ω , t), for almost every t ∈ I

ω(s) = z0.

(A.1)

If such an interval I and such a function ω exist then, ω is said to be a solution of (E) in the extended

sense on I.
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If f ∈ C0(R,C), and φ is a solution of (E) in the above sense, then from differential equation

φ̇ ∈C0(I,C), and therefore the more general notion of the equation (E), and of solution φ , reduces

to the classical definition of (E). That is way we say in the extended sense.

Theorem A.2.1 (Carathéodory Theorem). Let f be a function defined on R = K× [a,b]⊂D×R+,

and R containing (z0,s) in its interior. Assume that f is measurable in the variable t on [a,b], for

each fixed z ∈ D, continuous in z for each fixed t ∈ [a,b]. If there exists a non-negative Lebesgue-

integrable function m(t) on [a,b], such that

| f (z, t)| ≤ m(t), (z, t) ∈ R. (A.2)

Then, there exist IR(z0,s) > s and a function φ such that the initial value problem (A.1) is held.

Furthermore, if f (·, t) is Lipschitz on K then, its solution is unique.

This proof is based on the proof given in [9], and is given to guarantee that it also works in our

context.

Proof. If F is defined by

F(t) =

 0, t < s;∫ t
s m(r)dr, s≤ t ≤ b.

(A.3)

Then, it is clear that F is continuous nondecreasing, and F(s) = 0. Therefore, there exists a positive

constant η > 0, such that

(z0 +F(t)eiθ , t) ∈ R, for every t ∈ [s,s+η ], and θ ∈ [0,2π]. (A.4)

Let us define the approximation φk, for k = 1,2,3, . . ., by

φk(t) =

 z0, s≤ t ≤ s+ η

k ;

z0 +
∫ t−η/k

s f (φk(r),r)dr, s+ η

k < t ≤ s+η .
(A.5)

Note that for all k ∈N, the function φk : [s,s+η ]−→K is continuous on [s,s+η ]. Furthermore,
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if t ∈
[
s+ η

k ,s+ 2η

k

]
then, φk(t)− z0 =

∫ t−η/k
s f (φk(r),r)dr. Thus,

|φk(t)− z0| ≤
∫ t−η/k

s
m(r)dr = F(t−η/k).

In a similar way, for 1 < l < k, we obtain

|φk(t)− z0| ≤ F(t−η/k), t ∈
[

s+
lη
k

,s+
(l +1)η

k

]
,

for all k ∈ N. Therefore, by induction we obtain that φk satisfies

φk(t) = z0, s≤ t ≤ s+ η

k ;

|φk(t)− z0| ≤ F(t−η/k), s+ η

k < t ≤ s+η .
(A.6)

Now, if t1, t2 ∈ [s,s+η ], without lose of generality assume t1 < t2, and k ∈N then, we have three

options

1. t1, t2 ≤ s+ η

k ,

2. t1 ≤ s+ η

k ≤ t2,

3. t1, t2 ≥ s+ η

k .

It is not difficult to see that in all previous cases we have

|φk(t1)−φk(t2)| ≤
∣∣∣F (t1−

η

k

)
−F

(
t2−

η

k

)∣∣∣ .
Since F is continuous on [s,s+η ], it is uniformly continuous there. This implies that the family

{φk}k∈N is an equicontinuous on [s,s+η ]. Also, Equation (A.6) implies that the family {φk}k∈N

is uniformly bounded on [s,s+η ]. By Ascoli-Arzelà theorem there exists a subsequence {φk j} j∈N,

which converge uniformly on [s,s+η ] to a continuous function φ , as j −→+∞.

From condition (A.2), we have

| f (φk j(t), t)| ≤ m(t), t ∈ [s,s+η ].
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Since f (·, t) is continuous for fixed t then,

f (φk j(t), t)−→ f (φ(t), t), as j −→+∞,

for every t ∈ [s,s+η ]. Thus, the Dominated convergence theorem implies that

lim
j−→+∞

∫ t

s
f (φk j(r),r)dr =

∫ t

s
f (φ(t), t)dr,

for every t ∈ [s,s+η ]. But,

φk j(t) = z0 +
∫ t

s
f (φk(r),r)dr−

∫ t

t−η/k
f (φk(r),r)dr,

where
∫ t

t−η/k f (φk(r),r)dr −→ 0 as j −→+∞. Therefore, letting j −→+∞, we obtain

φ(t) = z0 +
∫ t

s
f (φ(t), t)dr, (A.7)

which is equivalent to our goal, with IR(z0,s) = s+ sup{η : (A.4) holds }.

On the other hand, if f (·, t) is Lipschitz on K, and u,v are two solutions of (A.1) in [s, IR(z0,s))

then, Equation (A.7) implies

|u(t)− v(t)| ≤
∫ t

s
| f (u(r),r)− f (u(r),r)|dr

≤
∫ t

s
CK(r)|u(r)− v(r)|dr.

The well known Gronwall inequality implies that |u(t)− v(t)|= 0. Thus, u≡ v, i.e., the solution is

unique.

Remark A.1. Note that η > 0 given in the proof, actually, depends on R and therefore I(z0,s). That

is why we have written IR(z0,s).
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