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Prologue

The human brain is a very complex system with rich spatio-temporal dy-
namics which are of great interest for research studies up to day. There exist
several tools at our disposition to help explore the inner dynamics but the
information provided by them hasn't been fully explored. Among the tech-
niques for studying human brain dynamics, electroencephalography (EEG)
is one of the most popular due to it being non-invasive and able to provide
direct measures of the cortical activity with millisecond temporal resolution.
The aim of this work is to create all the necessary software tools for im-
plementing and testing some models for EEG signal analysis and studying
the theoretic framework necessary for understanding and manipulating these
models.

A state of the art technique used to analyse continuous EEG data is
the continuous Hidden Markov Model (HMM) typically with the objective
of classi�cation and segmentation for applications that range from Brain
Computer Interface to sleep EEG signals analysis[6]. There are many neu-
rophysiological paradigms in which the information of interest is encoded in
discrete-valued EEG signals (see [8]) and research with this kind of data is
quite limited.

Before we introduce the discrete HMM we will talk brie�y about a simpler
model called Latent Dirichlet Allocation (LDA). In 1999 Hofmann presented
the probabilistic Latent Semantic Indexing models (LSI). His idea was to
represent a document as a mixture model, where the components are multi-
nomial random variables that can be thought of as �topics". The problem
with Hofmann's approach is that there is no generative probabilistic model
for the mixing proportions of the components, which leads to some problems:
the model grows linearly with the size of the corpus which leads to problems
with over�tting; and it is not clear how to assign probability to a document
outside of the training set [5].
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The LDA model is a variation of Hofmann's LSI where a generative proba-
bilistic model is �tted. Everything on the model is treated as a variable and
priors are set upon them, in particular, the topics and the mixing proportions
have a Dirichlet prior, hence the name.

It is important to remark that an assumption on which this method is
based is that the document is simply a �bag-of-words", that is, the word order
in a document can be neglected, making the variables are exchangeable [4]
(as if the text was simply a bag with all the words in it). This assumption
allows the use of de Finetti's representation theorem (1990), which states
that any collection of exchangeable random variables has a representation
as a mixture distribution. The goal of the LDA is to take advantage of
this mixture representation and capture signi�cant intra-document statistical
structure [5].

The EEG data fails to satisfy the bag-of-words assumption as it clearly is
time-dependent. For this reason, we will explore two variations of the LDA.
The discrete HMM will take the basic generative probabilistic model from
the LDA and make every latent state for each word depend on the previous
state, creating a Hidden Markov chain (thus, discarding the bag-of-words
assumption). This way, we partially keep the temporal relation between the
data (which corresponds to grammar in the context of semantic analysis).
The other variation we will explore is the Autoregressive Hidden Markov
Model (AHMM), which pushes further the time dependency by making every
latent state depend on the last two. Both of these models have been studied
in the context of semantic analysis in Part-Of-Speech tagging and it is our
belief that they are suited for the discrete EEG analysis.

Ultimately, the goal with these models is to �nd short descriptions of the
members of a collection that enable e�cient processing of large collections of
data while preserving the essential statistical relationships for tasks such as
classi�cation and similarity and relevance judgements [5].

Once the generative model is set, a common approach is to maximize the
probability of the hidden structure given the observed data. Typically this is
done using maximum-likelihood estimation, a well studied algorithm for this
is the expectation maximization (EM) algorithm, but, as it is well known,
it doesn't perform well in high dimensionality as it easily gets stuck in local
maxima [20]. For this reason, we will study sampling techniques to explore
the parameter space and perform inference. We focus on the Metropolis-
Hastings algorithm and variations from it (mainly the Gibbs sampler) as
sampling algorithms and use simulated annealing to calculate the maximum
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a posteriori (MAP) from the distribution. We will develop all the necessary
software tools for implementing and testing the models.

The exposition is divided in 5 chapters. The �rst chapter contains the
basic concepts needed and a very important result from Geyer that will help
with the inference by providing window estimates. The second chapter is
based on the book from Gilkins, Richardson and Spiegelhalter, �Markov
Chain Monte Carlo in practice" and contains a study of the sampling al-
gorithms we implement. On the third chapter we introduce the LDA, HMM
and AHMM, also we discuss a problem that arises with these models called
�label switching" and address how to deal with it. The fourth chapter con-
tains several experiments we run to validate the models, the experiment with
the EEG data and the tools we implemented to help with the data mining;
we pay special attention to the AHMM as it shows the best results. Finally
on the �fth chapter we explore some of the possible future work.

Fernando Fontove Herrera
Guanajuato, Gto, November 20 2011
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Chapter 1

Generalities

We will introduce several concepts needed for the development of the models
as well as the notation utilized throughout the work.

1.1 Bayesian Inference Paradigm

The problem we want to address is: given some data D, we want to do
inference about some parameters θ that depend on D. Using the Bayes rule
we know that

P (θ|D) =
P (D|θ)P (θ)

P (D)
.

Since D is known, P (D) is a constant and thus, just a scaling factor. In
some applications, like the one in this work, su�ce to have a function that is
proportional to the probability via a constant; so the formula we will actually
work with is

P (θ|D) ∝ P (D|X)P (θ).

The term P (D|θ) is called the likelihood, P (θ) the prior distribution of θ and
P (θ|D) the posterior distribution of θ. The goal of Bayesian inference is to
compute a distribution over plausible parameter values, but often this distri-
bution will not be analytically of numerically tractable [13]. For this reason
we will study some sampling algorithms that will allow us to do inference.

1



1.2. MARKOV CHAINS

Figure 1.1: Graphical model for a Markov chain.

1.2 Markov Chains

Both the sampling algorithms and the models we explore have an underlying
Markov chain on them, so we study the Markov chains brie�y and enunciate
some results we will need.

A Markov chain X is a collection of random variables {Xt}t∈T , where T
may be a �nite or in�nite set, that satis�es the relationship

P (Xt|X1, X2, ..., Xt−1) = P (Xt|Xt−1) for t ∈ T,

that is, the current state depends only on the last one.
Here on, Pij(t) will be used to denote P (Xt = j|X1 = i) and

τii = min{t > 1 : Xt = i|X1 = i},

the �rst return to state i.

De�nition 1.2.1. A Markov chain X is called

1. Irreducible if for all i, j there exists a t > 0 such that Pij(t) > 0.

2. Recurrent if it is irreducible and P (τii <∞) = 1 for some i.

3. Positive recurrent if E(τii) <∞ for all i.

4. Aperiodic if it is irreducible and for all i,

greatest common divisor{t > 0 : Pii(t) > 0} = 1.

De�nition 1.2.2. Given a Markov chain X, π(·) is said to be a stationary
distribution if for all j and t ≥ 0∑

i

π(i)Pij(t) = π(j).
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CHAPTER 1. GENERALITIES

In plain terms, the last de�nitions ask that:

1. Any state may be reached from any starting state after some iterations.

2. The chain won't be oscillating between states at a �xed frequency.

3. If a sample drawn from Xt comes from the stationary distribution π(·)
then all subsequent samples will also be distributed according to π(·).

The last property is the most important for us since it will allow the use
of a Markov chain to obtain samples from any desired distribution.

Theorem 1.2.1. If a Markov chain X is positive recurrent and aperiodic
then it has a unique stationary distribution π(·). Under these conditions X
is called ergodic and satis�es

1. Pij(t)→ π(j) as t→∞ for all i, j.

2. If Eπ[f(X)] <∞ then

P (f̄N → Eπ[f(X)]) = 1 as N →∞,

where

f̄N =
1

N

N∑
n=1

f(xn).

The �rst part of the theorem guarantees the convergence to the statio-
nary distribution and the second gives an estimate for Eπ[f(X)], though
it is important to notice it doesn't provide a way to determine how good it
actually is. Something very important about this estimate is that the samples
through which f̄N is calculated need not be independent between them, as
the law of big numbers would require.

De�nition 1.2.3. A Markov chain is said to be reversible if it is positive
recurrent, has a stationary distribution π(·) and satis�es

π(i)Pij = π(j)Pij.

This last property will be necessary to get a window estimate for
f̄N − Eπ[f(X)], the error of the estimator.
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1.3. ERGODIC AVERAGES

1.3 Ergodic Averages

An inference problem we will adress later is to estimate the mean of a random
variable given a set of samples from it. We will use the common estimator
for the mean

µ̃ =
1

n

N∑
n=1

xn,

and we wish to know how good it is. The law of large numbers provides
a partial solution by giving a window estimate, but requires independent
samples which won't be possible with the sampling algorithms that we will
use. The next theorem sidesteps this issue by using samples that come from
a Markov chain.

Theorem 1.3.1. (Kipnis and Varadhan, 1986). For a stationary, irre-
ducible, reversible Markov chain X and

µ =

∫
g(x)dP (x), µ̃ =

1

n

n∑
i=1

g(Xi), γt = γ−t = Cov(g(Xi), g(Xi+1)),

the following statement is true

nV arµ̃n → σ2 =
∞∑

t=−∞

γt almost surely

and if σ2 <∞, then √
n(µ̃n − µ)→ N(0, σ2).

It only remains for us to get an estimate for σ2. There are a few conside-
rations to make. First the Bartlett formula:

V ar(γ̃n,t) ≈
1

n

∞∑
s=−∞

γ2
s .

Second, there is no point summing terms where the autocovariance goes
below the noise level inherent to the data, clearly it is wrong to add negative
terms when we know they should be positive [3].

With these in mind we get the initial positive sequence estimator by
stopping the summation at the �rst negative term m of

Γ̃n,m = γ̃n,2m + γ̃n,2m+1,
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CHAPTER 1. GENERALITIES

so we obtain

σ̃2
pos,n = γ̃0 + 2

2m+1∑
i=1

γ̃n,i = −γ̃0 + 2
m∑
i=0

Γ̃n,m. (1.1)

Finally the estimate we will use is

µ̃n − µ→ N

(
0,
σ̃2
pos,n

n

)
. (1.2)

This theorem will allow us to extract samples from a Markov chain and use
all of them to perform inference over the moments of a distribution without
having to extract �semi-independent" samples. So if we want to calculate,
say, the mean of the stationary distribution of a Markov chain, it su�ces to
average all the samples and the variance of the estimator will be given by
(1.1) divided by the number of samples, as in (1.2).

1.4 Model selection

In general when a model is being �tted to some data, one has to take care
how to select the model complexity, as simple models will �t poorly (under�t)
and too complex models will over�t the data. This is easily seen when we get
some points in the plane and try to �t a polynomial to them, if the degree is
too low it will get a very poor �t and if it is large enough a perfect �t may
be achieved, but the variance of the model will be very high with respect to
the data, that is, slightly di�erent points will give a very di�erent polynomial
[12].

It is important to keep in mind that in general it is not possible to get a
�one true model" for the data. A model is a simpli�cation of the reality, or
as Box said, �All models are wrong, but some are useful"(1976). So we must
not pursue the �true model", but an adequate enough model supported by
the data and from which inference can be done [12, p.20 Sec. 1.2.5].

Usually model selection methods like Akaike's Information Criterion are
used to determine which of several models is more accurate. The idea behind
them is to penalize model complexity and balance under and over�tting [12].

Fortunately this issue will be solved implicitly thanks to the Bayesian
approach used in this work. We provide a whole (parameterized) family of
possible models, get the underlying distribution for them and sample from
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1.5. TOPIC MODELS

it. So every sample we get will be a model for the data. Since the evidence
is the probability that if parameters are randomly selected the data will be
generated, simple models will be very unlikely to generate that particular
data set. On the other hand, complex models can generate many possible
data sets, so they are unlikely to generate that particular data set as well [2].

So in order to select which model is more adequate, we will rank them
with respect to their likelihood and pick the highest one.

1.5 Topic Models

We will be working with the so called topic models, their objective is to
extract the underlying topics from the data; that is, to �nd subsets of the
data that are intra-related. In the context of semantic analysis, a topic
would be a set of words that belong together, say articles, nouns or even a
speci�c subject such as names or the terminology used in a more complex
subject (for example in algorithm language: �for", �do",�while", etc.). One
very important quality of these models is that they are able to discern the
di�erent meanings of homonyms, say, if �ruler" appeared in the text both as
an instrument and as a monarch, it would appear in two di�erent topics at
the same time; this isn't possible with simple word counting algorithms.

Here on we will refer to every bit of the data as a word. Our approximation
to these models is to assign a subjacent state to every word, so each state
will have a set of words assigned to them and we can extract an associated
probability distribution over the words for every state. When we refer to
a topic we mean the state together with its corresponding distribution over
the words. Formally, every word in the dictionary appears in a topic with a
certain probability, but the probability of many of the words is so relatively
small that it is negligible and it can be thought as if they didn't belong to
the topic and it just consists of some of the words in the dictionary.

There are two very important aspects of the topic models: they o�er a
segmentation of the data and the topic themselves. Every word will have
associated a topic that can be used to represent it and use it as a segmen-
tation. So when the topics are extracted there are several uses: they can
be analysed in order to �nd what is the connection between the words that
the model is suggesting exists; and they provide a segmentation for the data
that may be used either to compress it or ease its analysis by reducing the
dimensionality.
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CHAPTER 1. GENERALITIES

1.6 Data presentation

Due to our intended application, we sort the data as follows: The whole data
is the corpus, it consists of a group of documents, they are formed by sentences
which in turn is composed by words. In the semantic context the meaning
of the terms is intuitive, a corpus would be a complete book and its chapters
are the documents. The EEG data we have consists of samples of people
performing di�erent tasks (mainly lexical decision, such as distinguishing if
a word corresponds to an animal or an object), a task has di�erent stimuli
and we have the information from electrodes in di�erent regions over the
scalp. Then, the corpus for the EEG data will be the set of all the tasks
plus the stimuli plus the regions, a document will be each of the possible
combinations and a sentence is a sample of the experiment (i.e. the EEG
signal corresponding to the response).

De�ning the words will be the tricky part, �rst we must understand how
the experiments were realized. We start by registering the EEG signal for
a short period, then present the stimulus and continue registering until the
response is presented (Fig. 1.2). Once we have the signal, a threshold based
on the pre-stimulus period is used to determine wether the signal is activated
or deactivated. Then it is discretized, so if the mean value of the signal over
the discretized period is above the threshold it is represented with a '1', if it
is equal a '0' and if it is lower a '-1'. This way, we turn an EEG signal into
a string (sentence) with the words '0','1' and '-1'.

Figure 1.2: The pre-stimulus period has a duration of 1700ms, the stimulus is presented
for 200ms and 1500ms are registered for the post-stimulus response.

There are several ways to go from here. We can use just the information
of one frequency and electrode to be the words we will analyse or integrate
them in some way. The decision of how to integrate the data will depend
on the results we hope to �nd, in the experiment in this work we try to
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1.6. DATA PRESENTATION

determine the di�erent uses of a speci�c region in the brain in two di�erent
tasks. For this reason we code the information as follows: At each period of
the discretized time we have �ve di�erent values of the signal corresponding
to each of the frequencies (from 4 to 8) so we form a new dictionary with the
numbers from 0 to 25−1 where each represents a string formed by '0' and '1'
(we discard the deactivation of the signal and take it as if there simply was
no activation, i.e. a '0'). This way we get a dictionary with the words being
the numbers 0, 1, ..., 31 and that is how we will represent the EEG data as
text.

We use the topic models on the EEG data with the hopes that a topic will
correspond to a set of patterns that belong to the same underlying process
(for example reading, processing, motor response, etc). Also, we intend to
use the segmentation as means to distinguish one experiment (document)
from another in terms of the processes (topics) associated to them.

8



Chapter 2

Markov Chain Monte Carlo

As we said before, we will provide a parameterized family of models from
which we wish to obtain samples. In general the distribution for this family
is not tractable and special sampling algorithms are needed. With the aid of
the theory on Chapter 1 we will construct a Markov chain that will allow us
to extract samples from any desired distribution. The base algorithm that we
will study is theMetropolis Hastings algorithm and the rest of the algorithms
presented are some variations of it. The algorithms presented in this section
are called Markov Chain Monte Carlo algorithms because of their use of an
underlying Markov chain.

2.1 Metropolis Hastings

Our objective is to construct a Markov Chain that has our target distribution
(for sampling) as its stationary distribution π. In order to do this, we get a
sample X with the help of the previous sample Y and a distribution q(X|Y )
that is �easy" to sample together with the acceptance function

α(X, Y ) = min

(
1,
π(Y )q(X|Y )

π(X)q(Y |X)

)
.

It can be shown that by drawing samples from any distribution q(X|Y )
and accepting them with probability α(X, Y ), the Markov Chain obtained in-
deed has π(·) as its stationary distribution. This algorithm is calledMetropo-
lis Hastings.

Since every sample is drawn with help of the last, there is clearly a high
correlation between them (this is the reason why the law of large numbers
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2.2. GIBBS SAMPLER

Algorithm 1 Metropolis - Hastings
Initialize X0 at random.
for t = 1 : Number of Samples do
Sample Y ∼ q(·|X t).
Sample u ∼ U(0, 1).
if u ≤ α(Xt, Y ) then
set X t+1 = Y .

else
set X t+1 = Xt.

end if
end for

is of no use for us). Though this will not be a problem for us thanks to the
results in section 1.3. There is a variation called independence sampler where
q(X|Y ) = q(X), so every sample is independent from the others.

Single component Metropolis-Hastings. It is possible to divide a multidi-
mensional variableX into several smaller components {X1, ..., XI} of possibly
di�ering dimensions and update them one by one. Notation: X t

i will be the
tth sample of Xi and

X t
−i = {X t

1, ..., X
t
i−1, X

t−1
i+1 , ...X

t−1
I }, i = 1, ..., I.

The acceptance function takes the form

α(X t
i , Yi) = min

(
1,
π(Yi|X t

−i)qi(X
t
i |Yi, X t

−i)

π(Xi|X−i)qi(Yi|Xi, X−i)

)
.

As mentioned before, we wish for our chain to be reversible. The Metropolis-
Hastings algorithm gives a reversible chain by itself and in order to get a
reversible chain in the single component version, it su�ces to perform the
updates in random order or set a �xed order for the variables and go over it
forward and then backward each iteration [21].

2.2 Gibbs Sampler

The Gibbs Sampler is a special case of the Single-component Metropolis -
Hastings in which the sampling distribution utilized qi(Xi|X−i) is in fact the
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CHAPTER 2. MARKOV CHAIN MONTE CARLO

full conditional distribution of π i.e. qi(Xi|X−i) = π(Xi|X−i). By sampling
from the conditional distribution, the acceptance function is

α(X, Y ) = min

(
1,
π(Y )π(X|Y )

π(X)π(Y |X)

)
= min

(
1,
π(X, Y )

π(X, Y )

)
= 1,

so all the samples are accepted.

Algorithm 2 Gibbs Sampler
Initialize X0 at random.
for t = 1 : Number of Samples do
for i = 1 : I do
X t
i ∼ πi(·|X t

−i).
end for

end for

2.3 Modi�ed Gibbs Sampler

Metropolis within Gibbs. It's not always possible to sample from the full
conditional distributions, so sometimes it is necessary to use a metropolis
step within the Gibbs sampler. Essentially, if the full conditional is available
and easy to sample, it is used (Gibbs step), otherwise any other distribution
is used and a Metropolis acceptance test is performed (Metropolis step).

Metropolized Gibbs Sampler. Liu proved that by using a Random-Scan
Metropolis-Hastings with

qi(Yi 6= X t
i |X t

−i) =
π(Yi|X t

−i)

1− π(X t
i |X t

−i)

and

α(X t, Yi) = min

(
1− π(X t

i |X t
−i)

1− π(Yi|X t
−i)

)
,

a more e�cient chain is obtained in the sense that

lim
n→∞

1

n
var

(
n∑
t=1

f(X t)

)
is smaller, so the window estimate for f(X) obtained from it is smaller[10,
p.278 Sec. 13.3.1].
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2.4. CONVERGENCE

2.4 Convergence

We know that if samples are being drawn from a Markov chain, if one comes
from the stationary distribution the subsequent will come as well from it. It is
guaranteed that this will happen eventually thanks to theorem 1.2.1 when the
chain is ergodic, which is the case when the Metropolis-Hastings algorithm
is used [20]. Because of this, we will say a Markov chain has converged when
the samples drawn from it come from the stationary distribution.

There is no infallible approach to check whether a chain has converged or
not. Usually it may be �easily" determined just by inspection when conver-
gence is achieved. For example on �gure 2.1 we plot the log Posterior value
of every sample on one of our experiments and one would guess convergence
is reached at about 2000 iterations, where the distribution has apparently
reached monotonicity; but intuition may deceive us and though �gure 2.2 is
the same as 2.1 but taking out the �rst 2000 samples, it is not as clear if
convergence has been achieved.

Figure 2.1: First 12000 samples of the logPosterior of a Gibbs sampler run. By
inspection it appears to converge at about 2000 iterations.

The samples drawn before convergence is achieved are called the burnin
samples and are discarded. Though, they need not be discarded for the
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CHAPTER 2. MARKOV CHAIN MONTE CARLO

Figure 2.2: Same data as �gure 2.1 but discarding the �rst 2000 samples and zooming
in. The convergence is not as apparent.

inference, but if they are, the window estimate will be better. One common
practice is to discard about 10% of the total chainlength [3].

We attempt to calculate the necessary burnin as follows: First of all,
we assume the chain has converged and wish only to discard the burnin.
Intuitively we think a chain has converged if it has �stabilized" in some sense,
so we calculate the �rst and second moments of the tail of the chain and say
the chain converged once the moments variation go bellow some threshold.

There is another more formal interpretation we may give to this algo-
rithm. A distribution is completely determined by its moments, so if the
moments associated to one population and another are the same, they both
come from the same distribution [16, theo. 1 p. 208 sec. 8.3]. Parting from
this idea, other methods may be implemented, such as hypothesis tests to
check whether two populations come from the same distribution.

It is important to remember that the convergence should be checked for
the parameters on which we want to perform the inference. So if we want
to check the overall model convergence, we can watch for the convergence of
the chain given by the log Posterior; but if we want to do inference over any
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2.4. CONVERGENCE

Algorithm 3 Burnin Calculation
µt = mean(X).
σt = V ar(X).
for t = 1 : T. do
µt = mean({Xi}Tt ).
σt = V ar({Xi}Tt ).
if µt−µt−1

µt
< ε and σt−σt−1

σt < ε. then
Burnin = t.
break.

end if
end for

particular parameter, it should be checked on it as well.

14



Chapter 3

Latent Dirichlet Allocation and

Hidden Markov Models

We will implement three di�erent topic models with the objective of providing
a segmentation for the data as means to analyse it and try to discriminate
di�erent classes. The core di�erence between the models is that on the �rst
(Latent Dirichlet Alloction), the underlying structure assumes that there is
no time dependency, contrary to the second (Hidden Markov Model) and
third (Autoregressive Hidden Markov Model) where �rst and second order
time dependencies are assumed on the data (every subjacent state depends
on the previous or two previous ones).

Following the results of Gri�ths and Goldwater [20], we will implement
the collapsed version of these algorithms. We call a model �collapsed" when
the parameters are integrated out. By integrating over the parameters, the
model takes into account the consequences of possible variation in them, so
greater robustness in the choice of state sequence is achieved [20].

3.1 Latent Dirichlet Allocation (LDA)

The Latent Dirichlet Allocation appears in the context of semantic analysis
as a way to identify the subjacent topics in a given document. The document
commonly is thought as a text but it may be any kind of data codi�ed as
words. The LDA recovers the topics and the overall form of the documents as
mixtures of topics (a mixture distribution). As mentioned before, this model
discards the time dependencies, so the order of the words in the document

15



3.1. LATENT DIRICHLET ALLOCATION (LDA)

Figure 3.1: Graphical model for the LDA. J is the number of documents being analysed,
K the proposed number of topics, R the number of texts in the document (can be thought
as the chapters of the document) and T the length of the texts. The observed data xjrt

on the document is assigned a state zjrt, the state depends on a multinomial distribution
A and has associated a distribution φk respectively, they have α and β as concentration
parameters for their a priori distributions.

is irrelevant for the analysis (in the context of semantic analysis, this can be
interpreted as the grammar being discarded).

The states Z have a multinomial distribution A that has a Dirichlet prior
with concentration parameter α. The data x has a distribution φk depending
on the associated state z. The topics φ are distributed a priori as a Dirichlet
with concentration parameter β.

This model is described in more detail in [5] and an implementation is
provided in
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm.
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CHAPTER 3. LATENT DIRICHLET ALLOCATION AND HIDDEN
MARKOV MODELS

Figure 3.2: Graphical model for the HMM.

3.2 Hidden Markov Model (HMM)

The LDA model can be modi�ed so it doesn't discard the time dependencies
on the data. We do this by simply making every state depend on the last
one, to obtain a discrete Hidden Markov Model (HMM). We set J as the
number of documents, R the number of texts in the document, T the length
of the texts and K the assumed number of topics. The transition matrix
for the Markov Chain will be denoted as Aj and wj the distribution for the
initial state of the chain. Every state has a corresponding distribution ϕk.

A Uniform prior is given to the parameters αj and β.

αj ∼ U(0, 1).

β ∼ U(0, 1).

17



3.2. HIDDEN MARKOV MODEL (HMM)

The distribution wj and every row of the transition matrices Ajk have a
Dirichlet prior with concentration parameter α.

wj ∼ Dirichlet(αj) j ∈ J

Ajk ∼ Dirichlet(αj) j ∈ J, k ∈ K.

The states zjrt have a Multinomial prior.

zjr0 ∼ Mult(wj) j ∈ J, r ∈ R.

zjrt ∼ Mult(Ajzjr(t−1)
) j ∈ J, r ∈ R, t > 0.

The topics ϕk have a Dirichlet prior with concentration parameter β.

ϕk ∼ Dirichlet(β) k ∈ K.

The generative model is then:

18



CHAPTER 3. LATENT DIRICHLET ALLOCATION AND HIDDEN
MARKOV MODELS

Algorithm 4 Ancestral Sampling for the HMM
sample α ∼ U(0, 1).
sample β ∼ U(0, 1).
for k = 1 : K do
sample ϕk ∼ Dirichlet(β)

end for
for j = 1 : J do
sample wj ∼ Dirichlet(α)
for k = 1 : K do
sample (Aj)k ∼ Dirichlet(α)

end for
for r = 1 : R do
sample zjr0 ∼ Multinomial(wj)
for t = 1 : T do
sample zjrt ∼ Multinomial(Ajzjr(t−1)

)
end for
for t = 0 : T do
sample xjrt ∼ Multinomial(ϕzjrt)

end for
end for

end for

19



3.2. HIDDEN MARKOV MODEL (HMM)

From the graphical model we obtain the following factorization of the
joint distribution

P (z, x, A,w, ϕ|α, β, γ) =
J∏
j=1

P (αj)P (Aj|α)P (wj|γ)

J∏
j=1

R∏
r=1

P (zjr0|wj)
T∏
t=1

P (zjrt|zjr(t−1), Aj)

J∏
j=1

R∏
r=1

T∏
t=0

P (xjrt|zjrt, ϕ)

P (β)
K∏
k=1

P (ϕk|β).

For the collapsed model, the variables ϕ, Aj and wj are marginalized to
obtain

P (zjrt,s = 1|−) =
νsw + β

νs· +Wsβ

ηjks + α

ηck· +Kα

ηcsr + I(k = s)I(r = s) + α

ηcs· + I(k = s) +Kα
,

where ηjks is the number of times in experiment J that state s is obtained
after state k, ηjk· the number of times in experiment J that state k appears,
νsw the times state s appears together with word w and νs· the total number
of times state s appears.

For the non-collapsed model, the conditional probabilities are

• P (αj|−) ∝ U(0, 1)
[∏K

k=1

∏K
l=1(Ajkl)

α−1
]∏K

l=1(wjl )
α−1.

• P (wj|−) ∝ Dir((
∑R

r=1 zjr0,1,
∑R

r=1 zjr0,2, ...,
∑R

r=1 zjr0,K) + αj).

• P (Ajk|−) ∝ Dir

(
αj +

(∑R
r=1

∑T
t=1,zjr(t−1)=k

zjrt,l

)K
l=1

)
.

• P (zjr0|−) ∝
∏K

l=1(wjl )
zjr0,l

∏K
l=1

∏W
w=1(ϕlw)zjr0,lxjr0,w∏K

k=1

∏K
l=1(Ajkl)

zjr1,lzjr0,k .

20



CHAPTER 3. LATENT DIRICHLET ALLOCATION AND HIDDEN
MARKOV MODELS

Figure 3.3: Graphical model for the AHMM.

• P (zjrt|−) ∝
∏K

l=1

∏W
w=1(ϕlw)zjrt,lxjrt,w

∏K
k=1

∏K
l=1(Ajkl)

zjrt,lzjr(t−1),k∏K
k=1

∏K
l=1(Ajkl)

zjr(t+1),lzjrt,k .

• P (zjrT |−) ∝
∏K

k=1

∏K
l=1(Ajkl)

zjrT,lzjr(T−1),k
∏K

l=1

∏W
w=1(ϕlw)zjrT,lxjrT,w .

• P (ϕk|−) ∝ Dir(β + (
∑J

j=1

∑R
r=1

∑T
t=1,zjrt=k

xjrt,1, ...,∑J
j=1

∑R
r=1

∑T
t=1,zjrt=k

xjrt,W )).

• P (β|−) ∝ U(0, 1)
∏K

k=1

∏W
w=1(ϕkw)β−1.

3.3 Autoregressive Hidden Markov Model

(AHMM)

We now push the time dependencies further on the LDA model by making
every state depend on the last two and call it Autoregressive Hidden Markov
Model. Now Aj is a the transition cube for the autoregressive Markov chain.
Dummy data are inserted at the beginning and end of the data as to avoid
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3.3. AUTOREGRESSIVE HIDDEN MARKOV MODEL
(AHMM)

special cases where a variable has one or none ancestors, so, zjr−2 = zjr−1 =
zjr+1 = zjr+2 = 0 and xjr−2, xjr−1, xjr+1, xjr+2 will be the empty word �".

Similar to the Hidden Markov Model, the priors are:

• α ∼ U(0, 1).

• β ∼ U(0, 1).

• Ajk,l ∼ Dirichlet(α) j ∈ J, k, l ∈ K.

• zjrt ∼Mult(Ajzjr(t−2),zjr(t−1)
) j ∈ J, r ∈ R.

• ϕk ∼ Dirichlet(β) k ∈ K.

Note that now Ajk,l,m represents the probability of getting to state m when
zjr(t−1) = l and zjr(t−2) = k.

From the graphical model we obtain the following factorization of the
joint distribution

P (z,x,A, α, β, ϕ) = P (β)

[
K∏
k=1

P (ϕk|β)

]
J∏
j=1

P (αj)P (Aj|αj)

J∏
j=1

R∏
r=1

T∏
t=1

P (zjrt|zjr(t−2), zjr(t−1), A
j)P (xjrt|zjrt, ϕ)

For the collapsed model, the variables ϕ,Aj and wj are marginalized to
obtain

P (zjrt,k = 1|−) =

νs,w + β

νs· +Wsβ

ηj,p2,p1,k + α

ηj,p2,p1 +Kα

ηj,p1,k,n1 + I(p2 = p1 = k = n1) + α

ηj,p1,k + I(p2 = p1 = k) +Kα

ηj,k,n1,n2 + I(p2 = k = n2, p1 = n1) + I(p1 = k = n1 = n2) + α

ηj,k,n1 + I(p2 = k, p1 = n1) + I(p1 = k = n1) +Kα
,

where ηj,a,b,c is the number of times in experiment J that state c is ob-
tained after state b after a; ηjab· the number of times in experiment J that
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MARKOV MODELS

state b appears after a; νsw the times state s appears together with word w;
νs· the total number of times state s appears; p2 = t−2, p1 = t−1, n1 = t+1
and n2 = t+ 2.

For the non-collapsed model, the conditional probabilities are

• P (αj|−) ∝ U(0, 1)
∏K

k=1

∏K
l=1

∏K
m=1 (Ajklm)α

j−1.

• P (Ajkl|−) ∝ Dir(αj +(∑R
r=1

∑T
t=1 zjrt,mI(zjr(t−2) = k, zjr(t−1) = l)

)K
m=1

).

• P (zjrt|−) ∝ Ajp2,p1,kA
j
p1,k,n1

Ajk,n1,n2
ϕ
zjrt
y .

• P (ϕk|−) ∝ Dir

(
β +

(∑J
j=1

∑R
r=1

∑T
t=1,zjrt=k

xjrt,m

)W
w=1

)
.

• P (β|−) ∝ U(0, 1)
∏K

k=1

∏W
w=1(ϕkw)β−1.

3.4 Sampling the models

The HMM and the AHMM will be implemented using a metropolis-within-
gibbs sampler. For both of them the collapsed form allows a Gibbs sampler
step for the state variables z and for the hyper parameters α and β a metropo-
lis step is used [20].

The models will be run checking for convergence with the tools developed
in section 2.4 using the samples from the log-posterior.

3.5 Label Switching

A troubling issue that will arise while sampling is that the states won't be
identi�able, that is, if the labels assigned to them are permuted, the samples
are �essentially the same". In more precise terms, since exchangeable priors
are placed upon the parameters on the models we use (this is the case as
all of them have the same prior), the resulting posterior distribution will be
invariant under permutations of the parameter labels. This will invalidate
doing inference on some parameters by simply averaging over the samples
[1].
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3.5. LABEL SWITCHING

In general, label exchangeability implies that in a K component mixture,
the number of modes on the posterior is of order O(K!) and though with
the HMM and AHMM we don't have a mixture model as on the LDA, they
behave very much like one on this aspect. A naïve solution is to impose iden-
ti�ability constraint on the parameters, but this will truncate the posterior
and it won't agree with the original (which is the one we actually want to
sample from) [11].

The approach we will use is to relabel the samples after obtaining all
of them. This is essentially a way to force identi�ability without altering
the original distribution (as the samples have already been obtained from
it). To do it we stablish a �reference" sample, which will be the maximum a
posteriori (MAP) and relabel all the other samples by �aligning" them with
it: a variable will be assigned the label of the closest one to it from the
reference sample under some distance. In our case the topics labels are the
ones that su�er from label switching, since they are distributions we will use
the Hellinger distance [7] as a similarity measure.

There is also a way to sidestep this issue: we can focus on quantities that
are invariant under the permutations, for example the value of the likelihood
or the posterior are not a�ected. As with the convergence, it is important
to consider the aim of the inference, since it could very well happen that the
label switching doesn't have an e�ect on the analysis.
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Chapter 4

Experiments

We will validate the models by means of experiments with synthetic data.
First we will generate samples with the model assumed and then try to
recover it. For the second part we generate arti�cial data similar to what
we see (in an exploratory analysis) on the EEG data and try to recover
the underlying states. For the last part we use the autoregressive model to
explore the real EEG data.

4.1 HMM synthetic experiment

Data samples are generated using 10 topics each with 25 words, 2 di�erent
classes (transition matrices) and 2000 repetitions (samples) are obtained with
a length in time of 200.

We will use the topics described in �gure 4.1 to generate the data because
they have an easy representation as an image which will allow us to check
easily if they are recovered correctly.

The transition matrices are generated using a Dirichlet distribution with
concentration parameter α = .7.

A Gibbs sampler is used for the model described in section 3.3 �xing the

Figure 4.1: Topics used. Each square represents a distribution over the words, a blue
coloring in a pixel means that topic has low probability on that word and red is for high.
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4.1. HMM SYNTHETIC EXPERIMENT

Algorithm 5 Data generation
for j = 1 : J do
for r = 1 : R do
sample zjr1 ∼ U(1, ..., K)
for t = 2 : T do
sample zjrt ∼Multinomial(Ajzjr(t−1)

)
end for
for t = 0 : T do
sample xjrt ∼Multinomial(ϕzjrt)

end for
end for

end for

topics from 2 to 15 and run till convergence is achieved under the criteria
mentioned in section 2.4.
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CHAPTER 4. EXPERIMENTS

Figure 4.2: Mean log likelihood for the sampled topics with the standard
deviation for the estimator as error bars.

Figure 4.3: Recovered topics when trying to �t 10.
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4.2. AUTOREGRESSIVE

4.2 Autoregressive

The �rst three experiments are done in order to validate the model, an au-
toregressive model is used to generate the data and we try to recover it.
The fourth and �fth experiments try to simulate real data. The model selec-
tion tools implemented are shown on the �rst four experiments and the data
analysis tools on the last experiment.

4.2.1 Synthetic experiment 1

The data is generated using 10 topics each with 25 words, 2 di�erent classes
(transition matrices) and 2000 repetitions are obtained with a length in time
of 200. The topics used are:

Each square represents a distribution over the words. A blue coloring in
a pixel means that topic has low probability on that word and red is for high.
These topics are used because they have an easy representation as an image
which will allow us to check easily if they are recovered correctly.

The transition matrices are generated using a Dirichlet distribution with
concentration parameter α = .7.

Algorithm 6 Data generation
for j = 1 : J do
for r = 1 : R do
sample zjr1 ∼ U(1, ..., K)
sample zjr2 ∼ U(1, ..., K)
for t = 3 : T do
sample zjrt ∼ Multinomial(Ajzjr(t−2),zjr(t−1)

)
end for
for t = 0 : T do
sample xjrt ∼ Multinomial(ϕzjrt)

end for
end for

end for

28



CHAPTER 4. EXPERIMENTS

A Gibbs sampler for the model described in section 3.3 �xing the topics
from 1 to 14 and run till convergence is achieved under the criteria mentioned
in section 2.4.

Figure 4.4: Mean log likelihood for the sampled topics with standard devia-
tion of the estimator as error bar.

Discussion

The maximum a posteriori (MAP) and maximum likelihood are both achieved
at 10 topics which coincides with how the data was generated. The topics
are recovered successfully but as mentioned on section 3.3, the model su�ers
from label switching and we obtain a permutation of the original topics.

Even though the MAP is achieved at 10 topics model, hence is the most
supported by the data, the di�erence in posterior from 10 to 15 topics is not
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4.2. AUTOREGRESSIVE

Figure 4.5: Recovered topics with a histogram of their appearance.

big. Doing a deeper analysis of these topics we �nd that the 10 �true" topics
are recovered as well when 11 or more topics are �tted and the extra are
spurious topics. By checking a histogram of the overall appearances of the
topics on the sample we can see that these spurious topics have a relative
very low appearance compared with the true ones. This also supports the
hypothesis that the 10 topic model is the best one.

Usually the spurious topics are a dummy topic with extremely low relative
appearance on the data. Other common thing that happens when more topics
than necessary are �tted is that a big topic is split into several copies.
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CHAPTER 4. EXPERIMENTS

NumTopicos mLogLikelihood logMAP Estimator error
2 -2.574592e+06 -2.599711e+06 5.487687e+01
3 -2.410639e+06 -2.969761e+06 5.237675e+06
4 -2.334129e+06 -3.146129e+06 1.206159e+06
5 -2.176384e+06 -3.119782e+06 1.089212e+06
6 -2.044888e+06 -3.169834e+06 1.872474e+07
7 -1.897656e+06 -3.138354e+06 3.115666e+05
8 -1.722277e+06 -3.041400e+06 1.249954e+06
9 -1.575935e+06 -3.006190e+06 2.317599e+05
10 -1.470828e+06 -2.935541e+06 1.216239e+05
11 -1.360996e+06 -2.859228e+06 1.444285e+05
12 -1.375521e+06 -2.892284e+06 3.019420e+05
13 -1.386613e+06 -2.910322e+06 1.816601e+05
14 -1.397859e+06 -2.921394e+06 4.100085e+05
15 -1.394386e+06 -2.944958e+06 1.537178e+07

Figure 4.6: Results summary.
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4.2. AUTOREGRESSIVE

Figure 4.7: Fitting 14 topics we can see how the topics 2, 13 and 14 which are spurious,
actually have very few appearances over the data.
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4.3 Synthetic experiment 2

The data is generated the same way as in experiment 1 with the di�erence
that the probability to go to state 1 from any other state is greater than .3.
By forcing this, the state 1 takes a big part of the mixture distribution and
�overshadows" the other ones. We do this to exemplify that even though
the states have a relatively low appearance, the algorithm still recovers them
successfully.

Figure 4.8: Mean log likelihood for the sampled topics with the standard deviation of
the estimator as error bar.

Figure 4.9: Recovered topics.
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4.3. SYNTHETIC EXPERIMENT 2

NumTopicos mLogLikelihood logMAP Estimator error
2 -2.379336e+06 -2.404493e+06 6.694947e+01
3 -2.070403e+06 -2.613315e+06 8.950286e+04
4 -1.912947e+06 -2.678430e+06 1.869360e+05
5 -1.800185e+06 -2.684018e+06 2.588052e+05
6 -1.758056e+06 -2.754567e+06 6.373533e+05
7 -1.596566e+06 -2.696563e+06 1.245278e+05
8 -1.516764e+06 -2.657337e+06 2.051389e+05
9 -1.429136e+06 -2.620923e+06 3.451381e+04
10 -1.373566e+06 -2.624223e+06 6.441351e+08
11 -1.357282e+06 -2.719183e+06 3.857884e+08
12 -1.295566e+06 -2.697561e+06 2.453540e+07
13 -1.292863e+06 -2.750091e+06 2.181223e+07
14 -1.294268e+06 -2.743427e+06 2.164255e+07
15 -1.293192e+06 -2.819854e+06 4.129407e+07

Figure 4.10: Results summary.

4.3.1 Discussion

The results are very similar as the ones on the �rst experiment. The ma-
ximum is achieved when all the original topics are recovered even when the
distribution is largely dominated by only one state. As with the �rst expe-
riment, after all the topics are recovered one of two things occur, an extra
topic is a copy of one of the originals or it is �lled with �garbage" and has a
very low appearance.

34



CHAPTER 4. EXPERIMENTS

4.3.2 Unsuccessful experiment

When the data is generated with a parameter of α = 10 or bigger, the al-
gorithm is not able to recover the topics in the tests run of up to 30, 000
samples (usually 1000 are enough). This is not as bad as it would appear
since by having such a high value for the concentration parameter of a Dirich-
let distribution the distributions sampled from it will have extremely high
entropy, therefore the change from one state to another is almost random
with an uniform distribution and the essential structure of the model is lost.
In principle, the model would still be present but due to the limited computer
precision, it is lost.

4.4 Synthetic experiment 3

The data is generated by imitating the sort of data we see on the EEG
images: once a state is achieved it prevails for a short period and then jumps
to another. For a repetition, a state is selected randomly from the twelve
available and its duration is sampled from a uniform distribution. Since the
states are picked randomly, it is as if every sample belonged to a di�erent
class.

After the states are determined the topics from experiment 1 are used
again together with two new states. The �rst gives a probability of .7 to
the �rst word and is uniform among the remaining words. The second gives
a probability of .4 to the �rst and second words and is uniform among the
remaining words.

4.4.1 Discussion

Though the data is not generated using an underlying autoregressive model
per se, the topics are successfully recovered. Unfortunately, the maximum is
not achieved at 12 topics as it should. This issue has to be addressed with
care, since this algorithms are probabilistic in nature, they may not achieve
the desired result and two things need to be done: if possible, run several
times to get some degree of assurance that the result is not a local optima and
second, the results have to be checked manually. Checking them manually
implies that we have to see if the results actually make sense to the data we
are trying to �t and try to �nd any sort of anomaly.
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Figure 4.11: Visualization of the states used to generate the data. Each color
represents a di�erent state.
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Figure 4.12: Mean log likelihood for the sampled topics with the standard deviation of
the estimator as error bar.

Figure 4.13: Recovered topics.

As mentioned before, the two anomalies we commonly found in data are:
split topics and spurious topics with extremely low appearance. If we check
closely the results, we can see with the help of the topic distance matrix
on �gure 4.15 that one of the topics is repeated when trying to �t the 12
topics. Also if we check with 14 topics, one of them is repeated as well and
there are 12 di�erent topics with signi�cant appearances as shown by �gure
4.16. This has to be treated with care, naively we could just merge the split
topics, but in theory, it may very well be that the reason for the split is the
time dependency and that even though they look the same, they are in fact,
di�erent.

In a second run of this data, the topics are successfully recovered when
trying to �t 12 topics.
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NumTopicos mLogLikelihood logMAP Estimator error
2 -2.516858e+06 -2.542010e+06 1.729582e+01
3 -2.260895e+06 -2.371946e+06 4.642837e+03
4 -2.071217e+06 -2.233932e+06 4.982513e+04
5 -1.885132e+06 -2.069785e+06 1.536878e+04
6 -1.740676e+06 -1.940174e+06 3.641916e+03
7 -1.683423e+06 -1.895576e+06 1.904117e+04
8 -1.576213e+06 -1.799851e+06 1.226333e+04
9 -1.518912e+06 -1.751936e+06 1.139804e+04
10 -1.451017e+06 -1.695832e+06 2.333702e+05
11 -1.463065e+06 -1.722366e+06 1.458959e+05
12 -1.366932e+06 -1.629315e+06 1.468031e+06
13 -1.302087e+06 -1.574107e+06 1.808109e+05
14 -1.281564e+06 -1.566342e+06 7.435983e+04
15 -1.283979e+06 -1.570829e+06 7.042044e+04

Figure 4.14: Results summary.

Figure 4.15: Topics recovered and the distance between each pair expressed as a matrix
when �tting 13 topics.
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Figure 4.16: Topics recovered by trying to �t 14 together with a histogram of their
appearance.
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4.5 Synthetic experiment 4

In the experiment in section 4.4 the repetitions from a class were not related
one to another, so now we will create a �base sample" and the repetitions
will be alterations of it. In the base sample every state z appears just in
order and has a random duration zd, for the repetitions the states appear in
the same order, but their duration will be given by a uniform distribution
zrd ∼ U(zd − δzd, zd + δzd) where δ = .2, .4, .5, .8, 1. The reason to do this
is that the data we intend to analyse with this model appears to have some
shift in time and have variable duration for every state.

Figure 4.17: States for δ = .2.

Once the states are determined, the topics from 4.4 are used to generate
the data.

Using the tools mentioned before the correct number of topics is recovered
and the tags are compared with the original ones.

4.5.1 Discussion

A near perfect match is achieved for the topics. The miss-matched tags are
mostly associated with topics that are not correctly recovered due to poor
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δ %correct tags
.2 . 96
.4 .90
.5 .88
.8 .93
1 .89

Figure 4.18: E�ectiveness of the state recovery for di�erent elongations in
time.

representation of them in the original data as for example with the �rst state
in �gure 4.17.

Figure 4.19: Matching of the recovered labels to the real ones.

Figure 4.20: Topics recovered with δ = .2. It can be seen that the original topics 1, 11
and 12 are mixed into state 6 (from left to right in the image) since they all appear too
few times in the data and are similar.

Since we usually don't have the real tags when analysing the data, two
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useful visualizations for the data are used. First, for a given time, the most
likely state over all the repetitions on that class is calculated and graphed
as in �gure 4.21. The problem is that a state with low duration may be
shadowed by bigger ones.

Figure 4.21: The most likely state at each time is calculated and the labels are ordered
to allow an easier visualization.

The second is to graph the empirical probability of all the states for each
time and graph it as in �gure 4.22. This visualization will show all the states
even if they have very low duration, but just because of that, the curves
may overlap too much and di�cult the analysis of the graph. Though that
overlapping may give some insight on the behaviour of the data.

The algorithm theoretically behaves well with data that is shifted or elon-
gated through time and the experiments support it, so if all the repetitions
follow the same overall structure, we are able to recover it even though the
state duration varies from one to another. The problem comes with the vi-
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Figure 4.22: The empirical probability of all the states over the time averaging over
the repetitions.

sualizations, since there is no obvious way to represent the recovered tags
when there is more than one repetition for a experiment and for example the
visualization on �gure 4.21 will lose states if the elongation is too big. This is
very important as our �nal application is analysing EEG data which su�ers
from this elongation.

Other issue we want to address with the real data is to distinguish if two
a priori di�erent classes are actually di�erent. For this we propose using in-
dividual histograms for the state frequency, usually they are di�erent enough
to separate the classes as in �gure 4.23.
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Figure 4.23: Histograms for the di�erent classes on experiment δ = .4. State 9 is
evidently important for class 1 and has very little appearance on class 2, helping us dif-
ferentiate them.
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4.6 EEG sample data

We now run the model for a real EEG signal data and analyse it with all the
tools we have described. The data we use comes from two experiments, in
the �rst the stimulus is a word representing an animal and in the second a
word representing an object, we have 1600 samples from each provided by the
work in [9]. We code the data as described in section 1.5, the discretized time
is divided in 200 intervals, we focus on just one electrode and the frequencies
from 4Hz to 8Hz. This combination of frequencies and electrodes are picked
due to the previous analysis done in [9], the discarding of the deactivation
information is done due to our belief of it not being as relevant and doing so
greatly improves the run time and eases the analysis. We start by looking at
the topic versus likelihood graphic in �gure 4.24. It can be seen that after 20
topics the behaviour is very erratic, but still the maximum is obtained with
50 topics.

Figure 4.24: Mean log likelihood for the sampled topics: 5, 10, 15, 20, 25, 30, 35, 40,
45, 50 .

,
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By looking closely at the topics recovered when 50 topics are �tted (Fig.
4.25), we notice that several of them are repeated. So we turn to the topic
distance matrix (Fig. 4.26) and see that indeed several of them are actually
the same topic.

Figure 4.25: Topics recovered when trying to �t 50.

Figure 4.26: Topic distance matrix when trying to �t 50.
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We proceed to merge all these topics into one (Fig. 4.27) and continue
analysing the data. Comparing the histograms of topic apparition among
the classes isn't very informative because the �rst topic overshadows the rest
of them as can be seen on �gure 4.28. In �gure 4.29 we can see a zoom
of the state histogram without state 1 and di�erences between both classes
becomes more apparent.

Figure 4.27: Non-repeated topics when trying to �t 50, showing that there are actually
just 14.

Figure 4.28: Frequency of appearance of each topic for both classes. Class 1 is blue and
class 2 red.
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Figure 4.29: Frequency of appearance of each topic except topic 1 for both classes. Class
1 is blue and class 2 red.

When we try looking at the empirical probability of every state over the
time (Fig. 4.30), the same di�culty as with the histograms arise: the state
1 overshadows the rest of them. So just like with the histograms, we zoom
the graph to ignore the state 1 (Fig. 4.31) and again the di�erences between
both classes becomes more apparent.

4.6.1 Discussion

We hoped to �nd the correct number of topics just with the help of the
likelihood, but this was not possible. Still the �ndings are encouraging since
the other tools (the topic distance matrix) indicate the correct number of
topics is 14. It is worth noting that the 14 topics being the correct number
isn't entirely unsupported by the likelihood graph, because after going past
15 topics, its behaviour starts being erratic, which hints that maybe the
maximum has already passed. This is a very good segmentation in the sense
that the data is compressed from a dictionary of 32 words to one of 14.

Throughout the analysis the state 1 has been frequently causing troubles:
it was the state that was split into several copies and then overshadowed all
the other topics. When we look closely at the topic corresponding to this
state, we see that the vast majority of its probability mass is focused on the
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word 1, which corresponds to the EEG signal is �dormant" (i.e. there is no
activity). This dormant state of the EEG signal is actually where the signal is
most of the time, so not only it is not surprising that a full topic is spent solely
on it, but it is actually desirable. Also we can see that no other topic assigns
probability mass to the word 1, which means that the model is perceiving
correctly when there is activity. One other thing we can appreciate from the
topics is that all of them distribute their probability mass among 5 words at
most, so they are quite sparse. Further analysis has to be performed in order
to check if the segmentation actually makes sense physiologically-wise i.e. if
the words assigned to the same topic actually represent similar processes in
the EEG signal.

Ideally we would want to see a graph showing the state with maximum
probability at each time as with synthetic experiment 4. Unfortunately, the
state 1 overshadows all the others by far and this graph would only show this
state, so it isn't informative.
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Figure 4.30: Empirical probability of the states over the time averaging over the repe-
titions.
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Figure 4.31: Zoom of the empirical probability of the states over the time averaging
over the repetitions.

51





Chapter 5

Conclussion and future work

The models we presented have shown great utility in the data mining process
for the EEG signals and semantic analysis. The tools provided greatly help
the diagnostic for convergence and posterior analysis of the data after the
models are used. As part of the work presented, we began an exploratory
analysis of EEG data (shown in section 4.6) that shows great promise and
will be continued using the toolbox we developed in CIMAT.

There are several diverse directions in which the study can continue.

• Evolutionary Markov chain Monte Carlo (EMCMC). The basic idea
behind the EMCMC is to run several chains of the MCMC algorithm
and, with a combination of ideas from both Evolutionary Algorithms
theory and those of the Metropolis-Hastings algorithm, �nd a way to
mix the chains to improve the overall performance of the chain, i.e.
overcome local maxima with more ease.

Viewed as a genetic algorithm, essentially an iteration of the MCMC
algorithm over a chain will be the mutation step and then the crossing
of the chains is performed as in a standard genetic algorithm, but after
the crossing is done, a Metropolis test is used to accept or reject it. On
the other hand, viewed as a MCMC algorithm, the idea is to sample
from a multivariate distribution where each of the random variables
comes from the desired distribution but the samples are alternately ob-
tained from a standard MCMC algorithm using just the corresponding
previous sample and from an "arti�cial" distribution, that takes two
previous samples (instead of just one as in an standard MCMC) and
creates a new one.

53



The advantage of this algorithm is that it has greater exploring capacity
than a standard MCMC, but it is far more resource demanding. In
particular for our application, we believe it is not feasible due to the
large number of variables[14].

• Reversible Jump Markov chain Monte Carlo (RJMCMC). As we saw
throughout the work, determining the correct number of subjacent
states for the data is not an easy problem. The objective of the RJM-
CMC is to bypass this issue by treating the number of states as a
random variable itself and let the MCMC algorithm explore its distri-
bution.

There are di�erent ways to perform this dimension jump (increasing
or decreasing the states), the most popular due to its simplicity and
e�ectiveness is the birth and death process, where a topic is created
(birth) using the prior distribution, the inverse process (death) takes
one topic at random and �kills it"; after the topics are modi�ed (created
or destroyed), the data is reallocated and a Metropolis test is used
to decide whether the new sample is accepted or not. Typically for
the reallocation, a maximum likelihood algorithm is used (such as the
forward-backward or Viterbi algorithm). There are other dimensional
jump techniques in the literature, such as merging two topics into one
or taking one and splitting it (which are analogue to death and birth
respectively).

The di�cult of the RJMCMC is that when the number of states changes,
the dimensionality of the other variables may change (for example the
transition matrix in the HMM) and it is not easy to deal with, the prior
distribution has to be sampled and this change has to be taken into ac-
count for the Metropolis test for the acceptance of the overall change
of the sample[15]. Also there is no apparent way to integrate out the
parameters, which is desirable for greater robustness, implementation
simplicity and its lower cost computationally wise.

• Higher order Autoregressive Hidden Markov Model (HoAHMM). Just
like with the change from LDA to HMM and then from HMM to
AHMM, we may keep pushing the time dependencies to a higher order.
The problem with this is that in the non-collapsed version, the size of
the transition hyper-cube grows exponentially, so it quickly becomes
untractable. The collapsed version su�ers a similar problem, but in
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this case, the equations for the derivation that are already somewhat
complex for the second degree version, quickly become untractable as
it is a complex combinatorics problem. Nevertheless, it is our belief
that it is possible to expand the model at least a couple of times in the
order.

• One di�culty we encountered when analysing the EEG data is that the
signals we were using were not in phase one to another. That is, even
if the same processes occurred on two di�erent samples, they occur
at di�erent slightly di�erent moments and at with di�erent durations.
This is not an issue per se for the models, as they successfully recover
the structure, but for the purposes of further analysis it becomes a big
problem. One concrete example we found is: for most of the time, the
signal is in a �deactivated" state, and the activation periods are very
short in duration, so when we average over the samples, we obtain a
signal that is deactivated all of the time even when there are activation
periods on all of the individual samples. There is no obvious way as to
how to manipulate the signals so they are in phase and averaging them
doesn't lose all of the information and it is a subject that needs further
study.

Developing this work helped me to understand the general Bayesian
paradigm and how some real life problems are being solved by utilizing it.
Concretely in the area of data mining, since the models studied are a state
of the art technique and have a wide variety of applications. Also the deep
study of the LDA and its variations that was necessary for understanding
and implementing the HMM and aHMM as well as the EMCMC and RJM-
CMC (which were studied but out of the scope of this work), made apparent
how easy it is to manipulate in order to �t the speci�c needs of di�erent
problems.
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Appendix A

Algorithms

In this appendix we present the algorithms mentioned in the text that were
not explicitly shown.

For the acceptance function

α(X t
i , Yi) = min

(
1,
π(Yi|X t

−i)qi(X
t
i |Yi, X t

−i)

π(Xi|X−i)qi(Yi|Xi, X−i)

)
.

Algorithm 7 Single-component Metropolis - Hastings
Initialize X0 at random.
for t = 1 : Number of Samples do
for i = 1 : I do
Sample Yi ∼ qi(·|X t

−i).
Sample u ∼ U(0, 1).
if u ≤ α(X t

i , Yi) then
set X t+1

i = Yi.
else
set X t+1

i = X t
i .

end if
end for

end for
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Algorithm 8 Single-component Metropolis - Hastings Random-Scan
Initialize X0 at random.
for t = 1 : Number of Samples do
Sample i ∼ U(1, ..., I).
Sample Yi ∼ qi(·|X t

−i).
Sample u ∼ U(0, 1).
if u ≤ α(X t

i , Yi) then
set X t+1

i = Yi.
else
set X t+1

i = X t
i .

end if
end for
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HMM derivation

The prior for the parameters are:

• P (zjr0|wj) =
∏K

l=1 w
zjr0,l
j,l .

• P (zjrt|Aj, zjr(t−1)) =
∏K

k=1

∏K
l=1A

zjrt,l·zjr(t−1),k

j,kl .

• P (xjrt|zjrt, ϕ) =
∏K

l=1

∏W
w=1 ϕ

zjrt,l·xjrt,w
l,w .

• P (Aj|α) =
∏K

k=1
Γ(Kα)
Γ(α)K

∏K
l=1A

α−1
jkl .

• P (wj|γ) = Γ(Kγ)
Γ(γ)K

∏K
l=1w

γ−1
j,l .

• P (ϕ|β) = Γ(Wβ)
Γ(β)W

∏W
w=1 ϕ

β−1
k,w .

From the graphical model we obtain the following factorization of the
joint distribution

P (z, x, A,w, ϕ|α, β) =
J∏
j=1

P (Aj, α)P (wj|α) (B.1)

J∏
j=1

R∏
r=1

P (zjr0|wj)
T∏
t=1

P (zjrt|zjr(t−1), Aj) (B.2)

J∏
j=1

R∏
r=1

T∏
t=0

P (xjrt|zjrt, ϕ) (B.3)
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P (β)
K∏
k=1

P (ϕk|β) (B.4)

B.0.2 Collapsed Model

Expanding B.1

J∏
j=1

P (Aj|α)P (wj|γ) =

[
J∏
j=1

K∏
k=1

Γ(Kα)

Γ(α)

K K∏
l=1

Aα−1
jkl

][
J∏
j=1

Γ(Kγ)

Γ(γ)K

K∏
l=1

wγ−1
j,l

]

=

[
Γ(Kα)JK

Γ(α)JK2

J∏
j=1

k∏
k=1

K∏
l=1

Aα−1
j,kl

][
Γ(Kα)J

Γ(α)JK

J∏
j=1

K∏
l=1

wγ−1
j,l

]
Expanding B.2

J∏
j=1

R∏
r=1

P (zjr0|wj)
T∏
t=1

P (zjrt|zjr(t−1), Aj) =

[
J∏
j=1

R∏
r=1

K∏
l=1

w
zjr0,l
j,l

]
[

J∏
j=1

R∏
r=1

T∏
t=1

K∏
k=1

K∏
l=1

A
zjrt,l·zjr(t−1),k

j,kl

]

=

[
J∏
j=1

K∏
l=1

w
∑R

r=1 zjr0,l
j,l

]
[

J∏
j=1

k∏
k=1

K∏
l=1

A
∑T

t=1

∑R
r=1 zjrt,l·zjr(t−1),k

j,kl

]

=

[
J∏
j=1

K∏
l=1

w
vjl
j,l

][
J∏
j=1

k∏
k=1

K∏
l=1

A
ηjkl
j,kl

]
taking

vjl =
R∑
r=1

zjr0,l

and

ηjkl =
T∑
t=1

R∑
r=1

zjrt,l · zjr(t−1),k,
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which represent the number of times state k is selected and the number of
times that l is chosen after state k in all samples respectively.

Expanding B.3

R∏
r=1

J∏
j=1

T∏
t=0

P (xjrt|zjrt, ϕ) =
R∏
r=1

J∏
j=1

T∏
t=0

K∏
l=1

W∏
w=1

ϕ
zjrt,l·xjrt,w
l,w

=
K∏
l=1

W∏
w=1

R∏
r=1

J∏
j=1

T∏
t=0

ϕ
zjrt,l·xjrt,w
l,w

=
K∏
l=1

W∏
w=1

ϕ
∑R

r=1

∑J
j=1

∑T
t=0 zjrt,l·xjrt,w

l,w

=
K∏
l=1

W∏
w=1

ϕ
nl,w

l,w ,

taking

nlw =
R∑
r=1

J∑
j=1

T∑
t=0

zjrt,l · xjrt,w,

which is the number of times the state l appears in z together with the state
w in x in all samples.

Expanding B.4

K∏
k=1

P (ϕk|β) =
Γ(Wβ)K

Γ(β)WK

K∏
k=1

W∏
w=1

ϕβ−1
k,w (B.5)

Substituting on the original formula

P (z, x, A, w, ϕ|α, β) =

[
Γ(Kα)JK

Γ(α)JK2

J∏
j=1

k∏
k=1

K∏
l=1

Aα−1
j,kl

][
Γ(Kα)J

Γ(α)JK

J∏
j=1

K∏
l=1

wγ−1
j,l

]
[

J∏
j=1

K∏
l=1

w
vjl
j,l

][
J∏
j=1

k∏
k=1

K∏
l=1

A
ηjkl
j,kl

]
K∏
l=1

W∏
w=1

ϕ
nl,w

l,w
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=

[
Γ(Kα)J

Γ(α)JK

J∏
j=1

K∏
l=1

w
vjl+α−1

jl

]
[

Γ(Kα)JK

Γ(α)JK2

J∏
j=1

K∏
k=1

K∏
l=1

A
ηjkl+α−1

jkl

]
[

Γ(Wβ)K

Γ(β)KW

K∏
k=1

W∏
w=1

ϕnkw+β−1
kw

]

and integrating the Aj, wj and ϕ we get

P (z, x|α, β) =
Γ(Kα)J(K+1)

Γ(α)KJ
Γ(Kα)JK

Γ(α)JK2[
J∏
j=1

∏K
k=1 Γ(vjk + α)

Γ(vj· +Kα)

]
[

J∏
j=1

K∏
k=1

∏K
l=1 Γ(njkl + α)

Γ(njk· +Kα)

]
[
K∏
k=1

∏W
w=1 Γ(nkw + β)

Γ(nk· +Wβ)

]
.

Finally, by isolating the terms dependent on zjrt we get

P (zjrt,s = 1|−) =
νsw + β

νs· +Wsβ

ηjks + α

ηck· +Kα

ηcsr + I(k = s)I(r = s) + α

ηcs· + I(k = s) +Kα
,

where ηjks is the number of times in experiment J that state s is obtained
after state k; ηjk· the number of times in experiment J that state k appears;
νsw the times state s appears together with word w and νs· the total number
of times state s appears.

B.0.3 Non collapsed model

We will derive the full conditional distributions for all the variables.
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Notation:
z = {zjrt : j = 1, ..., J r = 1, ..., R, t = 0, ..., T}
x = {xjrt : j = 1, ..., J r = 1, ..., R, t = 1, ..., T}
ϕ= {ϕk}Kk=1

a) P (αj|Aj, wj) ∝ P (Aj, wj, αj)

∝ P (Aj|αj)P (wj|αj)P (αj)

∝

[
K∏
k=1

P (Ajk|α
j)

]
P (wj|αj)P (αj)

∝ U(0, 1)
K∏
k=1

Dir(αj)Dir(αj)

∝ U(0, 1)

[
K∏
k=1

K∏
l=1

(Ajkl)
α−1

]
K∏
l=1

(wjl )
α−1

b) P (wj|αj, zj10, ..., zjR0) ∝ P (wj, αj, zj10, ..., zjR0)

∝ P (αj)P (wj|αj)
R∏
r=1

P (zjr0|wj)

∝
R∏
r=1

P (zjr0|wj)P (wj|αj)

∝
R∏
r=1

Mult(wj)Dir(αj)

∝
R∏
r=1

K∏
l=1

(wjl )
zjr0,l

K∏
l=1

(wjl )
αj−1

∝
K∏
l=1

(wjl )
∑R

r=1 zjr0,l

K∏
l=1

(wjl )
αj−1

∝
K∏
l=1

(wjl )
∑R

r=1 zjr0,l+α
j−1

∝ Dir((
R∑
r=1

zjr0,1,

R∑
r=1

zjr0,2, ...,

R∑
r=1

zjr0,K) + αj)
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c) P (Ajk|α
j, z, Aj−k) ∝ P (Aj, αj, z)

∝ P (αj)P (Aj|αj)P (z|Aj)

∝
K∏
l=1

P (Ajl |α
j)

[
P (zjr0)

R∏
r=1

T∏
t=1

P (zjrt|zjr(t−1), A
j)

]

∝ P (Ajk|α
j)

R∏
r=1

T∏
t=1,zjr(t−1)=k

P (zjrt|zjr(t−1), A
j)

∝ Dir(αj)
R∏
r=1

T∏
t=1,zjr(t−1)=k

Mult(Ajzjr(t−1)
)

∝
K∏
l=1

(Ajkl)
αj−1

R∏
r=1

T∏
t=1,zjr(t−1)=k

K∏
m=1

K∏
l=1

(Ajml)
zjrt,lzjr(t−1),m

∝
K∏
l=1

(Ajkl)
αj−1

R∏
r=1

T∏
t=1,zjr(t−1)=k

K∏
l=1

(Ajkl)
zjrt,l

∝
K∏
l=1

(Ajkl)
αj−1

K∏
l=1

(Ajkl)
∑R

r=1

∑T
t=1,zjr(t−1)=k zjrt,l

∝
k∏
l=1

(Ajkl)
αj−1+

∑R
r=1

∑T
t=1,zjr(t−1)=k zjrt,l

∝ Dir

αj +

 R∑
r=1

T∑
t=1,zjr(t−1)=k

zjrt,l

K

l=1



d) P (zjr0 | wj, xjr0, zjr1, A
j, ϕ) ∝ P (zjr0, w

j, xjr0, zjr1, A
j, ϕ)

∝ P (Aj)P (wj)P (zjr0|wj)P (ϕ)P (xjr0|zjr0, ϕ)P (zjr1|zjr0, Aj)
∝ P (zjr0|wj)P (xjr0|zjr0, ϕ)P (zjr1|zjr0, Aj)
∝ Mult(wj)Mult(ϕzjr0)Mult(Ajzjr0)

∝
K∏
l=1

(wjl )
zjr0,l

K∏
l=1

W∏
w=1

(ϕlw)zjr0,lxjr0,w
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K∏
k=1

K∏
l=1

(Ajkl)
zjr1,lzjr0,k

e) P (zjrt | zjr(t−1), zjr(t+1), A
j, xjrt, ϕ) ∝ P (zjrt, zjr(t−1), zjr(t+1), A

j, xjrt, ϕ)

∝ P (ϕ)P (Aj)P (xjrt|zjrt)P (zjrt|zjr(t−1), A
j)

P (zjr(t+1)|zjrt, Aj)
∝ P (xjrt|zjrt)P (zjrt|zjr(t−1), A

j)P (zjr(t+1)|zjrt, Aj)
∝ Mult(ϕzjrt)Mult(Ajzjr(t−1)

)Mult(Ajzjrt)

∝
K∏
l=1

W∏
w=1

(ϕlw)zjrt,lxjrt,w
K∏
k=1

K∏
l=1

(Ajkl)
zjrt,lzjr(t−1),k

K∏
k=1

K∏
l=1

(Ajkl)
zjr(t+1),lzjrt,k

f) P (zjrT |zjr(T−1), A
j, xjrT , ϕ) ∝ P (zjrT , zjr(T−1), A

j, xjrT , ϕ)

∝ P (Aj)P (zjr(T−1)|Aj)P (zjrT |Aj, zjr(T−1))

P (xjrT |zjrT , ϕ)P (ϕ)

∝ P (zjrT |Aj, zjr(T−1))P (xjrT |zjrT , ϕ)

∝ Mult(Ajzjr(T−1)
)Mult(ϕzjrT )

∝
K∏
k=1

K∏
l=1

(Ajkl)
zjrT,lzjr(T−1),k

K∏
l=1

W∏
w=1

(ϕlw)zjrT,lxjrT,w

g) P (ϕk | ϕ−k, β,x, z) ∝ P (ϕ, β,x, z)

∝ P (β)P (ϕ|β)P (z)P (x|z, ϕ)

∝ P (ϕ|β)

[
J∏
j=1

R∏
r=1

T∏
t=1

P (xjrt|zjrt, ϕ)

]

∝ P (ϕ|β)

 J∏
j=1

R∏
r=1

T∏
t=1,zjrt=k

P (xjrt|zjrt, ϕ)


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∝ Dir(β)

[
J∏
j=1

R∏
r=1

T∏
t=1

Mult(ϕzjrt)

]

∝
W∏
w=1

(ϕkw)β−1

 J∏
j=1

R∏
r=1

T∏
t=1,zjrt=k

K∏
l=1

W∏
w=1

(ϕlw)zjrt,lxjrt,w


∝

W∏
w=1

(ϕkw)β−1

 J∏
j=1

R∏
r=1

T∏
t=1,zjrt=k

W∏
w=1

(ϕkw)zjrt,kxjrt,w


∝

W∏
w=1

(ϕkw)β−1

 J∏
j=1

R∏
r=1

T∏
t=1,zjrt=k

W∏
w=1

(ϕkw)xjrt,w


∝

W∏
w=1

(ϕkw)β−1

W∏
w=1

(ϕkw)
∑J

j=1

∑R
r=1

∑T
t=1,zjrt=k xjrt,w

∝
W∏
w=1

(ϕkw)
β−1+

∑J
j=1

∑R
r=1

∑T
t=1,zjrt=k xjrt,w

∝ Dir(β + (
J∑
j=1

R∑
r=1

T∑
t=1,zjrt=k

xjrt,1,

J∑
j=1

R∑
r=1

T∑
t=1,zjrt=k

xjrt,2,

...,
J∑
j=1

R∑
r=1

T∑
t=1,zjrt=k

xjrt,1))

h) P (β|ϕ) ∝ P (β, ϕ)

∝ P (β)P (ϕ|β)

∝ P (β)
K∏
k=1

P (ϕ|β)

∝ U(0, 1)
K∏
k=1

Dir(β)

∝ U(0, 1)
K∏
k=1

W∏
w=1

(ϕkw)β−1
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Appendix C

Autoregressive model derivation

The prior for the parameters are:

• P (zjrt|Aj, zjr(t−1), zjr(t−2)) =
∏K

m=1(Ajzjr(t−2),zjr(t−1)
)zjrt,m .

• P (xjrt|zjrt, ϕ) =
∏W

w=1(ϕ
zjrt
w )xjrt,w .

• P (Ajkl|αj) ∝
∏K

m=1(Ajklm)α
j−1.

• P (ϕk|β) ∝
∏W

w=1(ϕkw)β−1.

C.0.4 Collapsed Model

We will manipulate the distribution so we can integrate out parameters.

P (z,x,A, α, β, ϕ)

= P (β)

[
K∏
k=1

P (ϕk|β)

]
J∏
j=1

P (αj)

J∏
j=1

P (Aj|αj)
R∏
r=1

T∏
t=1

P (zjrt|zjr(t−2), zjr(t−1), A
j)P (xjrt|zjrt, ϕ)

∝ P (β)

[
K∏
k=1

W∏
w=1

(ϕkw)β−1

]
J∏
j=1

P (αj)

J∏
j=1

K∏
k1=1

K∏
k2=1

K∏
m=1

(Ajk2k1,m)α−1

J∏
j=1

R∏
r=1

T∏
t=1

K∏
m=1

(Ajzjr(t−2)zjr(t−1),m
)zjrt,m
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J∏
j=1

R∏
r=1

T∏
t=1

W∏
w=1

(ϕzjrtw )xjrt,w

∝ P (β)

[
K∏
k=1

W∏
w=1

(ϕkw)β−1

][
J∏
j=1

R∏
r=1

T∏
t=1

W∏
w=1

(ϕzjrtw )xjrt,w

]
J∏
j=1

P (αj)[
J∏
j=1

K∏
k1=1

K∏
k2=1

K∏
m=1

(Ajk2k1,m)α−1

][
J∏
j=1

R∏
r=1

T∏
t=1

K∏
m=1

(Ajzjr(t−2)zjr(t−1),m
)zjrt,m

]

∝ P (β)

[
K∏
k=1

W∏
w=1

(ϕkw)β−1

][
K∏
k=1

W∏
w=1

(ϕkw)
∑J

j=1

∑R
r=1

∑T
t=1 xjrt,wI(zjrt=k)

]
J∏
j=1

P (αj)

[
J∏
j=1

K∏
k1=1

K∏
k2=1

K∏
m=1

(Ajk2k1,m)α−1

]
J∏
j=1

K∏
k1=1

K∏
k2=1

K∏
m=1

(Ajk2k1,m)
∑R

r=1

∑T
t=1 zjrt,mI(zjr(t−2)=k2)I(zjr(t−1)=k1)

∝ P (β)

[
K∏
k=1

W∏
w=1

(ϕkw)β−1+
∑J

j=1

∑R
r=1

∑T
t=1 xjrt,wI(zjrt=k)

]
J∏
j=1

P (αj)

J∏
j=1

K∏
k1=1

K∏
k2=1

K∏
m=1

(Ajk2k1,m)α−1+
∑R

r=1

∑T
t=1 zjrt,mI(zjr(t−2)=k2)I(zjr(t−1)=k1).

Integrating parameters out, �xing αj, β and setting

vk,w =
J∑
j=1

R∑
r=1

T∑
t=1

xjrt,wI(zjrt = k),

vk,· =
W∑
w=1

vk,w,

sjk2,k1,m =
R∑
r=1

T∑
t=1

zjrt,mI(zjr(t−2) = k2)I(zjr(t−1) = k1),

sjk2,k1,· =
K∑
m=1

sjk2,k1,m.
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APPENDIX C. AUTOREGRESSIVE MODEL DERIVATION

We obtain

P (z,x) ∝

[
K∏
k=1

∏W
w=1 Γ(vk,w + β)

Γ(vk,· +Wβ)

][
J∏
j=1

K∏
k2=1

K∏
k1=1

∏K
m=1 Γ(sjk2,k1,m + α)

Γ(sjk2,k1,· +Kα)

]

and

P (z,x) =

[
K∏
k=1

Γ(Wβ)

Γ(β)W

∏W
w=1 Γ(vk,w + β)

Γ(vk,· +Wβ)

]
[

J∏
j=1

K∏
k2=1

K∏
k1=1

Γ(Kα)

Γ(α)K

∏K
m=1 Γ(sjk2,k1,m + α)

Γ(sjk2,k1,· +Kα)

]

=
Γ(Wβ)K

Γ(β)KW

[
K∏
k=1

∏W
w=1 Γ(vk,w + β)

Γ(vk,· +Wβ)

]
Γ(Kα)JK

2

Γ(α)JK3

[
J∏
j=1

K∏
k2=1

K∏
k1=1

∏K
m=1 Γ(sjk2,k1,m + α)

Γ(sjk2,k1,· +Kα)

]
,

�nally, by isolating the parameters that depend on zjrt we get

P (zjrt,k = 1|−) =

νs,w + β

νs· +Wsβ

ηj,p2,p1,k + α

ηj,p2,p1 +Kα

ηj,p1,k,n1 + I(p2 = p1 = k = n1) + α

ηj,p1,k + I(p2 = p1 = k) +Kα

ηj,k,n1,n2 + I(p2 = k = n2, p1 = n1) + I(p1 = k = n1 = n2) + α

ηj,k,n1 + I(p2 = k, p1 = n1) + I(p1 = k = n1) +Kα
,

where ηj,a,b,c is the number of times in experiment J that state c is obtained
after state b after a; ηjab· the number of times in experiment J that state b
appears after a; νsw the times state s appears together with word w; νs· the
total number of times state s appears, p2 = t− 2, p1 = t− 1, n1 = t+ 1 and
n2 = t+ 2.

C.0.5 Non collapsed model

We will derive the full conditional distributions for the variables.
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a) P (αj|Aj) ∝ P (αj)P (Aj|αj)

∝ U(0, 1)
K∏
k=1

K∏
l=1

P (Ajkl|α
j)

∝ U(0, 1)
K∏
k=1

K∏
l=1

Dir(αj)

∝ U(0, 1)
K∏
k=1

K∏
l=1

K∏
m=1

(Ajklm)α
j−1

b) P (Ajk0l0|α
j, z, Aj−k0l0) ∝ P (Aj, αj, z)

∝ P (αj)
K∏
k=1

K∏
l=1

P (Ajkl|α
j)

r∏
r=1

T∏
t=1

P (zjrt|Aj, zjr(t−2), zjr(t−1))

∝ P (Ajk0l0|α
j)

r∏
r=1

T∏
t=1, zjr(t−2)=k0, zjr(t−1)=l0

P (zjrt|Ajk0l0 , zjr(t−2), zjr(t−1))

∝ Dir(αj)
r∏
r=1

T∏
t=1, zjr(t−2)=k0, zjr(t−1)=l0

Mult(Ajk0l0)

∝
K∏
m=1

(Ajk0l0m)α
j−1

r∏
r=1

T∏
[t=1, zjr(t−2)=k0, zjr(t−1)=l0]

K∏
m=1

(Ajk0l0m)zjrt,m

∝
K∏
m=1

(Ajk0l0m)α
j−1

K∏
m=1

(Ajk0l0m)
∑r

r=1

∑T
t=1 (zjrt,mI(zjr(t−2)=k0, zjr(t−1)=l0))

∝
K∏
m=1

(Ajk0l0m)α
j+

∑r
r=1

∑T
t=1 (zjrt,mI(zjr(t−2)=k0, zjr(t−1)=l0))−1

= Dir

αj +

(
r∑
r=1

T∑
t=1

(
zjrt,mI(zjr(t−2) = k0, zjr(t−1) = l0)

))K

m=1



c) P (zjrt|Aj, zjr(t−2), zjr(t−1), xjrt, zjr(t+1), zjr(t+2), A
j, ϕ)
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APPENDIX C. AUTOREGRESSIVE MODEL DERIVATION

∝ P (zjr(t−2), ..., zjr(t+2), A
j, xjrt, ϕ)

∝ P (Aj)P (zjr(t−2)|Aj)P (zjr(t−1)|Aj, zjr(t−2)P (zjrt|Aj, zjr(t−1), zjr(t−2))

P (zjr(t+1)|Aj, zjrt, zjr(t−1))P (zjr(t+2)|Aj, zjr(t+1), zjrt)P (ϕ)P (xjrt|ϕ, zjrt)
∝ P (zjrt|Aj, zjr(t−1), zjr(t−2))P (zjr(t+1)|Aj, zjrt, zjr(t−1))

P (zjr(t+2)|Aj, zjr(t+1), zjrt)P (xjrt|ϕ, zjrt)
∝ Mult(Ajzjr(t−2),zjr(t−1)

)Mult(Ajzjr(t−1),zjrt
)

Mult(Ajzjrt,zjr(t+1)
)Mult(ϕzjrt)

∝
K∏
m=1

(Ajzjr(t−2),zjr(t−1),m
)zjrt,m

K∏
m=1

(Ajzjr(t−1),zjrt,m
)zjr(t+1),m

K∏
m=1

(Ajzjrt,zjr(t+1),m
)zjr(t+2),m

∏
(ϕzjrtw )xjrt,w)

so,

P (zjrt = k|Aj, zjr(t−2) = p2, zjr(t−1) = p1, xjrt = y, zjr(t+1) = n1,

zjr(t+2) = n2, A
j, ϕ)

∝ Ajp2,p1,kA
j
p1,k,n1

Ajk,n1,n2
ϕky

d) P (ϕk0 |ϕ−k0 , β,x, z) ∝ P (ϕ, β,x, z)

∝ P (β)P (z)P (ϕ|β)P (x|z, ϕ)

∝
k∏
k=1

P (ϕk|β)
J∏
j=1

R∏
r=1

T∏
t=1

P (xjrt|zjrt, ϕ)

∝ P (ϕk0|β)
J∏
j=1

R∏
r=1

T∏
t=1,zjrt=k0

P (xjrt|zjrt, ϕ)

∝ Dir(β)
J∏
j=1

R∏
r=1

T∏
t=1,zjrt=k0

Mult(ϕk0)

∝
W∏
w=1

(ϕk0w )β−1

J∏
j=1

R∏
r=1

T∏
[t=1,zjrt=k0]

W∏
w=1

(ϕk0w )xjrt,w

∝
W∏
w=1

(ϕk0w )β−1

W∏
w=1

(ϕk0w )
∑J

j=1

∑R
r=1

∑T
t=1,zjrt=k0

xjrt,w
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∝
W∏
w=1

(ϕk0w )
β−1+

∑J
j=1

∑R
r=1

∑T
t=1,zjrt=k0

xjrt,w

∝ Dir

β +

 J∑
j=1

R∑
r=1

T∑
[t=1,zjrt=k0]

xjrt,m

W

w=1


e) P (β|ϕ) ∝ P (ϕ, β)

∝ P (β)
K∏
k=1

P (ϕk|β)

∝ U(0, 1)
K∏
k=1

Dir(β)

∝ U(0, 1)
K∏
k=1

W∏
w=1

(ϕkw)β−1

72



Appendix D

Program guide

Figure D.1: GUI for the software developed.
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• Experiment name will be the name of the folder in which all the results
will be stored.

• Data �le is the �le containing all the raw data we wish to analise. The
data �le must contain:

� C a variable with the number of documents

� R a variable with the maximum number of repetitions (sentences)
on all the documents.

� Rspec a vector with the speci�c number of repetitions in each
document.

� T a variable with the length of the sentences.

� W a variable with the total number of words in the dictionary.

� y a vector of dimension TxRxC containing all the data.

• Topics to adjust has all the topics we wish to �t into the data presented
as a string, for example "3 5 7 10". The topics can't be repeated.

• Chain length is the total number of samples that will be extracted.

• Repetitions is the number of times the complete experiment will be
repeated. If more than 1 repetition is requested, they will be placed in
separate folders named <Experiment name>+<repetition number>.

• Length burnin is the length of the chain that will be used for the burnin
calculation algorithm.

• Print Parameter Graphs will be on if we wish all of the individual
graphs to be printed. It will raise the running time, so if we don't need
them it is better left o�.

• Burnin will be the number of samples discarded in case the burnin
algorithm determines the MCMC algorithm hasn't converged.

• Run after all the parameters are set, this will start running the algo-
rithm.
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