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Introduccion

El uso de diseno de experimentos desempena un papel importante en varias

areas tales como Economia, Agro-industria, y Medicina.

Los ingenieros y cientificos se han ido capacitando en el conocimiento y
aplicacion del disefio de experimentos, y a partir de ahi han surgido nuevas areas
de aplicacion. Entre ellas el disefio robusto. La metodologia de disefio robusto es

un esfuerzo sistematico para alcanzar insensibilidad a los factores de ruido.

El supuesto es que hay dos tipos de factores que afectan a la caracteristica de
calidad. Estos se dividen en factores de control y factores no controlables o
dificiles de controlar. Estos factores se denominan respectivamente factores de

diseno y factores de ruido.

Los factores de ruido se dividen en dos categorias: factores de ruido externos y
factores de ruido internos. Los factores de ruido externos son fuentes de
variabilidad que vienen de fuera del sistema. Ejemplos de los factores de ruido
externos son factores ambientales tales como la temperatura ambiente, la presion
ambiente y la humedad. Los factores de ruido internos tienen esencialmente su
origen en las variaciones de los factores de control. Por ejemplo, el ruido interno
incluye las desviaciones de los valores objetivos en los factores de control

causadas por la manufactura, ensamble, y deterioro.

Cuando se disena un experimento, con frecuencia es imposible o costoso
controlar o eliminar la variacion debida a los factores de ruido externos. Sin
embargo, el experimentador tiene algiin control en la determinacion de los niveles
de los factores de ruido internos durante el disefio. La meta del disefio robusto es

permitir al experimentador elegir los niveles de los factores de control que
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optimizan la respuesta de interés, de tal manera que la variacion causada por los

factores de ruido sea minima [32] .

El diseno robusto se compone principalmente de tres etapas: el disefio robusto de

sistema, el disefio robusto de parametro y el disefio robusto de tolerancia [18]. El

diseno de sistema consiste en usar la fisica, las matematicas, la experiencia y el
conocimiento adquirido en un campo especifico, para desarrollar y seleccionar las
condiciones del diseio mas apropiadas. Una vez que la configuracion de un
sistema se establece, se determinan los ajustes nominales y las tolerancias de las
variables de diseno. El objetivo del disefnio robusto de parametro es encontrar los
ajustes optimos de los niveles de factores de control de manera que el sistema sea
insensible o menos sensible a los factores de ruido. El disefio robusto de
tolerancia es un proceso de equilibrio. Dicho de otro modo, el disefio de tolerancia
busca encontrar los ajustes optimos de las tolerancias de los factores de control,

tal que el costo total del sistema sea minimo [18] .

La formalizacién del disefio robusto fue iniciada por Genichi Taguchi. El introdujo
el enfoque llamado disefio robusto de parametro. Este enfoque se basa en
clasificar los factores en factores de control y de ruido, y luego encontrar los
ajustes para los factores de control que reducen al minimo valor la variabilidad

transmitida a la respuesta para los factores de ruido.

Taguchi propuso el uso de un producto cruzado de dos disefnios experimentales,
un diseno interno que contiene los factores de disefio y un disefio externo que
contiene los factores de ruido. Este producto cruzado es llamado disefio doble

arreglo ortogonal [10]. Las meétricas usadas por Taguchi para evaluar la robustez

de un diseno son la Funcion Cuadratica de Pérdida y la Razéon Senal a Ruido.

La estrategia experimental y el diseno recomendados por Taguchi han sido

criticados por varios autores. Las criticas principales son que el diseno doble
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arreglo ortogonal implica una gran cantidad de tratamientos y no considera

interacciones entre factores de disefio y de ruido. Mas detalle sobre la discusion y
las criticas del enfoque de Taguchi se puede encontrar en [22] y [33. Sin
embrago, Soren Bisgaard en el 2000, abri6 la discusion y la investigacion sobre la

interaccion entre los factores de control y ruido [30] .

Como alternativa al método propuesto por Taguchi, otros estadisticos (como Wu
et al.[16]) adoptaron el uso del disenio arreglo combinado de factores de disefio y

de ruido. Este método permite el analisis de interacciones entre ambos tipos de

factores.

Los disefios comunmente usados en conducir el disefio doble arreglo ortogonal o
el diseno arreglo combinado son disenos factoriales y disenos factoriales

fraccionados [03]. E. P. Box y Jones Jones [12] introdujeron el uso del disefio de

parcelas divididas para la experimentacion robusta.

La metodologia de superficie de respuesta es una herramienta excelente para
analizar los datos obtenidos del disefio arreglo combinado. Esta metodologia es
una coleccion de técnicas matematicas y estadisticas que son utiles para modelar
y analizar los problemas en los cuales una respuesta de interés depende de varias

variables, y el objetivo es optimizar esta respuesta.

La metodologia estadistica esencial para el diseno robusto que ha sido

extensamente aceptada, es la metodologia de superficie de respuesta dual. Se

estiman dos superficies, una para la media y otra para la varianza [0]] Se ha

introducido una modificacién. Esta modificacion se relaciona con la division de
factores de ruido dentro de dos grupos. El primer grupo consiste en factores

aleatorios y el segundo se compone de los factores de ruido para los cuales los
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niveles son fijos. Se simula el experimento con la computadora. De los datos

obtenidos mediante simulacion, se calculan la media y la varianza.

Los valores nominales de los factores que se obtuvieron en el experimento con el
tiempo sufren desviaciones, eso da lugar a evaluar las tolerancias. Se presenta la
necesidad de aplicar el método integrado de disenio de parametro y de disefio de

tolerancia. El objetivo adicional de minimizar el costo debido a la introduccion de

las tolerancias en el proceso compite con el objetivo de minimizar la varianza [0]] .

El tema de la superficie de respuesta dual modificada es la parte sustantiva de
esta tesina. Ademas se complementa un enfoque integral al disefio de parametro

y tolerancia que son las partes basicas del disefio robusto.

La tesina se subdivide en cinco capitulos:

El Capitulo 1 presenta el disefio doble arreglo ortogonal. Describe la estructura
experimental y las métricas usadas para evaluar la robustez. Se da un ejemplo
ilustrativo. La finalidad de este capitulo es dar el panorama general en el que se
basan los siguientes dos capitulos. Este capitulo tiene como componente resaltar
el impacto econémico que tiene el realizar un experimento en la industria. Este se
mide aplicando la funcion de pérdida y las senales a ruido. Lo que permite

resaltar las bondades del planteamiento propuesto por Taguchi.

El Capitulo 2 describe el diseno arreglo combinado, con énfasis en la superficie
de respuesta dual y superficie de respuesta dual modificada. Se presenta un
ejemplo ilustrativo. El resultado de este capitulo permitira tener una
generalizacion de la superficie de respuesta dual. Este contiene una interesante

aplicacion de la esperanza condicional.

El Capitulo 3 presenta el método integrado de disefio de parametro y de disefio de
tolerancia. El método para minimizar el costo total del proceso esta dado. Este
capitulo proporciona un proceso metodologico para integrar el diseno de

parametro y tolerancia. Este se ilustra con un ejemplo.
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El Capitulo 4 explica la aplicacion del diseno a parcelas divididas en la
experimentacion robusta. Tres ordenamientos de los factores de disefio con
respecto a los factores de ruido se presentan. Se da un ejemplo ilustrativo en el
cual los factores de ruido estan colocados en toda-la-parcela y los factores de

disefio en sub-parcelas.

El Capitulo 5 presenta las conclusiones generales de este trabajo.
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Introduction

The use of designed experiments plays an important role in several fields such as

Economy, Agro-industry, and Medicine.

Since engineers and scientists have become increasingly aware of the benefits of
using designed experiments, there have been many new areas of application. One
of the most important is in robust design. Robust design methodology is a

systematic effort to achieve insensitivity to noise factors.

The assumption is that there are two types of factors that affect the quality
characteristic. These are the control factors and the uncontrollable or difficult to
control factors. They are respectively referred to as design factors and noise

factors.

Noise factors can be further divided into two categories: external noise factors and
internal noise factors. External noise factors are those sources of variability that
come from outside of the system. Examples of external noise factors are
environmental factors that a system is subject to, such as ambient temperature,
ambient pressure and humidity. Internal noise factors are essentially from the
variations of control factors. Internal noise could include deviations from the
target values of control factors caused by manufacturing, assembly, and

deterioration.

While designing an experiment, it is frequently impossible or very difficult or
expensive to control or eliminate sources of variation due to external noise
factors. However, the experimenter has some control on setting the levels of
internal noise factors during the design. The goal of robust design is to enable the

experimenter to choose the levels of the control factors that optimize a defined
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response while minimizing the variation imposed on the process via the noise

factors [32].

Robust design is mainly composed of three stages: robust system design, robust

parameter design and robust tolerance design [18]. Robust system design

consists of using physics, mathematics, experience and knowledge gained in a
specific field to develop and select the most appropriate conditions of the design.
Once the configuration of a system is finalised, the settings of the nominal levels
and the corresponding tolerances need to be determined. Robust parameter
design aims at finding the optimal settings of control factors so that the system is
insensitive or less sensitive to noise factors. Robust tolerance design is a
balancing process. It aims to find the optimal settings of tolerances of the control

factors so that the total cost of the system is minimal [18].

The formalization of robust design was initiated by Genichi Taguchi. He
introduced an approach referred to as robust parameter design. His approach is
based on classifying the factors as either controllable or noise factors, and then
finding the settings for the controllable factors that minimize the variability

transmitted to the response from the noise factors.

Taguchi proposed the use of a cross-product of two experimental designs, known

as product array design or double orthogonal array design [10]. This consists of

an inner array containing the design factors and an outer array containing the
noise factors. For each combination of design factors, the same array of noise
factors is run. The metrics used by Taguchi for evaluating the robustness of a

design are the Quadratic Loss Function and the Signal-to-Noise Ratio.

Experimental strategy and design advocated by Taguchi have been criticized by
various authors. The main criticism is that the double array design involves a

large amount of runs and does not consider interactions between design and
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noise factors. Details of discussion and criticism of Taguchi’s approach can be

found in [22] and [33]. However, in 2000, Soren Bisgaard opened the discussion

and the investigation about interactions between the design and noise factors

[30].

As an alternative to the method proposed by Taguchi, other statisticians (such as
Wu et al. [16]) have adopted the use of combined array design which contains

controllable and noise factors. This method permits the analysis of interactions

between both kinds of factors.

The designs commonly used in conducting double orthogonal array design or

combined array design are factorial and fractional factorial designs [03]. George

E. P. Box and Jones Jones [12] have introduced the use of split- plot design for

robust experimentation.

Response surface methodology is an excellent tool for analysing the data obtained
from combined array design. This is a collection of mathematical and statistical
techniques that are useful for modeling and analysing problems in which a
response of interest depends on several variables, and the objective is to optimize

this response.

The statistical methodology underlying robust design, that has by now become
the most widely accepted, is the dual response surface methodology which

estimates two surfaces, one for the mean and one for the variance of the quality
characteristic [OZI] A modification has been introduced. This modification is
related to the division of the noise factors within two groups. The first group
consists of random factors and the second is composed of the noise factors for

which the levels are fixed. The experiment with the computer is simulated. From

the data obtained by simulation, the mean and the variance are calculated.
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When the design scope is extended to the specification of allowable deviations of
parameters from the nominal settings (tolerances), the integrated parameter and
tolerance design problems arise. The additional objective of minimizing the

production costs needed to fulfil tolerance specifications will compete with the

minimum variance objective [OJ]

The topic of modified dual response surface is the substantive part of this thesis.
In addition, the thesis is completed by an integrated approach of parameter

design and tolerance design, which are the basic parts of robust design.

The thesis is subdivided into five chapters:

Chapter 1 presents Double Orthogonal Array Design. It describes the
experimental structure and the metrics used to evaluate the robustness. An
illustrative example is given. The purpose of this chapter is to give a general view
on which the following two chapters are based. The chapter emphasizes the
economic impact of conducting designed experiments in the industry. The impact
is measured by applying the Quality Loss Function and the Signal-to-Noise Ratio.
These highlight the aspects of robustness proposed by Taguchi.

Chapter 2 describes Combined Array Design. Emphasis is given to Dual Response
Surface and Modified Dual Response Surface with an illustrative example. The
results of this chapter permit a generalization of the Dual Response Surface. This

contains an interesting application of the conditional expectation.

Chapter 3 presents the integrated method of Parameter design and Tolerance
design. The method for minimizing the overall cost of the process is given. This
chapter provides a methodological process of applying the integrated method of

Parameter design and Tolerance design. The method is illustrated by an example.
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Chapter 4 explains the application of split-plot designs in robust experimentation.
Three arrangements of design and noise factors are presented. An illustrative
example is given. In this example, the whole plots are formed by the noise factors,

and the design factors are in sub plots.

Chapter 5 presents the general conclusions of this work.
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Chapter 1: Double Orthogonal Array Design

1.1. Overview of Double Orthogonal Array Design

The double orthogonal array design was initiated by Genichi Taguchi. It consists
of a cross-product of two experimental designs. The first design, known as inner
design, is a combination of the levels of the design factors. The second design,
referred to as outer array design, is a combination of the levels of the noise
factors. Each combination of the levels of the design factors forms an experiment.

For each experiment, the same array of the noise factors is run.

1.2. Experimental structure

Suppose that the quality characteristic y of a product or a process depends on p
design factors Xx,...,x, and Q noise factors z,..,z,. The responses Yy, are the
combinations of the levels of the design factors (i=1,2,-,n) and the levels of the
noise factors (j=1,2,--,q). The total number of runs required to conduct an

experiment in this case is pxq. The experimental structure of double orthogonal

array design is represented by Figure 1. 1.

Z |\ 4, - Z,

L | 4a 7 Dy
X - X, | Observations| Y & N\R
X, o le Vo Yy Vi 512 S\lRl
Xa an Yo 0 Yo y_n Sr? S\IRn

Figure 1.1: Experimental structure of Double Orthogonal Array Design.
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Data analysis

The data generated by the double orthogonal array design permit modelling the
mean and the standard deviation or the variance of the characteristic of interest.
The metrics proposed by Taguchi for evaluating the robustness are the Quadratic

Loss Function (QLF) and the Signal-to-Noise Ratio (SNR). However, the use of the

SNR has drawn much criticism [33] .

The primary goal of the Taguchi philosophy, to obtain a target condition on the
mean while minimizing the variance, can be achieved within response surface
methodology framework. By combining Taguchi and response surface
philosophies, a dual response surface approach will be applied. This consists of
fitting regression models for the mean and the variance. The dual response

surface provides a more rigorous method for achieving a target for the mean,

while also achieving a target for the variance [25]. The optimization based upon

the criteria of mean square error gives a fairly general method to solve the dual

response surface problem [05].

1.2.1. Data analysis considering the Quadratic Loss Function

The Quadratic Loss Function (QLF) is a metric used to provide a better estimate
of the monetary loss incurred by manufacturers and consumers when the

product performance deviates from its target value [18]. In this thesis the QLF is

used to evaluate the economic impact of conducting an experiment on the

Pprocess.

The QLF is given by the expression

L(y)=k(y-M)". (1.1)
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y is the quality characteristic of a product or process, M is the target and k is

the quality loss coefficient.

The expected quality loss is Q=E[L(y)]=kE(y-M)’ = k[(E(y) -M )2 +Var (y)} .
By taking E(y) =4 and Var(y) =07, the expected quality loss becomes

Q= k[(,u— M)* +02J .

Then the estimate of the expected quality loss is:

Q=K|[i-M) +?|; (12

where y=y and ol =82,

The quality loss coefficient k is determined by first finding the functional limits or

customer tolerance fory. The functional limits are determined by M +A,. These

are the points at which the product would fail or produce unacceptable

performance in approximately half of the customer applications. Let A, be the
value of the quality loss function at M4, that is L(y)=A at y=M=z=A,.
Substituting the functional limits M *A, and the value of the quality loss into

Equation (1.1), the quality loss coefficient is found to be

k=—to (1.3

1.2.2. Types of Quadratic Loss Function

While conducting an experiment, the designer is interested in reaching the target
or minimizing or maximizing the value of the quality characteristic. These three
cases of quality characteristic are referred to as Nominal the best, Smaller the

better and Larger the better.
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Let y' =(y1,---,yn) where y is the quality characteristic of a product or process.

Table 1.1 shows the types of QLF and the average quadratic loss functions

corresponding to each kind of quality characteristic of interest. More details of

this section can be found in [35]and [37].

Table 1.1: Types of Quadratic Loss Function.

Estimate of Expected

Type Quadratic Loss |Expected Quadratic Loss Quadratic Loss
The Nominal _ V2. 2 A_ allv_ ) 2)
the Best L(Y):A(V_M)Z Q_A(('u M) to ) Q_A((y M) +s

The Smaller , A Al(T)? 2)
the Better L(y):Ay2 Q:A(/J +02) Q_A((y) s
~ A 3¢
/ / 2 N
The Larger L(y):iz Qiiz{1+302 } Q—(_)2 1+ (_)2
the Better y U U y y

2

In this table, A= A and A = A (D)
A

1.2.3. Limitations of Quadratic Loss Function

Taguchi's QLF has its limitations. It does not apply when there is a range *0

around the target M where customers cannot tell the difference [18]. The Loss
Function applied in this case is:

0 for —-0<sy-M <0

. 14
k(y-M)*-kd® for —o<y-M <=3 or §<y-M <o (1)

L(y)z{
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Furthermore, Taguchi's QLF is not convenient when the loss is not symmetric

around the target M . Young J. K and Byung R. C. [36] propose the following Loss

Function:

k(y-M)" if y2M
L = . 15
) k,(y-M)* otherwise (t9

The constants k, and k,are positive loss coefficients. More details about the

Asymmetric QLF can be found in [36] .

1.2.4. Data analysis considering the Signal-to-Noise Ratio

Although the QLF is a metric of robustness, it has deficiencies as mentioned in
the preceding sections. Taguchi suggests that the response values at each inner
array design point be summarized by a performance criterion called Signal- to-
Noise Ratio (SNR). He determined various forms of the SNR. In this thesis we
describe three of those functions as they appear in the majority of published
works. The SNR is a statistic that estimates the effect of noise factors on the
quality characteristic. Data analysis considering the SNR permits identifying the
factors which are important in the process, and their corresponding levels. The
SNR we consider are determined in terms of the decimal logarithm of the mean

square deviation of the quality characteristic from the target. There are three

types of SNR depending on the desired performance response [35] .

The smaller the better: This SNR is used when the experimenter is interested in

minimizing the system response.

i=1

It is calculated as follows: SNRy =-10 IOQ(% Z yizj

21



The larger the better: It is used when the experimenter is interested in

maximizing the response and it is given by the expression SNR =-10 Iog(1 Z%J

i=1 Y
The nominal the best: This SNR is used when the experimenter needs the

y

2
response to attain a certain target value. It is given by SNR: :10|Og£?].

The preferred parameter settings are determined through analysis of the SNR,

where the levels of the factors that maximize the appropriate SNR are optimal.

More detailed literature on the SNR is in reference [13] .

1.2.5. Agro-industrial processes

Agro-industry includes various areas such as food technology, food processing

and agricultural materials among others [38] .

Food technology deals with sources of food, raw material sorting, postharvest
transformation, principles of food preservation and processing, and roles of

microorganism.

Food processing deals with preparation of raw materials for food processing,

fermentation, low and high temperature processing.

Agricultural materials include products such as fertilizers, pesticides and other

materials used in different agricultural activities.
Robust design in agro-industrial processes aims at maintaining or improving the

quality characteristics of the response of interest by conducting designed

experiments.
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The applications given in this thesis are oriented to chemical processes. Their
implementation in agro-industrial processes is immediate. For instance, the
chemical process for which the aim is to reduce the number of impurities is

applied in production of fertilizers and pesticides.

1.2.6. Illustration of QLF and SNR

Let y be the quality characteristic of a chemical process. Assume that the

deviation of A;=2 units from the target M =9 incurs a loss of 100 monetary
units. This means that if y=M=z*A,, the corresponding loss is L(y) =100.
Introducing y=M *A, and L(y) =100 into Equation (1.1) leads to k :1A_020:1_(m: 25.

The QLF of the process is L(y) = 25(y - 9)2. This expression permits obtaining the
loss suffered by process for any value of the quality characteristicy. For instance,
the loss caused by the value of quality y=12 increases to L(12)=2512- §°= 22!

monetary units.

Now let us consider a series of 15 random observations of the quality

characteristic of the same chemical process:

y=(17.65 11.77 10.73 1831 1828 20.04 1629 198837 16.32 2143 1945 17.42 13.19 29).

By equation (1.2), the expected loss is given by Q= 25((,1.1—9)2 +02) .

The corresponding estimate of expected loss is (3=25((21—9)2+c/7\2) where

A___ils /\2_ 2_i15 __2
,u-y—15iZ:1:yi and o°=s —14;()4 y) :

Numerically: y=17.07, s*=10.05 and Q= 25((17.07— 9)" + 10.0¥: 1879 monetary units.

This is the value of the expected quality loss for each unit. The total quality loss
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is calculated by multiplying the quality loss for each unit by the number of units
produced. For instance, the expected quality loss for 1000 units produced is
1,879,400 monetary units.

—2

The SNR is NR; :lOIog{LZJ = 10log 28.993p= 14.62..
S

If we consider the problem of minimizing the number of impurities, the expected

loss for each unit produced becomes Q= 25((17.07)2 + 10.0)5: 7476.2 monetary units.

n
The corresponding SNR is SNR; =-10 Iog(% > inJ =-24.78
=

This illustration highlights real operating conditions of the chemical process. The
improvement of this process is reached by conducting a designed experiment.
This point will be looked at in the following section through a more detailed

application of double orthogonal array design.

1.3. Application of Double Orthogonal Array Design

The application is a chemical process adopted from John S. Lawson [19]. In

general, the constructed data would only be appropriate for the model that
reflects the way in which the experiment is carried out. However, the same
application will be used in Chapter 2 by using a double orthogonal array design,
and in Chapter 4, as split-plot design. The results will be compared in order to
highlight the efficiency of each experimental structure and the corresponding

data analysis.
Motivation

One way for chemical processing companies to reduce variability in their
products is to insist on higher quality or more uniform raw material, and to

tighten control on other process operating conditions. In order to produce more
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uniform end-products, chemical processing companies are demanding higher
quality, i.e. more uniformity, from suppliers of bulk industrial grade chemicals
that once competed in a commodity type market. Companies that are demanding
reduced variability in raw materials may have to bear the suppliers” cost for
adding and maintaining new process steps or equipment, and costs for keeping

higher inventories.

Variability in the quality of product from a chemical process can also be caused
by changes in some operating conditions which may be difficult to monitor or
control. Maintaining tight control of such processing conditions may require
additional expense. Thus, achievement of both high quality and low cost may be

contradictory goals for some chemical processing companies.

A possible solution to the problem of increasing the quality of chemical products
without increasing material or processing costs, involves experimentation with
process variables which can be changed easily and inexpensively. Chemical
process companies can seek process conditions that will provide the best quality
product, regardless of fluctuations in raw materials and process variables that
are difficult to monitor and control. This consists of identifying the process
operating conditions that result in optimum performance while simultaneously
minimizing the effect of variables which are not directly under the processing

company’s control.

Formulation of the problem

The chemical process generates impurities. As a result, the product obtained has
low quality. The objectives of conducting a designed experiment are:

* To diminish the number of impurities;

* To reduce the variance of the process;

* To reduce the cost of the process.
The response variable is the number of impurities (in percentage). 3 design
factors and 2 noise factors are involved in this experiment. The design factors are

X : reaction temperature, X,: the catalyst concentration, x;: the excess of reagent
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B. The noise factors are z: purity of reagent A, z,: purity of the solvent stream.

Annex 1.1 shows the coded levels of the factors and their corresponding real

values.

In this experiment, the goal of the parameter design is to find a combination of
the temperature, catalyst concentration, and the excess of reagent B that gives
good results. To do this, experiments are performed at combinations of levels of

the design factors defined by a Box- Behnken design. The combinations of levels

of the noise factors are arranged in a 2° factorial design. This means that an
experiment for the 15 combinations of the control factors is realised, and each of
these is repeated in each of the possible combinations of the noise factors. A total
of 60 runs is realized, and the results obtained are shown in Annex 1.2. As the

objective is to diminish the number of impurities, the SNR to be used is

NR, =-10 Iog(% Z;: yf] :

1.3.1. Statistical results

The idea is to fit the second order regression models of the form
y=B,+X' B+x'Bx+¢. In this model, x is the vector of control factors, B3, the
intercept, £ is a vector of coefficients of 1st order control factors, B is a matrix of

coefficients of 2nd order terms of control factors and their interactions, ¢ is a

vector of residual errors of the regression model. The residual errors are assumed

to be N(O,az). The response y is the mean, the standard deviation, the variance

or the SNR. After the estimate of the regression model y=p,+xX B+X BX is

obtained, the optimal setting is calculated by solving the following optimization

problem:

>

Optimize§/
xOR

where §/ represents the estimated response surface for the standard deviation

and the SNR. The problem becomes a minimization problem in the case of §/SD LIt
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is a maximization problem for yq.

As the aim of the experiment is to diminish the number of impurities, it is

convenient to apply the optimization method proposed by Dennis K. J. Lin and

Wanzhu Tu [05]. In [18] , the method is referred to as Squared Error Criterion.

The method consists of three steps:

Step 1: Find the fitted models Qmean and §/Var.

Step 2: Find X,, such that the mean square error given by the expression

MSE =[§/mean (Xom)‘TT + §/Var (Xom) is minimized. x,, is obtained by minimizing MSE

subject to xUR. In this case, the target T =0.

Step 3: Evaluate Qm (Xom) and §/Var (xom).

1.3.2.

Coefficients of the regression models

Analysis based on full design

Table 1.2 gives the coefficients of the regression models for the variables mean,

standard deviation, variance and SNR.

Table 1.2: Coefficients of the regression models.

Intercept Linear Quadratic Interaction
,[7’0 :81 :[’72 :83 ﬁll :822 :833 ﬁlZ :813 :823
Mean 14.7967 -8.1738 -9.0862 -0.135 0.5154 5.0104 0.1780 8.3025 0.075 0.175
Stand. Dev. 3.66 0.0625 -4.45 1.64 -0.9475 2.5475 1.6175 -0.045 0.055 -1.3
Variance 13.55 0.87 -63.23 28.46 -24.39 51.25 30.98 -1.21 0.53 -42.69
AR -23.5988 3.4936 4.0921 -0.2018 0.6850 -1.7983 -0.0916 | -2.4485 -0.2645 -0.2645

Regression models

The results of analysis of variance for the mean, standard deviation, variance and

SNR are shown in Annexes 1.3, 1.4, 1.5 and 1.6. The corresponding estimates of
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the regression models considering the significant effects are the following:
+ Estimated mean response surface:
Vo =14.7967- 8.1738 - 9.0862+ 0.514 50104  8.3025.
» Estimated standard deviation response surface:

Yo =3.66- 4.45%, + 1.64,+ 254385+ 1.61%5- %2..

* Estimated variance response surface:
Viw =13.55+ 0.8% — 63.28+ 28.46-24.3%¢ - 1R% + 058+ 5K25 4289+ 306,98
» Estimated SNRresponse surface:

Vor = -23.5988+ 3.4936 + 4.09%]- 24485 - 1.7983

Optimal values for the standard deviation and the SNR

The optimization problems to be solved in order to obtain the minimal standard

deviation, the maximal SNR and the corresponding optimal settings are:

min{ 3.66- 4.45%, + 164, + 2.5436+ 161%5- %3}
-1sx,x,<1

and

max{ -23.5088+ 3.4936 + 4.098]- 2.448%,- 1.7988
-l<xx,<1 '

Table 1.3 gives the optimal values for the standard deviation and SNR. It also

shows the mean square error.

Table 1.3: Optimal values for the standard deviation and the SNR.

Optimum Combinations MSE

X % X
Stand. Dev. o71 | xOR 0.82 0.16 1.669
AR -19.73 1 0.93 O OR | 1901
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Optimal values for the mean and the variance

The optimization procedure is based on the mean square error method.

The optimization problem to be solved is:

min {(14.7967— 8.1738- 0.0862+ 05164 50th4 83025 +

+(1355+ 0.8% - 6328+ 28.46- 2480~ DL+ &EG+ 5E25 69X 30.9&2)}
-1<xx%<0

Table 1.4 gives optimal settings, optimal values for the mean and variance models

and the mean square error.

Table 1.4: Optimal values for the mean and the variance.

Optimal setting (X, X,, X;) 9nmn()(0pt) g’Var(Xom) MSE

(0.0-0.49 14.80 7.01 225.95

In sub-section 1.3.5 we calculate the estimate of the expected quality loss using

the formula (5:25((,21)2 +;2). This is the case in which the objective is to obtain

the smallest number of impurities. The optimal values obtained in conducting the

experimental design are ,21:14.8C and ¢?=7.01. The corresponding expected

quality loss function is Q = 25((14.8()2 + 7.01) = 5651. monetary units.

This value shows that the process may be improved by applying optimal values
obtained from the designed experiment. In fact, the reduction of the quality loss
is 7476.25 5651.831824.C monetary units for each unit of chemical product. The
values of the SNR obtained considering the 15 random observations of the quality

characteristic and the designed experiment are respectively —24.78 and -19.73.
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Interpretation

Considering the analysis based on full design data, optimal values for the
standard deviation and the SNR are respectively 0.71 and -19.73. The optimal
values for the mean and the variance are calculated by the method of mean

square error. The pair of optimal values for the mean and the variance is

(14.80,7.0).

1.3.3. Analysis based on half fractional design

When the number of factors in factorial design increases, the number of runs
required for a complete replicate of the design rapidly grows. For economic
reasons, fractional factorial designs are commonly used. These designs consist of
a fraction of full factorial designs. For instance, the number of runs in this
chemical process application is 15x2 =60. The same analysis has been
conducted considering half fractional design. The two fractioned groups of 30
runs for each are given in Annex 1. 7. The corresponding results for the mean,

the standard deviation, the variance and the SNR are shown in Annex 1.8.

Coefficients of the regression models

Tables 1.5 and 1.6 give respectively the coefficients of the regression models for

the 1st group and the 2nd group.

Table 1.5: Coefficients of the regression models for the 1st group.

Intercept Linear effects Quadratic effects Interaction
B, 131 B, B, 1311 /822 1333 :312 1313 1323
Mean 15.2917 | -11.7362 11.9381 0.3569 -1.8233 6.6954 1.9754 | 10.9187 -0.8112 -1.4125
Stand. Dev. 2.8072 -1.2763 -3.6142 1.1605 -1.7695 2.1072 1.1985| 1.0589 -0.2952 -0.9086
Variance 10.29 -9.29 -41.13 16.68 -27.49 33.58 23.55 12.19 -2.90 -28.33
NR -23.6434 6.5660 4.2935 0.3452 2.8686 -2.3092  0.3099 | -4.0217 0.9387 0.5696
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Table

1.6: Coefficients of the regression models for the 2rd group.

Intercept Linear effects Quadratic effects Interaction
B, :31 B, B, 1311 :322 :333 :312 1313 1323
Mean 14.2967 | -4.6106 -6.2331  -0.6262 2.8534 3.3335 -1.6227 5.6862 0.96 1.765
Stand. Dev. | 2.3146 1.0456  -1.2365  0.8096 0.6043 0.3391  -0.5324 | -0.5568 0.6152 -0.6470
Variance 9.12 7.56 -9.18 4.30 4.83 3.52 -6.55 -8.63 4.04 -3.07
ANR -23.0984 | 1.8192 2.8881 0.1241 -0.7176 -1.1643 0.3327 -1.9597 -0.6434 -0.8429

Regression models

The results of analysis of variance for the mean, the standard deviation, the

variance and the SNR are shown by Annexes 1.9, 1.10, 1.11 and 1.12. The

corresponding estimates of the regression models considering the significant

effects are the following:

For the 1st group:

+ Estimated mean response surface:

Y mean

=15.2917- 11.7362 - 11.9381+

6.6964

10.9%87.

» Estimated standard deviation response surface:

Vo =2.8072- 1.2768 - 3.6142+ 1.1605 1.769%

» Estimated variance response surface:

N

Yoo =10.89- .29 — 4118+ 16.68-27.49¢+12.19x,~ 288+ 3388 2833+ 2855

» Estimated SNR response surface:

Vor = —23.6434+ 6.5668 + 4.2935-

For the 2nd group:

4.024%, +

+ Estimated mean response surface:

Voo =14.2967- 4.6106 - 6.23%]+ 2.8585+

10§89 7240~ 0.9086 x ;+ 1.198,.

2.8686  2.3G92

3.3335  5.6882

* Estimated standard deviation response surface:

Yo =2.3146+ 1.0456 - 1.2365+ 0.8086 0.6843

* Estimated variance response surface:

N

05868+ 08352 043391 470§ - 0.5324",.

Yoo =9.12+ 756 — 9.18, + 4.3Q+4.83¢ - 8.63x,+ 4.04,+ 382 310X, 6.5%5,

» Estimated SNR response surface:

Vou = -23.0084+ 1.8102 + 2.888]1- 0.7176-

31
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Optimal values for the standard deviation and the SNR

The optimization problems to be solved in order to obtain the minimal standard

deviation, the maximal SNR and the corresponding optimal settings are:

For the 1st group:

min{ 2.8072- 1.2768 - 3.6142+ 1.1605 1.7695 1.068%+ 2.1072 00886 985x’]}
-1< XXX, <0.5
and

max{-23.6434- 6.5660 + 4.2035- 4.024%,+ 2.8686  2.3092
-1sxx,<1 '

For the 2nd group:

min{ 2.3146+ 1.0458 - 1.2365+ 0.8096+ 0.6643  0.5688+  0.6]52 08391 476X - 0.53248}
—1<xX,X,<1
and

max{ -23.0984+ 1.8192 + 2.88&]- 0.716- 1.9 - 0.6484- 1.%643 038
1 2 3

1< xx,x,<1

Tables 1.7 and 1.8 give the optimal values for the standard deviation and the SNR

of the 1st and the 24 group. They also show the mean square error.

Table 1.7:

Optimal values for the standard deviation and the SNR for the 1st group.

Optimum Combinations MSE

X X X
Stand. Dev. 0.60 0.5 0.5 -0.29 6.25
SNR -14.20 1 0.06 Ox; OR| 11,74
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Table 1.8:

Optimal values for the standard deviation and the SNR for the 2nd group.

Optimum Combinations MSE

X % X3
Stand. Dev. 0.71 0.07 0.93 -1 4.25
SNR -20.44 0.35 1 -1 4.83

The optimal values for the standard deviation in the first group and the second
group are respectively 0.60 and 0.71. The optimal values for the SNR in both
groups are respectively -14.20 and -20.44.

Optimal values for the mean and the variance

The optimization problem to be solved in order to obtain the optimal values for

the mean and the variance is:

For the 1st group:

min{(15.2917— 11.7362 - 11.9381+ 6.69E4+ 10.9x§<;)2+1 0:80 2,29 40143 8%6:627.49¢ +

+12.19x, - 2.90xx, + 33.582 ~ 28.38x,+ 23.58}

1< XXX, <0

For the 2nd group:
min{(14.2967— 46108 - 6.23%]+ 2.8585 3.3335 5.@q5;)2 +

+9.12+ 7.56,~ 9.18,+ 4.39+4.83¢ - 8.6%x,+ 4.04,+ 352~ 3%0%, 6.55)

1< XXX, <1

Table 1.9 gives optimal settings, optimal values for the mean and variance models

and the mean square error.
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Table 1.9: Optimal values for the mean and variance.

Group | Optimal setting (%, %5, X3) glmean (Xom) §/Var (Xom) MSE
1 (0,0-0.39 15.29 7.94 241.77
2 (-0.75-0.75- ) 29.11 0.05 847.34
Interpretation

Considering the analysis based on half fractional design , the pairs of optimal

values for the standard deviation and the SNR corresponding to the first and the

second groups are respectively (0.60,— 14.2() and (0.71,— 20.44. The corresponding
pairs of optimal values for the mean and the variance are respectively (15.29,7.94

and (29.11,0.05.

The analysis based on half fractional design does not give the same information of
the process. In fact, the number of impurities for the first group is 15.29%, and
29.11% for the second group. The discrepancy between both values is 13.82. The
discrepancy between the optimal values for the variance in the first and the

second groups is 7.94- 0.05= 7.8.

1.4. Conclusions

In this Chapter, the theory of the Taguchi approach that relies on Double
Orthogonal Array Design is shown. Related robustness metrics and an illustrative
example are given. These metrics are the Quadratic Loss Function and the
Signal-to-Noise Ratio. Some of the drawbacks of the Taguchi approach are
summarized and references for further details are indicated. An overall

application of the chemical process considering the full design analysis and
34



fractional design analysis is given. The results are compared. It is verified that the
process is improved by conducting an experimental design. In fact, the quality
loss of not achieving the target is reduced while applying the optimal values

obtained from the experiment.
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Chapter 2: Combined Array Design

2.1. Overview of Combined Array Design

As mentioned in Chapter 1, one of the drawbacks of double orthogonal array
design is that the number of runs required to conduct an experiment is generally
large, and interactions between design and noise factors are not considered.
Some authors go so far as saying that analysis related to double orthogonal array
does not make proper use of the number of runs [22] . Combined array design is a
single experimental design in control and noise factors. Both control and noise
factors are then modelled, and the settings of the noise factors are no longer
identical for each setting of the design factors. The results of the experiment can
be described by a model with only a small number of main effects and low-order
interactions. Significant design-by-noise interactions are interpreted as evidence
of dispersion effects and used to choose settings of design factors that minimize
the process variation. Data obtained from combined array design are analysed by
fitting a model for the mean and the variance. Response surface methodology is

used for determining optimal solutions for the mean and the variance.

2.2. Experimental structure

Suppose that the quality characteristic y of a product or process depends on p
design factors Xy Xp and ( noise factors Z,...,7,. The experimental structure of

the combined array design is presented by Figure 2.1.
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Figure 2.1: Experimental structure of Combined Array Design.

2.2.1. Dual Response Surface Approach

Let the system be described by a variable y(x,Z) that depends on a set of

controllable factors (the vector X) and a set of random noise factors (the vector Z).

To explore the dependence of ¥y on X and Z, the following model is assumed for

the response, to accommodate control-by-noise interactions:
Y(X,Z)=B,+ BT X+ X' BXx+y Z+XAZ+¢ (2.1)

In this model, Z is the random noise vector, £’s are independent identically
distributed N(0,0%) random errors. It is assumed that &€ and Z are independent.
The constant f,, the vectors 8, y and the matrices Band A consist of unknown
parameters, and ¢’is also usually unknown. It is also assumed that E(Z)=0 and
that Cov(Z)=Q is known. The two response surfaces are obtained analytically
from (2.1), one for the mean of y as a function of the control factors X, and one

for the variance of y, also in terms of the control factors:
E,(y(x.2))=8+B8 x+x"Bx. (2.2a)

Varz(y(x,Z))z(yT+xTA)Q(y+Ax)+02. (2.2b)
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In fact, E, (y(x,2))=E, (,6’0 + B x+ X' Bx+y'Z+x'AZ +£) =B, +B x+x Bx and
Var, (y(x,2)) =Var, (,BO +B X+ X' Bx+y Z+x AZ +£) =Var, (yTZ +xX'AZ +£) =Var, (yTZ +xTAZ)+Var (¢€)

=Var, [(yT +xTA)Z]+a2 =(yT +xTA)Var(Z)(yT +x'A )T +0° =(yT +xTA)Q(y+Ax)+02.

After model (2.1) is fitted to the data, (2.2a)and (2.2b) give two prediction models
for the mean and variance of the process using model parameter estimates
obtained from the fit, including estimating ¢°. In principle, model (2.1) could be
extended to accommodate interactions among noise variables, quadratic terms in
the noise variables and so on, but this requires the knowledge of higher moments

of Z, and usually is not done [01].

In the literature, various methods of optimization have been developed in order to
obtain the optimal solution for the mean of the quality characteristic while

minimizing the variance of the process. Dominguez D. J and Ernesto Barrios

Zamudio [09] have summarized and compared those methods. Myers R H and

Carter W. H [24], and Myers R. H and Vining G. G. [25] have introduced the

method commonly used in the dual response surface approach. They first fit
second order models to both primary and secondary response surfaces. In this
case, they are respectively, the mean and the variance. Then, they optimize the
primary response subject to an appropriate constraint on the value of the

secondary response, or vice versa.

The optimal solution for the mean response is obtained by solving the problem:

optimize Ez (y(x,2))
var, (y(xz))=0? . (2.2c)
xOR
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The optimal solution for the variance model is the solution of the following

problem:

minimizeVar, (y(x 2))

Ez(y(x2))=M . (2.2d)
xR

R is the experimental region.

Dennis K. J. Lin and Wanzhu Tu [05] argue that this method of optimization may
be misleading, because the variance, which is to be minimized in the process, is
forced to a fixed value. They propose a new procedure based on mean square

error criterion. Their method will be used in Section.2.3.

2.3. Application of Dual Response Surface Approach

We adapt the application of the chemical process (John S. Lawson[19]) to the

combined array design, specifically to the case of the dual response surface

approach.

The data corresponding to the combined array design are given in Annex 2.1 and

the results of analysis of variance are in Annex 2.2.

2.3.1. Statistical results

The idea is to fit the second order regression model

Y(X,2)=B,+ [ x+X' Bx+y'Z+X'AZ+¢ and then calculating
Ez(y(x,z)) =B, + B x+x' Bx and Vérz(y(x,z)) :(yT +xTA)Q(y+Ax)+02.

Annex 2.3 gives the coefficients of the regression response model.
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Regression models

The results of analysis of variance for the response model are shown in Annex

2.2. The corresponding response model considering the significant effects is
Y(XZ)= By + B+ BXo*t BX X+ B X+ V2V 2 #0 X2 T€.

The fitted response model is

g/(x,Z) =14.7942- 8.1734 - 9.08%6+ 8.302%5,+ 5.0%4% 3.9057 1.2007 9xX96

The mean and variance models are:

E,(Y¥(x2))=14.7942- 8.1734 - 9.0856+ 8.302%,+ 5.0%45

Va (y(x2))=(2.7050+ 0.0548 - 2.27%3)°+ 1354=20.857 0294 Bx280.24%x,+ 0.008 + 515§
Here, we replace &\2 by the mean square error from the analysis of variance. We

also assume that z,i=1,2 is a random variable with mean O and some variance

0? such that the levels of z,i =1,2 are at +0, in coded form. Thus, o, =1.

Optimal values

We apply the optimization method proposed by Dennis K. J. Lin and Wanzhu Tu

[05] . The method consists of three steps:

Step 1: Find the fitted models E, (y(x,Z)) and V<:;\rZ (Y(x,Z)). Both are functions ofX.
Step 2: Find X,, such that the mean square error given by the expression

MSE = (Ez (y(x,2)) —T)2 +Varz (y(x,2)) is minimized. X, is obtained by minimizing
MSE subject to XLIR. In this application, T =0.

Step 3: Evaluate Ez (y(xopt,Z)) and Vérz (y(xopt,Z)).

The optimization problem to be solved is:

{min {(14.7942— 81734~ 0.0836+ 83025+ 5.0MP+( 20857 094 12288 470+ 0.003+ 5.15922)}

-l<xx,<1
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Table 2.1 gives optimal settings, optimal values for the mean and variance models

and the mean square error.

Table 2.1: Optimal values for the mean and variance.

Optimal setting (x,,%,,X;) E. (y(Xopt,Z)) Vérz (y(xom,Z)) MSE

(1,0.16/1x,) 6.62 19.28 63.16

Interpretation

The analysis based on full design data shows that the number of impurities may

be reduced to 6.62% with a variance of 19.28.
Application of the Quality Loss Function

We introduce in this chapter the illustration of the Quality Loss Function as

shown in sub-section 1.2.5 of Chapter 1. We remember that the estimate of the

~ ~\2 — ~ —
expected loss is QZZS{(,U) +02} By replacing g and o°respectively by

EZ (y(xopt,Z)) and V:’;lrz (y(xopt,Z)) , the following quality loss is obtained:

Q=25/(6.69"+ 19.28= 1577.

This value of the quality loss supports the idea given in Chapter 1 that the
process may be improved by conducting a designed experiment and applying
optimal values in the process. In fact, in this case, the reduction of the quality

loss is 7476.25 1577.6 5898 monetary units, for each unit of chemical product.
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2.3.2. Analysis based on half fractional design

The two fractioned groups considered for this analysis are given in Annexes 2.4

and 2.7. The corresponding results for analysis of variance are in Annexes 2.5

and 2.8. The corresponding response models considering the significant effects

are respectively:

Y6 2)= B+ Bx+ BXo+ B+ B+ BXX FB XX T8 X 38 %% 6B X tyZHy 24P XZ 9 X2 T,
0% 2 +0,XZ,t0XZ+0 XZ F€

and

Y(X’Z):,Bo+1311X$+1312Xf(2+,81§(3( FBXXTVZ10 XZ40 %Z,%0 %Z,+0 X%Zt£.

The regression coefficients of the response models are in Annexes 2.3 and 2.6.

The fitted response models are respectively:

y(xZ)=15.4113 0.4586 - 1.8341+ 0.2228 12470 2.8448- 34492 645188108 x ~ 3.2118°+
+0.994% - 0.7088 - 52347+ 3.3205,+ 11478+ 3.3820- 18789  4xIHY0

and

y(xZ)=14.5195 5.761¢ - 8.588%,+ 5.836%,~ 7.1800- 3.1343 4XQ43  HGBH2 .278M7 #
+6.178%,2,.

The mean and variance models

For the 1st group:

E:(y(x2))=15.4113 0.458§ - 1.8341+ 02208 12478 28418~ 34492  6:45188108 x ~ 32118,
Var,(y(x2)) =(9.2857-1.909 + 4.798, - 5.243Q)°+ 115.393
=201.62- 35.458 + 89.0X3- 97.46% 3.6443 188R0+  20x036 22:93 0G0+ 27.54C,.

For the 2rd group:
E:(y(x,2))=14.5195+ 5.7614 - 8.580%,+ 5.836%,~ 7.1600,

Var, (y(xz))=(-3.1343-8.6345, — 4.0994,)"+ 29.310
=39.134+ 54.128 + 25.69Z+74.555¢ + 70.79%,+ 16.80%,
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Optimal values

The optimization problem to be solved in order to obtain the optimal values for

the mean and variance is:

For the 1st group:
. 2
mm{(15.4113+ 04585 - 1.834)+ 02228 12470 28425 34492  6x518810% x,- 3.21187) +

+201.62- 35458 + 89.0X3- 97.46}% 3.6483 18880+ 20088  22:93 0608+ 27.54}

1< XXX, <1

For the 2nd group:
. 2
mln{(14.5195+ 5.761% - 8.5808,+ 5.836%,- 7.1800) +

+39.134+ 54.126 + 25.69% +74.555¢ + 70.788,+ 16.805"’2}
1S X XX;<1

Table 2.2 gives optimal setting, optimal values for the mean and variance models

and the mean square error.

Table 2.2: Optimal values for the mean and the variance.

Group | Optimal setting (%, %5, X5) EZ (y(xopt,Z)) Vérz (y(xopt,Z)) MSE
1 (10.37,3 9.05 17.24 212.44
2 (-0.07,-1-3 7.25 31.86 84.41
Interpretation

The pairs of optimal values of the number of impurities and the variance for the

first and the second groups are respectively (9.05,17.24 and (7.25,31.8§.
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The results of the combined array design obtained in Chapter 2 are more
homogeneous than those obtained in Chapter 1 where the analysis is based on
double orthogonal array design. However, the conclusion given in the case of
double orthogonal array design is still valid. This is, the analysis based on half
fractional design does not give the same information of the process. In fact,
considering the combined array design, the number of impurities obtained for the
first group is 9.05%, and 7.25% for the second group. The discrepancy between
both values is 1.8. This value seems to be small. However, the discrepancy
between the optimal values for the variance in the first and the second groups is

large: 31.86- 17.24 14.6.

In practice, it is recommended to conduct a confirmatory experiment in order to

confirm the validity of the results previously obtained.

2.4. Modified Dual Response Surface Approach

2.4.1. Motivation

The existing procedures for robust design, devised for physical experiments, may
be too limiting when the system can be simulated by a computer model. In this
section we introduce a modification of the dual response surface modelling, which
incorporates the option of stochastically simulating some of the noise factors
when their probabilistic behaviour is known. The knowledge of the noise
distribution may come either from historical data or from ad hoc measurements.
In practice, internal noise factors are assumed to have a normal distribution. The

method is also applicable in the case of crossed array design.

Alessandra Giovagnoli and Daniele Romano [0 stipulate that the method

appears suitable for designing complex measurement system. They apply it to the

design of a high- precision optical profilometer.
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The purpose of this section is to illustrate theoretically, how stochastic simulation

experiments can be best employed in the field of robust design.

Classical robust design relies on physical experiments whose factors are the
parameters (control factors) and the noise (noise factors). Noise factors, even
though they vary randomly in the process, they are controlled in the experiment.
Designed experiments for robust design have been devised for physical settings,
but in practical situations noise factors are typically difficult, if not impossible, to
control. Thus, only a few factors, and with few levels, are usually included in the

design.

This constraint can at times be relaxed in simulation. Simulated experiments
have been performed by scientists and engineers, ever since the advent of the
computer age, and are being increasingly used as an investigation tool in science

and technology.

Within the framework of robust design, stochastic simulation appears to be a
natural tool for transmitting distribution of noise input to the output. The
advantage is to restore the centrality of randomness, which is the rationale for

making an inference.

As already mentioned in this work, the statistical methodology underlying robust
design, and now the most widely accepted, is the dual response surface
methodology. Two surfaces are estimated, one for the mean and one for the
variance of the process. The existing types of experiments for dual response
models are the crossed array and the combined array. A new general protocol for
conducting robust design studies on the computer extends the dual response
surface approach. It is characterized by a different treatment of the noise factors,

some of which are considered random, as they appear in the real process.

The method can be beneficial to the solution of an integrated parameter and
tolerance design problem, by adding variances (or standard deviations) of internal
noise factors as controls in the experiment and simulating the internal noise

accordingly.
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2.4.2. Theory of Modified Dual Response Surface Approach

Let us divide the random factors Z into two independent vectors, Z, and Z,
where 7 =(z,--,Z,) and ZZ:(Zmﬂ,«'-,Zq). The random vector Z, includes the

variables that are simulated stochastically, whereas the remaining set of noise

factors Z, are given fixed levels z, for some different choices of z,. At the same

time, different levels X of the control factors are also chosen for the

experimentation. The computer experiment is performed by stochastically

simulating the noise Z, for chosen pairs (X,Zz) and the sample mean and

variance of the observed response are calculated.

The experimental structure of modified dual response surface is shown by Figure

2.2.

Figure 2.2: Experimental structure of Modified Dual Response Surface.

The following phase is to build a surrogate model of the simulator in the region of
interest. The surrogate model is a probabilistic model that describes the
experiment, similarly to what happens for physical experiments. To start with, we

assume additivity between a systematic effect y, on response y purely due to the

control factor X and a random effect Y, due to Z and its interactions with X:
Y=%(X)+Y,.

Furthermore, it is assumed that Yy;(X) is linear in unknown parameters f:
yi(X) = f(X)T B where f(x) is a known vector function.
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As to the random term VY,, it is assumed that, when Z, is fixed, its expectation

over the noise vector Z,is also linear in another set of parameters y.
Thus,

E, (Y1Z,=2)= () A+9(x2) v ; (2:3a)
where g(x, 22) is again a known vector function.

Assume a linear model in a set of parameters O for the log-variance of y, again

when Z, is fixed and the variance is taken over Z,.
Then,
logVar, (y|Z,=2,)= h(x,2,) d ; (2.3b)

with h(X, 22) a known vector function.

Stage 1: Estimating the unknown parameters 3, ),0

For every (X,ZQ) in the experiment, Ezl(y|22=22) and Varzl(y|22=22) are

observed via the corresponding sample mean and sample variance obtained

under the simulation. Then, the parameters f and ) in (2.3a) are estimated by

weighted least squares, since variances at different experimental points are

different, and J in (2.3b) is estimated by ordinary least squares.

Stage 2: Building predictors

The fitted dual model (2.3a)+(2.30) describes the mean and the variance of the

response for the given levels of the noise factors Z,, controlled in the experiment

but random in the process. Thus, this fitted model, in general, is not very
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interesting in itself. However, the in-process mean and variance are related to

(2.3a) and (2.3b) by means of the identities:
E,(y)=E,|E,(v1Z)]. (2.4a)

Var, (y)=E, [Varzl (y|zz)] +Var, [Ezl(y |zz)] . (2.4b)

Equation (2.4a) yields

E,(¥)= (0" B+E,[9(x2)] y= T B+ax) y; (2.5a)

where a(x) is a vector function that can either be computed analytically, since

g (X,Zz)and the probability distribution of the noise vector Z, are assumed
known or can be computed numerically. The in-process mean E, (y) is estimated

substituting the estimates of B and y in expression (2.5a).

Hence, Equation (2.4b)becomes
Var, (y) = E,,| exp{h(xZ,)" &} |+Var, [g(x 2,) y]=b &k Sy /C oy (25b)

where the function b(x,5)=E22 [exp[h(X,ZZ)TJH and C(X):Covzzg(X,Zz) are

computed similarly to a(x). The in-process variance of Yy is estimated

substituting the estimates of ) and O in expression (2.5b).

Compared with the crossed array, the modified dual response surface approach

provides additional information on how noise in Z, affects process variance, via

the functions g and h.

The modified dual response surface may be generalized in a multi-step approach
if the noise factors are simulated by sequentially adding one of them at each step
in the Z, vector. This allows one to sequentially evaluate how an individual noise

factor affects overall variability.
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Special cases

The special cases of the modified dual response surface are particular behaviours
of noise factors that lead to double orthogonal array design or to dual response

surface.
1. When E, [g(x, Zz)] =0, the in-process mean (2.5a) becomes E, (y)=f(x)" 8

which is already estimated at Stage 1. This occurs in the combined array model.

In fact, E, (y)= (0 B+E,, [9(x.Z,)] y=f(¥' B because E, [g(x2,)] =0.

2. In the case Z, =[] (or equivalently, Z, =Z), the simulation becomes non-
stochastic. Expressions (2.3a) and (2.3b) collapse to just one equation:
y=f(X)"B+9(x,Z)"y. In particular, if the vector f(X)'f is a second degree
polynomial in the X’s and ¢g(X,Z)'y contains only linear terms in the z’s and Xz-

product terms, model (2.3) reduces to model (2.1) for the combined array

approach, but without the experiment error.

In fact,
. Ezl(y|Z2 =z,)=E(y|z)=f (x)T,[>’+g(x,Z)T y.
* There is no need of calculating logVar, (y |Z, = 22) as Z,=0.
* Models (2.1)and (2.3) are:
Y(X,Z)=[,+ B X+ X' Bx+ ) Z+Xx'AZ +¢.
EZ1(y|Z2 =z,)= f(x)T/3+g(x,22)T V.

Then f(X)'BO0B+B x+x'Bx and g(x,2) yOy ' Z+x'AZ.
3. In the case Z, =Z (or equivalently,Z, =0) (2.3a) and (2.5a) imply
E, (y)=a(x)"y.

Expressions (2.3a) and (2.3b) become
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E,(v)=f()"B+a(q)"y (2.6a)
together with
logVar, Y (x,Z) =h(x)" & (2.6b)

When the noises Z are independent and normally distributed, one obtains the

same dual response surface model from (2.6a) and (2.6b) as from

y; = f ()(i )T B+&;0; and logs? = h()(i)T J+& in the crossed array approach [01].

In fact,

E, (v1Z,=2,)= f (X' B+9(x.2,) v (2.32)
E,(y)= f(0TB+E, [9(xZ,)] y= T B+a)y (2.52)

Equations (2.3a) and (2.5a) imply Ezl(yz) = Ez(y2)=a(x)Ty.

2,=2

Equations (2.3a)and (2.5a) imply again E, (y) = E;(y)=f(¥)"B+a(x)"y and

2,=2

logVar, (y|Z,=2,)=h(x,z,)' J leads to logVar, (y)=h(x)' & from the fact that Z,=Z.

2.5. Conclusions

In this Chapter, the theory of combined array design is exposed. An illustrative
example of dual response surface approach is given. The results are compared to
those obtained from the double orthogonal array design in Chapter 1. It seems
realistic to analyse the data of the chemical process for both complete design and
fractional design by the combined array design structure. In fact, the discrepancy

between optimal values is less pronounced in the case of combined array design.

This result supports the idea invoked by Kunert J. et al [22] that the product

array design does not make proper use of the number of runs. Through an
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illustrative calculus, we verify the assertion that conducting an experiment and
applying the combination of the levels of the design factors that give the optimal

values reduce the cost of the process.
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Chapter 3:

Integrated method of Parameter design and Tolerance design

3.1. Generalities

Sometimes robust design aims at setting both design parameters and tolerance
specifications. While specifying tolerances on a design parameter, the designer is
actually putting a limit on the random variability of the parameter, i.e. on the

standard deviation of the corresponding internal noise factor [01]. A tighter

tolerance around the nominal value results in a smaller transmitted variation on

the response, but incurs an extra cost [34]. The integrated method of parameter

design and tolerance design aims at choosing nominal values of design factors

and their tolerances simultaneously so that the cost of the process is minimized.

3.2. Parameter design and Tolerance design

Consider a process where the response of interest y depends on the factors

X' = (xl, x2,---,xp) expressed in terms of original levels. The corresponding factors in

coded levels are W' :(Wl,WZ,--- ,Wp).
The second order response surface model in terms of coded factors is:
y(w)=a,+wa+wAw+e. (3.1)

Coded factors and original factors are linked by the expression

>ﬂ1‘_xi =12 .p. (3.2)

o

W

The model in terms of original factors becomes:
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y(X) =B+ X B+X Ax+e (3.3)

where B, is a constant, g =(ﬁ1, ﬁz,m,ﬁp) is a vector of unknown parameters,

A =[5ij] is a pxp-matrix of the second order parameters, (that is §, =4, if i=]

and ¢, =%ﬁ” ifizj), £~N(0,af).

The levels of the factors are fixed in the experimental phase. However, during the

production process, it is common that, instead of observing x, one observes
x +t. The term t is a random variable referred to as tolerance, associated with

the factor X such that E(t)=0, Var(t)=0" and cov(ti ) ) =p,0,0,.
The model that includes the factors and their corresponding tolerances is:
y(xt) =8, +(x+1)" p+(x+t)" A(x+t)+e. (3.4)

Suppose that the experimenter wants the response of interest y to reach the

target M.
The quality loss function that indicates the cost caused by not achieving the

target is:
L(y(x)) =k(y(0-M)’; (3.5)

where the coefficient k is a quality loss constant associated with each unit

product. The average quality loss is:
Q=E[L(y(x))]= E[k(y(x) -M )ZJ = k{Var (y(x))+[E(y(x))-M ]2} : (3.6)
Let C (ti) represent the cost function due to applying the tolerance t, to the factor

X . Then the total cost incurred by all of the tolerances is:

C(t) =ici (t). (3.72)
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The cost functions are determined by the collected information of the
manufacturing cost versus the tolerance for each of the control factors. It is
obvious that a higher precision level with tighter tolerance usually requires a
higher manufacturing cost. There is a monotonic decreasing relationship between
manufacturing cost and tolerance. In literature, several models are reported to

describe the cost-tolerance relationship. Table 3.1 summarizes some of the cost

functions as they are described by Joe Meng et al. [18] .

Table 3.1: Cost-tolerance functions.

Cost-tolerance function Form

The Sutherland function C(t)=pt"

a
, : C==
Reciprocal square function t

| | cm=7
Reciprocal function t

Exponential function C(t) = aexp(-bt)

Michael-Siddall function C(t) =at™ exp(-p)

Dominguez D. J. [08] proposes the following reciprocal cost function:

Ct)=a+pt”. (3.7 b)
This function will be used in Section 3.3.

The coefficients a,fand y are determined by applying non linear regression

methods.
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Assume that each x follows Normal distribution N()gn,af) where x is the

nominal value of the it input variable x . As mentioned by Dominguez D. J. [08]

and William Li and C. F. J. Wu [34] , the tolerance t; of X is:

t =30, . (3.8)

Let x0=(><10,x20,---,xp0) and t=(t1,t2,---,tp) be respectively the vectors of nominal

values and tolerances. Because the normally distributed x is determined by its
mean X and its standard deviation o;, the average quality loss defined by (3.6)is

a function of x and o;, or equivalently of x and t;. The average quality loss

may be written as:
Q=Q(x,t). (3.9)

The total cost becomes:

H (%,,t) = Q(x,,t) +C(t) = k{Var (y(x1t))+[E(y(xIt))- M]Z} +iC‘ (t). (3.10)

Consider the model y(x|t) =4 +(x+t)" S+(x+t) A(x+t)+&.
Assuming the tolerances are uncorrelated, the mean of y(x|t) is:
E(y(x]t)) =B, +X B+X A X+trAS; (3.11 a)

where = = [Jf],i =1,2;--,p is a diagonal matrix.

Then,
p p t)Y 1L
trAz:ZIBiiaiz :Zﬁii (_éj :§Zﬁiiti2- (3.11 b)
Finally,
E(y(XI0)=E(Y(X)+S L AL = A+ X FriBx+ DAL, (@110)
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In fact, y(x|t) =8, +(x+t)" B+(x+t) W(x+t)+&=B +X B+t B+ X Dx+X At +t'Ax+t' At +¢&

Then, E(y(x|t))= E(,b’O +X B+t B+ X Ax+ X At +tTAx+tTAt) =B +X B+XAx+ E(tTAt). The
expression E(tTAt) leads to E(tTAt) =tr (AZ) +(E()" A E(t) = Zp:,B”af where

1 1 [ 1 1
B, EﬁlZ _2:31;) 0-12 0 0 lgllaf _Zﬁlpzz _2,3100'5
: : Lo : : o> :
Az: 1322 . 2 N - 1322 2 N . (311 d)
1 0 o2 1
Eﬁpl ﬁpp P E:Bplaf ﬁppaﬁ
The variance of y(x|t) is:
Var (y(x|t))=(B+24x)" = (B+20x)+07. (3.12 a)
In terms of tolerances, the variance becomes:
Var(y(xlt)):%(,6’+2Ax)TT(,8+2Ax)+af. (3.12 b)

1

We remember that A:[Jij] where J, =4, if i=] and ¢, =%/3, ifizj, T =[ti2] is a

diagonal matrix of tolerances. The final expression of the total cost

H (x,,t) =Q(x,,t) +C(t) becomes:

H (x,,t) =k{%(,8+ 20%)' T(B+28X)+07 {,80 +x' +xTAx+%Zp:,8“tf —M}} +Zp:Ci (t). (3.13)

i=1

The optimization problem to be solved in order to obtain the setting that

minimizes the total cost of the process is:
min H (x,,t)

subj. tox, . (3.14)
t
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3.3. Application of Parameter design and Tolerance design

This application is adopted from Raymond H. Myers and Douglas C. Montgomery

[28]. One step in the production of a particular polyamide resin is the addition of

amines. It is supposed that the manner of addition has a profound effect on the
molecular weight distribution of the resin. Three variables are thought to play a

major role: temperature at the time of addition (X, °C), agitation (x,, RPM), and
rate of addition (X, 1/min). Because it is difficult to physically set the levels of

addition and agitation, three levels are chosen and a Box-Behnken Design is
used. The viscosity of the resin is recorded as an indirect measure of molecular
weight. The data, including the factors and their levels, the design, and the
response values are given in Annex 3.1. The results of analysis of variance for the

viscosity of the resin are given in Annex 3.2.

3.3.1. Results

The estimated regression model is:
y(x)=-58.875+ 2.65 - 0.66- 11.125- 0.042+ &3 045 0082+ 0Q88 >4
Let t ~N(0,07).i=122

From the estimated regression model, the matrix A is:

1 1
1811 51812 _2/813
-0.012 -0.016 0.04
1 1
A= 5,321 B, —2,823 =/ -0.016 03 0.07
1 1 0.044 007 -0.14
51831 _21832 1833
g2 0 0
The matrix I is definedas =| 0 o7 0
0 0 a

The following phase is to calculate E(y(x|t)) and Var(y(x|t).

We apply respectively (3.11 a) and (3.12 a).
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After simplification, the following result for E(y(x|t)) is obtained:

~

E(y(x|t))=-58.875+ 2.6% - 0.66— 11.125- 0.0£2 @3- 0.%45 0082+ 0088
+0.14x,x,— 0.0127 + 0.35— 0.145

By taking into account the expression (3.8) which implies that g, =+, E(y(xlt)) is

w |-

transformed into:

E(y(x|t))=-58.875+ 2.6% — 0.65,— 11.135- 0.042+ &%3 0.445 0082+ 088
+0.14x,x, - 0.001% + 0.0333- 0.0161
The estimate of Var(y(x|t) =(B8+2AX)" Z(8+24x%)+0? is:

Var(y(x|t) =(2.65- 0.024 — 0.03g, + 0.088)°0?+(- 0.65 0.082 0,6 OPio’+
+(-11.25+ 0.088,+ 0.14 - 0.29)’0%+0:

Let us consider the following values for the parameters that appear in E(y(x|t)
and Var(y(x|t): ¢,=3,0,=0.150,= 0.50; = 10.2 which imply that t =9,t, = 0.45¢,= 1.5
Let the target be M =55 and the quality loss for unit k =1.

The tolerances of the control factors and the related costs are given in Annex 3.3.

The cost function (3.7 b) is used and the adjusted cost functions are:

C(t,) =0.132+ 1.9474t°**",C(t,) = 0.14¢ 0.3958,°"**and C(t,) =0.106+ 0.528&t;°*".

In order to formulate the optimization problem, the following expressions are

calculated:

E(y(x|t))=-59.013 2.65- 0.65- 11125~ 002> X3 04%5 003  GRYE xXl4
(E(y(x|t))—55)2:(—114.013 266- 065- 11125 06812 03 045 @32 08 xRJ4
Var(y(x|t))=105.% 11.942 - 2.3+ 5825+ 05860 0822 091 0Q43 8RBV  OBKI

0.6051 820

C(t):i(:(ti):o.132+ 1.9474 '+ 0.144 0.3966 05+ 0.106 @BRLH "= 2.012

i=1
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The optimization problem to be solved is:

{min H (x,t)

XxOR

>

where H(x,t)=(E(y(x|t))—55)2+vér(y(x|t))+c¢), 150<x, < 20(, 5<x,<10 and

15< x, < 25.

The solution of the problem shows that the total cost of the process is 7475.698

monetary units.

The corresponding combination of the levels of the design factors is

(%, %,,%;) =(150,10, 25.

After the combination of the levels of the design factors is obtained; the expected
mean, the variance and the expected value of the quality loss of the process are

calculated using respectively the formulas (3.11 ¢), (3.12 a) and (3.6).

Then E(y(x|t)) = 40.2370var (y(x|t)) = 7255.and Q=7473.7.

Interpretation

By optimizing the total cost incurred by parameter design and tolerances of the

design factors, the combination of the levels of the factors that lead to the

minimal cost is (X, X,,X;) = (150,10, 25.

The corresponding values of the expected mean and variance are respectively

40.2370 and 7255.7. The quality loss of the process is 7473.7 monetary units.
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3.4. Conclusions

In this Chapter, the integrated method of parameter design and tolerance design
is exposed. The method consists of integrating the tolerances related to nominal
values of the levels of the design factors, and then minimizing the total cost of the
process. The total cost of the process is composed of the quality loss and the cost
of incorporating tolerances in the process. Even though the method causes extra
cost in the process, it is the best way of ensuring the minimal variability once the

nominal values of the design factors are obtained.
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Chapter 4: Split-Plot Designs for Robust Experimentation

4.1. General view of Split-Plot Designs

In some multifactor factorial experiments it is impossible to completely randomize
the order of the runs. Industrial experiments often encounter such situations
where some experimental factors are hard to change or where there is significant

discrepancy in the size of some experimental units [29]. In this case, the

experimenters fix the levels of the difficult-to-change factors, and run all the

combinations of the other factors. This leads to a split-plot design.

Soren Bisgaard [30] reveals another situation where split-plot designs are

applied. This is the situation where all factors are equally difficult or easy to
change and there are no other practical or economical restrictions on the

randomization.

Split-plot designs have their origins in agricultural experiments. In these
experiments, a factor such as the irrigation method is randomly applied to large
sections of land, called whole plots. These sections then are split into smaller
plots called subplots, and another factor, such as different fertilizers, is applied in

random order within the subplots.

In the case of robust design, the distinction between design and noise factors may
not be the reason for imposing a restriction on the randomization and using split-

plot designs. The random character of the noise factors permits conducting

robust design in split-plot design [30] .

The analysis of a split-plot design consists of two error terms because there are
two types of experimental units. These are the experimental units for the whole-

plot factors and the experimental units for the sub-plot factors.
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George E. P. Box and Stephen Jones [14] provide an extensive overview of split-

plot and strip-plot designs for robust product experimentation. They consider

three types of split-plot designs for robust experimentation with regard to the

arrangement of the design and noise factors. Soren Bisgaard [30] provides

specific technical details on how to design and analyse split-plot designs when
they are based on combinations of two-level factorials and fractional factorials.
His focus is on how to design and analyse 2¢°Px 29" split-plot designs. Soren also
proposes the division of the sources of variation into two parts, those coming from
the whole-plots and those coming from the sub-plots, and then constructs a
normal plot for each group. This separation permits observing the factors and the

interactions between factors which have effects on the response of interest
4.2. Arrangement of the design factors and the noise factors

In the case of split-plot designs for robust experimentation, three experimental

arrangements of the design and the noise factors are of the most interest [14] .

Arrangement 1: Design factors are split-plot factors.

In this arrangement, the whole-plots contain the noise factors and the sub-plots

contain the design factors.
Arrangement 2: Noise factors are split-plot factors.

The whole-plots contain the product design factors and the sub-plots contain the

noise factors.

Arrangement 3: Strip-block designs.
In this arrangement, the subplot treatments are assigned randomly in strips
across each block of whole-plot treatments. In agricultural designs, this

arrangement is frequently referred to as a strip-block experiment.

In this chapter, we pay more attention to the case where the noise factors are the
whole-plot factors. The design allows fitting a first-order model with interactions.

The general structure of the model is:
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y = WP factorst WE, ,+ SP factots WPxSP interactions o 4.1)
where y is the response variable, WP represents whole-plot and SP represents

sub-plot.

4.3. Application

We adapt the problem of chemical process (John S. Lawson [19]). The aim of this

application is to analyse the data as split-plot design. The results are compared to
those obtained in the case of double orthogonal array design and combined array

design.

We consider the arrangement where the whole-plots contain the noise factors and
the sub-plots contain the design factors. This case seems to be more realistic

because of the random nature of the noise factors.

There are 2 noise factors z and z, applied to the whole-plots and 3 design

factors X, X, and X, applied to the sub-plots. There is no replication.

In order to adapt the original design to the split-plot design, we combine in pairs
the levels of the noise factors to form a whole-plot. There are four whole-plots. In
practice, once the whole plot is randomly selected, the following step is to apply

the combinations of the design factors within the whole-plot.

Table 4.1 shows the arrangement structure of the data in split-plot design.
Annexes 4.1, 4.2 and 4.4 contain the data respectively of the full split-plot design

and half fractional split-plot design for the first and the second groups.

The first-order model including two-factor interactions for the split-plot design is:

Y(XZ) =B+ BZ WPy + VXt VXt VXV XX AV XX FV %% %

(4.2)
+ ﬂllz Xl + ﬂlzz X2+ ,3132 X 3+ S:)Error -
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Table 4.1: Arrangement of the data in split-plot design structure.

Noise factors Levels
4 1 -1 -1 1
4 -1 -1 1 1
z -1 1 -1 1
Whole-plot 1 2 3 4

Table 4.2 gives the coefficients of the regression models.

Table 4.2: Coefficients of the regression models.

Intercepft] Linear Interaction

Design By n Y vs 4P Vs Vas B Ba B

Full design| 17.84 |[-8.17 -9.08 -0.13| 8.30 0.07 0.17 -0.08 -1.68 0.76
1st group 18.75 |-8.83 -10.49 0.36/10.92 -0.81 -1.41 0.61 -1.83 0.85

2nd group 17.01 |-8.83 -8.34 -0.63] 5.69 096 1.76 -0.76 -1.53 0.67

Table 4.3 shows the results of the analysis of variance for the data in complete
split-plot design. The results of the analysis of variance corresponding to the first
group and the second group of half fractional split-plot design are indicated by

Annexes 4.3 and 4.5.
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Table 4.3:

Analysis of variance for the number of impurities considering full design.

Sour ce DF SS Adj . SS Adj . MS F P
Z 1 275. 89 275. 89 275. 89 0.55 0.535
WP( 2) 2 1001.75 1001. 75 500. 87 23.84 0.000
x1 1 2137.76 2137.76 2137.76 101.74 0.000
X2 1 2641.55 2641. 55 2641.55 125.71 0.000
x3 1 0. 58 0. 58 0. 58 0.03 0.869
X1*x2 1 1102.90 1102. 90 1102. 90 52.49 0.000
x1*x3 1 0. 09 0. 09 0. 09 0.00 0.949
X2*Xx3 1 0.50 0.50 0.50 0.02 0.878
Z*x1 1 0.21 0.21 0.21 0.01 0.920
Z* X2 1 90. 38 90. 38 90. 38 4.30 0.044
Z*x3 1 18. 47 18. 47 18. 47 0.88 0.353
Error 47 987. 58 987. 58 21.01

Tot al 59 8257.68

Stand. error = 4.58393
R-squar. = 88.04%
R-squar. (adjust.) = 84.99%

Table 4.4 presents the fitted regression models in terms of significant effects.

Table 4.4: Regression models.

Design Regression model

Full design| y(x,Z)=17.84- 8.1% — 9.08,+ 8.3Qx,+ 0.Z6]

1st group 9(X,Z) =18.75- 8.8% — 10.48,+ 10.%X,

ond group | ¥(%2)=17.01- 8.8% - 834+ 5.6x,
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Optimal values for the number of impurities

Let us assign the low level to the whole-plot in the regression model related to the
full design, this is Z =-1.
The optimization problem to be solved in order to obtain a minimal value for the

number of impurities is:

For the full design:
{min{ 17.84- 8.1% — 9.08, - 0.36+ 8.3,

-1 xX,X;<1

For the 1st group:

min{18.75- 8.8% - 10.48 + 10.82}
~1sxx,<1 '

For the 2nd group:

min{17.01- 8.83 - 8.34,+ 5.69x,}
~1<xx,<1 '

Table 4.5 gives the minimal values for the number of impurities. It also shows the

variance and the mean square error.

Table 4.5: Minimal values for the number of impurities.

Design Optimal setting (x,%,,X;) | Number of impurities | Variance | MSE

Full design (-1.1.1) 7.87 21.01 | 82.95
1st group (-110x, 0R) 6.17 30.69 | 68.76
Dnd group (L10%0OR) 5.53 11.54 | 42.12
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Interpretation

The analysis of variance permits depicting which main effects and interactions of
the factors are significant to the number of impurities in the process. Once

significant effects are detected, the regression models are fitted accordingly.

The results show that the factors x and X, , which are respectively the reaction

temperature and the catalyst concentration, have significant main effects and a
significant interaction effect on the number of impurities. These results agree
with those obtained in Chapter 1 and Chapter 2, where the analysis is based

upon double orthogonal array design and combined array design respectively.

Furthermore, by analysing the data as a split-plot design, we obtain the best
results for the number of impurities, compared to the results obtained in Chapter

1 and Chapter 2.

Application of the Quality Loss Function

~ ~\2 ~
The estimate of the expected loss is Q=25[(,u) +02} The values obtained for u

and o’ are respectively 7.87 and 21.01. The corresponding quality loss is:

Q=25/(7.89"+ 21.01= 2073monetary units.

The reduction of the quality loss is 7476.25- 2073.#7 5402 monetary units, for

each unit of chemical product.
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4.4. Conclusions

In this chapter we briefly give a general view of split-plot design and introduce
split-plot design for robust experimentation. The main idea in split-plot analysis
is that the error term is split into parts, one for the whole-plots and one for the
sub-plots. We mention the three experimental arrangements which are of the
most interest while considering the design and noise factors. Through an
illustrative example, we analyse the arrangement where the noise factors form the
whole-plots and the design factors form the split-plots. The results show that
split-plot analysis can be used to detect which factors influence the response of

interest.
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Chapter 5: Conclusions

In this thesis, we provide an overview of different approaches used in literature to
conduct robust design and analyse the data obtained from this design. The
general assumption in robust design is that there are two types of factors: the
design factors which are controlled by the experimenter, and the noise factors
which are difficult to control. As the noise factors are responsible for the
variability which affects the quality characteristic of the process, the aim of
robust design methodology is to achieve insensitivity to noise factors. This
consists of bringing the quality characteristic to the target, while simultaneously

minimizing its variance and the cost of the process.

The methods we present in this thesis are the Taguchi approach, the combined
array design and the split-plot design for robust experimentation. The Taguchi
approach consists of a double orthogonal array design, one for the design factors
and one for the noise factors. Taguchi proposes the data analysis based upon the
Signal-to-Noise Ratio. The combined array design puts both types of factors in
one design. This design permits the analysis of the interactions between the
designs and the noise factors, and reduces the number of runs required to
conduct an experiment. The data analysis consists of adjusting a regression
model in terms of design factors and noise factors. From the adjusted model, two
response surfaces are obtained, one for the mean of the quality characteristic,
and one for its variance. The split- plot design assigns noise factors in the whole

plots and control factors in the sub-plots. The error term is formed of two terms.

We illustrate the Taguchi approach, the combined array design and the split-plot
design with an application of a chemical process. The aim of the application is to
conduct a designed experiment in order to obtain the operating conditions that
improve the process. The improvement consists of the reduction of the number of
impurities in the product, and the minimization of the cost. We use the quality
loss function in order to evaluate the cost caused by the deviation of the quality
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characteristic from the target. Even though the optimal operating conditions
obtained by data analysis based upon the Taguchi approach and the combined
array design are slightly different, the common conclusion is that they reduce the
number of impurities in the product and the cost of the process. The economic
impact of conducting designed experiments is verified by using the Quality Loss

Function.

By analysing the data as a split-plot design experiment, the results which are
obtained agree with those of the Taguchi approach and the combined array

design. These are that the factors x, and x,, which are respectively the reaction

temperature and the catalyst concentration, have significant main effects and a

significant interaction effect on the number of impurities.

We expose the integrated method of parameter design and tolerance design. The
parameter design methodology is built on engineering and statistical ideas, and
aims at improving a system by making its performance insensitive to noise
factors. This is attained by obtaining the optimal operating conditions in terms of
the combination of the levels of the design factors. The tolerance design is
introduced in the process when the variability of the quality characteristic is still
large. A tighter tolerance around the nominal value results in a smaller
transmitted variation, but incurs an extra cost. The method incorporates
parameter design and tolerance design into a single stage of design optimization.
We give an illustrative application of minimization of the cost in the production of

polyamide resin.
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Conclusiones

En esta tesina, proporcionamos un panorama de los diferentes enfoques usados
en literatura para realizar un disefo robusto y analizar los datos obtenidos de
este diseno. El supuesto general en disefio robusto es la presencia de dos tipos de
factores: los factores de diseno que son controlados por el experimentador, y
factores de ruido que son dificiles de controlar. Como los factores de ruido son
responsables de la variabilidad que afecta a la caracteristica de calidad del
proceso, la meta de la metodologia del disefnio robusto es alcanzar insensibilidad a
los factores de ruido. Esto consiste en obtener el valor objetivo de la caracteristica

de calidad, y minimizar simultaneamente la varianza y el costo de proceso.

Los métodos que presentamos en esta tesina son el enfoque de Taguchi, el diseno
arreglo combinado y el diseno de parcelas divididas para experimentacion
robusta. El enfoque de Taguchi consiste en un disefio doble arreglo ortogonal,
uno para factores de disefio y otro para factores de ruido. Taguchi propone el
analisis de datos basado en la Razon Senal a Ruido. El disefio arreglo combinado
considera ambos tipos de factores en un disefio. Este disefio permite el analisis
de interacciones entre factores de diseio y de ruido, y reduce el nimero de
tratamientos requeridos para realizar un experimento. El analisis de datos
consiste en ajustar un modelo de regresion en términos de factores de diseno y
factores de ruido. Del modelo ajustado, se obtienen dos superficies de respuesta,
una para la media de la caracteristica de calidad, y otra para la varianza. El
disefio de parcelas divididas asigna los factores de ruido en toda la parcela y los

de control a sub-parcelas. El término de error se divide en dos términos.

[lustramos el enfoque de Taguchi, el diseno arreglo combinado y el disefio a
parcelas divididas con un ejemplo de proceso quimico. El objetivo de esta
aplicacion es realizar un experimento para obtener las condiciones de
funcionamiento que mejoran el proceso. La mejora consiste en la reduccion del
numero de impurezas en el producto, y minimizacion del costo. Utilizamos la
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funcion de pérdida de calidad para evaluar el costo causado por la desviacion de
la caracteristica de calidad de su valor objetivo. Aunque las condiciones 6ptimas
de funcionamiento obtenidas por el analisis de datos basado en enfoque de
Taguchi sean ligeramente diferentes de las obtenidas en diseio arreglo
combinado, la conclusién comun es que reducen el nimero de impurezas en el
producto y el costo del proceso. El impacto econémico de realizar experimentos

esta verificado usando la funcion de pérdida de calidad.

Analizando los datos como disefio a parcelas divididas, los resultados permiten la
misma conclusion que la obtenida en enfoque de Taguchi y en el disefio arreglo

combinado. Esto es, los factores X y X,, que son respectivamente la temperatura

de reaccion y la concentracion del catalizador, tienen efectos principales y efecto

de interacciones significativos sobre el nimero de impurezas.

Exponemos el método integrado de disefio de parametro y disefio de tolerancia.
La metodologia de diseno de parametro esta basada en ideas de ingenieria y
estadistica, y su objetivo es mejorar el sistema, haciendo su funcionamiento
insensible a los factores de ruido. Esto se logra obteniendo las condiciones de
funcionamiento 6ptimas en términos de combinacion de los niveles de factores de
disefio. El disenio de tolerancia se introduce en el proceso cuando la variabilidad
de la caracteristica de calidad es todavia grande. Una tolerancia mas pequena
alrededor del valor nominal da lugar a una variacion mas pequena, pero causa
un costo adicional. El método integrado de disefio de parametro y de tolerancia
da lugar a un problema de optimizacion. Damos una aplicaciéon ilustrativa de la

minimizacioén de costo en la produccion de la poliamida resina.
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Annexes

This part of Annexes contains tables and graph of the data used as applications

in this thesis. Annexes are presented by chapter.

Chapter 1: Double Orthogonal Array Design

Annex 1.1: Coded and real levels of the factors.

Levels
Design factors -1 0 1
X 180 210 240
X 25 30 35
X3 12 15 18
Noise factors -1 1
Z 10 20
4 30 40

Annex 1.2: Sixty runs of the chemical process.

i1+ -1 -1 1 Mean | Stand. Dev. | Variance | SNR

Exp. X1 X2 X3 Z2- -1 1 1

1 -1 -1 a 5741 7.2 42 47 43407 48 2B 4 E4 7534 | -33411
. 1 -1 b 2,40 418 823 1468 13.04 a.04 ADEL | -DAEDED
i -1 1 0 1121 051 101 11.19 1100 1E JES -20000E
4 1 1 { 1149 9.15 103 11.4 10,99 115 10 -2015019
b -1 a -1 21N 20.24 22.28 4.1 242 318 1011 | -225224
E 1 a -1 114 443 544 8.1 1.18 i1 9.E4 -17.9126
7 -1 a 1 30.ES 184 20.24 2445 2344 544 2955 | -27.5641
] 1 { 1 1404 2.9 413 a.4a 1.1 050 1124 | -10417%
g 0 .1 .1 42 £3 143 2184 0 2018 9.7k 9534 | -20E749
10 a 1 -1 1358 1008 g5 1.3 1.2 1 2.8 =213
1 a -1 1 SOE 13,14 1844 3097 2840 155 2MOE | -300523
12 a 1 1 1541 144 .74 1w 1108 3.29 1085 | -211%EE
13 a a a 14962 12,28 13.14 14.54 1484 328 1077 | -23E17E
14 0 0 0 WE 11.49 1208 13.49 1441 421 114 41443
13 { { { 014 1 14.08 11.8 1508 144 1215 | -247309
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Annex 1.3: ANOVA for the Mean.

i2C

534,482
660,443
0.1454

0. 9805873

275,748
0.0225

92,6527
0.1225

0. 118874
0,964352

534,482
660 .43
.1458

0.880373

275,748
0,0225

92,8527
00,1225

0. 116874
0.192873

2771.03
2424.33

.78

5.08
23
0,12
-1

RE-squared = 99,9384 %

R-squared (adjusted for d4.£.) =

89, 8274 %

Annex 1.4: ANOVA for the Standard deviation.

0.0323215
1558.44
21_50T732
3.331&87
000755161
0.014133
23_99T7
&_TEATE
057043
§.236417

EE
EC
o
Total arror

00323215
1t3 . 44
215073
3.33187
000785161
0_012133
23._ 9977

& TEATE
O_eToR48

1. 67483

2Tl
=]
el
.00
.01
="

E-squared = 86, 4017%

E-soared (adjusted for d.f.) =

78

g0, 8247y



Annex 1.5: ANOVA for the Variance.

602731
3loge. 2
47010
2196 G
L 8glid
1.11514
QE03_ 31
TZR0.0
3441
1581 &8

Soarce Sum of Scuares If
A:xl 5. 03781 1
B:xd 2lag9 2 1
[ G479 10 1
AR 2196 55 1
AE L.86l24 1
AZ 1.11514 1
EEBE Beag 31 1
EC TZ290.0 1
20 3544 1 1
Totbal error TELZ 41 )
Total (ocorr. ) ERGE3_ 2 14

E-scuared = S5_5GF4d%
E-=zcuared (adjusted for d.f.) = &7.9684%

Annex 1.6: ANOVA for the SNR.

87,6428
133,581
.,325789
1.7325
23,9811
0.279547
11.5404
0.021a805%
0.0309548
1.530105

Seuros Sum «f Squarss of
Lixl 87 .6425 1
B:x2 123,581 1
Cix3 0.325789 1
an 1.73248 1
4R 23.5511 1
ac 0.279547 1
EE 11.5404 1
BC 0,02180% 1
o 0.0309545 1
Total errer 5. 50538 5
Total (corr.) 280.177 14

RE-squared = 96,6074 %
R-squared {adjusted for d4.£.} = 90,5006 %
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Annex 1.7: Runs for the half fractional design.

Red coloured data: 1st group

Blue coloured data: 2»d group

Z1l+ -1 1
Exp. X1 X2 X3 Z2- 1 1
1 -1 -1 0 57.81 37.29 42.87 47.07
2 1 -1 0 24.89 4.35 8.23 14.69
3 -1 1 0 13.21 9.51 10.1 11.19
4 1 1 0 13.29 9.15 10.3 11.23
5 -1 0 -1 27.71 20.24 22.28 24.23
6 1 0 -1 11.4 1.48 5.4 8.23
7 -1 0 1 30.65 18.4 20.24 24.45
8 1 0 1 11.91 2.29 1.3 8.19
9 0 -1 -1 12.68 22.42 21.64 30.3
10 0 1 -1 13.56 10.08 9.85 11.38
11 0 -1 1 50.6 13.19 18.84 30.97
12 0 1 1 15.21 7.44 9.78 11.82
13 o} o} 0 19.62 12.29 13.14 14.54
14 0 0 0 20.6 11.49 12.06 13.49
15 0 0 0 20.15 12.2 14.06 13.89
Annex 1.8:
Results for the half fractional design (Mean- Standard deviation- Variance- SNR).
Mean | Sland, Dev. | Variance |SNR Mean [Stand. Dev.| Variance [SNR
Cxp x1 K2 A3 Bxp. X1 X2 a3
1 1 10 | 5244 | 1487 507 | -34.4380 11 -1 0 |4008 | 355 1557 | -32.07%5
2 1 -1 0 .20 12.10 753 -16.2677 ) 1 -1 0 19,72 7.21 5202 | -26.2082
3 -1 1 0 12.20 12.20 204 -21.7369 3 -1 1 0 981 0.42 0.17 -19.8329
4 1 10 b s 1261 0bb | -19.//29 e l1 1 0 luw| 146 212 | -21.8004
g 1 0 |59 | 1% 606 | -28.3089 s 0 o |w| 144 208 | -25.3613
6 1 0o | 2% 13.36 046 | -13.9301 6 [ 1 0o 1| e8| 224 5.02 | -19.94%5
7 1 0 1 | 2755 | 1332 1922 | 883571 71 0 1 |93z | 130 1.69 2573
g 1 0 1 3.30 13.78 2.02 -10.7434 i 1 0 1 11.72 4.56 2080 | -21.6921
g 0 -1 -1 ] 3649 13.42 7663 | -31.3667 g ] -1 -1 2203 0.55 0.30 -26.8617
12 0 1 1 9.97 12.25 0.03 19.9701 10 ] 1 -1 1247 1.54 233 -21.9504
1| 0 -1 1 |40 | 1L8b | 186/ | -32404b m| o -1 1 |1ws02| 400 | 15% | -2.223%
12 0 1 1 8.61 446 174 -18.7795 12 ] 1 1 13.52 240 275 -22.6841
12| 0o o o0 | 1708 372 1290 | -24.7248 vl o 0o 0 |1272| 06D 036 | -22.0912
"o o 0 |1m 397 016 | 214218 “ o o 0 |17os| 503 | 2528 | -24.8168
15 0 0o 0 J1702 | 443 1959 | -24.7536 5 )0 0 0 )BB| 13 1.73 22387
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Annex 1.9: ANOVA for the Mean.

1st group

Source Sum of Squarez D
Bzl 1131.9% 1
2:x2 140,15 1
ez 1.71¢883 1
iyiy 12,2752 1
AR 475,875 1
AC 2.53251 1
3E 165,521 1
3C 738062 1
o 141.4084 1
Total error €1.0311 5

1101. 482
1140, 15
1.018&8
12.27E2
476,876
2.632EC
1eb5.652C
7.5880&2
14,1084
1e.20&2

=1

[ I
oD < D MDD S T

L

Lo B B [ S

Total [corr.)

R aquarcd = 27.320EE %
2 aquarced ladjustced for d.f.) = 92.45EE %

2nd group

170.063
310.315
3.13751
30.065<
125 33<
3.636<
41.0308
12.45089
2.72252
15.4379

Source Sun of Squares Df
B:xl 172,063 1
3:x2 313.815 1
el S.13%51 1
AR 30.0654 1
AE 123,534 1
AC 3.6864 1
3E 41.0303 1
3¢ 12.4603 1
e G.72252 1
Tctal error 97,4894 5
Tctal icorr.) 03,984 14

R-aquaraed = 37.94G62 %
A-squared ladjusted for d.f.) = 66.2576 %
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Annex 1.10: ANOVA for the Standard deviation.

1st group

Source Sun of Scuares Df Mzan Square F-Eazio P-Value

Bl 0.28248% 1 0.28248%9 0.07 0.7033

B.x2 17.5205 1 7. R205 4.64 0. 0837

C:x3 6.80244 1 6.80244 1.83 0.2344

IR 121 .85 1 127 .66 32,25 0. 0024

AR 2.54458 1 2.54404 b.a7 0.4438

AC 0.000180%02 1 0.000180502 0.00 0. 9047

BB 3€.9144 1 36,5144 9.75 0. 0260

BC 12,4172 1 13,4172 3.54 0.1130

oC 47 . 0815 1 47. 0515 12.47 0. 0187

Total error 1&.8¢€02 ] 3.7T204

Total ({corr.) 240,01 1<

E-squared = 92,1877 %

E-=quared {adjusted for 4.£.) = TE. 0698 %

2nd group

Inalysis of WVariance for 2tandard Deviakbion

Source Sum of Equares Df M=an Square F-Eatio P-Walue
A:xl 8.74¢48 1 8. 7468 2.048 0.2111
B:x2 12,2325 1 12,2325 2.87 0.1507
C:x3 C.2441 1 C.2441 1.23 0.3174
AL 1.34828 1 1.348248 0.32 0.5978
LR 1.24031 1 1.24031 0.29 0.5124
AC 1.5138 1 1.5134 0.35 0.5768
BE 0. 42461 1 0.424a1 0.1 0. 7c48
BC 1. 67445 1 1.67445 0.39 0.5580
CC 1. 046505 1 1.0465¢ 0.25 0.5410
Total error 21.2748 5 4.254095

Total i(corr.) G4, 59341 14

BE-squared = 61.273s8 %
E-2quared (adjusted for 4.f£.) = 0.0 %
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Annex 1.11: ANOVA for the Variance.

1st group

630,452
T3E33.1
2226 .85
2791.07
R34.579
33.6718
4164 .27
31210 k8
2047.17
2370.91

[P e R o N e T e

e

Jourcs Zum of Squarss ot
Lixl 600,433 1
B.x2 13533.1 1
i 2220688 1
2V 2791.07 1
AR Rog RT9 1
A 33.6748 1
ERE 4164.27 1
EC 2Z210.58 1
ZC 2047 .17 1
Total erroz 6854.55 5
Total {(cor=.) 35662.3 14

R sgquarcd = 81.20325 %
E-sguared (adjus.ed [or 4.[.) = 47.6493 &%

2nd group

456.801
674,087
148.056

85.9856
297.632

65.326
45,8233
A7.7432
158.328
167.133

Source Sum of Squares Df
Li:xl 456.801 1
B:x2 674.097 1
Cax3 148,056 1
iy 85.986 1
LB 297.632 1
4cC 65.326 1
BB 45.8233 1
BC 37,7432 1
cC 158.328 1
Total arror 835.664 5
Total (corr.) 2828.77 14

R-gquared = 70.4584 %
R-zquared (adjusted for d.f.) = 17.2835 %
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Annex 1.12: ANOVA for the SNR.

1st group

344.891
147.474
0,953007
30,3835
64 .69/1
3.52482
19.6893
1.28778
0,354655

11.736

Lource sum of Squares
L:xl 344,891
B:x2 147.474
Crxd 0.953097
B 30.3835
AR 64,6941
LC 3.52482
BE 15.6893
BC 1.29778
CC 0.354650
Total error 58.6801
Total (corr.) 675.946

R-gquared = 91.3188%
L-zquared (adjusted for 4d.f.) - 75.€927 %

2nd group

26.4752
66.7313
D.123308
1.50131
15.3617
1.65611
5.00L2
2.84226
0.408718%
4.837343

Sourcs Sum of Sguares Dt
Aixl 26.475832 1
Bix2 66 .7313 1
Cax3 0,123306 1
AL 1.90131 1
LB 15.3617 1
AC 1.65611 1
BE 5.0052 1
BC 2.84225 1
cC 0.408719 1
Total ervor 241671 R
Total (corr.) 111,842 11
R-zquarsd = 83.2917 %

R-gquarsd (adjusted Lor d.L.) = 53.216% %
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Chapter 2: Combined Array Design
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Annex 2.2: ANOVA for the number of impurities.

SOl Ssum oaf Squaras h) Meon Sguare F-Ratio P-vaolue
Mol T2 .99 17 452 _ 294 == _40 O o000
Raesidual SEE 653 4= 13_S<401
[=Eat BB atal™Y sum <f Sguuares ik = Mear Salare F-FRatico P-walue
xl Z213F 7S 1 E13TF .75 157 .5= Lep v Lo ]
x= 2E41 S5 1 2541 (S5 195 _09 Lo o]
] 0O._5sS0503 1 0_SsS05S0= o_ o< o._s370
k1 Al 2 .91=27: 1 =z _.91=275 o_z29 o_S93a
o 110z .2 1 lioz=2 .2 S1 .45 LERR e
K1 W= O_0=S=SS082 1 0. 0ssc0s3 o_ol1 o._9359
KB WIHE ZF1.37= 1 71 .37T= 27 a3 Lep v Lo ]
K2 AHZ 0O._497025 1 0_497025 o_ o4 o._=s490
KIS WIS 0._453 335 1 0._453 335 o_ox= o._s554s
=1 915 254 1 915 254 s7 .0 Lo o]
=2 S _ 498 1 SE 498 & _ 33 o, 0153
X1w=1 0._=zz2s02= 1 o._zzs0z= o_o= o._=2774
XK1#EZ 0O_ 0833751 1 0. 0833 7Sl o_ol1 o._945=
x2ZHEL 24T .22 1 =47 .22 25 .53 Lo o]
KEWNTE Z3_6851 1 33 _.6881 =43 o_1=Z=<
XIHEL 42 _ 9203 1 42 _99203 E--] o._o0s41
KIWNTZ 0O._s5&5d1=5 1 0_6541=2S o_os o._Sz25s
Residual SEsg_5832 4= 1=_5401
Total (corractear s257 &8 &s
FE-Squared = 23 1133 %
R-2quaraed [(adjusted for A_£.) = 90 32538%
Standard Errcor <of Est. = 3 _.&67365
Annex 2.3: Coefficients of the regression model for the number of impurities.

tandard
Parameber Eztimate BError Lowar Limit Upper Limit
CQONST DT 14 _7T342 1. 06223 12 6505 169378
xl -8 .17 344 0.e50482 -9 42617 -5 8&071
X2 -9 085632 0_&50482 -10._39:54 -T.TTER
X3 -0._.134 5588 0_&E0452 -1 44742 1.17=204
X1 WXL 0O_515104 0_357454 -1._.4171%8 2 .447T39
X1 w2 2_2025 0_.919921 & 44502 1lo.15%
K1#*x3 0.07427E5 0.913521 -1.78Z21 1.53z025
HE WD 5 _01442 0_357454 2 .0221%9 B _S46T6
K2 HA3D 0.17&25 0.913521 -l .g2023 2. 03272
XIWNRI 0_.17&354 0_357454 -1 _75E533 2.10264
rl 2 .908&7 0.475045 2.94698 4 _S&435
T2 -1 _200&7 0_475045 -2 _.15%935 -0._ 241985
X1#%Tl o._1009z7 0_&50452 -1.2117%3 1.4132&7
X1WEZ -0 . 0465625 0_&e504s2 -1 _353z3 1. 26617
XEWET1 -3 29588 0_&50452 -4 _&09& -1 .9841%5
KZWEZ l1.02G5ez2 0.e50482 -0.287104 2 .33835
XIWET1 1.23719 0_&50452 -0.0755417 2 543932
KIWEZ -0.144062 0.e50482 -1 .45673 l1.1&2e7
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Annex 2.4: Thirty runs of the 1st group.

o bl ol = z, | Impurity x X, X z z, | lmpurity
-1 -1 0 1 -1 57 . A1 -1 -1 @] -1 1 4.20
1 1 o 1 1 47,07 -1 1 u] 1 -1 42,558
1 o] -1 -1 -1 4. 25 1 o] -1 1 1 20,30
-1 0 1 -1 1 8.0 1 ol 1 -1 -1 10.08
] -1 -1 1 -1 1=2.21 o] -1 -1 -1 1 9.85
] 1 1 1 1 11.1< o] -1 1 1 -1 50,50
o o o -1 -1 9,15 o] ol jul] 1 1 20,97
Q Q Q -1 1 10,30 -1 -1 ] -1 -1 G
1 -1 0 1 -1 P | 1 -1 jul] -1 1 Q.78
-1 0 -1 1 1 o s 1 1 o} 1 -1 19,62
-1 0 1 -1 -1 4 45 -1 0 1 1 1 14.54
1 0 1 -1 1 5.4 @] -1 -1 -1 -1 11.4%2
o] 1 -1 1 -1 20,55 o] 1 -1 -1 1 12,06
0 8} 1 1 o 4 E o 1 1 1 -1 20,15
] 0 -1 -1 2,29 o} o s} 1 1 13,89
Annex 2.5: ANOVA for the number of impurities for the 1st group.
Analvsis of vVvariance for Inparitwy
Sollro e sun of squares il 3 Mean Sgquare F-Ratio P-value
Mol el 5030 .32 17 295 _901 2._56 0.0513
Residual 1354 72 1z 115 _353
Source Sum of Sgquares o f Mean Square F-Ratio
x1 Z .48 354 1 Z.483354 o_0=
X2 z0.711 1 Z0.711 o_27
X3 0_57170z2 1 0_57170Z2 o_oo
x1wxl 4 80458 1 4 80468 o_04
XKL wxZ 43 .4327 1 43,4327 o_3g
K1 wx3 1% _.9E557 1 1% _.9E587 o_17
HEZWXEZ 9l1.9501 1 9l1.3501 .50
K2 W3 215 . 08s 1 215 _08s .72
HIWXS 42 . 7203 1 42 . 7203 o._37
=1 1221 .21 1 1221 .21 17.17
=2 11.28568 1 11.2568 o_10
X1wEl 27 .2524 1 27 .2524 o7&
H1WEZR T2 .0399 1 T2 .0399 o632
XZWELl 4 40409 1 4 40409 o.04
HEZWEZR 45 . 501 1 45 . 501 o_40
xIwEl = _.5739 1 % _.5739 o_0=
XKIWEZ 119154 1 119154 1.0
Eesidual 1354 7= 1z 115 . 393
Total (corrected) e415 .03 z9
E-Suared = 75 ._.4145 %
E-2quaraed (adjusteaed £or A.£.) = 47 _235%
Standard Error of Est. = 10_.7421
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Annex 2.6:

Coefficients of the regression model for the number of impurities (1st group).

Standard

Parameter Eztimate Error Lower Limit Upper Limit
OB ET BRI 15 _.411=> 4 44 E37 E 72215 25 _.1004
Kl 0._4523454 3 .12532x3 -& _ 35104 T 25801
Ha -1 .83406 3 .55E13 -9 53004 5 .91133
X3 0. 222732 2. 1leE22 -6 BT IEE T.11323
o - 1.24&37 & .1110z -12_.0&73 14 _5E18
K1 w2 Z2.841783 4 53204 -7 250583 129341
o -3 .44 324 529411 -21.52Z06 14 6221
XD WH2 & . 45176 T_OZ2E39 -9 29322 221987
KWK -7 .8107& 4 _T2E81 -l2._109s 2.4833211
HIWHD -3 .21087 E.27T11 -14.7027 2 .28633
£l 9 959451 2 .41205 4 T3] 15 _249%9
£ -0._.702352 221127 -5 52703 4 102323
HK1WEL -5 23149 B _O1E26 -la_z2z3%3 T _8TeEd
X1%T2 3 32252 4 1TEle -5 _TT&BET 1z 4Z21e
X2vzl 1.14735 E _8TZ395 -11.5487 129434
HEAWEZ 3 _.32219%= 5 _Zz00325 -8 _Z21&852 1l4_ 33205
XINTl -1 .07832 & 130587 -14 _43&5 1227387
XINE2 -4 _1eg37 4 10214 -l3.10&68 4 TeEgd
Annex 2.7: Thirty runs of the 2rd group.

a5 a, a0y =z =z, Im purity e 20, 205 = =, Inm purity

1 -1 [&] -1 -1 27,29 1 -1 [s] 1 1 &40

-1 1 [&] -1 1 42 .87 1 1 [&] -1 -1 [e=REEs

-1 [&] -1 1 -1 24,89 -1 ] -1 -1 1 21.64

1 [&] 1 1 1 14.6%2 -1 ] 1 1 -1 13.56

[&] 1 -1 -1 -1 .51 [&] 1 -1 1 1 11.35

[&] -1 1 -1 1 10,10 8] 1 1 -1 -1 13,19

[&] [&] [&] 1 -1 13.29 [&] =] -1 1 1a.84

-1 -1 [&] 1 1 11.23 [&] =] 1 -1 15.21

-1 1 [&] -1 -1 o0, 24 -1 1 =] 1 1 11.82

1 1 [&] -1 1 o o8 -1 [&] -1 -1 -1 12,29

1 [&] -1 1 -1 11.40 1 [&] -1 -1 1 13.14

[s] -1 -1 1 1 8,03 1 [&] 1 1 -1 20,560

[&] -1 1 -1 -1 15,40 ] -1 1 1 1 12,49

8] 1 1 -1 1 20,24 ] ] =] -1 -1 12,20

[&] [&] [&] 1 -1 14.94 ] ] [] -1 1 14,05
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Annex 2.8: ANOVA for the number of impurities for the 2nd group.

Mode 1

1417.48
351721

2.02132

zl

=2

x1*z1l
xl*xz2
x2*zl
H2*Ez2
xE3*xzl
x3*z2
Fesidual

23

. 285

Eg2.1z4%

170
212
159
11ls
138

L4173
253
.878
.B2E
198

0.482451

2473

LT13

11.2218

136
189
328

L8334
131
LTI

305,35

114

.DZE

20,1533

3E1

LTEL

Total

[corrected)

MHean Squars F-FRatio P-Valus
83,3814 Z.B84 0.0356
29,3101
DEf Mean Squars F-Hatia P-Valus

1 2, 0213%9 0.31 0.5878
1 2% .285 0.792 0.3903
1 B9 . 1249 Z2.02 00,1810
1 170.413 E.81 0,0328
1 212,253 7.50 0.,0180
1 169,878 E.B0O 0,0331
1 11&5. 525 3.98 0. 0694
1 135,198 4 .81 0.,05z22
1 0.452451 0.02 0.2024
1 243,713 85.32 0, 0137
1 11 .2218 0.41 0.853E58
1 13&. 834 4 .87 0.0518
1 189,131 s5.45 0,0252
1 328,777 11.15& 0, 0052
1 308,385 10.45 0, 0072
1 114 .02 3.89 00,0721
1 20,1533 0.89 0.4232
1z 2% .3101
29

E-Squared =
E-Sgquared (adjusted for 4.f£f.) = 51.%3E&83 %
Standard Error of EHst.

Annex 2.9:

80.1128 %

£.41388

Coefficients of the regression model for the number of impurities (27d group).

Error

14.51%25
0.831E21
-1.4%291%

2.1492%

E.78l0%
-8.58085

E.B2E4B

-7.8745

-7.1
0.284014
-3 .13432

-0.7114 24
-4 . 70427
-3.23018
10,2783

5 .1788%

-4 . 32083

[l sV P R TS I OV RPN I S I

[l sV I PN oV

-1.148z24
0.5BEEZ2473
-15.4057
0.5B4Z1s
-16.479%
-14.32028
-4 .65847
-E.E0Zg
-3.1421%9
-9.44804
-7.301%2
-15.985%
2.01477
-9.24122

19.4028

4 . 0B4EE
2.15559
E.44821
10,2688
-1.7EE58
11.11&8
0.7303231
0.102814
5E.22649
-0. 755041
1.71%2
0.0325104
-0.5E2ls4
-3.57137
10,2473
0.4592548
2.06815



Chapter 3:

Integrated method of Parameter design and Tolerance design

Annex 3.1: Factors, design and response values.

Level |Temperature Agitation Rate X % X
High 200 10.0 25 +1 +1 +1
Center 175 7.5 20 0 0 0
Low 150 5.0 15 -1 -1 -1

Standard order X X X3 y
1 -1 -1 0 53
2 +1 -1 0 58
3 -1 +1 0 59
4 +1 +1 0 56
5 -1 0 -1 64
6 +1 0 -1 45
7 -1 0 +1 35
8 +1 0 +1 60
9 0 -1 -1 59

10 0 +1 -1 64
11 0 -1 +1 53
12 0 +1 +1 65
13 0 0 0 65
14 0 59
15 0 0 0 62
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Annex 3.2: Analysis of variance for the viscosity of the polyamide resin.

Sour ce Sum of Squar es Df Mean Squar e F-Ratio
A x1 73.8174 1 73.8174 7.20
B: x2 0.101077 1 0.101077 0.01
C. x3 96. 818 1 96. 818 9. 45
AA 200. 827 1 200. 827 19.59
AB 16.0 1 16.0 1.56
AC 484.0 1 484.0 47. 22
BB 12. 9808 1 12. 9808 1. 27
BC 12. 25 1 12. 25 1.20
CcC 48.5192 1 48.5192 4.73
Total error 51. 25 5 10. 25
Total (corr.) 933. 733 14
Annex 3.3: Tolerances and costs.
Temperature Agitation Rate
Tolerance Cost Tolerance Cost Tolerance Cost
1 2.09 0.2 1.55 0.3 1.602
1.5 1.663 0.25 1.307 0.35 1.35
2.5 1.254 0.35 1.06 0.45 1.17
0.872 0.5 0.827 0.6 0.91
0.74 0.7 0.654 0.8 0.74
10 0.605 1 0.54 1.1 0.612
15 0.514 1.4 0.444 1.5 0.479
20 0.45 1.9 0.385 2 0.41
30 0.375 2.5 0.333 2.6 0.35
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Cost

Cost vs Toleranc

25

Temperature Agitation
2.4 164 .
2' [ ]
1.2
1.6 -
12 §0.8~ " ]
og . 0.4] - .
0.4 oo -
04, . . . .
S — 0 05 1 15 2
0 5 10 15 20 25 30 Tolerance
Tolerance
Rate
1.8
1.5
1.2
3 0.9 -
O -
0.6 -
- -
0.3 -
0, . . . . . .
0 05 1 15 2 25 3
Tolerance

92




Chapter 4: Split-Plot Design for Robust Experimentation

Annex 4.1: Sixty runs in Split-plot design structure.

WP| Z X X% X3 [mpurities WP | Z X % X3 Impurities
1 -1 -1 -1 0 57.8 3 -1 -1 -1 0 42.87
1 -1 1 -1 0 24.9 3 -1 1 -1 0 8.23
1 -1 -1 1 0 13.2 3 -1 -1 1 0 10.1
1 -1 1 1 0 13.3 3 -1 1 1 0 10.3
1 -1 -1 0 -1 27.7 3 -1 -1 0 -1 22.28
1 -1 1 0 -1 11.4 3 -1 1 0 -1 5.44
1 -1 -1 0 1 30.7 3 -1 -1 0 1 20.24
1 -1 1 0 1 14.9 3 -1 1 0 1 4.3
1 -1 0 -1 -1 42.7 3 -1 0 -1 -1 21.64
1 -1 0 1 -1 13.6 3 -1 0 1 -1 9.85
1 -1 0 -1 1 50.6 3 -1 0 -1 1 18.84
1 -1 0 1 1 15.2 3 -1 0 1 1 9.78
1 -1 0 0 0 19.6 3 -1 0 0 0 13.14
1 -1 0 0 0 20.6 3 -1 0 0 0 12.06
1 -1 0 0 0 20.2 3 -1 0 0 0 14.06
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WP X% X3 [Impurities WP X X X3 [Impurities
2 -1 -1 0 37.3 4 -1 -1 0 47.07
2 1 -1 0 4.35 4 1 -1 0 14.69
2 -1 1 0 9.51 4 -1 1 0 11.19
2 1 1 0 9.15 4 1 1 0 11.23
2 -1 0 -1 20.2 4 -1 0 -1 24.23
2 1 0 -1 4.48 4 1 0 -1 8.23
2 -1 0 1 18.4 4 -1 0 1 24.45
2 1 0 1 2.29 4 1 0 1 8.49
2 0 -1 -1 22.4 4 0 -1 -1 30.3
2 0 1 -1 10.1 4 0 1 -1 11.38
2 0 -1 1 13.2 4 0 -1 1 30.97
2 0 1 1 7.44 4 0 1 1 11.82
2 0 0 0 12.3 4 0 0 0 14.54
2 0 0 0 11.5 4 0 0 0 13.49
2 0 0 0 12.2 4 0 0 0 13.89
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Annex 4.2: Thirty runs of the 1st group.

WP| Z | % | % | X% |Impurities] |WP | Z X % X3 |Impurities
1 -1 -1 -1 0 57.8 3 -1 1 -1 0 8.2
1 -1 -1 1 0 13.2 3 -1 1 1 0 10
1 -1 -1 0 -1 27.7 3 -1 1 0 -1 5.4
1 -1 -1 0 1 30.7 3 -1 1 0 1 4.3
1 -1 0 -1 -1 42.7 3 -1 0 1 -1 9.9
1 -1 0 -1 1 50.6 3 -1 0 1 1 9.8
1 -1 0 0 0 19.6 3 -1 0 0 0 12
1 -1 0 0 0 20.2 4 1 -1 -1 0 47
2 1 1 -1 0 4.35 4 1 -1 1 0 11
2 1 1 1 0 9.15 4 1 -1 0 -1 24
2 1 1 0 -1 4.48 4 1 -1 0 1 24
2 1 1 0 1 2.29 4 1 0 -1 -1 30
2 1 0 1 -1 10.1 4 1 0 -1 1 31
2 1 0 1 1 7.44 4 1 0 0 0 15
2 1 0 0 0 11.5 4 1 0 0 0 14
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Annex 4.3:

Analysis of variance for the number of impurities considering the 1st group.

Sour ce DF SS Adj . SS Adj . MS F P
Z 1 194. 92 177. 43 177. 43 3.36 0.458
WP( 2) 2 3341.83 105. 73 52. 86 1.72 0.208
x1 1 57.50 476. 04 476.04 15.51 0.001
X2 1 1251.78 1251. 78 1251.78 40.78 0.000
X3 1 2.04 2.04 2.04 0.07 0.800
X1*x2 1 953. 75 953. 75 953.75 31.07 0.000
x1*x3 1 5.27 5.27 5.27 0.17 0.684
X2*Xx3 1 15. 96 15. 96 15. 96 0.52 0.481
Z*x1 1 20.54 2.25 2.25 0.07 0.790
Z* X2 1 38.10 38.10 38.10 1.24 0.281
Z*x3 1 11.54 11. 54 11. 54 0.38 0.548
Error 17 521.79 521.79 30. 69

Tot al 29 6415.03

Stand. error = 5.54019
R-squar. = 91.87%
R-squar. (adjust.) = 86.12%
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Annex 4.4: Thirty runs of the 2nd group.

WP| Z X X, | % [Impurities WP| Z X % X3 [Impurities
1 -1 1 -1 0 24.89 3 -1 -1 -1 0 42.87
1 -1 1 1 0 13.29 3 -1 -1 1 0 10.1
1 -1 1 0 -1 11.4 3 -1 -1 0 -1 22.28
1 -1 1 0 1 14.94 3 -1 -1 0 1 20.24
1 -1 0 1 -1 13.56 3 -1 0 -1 -1 21.64
1 -1 0 1 1 15.21 3 -1 0 -1 1 18.84
1 -1 0 0 0 20.6 3 -1 0 0 0 13.14
2 1 -1 -1 0 37.29 3 -1 0 0 0 14.06
2 1 -1 1 0 9.51 4 1 1 -1 0 14.69
2 1 -1 0 -1 20.24 4 1 1 1 0 11.23
2 1 -1 0 1 18.4 4 1 1 0 -1 8.23
2 1 0 -1 -1 22.42 4 1 1 0 1 8.49
2 1 0 -1 1 13.19 4 1 0 1 -1 11.38
2 1 0 0 0 12.29 4 1 0 1 1 11.82
2 1 0 0 0 12.2 4 1 0 0 0 13.49
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Annex 4.5:

Analysis of variance for the number of impurities considering the 2rd group.

Sour ce DF SS Adj . SS Adj . MS F P
Z 1 90. 79 100. 17 100. 17 1.01 0.616
WP( 2) 2 239. 23 197. 64 98. 82 8.56 0.003
x1 1 119. 76 475. 59 475.59 41.21 0.000
X2 1 792. 17 792. 17 792.17 68.64 0.000
x3 1 6. 28 6. 28 6.28 0.54 0.471
X1*x2 1 258. 67 258. 67 258.67 22.41 0.000
x1*x3 1 7. 37 7. 37 7. 37 0.64 0.435
X2*x3 1 24. 92 24. 92 24.92 2.16 0.160
Z*x1 1 0.11 3.53 3.53 0.31 0.588
Z* X2 1 26. 53 26. 53 26. 53 2.30 0.148
Z* X3 1 7.18 7.18 7.18 0.62 0.441
Error 17 196. 20 196. 20 11. 54

Tot al 29 1769.21

Stand. error = 3.39721
R-squar. = 88.91%
R-squar. (adjust.) = 81.08%
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