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Abstract

In man-made environments, the presence of planar objects iscommon. These sur-
faces are described by walls, doors and many objects such as books, desks and
other furniture. Recently,multiple view geometryhas been used by the Computer
Vision Community as a tool in order to describe the elements ofmulti-planar
scenes and recover the calibration coefficients of the cameras that are used to ana-
lyze the three dimensional scene. Calibration deals with therecovering of the focal
distance (intrinsic calibration) and localization parameters of a camera (extrinsic
calibration). Reconstruction of a multi-planar scene consists of determining the
planar equation of each planar structure.

The aim of this work is to show how by using linear methods is possible to re-
cover the calibration coefficients and describe the elements in the multi-planar
scene using only two different views or images. Related work dealing with camera
localization and structure recovery presents non-linear formulations that need an
initialization guess in order to solve these problems. Our work introduces a multi-
linear form that captures all the coefficients needed to solve the calibration and
structure recovery problems.

This work presents a novel approach to solve the calibrationand structure re-
covery problems, based on linear methods that exploits geometrical and algebraic
constraints induced by rigidity and planarity in the scene.Linearity allows our
approach to be suitable for real-time camera calibration and scene reconstruction.
Furthermore, we do not compute the two-view fundamental matrix. Therefore, we
do not face stability problems commonly associated with explicit epipolar geome-
try computation.



Chapter 1

Introduction

This research addresses the problem of automatic calibration of two cameras that
are observing the same three dimensional scene conformed byplanar surfaces.
We also want to know how these planes are located in the scene,i.e. we wish
to describe the scene. Scenes with planar surfaces or planessuch as walls, doors,
books, desks or even buildings whose facade isalmostplanar, can be reconstructed
using the theory developed in this work. These kind of surfaces are easily found in
indoor environments such as offices or when walking out through streets in almost
any city.

Something fascinating of working with planar surfaces is that every plane can be
represented by three degrees of freedom. Determining theseparameters is enough
in order to represent all the points in the surface.

Given any three dimensional scene conformed by planes, it iseasy to describe
the relation between planes and their projection due to the camera. So far, camera
models and transfer functions between multi-planar scenesand images or views
are well-understood. Indeed, linear mathematical models have been developed by
the computer vision community. These mathematical models allow us to analyze
how objects inside a scene are mapped to an image. A natural way to solve these
kind of problems may involve the inclusion of constraints that arise in a natural
way as a consequence of the elements in the scene. These constrained problems
still remain open and although they have been analyzed, there is not a general
solution for all of them yet. Furthermore, linear methods that incorporate these
constraints are rarely found in the current literature. Linear methods are interest-
ing due to the fact that can be applied in real-time applications, they commonly
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offer a closed-form solution being free of an initialization guess and do not present
problems with local minima as in non-linear formulations.

The use of planar surfaces for camera calibration and structure recovery have re-
cently received attention from the Computer Vision Community[1, 6, 7, 10, 17,
23, 25]. Some research has been conducted in theoretical [2,6, 11] and practical
fields [1, 16, 17]. Other tasks such as image segmentation [1,23] or camera cali-
bration [25] have also been studied. Furthermore, map building is an area where
multi-planar scenes have been used by roboticists [20].

Multiple view geometry is a branch of the computer vision field. This sub-field
refers to research that is conducted by means of analyzing several images of the
same scene acquired either by a moving camera or a camera array. Common tasks
that can be solved by means of these images or views are the onesdescribed above.

This work presents novel results derived of the analysis of two views of the same
rigid scene that contains at least two planar structures or planes. Our approach
makes use of key points or interest points in both views. Key points are picture
elements with some outstanding quality when comparing withneighboring ele-
ments. The usual way to work with two views based on key points, consists of the
following steps [10]:

1. Choose the camera model.

2. Determine how to conduct the matching process between keypoints.

3. Describe the transfer functions between the scene and each view and be-
tween views.

4. Recover the desired parameters (intrinsic and extrinsic camera parameters
and scene reconstruction).

The camera model used in this work is the well-known pinhole camera model
[10]. We define thecamera calibration problemas the task that consists in de-
termining the intrinsic coefficients of the camera1 and its position with respect to
a global three dimensional frame of reference. When considering square picture
elements of pixels, only three parameters are computed in order to obtain the ca-
mera matrix. These parameters are the focal distance and twocoefficients used to

1Also known as coefficients of the camera matrix.

2



describe the 2D coordinates of the principal point2.

Thecamera localization problemconsists in determining the cameraposewhere
the images (scene projections) were taken. A 3D global frameof reference is
imposed and is used to describe the elements in the scene (structure recovery or
scene reconstruction problem). Although image segmentation is a widely studied
topic, the case of images describing multi-planar structures remains open. Figure
1.1 shows two different views of the same multi-planar scene.

Figure 1.1: Two different views of the same multi-planar scene.

We propose an iterative linear algorithm exploiting geometrical and algebraic
constraints induced by rigidity and planarity in the scene.Our approach allows us
to deal with localization and reconstruction problems using only linear systems of
equations, instead of solving a multi-linear problem or a non-linear problem with
the corresponding instability due to errors in the initial localization guess.

The proposed framework makes use of features extracted fromtwo images and
matched by correlation. Image features are segmented considering coplanar cons-
traints for point transferring. Furthermore, linear functions are used for epipolar
geometry recovery, without explicit computation of the fundamental matrix.

One geometrical fact that is exploited in our work, consistsin computing the in-
tersections between all the planar surfaces that are projected in the views. These
intersections are seen as straight lines on each image, and they allow us to carry
out the two problems covered by this work: camera calibration and structure re-
covery.

2A formal description of these concepts is found in Chapter 2.
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1.1 Document organization

This chapter ends by presenting the problem definition, gives a list of contributions
of our work and makes a review of the most influential works in our research, in-
cluding some comparisons between them. At the end of this chapter, we present
an overview of our approach.

The mathematical foundations that are necessary in order tounderstand our ap-
proach are described in the second chapter. We also introduce the camera model
that is used to represent the physical devices. This chapteralso covers two well
known linear transfer functions that are induced by the planar structures. Other
mathematical objects derived from these transfer functions are presented, includ-
ing the description of the intersection between two planes.

The third chapter exhibits the theory and the linear method developed in this re-
search.

Experiments done on real data are presented in the fourth chapter. Conclusions
and possible future lines of research are presented in the last chapter.

1.2 Problem definition

Given two images of the same multi-planar scene, we want to:

1. Determine the focal distance of the cameras.

2. Determine the position and orientation of each camera whenthese images
are taken.

3. Reconstruct the scene, i.e. compute the parameters that describe each planar
surface.

4. Segment the images, in order to label the image features that belong to each
plane.

Points 1 and 2 refer to the camera calibration problem (intrinsic and extrinsic
calibration, respectively), 3 and 4 belong to the structurerecovery task (3D re-
construction and planar segmentation). Although the computation of intrinsic pa-
rameters of a camera commonly includes the principal point,we assume that it is
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fixed at the center of the image [25].

Focal distances of both cameras are needed in order to recover localization and
reconstruction parameters.

1.3 Contributions

In [6], Faugeras and Lustman present a framework that allowsto determine the
localization of two cameras and recover the parameters of one planar surface that
is observed by two cameras. This is one of the first attempts toshow how linear
methods can be used to recover motion and structure parameters.

Our research has been deeply influenced by [6]. The main differences between
our work and [6] consists in considering more than one planarsurface in the scene
and consistency between the different projective planar transformations. This may
seem as simple as adding one dimension to a linear least squares problem, but in-
deed when incorporating more than one plane, some considerations should be
taken, i.e. a transfer function induced by a plane codify parameters of camera
properties, camera localization and plane equation. Several transfer functions
computed with the same pair of images, induced by an equal number of differ-
ent planes, should codify the same intrinsic camera and localization parameters.
This research addresses robust computation of the common parameters of trans-
fer functions and robust recovery of the scene structure. Once all the transfer
functions are computed and codify the same common parameters, it is possible to
recover the focal distances of the cameras.

Our original contributions are:

1. A system of linear equations in order to compute the first epipole, i.e. the
epipole in the first view, and the line of intersection between each pair of
planes.

2. A linear system of equations that allow us to incorporate consistency in all
of the computed inter-image homographies, and the algorithm to solve it.
This means that all of the common parameters extracted from these homo-
graphies are the same. These parameters are related to pose estimation.
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Inter-image homographies are transfer functions between two images and are in-
duced by planes. The first epipole and all the intersections between any two pla-
nar surfaces can be used to compose these transfer functions. Camera calibration
and scene reconstruction tasks are solved using these functions. Segmentation is
achieved through the intersections of the planar surfaces in the scene.

1.4 Related work

The camera intrinsic parameters are needed to solve localization and reconstruc-
tion problems. The earliest works dealing with camera calibration make use of
objects or models in the scene with well-known geometry. Tsai in [22] presents a
method for camera calibration where an expert user gives the3D-2D correspon-
dences between the object in the scene and the image plane. Noconstraints are
imposed in the geometry of the observed object. In [28] Zhangpresents another
model-based method for camera calibration using a planar object, usually a chess-
board. [28] addresses the camera calibration problem as a non-linear formulation.

Other works such as [5] and [25] make use of camera motion withsome cons-
traints in order to recover internal and localization parameters but without con-
sidering known objects in the scene. In [5] the authors use views generated by
a rotating camera and describe the relation between motion and the image of the
absolute conic. In [25] the problem of camera calibration isanalyzed assuming
that the three dimensional scene is conformed by planar structures. Both of last
methods are linear at first stage and require an additional bundle adjustment step.
[5] and [25] present the non-linear formulation used to improve the original linear
estimation.

Motion recovery and scene reconstruction are strongly linked tasks, because the
first induces the 3D global frame of reference that is used to describe the elements
in the scene. One of the first works that dealt with this problem was written by
Faugeras and Lustman [6]; in this work they use only a planar surface and two
views. Their approach makes use of features extracted from the two views. These
features are used to fit a transfer function (inter-image homography) by means of
a least-squares method. The main contribution of [6] is the linear method used
for motion and structure recovery and the inclusion of geometrical and algebraic
constraints that are induced by rigidity and planarity in the scene. With their ap-
proach, they do not compute the fundamental matrix associated to the views, but
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instead, they solve the problem of locating the camera by using one plane. The au-
thors make an analysis of the singular values of the transferfunction, showing that
the problem has multiple solutions: eight in the general case, that can be reduced
to two by using more information from the scene, four solutions when two of the
singular values are equal and an indetermination when the three singular values
are equal. With an additional observed plane, all ambiguities are dismissed.

For multi-planar scenes Bartoli et al. [2], introduce the motion and structure
recovery problem as a non-linear cost function with explicit epipolar geometry
computation, leading to the associated instability problems. Robust estimators are
used for the minimization problem. [2] extends the epipolargeometry, and their
authors analyze the numerical stability of the algorithm.

Lopez-Nicolas et al. [7], address the motion recovery problem in multi-planar
scenes, introducing a linear algorithm that computes the fundamental and essen-
tial matrices. Pose recovering is carried out by means of inter-image homogra-
phies and the essential matrix. Planar homologies used in that work were applied
by Malis and Cipolla in [11], for automatic calibration from multi-planar struc-
tures. The relation between homologies and inter-image homographies induced
by planar homographies is provided by [11].

Segmentation of multiplanar scenes using the geometrical and algebraic cons-
traints as applied in the previous works were used by Vigueras and Rivera [23].
They propose a non-linear cost function that when minimizedgives the maximum
likelihood of the inter-image homographies and the first epipole without explicit
computation of the fundamental matrix. Their approach imposes that all the trans-
fer functions have the same localization parameters ensuring projective coherence,
a similar idea as in [2] but avoiding instability due to the explicit epipolar geome-
try computation.

In [17] Simon et al., present a user-assisted system for tracking several planes in
a marker-less scene. In this work, a user delimits the boundary of each projected
planar surface. Another contribution of [17] is the DLT-like3 algorithm for com-
puting inter-image homographies. In [16] Simon et al. show how to recover the
localization and reconstruction parameters of multi-planar scenes with minimal
user assistance, which consists of manual selection of a baseplane. Additional

3DLT stands forDirect Linear Transformation.
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planes are considered aswalls, i.e. these additional planes are orthogonal to the
base plane. In [16], all of the computed parameters are improved by means of an
ad-hoc Hough transform applied to a video sequence.

1.5 Overview of the proposed method

When only two views of the same multi-planar scene are considered, epipolar
geometry arises as a natural mathematical tool in order to determine motion pa-
rameters of the cameras [26]. In this work, we avoid explicitepipolar geometry
computation and, instead, we use planar homologies, which are the product of two
inter-image homographies. Homographies are calculated byusing the RANSAC
paradigm [10] to fit the linear model proposed in [17] on putative matches com-
puted with the Zero-mean Normalized Cross-Correlation (ZNCC) measure [19].

We use intersections between planes [16] in order to improvethe support of each
homography obtained by RANSAC. The intersection of the planesis reflected in
the first view as a line and is codified inside of the planar homology associated to
these planes. The first epipole is also codified in this homology. The SVD Algo-
rithm [14] is used for the extraction of these vectors and is applied on a stack of
planar homologies.

Once the epipole and all intersections between planes are computed, the homo-
graphy with the largest support is chosen as the reference homography, then an
iterative linear method that computes an improved version of these vectors is trig-
gered. All the non-reference homographies are rewritten using the reference ho-
mography, the first epipole and the vector that describes theintersection between
the reference plane and the current plane. This stage is at the core of our method
and ensures projective coherence between all the homographies.

With the epipole and the reference homography, both focal distances are esti-
mated using the algorithm described in [25]. Once focal distances are determined,
localization and reconstruction stages are carried out. Localization of the first ca-
mera is fixed at the origin ofR3 with null orientation. For the second one we use
a Faugeras-like algorithm for orientation recovery and later we use all the infor-
mation computed up to now in order to recover the translationvector.

Dense segmentation of the projection of each plane is carried out with the im-
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proved version of the intersections between planes and the associated homogra-
phy.
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Chapter 2

Mathematical Foundations

This chapter presents the mathematical notation and formulations that are used
in our work. Our research deals with a linear method for camera calibration and
structure recovery, so that we should have a full understanding of numerical linear
algebra.

In this work, the cross product operation (· × ·) is often represented as a ma-
trix operator [10]. If vectora is defined as(a1, a2, a3)

T thena × · is written as
[a]×·. The symbol[a]× is as follows:

[a]× ≡





0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (2.1)

2.1 Camera Model

The pinhole camera model [10] is used in this work. The elements of this camera
model can be observed in Figure 2.1 and they are:

• The camera center or center of projection, denoted byC. Without loss
of generality the coordinates ofC for the first camera are at the origin
(0, 0, 0)T .

• The image plane with equationZ = f ∈ R
+, is the place where points are

projected.
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• The line from the camera center perpendicular to the image plane is called
the principal axis.

• The pointp where the principal axis intersects the image plane is called the
principal point.

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 2.1: Pinhole camera geometry.C is the camera center andp is the principal
point. The focal distance is denoted byf . The image plane is placed in front of
the camera center.

The space pointX is projected to the image plane at coordinatesx = (f X
Z

, f Y
Z
)T .

This projection is determined by the intersection between the image plane and the
line joiningX and the camera centerC.

Image points can be expressed using normalized coordinates[26], this means that
the principal point is at(0, 0)T and the focal distancef equals to one. When the
image coordinates are non-normalized, we need to incorporate the camera matrix
K defined as:

K =





f 0 u0

0 fy v0

0 0 1



 ,

wheref is the focal distance. In this work we are considering squarepixels,
this means thatfy = f , otherwisefy = τf , whereτ is a known aspect ratio.
(u0, v0)

T = (0, 0)T are the coordinates of the principal point, fixed at the center
of the image plane.

In order to define matrix operations between points in the 3D space or in the image
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plane with common mathematical objects in their native spaces1, we incorporate
homogeneous coordinates. This means that all the points (inspace or image coor-
dinates) are represented by adding an entry different from zero, i.e. a space point
X = (x, y, z)T is represented in homogeneous coordinates byX̃ = (X,Y, Z,W )T

with W 6= 0. The same applies to image coordinates, wherex = (x, y)T is repre-
sented bỹx = (X,Y, Z)T whereZ 6= 0.

One fact that is important to know when the pinhole camera model is used, is the
equivalence class induced by the ray fromC throughX. All the space points that
lie on this ray are projected to the same point at the image plane. A 3D space point
X = (X,Y, Z)T is projected by the camera to a 2D pointx = (fX/Z, fY/Z)T .
This projection is done via a ray that starts atC through the space pointX. An
infinity of points lie on this ray including one that is projected to the image plane.
This ray is a sub-set of the lineCX. All the points on this ray define an equiva-
lence class whose representative element isx̃ = (f X

Z
, f Y

Z
, f)T . Due to the equiv-

alence class, in this work,x = (x, y, 1)T is considered as the representative ele-
ment2 of the equivalence class defined by the projection ofX at the image plane
Z = f .

2.2 Key Points

Given any two images of the same multi-planar scene, we are interested in know-
ing how toalign the first to the second image. In other words, we wish to find
the transfer function that allows us to describe matching points from the first to
the second image. If these transfer functions are constrained to reflect rigidity
and planarity properties induced by the planes in the scene,we will need as many
transfer functions as there are planar surfaces are in the scene.

Not all the points in the scene that are coplanar will be considered to describe
the transfer functions. We usekey pointsalso known as features or corners in the
literature. These are picture elements that are representative under some criteria
defined by the feature detector method, e. g. the Harris corner and edge detector
[9], MIC [21] or SUSAN [18], among others.

1i.e. planes inR3, lines inR
3 or R

2 and so on.
2We writex instead of̃x.
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In this work, the method developed by Harris and Stephens is used to detect key
points. This method makes use of the structure tensorM:

M(x, y) = gm(σ) ⊗

(

I2
u(x, y) IuIv(x, y)

Iu(x, y)Iv(x, y) I2
v(x, y)

)

wheregm(σ) is a Gaussianm×m mask with standard deviationσ,⊗ is the convo-
lution operator. The maskgm(σ) acts as a weighting smoothing correlator.I(x, y)
is the image at coordinates(x, y). Iu andIv are the partial derivatives ofI at pixel
(x, y) in directionsu andv respectively.

Derivatives inM can be calculated using Gaussian kernels or Sobel masks, among
others [8]. The quality of the key points strongly depend on the method used to
compute the derivatives and on the kernel size of the Gaussian mask (the value of
σ in gm), as well as the value ofm.

Cornernessmeasures the quality of a pixel to be considered as a key pointor
not. This classification is carried out by means of the structure tensorM. An
arbitrary and widely accepted cornerness measure was defined in [9]:

H(x, y) = det(M(x, y)) − k · trace(M(x, y))2,

wherek is a tunable parameter (usuallyk = 0.04) but it depends on the parameters
which were used to computeM. Another measure that experimentally brings
better results than the one presented above is:

N(x, y) =
det(M(x, y))

trace(M(x, y))2
.

N(x, y) may be undefined when no texture is present in the image, i.e.trace(M(x, y)) →
0, in such a case(x, y) is not key point. The cornerness measureN is reported by
Noble in [12]. One advantage of this measure compared withH is that Noble’s
does not need thek parameter.

2.3 Matching key points

Once key points are computed, the next step consists in matching these points. In
this work, points are matched using a modified version of the ZNCC correlation
measure [19]:
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ZNCC =
N · SIJ − SISJ

√

(N · SII − S2
I)(N · SJJ − S2

J)
, (2.2)

the elements in this formula are as follows:

• W is the window defining the patches, i.e. a rectangular regioncontaining
a certain number of pixels and centered at the reference feature,

• N is the number of pixels in the windowW,

• I is the first view,

• J is the second view,

• SI =
∑

W I, where
∑

W I ≡
∑

(u,v)∈W I(u, v),

• SJ =
∑

W J,

• SII =
∑

W I2, where
∑

W I2 ≡
∑

(u,v)∈W I(u, v)I(u, v),

• SJJ =
∑

W J2,

• SIJ =
∑

W,W ′ IJ, where
∑

W,W ′ IJ ≡
∑

(u,v)∈W1,(u′,v′)∈W ′ I(u, v)J(u′, v′),

The ZNCC measure takes values between[−1, 1] and1 indicates a perfect match.
For real-time response, this measure has reported the best results when comparing
with other similar correlation measures [19].

In this work, correspondences between two views are denotedby:

{x ↔ x′},

wherex = (x, y, z)T is a three dimensional vector expressed in homogeneous
coordinates, representing a detected feature in the first view. x′ is used for the
second view.

In the literature, several other methods for key point matching can be found [4].
Some of them use linear methods with a final non-linear step asrefinement. Others
deal with the matching problem as a finite-combinatorial one.
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2.4 Epipolar Geometry

Epipolar geometry is always well defined between two views that project the same
physical scene [26] because it depends only on the motion between them. Epipolar
geometry is depicted in Figure 2.2. The elements of this geometry are:

• The epipolee is the point of intersection of the line joining the camera
centersC andC′ with the image plane on the first view. For the second
image the epipole is denoted bye′.

• An epipolar plane containing the epipoles and the projectedpointX. There
is a one-parameter family of epipolar planes when the projected point moves.

• An epipolar linel is the intersection of an epipolar plane with the image
plane. All epipolar lines intersect at the associated epipole.

Figure 2.2: Geometry induced by point correspondences. (a)Camera centers are
represented byC andC′, X is a 3d-space point and is projected on the views asx

andx′ respectively. (b) The epipolese ande′ lie in the intersection of the baseline
(line betweenC andC′).

The fundamental matrixF is an algebraic representation of the epipolar geometry.
For any pair of correspondencesx ↔ x′ in the two images, this matrix satisfies:

x
′TFx = 0. (2.3)
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Figure 2.3: Inter-image homography induced by observing a planar surface.H is
the inter-image homography induced by observing a planar surfaceπ in a general
position.H1

π andH2
π are the transfer functions betweenπ and the first and second

views, respectively.

2.5 Inter-image Homographies

A planar homography transfers coplanar space points to the image plane of a given
view. This mapping is a3× 3 real matrix that takes a space point and gives us the
projection of this point on the desired image plane. A DLT-like algorithm may be
used to find this matrix by means of the least-squares method.Inside a noise-free
environment, homographies are bijective maps.

Inter-image homographies are transfer functions between two image planes, and
are based on planar homographies. Any inter-image homography can be decom-
posed into the product of two or more planar homographies [17], see Figure 2.3
for a sketch.

Given two planar homographiesH1
π, H2

π, the inter-image homography between
these views can be written as:

H ≡ H2
1 = H2

π(H1
π)−1,

hereH maps points from the first view to the second one, andπ represents the
observed planar surface.

According to [10], if we know the pose parameters (R, t) of the second camera,
the parameters of the observed planar surface (v) and the camera intrinsic matrices
(K1,K2), it is possible to write the inter-image homography as follows:
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H ∼ K2(R − tvT )K−1
1 , (2.4)

H transfers the projected points from the observed planar surface on the first view
to the second view, this is a3 × 3 matrix. R is a3 × 3 matrix, representing the
rotation between the first and the second view.t is the translation vector from
the first camera to the second, this vector has dimension three. n is the three
dimensional normal vector associated to the surface such that the plane equation
is:

n · X + d = 0, (2.5)

whenX is a point on the planar surface andd a real number.v = n

d
is a vector

used to describe the same plane equation such that:

v · X + 1 = 0. (2.6)

In order to compute an homography from correspondences (at least four non-
collinear of them), we solve the next homogeneous linear system [17]:























x1 y1 1 0 0 0 −x′

1x1 −x′

1y1 −x′

1

0 0 0 x1 y1 1 −y′

1x1 −y′

1y1 −y′

1

x2 y2 1 0 0 0 −x′

2x2 −x′

2y2 −x′

2

0 0 0 x2 y2 1 −y′

2x2 −y′

2y2 −y′

2
...

xn yn 1 0 0 0 −x′

nxn −x′

nyn −x′

n

0 0 0 xn yn 1 −y′

nxn −y′

nyn −y′

n



















































h1

h2

h3

h4

h5

h6

h7

h8

h9





























= 0 (2.7)

where the entrieshi are part of the homographyH, as follows:

H =





h1 h2 h3

h4 h5 h6

h7 h8 h9



 , (2.8)

and the correspondence pairs are:{(xi, yi, 1) ↔ (x′

i, y
′

i, 1)} as defined above.

In our work, scenes contain many planar surfaces. It is expected that all the
computed inter-image homographies share the same pose parameters [2] and only
differ in the ones related to the plane equations.
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We useHj ∼ K2(R− tvT
j )K−1

1 as the inter-image homography which describes
the transferring function induced byj-th planar surface and the associated views.

2.6 Consistency between homographies

Two homographies,H1 andH2, are used to define the associated planar homology
[11] as follows:

M12 = H−1
1 H2, (2.9)

consider Figure 2.4 for a sketch of the mappingM12.

π

X1

1

X2

2π

x

H

H

1

2

Hx
x

C

C
/

/

Figure 2.4: The action of the mapM12 = H−1
1 H2 on a pointx in the first view to

transfer it tox′ as thought if it were the image of the 3D pointX2. After, map it
to the first image as thought if it were the image of the 3D pointX1. Points in the
first view which lie on the intersection of the planes are mapped to themselves, so
they are fixed points under this action. The epipolee is also a fixed point under
this map.

Therefore, considering any homologyMij and the relation (2.4), we obtain:

Mij ∼ K1(R − tvT
i )−1(R − tvT

j )K−1
1 ,

using the Sherman-Morrison formula [14] we obtain:

(

R − tvT
i

)−1
= R−1 +

R−1tvT
i R−1

α
,
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where:

α = 1 − vT
i R−1t.

From [26], we know that the first epipole is represented ase ∼ K1R
−1t, using

the Sherman-Morrison formula [14] and from that result, we obtain:

Mij ∼ I + esT
ij, (2.10)

where

sij ∼ K−T
1 (vi − vj). (2.11)

Consequently, every homography can be written as:Hj ∼ HiMij, this means
that:

Hj ∼ Hi(I + esT
ij), (2.12)

the equivalence∼ vanishes in (2.12), if the second singular value of the rightside
is equal to one [27], hence (2.12) becomes an equality.

The reference homography is denoted byHref , therefore all the remaining ho-
mographies are written as:

Hj ∼ Href (I + esT
ref,j). (2.13)

From this equivalence class, we can realize that in order to maintain consistency
between homographies, our setting needs a reference plane which induces a re-
ference homography. In this work we choose the reference plane as the one with
the greatest support, i.e. the planar surface with the biggest number of correspon-
dences associated to it.

2.7 Fundamental matrix and inter-image homogra-
phies

When the epipolar geometry is induced by observing a planar surface, as shown
in Figure 2.5, the inter-image homographyH associated to that plane can be used
in order to express the fundamental matrix:

F ∼ H−T [e]× ∼ [e′]×H. (2.14)
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X

/xπ

π

Figure 2.5: Epipolar geometry and inter-image homographies. A pointx in the
first image is transferred via the planeπ to a matching pointx′ in the second
image. The epipolar line throughx′ is obtained by joiningx′ to the epipolee′.

The fundamental matrix has rank two with seven degrees of freedom and the
inter-image homography has complete rank with eight degreesof freedom. F

represents a mapping from the two-dimensional projective planeP
2 of the first

image to the pencil of epipolar lines through the epipolee′. Thus, it represents a
mapping from a two-dimensional onto a one-dimensional projective space3, and
hence, must have rank two.

Nevertheless, as it has been reported in [10], there exist instability problems when
trying to explicitly compute the fundamental matrix from planar surfaces. In [25]
the authors report that the fundamental matrix is numerically more stable when
it is used for camera calibration in conjunction with inter-image homographies
(equation 2.14) than when using point correspondences fromplanar surfaces.

The epipolar geometry is always well defined between any two views of the
same three-dimensional scene. If the two camera centers arenot coincident, it
is uniquely defined. The main problem that arises when tryingto determine the
epipolar geometry viaF is due to some camera configurations that do not allow
to compute it from point correspondences. An important degeneracy is when all
the points lie in a plane. Given any pair of correspondencesxi ↔ x′

i and the
inter-image homographyH, such thatx′

i ∼ Hxi, the fundamental matrix corre-
sponding to the pair of cameras always satisfies the equation(2.3): x

′T
i Fxi = 0,

3The projective planeP2 may be thought asR2 plus anhomogeneous dimension, i.e. P
2 is the

set of all the homogeneous vectors of three entries. The sameidea applies to the projective space
P

n for all n ∈ N.
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i.e.:

x
′T
i (FH−1)x′

i = 0,

from relation (2.14) we know thatF ∼ [e′]×H where[e′]× is an asymmetric or
skew-symmetric matrix as defined at the beginning of this chapter. This means
thatFH−1 ∼ [e′]× and the solution forF is any matrix of the formSH, whereS
is 3 × 3 skew-symmetric matrix.

If F is computed viaH, as mentioned above,F will have three degrees of freedom
due toS, and that is true becauseS could be written through any three-dimensional
vector with three degrees of freedom. The epipolee′ is a three-dimensional vector
in homogeneous coordinates, and hence, the fundamental matrix will have two de-
grees of freedom when is computed via a homogeneous vector such as the epipole,
i.e. if S is written in the formS = λ[e′]×, whereλ ∈ R − {0}.

Furthermore, the two epipoles satisfy the next equations:

Fe = 0,

FTe′ = 0,

If we know the first epipolee and one inter-image homographyH, the second
epipolee′ is determined by:

e′ ∼ He. (2.15)

2.8 Intersections between Planes

The intersection between planes [16]i andj implies that a given pointx belong-
ing to this intersection at the first image, satisfies bothx′ ∼ Hix andx′ ∼ Hjx.
ThereforeHix ∼ Hjx, i.e. x ∼ H−1

i Hjx, it follows from (2.9) thatx is an
eigenvector ofMij.

The eigenvectors ofMij are (see Figure 2.4):

• The epipolee, which is common for all the elements in the scene. From the
definition ofMij, it follows that(I + esT

ij)e = αe, whereα = (1 + sT
ije) is

a real number.
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• Any vectora orthogonal tosij: (I + esT
ij)a = a + sT

ijae, assT
ija = 0 then

(I + esT
ij)a = a.

The intersection between planesi andj is the set of all such vectorsa. Further-
more, by orthogonality we know thatsij · a ≡ sT

ija = 0, then the equation of this
intersection is a straight line given by vectorsij. Furthermore, vectorsij is part of
the first image plane [23]. This fact can be verified by means ofequation (2.6) for
planesi andj: vi · X = −1, vj · X = −1 whereX ∈ πi ∩ πj. Thus:

vi · X − vj · X = 0

(vi − vj) · X = 0,

remembersij ∼ K−T
1 (vi − vj). Applying sij to last equation we obtain:

sij · X = 0.

We know from Section 2.1 that ifx is the projection of the space pointX, thenx

is an element of the equivalence class defined by the ray that starts atC through
X. Thusx ∼ X and there exists a scalarλ 6= 0 such thatx = λX, i.e.:

sij · (λx) = 0

sij · x = 0.

This means thatsij is a vector orthogonal to all the pointsx whose space point
X lies in πi ∩ πj. Pointsx are in the first image andsij is a vector normal to
X ∈ πi ∩ πj. This intersection is a straight line when planes are in general po-
sition, otherwise it is a point or an empty set (a degeneratedline). The same
procedure does not apply to the second view and projectionx′ of X due to the
elements of the rigid transformation betweenC andC′, even sosij may be drawn
in the second view applying an inter-image function.

The intersection between the reference plane and thej-th planar surface, observed
at the first image, is given bysref,j · x = 0. The homology between any other
planesi andj is given byMij = M−1

ref,iMref,j, and by using (2.10) we obtain:

Mij = (I + esT
ref,i)

−1(I + esT
ref,j) = I +

e(sref,j − sref,i)
T

1 + sT
ref,ie

,
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therefore, the intersection line is defined by the equation:(sref,j − sref,i) · x = 0.
This means that:

sij = sref,j − sref,i.

2.9 The Faugeras-Lustman Algorithm

This section deals with a well known method for motion and structure recovery
using one planar surface and two views: the Faugeras-LustmanAlgorithm [6].
This method uses inter-image homographies and assumes thatimage coordinates
are normalized (see Section 2.1). If the transfer functionsare computed with
non-normalized coordinates, we should provide the internal parameters of both
cameras in order to normalize the inter-image homographies(see Section 2.1).

This algorithm obtains localization or motion parameters as well as reconstruc-
tion parameters by means of an analysis of the singular values of the inter-image
homography. Singular values are computed through the SVD Algorithm [14].

From equation (2.4), we know that an inter-image homographyH, induced by
a planar surface with normal vectorn, can be written as:

H ∼ K2(R − t
n

d

T

)K−1
1

in order to apply the Faugeras-Lustman Algorithm we only usethe collineation

matrix C = R − t
n

d

T

, whereR, t represent the relative motion parameters be-

tween the first and the second camera, andd is the distance between the optical
center of the first camera and the observed plane in the space.C can be decom-
posed by the SVD algorithm as:C = USVT . The elements ofS are the square
roots of the eigenvalues ofCCT . These eigenvaluesλi are positive and can be
sorted in decreasing order:λ1 ≥ λ2 ≥ λ3. These values are used to recoverR, t,
n andd. Introducing auxiliary variables we obtain:
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R = sUR′VT

t = Ut′

n = Vn′

d = sd′

s = det(U)det(V),

whered′ = ±λ2.

We have no knowledge about the sign ofd′, thus several solutions are possible:
eight when all the singular values are distinct, four when two singular values are
equal and an indetermination when the three are equal.

Once we knowC, we computeU, S andV by means of the SVD Algorithm.
The new unknown parameters are entries of matricesR′, t′, n′. Further,d′ ands
have also to be computed. Writingn′ = (a1, a2, a3)

T whereai are as follows:

a1 = ±

√

λ2
1 − λ2

2

λ2
1 − λ2

3

a2 = 0

a3 = ±

√

λ2
2 − λ2

3

λ2
1 − λ2

3

.

So far, we can not computen from theai’s. If we know that a pointX is projected
by the first camera asx = (x, y, 1)T , the entries ofn should satisfy the following
inequality:

nTx

d
> 0,

andd holds:

h7x + h8y + h9

d
> 0.

These inequalities are the main result of Proposition 4 in [6] and are used to re-
duce the number of solutions. The knowledge of the pointx allows to compute
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the sign ofd′, therefored is determined. Instead of usingX in these inequalities,
we usex because this point is an element of the equivalence class generated by
the ray that begins at the optical center throughX.

Up to nown′ and d′ are already known, this implies that it is possible to de-
terminen andd. It is time to analyze the singular values of the collineation C.
Whenλ1 > λ2 > λ3 andd′ > 0 we obtain:

R′ =





cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)





where:

sin(θ) =
(λ1 − λ3)a1a3

λ2

cos(θ) =
λ1a

2
3 + λ3a

2
1

λ2

andt′ = (λ3 − λ1)(a1, 0,−a3)
T . Whenλ1 > λ2 > λ3 andd′ < 0 we obtain:

R′ =





cos(θ) 0 sin(θ)
0 −1 0

sin(θ) 0 −cos(θ)





where:

sin(θ) =
(λ1 + λ3)a1a3

λ2

cos(θ) =
λ3a

2
1 − λ1a

2
3

λ2

.

The translation vectort′ is equal to:−(λ1 + λ3)(a1, 0, a3)
T .

2.9.1 Degenerate configurations

Faugeras and Lustman in [6] describe some camera motions that generate con-
figurations classified asdegenerations, mainly due to the mathematical structures
used in that work. Degenerate configurations are present when there are singular
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valuesλi with an order of multiplicity greater than 1. These degenerate cases are
as follows:

• Double singular value: the camera displacement is normal tothe reference
plane, in front of the physical reference plane structure.

• Triple singular value: the camera displacement is normal tothe reference
plane. The second camera is located behind of the physical reference plane
structure.

• Triple singular value: caused by a null displacement of the camera. In this
case, we get apure rotationdisplacement.

• Numerical errors arising from calculations performed by the corner detec-
tor, point matching algorithm or homography fitting stage that can lead to
any of the previous cases, see [10, 14].

2.10 The Xu Algorithm

In this section, we describe an algorithm that allows us to determine the focal
distances for both cameras using two inter-image homographies. In [25], Xu et
al. describe an algorithm to compute camera calibration andstructure parameters.
Using the theory developed in [25], we are able to compute thefocal distances of
the two cameras in our setting.

Xu’s method assumes that only two inter-image homographiesare available and
computed by hand: selecting two clusters of correspondencepairs in the two views
and later determining the two transfer functions with thesepairs. The two trans-
fer functions are needed in order to compute the second epipole e′ by solving a
generalized eigenvector problem derived from equation (2.15): e′ = H1e. The
generalized eigenvector problem is as follows:

H1e ∼ H2e ∼ e′ (2.16)

This algorithm follows the same idea from Faugeras and Lustman, i.e. it makes
use of relation (2.4):H ∼ K2(R−tvT )K−1

1 to extract both focal distancesf1 and

f2, motion parametersR andt, and structure parametersv =
n

d
. The intrinsic

camera matrices areK1 = diag(f1, f1, 1) andK2 = diag(f2, f2, 1) respectively.
From relation (2.4) we obtain:
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H1 ∼ K2RK−1
1 − K2tv

TK−1
1 .

To eliminate the∼ symbol, we use a scalar values ∈ R − {0} as follows:

sH1 = K2RK−1
1 − K2tv

TK−1
1 ,

from [25] we know thate′ ∼ K2t and using a not-null scalara we obtaine′ =
aK2t, then:

sH1K1 − e′mT = K2R, (2.17)

wherem = av andm = (m1,m2,m3)
T . Multiplying each side of the equation

by its transpose, we get:

(sH1K1 − e2m
T )(sH1K1 − e2m

T )T = (K2R)(K2R)T ,

therefore:

(sH1K1 − e2m
T )(sKT

1 HT
1 − meT

2 ) = (K2R)(RTKT
2 ).

We know thatK2
1 = K1K

T
1 = KT

1 K1, then:

s2H1K
2
1H

T
1 + me2e

T
2 − s(H1K1meT

2 + e2m
TK1H

T
1 ) = K2

2, (2.18)

wherem = ||m||2 = mTm.

Equation (2.16) is linear with respect to a seven-dimensional vector:

p =





















s2f 2
1

sf1m1

sf1m2

sm3

m
s2

f 2
2





















, (2.19)

thereforeLp = q. Matrix L is defined as follows:
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L =

















h2
1 + h2

2 −2e1h1 −2e1h2 −2e1h3 e2
1 h2

3 −1
h1h4 + h2h5 −e1h4 − e2h1 −e1h5 − e2h2 −e1h6 − e2h3 e1e2 h3h6 0
h1h7 + h2h8 −e1h7 − e3h1 −e1h8 − e3h2 −e1h9 − e3h3 e1e3 h3h9 0

h2
4 + h2

5 −2e2h4 −2e2h5 −2e2h6 e2
2 h2

6 −1
h4h7 + h5h8 −e2h7 − e3h4 −e2h8 − e3h5 −e2h9 − e3h6 e2e3 h6h9 0

h2
7 + h2

8 −2e3h7 −2e3h8 −2e3h9 e2
3 h2

9 0

















,

wherehi are the entries of the inter-image homographyH1, andq = (0, 0, 0, 0, 0, 0, 1)T .
L andq are uniquely defined byH1 ande′.

Due to the non-linearity in the entries ofp, it is not possible to obtain a unique
solution forp. Therefore, we use the following linear system:

p = L+q + λg, (2.20)

with p = (pi), L+ = LT (LLT )−1 andg = (gi) is the null-vector ofL. Using this
linear system and (2.19), we build the following equation:

p2
2 + p2

3 +
p1p

2
4

p6

= p1p5, (2.21)

that holds:

s2f 2
1 (m2

1 + m2
2 + m2

3) = s2f 2
1 m,

remember thatm = m2
1 + m2

2 + m2
3. Using equation (2.21) we obtain:

p6

[

p2
2 + p2

3 − p1p5

]

+ p1p
2
4 = 0, (2.22)

this is a cubic equation with respect toλ and it is solved forλ using the algorithm
described in [14], page 183. Assuming that all the three solutions are real, we
obtainλ1, λ2 andλ3 as candidate solutions. These values are used to determine
p. In [25], it is reported that only two solutions are considered and the one that is
chosen is that which satisfies thatR has a positive determinant in equation (2.17).
As it has been established in [25], the remaining solution ofthe cubic equation is
not considered, as it has been experimentally observed thatit tends to zero, i.e.
the cubic equation degenerates in a quadratic equation.
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Chapter 3

Proposed multi-linear approach

Linear methods are important due to the fact that they do not need an initialization
guess and are more stable than non-linear methods whose performance strongly
depends on the election of the initial approach. Furthermore, some of the non-
linear methods require to compute first or second derivativesthat can be appro-
ximated by several methods [13] and when the model to approximate is highly
non-linear, the right choice of the optimization method depends on the experience
of the user. On the other hand, the method that we describe in this chapter allows
us to face our problem without derivatives, initializationguess or advanced pro-
gramming skills to ensure convergence [14].

As it has been mentioned in the first chapter, we have developed a novel linear
mathematical method in order to determine the camera matrices, the relative loca-
lization of the cameras, a scene reconstruction and a dense segmentation from the
views. Our method is divided into two stages, the first one computes the epipole
e and all the required vectorssref,j from Mij matrices. The second one is an
iterative numerical method that incorporates the support1 of each homography in
order to improve the previous estimation.

The epipole and vectorssref,j are used to rewrite all the non-reference homogra-
phies. Using the reference homography we compute the focal distances by means
of the algorithm developed by Xu et al. Once the camera matrices are computed,
localization and reconstruction parameters are calculated using a Faugeras-like al-
gorithm.

1Pairs of correspondences associated to a plane.
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Our work introduces three linear systems in order to computethe first epipole
and the family of vectorssref,j. The first linear system is used to extract the
epipole and the intersection between planes. The last two are formed by the pairs
of correspondences in such a way that the previous estimations of the epipole and
vectorssref,j are improved.

In the literature, two non-linear formulations are used to solve the localization
and reconstruction problems. These are as follows:

• In [2], computation of the fundamental matrix and all the homographies is
carried out by means of a non-linear cost function:

E =
m

∑

j=1

n
∑

i=1

(d2(x
′

i,Hjxi) + d2(xi,H
−1
j x′

i)),

whereπj stands for thej-th planar surface andxi ↔ x
′

i ∈ πj. In this
work, the authors propose a parametrization of the fundamental matrix that
depends on the finite or infinite nature of the epipoles. The goal is to min-
imize E, by incorporating constraints in the homographies inducedby the
epipolar geometry and by the planar surfaces.

• In [23], another non-linear formulation is presented in order to recover all
the homographies from dense intensity image registering, the epipolee and
the vectorssref,j. This formulation is as follows:

E(Href , e, sref,1, · · · , sref,n) =
n

∑

k=1

∑

x

wk(x)||I2(x
′

k) − I1(xk)||
2,

wherewk(x) ∈ [0, 1] acts as a membership variable forx, with respect to
thek-th planar surface.I1 andI2 are the two views containing the projection
of a multi-planar scene. The goal is the minimization ofE by means of the
Levenberg-Marquardt method.

On the other hand, our work deals with the extraction of the epipole and the vec-
torssref,j from the following linear form2:

2The origin of this stack of matrices will be explaining below.
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[esT
ref,1 esT

ref,2 · · · esT
ref,m],

after recovery of the above parameters, the iterative stageis triggered. In this
stage, two additional linear systems are solved. Our goal isto incorporate the
support of the planar surfaces in order to extract the epipole and the family of
vectorssref,j from the relation:Hj ∼ Href (I + esT

ref,j). This is a multi-linear
form for the epipolee and vectorssref,j, and because of this, two linear systems
are presented in order to recover those vectors.

A sketch of our algorithm is depicted in Algorithm 1.

Algorithm 1 Localization, reconstruction and segmentation of multi-planar
scenes using two views.
Require: Two views of the same multi-planar scene. The RANSAC threshold.

The maximum number of iterations.
Ensure: Localization, reconstruction and dense support of the planar surfaces.

1: Using a corner detector, image features are obtained and matched using the
ZNCC correlation measure (2.2).

2: RANSAC is used to fit the linear system in (2.7).
3: The SVD Algorithm is used to recover the epipole and the intersections be-

tween planes (Section 3.1).
4: All the non-reference homographies are rewritten (equation 2.13).
5: Call Algorithm 2 for the iterative stage (section 3.2).
6: The Faugeras-Lustman Algorithm is used to recover the orientation of the

second camera (Section 3.4).
7: Recovery of translation and reconstruction parameters using all the homogra-

phies (Section 3.5).
8: Dense segmentation is conducted at the first view for each planar surface (Sec-

tion 3.6).

3.1 Epipole and intersections between planes from
planar homologies

Planar homologies are calculated between any two planes, i.e. these matrices
Mi,j are determined for alli < j ∈ {1, · · · , n}, wheren > 1 is the number of

31



Algorithm 2 Iterative stage

Require: Input parameters: correspondence pairs, vectorse ands
′

ref,j, homogra-
phies. The maximum number of iterations.

Ensure: Improved estimation of the input parameters.
1: repeat
2: The correspondence pairs are refined using the segmented matches ob-

tained by means of RANSAC and vectorssref,j.
3: The vectorssref,j and the first epipole are re-estimated.
4: Reference homography is re-estimated using all the matches.
5: All the non-reference homographies are composed using the reference ho-

mography, the first epipole and the vectorssref,j.
6: until maximum number of iterations reached or solution converges.

planes in the scene. From (2.10) we know thatMref,j = I + esT
ref,j, thus every

planar homology codifies the localization parameters inside the epipole and the
reconstruction data with the vectorsref,j.

In order to obtain the epipole and the vectorssref,j, we define the matrixGref,j

asGref,j = Mref,j − I, this matrix has rank equal to one. We use the following
useful facts:

Gref,jG
T
ref,j = α2eeT

GT
ref,jGref,j = β2sref,js

T
ref,j ,

whereα2 = ||sref,j||
2 andβ2 = ||e||2 are real numbers. From [14] we know that

the singular value decomposition ofGref,j is USVT , whereS = diag(λ, 0, 0) is
a diagonal3× 3 matrix,U andV are orthogonal matrices of the same dimension
asS. The SVD decomposition ofGref,j is:

Gref,j = [U1U2U3]





λ 0 0
0 0 0
0 0 0



 [VT
1 VT

2 VT
3 ],

whereUk andVk are thek-th columns of matricesU andV, respectively.

Under ideal conditions (noise free data) all the above results hold; but when work-
ing with real images,S does not always have unitary rank. In this case we take the
first singular value and the remaining are forced to be zero [10, 14]. In fact, the
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SVD Algorithm applied toGref,jG
T
ref,j gives usUS2UT , and forGT

ref,jGref,j we
obtainVS2VT . These results are derived from the fact thatU andV are orthog-
onal matrices. Using this trick we recovere andsref,j from the planar homology
Gref,j, as follows:

e = λU1 (3.1)

sref,j = λV1,

whereλ is the largest element ofS.

For all the possible planar homologies that can be computed,we compose the
following stack of matrices:

G = [Gref,2Gref,3 · · ·Gref,n], (3.2)

in this setting,G has dimension3× 3(n− 1) and rank equal to one. The singular
value decomposition ofG gives usG = USVT , so thatU has size3× 3(n− 1).
S = diag(λ, 0, · · · , 0) andV both have dimension3(n− 1)× 3(n− 1). Without
loss of generality, we suppose that the first planar surface is the reference plane.

The epipole is calculated in the same way as above, by applying the SVD Al-
gorithm toGGT . Matrix V = [V1 · · ·Vn] is computed applying the SVD Algo-
rithm toGTG = VS2VT . Vectorssref,j are stored intoV1 as follows:

V1 =
1

λ











sref,2

sref,3
...

sref,n











.

So far, we have described the first part of our method, in the next lines we will
depict the second stage: the iterative step.

3.2 Iterative method incorporating the support of
the homographies

This stage uses the support of each homography to improve theepipole and the
family of vectorssref,j. Computation of this support is obtained by means of
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the RANSAC paradigm and could have some outliers, i. e. pairs that belong to
another plane or are not part of the multi-planar scene.

3.2.1 Improving the support of the homographies.

The family of vectorssref,j help us to identify and reject some outliers, because
these vectors lie in the intersection between planes in the first view. When the
whole image only captures planes represented by the computed homographies, all
the outliers belong to any other planar surface.

The first step for outliers rejection consists in computing signed distances to lines
sref,j for the center of mass of the support of each homography. The center of
mass is computed once, at the beginning of the iterative stage. Suppose that we
are working with the reference plane, then the center of masstested on a particular
sref,j give us a not null value if this point does not vanishes in the line sref,j.

The vectorsref,j is a straight line, and when the signed distance of the center
of mass to this line equation is computed, a real number is obtained. We are only
interested in the sign of this number. The sign of this point on the line, is used
to evaluate all the support of the reference plane. The points in the first view,
which have a different sign than the obtained by the center ofmass, are rejected or
classified as outliers for this planar surface. This outlierrejection method is very
simple but effective in our setting. Figure 3.1 shows the previous idea.

Figure 3.1: Clustering correspondence pairs. Suppose that these straight lines are
any pair of vectorssref,j, then for the support of the reference plane, some points
are treated as inliers (+ mark) and the remaining points as outliers.
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The sign of the center of mass is computed considering all thevectorssref,j. Each
point in their support is evaluated over the complete set of vectorssref,j. A point
is rejected if a sign is different than the one of the center ofmass at least once.
The outliers are not deleted in the original support. They are only removed in the
current iteration of our method.

For each available support, all of their elements are evaluated as mentioned above
until convergence. In our setting, five or less iterations were necessary.

Once the support of each planar surface is refined, the next task consists in in-
corporating this updated support to improve the epipole andthe family of plane
intersections.

3.2.2 Computing the intersection between planes.

From equation (2.13), we know that each homography can be written asHj ∼
Href (I + esT

ref,j), whereHref is the reference homography. Considering any
planar surface and its associated support, we can write the transfer equation as:

x
′

∼ Href (I + esT
ref,j)x, (3.3)

in order to compute thesref,j vector from this equivalence class, we need to do
some algebraic operations. Our goal is to transform (3.3) into a design matrix for
a linear system. The only allowed operation under the equivalence class operator
∼ is the product by any non null scalar factor. Exploiting thisidea we do the
following algebraic operations:

x
′

∼ Href (I + esT
ref,j)x,

H−1
refx

′

∼ (I + esT
ref,j)x,

H−1
refx

′

∼ x + exT sref,j .

Let p = H−1
refx

′

, and by using the[·]× operator as defined in (2.1), it follows:

[p]×p ∼ [p]×(x + exT sref,j),

0 ∼ [p]×(x + exT sref,j).

When dealing with equivalence classes,a ∼ 0 implies thata = 0, therefore:
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([p]×exT )sref,j = −[p]×x. (3.4)

From this equation, we realize that we have formed a linear systemAsref,j = b,
whereA = [p]×exT is a3 × 3 matrix andb = −[p]×x is a column vector with
three elements.

This last result holds for any pairx ↔ x
′

. In order to incorporate all the ele-
ments in the current support, we form an over determined linear system that can
be solved forsref,j by means of the SVD Algorithm.

Let xi ↔ x
′

i be any pair in the support, with their associated matricesAi and
bi defined as above, then the over determined linear system is:











A1

A2
...

An











sref,j =











b1

b2
...

bn











, (3.5)

wheren is the number of elements inside the support.

3.2.3 Computing the epipole.

Heretofore, we have depicted a linear system for computing all the sref,j vectors,
the next step consists in computing the epipole. Remember that the epipole is
common for all the elements in the scene.

We use the same equivalence as above:

H−1
refx

′

∼ (I + esT
ref,j)x,

which can be simplified as follows:

H−1
refx

′

∼ x + e(sT
ref,jx),

if a,b are two vectors with real entries, it follows thata · b is a real number,
therefore definingγ ≡ sref,j · x we obtain:

H−1
refx

′

∼ x + γe,
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following the same previous ideas, we definep = H−1
refx

′

, we rewrite this equiv-
alence as:

0 ∼ [p]×(x + γe),

that becomes the following equation:

−[p]×x = γ[p]×e. (3.6)

So far we have obtained a linear system for epipole recovery.We extend our
mathematical notation. Let

A
j
i = sref,j · xi,j[H

−1
refx

′

i,j]×,

be a3 × 3 matrix, wherexi,j ↔ x
′

i,j is the i-th pair in the support for thej-th
planar surface. And considering:

b
j
i = −[H−1

refx
′

i,j]×xi,j,

as a three dimensional column vector, thus the linear systemincluding all the
support obtained by RANSAC is as follows:

























A1
1

...
A1

n1

...
Am

1
...

Am
nm

























e =

























b1
1
...

b1
n1

...
bm

1
...

bm
nm

























, (3.7)

wherem is the total number of planar surfaces in our setting, andnj is the total
number of elements in thej-th support. Each pairxi,j ↔ x

′

i,j induces a3× 3 ma-
trix A

j
i and a vectorbj

i with three entries. As has been mentioned above, equation
(3.7) can be solved by means of the SVD Algorithm for vectore.

Heretofore we have developed a novel mathematical tool in order to improve the
estimation for the epipole and all the vectorssref,j associated tom homographies
obtained by means of RANSAC. As commented above, localizationparameters
are codified by the epipole relatione ∼ K1R

−1t and reconstruction parameters
by sref,j ∼ K−T (vref − vj).
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3.2.4 Re-estimating homographies.

The reference homographyHref is computed using all the available support ob-
tained by RANSAC. The associated support that belongs to the reference plane
is directly used to computeHref . For all the remaining planar surfaces, their
associated support satisfies relation (3.3), i. e.

x
′

i,j ∼ Href (I + esT
ref,j)xi,j.

This relation is used to computeHref . For each pairxi,j ↔ x
′

i,j, the pointy
′

i,j is
defined as:yi,j = (I + esT

ref,j)xi,j. The new pair isx
′

i,j ↔ yi,j. This procedure is
used for all the pairs that are outside the reference plane.

The linear system (2.7) for computingHref is used with the set of correspon-
dences:x

′

i,j ↔ yi,j.

All the remaining homographies should contain the same localization parame-
ters, therefore these homographies are composed by using relation (2.13):Hj ∼
Href (I + esT

ref,j).

3.3 Computing focal distances

Once the epipole and the reference homography have been determined by our
method, we use the algorithm in [25] by Gang Xu, et al., to recover the focal dis-
tances of both cameras. Remember that in Section 2.1 we said that the principal
point on each camera is at(0, 0)T . With our method, we do not need to cluster the
key points by hand. Furthermore, we do not face stability problems associated to
the solution of the generalized eigen-vector problem. Thisprocedure is applied
by Xu to determine the epipole.

In [24], Vigueras et al. present experimental results associated to calibration tasks
in real-time applications. [24] also analyzes the implications of assuming that the
principal point is fixed at the center of image plane. This assumption is funda-
mental in our work.
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3.4 Computing the orientation

Given the camera matricesK1, K2, we obtain the associated collineation for each
homography, i. e. we compute homographies expressed in canonic coordinates.
Collineations are denoted byCj, and are defined as follows:

Cj = K−1
2 HjK1.

The Faugeras-Lustman Algorithm [6] can be applied to the reference homography
only, but this requires some knowledge about the camera motion. The theory de-
veloped by Faugeras and Lustman shows how to reduce the number of solutions
to two when considering only one planar surface, indeed two planes are necessary
in order to estimate in an automatic way the orientation of the second camera.

The SVD Algorithm is applied to all the collineationsCj. Analyzing their sin-
gular values helps us to reject non-feasible solutions. Thelast step consists in
composing the rotation matrix using only singular values.

In fact, the translation and reconstruction parameters canbe obtained by means
of the Faugeras-Lustman Algorithm, but in our experiments with real data, these
parameters were not always computed with the desired precision. Thus, we pro-
pose a new approach in Section 3.5.

3.5 Translation and reconstruction

Using all the computed collineationsCj and relation (2.4), we can depict:

Cj = R − tvT
j .

DefiningDj = R − Cj, i. e. Dj = tvT
j , we wish to extract vectorst andvj

from Dj, this goal is achieved by applying the ideas described in Section 3.1.
Extraction oft is the same problem as the epipole recovery and vectorsvj are
computed in the same way as vectorssref,j.

3.6 Segmentation on the first view

The vectorssref,j are used in order to create a partition on the first view. This
partition allows us to recover the dense support for all the detected planar surfaces.
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This simple strategy gives a well-delimited segmentation,in the cases where only
the detected planar surfaces were projected by both cameras. On the other hand,
if non-planar surfaces are projected by the cameras, the whole dense support of
each detected planar surface is recovered, but this may include points that belong
to non-planar structures in the scene. Thus, dense segmentation is only reliable
when applied to polyhedral scenes.
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Chapter 4

Results

All the datasets used in this work are home-made. In the current literature there is
no datasets available to compare our results with previous research. Most bench-
mark databases are oriented to the problem of stereo views with well aligned
epipolar lines. However, these sets of data [15] may be suitable for compar-
ing some of the segmentation problems but not the camera calibration stage that
is the basis to compute the other data: camera localization and scene structure.
The problem is that rectified epipolar lines imply that the two camera focal axis
are concurrent which is a degenerate case for Xu’s method (and for all the self-
calibration methods actually). Furthermore we do not have aphysical reference
frame that provide us with reliable data that allows to test the accuracy of our re-
sults.

As it has been established in previous sections, our work computes focal distances
of both cameras that are used to determine localization and reconstruction para-
meters. Dense segmentation is carried out directly from theoutput of the iterative
stage (second stage of our method), i.e. dense segmentationmakes use of the refe-
rence homography and non-reference homographies that are composed using the
epipole and vectorssref,j.

In this section, focal distances are also computed with the method described in
[28] by Z. Zhang in order to make a practical comparison. The output of Zhang’s
method is used as a reference for our method. We can not use [28] as ground-truth
for the method developed in this work, due to Zhang’s method is model-based, i.e.
it needs prior knowledge of the observed planar object, in contrast with our theory
that only depends on the movement of the camera and on the initial structure of
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the scene, i.e. that it contains planar structures.

4.1 Experiments

We performed several experiments with our own datasets withthe following fea-
tures:

• fixed scene, i.e. no mobile objects in the scene,

• no objects occluding between the camera and the surfaces,

• same camera with fixed parameters for both views.

We arrange our experiments in the following way: in the first experiment we in-
troduce a complete execution of our method, and we also present localization and
reconstruction parameters computed with Zhang’s method for the same dataset.
The second experiment computes the focal distance of the camera with 26 pairs of
images. The following two experiments show degenerate configurations in which
our method can not be applied. The last three experiments runwith datasets rec-
ollected in outdoor environments.

4.1.1 Interpreting results

All the experiments in this section implement the algorithms described in chap-
ters 2 and 3. We compute translation and rotation vectors that assume the global
reference frame at the first camera center. Figure 2.1 shows the reference frame
used in this work, we reproduce this image in Figure 4.1.
The translation vectort = (t1, t2, t3)

T must be interpreted as:

• t1 is the displacement of the camera on theX axis. If we are observing the
scene, a positive value int1 means that a step to our left was made.

• The displacement of the camera on a vertical line, perpendicular to theY
axis, is reflected int2. A positive value int2 means that the camera shifted
upwards.

• t3 measures the displacement of the camera on theZ axis. t3 is positive if
we got closer to the scene, with normal direction respect to theXY plane.
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Figure 4.1: Pinhole camera geometry.C is the camera center andp is the principal
point. The focal distance is denoted byf . The image plane is placed in front of
the camera center.

The rotation matrixR is directly computed by means of the Faugeras-Lustman Al-
gorithm, see Section 3.4. In our experiments we do not show the rotation matrix,
instead we use a rotation vectorr with a rotation angleθ, see [10] for a theoretical
description of the algorithm used to obtain(r, θ) from R and [3] for implementa-
tion notes. A rotation vectorr is used to indicate that we turn the camera around
this axis with an angleθ. One advantage of using the rotation axis instead of the
rotation matrix is due to the easy interpretation of results.

Execution time

The execution time of each experiment depends on:

• I/O functions.

• Images size.

• Number of detected features and matching stage.

• Number of plane structures detected in the scene.

• Number of iterations, among other implementation and external factors.

In this work, there is no high-level algorithm with a fixed execution time, even so
the current version of our implementation brings the desired results in less than
two seconds when loading the input images from the file system. This execution
time is the average of several experiments, and can be reduced if the image data is
acquired from frame-buffer devices.
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4.1.2 Experiment 1: Benny the Ball

This experiment is carried out with the two views shown in Figure 4.2 (a,b). Al-
gorithm 1 is used in the following experiment. The first step consists of running
a feature detector algorithm on the two views. In this work, the Harris corner de-
tector is used with standard values [3]. For the ZNCC, the window W is a region
of 11 × 11 pixels. The RANSAC threshold is2.0 as defined in [10].

The original size of these views is640 × 480. The iterative stage of our method
only needs of five iterations to reach the desired visual accuracy1. The vectors
that are calculated in this experiment are:e, sref,2, sref,3 ands2,3. Thes2,3 vector
is used to describe the intersection between the two non-reference planes. Figure
4.2 shows the images resulting from this experiment.

Localization and reconstruction using focal distances computed with our al-
gorithm by means of Xu’s method

Using the algorithm developed in this work, we obtained thisfocal distance:f =
996.630, therefore the camera matrix is as follows:

K =





996.630 0 0
0 996.630 0
0 0 1





Localization and reconstruction parameters are computed with this matrix by
means of the Faugeras-Lustman Algorithm:

• rotation axis between views:(0.00761, 0.11469, 0.01837)T ,

• angle of rotation between views:6.66955 degrees,

• translation vector:(0.48372,−0.03769,−0.04429)T ,

• normal vector to the reference plane:vref = (−0.15566,−0.20573, 0.96615)T ,

• normal vector to the2nd plane:v2 = (0.63066,−0.14145, 0.76306)T ,

• normal vector to the3rd plane:v3 = (−0.13737, 0.84533, 0.51628)T ,

1Visual accuracy means that we stop our method when the segmentation stage is finished.
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Figure 4.2: Experiment 1: Benny the Ball. (a,b) are two different views of the
same multi-planar scene. (c) segmented correspondences for the detected planar
surfaces. Pairs in the reference plane are red. Pairs for thesecond and third plane
are green and blue respectively. (d) first approximation of the segmentation stage.
(e) improvement of the support of each planar surface. (f) final segmentation.
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• angle between the reference plane and the2nd plane:122.0268 degrees,

• angle between the reference plane and the3rd plane:110.2554 degrees,

• angle between the2nd and3rd plane:101.8432 degrees.

Localization and reconstruction using focal distances fromZhang’s method

Using Zhang’s method we compute the next camera matrix:

K =





709.676 0 0
0 731.667 0
0 0 1



 .

This camera matrix is used to compute the localization and reconstruction para-
meters by means of the Faugeras-Lustman Algorithm:

• rotation axis between views:(0.00810, 0.09255, 0.02354)T ,

• angle of rotation between views:5.49100 degrees,

• translation vector:(0.42713,−0.02740, 0.01432)T ,

• normal vector to the reference plane:vref = (−0.34047,−0.26459, 0.90226)T ,

• normal vector to the2nd plane:v2 = (0.84644,−0.17245, 0.50379)T ,

• normal vector to the3rd plane:v3 = (0.04125, 0.97386, 0.22335)T ,

• angle between the reference plane and the2nd plane:102.2390 degrees,

• angle between the reference plane and the3rd plane:94.02559 degrees,

• angle between the2nd and3rd plane:91.17444 degrees.

These last two angles should be90 degrees, roughly. Figure 4.2 (c) shows the
support of each planar surface. This support is segmented via the RANSAC
paradigm. Figure 4.2 (e) shows the improved support obtained by means of the
vectorssref,j. The estimation of the epipole and the family of vectorssref,j is
improved using this support. Figure 4.2 (d) shows the dense support of each de-
tected planar surface. This segmentation is improved in Figure 4.2 (f) via the new
iterative estimation of the epipole and vectorssref,j.
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As it can be observed from this experiment and from [10, 24, 25] the accuracy
of the focal distance is a fundamental parameter for the localization and recons-
truction tasks. Better results, in these two tasks, were obtained when using the
focal distance computed with the Zhang’s method.

4.1.3 Experiment 2

Experimentally it can be observed that the accuracy of Xu’s method strongly de-
pends on the quality of the segmentation of features. Xu usesa bundle adjustment
in order to improve all the computed parameters [25]. We do not use that resource
to improve the focal distance.

In this experiment we only compute the focal distance using 26 pairs of images.
The mean and the standard deviation of these parameters are as follows:

µ 868.70
σ 208.28

Comparing this result with the focal distance obtained by means of Xu’s method,
we observe that we are far from the ground-truth value:709.676. Usingµ as focal
distance for the same dataset used in the first experiment, weobtain:

• rotation axis between views:(0.00758, 0.09968, 0.01664)T ,

• angle of rotation between views:5.80664 degrees,

• translation vector:(0.47700,−0.04196,−0.03565)T ,

• normal vector to the reference plane:vref = (−0.16581,−0.22964, 0.95905)T ,

• normal vector to the2nd plane:v2 = (0.70908,−0.14175, 0.69073)T ,

• normal vector to the3rd plane:v3 = (−0.12112, 0.91702, 0.38002)T ,

• angle between the reference plane and the2nd plane:125.26958 degrees,

• angle between the reference plane and the3rd plane:79.98242 degrees,

• angle between the2nd and3rd plane:87.32818 degrees.

Localization parameters are closer to those from ground-truth focal distance than
the data resulted from our method using Xu’s method. We can also conclude that
reconstruction parameters were improved when comparing with our first result.
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4.1.4 Experiment 3: Books corner

For the images in Figure 4.3, it is not possible to segment thecorrespondences
when the camera movement is minimal. Although equation 2.4H ∼ K2(R −
tvT )K−1

1 can deal with zero translation and null rotation, it is not possible to
segment pairs of correspondences. Thus, we can not apply ourmethod to this
pair of similar images. The resulting reference homography tends to the identity
matrix when using almost the same camera for both views.

Figure 4.3: Experiment 3: Books corner. Two different views of the same multi-
planar scene. Segmentation of correspondences fails due tothe minimal camera
displacement.

4.1.5 Experiment 4

From [6] we know that a camera translation on the camera axis is a degenerate
movement that does not allow to do localization and reconstruction tasks. In Fi-
gure 4.4, the second image was obtained by means of a movementon the camera
axis with minimal rotation.

All the degenerate configurations described in [6] are inherited by our method, see
Sub-section 2.9.1.

4.1.6 Experiment 5: House’s facade

This experiment has been conducted in an outdoor environment, partially captur-
ing the facade of a house (Figure 4.5). For this experiment, only two planes are
detected with a RANSAC threshold of 1.0. The computed parameters are:
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Figure 4.4: Experiment 4. Two different (but very similar) views of the same
multi-planar scene. Segmentation of correspondences fails due to the type of
translation movement of the camera.

• rotation axis between views:(0.01264,−0.02440, 0.00899)T ,

• angle of rotation between views:1.65649 degrees,

• translation vector:(0.21152, 0.10370,−0.02991)T ,

• normal vector to the reference plane:vref = (−0.11049, 0.33498,−0.93573)T ,

• normal vector to the2nd plane:v2 = (−0.50111,−0.73967,−0.44920)T ,

• angle between the reference plane and the2nd plane:76.82519 degrees.

As can be seen in Figure 4.5, both images are close. This fact is reflected in
the computed parameters and only one iteration of our methodwas necessary.
Reconstruction parameters were calculated using the focal distances obtained by
means of Zhang’s method. The angle between the normals should be 90 degrees.

Segmentation results for this experiment are shown in Figure 4.6, reference plane
is red and second plane is green.

4.1.7 Experiment 6

This experiment has a similar dataset as before, in which only two planes are
detected, see Figure 4.7. RANSAC threshold was set to1.0, the computed para-
meters are:

• rotation axis between views:(−0.01633,−0.07638,−0.04577)T ,
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Figure 4.5: Experiment 5: House’s facade. Two different images partially captur-
ing the facade of a house.

Figure 4.6: Segmentation results for experiment 5: House’sfacade. (left) Segmen-
tation of planes obtained at the first stage of our method. (right) Segmentation is
improved after one iteration of our method.

50



• angle of rotation between views:5.18679 degrees,

• translation vector:(0.26049,−0.01733,−0.06164)T ,

• normal vector to the reference plane:vref = (−0.79572, 0.32820,−0.50903)T ,

• normal vector to the2nd plane:v2 = (−0.17599,−0.93412,−0.31055)T ,

• angle between the reference plane and the2nd plane:90.48458 degrees.

The angle between the normals is almost 90 degrees. With thisdataset, only one
iteration of our method was necessary. Focal distances werecalculated by means
of Zhang’s method.

Figure 4.7: Experiment 6. Another outdoor experiment, walland floor with almost
the same color and texture.

Figure 4.8: Segmentation results for experiment 6. (left) Segmentation of planes
obtained at the first stage of out method. (right) Segmentation is improved after
one iteration of our method.
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Figure 4.8 shows segmentation results for this experiment.In this figure, reference
plane is red and second plane is green. First segmentation iscarried out with
vector sref,2 computed at first stage of our method. Segmentation is improved
after one iteration at second stage.

4.1.8 Experiment 7: Wall and grass

Figure 4.9: Experiment 7: Wall and grass. In this experiment, several iterations
were necessary in order to align vectorsref,2 with the physical intersection of
planes.

Our last experiment, as in experiments 5 and 6, captures the facade of a house.
In this experiment the RANSAC threshold is1.2. In this experiment two planes
were detected, see Figure 4.9. Figure 4.10 shows segmentation results: reference
plane is red and second plane is green.

Figure 4.10: Segmentation results for Experiment 7: Wall and grass. (left) Seg-
mentation computed at the first stage of our method. (right) Segmentation of
planes is improved after seven iterations of our method.
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Seven iterations were necessary in order to align vectorsref,2 with the projection
of the physical intersection of the planes. The computed parameters are:

• rotation axis between views:(0.04163, 0.04834, 0.05576)T ,

• angle of rotation between views:4.85450 degrees,

• translation vector:(−0.46257,−0.11179,−0.48106)T ,

• normal vector to the reference plane:vref = (−0.74298, 0.63503, 0.21146)T ,

• normal vector to the2nd plane:v2 = (−0.75771, 0.16569, 0.63120)T ,

• angle between the reference plane and the2nd plane:143.289 degrees.

Zhang’s method was used to compute the focal distances involved in the re-
construction stage. The computed angled between planes should be 90 degrees
roughly.
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Chapter 5

Conclusions and Future Research

In this research, we have proposed a linear method to recoverthe camera cali-
bration parameters of two cameras and the structure of the main planar surfaces
projected by these cameras. Experimentally, we have observed that the accuracy
of the solution depends on the segmentation of the correspondence pairs, both at
the initial and iterative stages. The use of a feature detector in both views con-
strains our work to scenes in which texture is present. Another limitation of our
work consists of the segmentation of the dense support. An exact segmentation is
carried out only if the scene is perfectly polyhedral. In other cases, wrong pixels
may be considered as part of the support of each plane.

If a planar surface is not detected at the first stage of our method, it is not possible
to recover it at the iterative stage. Goodness of key point detection stage influences
significantly the matching process, therefore, accurate segmentation of correspon-
dences is conditioned by these two tasks. Determining the focal distances is not
an easy task, even if both cameras have the same parameters. Xu, in [25], attacks
the stability problem of camera calibration with a non-linear bundle adjustment,
carried out after determining the linear approximation of the focal distances.

The mathematical theory developed so far allows us to use minimal information,
i.e. two images. It only requires that the user gives the two views, the RANSAC
threshold and the maximum number of iterations for the iterative stage. This is
an advantage over the previous works, where an expert user supplies the corres-
pondence pairs [6, 25] or others where previous knowledge ofthe dense support
of each planar surface is required [17, 23, 25]. All previousworks that deal with
localization and reconstruction problems require the camera matrix.
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Ensuring homography consistency is one of the most important contributions of
our work. Although there exist previous works intending to deal partially or to-
tally with all the tasks that we cover, our work is theoretically more stable because
it is not based in explicit epipolar geometry computation.

The linear systems presented in this work allow us to use thisframework in real-
time systems for tasks such as map building, augmented reality and robot loca-
lization. As has been used in other referred works, abundle adjustmentcan be
conducted in order to improve the precision of the calibration and reconstruction
parameters. The use of our framework for video processing isdirect and may
require non-linear filtering theory as has been shown in [6, 16]. In order to ob-
tain a more user-independent system, radial distortion correction [10] might be
considered for future work.
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