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Carlos, Miguel, Victor y Osbaldo, a los muchachos del K3, Pedro, Luis y Oyuki.

Gracias Dios, por permitirme ser part́ıcipe de esta aventura que es la vida.

Carlos.

iii





Introduction

The concept of the category of mixed motives arises as the conjectural categorical

framework for the universal cohomology theory of algebraic varieties. Although

the category of mixed motives has yet to be constructed, many of its desired

properties have been described. We provide a partial list of such properties:

1. For each scheme S, we should have the category MMS of mixed motives

over S, which is an abelian tensor category.

2. For each S we have a functor natural in S

MS : (Sm/S)op →MMS

where Sm/S is the category of smooth S-schemes; MS(X) is the mixed

motive of X.

3. There are external products

MS(X)⊗MS(Y )→MS(X ×S Y )

which are isomorphisms, called the Künneth isomorphisms.

An interesting question arising at this point is if we can obtain a motivic

analog of the Leray-Hirsch theorem (see for example [Hat02, Theorem 4.D.1]).

The statement in the algebraic topology context is as follows: let π : Y → X be

a fibre bundle with fibre Z. Assume that for each p the vector space Hp(Z,Q) of

singular cohomology has finite dimension mp and that we can find classes

Tp,1, · · · , Tp,mp ∈ Hp(Y,Q)

that restrict, on each fibre Z to a basis of the cohomology in degree p. Then we

have an isomorphism of H∗(X,Q)-modules

H∗(Y,Q) ∼= H∗(X,Q)⊗H∗(Z,Q).

v
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So in the motivic framework we ask if we can find an isomorphism

MS(Y ) ∼= MS(X)⊗MS(Z)

for a fibration π : Y → X with fibre Z, and the conditions that guarantee such

an isomorphism.

Given the conjectural nature of the categoryMMS , it can be hard to answer

this question in full generality, so we consider a special case.

If instead of considering the category Sm/S we consider the category V (k)

of smooth and projective k-schemes (where k is an algebraically closed field with

characteristic zero), the category Mk of pure motives over k can be constructed

(here we use the notationMk instead ofMSpec(k)). Moreover, since the question

we ask deals only with motives associated to objects of V (k), we can restrict

ourselves to work with a smaller category containing the image of the functor

Mk : V (k)→Mk,

namely with the category Mk of effective motives over k.

In order to construct the category Mk, we have to take into account some con-

siderations. Grothendieck’s definition of motive involves replacing the category

V (k) with a category with the same objects, but whose morphisms are corre-

spondences, modulo a suitable equivalence relation. Depending on the relation

chosen, one gets rather different theories.

It is usual to take numerical or homological equivalence, obtaining motive

categories denoted by Mnum
k and respectively by Mhom

k , but in this work we

will consider the category of motives for rational equivalence, denoted by MRat
k ,

and usually refered to as Chow motives. One reason to do this is that rational

equivalence is the finest adequate equivalence on cycles (for example, to obtain the

Chow moving lemma, see Lemma 1.2.2), so that MRat
k is in some sense universal.

In this context, denote by

h : V (k)→MRat
k

the functor assigning to each variety its Chow motive. Then we ask whether or

not we can give an isomorphism

h(Y ) ∼= h(X)⊗ h(Z), (1)

for a fibration π : Y → X with fibre Z.

As a reference on this topic we have the work of Guillet and Soulé [GS96] in

which they obtain the isomorphism (1) for a fibration locally trivial in the Zariski

topology of the base space (see also [DL98] and [GN02]). In this work, we provide

the isomorphism (1) in the case when the fibre has Chow groups satisfying certain

pairing conditions (see Theorem 4.2.4) by using more elementary techniques. As
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an example of the fibrations covered by our assumptions we have the projective,

grassmannian and flag bundles associated to a given vector bundle E over a

variety X. Our approach provides additional information about the fibration,

starting with the fact that, in order to prove Theorem 4.2.4, we first give an

explicit description of the Chow ring of such a fibration as a module over the

Chow ring of the base space (see Theorem 3.2.4). Moreover, we made explicit

the isomorphism (1), identifying in the process several strata in the motive h(Y ),

each stratum corresponding to certain decomposition of the diagonal of the fibre

(see Lemma 4.2.2 and the Remark following Theorem 4.2.4).

As a future application, we hope the additional information just described let

us answer a part of the conjectures proposed by Murre in [Mur93].

The organization of this work is as follows. In Chapter 1 we recall the basic

notions related to intersection theory and Chow rings. In Chapter 2, we recall

from [Man68] the construction of the category MRat
k . In Chapter 3 we establish

the isomorphism (3.2) for the Chow ring of the fibration and in the last chapter

we prove the isomorphism (4.9) on the category MRat
k .





Chapter 1

Preliminaries

1.1 Global intersection theory

Let k be an algebraically closed field with characteristic zero. For a variety over

k we always mean a reduced and irreducible algebraic scheme of finite type over

k. A point will always be a closed point.

In this section we consider the category V (k) of smooth projective k-schemes,

with morphisms given by the usual morphisms between schemes.

Definition 1.1.1. Let Λ be a commutative ring. A global intersection theory on

V (k) (with coefficients in Λ) consists of the following data:

a) A contravariant functor assigning to each variety X a Λ-algebra C(X).

For any morphism f : X → Y the corresponding morphism of Λ-algebras is

denoted by f∗ : C(Y ) → C(X). The identity of the ring is denoted by the

element 1X ∈ C(X).

b) A covariant functor from V (k) to the category of Λ-modules, assigning to

each X ∈ Obj(V (k)) the element C(X) considered as a Λ-module. The

morphism of Λ-modules C(X)→ C(Y ) corresponding to the morphism f :

X → Y is denoted by f∗.

c) For any X, Y ∈ V (k) we give a Λ-algebra morphism

C(X)⊗Λ C(Y )→ C(X × Y ).

The image of the element x⊗y under this mapping will be denoted by x×y.

d) For an irreducible element X ∈ V (k) we have an augmentation morphism

C(X)→ Λ.

1
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The data described should satisfy certain axioms, we list the most used in this

work in what follows, for the complete list refer to [Gro58]:

Multiplication Axiom. Let X ∈ V (k), and let δX : X → X × X be the

diagonal morphism. Then the composition morphism of Λ-algebras

C(X)⊗Λ C(X) // C(X ×X)
δ∗X // C(X)

coincides with the morphism of multiplication:

δ∗X(x× y) = xy. (1.1)

Projection Formula. Let f : X → Y be a morphism, and take x ∈
C(X), y ∈ C(Y ). Then

f∗(xf
∗(y)) = f∗(x)y. (1.2)

In the following sections we will recall the global intersection theory for pro-

jective varieties given by the Chow ring of a variety.

1.2 Chow Rings

Let X be an algebraic variety over a field k. A cycle of codimension r (r-cycle) on

X is an element of the free abelian group generated by the closed subvarieties of

X of codimension r, we denote this group by Zr(X). If Z is a closed subscheme

of codimension r let Y1, . . . , Yt be those irreducible components of Z which have

codimension r, and define the cycle associated to Z to be:

Z :=

t∑
i=1

niYi,

where ni is the length of the local ring Oξi,Z of the generic point ξi of Yi on Z.

We proceed to describe the rational equivalence for r-cycles. For any (r− 1)-

codimensional subvariety W ⊂ X and any ϕ ∈ K(W )∗ (where K(W ) denotes

the function field of the variety W ) define a r-cycle div(ϕ) ∈ Zr(X) by

div(ϕ) :=
∑

ordV (ϕ)V

the sum over all codimension one subvarieties V of W ; where ordV is the order

function on K(W )∗ defined by the local ring OV,W .

A r-cycle α is rationally equivalent to zero, written α ∼ 0, if there are a finite

number of (r − 1)-codimensional subvarieties Wi of X, and ϕi ∈ K(Wi)
∗, such

that

α =
∑

div(ϕi).

Since div(ϕ−1) = −div(ϕ), the r-cycles rationally equivalent to zero form a

subgroup Ratr(X) of Zr(X). The rth Chow group of X is the factor group

CHr(X) := Zr(X)/Ratr(X);
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we will denote by [V ] the class in CHr(X) of a variety V .

Observe that Zr(X) and consequently CHr(X) are equal to zero if r >

dim(X). Define Z∗(X) (respectively CH∗(X)) to be the direct sum of the groups

Zr(X) (respectively CHr(X)) for r = 0, . . . ,dim(X). A cycle (respectively cycle

class) is an element of Z∗(X) (respectively CH∗(X)). If α is a cycle in Z∗(X),

then α = (αr)r with αr ∈ Zr(X), we call αr the components of α.

Fulton proves in [Ful98, p. 21] that we can calculate the Chow groups of a

variety X in terms of the Chow groups of a closed subscheme and its complement,

namely we have the following.

Theorem 1.2.1. Let W be a closed subscheme of a scheme X, and let U = X\W .

Let j : W → X, i : U → X be the inclusions, and set m = codimX(W ). Then

the sequence

CHk−m(W )
j∗ // CHk(X)

i∗ // CHk(U) // 0

is exact for all k.

As a special case consider k < m. Then we have CHk(X) ∼= CHk(U).

In particular, if X is a variety and W is a proper subvariety then CH0(U) ∼=
CH0(X).

We can endow CH∗(X) with a Z-algebra structure, in order to do this we

need the following lemma, the reader can find proofs in [Che58] and [Rob72].

Lemma 1.2.2. (Chow’s moving lemma). Let X ∈ V (k) and let Y, Z be two

cycles on X. Then there is a cycle Z ′ on X, rationally equivalent to Z, such

that Y and Z ′ intersect properly. Furthermore, if Z ′′ is another such cycle, then

Y ∩ Z ′ and Y ∩ Z ′′ are rationally equivalent. �

With the notation of Lemma 1.2.2 define the multiplication of cycle classes

in CH∗(X) as:

[Y ][Z] := [Y ∩ Z ′].

With respect to this multiplication the identity is given by the class [X], we

will denote this class by 1X .

1.3 CH∗(·) as a global intersection theory

In this section we will sketch why CH∗(·) can be regarded as a global intersection

theory on V (k) with coefficients in Z. We start by recalling the definitions of the

functors involved.

Push-forward of Cycle Classes. Let f : X → Y be a morphism of

varieties, let V ⊂ X be a subvariety and let W := f(V ). Define the degree of V
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over W by:

deg(V/W ) :=

{
[K(V ) : K(W )] if dimV = dimW

0 if dimV > dimW.

The push-forward of a variety V is given by the formula

f∗(V ) := deg(V/W )W

which extends by linearity to a morphism of cycles

f∗ : Zr(X)→ Zr−n(Y ),

where n = dim(X)− dim(Y ).

We have the following Theorem, see [Ful98, p. 11].

Theorem 1.3.1. If f : X → Y is a proper morphism of varieties then the

homomorphism f∗ : Zr(X) → Zr−n(Y ) induces a well defined homomorphism

f∗ : CHr(X)→ CHr−n(Y ).

Flat Pull-back of Cycle Classes. Let f : X → Y be a flat morphism. For

any subvariety V ⊂ Y , let f∗(V ) be the cycle associated to the inverse image

scheme f−1(V ). This can be extended by linearity to a pull-back morphism of

r-cycles

f∗ : Zr(Y )→ Zr(X) .

The following theorem is needed, among other things, to demonstrate that we

can use the previous morphism to induce one between the corresponding Chow

groups. See [Ful98, p. 18].

Theorem 1.3.2. (Base Change) Let X,Y,X ′, Y ′ be smooth varieties and let

X ′
g′ //

f ′

��

X

f

��
Y ′ g

// Y

be a fibre square, with g flat and f proper. Then g′ is flat, f ′ is proper and for

all α ∈ Z∗(X),

(f ′∗ ◦ g′∗)(α) = (g∗ ◦ f∗)(α)

in Z∗(Y ′).

We also have (see for example [Ful98, p. 19]).

Theorem 1.3.3. Let f : X → Y be a flat morphism and α ∈ Zr(Y ) be such that

α ∼ 0. Then f∗(α) ∼ 0, and therefore we have a well defined morphism

f∗ : CHr(Y )→ CHr(X).
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Sketching the proof of some properties. Let ZMod denote the category

of left Z-modules and consider the assignations given by

V (k) // ZMod

X
� // CH∗(X)

f � // f∗

.

In order to verify that this is a functor, it is enough to show that

(f ◦ g)∗ = f∗ ◦ g∗ (1.3)

for any two morphisms of varieties f : Y → Z and g : X → Y . Now, let V ⊂ X

be a subvariety and let V ′ = g(V ), V ′′ = f(V ′). Then we have the equality

deg(V/V ′′) = deg(V/V ′) deg(V ′/V ′′);

this follows from the multiplicative formula of the degree of a tower of field

extensions (see Proposition 1.20 in [Mor96]). Now, keeping the notation for V ,

V ′ and V ′′ we have that

(f∗ ◦ g∗)([V ]) = f∗(deg(V/V ′)[V ′])

= deg(V/V ′) deg(V ′/V ′′)[V ′′]

= deg(V/V ′′)[V ′′]

= (f ◦ g)∗([V ]),

therefore equality (1.3) follows from the fact that the classes [V] where V is a

subvariety of X generate the group CH∗(X).

Now we will see that the pull-back of morphisms can be used to define a con-

travariant functor from the category V (k) to the category of Z-algebras (denoted

by ZAlg). Consider the assignations

V (k)op // ZAlg

X
� // CH∗(X)

f � // f∗

We will show that

(f ◦ g)∗ = g∗ ◦ f∗. (1.4)



6 CHAPTER 1. PRELIMINARIES

for any two morphisms f : Y → Z, g : X → Y .

If V ⊂ Z is a subvariety then

(f ◦ g)∗([V ]) = [(f ◦ g)−1(V )] = [g−1(f−1(V ))] = g∗([f−1(V )]) = (g∗ ◦ f∗)([V ]).

Again, identity (1.4) follows from the fact the cycle classes [V ] where V is a

subvariety of Z generate CH∗(Z).

The verification of the conditions asked for this pair of functors to define

a global intersection theory requires several results, so we provide references to

their proofs, formula (1.1) as well as the projection formula (1.2) can be found

in Remark 8.3 and Theorem 8.3.(c) in [Ful98, p. 140] respectively.

Finally, the augmentation morphism ε for an irreducible variety X is such

that

ε(CH i(X)) = 0 for i > 0,

and

ε : CH0(X) // Z

d · 1X // d.



Chapter 2

Correspondences and Motives

In this chapter we consider a global intersection theory (see Definition 1.1.1) with

coefficients in a ring Λ and develop the tools needed for the construction of the

category of effective motives.

2.1 The Category of Correspondences

Let k be an algebraically closed field with characteristic zero, and let C be a

global intersection theory on the category of smooth projective varieties V (k).

Definition 2.1.1. A C-correspondence between the varieties X, Y ∈ V (k) is

any element of the ring C(X × Y ).

Given correspondences f ∈ C(X × Y ) and g ∈ C(Y × Z), the composition of

f and g is given by the formula

g ◦ f := p13∗
(
p∗12(f) · p∗23(g)

)
∈ C(X × Z),

where the morphism pij is the projection in the ij-factor:

X × Y × Z
p12

wwppppppppppp
p23

&&NNNNNNNNNNN

p13

��

X × Y Y × Z

X × Z .

If the choice of the intersection theory C is clear, we will refer to the C-

correspondences simply as correspondences.

7
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Lemma 2.1.2.

a) Let ∆X = δX∗(1X) ∈ C(X × X) be the diagonal class. Then for any

correspondences f ∈ C(X × Y ), g ∈ C(Y ×X) we have

f ◦∆X = f, ∆X ◦ g = g.

b) The composition of correspondences is associative.

Proof.

a) We will prove the equality

f ◦∆X = f.

We have

p∗12(∆X) = ∆X × 1Y = (δX × idY )∗(1X×Y ) .

Also, we have the commutative diagram

X × Y

X × Y
δX×idY//

idX×Y 22

idX×Y ,,

X ×X × Y
p23

��

p13

OO

X × Y .

So, by the projection formula(
(δX × idY )∗(1X×Y )

)
· p∗23(f) = (δX × idY )∗

(
1X×Y ·

(
(δX × idY )∗(p∗23(f))

))
= (δX × idY )∗((idX×Y )∗(f))

= (δX × idY )∗(f).

The morphisms involved in the composition f ◦∆X can be displayed in this

diagram:

C(X ×X × Y )

p13∗

��

∆X ∈ C(X ×X)

p∗12
55kkkkkkkkkkkkkk

f ∈ C(X × Y )

p∗23
iiRRRRRRRRRRRRR

C(X × Y ) .
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Now, by definition

f ◦∆X = p13∗

(
p∗12(∆X) · p∗23(f)

)
= p13∗((δX × idY )∗(f))

= (idX×Y )∗(f)

= idC(X×Y )(f)

= f .

The proof of the equality ∆X ◦ g = g is similar.

b) The verification of this part can be done by a direct calculation of the

compositions involved. �

Now, we have at our disposal the ingredients that are needed in the following

definition.

Definition 2.1.3. The category of C-correspondences, denoted by CV (k), is de-

fined by the following data:

a) ObjCV (k) = ObjV (k).

b) For any two objects X, Y of CV (k),

HomCV (k)(X,Y ) := C(X × Y ).

c) The composition of morphisms in CV (k) is given by the composition of

correspondences.

For each morphism of V (k) we have a morphism going in the opposite direc-

tion in the category of correspondences. In order to see this, let ϕ : Y → X be a

morphism of V (k). Following Manin’s convention (see [Man68, p. 446]) we will

define its graph as the morphism

Γϕ := (ϕ× idY ) ◦ δY : Y
δY // Y × Y

ϕ×idY // X × Y.

Observe that this lets us define a push-forward morphism

Γϕ∗ : C(Y )→ C(X × Y );

in this way, if we denote by 1Y the identity of the ring C(Y ) we can define the

following.

Definition 2.1.4. If ϕ : Y → X is a morphism of V (k), define

c(ϕ) := Γϕ∗(1Y ) ∈ HomCV (k)(X,Y ).
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Theorem 2.1.5. The assignation

X ///o/o/o X, ϕ ///o/o/o c(ϕ)

defines a contravariant functor from V (k) to CV (k).

Proof. We see that if we have a sequence of morphisms

Z
ϕ // Y

ψ // X

in V (k), then c(ψ◦ϕ) = c(ϕ)◦c(ψ). We have the following commutative diagram

Z
Γϕ //

Γψ◦ϕ **UUUUUUUUUUUUUUUUUUUUU Y × Z
Γψ×idZ// X × Y × Z

p13
��

X × Z

from which it follows

c(ψ ◦ ϕ) = p13∗ ((Γψ × idZ)∗(Γϕ∗(1Z))) .

On the other hand, by definition we have

c(ϕ) ◦ c(ψ) = p13∗
(
(1X × Γϕ∗(1Z)) · (Γψ∗(1Y )× 1Z)

)
,

therefore it is be enough to see that

(1X × Γϕ∗(1Z)) · (Γψ∗(1Y )× 1Z) = (Γψ × idZ)∗(Γϕ∗(1Z)) .

By the projection formula:(
1X×Γϕ∗(1Z)

)
·
(

(Γψ×idZ)∗(1Y×Z)

)
= (Γψ×idZ)∗

(
(Γψ×idZ)∗

(
1X×Γϕ∗(1Z)

))
,

but

(Γψ × idZ)∗
(
1X × Γϕ∗(1Z)

)
= (Γψ × idZ)∗

(
p∗23(Γϕ∗(1Z))

)
,

and since p23 ◦ (Γψ × idZ) = idY×Z we have that

(Γψ × idZ)∗
(
p∗23(Γϕ∗(1Z))

)
= Γϕ∗(1Z) .

Therefore,

(
1X × Γϕ∗(1Z)

)
·
(
Γψ∗(1Y )× 1Z

)
=

(
1X × Γϕ∗(1Z)

)
·
(

(Γψ × idZ)∗(1Y×Z)

)
= (Γψ × idZ)∗(Γϕ∗(1Z)). �

This result lets us replace the category V (k) with an additive category. To

be more precise, the category CV (k) is Λ-additive: all the groups of morphisms
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HomCV (k)(X,Y ) are Λ-modules and the composition is Λ-linear with respect to

all of its arguments.

For any correspondence f ∈ HomCV (k)(X,Y ) we will denote by f t the image

of f under the morphism permuting the factors

C(X × Y )→ C(Y ×X).

We have (f ◦ g)t = gt ◦ f t, in this way we see that CV (k) is equivalent to its

opposite category.

Moreover, we have the following:

a) X ⊕ Y := X q Y , with morphisms given by c(iX)t, c(iY )t where

X
iX // X q Y

Y
iY // X q Y

are the canonical inclusions.

b) Let fi ∈ HomCV (k)(Xi, Yi), i = 1, 2. Define

f1⊕f2 := c(iY1)t◦f1◦c(iX1)+c(iY2)t◦f2◦c(iX2) ∈ HomCV (k)(X1⊕X2, Y1⊕Y2),

c) X ⊗ Y := X × Y .

d) Let fi ∈ HomCV (k)(Xi, Yi), i = 1, 2. Define

f1 ⊗ f2 := s23∗(p
∗
13(f1)p∗34(f2)) ∈ HomCV (k)(X1 ⊗X2, Y1 ⊗ Y2),

where s23 is the morphism interchanging the second and third factors:

s23 : X1 × Y1 ×X2 × Y2 → X1 ×X2 × Y1 × Y2.

From the definition we have the following equality:

(f1 ⊗ f2) ◦ (g1 ⊗ g2) = (f1 ◦ g1)⊗ (f2 ◦ g2).

2.2 Functorial Properties of Correspondences.

A reference for the properties listed in this section can be found in [Man68].

Let T, X ∈ Obj(CV (k)) and let X(T ) := HomCV (k)(T,X) (in some literature

X(T ) is denoted by hX(T )).

If f ∈ HomCV (k)(Y,X) and T ∈ Obj(CV (k)), we can define the natural

homomorphism of modules of T -points fT : Y (T ) → X(T ) by setting fT (g) :=

f ◦ g for each element g ∈ Y (T ).
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It is useful to consider the following special case. We put T = e = Spec(k),

and g ∈ Y (T ) = C(e× Y ) = C(Y ). Then fe(g) = p2∗(fp
∗
1(g)), where p1, p2 are

the projections given in the following diagram

Y ×X
p1

{{wwwwwwwww
p2

##HHHHHHHHH

Y X.

We can construct another morphism between the same target and source as

fT . In order to do this observe that every correspondence f ∈ HomCV (k)(Y,X)

defines a correspondence

∆T ⊗ f ∈ HomCV (k)(T ⊗ Y, T ⊗X),

and a morphism of Λ-modules

(∆T ⊗ f)e : (T ⊗ Y )(e)→ (T ⊗X)(e),

where (T ⊗ Y )(e) = C(T × Y ) = Y (T ) and (T ⊗X)(e) = C(T ×X) = X(T ).

We show that both morphisms coincide.

Lemma 2.2.1. fT = (∆T ⊗ f)e.

Proof. Let g ∈ Y (T ) and consider the commutative diagram

T × Y

Y ×X T × Y ×X
p23oo

δT×idY×X
//

p12
66lllllllllllll

p13 ((RRRRRRRRRRRRR T × T × Y ×X s23 // T × Y × T ×X

p34uukkkkkkkkkkkkkkk

p′12
iiSSSSSSSSSSSSSSS

T ×X .

By definition

fT (g) = f ◦ g = p13∗(p
∗
12(g) · p∗23(f)),

(∆T ⊗ f)e(g) = p34∗

(
(∆T ⊗ f) · p′∗12(g)

)
.

By applying the projection formula, we see that(
s23∗(δT × idY×X)∗(1X × f)

)
· p′∗12(g)

= s23∗(δT × idY×X)∗

(
(1X × f) ·

(
(δT × idY×X)∗s∗23p

′∗
12(g)

))
and since

p34s23(δT × idY×X) = p13, p′12s23(δT × idY×X) = p12,
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we see that

p34∗

(
(∆T ⊗ f) · p′∗12(g)

)
= p34∗

((
s23∗(δT × idY×X)∗(1X × f)

)
· p′∗12(g)

)
= p34∗s23∗(δT × idY×X)∗

(
(1X × f) ·

(
(δT × idY×X)∗s∗23p

′∗
12(g)

))
= p13∗ ((1X × f) · p∗12(g)) = p13∗ (p∗12(g) · p∗23(f)) ,

which proves the desired equality. �

Definition 2.2.2. We say that the homomorphism h : C(X) → C(Y ) of Λ-

modules is represented by the correspondence f ∈ HomCV (k)(X,Y ) if h = fe.

We show that, given a morphism on V (k) ϕ : X → Y , the homomorphisms

ϕ∗ and ϕ∗ can be represented by correspondences. The homomorphism mα :

C(X) → C(X) of multiplication by any element α of the ring C(X) can be

represented by the correspondence cα := δX∗(α).

Lemma 2.2.3. Let ϕ : X → Y be a morphism on V (k), α ∈ C(X). Then

a) c(ϕ)e = ϕ∗,

b) c(ϕ)te = ϕ∗,

c) (cα)e = mα.

Proof. Consider the projections

Y ×X
p1

{{wwwwwwwww
p2

##HHHHHHHHH

Y X.

and observe that we have the identities:

p1Γϕ = ϕ and p2Γϕ = idX .

Now, if y ∈ C(Y ) we have that

c(ϕ)e(y) = p2∗ (Γϕ∗(1X)p∗1(y)) = p2∗Γϕ∗
(
1XΓ∗ϕp

∗
1(y)

)
= ϕ∗(y).

In a similar way, if x ∈ C(X) then

c(ϕ)te(x) = p2∗
(
Γϕ∗(1X)tp∗1(x)

)
= p1∗Γϕ∗(1XΓ∗ϕp

∗
2(x)) = ϕ∗(x).

Finally, if x ∈ C(X), since p2δX = p1δX = idX we have that

(cα)e(x) = p2∗(δX∗(α)p∗1(x)) = p2∗δX∗(αδ
∗
Xp
∗
1(x)) = mα(x),

so we have shown all the desired equalities. �

In order to improve the previous Lemma, we need to establish the following

identities.
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Lemma 2.2.4. Let ϕ : X → Y be a morphism of varieties. Then for any variety

T , and every element α ∈ C(X) we have the following equalities

a) ∆T ⊗ c(ϕ) = c(idT × ϕ),

b) ∆T ⊗ c(ϕ)t = c(idT × ϕ)t,

c) ∆T ⊗ cα = c1T×α.

Proof. We only prove the first equality since all of them can be easily derived

from the definitions. We have a commutative diagram

T ×X
δT×ϕ //

ΓidT×ϕ ((PPPPPPPPPPPP T × T × Y ×X
s23

��
T × Y × T ×X

from which we obtain the following equalities

c(idT × ϕ) = Γ(idT×ϕ)∗(1T×X) = (s23(δT × Γϕ))∗(1T×X)

= s23∗(δT∗(1T )× Γϕ∗(1X)) = s23∗(∆T × c(ϕ)) = ∆T ⊗ c(ϕ).

The remaining identities can be derived in a similar way. �

From Lemmas 2.2.1, 2.2.3 and 2.2.4 we have the following corollary.

Corollary 2.2.5. For any morphism ϕ : X → Y , any T ∈ Obj(V (k)) and any

element α ∈ C(X) we have

a) c(ϕ)T = (idT × ϕ)∗,

b) c(ϕ)tT = (idT × ϕ)∗,

c) (cα)T = m1T×α.

Proof. For equality a) observe that

c(ϕ)T = (∆T ⊗ c(ϕ))e Lemma 2.2.1

= c(idT × ϕ)e Lemma 2.2.4

= (idT × ϕ)∗ Lemma 2.2.3

The remaining cases can be obtained analogously. �

Now, we recall some useful facts from category theory, see for example [Mac98].

Let C be a small category and let X ∈ Obj(C). Denote by Sets the category of
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sets. We can construct a contravariant functor:

hX : C // Sets

T
� // MorC(T,X)

f � // hX(f)

where hX(f)(g) = g◦f . Yoneda’s Lemma (see [Mac98, p. 61]) relates an arbitrary

covariant functor F : C→ Sets with a functor hX in the following way.

Theorem 2.2.6. Yoneda’s Lemma. Let C be a small category and assume

that F : C → Sets is a contravariant functor. Let X be an object of C and let

Nat(hX , F ) be the set of natural transformations from hX to F . Then there is a

bijection

Nat(hX , F ) // F (X)

Φ
� // ΦX(idX).

The inverse assignation is given by

F (X) // Nat(hX , F )

a � // Φa

where Φa,T (g) = F (g)(a) for any T ∈ Obj(C) and any g ∈ hX(T ). �

As a consequence of Yoneda’s Lemma consider the case when the functor F

is a functor of points for some Y ∈ Obj(C). Then there is a bijection

MorC(X,Y ) = hY (X) ∼= Nat(hX , hY ).

We rewrite this bijection in the context of the category of correspondences.

The assignation

HomCV (k)(X,Y ) // Nat(hX , hY )

f � // Φf

is such that

Φf,T (g) = hY (g)(f) = f ◦ g = fT (g).

This has the following consequence.
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Corollary 2.2.7. Let D be a diagram of objects and morphisms from the category

CV (k). Furthermore, let I be

I =
r∑
i=1

aifi,

where ai ∈ Λ and fi are some correspondences between the objects of the diagram

D. For T ∈ Obj(V (k)), let IT be

IT =

r∑
i=1

ai(fi)T .

Then I = 0 if and only if IT = 0 for all T ∈ Obj(V (k)). �

Suppose we have a diagram D of objects and morphisms of the category V (k),

and let J be

J =
r∑
i=1

aiFi,

where ai ∈ Λ and every homomorphism Fi is a composition of a finite number of

homomorphisms of the form ϕ∗, ϕ∗, mα for α ∈ C(X), X ∈ Obj(D), ϕ ∈ Mor(D).

For any T ∈ Obj(V (k)) we denote by T × J the identity obtained from J by

changing all the objects X by T ×X, all the morphisms ϕ by idT ×ϕ and all the

morphisms mα by m1T×α.

In a similar way, denote by c(J) the identity obtained from J by changing all

the morphisms ϕ∗ by c(ϕ), all the morphisms ϕ∗ by c(ϕ)t and all the morphisms

mα by cα.

The following result will be used exhaustively in Chapter 4.

Theorem 2.2.8. Manin’s Identity Principle ([Man68, p.450]). Let J be as

before. The following two assertions are equivalent.

a) T × J = 0 for all T ∈ Obj(V (k)).

b) c(J) = 0.

Proof.

T × J = 0 ∀ T ksCor.2.2.5+3 c(J)T = 0 ∀ T ksCor.2.2.7+3 c(J) = 0.�

2.3 Graded Correspondences.

In this section we will assume that the intersection theory C being considered is a

functor taking its values in the category of commutative and positively graded Λ-

algebras, moreover, for any X ∈ Obj(V (k)) we suppose Ci(X) = 0 for i > dimX.

We will impose the following conditions for the grading:
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a) The morphisms ϕ∗ are homogeneous with degree zero.

b) If X, Y ∈ Obj(V (k)) have pure dimension n and m respectively then for

any morphism ϕ : X → Y the morphism of graded rings ϕ∗ : C(X)→ C(Y )

is homogeneous of degree m− n.

c) C(X)⊗Λ C(Y )→ C(X × Y ) is a homogeneous morphism of degree zero.

d) For any irreducible variety X the augmentation morphism ε : C(X) → Λ

sends Ci(X), i ≥ 1, to zero and induces an isomorphism between C0(X)

and Λ.

We will show that the groups of morphisms in the category of C-correspondences

also have a natural grading.

For each X, Y ∈ Obj(CV (k)), with X having pure dimension n, define

Homi(X,Y ) := Ci+n(X × Y ).

We will call the elements of Homi(X,Y ) homogeneous correspondences of

degree i. In the general case we decompose X as a union of equidimensional

components and define the degree corresponding to each component. We will

assume both X and Y irreducibles. Observe that the degree of a correspondence

can be negative.

Lemma 2.3.1. The degree of a composition of correspondences equals the sum

of the degrees of the correspondences involved.

Proof. Let n = dimX, m = dimY , f ∈ Homi(X,Y ), g ∈ Homj(Y,Z). We have

p∗12C
i+n(X × Y ) ⊂ Ci+n(X × Y × Z)

p∗23C
j+m(Y × Z) ⊂ Cj+m(X × Y × Z)

In this way p∗12(f)p∗23(g) ∈ Ci+j+n+m(X × Y × Z). Moreover,

p13∗C
i+j+n+m(X × Y × Z) ⊂ Ci+j+n+m+dimX×Z−dimX×Y×Z(X × Z)

= Ci+j+n(X × Z)

= Homi+j(X,Z) .

Therefore, g ◦ f = p13∗(p
∗
12(f)p∗23(g)) ∈ Homi+j(X,Z). �

Examples.

1. Let ϕ : X → Y be a morphism, where X, Y ∈ Obj(V (k)). Then the

degree of c(ϕ) is zero and the degree of c(ϕ)t is m − n. In fact, c(ϕ) =

Γϕ∗(1X) and Γϕ∗C
0(X) ⊂ C0+(m+n)−n(Y × X) = Hom0(Y,X). On the

other hand, c(ϕ)t = s∗(c(ϕ)), where s : Y ×X → X × Y is the morphism

permuting the factors; in this way, s∗C
m(Y ×X) ⊂ Cm+(n+m)−(m+n)(X ×

Y ) = C(m−n)+n(X × Y ) = Homm−n(X,Y ).
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2. Let x ∈ Ci(X). Then the degree of cx = δX∗(x) is i. In particular, ∆X =

δX∗(1X) is of degree zero.

Since the identity correspondence has degree zero, we can consider a new

category CV 0(k), whose objects are the objects of CV (k) and the morphisms are

given by the correspondences of degree zero.

As well as CV (k), the category CV 0(k) is not abelian, for example, there

are projectors which do not correspond to a decomposition of an object as a

direct sum. Karoubi introduced, in the context of Banach categories, the idea of

formally adding the kernels and images of all projectors. Grothendieck adapted

this construction to the category of correspondences, obtaining the category of

effective motives. We give a brief explanation of Karoubi’s construction in the

next section.

2.4 Pseudo-abelian Categories.

The concepts recalled in this section can be found in §5 of [Man68].

Definition 2.4.1. An additive category D is said to be pseudo-abelian if it sat-

isfies the following condition:

(P) For any projector p ∈ Hom(X,X), X ∈ ObjD, there exists a kernel Ker p,

and the canonical morphism Ker(p)⊕Ker(idX−p)→ X is an isomorphism.

Definition 2.4.2. Let D be an additive category. Its pseudo-abelian comple-

tion (also named Karoubi envelope) is the category D̃ defined by the following

data: Obj D̃ consists of pairs (X, p), where X ∈ ObjD and p ∈ HomD(X,X) is

an arbitrary projector,

HomD̃((X, p), (Y, q)) = {f ∈ HomD(X,Y ) : fp = qf}/{f : fp = qf = 0}.

The composition of morphisms in D̃ is induced by the composition in D. We will

denote by f̃ the class of the morphism f in HomD̃((X, p), (Y, q)).

The name given to D̃ is justified by the following Lemma.

Lemma 2.4.3.

a) The category D̃ is pseudo-abelian.

b) The assignation X ///o/o/o X̃ = (X, id) , f ///o/o/o f̃ can be extended in a

unique way to a functor G : D → D̃, which is fully-faithful and possesses

the following universal property:

For each additive functor F : D→ E, where E is a pseudo-abelian category,

there exists an additive functor F̃ : D̃ → E such that the functors F and

F̃G are equivalent. �
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2.5 Chow Motives

In this section we define the category MRat
k of effective Chow motives and we

study some of its basic properties.

Let C be a graded intersection theory on V (k). The category of effective

C-motives, denoted by MC
k , is the pseudo-abelian completion of the category

CV 0(k) of C-correspondences with degree zero.

Remark . We can restrict ourselves to consider correspondences with degree

zero since all of the correspondences ∆X , where X is a variety and c(ϕ), where

ϕ is a morphism of varieties are of degree zero. It may seem that we are losing

information by doing this, but we can restore the correspondences of degree

greater than zero by tensorizing with powers of the motive (P1, 1P1 × e), where e

is a point in P1; for further details on this procedure see §8 in [Man68].

An object of MC
k will be called C-motive; if C is the global intersection

theory given by CH∗(·), we will refer to the objects of MC
k as Chow motives

and the category MC
k will be denoted by MRat

k . In particular, for a variety

X ∈ Obj(V (k)), the object h(X) := (X,∆X) ∈ Obj(MC
k ) is called the motive

associated to X. Each C-motive has a representative of the form (X, p), where

X ∈ Obj(CV (k)) = Obj(V (k)) and p ∈ Hom0
CV (k)(X,X), p2 = p.

We have a functor

h : V (k)op // MC
k

X
� // (X,∆X)

ϕ � // c̃(ϕ).

Remark . We define the direct sum of motives as well as tensor products:

a) (X, p)⊕ (Y, q) := (X ⊕ Y, p⊕ q)

b) (X, p)⊗ (Y, q) := (X ⊗ Y, p⊗ q).

Now, suppose we have morphisms pi : (X,∆X) → (X,∆X) for i = 1, ...,m

such that
m∑
i=1

pi = ∆X , (2.1)

and

pi ◦ pj = δi,jpi, (2.2)

where δi,j is a Dirac delta.
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Observe that the property (P) of Section 2.4 implies that

(X,∆X) ∼=
m⊕
i=1

(X, pi), (2.3)

therefore, we can obtain a decomposition of the motive h(X), provided we can

find a finite collection of morphisms (pi,j)
m
i=1 satisfying (2.1) and (2.2).



Chapter 3

The Chow Ring of a Locally

Trivial Fibration

In this chapter we calculate the Chow ring of a locally trivial fibration with fibres

isomorphic to a variety having a cell decomposition.

3.1 A Duality Theorem

Definition 3.1.1. Let Z be a smooth projective variety with dimension n. We say

that Z satisfies the Chow pairing conditions if for each p such that 0 ≤ p ≤ n
we can find cycle classes τp,1, ..., τp,mp ∈ CHp(Z) such that

1. CHn(Z) ∼= Zτn,1.

2. For p < n, CHp(Z) is a free Z-module with finite rank

CHp(Z) ∼=
mp⊕
i=1

Zτp,i.

3. For each p < n, we can give a perfect pairing

CHp(Z)× CHn−p(Z)→ CHn(Z) ∼= Zτn,1

satisfying

τp,i ∩ τn−p,j =

{
τn,1 if i = j

0 if i 6= j.

Definition 3.1.2. Let Z be a smooth projective variety. We say that Z has a

Chow stratification if

21
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1. Z has a cellular decomposition

Z = Zd ⊃ Zd−1 ⊃ · · · ⊃ Z0 ⊃ Z−1 = ∅

by closed subvarieties such that each Zi−Zi−1 is a disjoint union of schemes

Ui,j isomorphic to affine spaces Adi,j .

2. Z satisfies the Chow pairing conditions by taking the cycles appearing in

Definition 3.1.1 as τi,j := U i,j.

Remark . (See Example 1.9.1 in [Ful98, p. 23]). If a variety Z has a cellular

decomposition then CH∗(Z) is finitely generated as a Z-module by the cycle

classes U i,j ; therefore the variety Z will have a Chow stratification if it satisfies

conditions 1 and 3 in Definition 3.1.1.

Let π : Y → X be a locally trivial fibration with π being a proper morphism

and fibres isomorphic to a n-dimensional variety Z having a Chow stratification.

We will calculate the Chow ring of such a fibration; in order to do this we will

construct a basis of CH∗(Y ) as a CH∗(X)-module, using the basis of CH∗(Z).

Remark . For the rest of this work, by saying that π : Y → X is a locally trivial

fibration we mean that π is also a proper morphism with fibres isomorphic to a

n-dimensional variety Z.

Let U be an open subset of X for which Y becomes trivial, and W := X \U .

Let i : U → X, j : W → X, ı : Y |U → Y and  : Y |W → Y be the inclusions,

and denote by πU (resp. πW ) the restriction of π to Y |U (resp. Y |W ). Let

η : Y |U → Z be the morphism induced by the projection of U ×Z on the second

factor.

Then for each p with 0 ≤ p ≤ n we have the following diagram

CHp(Z)

η∗

��
CHp−m(Y |W )

∗ //

πW∗
��

CHp(Y )
ı∗ //

π∗
��

CHp(Y |U ) //

πU∗
��

0

CHp−n−m(W )
j∗

// CHp−n(X)
i∗

// CHp−n(U) // 0

(3.1)

where m denotes the codimension of W in X; the rows are exact by Theorem

1.2.1, the left square commute by the functoriality of the push-forward and the

right square commute by Theorem 1.3.2.

Using this diagram we then define elements Tp,i ∈ CHp(Y ) such that ı∗Tp,i =

η∗τp,i. We have the following theorem, which provides a generalization of Propo-

sition 14.6.3. in [Ful98, p. 267] .
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Theorem 3.1.3. (Duality Theorem). Let π : Y → X be a locally trivial fibration

and suppose the fibre Z satisfies the Chow pairing conditions. Then for any p, q

satisfying p+ q ≤ n and any α ∈ CH∗(X):

π∗(π
∗(α) ∩ Tp,i ∩ Tq,j) =

{
α if (q, j) = (n− p, i)
0 otherwise

Proof. By the projection formula

π∗(π
∗(α) ∩ Tp,i ∩ Tq,j) = α ∩ π∗(Tp,i ∩ Tq,j),

so it is enough to calculate π∗(Tp,i ∩ Tq,j). Observe that

π∗(Tp,i ∩ Tq,j) ∈ CHp+q−n(X),

and therefore π∗(Tp,i ∩ Tq,j) = 0 if p + q < n. From now on we will suppose

q = n− p. In this case, by (3.1) we see that CH0(X) ∼= CH0(U).

Since the right square in (3.1) commutes

i∗π∗(Tp,i ∩ Tq,j) = πU∗ı
∗(Tp,i ∩ Tq,j).

Then

ı∗(Tp,i ∩ Tq,j) = ı∗(Tp,i) ∩ ı∗(Tq,j) = η∗(τp,i) ∩ η∗(τq,j) = η∗(τp,i ∩ τq,j).

Now, if j = i then τp,i ∩ τq,j = τn,1 and then

ı∗(Tp,i ∩ Tq,j) = η∗(τn,1) = 1U × τn,1,

but τn,1 is the class of a point in Z, therefore we have

i∗π∗(Tp,i ∩ Tq,j) = πU∗(1U × τn,1) = 1U .

So, being i∗ injective for CH0(X), we have π∗(Tp,i ∩ Tq,j) = 1X if j = i, and

therefore in this case

π∗(π
∗(α) ∩ Tp,i ∩ Tq,j) = α .

Now, suppose j 6= i, so we have τp,i ∩ τq,j = 0 and then

ı∗(Tp,i ∩ Tq,j) = η∗(0) = 0,

as a consequence

i∗π∗(Tp,i ∩ Tq,j) = πU∗ı
∗(Tp,i ∩ Tq,j) = 0

and since i∗ is injective for CH0(X)

π∗(Tp,i ∩ Tq,j) = 0

from which we conclude

π∗(π
∗(α) ∩ Tp,i ∩ Tq,j) = 0

for j 6= i. �
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3.2 The Chow ring of a locally trivial fibration

As a consequence of the Duality Theorem of the last section we have the following.

Corollary 3.2.1. Let π : Y → X be a locally trivial fibration as in Theorem

3.1.3. Then the morphism of groups

ϕ :

p⊕
i=0

mi⊕
j=1

CHp−i(X)⊗ Zτi,j → CHp(Y )

(αi,j ⊗ τi,j)i,j 7→
p∑
i=0

mi∑
j=1

π∗(αi,j) ∩ Ti,j

is injective.

Proof. Let (αi,j ⊗ τi,j)i,j ∈ kerϕ, so it satisfies the equation∑
i,j

π∗(αi,j) ∩ Ti,j = 0.

Suppose we have (αi,j ⊗ τi,j)i,j 6= 0 and let (k, l) be the (lexicographically)

greatest index such that αk,l 6= 0. Multiplying the last equality by Tn−k,l and

then applying π∗ we obtain

0 = π∗

(∑
π∗(αi,j) ∩ Ti,j ∩ Tn−k,l

)
=
∑

π∗(π
∗(αi,j) ∩ Ti,j ∩ Tn−k,l) = αk,l

which yields a contradiction. Therefore, kerϕ = 0 and ϕ is injective. �

Remark . The group
p⊕
i=0

mi⊕
j=1

CHp−i(X)⊗ Zτi,j

is isomorphic to the p-graded part of the graded ring CH∗(X)⊗CH∗(Z). In fact

p⊕
i=0

CHp−i(X)⊗ CH i(Z) ∼=
p⊕
i=0

CHp−i(X)⊗

 mi⊕
j=1

Zτi,j


∼=

p⊕
i=0

mi⊕
j=1

CHp−i(X)⊗ Zτi,j .

In this way, Corollary 3.2.1 can be restated as follows.

Corollary 3.2.2. Let π : Y → X be a fibration as in Corollary 3.2.1. Then

CH∗(X)⊗ CH∗(Z) is a CH∗(X)-submodule of CH∗(Y ). �

Now, we center our attention on deciding when the morphism defined in

Corollary 3.2.1 is surjective. In order to answer this question we require an

additional condition, namely we require a Chow stratification in the fibre.
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Lemma 3.2.3. If Z has a Chow stratification, then for any variety X we have

CH∗(X × Z) ∼= CH∗(X)⊗ CH∗(Z).

Proof. Notice that, in this case, the morphism from Corollary 3.2.1 can be written

as

ϕ :

p⊕
i=0

CHp−i(X)⊗ CH i(Z) → CHp(X × Z)

(αi ⊗ βi)i 7→
p∑
i=0

π∗X(αi) ∩ π∗Z(βi)

where πX , πZ are the projections from X × Z to X and Z respectively, and

therefore this morphism is injective. Moreover, we have the equality

∑
i

π∗X(αi) ∩ π∗Z(βi) =
∑
i

αi × βi .

In this way, proceeding as in Example 1.10.2 from [Ful98, p. 25] we obtain the

surjectivity. �

To conclude this chapter, we present the following Theorem.

Theorem 3.2.4. Let π : Y → X be a locally trivial fibration and suppose that

the fibre Z has a Chow stratification. Then we have an isomorphism of CH∗(X)-

modules

CH∗(Y ) ∼= CH∗(X)⊗ CH∗(Z). (3.2)

Moreover, the isomorphism is induced by the morphism described in Corollary

3.2.1.

Proof. We only have to show that the morphism defined in Corollary 3.2.1 is

surjective. In order to do this, we proceed by induction on the dimension of the

base space X.

For dimX = 0 the result is trivial.

Now, suppose dimX > 0, let U ⊂ X be an open set such that Y becomes
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trivial on U , and set W = X \ U , m = codimX(W ). We have a diagram

p−m⊕
i=0

mi⊕
j=1

CHp−m−i(W )⊗ Zτi,j
g′ //

h′

��

CHp−m(Y |W ) //

f ′

��

0

p⊕
i=0

mi⊕
j=1

CHp−i(X)⊗ Zτi,j
ϕ //

h
��

CHp(Y )

f

��p⊕
i=0

CHp−i(U)⊗ CH i(Z)
g //

��

CHp(U × Z)

��

// 0

0 0

(3.3)

where the first row is exact by induction hypothesis since dimW < dimX, the

last row is given by Lemma 3.2.3 and the left column is obtained factor by factor

by tensorizing the corresponding exact sequences obtained from the localization

theorem.

Choose an element β ∈ CHp(Y ) and set α1 := f(β). Define elements α2, α3

satisfying g(α2) = α1 and h(α3) = α2. Then

f(ϕ(α3)) = g(h(α3)) = g(α2) = α1 = f(β)

and therefore β − ϕ(α3) ∈ Ker f = Im f ′, so we can write β − ϕ(α3) = f ′(α4) for

some α4. Finally define α5 as an element satisfying that g′(α5) = α4. Then

ϕ(α3 + h′(α5)) = ϕ(α3) + f ′(g′(α5)) = β

and we have that ϕ is surjective. �



Chapter 4

The Chow Motive of a Locally

Trivial Fibration

In this chapter we calculate the Chow Motive of a locally trivial fibration of the

form described in the last chapter. In order to do this we follow the ideas given by

Manin in [Man68] to calculate the Chow motive of a projective bundle associated

to a given vector bundle, and Köck in [Köc91] who generalized the construction

of Manin for grassmannian bundles.

4.1 The decomposition of the diagonal

We keep the notation introduced in Chapter 3. We will define correspondences

pi,j ∈ Hom(Y, Y ) using the isomorphism described in Corollary 3.2.1. In order to

do this, consider the sets

Wi,j = {(i, l)|j < l ≤ mi} ∪ {(k, l)|k > i, 1 ≤ l ≤ mk}.

Observe that we have an ordering:

W1,1 ⊃W1,2 ⊃ · · · ⊃W1,m1 ⊃W2,1 ⊃ · · · ⊃Wn,mn−1 ⊃ ∅

so we can use this to define the correspondences pi,j by a downward induction,

starting with

pn,mn = cTn,mn ◦ c(π) ◦ c(π)t ◦ cT0,mn
and in the general case by writing

pi,j = cTi,j ◦ c(π) ◦ c(π)t ◦ cTn−i,j ◦

∆Y −
∑

(k,l)∈Wi,j

pk,l

 . (4.1)

27



28 CHAPTER 4. THE CHOW MOTIVE OF A LOCALLY TRIVIAL FIBRATION

We will show that the correspondences just defined have degree zero and

satisfy the identities: ∑
i,j

pi,j = ∆Y

pi,j ◦ pk,l = δ
(k,l)
(i,j)pi,j

where δ
(k,l)
(i,j) denotes a Dirac delta.

Let e := Spec(k). First, we have to study the morphisms

(pi,j)e : CH∗(Y )→ CH∗(Y ) .

Now, since (pi,j)e(CH
p(Y )) ⊂ CHp(Y ) we can restrict our calculations to

each graded part of the Chow ring of Y .

From Theorem 3.2.4, any element from CHp(Y ) can be written as

p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

for some αr,s ∈ CHp−r(X). We have the following lemma.

Lemma 4.1.1.

(pi,j)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)
=

{
π∗(αi,j) ∩ Ti,j if i ≤ p

0 if i > p �

Assume Lemma 4.1.1. Then

n∑
i=0

mi∑
j=1

(pi,j)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)
=

p∑
i=0

mi∑
j=1

π∗(αi,j) ∩ Ti,j .

So, we have that
∑
i,j

(pi,j)e|CHp(Y ) = idCHp(Y ), and therefore

∑
i,j

(pi,j)e = idCH∗(Y ) = (∆Y )e . (4.2)

Another consequence of Lemma 4.1.1, is that

(pi,j)e ◦ (pk,l)e = δ
(k,l)
(i,j) (pi,j)e . (4.3)

In fact:

(pi,j)e ◦ (pk,l)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)
= (pi,j)e (π∗(αk,l) ∩ Tk,l)
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but

(pi,j)e (π∗(αk,l) ∩ Tk,l) =

{
π∗(αi,j) ∩ Ti,j if (i, j) = (k, l)

0 if (i, j) 6= (k, l)

which gives us the desired result.

Now, we give the proof of Lemma 4.1.1.

Proof of Lemma 4.1.1

We use a downward induction. First, observe that

(pn,mn)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)

= mTn,mn

(
π∗

(
π∗

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s ∩ T0,mn

)))

=

p∑
r=0

mr∑
s=1

mTn,mn (π∗ (π∗ (π∗(αr,s) ∩ Tr,s ∩ T0,mn)))

Now, by using Theorem 3.1.3, last expression becomes

mTn,mn (π∗(αn,mn)) = π∗(αn,mn) ∩ Tn,mn ,

so we have verified the Lemma in this case.

Now, in order to prove the general case, consider the sets

Mi,j := {(k, l) | k < i} ∪ {(i, l) | l ≤ j}.

Then, by applying the induction hypothesis:

(∆Y )e −
∑

(k,l)∈Wi,j

(pk,l)e

( p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)

=

p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s −
∑

(k,l)∈Wi,j

π∗(αk,l) ∩ Tk,l

=
∑

(r,s)∈Mi,j

π∗(αr,s) ∩ Tr,s

and so
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(pi,j)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)

= mTi,j

π∗
π∗

 ∑
(r,s)∈Mi,j

π∗(αr,s) ∩ Tr,s ∩ Tn−i,j


=

∑
(r,s)∈Mi,j

mTi,j (π∗ (π∗ (π∗(αr,s) ∩ Tr,s ∩ Tn−i,j))) .

If (r, s) ∈ Mi,j then r ≤ i, and therefore r + n − i ≤ n; then applying Theorem

3.1.3 we obtain

π∗ (π∗(αr,s) ∩ Tr,s ∩ Tn−i,j) =

{
αi,j if (r, s) = (i, j)

0 otherwise
.

In this way we can write

(pi,j)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)
= mTi,j (π

∗(αi,j)) = π∗(αi,j) ∩ Ti,j

as desired. �

The next result gives us a decomposition of the diagonal ∆Y of the fibration into

a sum of pairwise orthogonal projectors.

Theorem 4.1.2. Let pi,j be the correspondences defined before. Then we have

the following:

1. The correspondences pi,j are of degree zero.

2.
∑
i,j

pi,j = ∆Y

3. pi,j ◦ pk,l = δ
(k,l)
(i,j)pi,j

Proof. The first affirmation is clear from the definition of the correspondences

pi,j . In order to prove the remaining assertions we will use Manin’s Identity

Principle 2.2.8.

Define morphisms ρi,j : CH∗(Y )→ CH∗(Y ) by a downward induction:

ρi,j := mTi,j ◦ π∗ ◦ π∗ ◦mTn−i,j ◦

idCH∗(Y ) −
∑

(k,l)∈Wi,j

ρk,l

 ,

and for a variety T , denote by ρTi,j the morphism:

ρTi,j := m1T×Ti,j◦(idT×π)∗◦(idT×π)∗◦m1T×Tn−i,j◦

idCH∗(T×Y ) −
∑

(k,l)∈Wi,j

ρTk,l

 .
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Manin’s Identity Principle asserts that identities 2 and 3 of Theorem 4.1.2

hold if and only if the identities∑
i,j

ρTi,j = idCH∗(T×Y ) (4.4)

and

ρTi,j ◦ ρTk,l = δ
(k,l)
(i,j)ρ

T
i,j (4.5)

hold for every variety T .

Now if

pTi,j = c1T×Ti,j ◦ c(idT × π) ◦ c(idT × π)t ◦ c1T×Tn−i,j ◦

∆T×Y −
∑

(k,l)∈Wi,j

pTk,l


then

(pTi,j)e = ρTi,j .

Equation (4.2) shows that, if e denotes the variety consisting of a single point,

then we have ∑
i,j

ρi,j =
∑
i,j

(pi,j)e = (∆Y )e = idCH∗(Y ),

and, by equation (4.3)

ρi,j ◦ ρk,l = (pi,j)e ◦ (pk,l)e = δ
(k,l)
(i,j) (pi,j)e = δ

(k,l)
(i,j)ρi,j .

But these identities were proved for a locally trivial fibration π : Y → X

satisfying the hypothesis of Theorem 3.2.4, and the locally trivial fibration

idT × π : T × Y → T ×X

satisfy such hypotheses. In order to see this, we only have to show that the

elements 1T ×Ti,j generate the Chow ring CH∗(T×Y ) as a CH∗(T×X)-module.

Since (T × Y )|T×U = T × Y |U ∼= (T × U)× Z, by (3.1) we have the diagram

CHp(Z)

q∗Z
��

p∗Z

vv

CHp(T × Z)

(idT×η)∗

��
CHp−m(T × Y |W )

(idT×)∗//

(idT×πW )∗
��

CHp(T × Y )
(idT×ı)∗//

(idT×π)∗
��

CHp(T × Y |U ) //

(idT×πU )∗
��

0

CHp−n−m(T ×W )
(idT×j)∗

// CHp−n(T ×X)
(idT×i)∗

// CHp−n(T × U) // 0,
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where pZ : T × Y |U → Z is the morphism induced by the projection on Z and

qZ ◦ (idT × η) = pZ . Therefore, in order to apply Theorem 3.2.4 we need to show

that

(idT × ı)∗(1T × Ti,j) = p∗Z(τi,j),

but

(idT × ı)∗(1T × Ti,j) = id∗T (1T )× ı∗(Ti,j)
= id∗T (1T )× η∗(τi,j)
= (idT × η)∗(1T × τi,j)
= (idT × η)∗(q∗Z(τi,j))

= p∗Z(τi,j)

as desired. �

4.2 The Main Theorem

In this section we prove the main theorem of this work and some lemmas needed to

prove it. In this chapter by an isomorphism of motives we mean an isomorphism

between the additive structures of the motives involved. We start by calculating

some factors appearing in the decomposition that we will give later for the motive

h(Y ).

Lemma 4.2.1. Let π : Y → X and π′ : Y ′ → X be two locally trivial fibrations

satisfying the hypothesis of Theorem 3.2.4. Then we have an isomorphism of

motives

h(Y ) ∼= h(Y ′).

Proof. Denote by Ti,j (respectively T ′i,j) the generators of CH∗(Y ) (respectively

CH∗(Y ′)) as a CH∗(X)-module.

By Theorem 4.1.2 and (2.3):

h(Y ) = (Y,∆Y ) =

Y,∑
i,j

pi,j

 ∼= ⊕
i,j

(Y, pi,j)

and

h(Y ′) ∼=
⊕
i,j

(Y ′, p′i,j),

where pi,j , p
′
i,j are defined as in (4.1), so it is enough to show that the factors

appearing in these decompositions are isomorphic.

In order to do this, define morphisms of motives hi,j ∈ HomMk
((Y, pi,j), (Y

′, p′i,j))

by the formula:

hi,j := cT ′i,j ◦ c(π
′) ◦ c(π)t ◦ cTn−i,j ◦

∆Y −
∑

(k,l)∈Wi,j

pk,l

 ;
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analogously define the morphisms h′i,j ∈ HomMk
((Y ′, p′i,j), (Y, pi,j)) by:

h′i,j := cTi,j ◦ c(π) ◦ c(π′)t ◦ cT ′n−i,j ◦

∆Y ′ −
∑

(k,l)∈Wi,j

p′k,l

 .

At this point we would have to show the commutativity of the diagrams

Y

pi,j

��

hi,j // Y ′

p′i,j
��

Y ′

p′i,j
��

h′i,j // Y

pi,j

��
Y

hi,j
// Y ′ Y ′

h′i,j

// Y

but this is a consequence of Manin’s Identity Principle 2.2.8, since we have both

(hi,j)e

(
p∑
r=0

mr∑
s=1

π∗(αr,s) ∩ Tr,s

)
= π′∗(αi,j) ∩ T ′i,j

and a similar equation holding for (h′i,j)e.

By following this procedure we can also obtain the identities

h′i,j ◦ hi,j = ∆Y mod pi,j , hi,j ◦ h′i,j = ∆Y ′ mod p′i,j

which expose both hi,j and h′i,j as the desired isomorphisms. �

Lemma 4.2.2. Let π : Y → X be a locally trivial fibration satisfying the hypoth-

esis of Theorem 3.2.4. Then we have an isomorphism of motives

(Y, pi,j) ∼= h(X)⊗ (Z, pi,j,Z),

where the projectors pi,j,Z ∈ HomMk
(Z,Z) are defined by the formula

pi,j,Z := τn−i,j × τi,j .

Proof. By Lemma 4.2.1 we have that

(Y, pi,j) ∼= (X × Z, qi,j)

where the projectors qi,j are the ones defined for the trivial fibration

X × Z
ρ // X

by using the formula (4.1).

We will show that

(X × Z, qi,j) = (X × Z,∆X ⊗ pi,j,Z) .
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We start by observing that the correspondences pi,j,Z are pairwise orthogonal

projectors in the category of motives. Clearly, the correspondences pi,j,Z have

degree zero. Now,

pi,j,Z ◦ pk,l,Z = π13∗ (π∗12(τn−i,j × τi,j) ∩ π∗23(τn−k,l × τk,l))
= π13∗(τn−i,j × (τi,j ∩ τn−k,l)× τk,l) .

Suppose τi,j ∩ τn−k,l 6= 0. Then

π13(τn−i,j × (τi,j ∩ τn−k,l)× τk,l) = τn−i,j × τk,l .

Since

dim(τn−i,j × (τi,j ∩ τn−k,l)× τk,l) = n,

dim(τn−i,j × τk,l) = n+ i− k

we see that they have the same dimension if and only if k = i. Therefore,

π13∗(τn−i,j × (τi,j ∩ τn−k,l)× τk,l) =

{
τn−i,j × τi,l if k = i

0 if k 6= i

but since we are assuming τi,j ∩ τn−i,l 6= 0, we have that l = j, so

π13∗(τn−i,j × (τi,j ∩ τn−k,l)× τk,l) = δ
(k,l)
(i,j)τn−i,j × τi,j

and therefore

pi,j,Z ◦ pk,l,Z = δ
(k,l)
(i,j)pi,j,Z .

Now consider the case when τi,j ∩ τn−k,l = 0. Then (i, j) 6= (k, l), otherwise

we would have τi,j ∩ τn−k,l = e; therefore δ
(k,l)
(i,j) = 0. Another consequence of

τi,j ∩ τn−k,l = 0 is that, by Proposition 1.10 in [Ful98, p. 24] we have that

τn−i,j × (τi,j ∩ τn−k,l)× τk,l = 0.

So in this case we also have the equality

pi,j,Z ◦ pk,l,Z = δ
(k,l)
(i,j)pi,j,Z .

Therefore, the correspondences pi,j,Z define mutually orthogonal projectors

on Z. Now we proceed to verify that the projectors qi,j and ∆X ⊗ pi,j,Z coincide.

By Lemma 4.1.1 we have that

(qi,j)e

(
p∑
r=0

mr∑
s=1

ρ∗(αr,s) ∩ 1X × τr,s

)
= ρ∗(αi,j) ∩ 1X × τi,j . (4.6)
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On the other hand,

(∆X ⊗ pi,j,Z)e(ρ
∗(αr,s) ∩ 1X × τr,s) = (pi,j,Z)X(ρ∗(αr,s) ∩ 1X × τr,s)

= pi,j,Z ◦ (ρ∗(αr,s) ∩ 1X × τr,s)
= p13∗(αr,s × (τr,s ∩ τn−i,j)× τi,j)

=

{
αi,j × τi,j if (r, s) = (i, j)

0 if (r, s) 6= (i, j)

= δ
(k,l)
(i,j)ρ

∗(αi,j) ∩ 1X × τi,j .

Therefore

(∆X ⊗ pi,j,Z)e

(
p∑
r=0

mr∑
s=1

ρ∗(αr,s) ∩ 1X × τr,s

)
(4.7)

= ρ∗(αi,j) ∩ 1X × τi,j .

In this way, by (4.6) and (4.7) we obtain

(qi,j)e = (∆X ⊗ pi,j,Z)e

and by applying Manin’s Identity Principle 2.2.8 we obtain

qi,j = ∆X ⊗ pi,j,Z . (4.8)

To conclude the proof of this lemma observe that

(Y, pi,j) ∼= (X × Z, qi,j)
= (X × Z,∆X ⊗ pi,j,Z) by (4.8)

∼= (X,∆X)⊗ (Z, pi,j,Z) by definition of tensor product.�

Lemma 4.2.3. Under the hypothesis of Lemma 4.2.2 we have that

h(Z) ∼=
⊕
i,j

(Z, pi,j,Z) .

Proof. We have already shown that the morphisms pi,j,Z induce pairwise orthog-

onal projectors. So, our proof will be finished if we can show that∑
i,j

pi,j,Z = ∆Z .

The elements of CH∗(Z) can be written as

n∑
r=0

mr∑
s=1

nr,sτr,s
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for some nr,s ∈ Z. Observe that

(pi,j,Z)e

(
n∑
r=0

mr∑
s=1

nr,sτr,s

)
= pi,j,Z ◦

(
n∑
r=0

mr∑
s=1

nr,sτr,s

)
=

n∑
r=0

mr∑
s=1

nr,spi,j,Z ◦ τr,s

besides,

pi,j,Z ◦ τr,s = p2∗((τn−i,j × τi,j) ∩ (τr,s × 1Z))

= p2∗((τn−i,j ∩ τr,s)× τi,j)

=

{
τi,j if (r, s) = (i, j)

0 if (r, s) 6= (i, j)

= δ
(r,s)
(i,j) τi,j .

In this way we obtain that

(pi,j,Z)e

(
n∑
r=0

mr∑
s=1

nsτr,s

)
= ni,jτi,j

and therefore ∑
i,j

(pi,j,Z)e = idCH∗(Z) = (∆Z)e

and by using Manin’s Identity Principle 2.2.8 we obtain the desired result. �

Now, we have at our disposal all the tools needed to prove the main theorem.

Theorem 4.2.4. Let π : Y → X be a locally trivial fibration and suppose that

the fibre Z has a Chow stratification. Then

h(Y ) ∼= h(X)⊗ h(Z). (4.9)

Proof. We have that

h(Y ) = (Y,∆Y ) ∼=
⊕
i,j

(Y, pi,j)

∼=
⊕
i,j

(h(X)⊗ (Z, pi,j,Z))

∼= h(X)⊗

⊕
i,j

(Z, pi,j,Z)


∼= h(X)⊗ h(Z).

�

Remark . Although it may seem at first glance that we have lost all the infor-

mation of the fibration by calculating its motive, we have detected several strata
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in the motive h(Y ) given by the motives (Y, qi,j), each of these is related to a

projector appearing in the decomposition of the diagonal ∆Z . Moreover, we have

seen that if π′ : Y ′ → X is another fibration as in Lemma 4.2.1 the isomorphism

between h(Y ) and h(Y ′) has to be constructed stratum by stratum, involving in

each step the fibrations π and π′, as well as the generators of the Chow groups

of the fibre. As a final observation, recall that all the isomorphisms we have

calculated in this chapter relate the additive structures of the motives involved,

nothing has been said about the multiplicative structures of the motives; this can

be an interesting question to answer in a future work.

4.3 Applications

In this section we present some applications of Theorems 3.2.4 and 4.2.4. To be

more specific we present some examples of varieties having a Chow stratification.

We remind the reader that for a locally trivial fibration π : Y → X we mean

that π is also a proper morphism with fibres isomorphic to a n-dimensional variety

Z. We have the following corollary.

Corollary 4.3.1. Let π : Y → X be a locally trivial fibration with fibre Z iso-

morphic to a quotient of a linear algebraic group by a parabolic subgroup (in

particular, if Z is isomorphic to a variety of complete flags) then

CH∗(Y ) ∼= CH∗(X)⊗ CH∗(Z)

and

h(Y ) ∼= h(X)⊗ h(Z).

If the fibre is isomorphic to a smooth projective toric variety then

CH∗(Y,Q) ∼= CH∗(X,Q)⊗ CH∗(Z,Q),

where CH∗(·,Q) := CH∗(·)⊗Z Q. Moreover,

hQ(Y ) ∼= hQ(X)⊗ hQ(Z);

here hQ denotes the motive that we obtain by considering the intersection theory

given by the Chow rings CH∗(·,Q). �

This is a direct consequence of Theorem 3.2.4, Theorem 4.2.4, and the fact

that each of the varieties Z proposed in Corollary 4.3.1 has a Chow stratification,

as we explain in the following paragraphs.

Complete flags. We start by considering the case of the variety of complete

flags. A complete flag in n-dimensional projective space Pn is a sequence

F : F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Pn
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of linear subspaces Fi (dimFi = i).

The locus of all complete flags F in Pn is called the variety of complete flags,

and is denoted by F (n+ 1).

Ehresmann in [Ehr34] studied, among other things, the topological properties

of flag manifolds. He found that a basis of algebraic cells may be obtained for

the Chow groups of such varieties by considering condition symbols. A condition

symbol for flags F of Pn may be written in the form of a triangular matrix

σ =


a00 0 · · · 0

a10 a11 · · · 0
...

...
. . .

...

an−1,0 an−1,1 · · · an−1,n−1


where the elements aij are non-negative integers, 0 ≤ aij ≤ n, and

ai0 < ai1 < · · · < aii (1 ≤ i ≤ n− 1).

The symbol is said to be irreducible if every element of each row except the last

appears in the next row, either below or to the right. We can assign to each

symbol a subvariety of F(n+1) in the following way: Fix a nest of spaces (the

same nest is used for all values of i)

S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Pn, dimSj = j,

then the variety determined by σ is

Yσ := {F ∈ F (n+ 1) : dim(Fi ∩ Saij ) ≥ j}.

The subvariety of F (n+ 1) determined by an irreducible symbol is called a fun-

damental variety.

The fundamental varieties provide a subdivision of F (n + 1) into algebraic

cells giving a basis for its Chow groups.

In [Mon59] Monk shows that we have the perfect pairing required for the basis

just described. Therefore, a flag variety has a Chow stratification.

Quotients of linear algebraic groups. Another example that generalizes

the variety of complete flags is the following. Let k be a field and let G be a

k-split reductive linear algebraic group defined over k. Fix a maximal k-split

k-torus T in G and a Borel subgroup B of G containing T . We consider the set

of simple B-positive roots and let S be the corresponding set of reflections in the

Weyl group W . Furthermore, we fix a subset θ of S and let Wθ be the subgroup

of W generated by θ. Let Pθ := BWθB be the corresponding parabolic subgroup

of G and let Y be the projective smooth k-variety G/P . Let W θ be the following

subset of W

W θ := {w ∈W : l(ws) = l(w) + 1 for all s ∈ θ},
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where l : W → N0 is the length function relative to the system S of generators

of W .

For any w ∈W θ let Y ◦w (respectively Yw) denote the cell BwP/P (respectively

the closure of BwP/P in Y ). Then we have that (see for example [Köc91]):

Y =
∐

w∈W θ

Y ◦w ,

and for any w ∈ W θ the cell Y ◦w is k-isomorphic to the affine space Al(w)
k of

dimension l(w). Moreover,

CH∗(Y ) ∼=
⊕
w∈W θ

Z[Yw]

and we have the orthogonality relations

[Yw] · [Yw′ ] = δw,w0w′v0 [e],

for any w, w′ ∈W θ with l(w) + l(w′) ≤ dimY = l(w0)− l(v0) where w0, respec-

tively v0 are the elements of maximal length in W , respectively Wθ. Therefore,

Y has a Chow stratification.

Toric varieties. For the results stated in this part, we refer the reader to

[Ful93]. A toric variety is a normal variety X that contains a torus T ∼= (C∗)n as

a dense open subset, together with an action T ×X → X of T on X that extends

the natural action of T on itself.

Consider a lattice N ∼= Zn. A strongly convex rational polyhedral σ in NR =

N⊗ZR is a cone with apex at the origin, generated by a finite number of vectors;

rational means that it is generated by vectors in N and strong convexity means

that it contains no line through the origin; if there is no risk of confusion we call

such a cone simply a cone in N . A fan ∆ is a collection of cones in N satisfying

the conditions analogous to those for a simplicial complex: every face of a cone

in ∆ is also a cone in ∆, and the intersection of two cones in ∆ is a face of each.

A toric variety can be constructed from a lattice N and a fan ∆ in N . In

order to see this let M = Hom(N,Z), and for a cone σ in ∆ define

Sσ = {u ∈M : 〈u, v〉 ≥ 0 ∀v ∈ σ}.

This semigroup is finitely generated, so its group algebra C[Sσ] is a finitely gen-

erated commutative C-algebra. Such an algebra corresponds to the affine variety

Uσ = Spec(C[Sσ]).

If τ is a face of sigma, then Sσ ⊂ Sτ and therefore C[Sσ] is a subalgebra of C[Sτ ],

in this way we get a morphism Uτ → Uσ, moreover Uτ can be regarded as a

principal open subset of Uσ. With these identifications, these affine varieties fit
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together to form an algebraic variety which we denote by X(∆), and it can be

seen that X(∆) is a toric variety, in fact its corresponding torus is given by

T = TN = Spec(C[M ]) = Hom(M,C∗) = N ⊗Z C∗.

For each cone τ in ∆ can be constructed an orbit of X(∆) by the action of

the torus T = TN which we will denote by Oτ , its closure will be denoted by

V (τ).

For a smooth projective toric variety Z = X(∆), it can be shown that

CHp(Z,Q) := CHp(Z)⊗Z Q ∼=
mp⊕
i=1

Q[V (τp,i)]

for some cones τp,1, ..., τp,mp in ∆ having codimension p. Moreover, the closed

sets V (τp,i) come from the closures of the cells of a cellular decomposition for

X(∆).

For these varieties we have that the Chow groups and the cohomology groups

coincide, therefore by Poincaré duality we obtain perfect pairings

CHp(X(∆),Q)⊗ CHn−p(X(∆),Q)→ Q

where n = dimX(∆). Therefore, if we relax the requirements of Definitions 3.1.1

and 3.1.2 in order to consider the groups CH∗(·,Q) instead of the groups CH∗(·)
a smooth projective toric variety has a Chow stratification.
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