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Introducción 
 

El uso de diseño de experimentos desempeña un papel importante en varias 

áreas tales como Economía, Agro-industria, y Medicina. 

 

Los ingenieros y científicos se han ido capacitando en el conocimiento y 

aplicación del diseño de experimentos, y a partir de ahí han surgido nuevas áreas 

de aplicación. Entre ellas el diseño robusto. La metodología de diseño robusto es 

un esfuerzo sistemático para alcanzar insensibilidad a los factores de ruido. 

 

El supuesto es que hay dos tipos de factores que afectan a la característica de 

calidad. Éstos se dividen en factores de control y factores no controlables o 

difíciles de controlar. Estos factores se denominan respectivamente factores de 

diseño y factores de ruido. 

 

Los factores de ruido se dividen en dos categorías: factores de ruido externos y 

factores de ruido internos. Los factores de ruido externos son fuentes de 

variabilidad que vienen de fuera del sistema. Ejemplos de los factores de ruido 

externos son factores ambientales tales como la temperatura ambiente, la presión 

ambiente y la humedad. Los factores de ruido internos tienen esencialmente su 

origen en las variaciones de los factores de control. Por ejemplo, el ruido interno 

incluye las desviaciones de los valores objetivos en los factores de control 

causadas por la manufactura, ensamble, y deterioro. 

 

Cuando se diseña un experimento, con frecuencia es imposible o costoso 

controlar o eliminar la variación debida a los factores de ruido externos. Sin 

embargo, el experimentador tiene algún control en la determinación de los niveles 

de los factores de ruido internos durante el diseño. La meta del diseño robusto es 

permitir al experimentador elegir los niveles de los factores de control que 
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optimizan la respuesta de interés, de tal manera que la variación causada por los 

factores de ruido sea mínima [ ]32 .  

El diseño robusto se compone principalmente de tres etapas: el diseño robusto de 

sistema, el diseño robusto de parámetro y el diseño robusto de tolerancia [ ]18 . El 

diseño de sistema consiste en usar la física, las matemáticas, la experiencia y el 

conocimiento adquirido en un campo específico, para desarrollar y seleccionar las 

condiciones del diseño más apropiadas. Una vez que la configuración de un 

sistema se establece, se determinan los ajustes nominales y las tolerancias de las 

variables de diseño. El objetivo del diseño robusto de parámetro es encontrar los 

ajustes óptimos de los niveles de factores de control de manera que el sistema sea 

insensible o menos sensible a los factores de ruido. El diseño robusto de 

tolerancia es un proceso de equilibrio. Dicho de otro modo, el diseño de tolerancia 

busca encontrar los ajustes óptimos de las tolerancias de los factores de control, 

tal que el costo total del sistema sea mínimo [ ]18 . 

 

La formalización del diseño robusto fue iniciada por Genichi Taguchi. Él introdujo 

el enfoque llamado diseño robusto de parámetro. Este enfoque se basa en 

clasificar los factores en factores de control y de ruido, y luego encontrar los 

ajustes para los factores de control que reducen al mínimo valor la variabilidad 

transmitida a la respuesta para los factores de ruido.  

 

Taguchi propuso el uso de un producto cruzado de dos diseños experimentales, 

un diseño interno que contiene los factores de diseño y un diseño externo que 

contiene los factores de ruido. Este producto cruzado es llamado diseño doble 

arreglo ortogonal [ ]10 . Las métricas usadas por Taguchi para evaluar la robustez 

de un diseño son la Función Cuadrática de Pérdida y la Razón Señal a Ruido. 

 

La estrategia experimental y el diseño recomendados por Taguchi han sido 

criticados por varios autores. Las críticas principales son que el diseño doble 
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arreglo ortogonal implica una gran cantidad de tratamientos y no considera 

interacciones entre factores de diseño y de ruido. Más detalle sobre la discusión y 

las críticas del enfoque de Taguchi se puede encontrar en [ ]22  y [ ]33 . Sin 

embrago, Soren Bisgaard en el 2000, abrió la discusión y la investigación sobre la 

interacción entre los factores de control y ruido [ ]30 . 

 

Como alternativa al método propuesto por Taguchi, otros estadísticos (como Wu 

et al.[ ]16 ) adoptaron el uso del diseño arreglo combinado de factores de diseño y 

de ruido. Este método permite el análisis de interacciones entre ambos tipos de 

factores. 

 

Los diseños comúnmente usados en conducir el diseño doble arreglo ortogonal o 

el diseño arreglo combinado son diseños factoriales y diseños factoriales 

fraccionados [ ]03 . E. P. Box y Jones Jones [ ]12  introdujeron el uso del diseño de 

parcelas divididas para la experimentación robusta. 

 

La metodología de superficie de respuesta es una herramienta excelente para 

analizar los datos obtenidos del diseño arreglo combinado. Esta metodología es 

una colección de técnicas matemáticas y estadísticas que son útiles para modelar 

y analizar los problemas en los cuales una respuesta de interés depende de varias 

variables, y el objetivo es optimizar esta respuesta. 

 

La metodología estadística esencial para el diseño robusto que ha sido 

extensamente aceptada, es la metodología de superficie de respuesta dual. Se 

estiman dos superficies, una para la media y otra para la varianza [ ]01 . Se ha 

introducido una modificación. Esta modificación se relaciona con la división de 

factores de ruido dentro de dos grupos. El primer grupo consiste en factores 

aleatorios y el segundo se compone de los factores de ruido para los cuales los 
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niveles son fijos. Se simula el experimento con la computadora. De los datos 

obtenidos mediante simulación, se calculan la media y la varianza. 

Los valores nominales de los factores que se obtuvieron en el experimento con el 

tiempo sufren desviaciones, eso da lugar a evaluar las tolerancias. Se presenta la 

necesidad de aplicar el método integrado de diseño de parámetro y de diseño de 

tolerancia. El objetivo adicional de minimizar el costo debido a la introducción de 

las tolerancias en el proceso compite con el objetivo de minimizar la varianza [ ]01 . 

 

El tema de la superficie de respuesta dual modificada es la parte sustantiva de 

esta tesina. Además se complementa un enfoque integral al diseño de parámetro 

y tolerancia que son las partes básicas del diseño robusto. 

 

La tesina se subdivide en cinco capítulos:  

El Capítulo 1 presenta el diseño doble arreglo ortogonal. Describe la estructura 

experimental y las métricas usadas para evaluar la robustez. Se da un ejemplo 

ilustrativo. La finalidad de este capítulo es dar el panorama general en el que se 

basan los siguientes dos capítulos. Este capítulo tiene como componente resaltar 

el impacto económico que tiene el realizar un experimento en la industria. Este se 

mide aplicando la función de pérdida y las señales a ruido. Lo que permite 

resaltar las bondades del planteamiento propuesto por Taguchi. 

El Capítulo 2 describe el diseño arreglo combinado, con énfasis en la superficie 

de respuesta dual y superficie de respuesta dual modificada. Se presenta un 

ejemplo ilustrativo. El resultado de este capítulo permitirá tener una 

generalización de la superficie de respuesta dual. Este contiene una interesante 

aplicación de la esperanza condicional. 

El Capítulo 3 presenta el método integrado de diseño de parámetro y de diseño de 

tolerancia. El método para minimizar el costo total del proceso está dado. Este 

capítulo proporciona un proceso metodológico para integrar el diseño de 

parámetro y tolerancia. Este se ilustra con un ejemplo. 
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El Capítulo 4 explica la aplicación del diseño a parcelas divididas en la 

experimentación robusta. Tres ordenamientos de los factores de diseño con 

respecto a los factores de ruido se presentan. Se da un ejemplo ilustrativo en el 

cual los factores de ruido están colocados en toda-la-parcela y los factores de 

diseño en sub-parcelas.  

El Capítulo 5 presenta las conclusiones generales de este trabajo. 
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Introduction 
 

The use of designed experiments plays an important role in several fields such as 

Economy, Agro-industry, and Medicine.  

 

Since engineers and scientists have become increasingly aware of the benefits of 

using designed experiments, there have been many new areas of application. One 

of the most important is in robust design. Robust design methodology is a 

systematic effort to achieve insensitivity to noise factors.  

 

The assumption is that there are two types of factors that affect the quality 

characteristic. These are the control factors and the uncontrollable or difficult to 

control factors. They are respectively referred to as design factors and noise 

factors.  

 

Noise factors can be further divided into two categories: external noise factors and 

internal noise factors. External noise factors are those sources of variability that 

come from outside of the system. Examples of external noise factors are 

environmental factors that a system is subject to, such as ambient temperature, 

ambient pressure and humidity. Internal noise factors are essentially from the 

variations of control factors. Internal noise could include deviations from the 

target values of control factors caused by manufacturing, assembly, and 

deterioration.  

 

While designing an experiment, it is frequently impossible or very difficult or 

expensive to control or eliminate sources of variation due to external noise 

factors. However, the experimenter has some control on setting the levels of 

internal noise factors during the design. The goal of robust design is to enable the 

experimenter to choose the levels of the control factors that optimize a defined 



13 

 

response while minimizing the variation imposed on the process via the noise 

factors [ ]32 .  

 

Robust design is mainly composed of three stages: robust system design, robust 

parameter design and robust tolerance design [ ]18 . Robust system design 

consists of using physics, mathematics, experience and knowledge gained in a 

specific field to develop and select the most appropriate conditions of the design. 

Once the configuration of a system is finalised, the settings of the nominal levels 

and the corresponding tolerances need to be determined. Robust parameter 

design aims at finding the optimal settings of control factors so that the system is 

insensitive or less sensitive to noise factors. Robust tolerance design is a 

balancing process. It aims to find the optimal settings of tolerances of the control 

factors so that the total cost of the system is minimal [ ]18 .  

 

The formalization of robust design was initiated by Genichi Taguchi. He 

introduced an approach referred to as robust parameter design. His approach is 

based on classifying the factors as either controllable or noise factors, and then 

finding the settings for the controllable factors that minimize the variability 

transmitted to the response from the noise factors.  

 

Taguchi proposed the use of a cross-product of two experimental designs, known 

as product array design or double orthogonal array design [ ]10 . This consists of 

an inner array containing the design factors and an outer array containing the 

noise factors. For each combination of design factors, the same array of noise 

factors is run. The metrics used by Taguchi for evaluating the robustness of a 

design are the Quadratic Loss Function and the Signal-to-Noise Ratio. 

 

Experimental strategy and design advocated by Taguchi have been criticized by 

various authors. The main criticism is that the double array design involves a 

large amount of runs and does not consider interactions between design and 



14 

 

noise factors. Details of discussion and criticism of Taguchi´s approach can be 

found in [ ]22  and [ ]33 . However, in 2000, Soren Bisgaard opened the discussion 

and the investigation about interactions between the design and noise factors 

[ ]30 .     

As an alternative to the method proposed by Taguchi, other statisticians (such as 

Wu et al. [ ]16 ) have adopted the use of combined array design which contains 

controllable and noise factors. This method permits the analysis of interactions 

between both kinds of factors.  

 

The designs commonly used in conducting double orthogonal array design or 

combined array design are factorial and fractional factorial designs [ ]03 . George 

E. P. Box and Jones Jones [ ]12  have introduced the use of split- plot design for 

robust experimentation.  

 

Response surface methodology is an excellent tool for analysing the data obtained 

from combined array design. This is a collection of mathematical and statistical 

techniques that are useful for modeling and analysing problems in which a 

response of interest depends on several variables, and the objective is to optimize 

this response. 

 

The statistical methodology underlying robust design, that has by now become 

the most widely accepted, is the dual response surface methodology which 

estimates two surfaces, one for the mean and one for the variance of the quality 

characteristic [ ]01 . A modification has been introduced. This modification is 

related to the division of the noise factors within two groups. The first group 

consists of random factors and the second is composed of the noise factors for 

which the levels are fixed. The experiment with the computer is simulated. From 

the data obtained by simulation, the mean and the variance are calculated. 
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When the design scope is extended to the specification of allowable deviations of 

parameters from the nominal settings (tolerances), the integrated parameter and 

tolerance design problems arise. The additional objective of minimizing the 

production costs needed to fulfil tolerance specifications will compete with the 

minimum variance objective [ ]01 . 

 

The topic of modified dual response surface is the substantive part of this thesis. 

In addition, the thesis is completed by an integrated approach of parameter 

design and tolerance design, which are the basic parts of robust design.  

 

The thesis is subdivided into five chapters: 

Chapter 1 presents Double Orthogonal Array Design. It describes the 

experimental structure and the metrics used to evaluate the robustness. An 

illustrative example is given. The purpose of this chapter is to give a general view 

on which the following two chapters are based. The chapter emphasizes the 

economic impact of conducting designed experiments in the industry. The impact 

is measured by applying the Quality Loss Function and the Signal-to-Noise Ratio. 

These highlight the aspects of robustness proposed by Taguchi. 

 

Chapter 2 describes Combined Array Design. Emphasis is given to Dual Response 

Surface and Modified Dual Response Surface with an illustrative example. The 

results of this chapter permit a generalization of the Dual Response Surface. This 

contains an interesting application of the conditional expectation. 

 

Chapter 3 presents the integrated method of Parameter design and Tolerance 

design. The method for minimizing the overall cost of the process is given. This 

chapter provides a methodological process of applying the integrated method of 

Parameter design and Tolerance design. The method is illustrated by an example. 
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Chapter 4 explains the application of split-plot designs in robust experimentation. 

Three arrangements of design and noise factors are presented. An illustrative 

example is given. In this example, the whole plots are formed by the noise factors, 

and the design factors are in sub plots. 

Chapter 5 presents the general conclusions of this work.  
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Chapter 1:  Double Orthogonal Array Design 

 

1.1. Overview of Double Orthogonal Array Design 

 

The double orthogonal array design was initiated by Genichi Taguchi. It consists 

of a cross-product of two experimental designs. The first design, known as inner 

design, is a combination of the levels of the design factors. The second design, 

referred to as outer array design, is a combination of the levels of the noise 

factors. Each combination of the levels of the design factors forms an experiment. 

For each experiment, the same array of the noise factors is run. 

 

1.2. Experimental structure 

 

Suppose that the quality characteristic y  of a product or a process depends on p  

design factors 1,..., px x  and q  noise factors 1,..., qz z . The responses ijy  are the 

combinations of the levels of the design factors ( )1, 2, ,i n= ⋯  and the levels of the 

noise factors ( )1,2, ,j q= ⋯ . The total number of runs required to conduct an 

experiment in this case is p q× . The experimental structure of double orthogonal 

array design is represented by Figure 1. 1. 
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Figure 1.1: Experimental structure of Double Orthogonal Array Design. 
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Data analysis  

 

The data generated by the double orthogonal array design permit modelling the 

mean and the standard deviation or the variance of the characteristic of interest. 

The metrics proposed by Taguchi for evaluating the robustness are the Quadratic 

Loss Function (QLF) and the Signal-to-Noise Ratio (SNR). However, the use of the 

SNR has drawn much criticism [ ]33 .  

The primary goal of the Taguchi philosophy, to obtain a target condition on the 

mean while minimizing the variance, can be achieved within response surface 

methodology framework. By combining Taguchi and response surface 

philosophies, a dual response surface approach will be applied. This consists of 

fitting regression models for the mean and the variance. The dual response 

surface provides a more rigorous method for achieving a target for the mean, 

while also achieving a target for the variance [ ]25 . The optimization based upon 

the criteria of mean square error gives a fairly general method to solve the dual 

response surface problem [ ]05 .       

 

1.2.1. Data analysis considering the Quadratic Loss Function 

 

The Quadratic Loss Function (QLF) is a metric used to provide a better estimate 

of the monetary loss incurred by manufacturers and consumers when the 

product performance deviates from its target value [ ]18 . In this thesis the QLF is 

used to evaluate the economic impact of conducting an experiment on the 

process.   

The QLF is given by the expression  

( ) ( )2
L y k y M= −  .                                                           (1.1) 
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y  is the quality characteristic of a product or process, M  is the target and k  is 

the quality loss coefficient.  

The expected quality loss is ( ) ( ) ( )( ) ( )2 2
Q E L y k E y M k E y M Var y= = −  = − +    

.  

By taking ( )E y µ=  and ( ) 2Var y σ= , the expected quality loss becomes  

( )2 2Q k Mµ σ=  − +
 

.  

Then the estimate of the expected quality loss is: 

� �( ) �
2

2Q k Mµ σ=  − +  
;                                                       ( )1.2  

where � yµ =  and �2 2Sσ = . 

The quality loss coefficient k  is determined by first finding the functional limits or 

customer tolerance for y . The functional limits are determined by 0M ± ∆ . These 

are the points at which the product would fail or produce unacceptable 

performance in approximately half of the customer applications. Let 0A  be the 

value of the quality loss function at 0M ± ∆ , that is ( ) 0L y A=  at 0y M= ± ∆ . 

Substituting the functional limits 0M ± ∆  and the value of the quality loss into 

Equation ( )1.1 , the quality loss coefficient is found to be 

( ) 2

0

0

.
A

k =
∆

 

                                                                   

( )1.3  

1.2.2. Types of Quadratic Loss Function 

 

While conducting an experiment, the designer is interested in reaching the target 

or minimizing or maximizing the value of the quality characteristic. These three 

cases of quality characteristic are referred to as Nominal the best, Smaller the 

better and Larger the better.  
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Let ( )1, ,T
ny y y= ⋯  where y  is the quality characteristic of a product or process.  

Table 1.1 shows the types of QLF and the average quadratic loss functions 

corresponding to each kind of quality characteristic of interest. More details of 

this section can be found in [ ]35 and [ ]37 . 

 

Table 1.1: Types of Quadratic Loss Function. 

Type Quadratic Loss Expected Quadratic Loss 

Estimate of Expected 

Quadratic Loss 

The Nominal 

the Best  ( ) ( )2
L y y MA= −   ( )( )2 2Q A Mµ σ= − +   � ( )( )2 2M sQ A y= − +  

The Smaller 

the Better  ( ) 2L y A y=   ( )2 2Q A µ σ= +   � ( )( )2
2

sQ A y= +  

The Larger 

the Better 
( )

/

2L y
A

y
=  

2

2 2

/

1
3A

Q
σ

µ µ
+

 
 
 

≐  
 �

( ) ( )2 2

2/

1
3A s

y y
Q +

 
 
 
  

≐  

In this table, 
( )

0
2

0

A
A =

∆
 and ( )2/

0 0A A= ∆ . 

 

1.2.3. Limitations of Quadratic Loss Function 

 

Taguchi´s QLF has its limitations. It does not apply when there is a range δ±

around the target M  where customers cannot tell the difference [ ]18 . The Loss 

Function applied in this case is:  

( ) ( )2 2

0 for  
.

for    or  

y M
L y

k y M k y M y M

δ δ

δ δ δ

− ≤ − ≤= 
− − − ∞ < − < − < − < ∞                                            

( )1.4  
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Furthermore, Taguchi´s QLF is not convenient when the loss is not symmetric 

around the target M . Young J. K and Byung R. C. [ ]36
 
propose the following Loss 

Function: 

( ) ( )
( )

2

1

2

2

if  
.

otherwise

k y M y M
L y

k y M

 − ≥= 
−                                                                                

( )1.5  

The constants 1k  and 2k are positive loss coefficients. More details about the 

Asymmetric QLF can be found in [ ]36 .  

 

1.2.4. Data analysis considering the Signal-to-Noise Ratio 

 

Although the QLF is a metric of robustness, it has deficiencies as mentioned in 

the preceding sections. Taguchi suggests that the response values at each inner 

array design point be summarized by a performance criterion called Signal- to- 

Noise Ratio (SNR). He determined various forms of the SNR. In this thesis we 

describe three of those functions as they appear in the majority of published 

works. The SNR is a statistic that estimates the effect of noise factors on the 

quality characteristic. Data analysis considering the SNR permits identifying the 

factors which are important in the process, and their corresponding levels. The 

SNR we consider are determined in terms of the decimal logarithm of the mean 

square deviation of the quality characteristic from the target. There are three 

types of SNR depending on the desired performance response [ ]35 . 

The smaller the better: This SNR is used when the experimenter is interested in 

minimizing the system response.  

It is calculated as follows: 2

1

1
10log

n

iS
i

SNR y
n =

 
 
 

= − ∑   
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The larger the better: It is used when the experimenter is interested in 

maximizing the response and it is given by the expression 
2

1

1 1
10log

n

L
i i

SNR
n y=

 
= −  

 
∑ . 

The nominal the best: This SNR is used when the experimenter needs the 

response to attain a certain target value. It is given by 
2

210logT
y

SNR
s

 
 
 
 

= . 

The preferred parameter settings are determined through analysis of the SNR, 

where the levels of the factors that maximize the appropriate SNR are optimal. 

More detailed literature on the SNR is in reference [ ]13 .  

 

1.2.5. Agro-industrial processes 

 

Agro-industry includes various areas such as food technology, food processing 

and agricultural materials among others [ ]38 . 

Food technology deals with sources of food, raw material sorting, postharvest 

transformation, principles of food preservation and processing, and roles of 

microorganism. 

 

Food processing deals with preparation of raw materials for food processing, 

fermentation, low and high temperature processing. 

 

Agricultural materials include products such as fertilizers, pesticides and other 

materials used in different agricultural activities. 

 

Robust design in agro-industrial processes aims at maintaining or improving the 

quality characteristics of the response of interest by conducting designed 

experiments. 
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The applications given in this thesis are oriented to chemical processes. Their 

implementation in agro-industrial processes is immediate. For instance, the 

chemical process for which the aim is to reduce the number of impurities is 

applied in production of fertilizers and pesticides. 

 

1.2.6. Illustration of QLF and SNR 

 

Let y  be the quality characteristic of a chemical process. Assume that the 

deviation of 0 2∆ =  units from the target 9M =  incurs a loss of 100 monetary 

units. This means that if 0y M= ± ∆ , the corresponding loss is ( ) 100L y = . 

Introducing 0y M= ± ∆  and ( ) 100L y =  into Equation ( )1.1  leads to 
2 2
0

100 100
25

2
k = = =

∆
.  

The QLF of the process is ( ) ( )2
25 9L y y= − . This expression permits obtaining the 

loss suffered by process for any value of the quality characteristic y . For instance, 

the loss caused by the value of quality 12y =  increases to ( ) ( )2
12 25 12 9 225L = − =  

monetary units. 

Now let us consider a series of 15 random observations of the quality 

characteristic of the same chemical process: 

( )17.65 11.77 10.73 18.31 18.28 20.04 16.29 19.6815.37 16.32 21.43 19.45 17.42 13.19 20.17.y =
 

By equation (1.2), the expected loss is given by ( )( )2 2925Q µ σ= − + . 

The corresponding estimate of expected loss is � �( ) �( )2
2925Q µ σ= − +  where 

�
15

1

1

15 i
i

y yµ
=

= = ∑  and � ( )
15 2

2 2

1

1

14 i
i

s y yσ
=

= = −∑ . 

Numerically: 17.07y = , 2 10.05s =  and ɵ ( )( )2
925 17.07 10.05 1879.4Q = − + =  monetary units.  

This is the value of the expected quality loss for each unit. The total quality loss 
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is calculated by multiplying the quality loss for each unit by the number of units 

produced. For instance, the expected quality loss for 1000 units produced is 

1,879,400 monetary units.  

The SNR is ( )
2

2
10log 10 log 28.9935 14.6230T

y
SNR

s

 
 = = =
 
 

. 

If we consider the problem of minimizing the number of impurities, the expected 

loss for each unit produced becomes ɵ ( )( )2
25 17.07 10.05 7 476.25Q = + =  monetary units. 

The corresponding SNR is 2

1

24.78
1

10log
n

iS
i

SNR y
n =

 
= − 

 
= − ∑   

This illustration highlights real operating conditions of the chemical process. The 

improvement of this process is reached by conducting a designed experiment. 

This point will be looked at in the following section through a more detailed 

application of double orthogonal array design. 

 

1.3. Application of Double Orthogonal Array Design 

 

The application is a chemical process adopted from John S. Lawson [ ]19 . In 

general, the constructed data would only be appropriate for the model that 

reflects the way in which the experiment is carried out. However, the same 

application will be used in Chapter 2 by using a double orthogonal array design, 

and in Chapter 4, as split-plot design. The results will be compared in order to 

highlight the efficiency of each experimental structure and the corresponding 

data analysis.   

 

Motivation 

 

One way for chemical processing companies to reduce variability in their 

products is to insist on higher quality or more uniform raw material, and to 

tighten control on other process operating conditions. In order to produce more 
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uniform end-products, chemical processing companies are demanding higher 

quality, i.e. more uniformity, from suppliers of bulk industrial grade chemicals 

that once competed in a commodity type market. Companies that are demanding 

reduced variability in raw materials may have to bear the suppliers´ cost for 

adding and maintaining new process steps or equipment, and costs for keeping 

higher inventories.  

 

Variability in the quality of product from a chemical process can also be caused 

by changes in some operating conditions which may be difficult to monitor or 

control. Maintaining tight control of such processing conditions may require 

additional expense. Thus, achievement of both high quality and low cost may be 

contradictory goals for some chemical processing companies.  

 

A possible solution to the problem of increasing the quality of chemical products 

without increasing material or processing costs, involves experimentation with 

process variables which can be changed easily and inexpensively. Chemical 

process companies can seek process conditions that will provide the best quality 

product, regardless of fluctuations in raw materials and process variables that 

are difficult to monitor and control. This consists of identifying the process 

operating conditions that result in optimum performance while simultaneously 

minimizing the effect of variables which are not directly under the processing 

company´s control.   

 

Formulation of the problem 

        

The chemical process generates impurities. As a result, the product obtained has 

low quality. The objectives of conducting a designed experiment are:  

• To diminish the number of impurities;  

• To reduce the variance of the process; 

• To reduce the cost of the process.  

The response variable is the number of impurities (in percentage). 3 design 

factors and 2 noise factors are involved in this experiment. The design factors are 

1 :x  reaction temperature, 2 :x  the catalyst concentration, 3 :x  the excess of reagent 
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B. The noise factors are 1 :z  purity of reagent A, 2 :z  purity of the solvent stream. 

Annex 1.1 shows the coded levels of the factors and their corresponding real 

values.  

 

In this experiment, the goal of the parameter design is to find a combination of 

the temperature, catalyst concentration, and the excess of reagent B that gives 

good results. To do this, experiments are performed at combinations of levels of 

the design factors defined by a Box- Behnken design. The combinations of levels 

of the noise factors are arranged in a 22  factorial design. This means that an 

experiment for the 15 combinations of the control factors is realised, and each of 

these is repeated in each of the possible combinations of the noise factors. A total 

of 60 runs is realized, and the results obtained are shown in Annex 1.2. As the 

objective is to diminish the number of impurities, the SNR to be used is 

2

1

1
10log

n

iS
i

SNR y
n =

 
 
 

= − ∑ . 

 

1.3.1. Statistical results 

 

The idea is to fit the second order regression models of the form

0
T Ty x x xβ β ε= + + Β + . In this model, x  is the vector of control factors, 0β  the 

intercept, β  is a vector of coefficients of 1st order control factors, Β  is a matrix of 

coefficients of 2nd order terms of control factors and their interactions, ε  is a 

vector of residual errors of the regression model. The residual errors are assumed 

to be ( )20,N σ . The response y  is the mean, the standard deviation, the variance 

or the SNR. After the estimate of the regression model ɵ � � �
0

T Ty x x xβ β= + + Β  is 

obtained, the optimal setting is calculated by solving the following optimization 

problem: 

          

ɵOptimizey

x R




∈
 , 

where ɵy  represents the estimated response surface for the standard deviation 

and the SNR.  The problem becomes a minimization problem in the case of ɵ SDy . It 
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is a maximization problem for ɵ SNRy . 

 

As the aim of the experiment is to diminish the number of impurities, it is 

convenient to apply the optimization method proposed by Dennis K. J. Lin and 

Wanzhu Tu [ ]05 . In [ ]18 , the method is referred to as Squared Error Criterion. 

The method consists of three steps: 

Step 1: Find the fitted models meanyɵ  and Varyɵ .  

Step 2: Find Optx  such that the mean square error given by the expression 

( ) ( )2

mean VarOpt Opty yMSE x T x = − +
 
ɵ ɵ  is minimized. Optx  is obtained by minimizing MSE  

subject to x R∈ . In this case, the target 0T = . 

Step 3: Evaluate ( )mean Opty xɵ  and ( )Var Opty xɵ . 

 

1.3.2. Analysis based on full design 

 

Coefficients of the regression models 

 

Table 1.2 gives the coefficients of the regression models for the variables mean, 

standard deviation, variance and SNR. 

 

Table 1.2: Coefficients of the regression models. 

  

Intercept Linear Quadratic Interaction  

  

0β  1β  2β  3β  11β  22β  33β  12β  13β  23β  

 

 Mean 14.7967 -8.1738 -9.0862 -0.135 0.5154 5.0104 0.1780 8.3025 0.075 0.175 

 

 Stand. Dev. 3.66 0.0625 -4.45 1.64 -0.9475 2.5475 1.6175 -0.045 0.055 -1.3 

 

Variance 13.55 0.87 -63.23 28.46 -24.39 51.25 30.98 -1.21 0.53 -42.69 

 

 SNR  -23.5988 3.4936 4.0921 -0.2018 0.6850 -1.7983 -0.0916 -2.4485 -0.2645 -0.2645 

           

Regression models 

 

The results of analysis of variance for the mean, standard deviation, variance and 

SNR are shown in Annexes 1.3, 1.4, 1.5 and 1.6. The corresponding estimates of 
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the regression models considering the significant effects are the following: 

• Estimated mean response surface: 

 2 2

1 2 1 2 1 214.7967 8.1738 9.0862 0.5154 5.0104 8.3025.meany x x x x x x= − − + + +ɵ  

• Estimated standard deviation response surface:  

2 2

2 3 2 3 2 33.66 4.45 1.64 2.5475 1.6175 1.3 .SDy x x x x x x= − + + + −ɵ
 

• Estimated variance response surface: 

2 2 2

1 2 1 1 2 1 3 2 2 3 3313.55 0.87 63.23 28.46 1.21 0.53 51.25 42.69 30.9824.39 .Vary x x x x x x x x x x x x= + − + + −− − + +ɵ  

• Estimated SNR response surface:  

2

1 2 1 2 223.5988 3.4936 4.0921 2.4485 1.7983.SNRy x x x x x= − + + − −ɵ  

 

Optimal values for the standard deviation and the SNR  

 

The optimization problems to be solved in order to obtain the minimal standard 

deviation, the maximal SNR and the corresponding optimal settings are: 

  

{ }2 2

2 3 2 3 2 3

2 3

3.66 4.45 1.64 2.5475 1.6175 1.3min

1 1

x x x x x x

x x

− + + + −


− ≤ ≤  

and 

 
{ }2

1 2 1 2 2

1 2

23.5988 3.4936 4.0921 2.4485 1.7983max
.

1 1

x x x x x

x x

− + + − −


− ≤ ≤  

 

Table 1.3 gives the optimal values for the standard deviation and SNR. It also 

shows the mean square error. 

 

Table 1.3: Optimal values for the standard deviation and the SNR. 

Optimum    Combinations   MSE  

1x  2x  3x  

 Stand. Dev. 0.71 1x R∀ ∈  0.82 -0.16 1.669 

 SNR  -19.73 1 0.93 3x R∀ ∈  1.901 
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Optimal values for the mean and the variance 

 

The optimization procedure is based on the mean square error method.  

The optimization problem to be solved is: 

 

( ){
( )}

1 2

22 2
1 2 1 2 1 2

2 2 2
1 2 3 1 1 2 1 3 2 2 3 3

3

min

1 0

14.7967 8.1738 9.0862 0.5154 5.0104 8.3025

13.55 0.87 63.23 28.46 24.39 1.21 0.53 51.25 42.69 30.98 .

x x

x x x x x x

x x x x x x x x x x x x

x− ≤ ≤

 − − + + + +



+ + − + − − + + − +




 

Table 1.4 gives optimal settings, optimal values for the mean and variance models 

and the mean square error. 

 

Table 1.4: Optimal values for the mean and the variance. 

 Optimal setting ( )1 2 3, ,x x x  ( )mean Opty xɵ  ( )Var Opty xɵ  MSE  

( )0.0, 0.46−  14.80 7.01 225.95 

 

In sub-section 1.3.5 we calculate the estimate of the expected quality loss using 

the formula � �( ) �( )2
225Q µ σ= + . This is the case in which the objective is to obtain 

the smallest number of impurities. The optimal values obtained in conducting the 

experimental design are � 14.80µ =  and �2 7.01σ = . The corresponding expected 

quality loss function is � ( )( )2
7.0125 14.80 5651.3Q = + =  monetary units.  

This value shows that the process may be improved by applying optimal values 

obtained from the designed experiment. In fact, the reduction of the quality loss 

is 1824.97476.25 5651.3− =  monetary units for each unit of chemical product. The 

values of the SNR obtained considering the 15 random observations of the quality 

characteristic and the designed experiment are respectively 24.78−  and 19.73− . 
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Interpretation 

 

Considering the analysis based on full design data, optimal values for the 

standard deviation and the SNR are respectively 0.71 and -19.73. The optimal 

values for the mean and the variance are calculated by the method of mean 

square error. The pair of optimal values for the mean and the variance is 

( )14.80,7.01.  

 

1.3.3. Analysis based on half fractional design 

 

When the number of factors in factorial design increases, the number of runs 

required for a complete replicate of the design rapidly grows. For economic 

reasons, fractional factorial designs are commonly used. These designs consist of 

a fraction of full factorial designs. For instance, the number of runs in this 

chemical process application is 215 2 60× = . The same analysis has been 

conducted considering half fractional design. The two fractioned groups of 30 

runs for each are given in Annex 1. 7. The corresponding results for the mean, 

the standard deviation, the variance and the SNR are shown in Annex 1.8. 

 

Coefficients of the regression models 

 

Tables 1.5 and 1.6 give respectively the coefficients of the regression models for 

the 1st group and the 2nd group.  

 

Table 1.5: Coefficients of the regression models for the 1st group. 

  

Intercept Linear effects Quadratic effects Interaction  

  

0β  1β  2β  3β  11β  22β  33β  12β  13β  23β  

 

Mean 15.2917 -11.7362 

-

11.9381 0.3569 -1.8233 6.6954 1.9754 10.9187 -0.8112 -1.4125 

 

Stand. Dev. 2.8072 -1.2763 -3.6142 1.1605 -1.7695 2.1072 1.1985 1.0589 -0.2952 -0.9086 

 

Variance 10.29 -9.29 -41.13 16.68 -27.49 33.58 23.55 12.19 -2.90 -28.33 

 

SNR  -23.6434 6.5660 4.2935 0.3452 2.8686 -2.3092 0.3099 -4.0217 0.9387 0.5696 
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Table 1.6: Coefficients of the regression models for the 2nd group. 

  

Intercept Linear effects Quadratic effects Interaction  

  

0β  1β  2β  3β  11β  22β  33β  12β  13β  23β  

 

 Mean 14.2967 -4.6106 -6.2331 -0.6262 2.8534 3.3335 -1.6227 5.6862 0.96 1.765 

 

 Stand. Dev. 2.3146 1.0456 -1.2365 0.8096 0.6043 0.3391 -0.5324 -0.5568 0.6152 -0.6470 

 

Variance 9.12 7.56 -9.18 4.30 4.83 3.52 -6.55 -8.63 4.04 -3.07 

 

 SNR  -23.0984 1.8192 2.8881 0.1241 -0.7176 -1.1643 0.3327 -1.9597 -0.6434 -0.8429 

 

Regression models 

 

The results of analysis of variance for the mean, the standard deviation, the 

variance and the SNR are shown by Annexes 1.9, 1.10, 1.11 and 1.12. The 

corresponding estimates of the regression models considering the significant 

effects are the following: 

For the 1st group: 

• Estimated mean response surface:  

2

1 2 2 1 215.2917 11.7362 11.9381 6.6954 10.9187.meany x x x x x= − − + +ɵ  

• Estimated standard deviation response surface: 

 ɵ 2 2 2
1 2 3 1 1 2 2 2 3 32.8072 1.2763 3.6142 1.1605 1.7695 1.0589 2.1072 0.9086 1.1985 .SDy x x x x x x x x x x= − − + − + + − +

 

• Estimated variance response surface: 

2 2 2

1 2 1 1 2 1 3 2 2 3 3310.89 9.29 41.13 16.68 2.90 33.58 28.33 23.5527.49 12.19 .Vary x x x x x x x x x x x x= − − + − −− + + +ɵ
 

• Estimated SNR response surface:  

2 2

1 2 1 2 1 223.6434 6.5660 4.2935 4.0217 2.8686 2.3092.SNRy x x x x x x= − + + − + −ɵ  

For the 2nd group: 

• Estimated mean response surface: 

 2 2

1 2 1 2 1 214.2967 4.6106 6.2331 2.8535 3.3335 5.6862.meany x x x x x x= − − + + +ɵ  

• Estimated standard deviation response surface: 

     2 2 2

1 2 3 1 1 2 1 3 2 2 3 3
2.3146 1.0456 1.2365 0.8096 0.6043 0.5568 0.6152 0.3391 0.6470 0.5324 .SD x x x x x x x x x x x xy = + − + + − + + − −ɵ

 

• Estimated variance response surface: 

2 2 2

1 2 1 1 2 1 3 2 2 3 339.12 7.56 9.18 4.30 4.04 3.52 3.074.83 8.63 6.55 .Vary x x x x x x x x x x x x= + − + + −+ − + −ɵ
  

• Estimated SNR response surface:  

2 2

1 2 1 1 2 1 3 2 2 3
23.0984 1.8192 2.8881 0.7176 1.9597 0.6434 1.1643 0.8429.SNR x x x x x x x x x xy = − + + − − − − −ɵ  
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Optimal values for the standard deviation and the SNR  

 

The optimization problems to be solved in order to obtain the minimal standard 

deviation, the maximal SNR and the corresponding optimal settings are: 

 

For the 1st group: 

  

{ }2 2 2

1 2 3 1 1 2 2 2 3 3

1 2 3

2.8072 1.2763 3.6142 1.1605 1.7695 1.0589 2.1072 0.9086 1.1985min

1 0.5

x x x x x x x x x x

x x x

− − + − + + − +


− ≤ ≤  

and 

{ }2 2

1 2 1 2 1 2

1 2

23.6434 6.5660 4.2935 4.0217 2.8686 2.3092max
.

1 1

x x x x x x

x x

− + + − + −


− ≤ ≤  

 

For the 2nd group:  

 

{ }2 2 2

1 2 3 1 1 2 1 3 2 2 3 3

1 2 3

2.3146 1.0456 1.2365 0.8096 0.6043 0.5568 0.6152 0.3391 0.6470 0.5324min

1 1

x x x x x x x x x x x x

x x x

+ − + + − + + − −


− ≤ ≤

and 

{ }2 2

1 2 1 1 2 1 3 2 2 3

1 2 3

23.0984 1.8192 2.8881 0.7176 1.9597 0.6434 1.1643 0.8429max
.

1 1

x x x x x x x x x x

x x x

− + + − − − − −


− ≤ ≤
 

 

Tables 1.7 and 1.8 give the optimal values for the standard deviation and the SNR 

of the 1st and the 2nd group. They also show the mean square error. 

 

Table 1.7:  

Optimal values for the standard deviation and the SNR for the 1st group. 

Optimum    Combinations   MSE  

1x  2x  3x  

Stand. Dev. 0.60 0.5 0.5 -0.29 6.25 

 SNR -14.20 1 0.06 3x R∀ ∈  11.74 
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Table 1.8:  

Optimal values for the standard deviation and the SNR for the 2nd group. 

Optimum    Combinations   MSE  

1x  2x  3x  

 Stand. Dev. 0.71 0.07 0.93 -1 4.25 
 SNR -20.44 0.35 1 -1 4.83 

 

The optimal values for the standard deviation in the first group and the second 

group are respectively 0.60 and 0.71. The optimal values for the SNR in both 

groups are respectively -14.20 and -20.44.  

 

Optimal values for the mean and the variance 

 

The optimization problem to be solved in order to obtain the optimal values for 

the mean and the variance is: 

 

For the 1st group: 

 

( ){
}

2 2

1 2 2 1 2 1 2 1

2 2

1 2 1 3 2 2 3 3

2

3

1 2 3

15.2917 11.7362 11.9381 6.6954 10.9187 0.89 9.29 41.13 16.68

2.90 33.58 28.33 23.55

min 1 27.49

12.19 .

1 0

x x x x x x x x x

x x x x x x x x

x x x

− − + + − − +

− −

 + − +



+ + +
− ≤ ≤


For the 2nd group: 

 

( ){
}

2 2

1 2 1 2 1 2

2 2 2

1 2 1 1 2 1 3 2 2 3 3

2

3

1 2 3

14.2967 4.6106 6.2331 2.8535 3.3335 5.6862

9.12 7.56 9.18 4.30 4.04 3.52 3.07

min

4.83 8.63 6.55 .

1 1

x x x x x x

x x x x x x x x x x x x

x x x

− − + + +

+ − + + −

 +



+ + − + −
− ≤ ≤


 

 

Table 1.9 gives optimal settings, optimal values for the mean and variance models 

and the mean square error.  
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Table 1.9: Optimal values for the mean and variance. 

 

 Group  Optimal setting ( )1 2 3, ,x x x   ( )mean Opty xɵ   ( )Var Opty xɵ   MSE  

1 ( )0,0, 0.35−  15.29 7.94 241.77 

2  ( )0.75, 0.75, 1− − −  29.11 0.05 847.34 

 

Interpretation 

 

Considering the analysis based on half fractional design , the pairs of optimal 

values for the standard deviation and the SNR corresponding to the first and the 

second groups are respectively ( )0.60, 14.20−  and ( )0.71, 20.44− . The corresponding 

pairs of optimal values for the mean and the variance are respectively ( )15.29,7.94

and ( )29.11,0.05. 

The analysis based on half fractional design does not give the same information of 

the process. In fact, the number of impurities for the first group is 15.29%, and 

29.11% for the second group. The discrepancy between both values is 13.82. The 

discrepancy between the optimal values for the variance in the first and the 

second groups is 7.94 0.05 7.89− = .    

 

1.4. Conclusions 

 

In this Chapter, the theory of the Taguchi approach that relies on Double 

Orthogonal Array Design is shown. Related robustness metrics and an illustrative 

example are given. These metrics are the Quadratic Loss Function and the 

Signal-to-Noise Ratio. Some of the drawbacks of the Taguchi approach are 

summarized and references for further details are indicated. An overall 

application of the chemical process considering the full design analysis and 
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fractional design analysis is given. The results are compared. It is verified that the 

process is improved by conducting an experimental design. In fact, the quality 

loss of not achieving the target is reduced while applying the optimal values 

obtained from the experiment. 
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Chapter 2:  Combined Array Design 

 

2.1. Overview of Combined Array Design 

 

As mentioned in Chapter 1, one of the drawbacks of double orthogonal array 

design is that the number of runs required to conduct an experiment is generally 

large, and interactions between design and noise factors are not considered. 

Some authors go so far as saying that analysis related to double orthogonal array 

does not make proper use of the number of runs [ ]22 . Combined array design is a 

single experimental design in control and noise factors. Both control and noise 

factors are then modelled, and the settings of the noise factors are no longer 

identical for each setting of the design factors. The results of the experiment can 

be described by a model with only a small number of main effects and low-order 

interactions. Significant design-by-noise interactions are interpreted as evidence 

of dispersion effects and used to choose settings of design factors that minimize 

the process variation. Data obtained from combined array design are analysed by 

fitting a model for the mean and the variance. Response surface methodology is 

used for determining optimal solutions for the mean and the variance.  

   

2.2. Experimental structure 

 

Suppose that the quality characteristic y  of a product or process depends on p  

design factors 1,..., px x  and q  noise factors 1,..., qz z . The experimental structure of 

the combined array design is presented by Figure 2.1. 
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Figure 2.1: Experimental structure of Combined Array Design. 

 

2.2.1. Dual Response Surface Approach 

 

Let the system be described by a variable ( ),y x Z  that depends on a set of 

controllable factors (the vector x ) and a set of random noise factors (the vector Z ).  

To explore the dependence of y  on x  and Z , the following model is assumed for 

the response, to accommodate control-by-noise interactions: 

0( , ) T T T Ty x Z x x B x Z x Zβ β γ ε= + + + + ∆ +                             (2.1) 

In this model, Z  is the random noise vector, ε ´s are independent identically 

distributed 2(0, )N σ  random errors. It is assumed that ε  and Z  are independent. 

The constant 0β , the vectors β , γ  and the matrices B and ∆  consist of unknown 

parameters, and 2σ is also usually unknown. It is also assumed that ( ) 0E Z =  and 

that ( )Cov Z = Ω  is known. The two response surfaces are obtained analytically 

from (2.1), one for the mean of y  as a function of the control factors x , and one 

for the variance of y , also in terms of the control factors: 

( )( ) 0, .T T
ZE y x Z x x B xβ β= + +

                                             
(2.2 )a  

( )( ) ( ) ( ) 2, .T T
ZVar y x Z x xγ γ σ= + ∆ Ω + ∆ +

                              
(2.2 )b  
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In fact, ( ) ( )0 0( , ) T T T T T T
Z ZE y x Z E x x B x Z x Z x x B xβ β γ ε β β= + + + + ∆ + = + +  and

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
0

2 2 2

( , )

.

T T T T T T T T

TT T T T T T T T

Z Z Z Z

Z

Var y x Z Var x x B x Z x Z Var Z x Z Var Z x Z Var

Var x Z x Var Z x x x

β β γ ε γ ε γ ε

γ σ γ γ σ γ γ σ

= + + + + ∆ + = + ∆ + = + ∆ +

= + ∆ + = + ∆ + ∆ + = + ∆ Ω + ∆ +  

 

After model (2.1)
 
is fitted to the data, (2.2 )a and (2.2 )b  give two prediction models 

for the mean and variance of the process using model parameter estimates 

obtained from the fit, including estimating 2σ . In principle, model (2.1)
 
could be 

extended to accommodate interactions among noise variables, quadratic terms in 

the noise variables and so on, but this requires the knowledge of higher moments 

of Z , and usually is not done [ ]01 . 

 

In the literature, various methods of optimization have been developed in order to 

obtain the optimal solution for the mean of the quality characteristic while 

minimizing the variance of the process. Dominguez D. J and Ernesto Barrios 

Zamudio [ ]09  have summarized and compared those methods. Myers R H and 

Carter W. H [ ]24 , and Myers R. H and Vining G. G. [ ]25  have introduced the 

method commonly used in the dual response surface approach. They first fit 

second order models to both primary and secondary response surfaces. In this 

case, they are respectively, the mean and the variance. Then, they optimize the 

primary response subject to an appropriate constraint on the value of the 

secondary response, or vice versa.  

 

The optimal solution for the mean response is obtained by solving the problem: 

� ( )( )
ɵ ( )( ) 2

0

,

,

optimize 

.

Z

Z

E x Z

V ar x Z

y

y

x R

σ


 =
 ∈                                                     

( )2.2c  
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The optimal solution for the variance model is the solution of the following 

problem: 

ɵ ( )( )
� ( )( )

,

,

minimize 

.

Z

Z

V ar x Z

E x Z

y

y M

x R


 =
 ∈                                                  

( )2.2d  

R  is the experimental region. 

 Dennis K. J. Lin and Wanzhu Tu [ ]05  argue that this method of optimization may 

be misleading, because the variance, which is to be minimized in the process, is 

forced to a fixed value. They propose a new procedure based on mean square 

error criterion. Their method will be used in Section.2.3.  

 

2.3. Application of Dual Response Surface Approach 

 

We adapt the application of the chemical process (John S. Lawson[ ]19 ) to the 

combined array design, specifically to the case of the dual response surface 

approach.  

The data corresponding to the combined array design are given in Annex 2.1 and 

the results of analysis of variance are in Annex 2.2. 

 

2.3.1. Statistical results 

 

The idea is to fit the second order regression model  

0( , ) T T T Ty x Z x x B x Z x Zβ β γ ε= + + + + ∆ +  and then calculating  

� ( )( ) 0, T T
zE y x Z x x B xβ β= + +  and ɵ ( )( ) ( ) ( ) 2, T T

zV ar y x Z x xγ γ σ= + ∆ Ω + ∆ + .  

Annex 2.3 gives the coefficients of the regression response model.  
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Regression models 

 

The results of analysis of variance for the response model are shown in Annex 

2.2. The corresponding response model considering the significant effects is 

    
2

0 1 1 2 2 12 1 2 22 2 1 1 2 2 21 2 1( , )y x Z x x x x x z z x zβ β β β β γ γ δ ε= + + + + + + + + . 

The fitted response model is 

ɵ 2
1 2 1 2 2 1 2 2 1( , ) 14.7942 8.1734 9.0856 8.3025 5.0145 3.9057 1.2007 3.2969y x Z x x x x x z z x z= − − + + + − − . 

The mean and variance models are: 

� ( ) 2
1 2 1 2 2( , ) 14.7942 8.1734 9.0856 8.3025 5.0145 .ZE y x Z x x x x x= − − + +

 
 

ɵ ( ) ( )2 2 2
1 2 1 2 1 2 1 2( , ) 2.7050 0.0543 2.2713 13.54=20.857 0.294 12.288 0.247 0.003 5.159 .

Z
Var y x Z x x x x x x x x= + − + + − − + +

Here, we replace �2σ  by the mean square error from the analysis of variance. We 

also assume that , 1,2iz i =  is a random variable with mean 0 and some variance 

2
zσ  such that the levels of , 1,2iz i =  are at zσ±  in coded form. Thus, 1zσ = .

 
 

Optimal values  

 

We apply the optimization method proposed by Dennis K. J. Lin and Wanzhu Tu 

[ ]05 . The method consists of three steps: 

Step 1: Find the fitted models � ( )( , )ZE y x Z  and ɵ ( )( , )
Z

Var y x Z . Both are functions of x .  

Step 2: Find Optx  such that the mean square error given by the expression 

� ( )( ) ɵ ( )
2

( , ) ( , )Z Z
E y x Z V ar y x ZMSE T= − +  is minimized. Optx  is obtained by minimizing 

MSE  subject to x R∈ . In this application, 0T = . 

Step 3: Evaluate � ( )( , )Z OptE y x Z  and ɵ ( )( , )
Z OptV ar y x Z . 

 

The optimization problem to be solved is: 

( ) ( ){ }22 2 2
1 2 1 2 2 1 2 1 2 1 2

1 2

min 14.7942 8.1734 9.0856 8.3025 5.0145 20.857 0.294 12.288 0.247 0.003 5.159
.

1 1

x x x x x x x x x x x

x x

 − − + + + + − − + +

− ≤ ≤

 



41 

 

Table 2.1 gives optimal settings, optimal values for the mean and variance models 

and the mean square error.  

 

Table 2.1: Optimal values for the mean and variance.  

 Optimal setting ( )1 2 3, ,x x x   � ( )( , )
Z OptE y x Z  ɵ ( )( , )

Z OptV ar y x Z  MSE  

( )31,0.16, x∀  6.62 19.28 63.16 

 

Interpretation 

 

The analysis based on full design data shows that the number of impurities may 

be reduced to 6.62% with a variance of 19.28. 

   

Application of the Quality Loss Function 

 

We introduce in this chapter the illustration of the Quality Loss Function as 

shown in sub-section 1.2.5 of Chapter 1. We remember that the estimate of the 

expected loss is � �( ) �
2

225Q µ σ = +  
 By replacing �µ  and �2σ respectively by 

� ( )( , )
Z OptE y x Z  and ɵ ( )( , )

Z OptV ar y x Z , the following quality loss is obtained: 

    
� ( )2

25 6.62 19.28 1577.6Q  = + =
 

.  

 

This value of the quality loss supports the idea given in Chapter 1 that the 

process may be improved by conducting a designed experiment and applying 

optimal values in the process. In fact, in this case, the reduction of the quality 

loss is 7476.25 1577.6 5898.6− =  monetary units, for each unit of chemical product. 
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2.3.2. Analysis based on half fractional design 

 

The two fractioned groups considered for this analysis are given in Annexes 2.4 

and 2.7. The corresponding results for analysis of variance are in Annexes 2.5 

and 2.8. The corresponding response models considering the significant effects 

are respectively: 

2 2 2
0 1 1 2 2 3 3 11 1 12 1 2 13 1 3 22 2 23 2 3 33 3 1 1 2 2 11 1 1 12 1 2

21 2 1 22 2 2 31 3 1 32 3 2

( , )y x Z x x x x x x x x x x x x z z x z x z

x z x z x z x z ε
β β β β β β β β β β γ γ δ δ
δ δ δ δ

= + + + + + + + + + + + + + +
+ + + + +

and 

2
0 11 1 12 1 2 13 1 3 23 2 3 1 1 11 1 1 12 1 2 21 2 1 22 2 2( , ) .y x Z x x x x x x x z x z x z x z x z εβ β β β β γ δ δ δ δ= + + + + + + + + + +  

 

The regression coefficients of the response models are in Annexes 2.3 and 2.6. 

The fitted response models are respectively:  

2 2 2

1 2 3 1 1 2 1 3 2 2 3 3

1 2 1 1 1 2 2 1 2 2 3 1 3 2

( , ) 15.4113 0.4585 1.8341 0.2228 1.2470 2.8418 3.4492 6.4518 7.8108 3.2110

9.9945 0.7088 5.2315 3.3225 1.1473 3.3320 1.0789 4.1690

y x Z x x x x x x x x x x x x

z z x z x z x z x z x z x z

= + − + + + − + − − +

+ − − + + + − −

ɵ

and 

ɵ 2

1 1 2 1 3 2 3 1 1 1 1 2 2 1

2 2

( , )

.

14.5195 5.7611 8.5808 5.8355 7.1000 3.1343 4.7043 3.9302 10.2783

6.1789

y x Z x x x x x x x z x z x z x z

x z

= + − + − − − − − +

+
 

The mean and variance models 

 

For the 1st group: 

� ( ) 2 2 2

1 2 3 1 1 2 1 3 2 2 3 3( , ) 15.4113 0.4585 1.8341 0.2228 1.2470 2.8418 3.4492 6.4518 7.8108 3.2110 .z x Z x x x x x x x x x x x xE y = + − + + + − + − −

ɵ ( ) ( )1 2 3

2 2 2

1 2 3 1 1 2 1 3 2 2 3 3

2
( , ) 9.2857

201.62 35.453 89.013 97.461 3.6443 18.300 20.036 22.93 50.306 27.54

1.909 4.793 5.2479 115.393

.

z x Z x x x

x x x x x x x x x x x x

V ar y =

=

− +

− − + − + + − +

− +

+
 

For the 2nd group: 

� ( ) 2
1 1 2 1 3 2 3( , ) 14.5195 5.7611 8.5808 5.8355 7.1000 .z x Z x x x x x x xE y = + − + −  

ɵ ( ) ( )1 2

2 2
1 2 1 1 2 2

2
( , ) 3.1343

39.134 54.126 25.697 70.793 .

8.6345 4.0994 29.310

74.555 16.805

z x Z x x

x x x x x x

V ar y =

=

− −

+ +

− +

+ + +
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Optimal values  

 

The optimization problem to be solved in order to obtain the optimal values for 

the mean and variance is: 

 

For the 1st group: 

( ){
}

2 2 2

1 2 3 1 1 2 1 3 2 2 3 3

2 2 2

1 2 3 1 1 2 1 3 2 2 3 3

2
15.4113 0.4585 1.8341 0.2228 1.2470 2.8418 3.4492 6.4518 7.8108 3.2110

201.62 35.453 89.013 97.461 3.6443 18.300 20.036 22.93 50.306 27.54

min

1

x x x x x x x x x x x x

x x x x x x x x x x x x

+ − + + + − + − −

− − + − + + − +

+

+ +

− ≤ 1 2 3

.

1x x x





 ≤


 

For the 2nd group: 

( ){
}

2
1 1 2 1 3 2 3

2 2
1 2 1 1 2 2

2

1 2 3

14.5195 5.7611 8.5808 5.8355 7.1000

39.134 54.126 25.697 70.793 .

min

74.555 16.805

1 1

x x x x x x x

x x x x x x

x x x

 + − + −
 + +




+

+ + + +

− ≤ ≤  

 

Table 2.2 gives optimal setting, optimal values for the mean and variance models 

and the mean square error.  

 

Table 2.2:  Optimal values for the mean and the variance. 

 Group  Optimal setting ( )1 2 3, ,x x x   � ( )( , )
Z OptE y x Z   ɵ ( )( , )

Z OptV ar y x Z  MSE  

1 ( )1,0.37,1  9.05 17.24 212.44 

2  ( )0.07, 1, 1− − −  7.25 31.86 84.41 

 

Interpretation 

 

The pairs of optimal values of the number of impurities and the variance for the 

first and the second groups are respectively ( )9.05,17.24 and ( )7.25,31.86.  
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The results of the combined array design obtained in Chapter 2 are more 

homogeneous than those obtained in Chapter 1 where the analysis is based on 

double orthogonal array design. However, the conclusion given in the case of 

double orthogonal array design is still valid. This is, the analysis based on half 

fractional design does not give the same information of the process. In fact, 

considering the combined array design, the number of impurities obtained for the 

first group is 9.05%, and 7.25% for the second group. The discrepancy between 

both values is 1.8. This value seems to be small. However, the discrepancy 

between the optimal values for the variance in the first and the second groups is 

large: 31.86 17.24 14.62− = . 

In practice, it is recommended to conduct a confirmatory experiment in order to 

confirm the validity of the results previously obtained. 

 

2.4. Modified Dual Response Surface Approach 

 

2.4.1. Motivation  

 

The existing procedures for robust design, devised for physical experiments, may 

be too limiting when the system can be simulated by a computer model. In this 

section we introduce a modification of the dual response surface modelling, which 

incorporates the option of stochastically simulating some of the noise factors 

when their probabilistic behaviour is known. The knowledge of the noise 

distribution may come either from historical data or from ad hoc measurements. 

In practice, internal noise factors are assumed to have a normal distribution. The 

method is also applicable in the case of crossed array design.  

Alessandra Giovagnoli and Daniele Romano [ ]01  stipulate that the method 

appears suitable for designing complex measurement system. They apply it to the 

design of a high- precision optical profilometer.  
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The purpose of this section is to illustrate theoretically, how stochastic simulation 

experiments can be best employed in the field of robust design.  

Classical robust design relies on physical experiments whose factors are the 

parameters (control factors) and the noise (noise factors). Noise factors, even 

though they vary randomly in the process, they are controlled in the experiment. 

Designed experiments for robust design have been devised for physical settings, 

but in practical situations noise factors are typically difficult, if not impossible, to 

control. Thus, only a few factors, and with few levels, are usually included in the 

design.  

This constraint can at times be relaxed in simulation. Simulated experiments 

have been performed by scientists and engineers, ever since the advent of the 

computer age, and are being increasingly used as an investigation tool in science 

and technology.  

Within the framework of robust design, stochastic simulation appears to be a 

natural tool for transmitting distribution of noise input to the output. The 

advantage is to restore the centrality of randomness, which is the rationale for 

making an inference. 

As already mentioned in this work, the statistical methodology underlying robust 

design, and now the most widely accepted, is the dual response surface 

methodology. Two surfaces are estimated, one for the mean and one for the 

variance of the process. The existing types of experiments for dual response 

models are the crossed array and the combined array. A new general protocol for 

conducting robust design studies on the computer extends the dual response 

surface approach. It is characterized by a different treatment of the noise factors, 

some of which are considered random, as they appear in the real process.   

The method can be beneficial to the solution of an integrated parameter and 

tolerance design problem, by adding variances (or standard deviations) of internal 

noise factors as controls in the experiment and simulating the internal noise 

accordingly. 
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2.4.2. Theory of Modified Dual Response Surface Approach 

 

Let us divide the random factors Z  into two independent vectors, 1Z  and 2Z  

where ( )1 1, , mZ Z Z= ⋯  and ( )2 1, ,m qZ Z Z+= ⋯ . The random vector 1Z  includes the 

variables that are simulated stochastically, whereas the remaining set of noise 

factors 2Z  are given fixed levels 2z  for some different choices of 2z . At the same 

time, different levels x  of the control factors are also chosen for the 

experimentation. The computer experiment is performed by stochastically 

simulating the noise 1Z  for chosen pairs ( )2,x z
 
and the sample mean and 

variance of the observed response are calculated. 

The experimental structure of modified dual response surface is shown by Figure 

2.2. 

 

Figure 2.2: Experimental structure of Modified Dual Response Surface. 

 

The following phase is to build a surrogate model of the simulator in the region of 

interest. The surrogate model is a probabilistic model that describes the 

experiment, similarly to what happens for physical experiments. To start with, we 

assume additivity between a systematic effect 1y  on response y  purely due to the 

control factor x  and a random effect 2Y  due to Z  and its interactions with x : 

1 2( )y y x y= + . 

Furthermore, it is assumed that 1( )y x  is linear in unknown parameters β :

1( ) ( )Ty x f x β=  where ( )f x  is a known vector function.  
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As to the random term 2y , it is assumed that, when 2Z  is fixed, its expectation 

over the noise vector 1Z is also linear in another set of parametersγ .  

Thus,  

( ) ( )
1 2 2 2| ( ) ,

TT
ZE y Z z f x g x zβ γ= = +  ;                           (2.3 )a  

where ( )2,g x z  is again a known vector function. 

Assume a linear model in a set of parameters δ  for the log-variance of y , again 

when 2Z  is fixed and the variance is taken over 1Z .  

Then, 

 ( ) ( )
1 2 2 2log | ,

T

ZVar y Z z h x z δ= =  ;                                (2.3 )b   

with ( )2,h x z  a known vector function. 

 

Stage 1: Estimating the unknown parameters , ,β γ δ  

For every ( )2,x z
 
in the experiment, ( )

1 2 2|ZE y Z z=
 
and ( )

1 2 2|ZVar y Z z=
 
are 

observed via the corresponding sample mean and sample variance obtained 

under the simulation. Then, the parameters β  and γ  in ( )2.3a  are estimated by 

weighted least squares, since variances at different experimental points are 

different, and δ  in ( )2.3b  is estimated by ordinary least squares. 

 

Stage 2: Building predictors 

The fitted dual model ( ) ( )2.3 2.3a b+  describes the mean and the variance of the 

response for the given levels of the noise factors 2Z , controlled in the experiment 

but random in the process. Thus, this fitted model, in general, is not very 



48 

 

interesting in itself. However, the in-process mean and variance are related to 

( )2.3a  and ( )2.3b  by means of the identities: 

( ) ( )
2 1 2| .Z Z ZE y E E y Z =                                                    

(2.4 )a  

( ) ( ) ( )
2 1 2 12 2| | .Z Z Z Z ZVar y E Var y Z Var E y Z   = +                                  

(2.4 )b  

Equation ( )2.4a  yields 

( ) ( )
2 2( ) , ( ) ( ) ;

TT T T
Z ZE y f x E g x z f x a xβ γ β γ = + = +            

 (2.5 )a  

where ( )a x  is a vector function that can either be computed analytically, since 

( )2,g x z and the probability distribution of the noise vector 2Z  are assumed 

known or can be computed numerically. The in-process mean ( )ZE y
 
is estimated 

substituting the estimates of β  and γ  in expression ( )2.5a .  

Hence, Equation ( )2.4b becomes 

( ) ( ){ } ( )
2 22 2exp , , ( , ) ( ) ;

T T T
Z Z ZVar y E h x Z Var g x Z b x C xδ γ δ γ γ   = + = +    

       (2.5 )b  

where the function ( ) ( ){ }2 2, exp ,
T

Zb x E h x Zδ δ 
  

=  and ( )
2 2( ) ,ZC x Cov g x Z=  are 

computed similarly to ( )a x . The in-process variance of y  is estimated 

substituting the estimates of γ  and δ  in expression (2.5 )b .  

Compared with the crossed array, the modified dual response surface approach 

provides additional information on how noise in 2Z  affects process variance, via 

the functions g  and h .  

 

The modified dual response surface may be generalized in a multi-step approach 

if the noise factors are simulated by sequentially adding one of them at each step 

in the 1Z  vector. This allows one to sequentially evaluate how an individual noise 

factor affects overall variability. 
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Special cases 

 

The special cases of the modified dual response surface are particular behaviours 

of noise factors that lead to double orthogonal array design or to dual response 

surface.   

1. When ( )
2 2, 0ZE g x Z  =  , the in-process mean (2.5 )a  becomes ( ) ( )T

ZE y f x β=   

which is already estimated at Stage 1. This occurs in the combined array model. 

In fact, ( ) ( )
2 2( ) ( ),T T

Z

T

ZE y f x f xE g x Zβ γ β = + =   because ( )
2 2, 0

T

ZE g x Z   = . 

2. In the case 1Z = ∅ (or equivalently, 2Z Z= ), the simulation becomes non- 

stochastic. Expressions (2.3 )a  and (2.3 )b  collapse to just one equation:

( ) ( , )T Ty f x g x Zβ γ= + . In particular, if the vector ( )Tf x β  is a second degree 

polynomial in the x ’s and ( , )Tg x Z γ  contains only linear terms in the z ’s and xz -

product terms, model (2.3) reduces to model (2.1) for the combined array 

approach, but without the experiment error. 

In fact,  

• ( ) ( ) ( )
1 2 2| | ( ) ,

TT
ZE y Z z E y Z f x g x Zβ γ= = = + . 

• There is no need of calculating ( )
1 2 2log |ZVar y Z z=  as 1Z = ∅ . 

• Models (2.1)and (2.3) are: 

0( , ) .T T T Ty x Z x x B x Z x Zβ β γ ε= + + + + ∆ +  

( ) ( )
1 2 2 2| ( ) , .

TT
ZE y Z z f x g x zβ γ= = +  

Then 0( )T T Tf x x x B xβ β β≅ + +  and ( , )T T Tg x Z Z x Zγ γ≅ + ∆ .  

3. In the case 1Z Z=  (or equivalently, 2Z = ∅ ) (2.3 )a  and (2.5 )a  imply  

( )
1

( )T
ZE y a x γ= .  

Expressions (2.3 )a  and (2.3 )b  become 



50 

 

 ( ) ( ) ( )T T
ZE y f x a xβ γ= +

                                                       
(2.6 )a

 

together with  

( )log , ( ) .T
ZVar Y x Z h x δ=                                                            (2.6 )b  

When the noises Z  are independent and normally distributed, one obtains the 

same dual response surface model from ( )2.6a  and ( )2.6b  as from 

( )T
ij i ij iy f x β ε σ= +  and ( )2 *log

T
i i is h x δ ε= +

 
in the crossed array approach [ ]01 .     

In fact,  

• 
( ) ( )
( ) ( )

1

2

2 2 2

2

| ( ) , (2.3 )

( ) , ( ) ( ) (2.5 )

TT
Z

TT T T
Z Z

E y Z z f x g x z a

E y f x E g x Z f x a x a

β γ

β γ β γ





   

= = +

= + = +

 

Equations ( )2.3a
 
and ( )2.5a

 
imply ( ) ( )

1

1

2 2 ( )T
Z Z

Z Z

E y E y a x γ
=

== . 

Equations ( )2.3a and ( )2.5a
 
imply again ( ) ( )

1

1

( ) ( )T T
Z Z

Z Z

E y E y f x a xβ γ
=

= +=  and  

( ) ( )
1 2 2 2log | ,

T

ZVar y Z z h x z δ= =  leads to ( ) ( )log
T

ZVar y h x δ=  from the fact that 1Z Z= . 

 

   

2.5. Conclusions 

 

In this Chapter, the theory of combined array design is exposed. An illustrative 

example of dual response surface approach is given. The results are compared to 

those obtained from the double orthogonal array design in Chapter 1. It seems 

realistic to analyse the data of the chemical process for both complete design and 

fractional design by the combined array design structure. In fact, the discrepancy 

between optimal values is less pronounced in the case of combined array design. 

This result supports the idea invoked by Kunert J. et al [ ]22
 
that the product 

array design does not make proper use of the number of runs. Through an 
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illustrative calculus, we verify the assertion that conducting an experiment and 

applying the combination of the levels of the design factors that give the optimal 

values reduce the cost of the process. 
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Chapter 3:  

Integrated method of Parameter design and Tolerance design 

 

3.1. Generalities 

 

Sometimes robust design aims at setting both design parameters and tolerance 

specifications. While specifying tolerances on a design parameter, the designer is 

actually putting a limit on the random variability of the parameter, i.e. on the 

standard deviation of the corresponding internal noise factor [ ]01 . A tighter 

tolerance around the nominal value results in a smaller transmitted variation on 

the response, but incurs an extra cost [ ]34 . The integrated method of parameter 

design and tolerance design aims at choosing nominal values of design factors 

and their tolerances simultaneously so that the cost of the process is minimized.  

 

3.2. Parameter design and Tolerance design 
 

Consider a process where the response of interest y  depends on the factors 

( )1 2, , ,T
px x x x= ⋯  expressed in terms of original levels. The corresponding factors in 

coded levels are ( )1 2, , ,T
pw w w w= ⋯ .  

The second order response surface model in terms of coded factors is: 

 ( ) 0 .T Ty w w w wα α ε= + + Α +                                                            (3.1) 

Coded factors and original factors are linked by the expression 

 , 1, 2, , .
1

2 i

ii
i

x

x x
w i p

R

−
= = ⋯                                                                  (3.2) 

The model in terms of original factors becomes:  
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( ) 0
T Ty x x x xβ β ε= + + ∆ +                                                           (3.3) 

where 0β  is a constant, ( )1 2, , ,T

pβ β β β= ⋯  is a vector of unknown parameters, 

ijδ∆ =     
is a p p× −matrix of the second order parameters, (that is ij iiδ β=  if i j=  

and 
1

2
ij ijδ β=

 
if i j≠ ), ( )20,N εε σ∼ .  

The levels of the factors are fixed in the experimental phase. However, during the 

production process, it is common that, instead of observing ix , one observes 

.i ix t+  The term it  is a random variable referred to as tolerance, associated with 

the factor ix  such that ( ) 0iE t =  , ( ) 2

i iVar t σ=  and ( )cov ,i j ij i jt t ρ σ σ= . 

The model that includes the factors and their corresponding tolerances is:  

( ) ( ) ( ) ( )0| .
T T

x t x t x t x ty β β ε= + + + + ∆ + +                                      (3.4) 

Suppose that the experimenter wants the response of interest y  to reach the 

target M .  

The quality loss function that indicates the cost caused by not achieving the  

target is:  

( )( ) ( )2
( )L y x k y x M= − ;                                                                      (3.5)  

where the coefficient k  is a quality loss constant associated with each unit 

product. The average quality loss is: 

( )( )[ ] ( ) ( )( ) ( )( )[ ]{ }22
( ) .Q E L y x E k y x M k Var y x E y x M= = − = + − 

              (3.6) 

Let ( )i iC t
 
represent the cost function due to applying the tolerance it  to the factor 

ix . Then the total cost incurred by all of the tolerances is: 

 ( )
1

( ) .
p

i i
i

C t C t
=

=∑                                                                             (3.7a) 
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The cost functions are determined by the collected information of the 

manufacturing cost versus the tolerance for each of the control factors. It is 

obvious that a higher precision level with tighter tolerance usually requires a 

higher manufacturing cost. There is a monotonic decreasing relationship between 

manufacturing cost and tolerance. In literature, several models are reported to 

describe the cost-tolerance relationship. Table 3.1 summarizes some of the cost 

functions as they are described by Joe Meng et al. [ ]18 . 

 

Table 3.1: Cost-tolerance functions. 

 Cost-tolerance function  Form 

 The Sutherland function  ( )C t t αβ −=  

 Reciprocal square function 
 

2
( )C t

t

α=  

 Reciprocal function 
 ( )C t

t

α=  

 Exponential function  ( )( ) expC t b tα= −  

 Michael-Siddall function  ( )( ) expC t t tβα γ−= −

 

Domínguez D. J. [ ]08  proposes the following reciprocal cost function: 

( )i i iC t t γα β −= + .                                                           (3.7 b) 

This function will be used in Section 3.3.      

The coefficients ,α β and γ  are determined by applying non linear regression 

methods.  
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Assume that each ix  follows Normal distribution ( )
0

2,i iN x σ  where 
0i

x
 
is the 

nominal value of the i th input variable ix . As mentioned by Domínguez D. J. [ ]08  

and William Li and C. F. J. Wu [ ]34 , the tolerance it  of ix  is:  

3i it σ=  .                                                                                          (3.8) 

Let ( )
0 0 00 1 2, , , px x x x= ⋯  and ( )1 2, , , pt t t t= ⋯  be respectively the vectors of nominal 

values and tolerances. Because the normally distributed ix  is determined by its 

mean 
0i

x and its standard deviation iσ , the average quality loss defined by (3.6)is 

a function of 
0i

x  and iσ , or equivalently of 
0i

x  and it . The average quality loss 

may be written as: 

 ( )0 , .Q Q x t=                                                                                      (3.9)   

The total cost becomes: 

( ) ( ) ( )( ) ( )( )[ ]{ } ( )2

0 0
1

, , ( ) | |
p

i i
i

H x t Q x t C t k Var y x t E y x t M C t
=

= + = + − +∑ .       (3.10) 

Consider the model ( ) ( ) ( ) ( )0|
T T

x t x t x t x ty β β ε= + + + + ∆ + + .  

Assuming the tolerances are uncorrelated, the mean of ( )|x ty  is: 

             ( )( ) 0| T TE y x t x x x trβ β= + + ∆ + ∆Σ ;                                                  (3.11 a) 

where 2 , 1, 2, ,i i pσΣ = =   ⋯  is a diagonal matrix.   

Then,  

2
2 2

1 1 1

1

3 9

p p p
i

ii i ii ii i
i i i

t
tr tβ σ β β

= = =

 ∆Σ = = = 
 

∑ ∑ ∑ .                                       (3.11 b)  

Finally,  

( )( ) ( )( ) 2 2

1 1
0

1 1
|

9 9

p p

ii i ii i
i i

T TE y x t E y x t tx x B xβ ββ β
= =

= + += + +∑ ∑ .           (3.11 c) 
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In fact, ( ) ( ) ( ) ( )0 0|
T T T T T T T Tx t x t x t W x t x t x x x t t x t ty β β β β β εε= + + + + + = + + + ∆ + ∆ + ∆ + ∆ ++  

Then, ( )( ) ( ) ( )0 0| T T T T T T T T TE y x t E x t x x x t t x t t x x x E ttβ β β β β= + + + ∆ + ∆ + ∆ + ∆ = + + ∆ + ∆ . The 

expression ( )TE t t∆  leads to ( ) ( ) ( ) 2

1

( ) ( )
p

TT

ii i
i

E t t tr E t E t β σ
=

∆ = ∆Σ + ∆ =∑
 
where  

2 2 2
211 12 1 11 1 12 2 1
1

2 2
222 22 2

2
2 2

1 1 1

1 1 1 1
0 02 2 2 2

.

01 1

2 2

p p p

p
p pp p pp p

β β β β σ β σ β σσ
σβ β σ

σβ β β σ β σ

   
    
    
    ∆Σ = =    
    
     
      

⋯ ⋯
⋯

⋮ ⋮⋮ ⋮ ⋮ ⋮

⋱⋱ ⋱

⋯
⋯ ⋯

        (3.11 d) 

The variance of ( )|x ty  is: 

 ( )( ) ( ) ( ) 2| 2 2
T

Var y x t x x εβ β σ= + ∆ Σ + ∆ + .                                         (3.12 a) 

In terms of tolerances, the variance becomes: 

 ( )( ) ( ) ( ) 21
| 2 2

9
T

Var y x t x T x εβ β σ= + ∆ + ∆ +  .                                                         (3.12 b) 

We remember that ijδ∆ =     where ij iiδ β=  if i j=  and 
1

2ij ijδ β=  if i j≠ , 2
iT t=     is a 

diagonal matrix of tolerances. The final expression of the total cost 

( ) ( )0 0, , ( )H x t Q x t C t= +  becomes:  

( ) ( ) ( ) ( )
2

2 2

0 0
1 1

1
, 2 2

9

1

9

p p
T T T

ii i i i
i i

H x t k x T x x x x t M C tεβ β σ β β
= =

= + ∆ + ∆ + + + + ∆ + − +  
    

∑ ∑ .   (3.13) 

The optimization problem to be solved in order to obtain the setting that 

minimizes the total cost of the process is: 

( )0

0

min ,

subj. to

        

H x t

x

t







 .                                                                          (3.14) 
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3.3.  Application of Parameter design and Tolerance design 

 

This application is adopted from Raymond H. Myers and Douglas C. Montgomery 

[ ]28 . One step in the production of a particular polyamide resin is the addition of 

amines. It is supposed that the manner of addition has a profound effect on the 

molecular weight distribution of the resin. Three variables are thought to play a 

major role: temperature at the time of addition ( 1x , °C), agitation ( 2x , RPM), and 

rate of addition ( 3x , 1/min). Because it is difficult to physically set the levels of 

addition and agitation, three levels are chosen and a Box-Behnken Design is 

used. The viscosity of the resin is recorded as an indirect measure of molecular 

weight. The data, including the factors and their levels, the design, and the 

response values are given in Annex 3.1. The results of analysis of variance for the 

viscosity of the resin are given in Annex 3.2. 

 

3.3.1. Results 

 

The estimated regression model is: 

( ) 2 2 2

1 2 3 1 2 3 1 2 1 3 2 358.875 2.65 0.65 11.125 0.012 0.3 0.145 0.032 0.088 0.14y x x x x x x x x x x x x x= − + − − − + − − + +ɵ  . 

Let ( )20, , 1, 2,3i it N iσ =∼ . 

From the estimated regression model, the matrix ∆  is:  

11 12 13

21 22 23

31 32 33

1 1

2 2 0.012 0.016 0.044
1 1

0.016 0.3 0.07
2 2

0.044 0.07 0.145
1 1

2 2

β β β

β β β

β β β

− −

∆ = = −

−

 
 

  
  
       

  
 

 .  

The matrix  Σ  is defined as 

2
1

2
2

2
3

0 0

0 0

0 0

σ
σ

σ

 
 Σ =  
 
 

. 

The following phase is to calculate � ( )( )|E y x t  and ɵ ( )( |V ar x ty .  

We apply respectively (3.11 a) and (3.12 a).  
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After simplification, the following result for � ( )( )|E y x t  is obtained:  

� ( )( ) 2 2 2
1 2 3 1 2 3 1 2 1 3

2 2 2
2 3 1 2 3

| 58.875 2.65 0.65 11.125 0.012 0.3 0.145 0.032 0.088

0.14 0.012 0.3 0.145 .

E y x t x x x x x x x x x x

x x σ σ σ

= − + − − − + − − + +

+ − + −

By taking into account the expression (3.8) which implies that 
3
i

i

tσ = , � ( )( )|E y x t  is 

transformed into: 

� ( )( ) 2 2 2
1 2 3 1 2 3 1 2 1 3

2 2
2 3 1 2

2
3

| 58.875 2.65 0.65 11.125 0.012 0.3 0.145 0.032 0.088

0.14 0.0013 0.0333 0.0161 .

E y x t x x x x x x x x x x

x x t t t

− + − − − + − − + +

+ − + −

=

 

The estimate of ( ) ( ) ( ) 2( | 2 2
T

Var x ty x x εβ β σ= + ∆ Σ + ∆ +  is:  

ɵ ( ) ( ) ( )
( ) � 2

2 22 2
1 2 3 1 1 2 3 2

2 2
1 2 3 3

( | 2.65 0.024 0.032 0.088 0.65 0.032 0.6 0.14

11.25 0.088 0.14 0.29 .

V ar x ty x x x x x x

x x x ε

σ σ

σ σ

= − − + + − − + + +

+ − + + − +
 

 

Let us consider the following values for the parameters that appear in � ( )( |E x ty  

and ɵ ( )( |V ar x ty : � 2

1 2 33, 0.15, 0.5, 10.25εσ σ σ σ= = = =  which imply that 1 2 39, 0.45, 1.5t t t= = = . 

Let the target be 55M =  and the quality loss for unit 1k = . 

The tolerances of the control factors and the related costs are given in Annex 3.3.  

The cost function (3.7 b) is used and the adjusted cost functions are:  

( ) ( )0.6051 0.7820

1 1 2 20.132 1.9474 0.141 0.3956,C t t C t t− −= + × = + × and ( ) 0.8173

3 30.106 0.5280C t t −= + × . 

 

In order to formulate the optimization problem, the following expressions are 

calculated: 

� ( )( ) 2 2 2
1 2 3 1 2 3 1 2 1 3 2 3| 59.013 2.65 0.65 11.125 0.012 0.3 0.145 0.032 0.088 0.14E y x t x x x x x x x x x x x x=• − + − − − + − − + +

� ( )( )( ) ( )2 22 2 2

1 2 3 1 2 3 1 2 1 3 2 3| 55 114.013 2.65 0.65 11.125 0.012 0.3 0.145 0.032 0.088 0.14y x t x x x x x x x x x x x xE − = − + − − − + − − + +•

ɵ ( )( ) 2 2 2

1 2 3 1 2 3 1 2 1 3 2 3| 105.1 11.942 2.331 5.825 0.520 0.022 0.091 0.143 0.393 6.7208V ar y x t x x x x x x x x x x x x• = − − + + + + − −+

( ) ( ) ( )
3

0.6051 0.7820 0.8173

1

( ) ( ) 0.132 1.9474 9 0.141 0.3956 0.45 0.106 0.5280 1.5 2.012 .i
i

C t C t
− − −

=

• = = + + + + + =∑  
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The optimization problem to be solved is:  

( )min ,H x t

x R




∈
,  

where ( ) � ( )( )( ) ɵ ( )( )
2

| 55 | ( ), y x t V ar y x t C tH x t E − += + , 1150 200x≤ ≤ , 25 10x≤ ≤  and 

315 25x≤ ≤ . 

The solution of the problem shows that the total cost of the process is 7475.698 

monetary units. 

The corresponding combination of the levels of the design factors is  

( ) ( )1 2 3, , 150,10,25x x x = . 

 

After the combination of the levels of the design factors is obtained; the expected 

mean, the variance and the expected value of the quality loss of the process are 

calculated using respectively the formulas (3.11 c), (3.12 a) and (3.6). 

Then � ( )( ) ɵ ( )( )|| 40.2370, 7 255.7V ar y x tE y x t = =  and 7 473.7Q = . 

 

Interpretation 

 

By optimizing the total cost incurred by parameter design and tolerances of the 

design factors, the combination of the levels of the factors that lead to the 

minimal cost is ( ) ( )1 2 3, , 150,10,25x x x = .  

The corresponding values of the expected mean and variance are respectively 

40.2370 and 7255.7. The quality loss of the process is 7473.7 monetary units.  
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3.4. Conclusions 

 

In this Chapter, the integrated method of parameter design and tolerance design 

is exposed. The method consists of integrating the tolerances related to nominal 

values of the levels of the design factors, and then minimizing the total cost of the 

process. The total cost of the process is composed of the quality loss and the cost 

of incorporating tolerances in the process. Even though the method causes extra 

cost in the process, it is the best way of ensuring the minimal variability once the 

nominal values of the design factors are obtained. 
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Chapter 4:  Split-Plot Designs for Robust Experimentation 

 

4.1. General view of Split-Plot Designs 

 

In some multifactor factorial experiments it is impossible to completely randomize 

the order of the runs. Industrial experiments often encounter such situations 

where some experimental factors are hard to change or where there is significant 

discrepancy in the size of some experimental units [ ]29 . In this case, the 

experimenters fix the levels of the difficult-to-change factors, and run all the 

combinations of the other factors. This leads to a split-plot design. 

  

Soren Bisgaard [ ]30
 
reveals another situation where split-plot designs are 

applied. This is the situation where all factors are equally difficult or easy to 

change and there are no other practical or economical restrictions on the 

randomization.  

 

Split-plot designs have their origins in agricultural experiments. In these 

experiments, a factor such as the irrigation method is randomly applied to large 

sections of land, called whole plots. These sections then are split into smaller 

plots called subplots, and another factor, such as different fertilizers, is applied in 

random order within the subplots.  

 

In the case of robust design, the distinction between design and noise factors may 

not be the reason for imposing a restriction on the randomization and using split-

plot designs. The random character of the noise factors permits conducting 

robust design in split-plot design [ ]30 .   

 

The analysis of a split-plot design consists of two error terms because there are 

two types of experimental units. These are the experimental units for the whole-

plot factors and the experimental units for the sub-plot factors.  
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George E. P. Box and Stephen Jones [ ]14
 
provide an extensive overview of split-

plot and strip-plot designs for robust product experimentation. They consider 

three types of split-plot designs for robust experimentation with regard to the 

arrangement of the design and noise factors. Soren Bisgaard [ ]30  provides 

specific technical details on how to design and analyse split-plot designs when 

they are based on combinations of two-level factorials and fractional factorials. 

His focus is on how to design and analyse 2 2k p q r− −×  split-plot designs. Soren also 

proposes the division of the sources of variation into two parts, those coming from 

the whole-plots and those coming from the sub-plots, and then constructs a 

normal plot for each group. This separation permits observing the factors and the 

interactions between factors which have effects on the response of interest 

 

4.2. Arrangement of the design factors and the noise factors 

 

In the case of split-plot designs for robust experimentation, three experimental 

arrangements of the design and the noise factors are of the most interest [ ]14 . 

Arrangement 1: Design factors are split-plot factors. 

In this arrangement, the whole-plots contain the noise factors and the sub-plots 

contain the design factors. 

Arrangement 2: Noise factors are split-plot factors. 

The whole-plots contain the product design factors and the sub-plots contain the 

noise factors. 

Arrangement 3: Strip-block designs. 

In this arrangement, the subplot treatments are assigned randomly in strips 

across each block of whole-plot treatments. In agricultural designs, this 

arrangement is frequently referred to as a strip-block experiment. 

 

In this chapter, we pay more attention to the case where the noise factors are the 

whole-plot factors. The design allows fitting a first-order model with interactions. 

The general structure of the model is: 
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Error ErrorWP factors WP SP factors WP×SP interactions SPy = + + + +                              (4.1) 

where y  is the response variable, WP represents whole-plot and SP represents 

sub-plot. 

 

4.3. Application 

 

We adapt the problem of chemical process (John S. Lawson [ ]19 ). The aim of this 

application is to analyse the data as split-plot design. The results are compared to 

those obtained in the case of double orthogonal array design and combined array 

design.  

We consider the arrangement where the whole-plots contain the noise factors and 

the sub-plots contain the design factors. This case seems to be more realistic 

because of the random nature of the noise factors.  

There are 2  noise factors 1z  and 2z
 
applied to the whole-plots and 3 design 

factors 1 2,x x  and 3x  applied to the sub-plots. There is no replication. 

In order to adapt the original design to the split-plot design, we combine in pairs 

the levels of the noise factors to form a whole-plot. There are four whole-plots. In 

practice, once the whole plot is randomly selected, the following step is to apply 

the combinations of the design factors within the whole-plot. 

Table 4.1 shows the arrangement structure of the data in split-plot design. 

Annexes 4.1, 4.2 and 4.4 contain the data respectively of the full split-plot design 

and half fractional split-plot design for the first and the second groups. 

The first-order model including two-factor interactions for the split-plot design is: 

( ) 0 1 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

11 1 12 2 13 3

,

.
Error

Error

y x Z Z WP x x x x x x x x x

Z x Z x Z x SP

β β γ γ γ γ γ γ
β β β

= + + + + + + + + +
+ + + +

                     (4.2) 
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Table 4.1: Arrangement of the data in split-plot design structure. 

 

 Noise factors     Levels   

1z  1 -1 -1 1 

1z  -1 -1 1 1 

Z  -1 1 -1 1 

Whole-plot 1 2 3 4 

 

Table 4.2 gives the coefficients of the regression models. 

 

Table 4.2: Coefficients of the regression models. 

 

 Intercept  Linear       Inter action       

 Design 0β  1γ  2γ  3γ  12γ  13γ  23γ  11β  12β  13β  

 Full design 17.84 -8.17 -9.08 -0.13 8.30 0.07 0.17 -0.08 -1.68 0.76 

 1st group 18.75 -8.83 -10.49 0.36 10.92 -0.81 -1.41 0.61 -1.83 0.85 

 2nd group 17.01 -8.83 -8.34 -0.63 5.69 0.96 1.76 -0.76 -1.53 0.67 

 

Table 4.3 shows the results of the analysis of variance for the data in complete 

split-plot design. The results of the analysis of variance corresponding to the first 

group and the second group of half fractional split-plot design are indicated by 

Annexes 4.3 and 4.5.  
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Table 4.3:  

Analysis of variance for the number of impurities considering full design. 

 

========================================================= 
Source   DF     SS      Adj.SS    Adj. MS      F      P 
--------------------------------------------------------- 
Z        1   275.89     275.89     275.89    0.55  0.535 
WP(Z)    2  1001.75    1001.75     500.87   23.84  0.000 
x1       1  2137.76    2137.76    2137.76  101.74  0.000 
x2       1  2641.55    2641.55    2641.55  125.71  0.000 
x3       1     0.58       0.58       0.58    0.03  0.869 
x1*x2    1  1102.90    1102.90    1102.90   52.49  0.000 
x1*x3    1     0.09       0.09       0.09    0.00  0.949 
x2*x3    1     0.50       0.50       0.50    0.02  0.878 
Z*x1     1     0.21       0.21       0.21    0.01  0.920 
Z*x2     1    90.38      90.38      90.38    4.30  0.044 
Z*x3     1    18.47      18.47      18.47    0.88  0.353 
Error   47   987.58     987.58      21.01 
Total   59  8257.68 
========================================================= 
Stand. error =  4.58393    
R-squar. = 88.04%    
R-squar.(adjust.) = 84.99% 
 

Table 4.4 presents the fitted regression models in terms of significant effects. 

 

Table 4.4: Regression models. 

 

 Design Regression model 

 Full design 
ɵ ( ) 1 2 1 2 3, 17.84 8.17 9.08 8.30 0.76y x Z x x x x Z x= − − + +

 1st group  ɵ ( ) 1 2 1 2, 18.75 8.83 10.49 10.92y x Z x x x x= − − +  

 2nd group  
ɵ ( ) 1 2 1 2, 17.01 8.83 8.34 5.69y x Z x x x x= − − +  
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Optimal values for the number of impurities  

 

Let us assign the low level to the whole-plot in the regression model related to the 

full design, this is 1Z = − . 

The optimization problem to be solved in order to obtain a minimal value for the 

number of impurities is: 

 

For the full design: 

{ }1 2 3 1 2

1 2 3

min 17.84 8.17 9.08 0.76 8.30
.

1 1

x x x x x

x x x

− − − +


− ≤ ≤  

 

For the 1st group: 

{ }1 2 1 2

1 2

min 18.75 8.83 10.49 10.92
.

1 1

x x x x

x x

 − − +


− ≤ ≤  

 

For the 2nd group: 

{ }1 2 1 2

1 2

min 17.01 8.83 8.34 5.69
.

1 1

x x x x

x x

 − − +


− ≤ ≤  

 

Table 4.5 gives the minimal values for the number of impurities. It also shows the 

variance and the mean square error. 

 

Table 4.5: Minimal values for the number of impurities. 

 Design  Optimal setting ( )1 2 3, ,x x x   Number of impurities
  
Variance

 
MSE  

 Full design ( )1 , 1 , 1−  7.87 21.01 82.95 

1st group ( )31,1, x R− ∀ ∈  6.17 30.69 68.76 

2nd group ( )31,1, x R∀ ∈  5.53 11.54 42.12 

 



67 

 

 

Interpretation 

 

The analysis of variance permits depicting which main effects and interactions of 

the factors are significant to the number of impurities in the process. Once 

significant effects are detected, the regression models are fitted accordingly.  

 

The results show that the factors 1x  and 2x  , which are respectively the reaction 

temperature and the catalyst concentration, have significant main effects and a 

significant interaction effect on the number of impurities. These results agree 

with those obtained in Chapter 1 and Chapter 2, where the analysis is based 

upon double orthogonal array design and combined array design respectively.  

 

Furthermore, by analysing the data as a split-plot design, we obtain the best 

results for the number of impurities, compared to the results obtained in Chapter 

1 and Chapter 2.  

 

Application of the Quality Loss Function 

 

The estimate of the expected loss is � �( ) �
2

225Q µ σ = +  
 The values obtained for �µ  

and �2σ  are respectively 7.87 and 21.01. The corresponding quality loss is: 

    
� ( )2

25 7.87 21.01 2073.7Q  = + =
 

monetary units. 

The reduction of the quality loss is 7476.25 2073.7 5402.6− =  monetary units, for 

each unit of chemical product. 
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4.4. Conclusions 

  

In this chapter we briefly give a general view of split-plot design and introduce 

split-plot design for robust experimentation. The main idea in split-plot analysis 

is that the error term is split into parts, one for the whole-plots and one for the 

sub-plots. We mention the three experimental arrangements which are of the 

most interest while considering the design and noise factors. Through an 

illustrative example, we analyse the arrangement where the noise factors form the 

whole-plots and the design factors form the split-plots. The results show that 

split-plot analysis can be used to detect which factors influence the response of 

interest. 
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Chapter 5: Conclusions 
 

In this thesis, we provide an overview of different approaches used in literature to 

conduct robust design and analyse the data obtained from this design. The 

general assumption in robust design is that there are two types of factors: the 

design factors which are controlled by the experimenter, and the noise factors 

which are difficult to control. As the noise factors are responsible for the 

variability which affects the quality characteristic of the process, the aim of 

robust design methodology is to achieve insensitivity to noise factors. This 

consists of bringing the quality characteristic to the target, while simultaneously 

minimizing its variance and the cost of the process. 

 

The methods we present in this thesis are the Taguchi approach, the combined 

array design and the split-plot design for robust experimentation. The Taguchi 

approach consists of a double orthogonal array design, one for the design factors 

and one for the noise factors. Taguchi proposes the data analysis based upon the 

Signal-to-Noise Ratio. The combined array design puts both types of factors in 

one design. This design permits the analysis of the interactions between the 

designs and the noise factors, and reduces the number of runs required to 

conduct an experiment. The data analysis consists of adjusting a regression 

model in terms of design factors and noise factors. From the adjusted model, two 

response surfaces are obtained, one for the mean of the quality characteristic, 

and one for its variance. The split- plot design assigns noise factors in the whole 

plots and control factors in the sub-plots. The error term is formed of two terms.     

  

We illustrate the Taguchi approach, the combined array design and the split-plot 

design with an application of a chemical process. The aim of the application is to 

conduct a designed experiment in order to obtain the operating conditions that 

improve the process. The improvement consists of the reduction of the number of 

impurities in the product, and the minimization of the cost. We use the quality 

loss function in order to evaluate the cost caused by the deviation of the quality 
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characteristic from the target. Even though the optimal operating conditions 

obtained by data analysis based upon the Taguchi approach and the combined 

array design are slightly different, the common conclusion is that they reduce the 

number of impurities in the product and the cost of the process. The economic 

impact of conducting designed experiments is verified by using the Quality Loss 

Function.  

 

By analysing the data as a split-plot design experiment, the results which are 

obtained agree with those of the Taguchi approach and the combined array 

design. These are that the factors 1x  and 2x , which are respectively the reaction 

temperature and the catalyst concentration, have significant main effects and a 

significant interaction effect on the number of impurities.   

 

We expose the integrated method of parameter design and tolerance design. The 

parameter design methodology is built on engineering and statistical ideas, and 

aims at improving a system by making its performance insensitive to noise 

factors. This is attained by obtaining the optimal operating conditions in terms of 

the combination of the levels of the design factors. The tolerance design is 

introduced in the process when the variability of the quality characteristic is still 

large. A tighter tolerance around the nominal value results in a smaller 

transmitted variation, but incurs an extra cost. The method incorporates 

parameter design and tolerance design into a single stage of design optimization. 

We give an illustrative application of minimization of the cost in the production of 

polyamide resin.   
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Conclusiones 
 

En esta tesina, proporcionamos un panorama de los diferentes enfoques usados 

en literatura para realizar un diseño robusto y analizar los datos obtenidos de 

este diseño. El supuesto general en diseño robusto es la presencia de dos tipos de 

factores: los factores de diseño que son controlados por el experimentador, y 

factores de ruido que son difíciles de controlar. Como los factores de ruido son 

responsables de la variabilidad que afecta a la característica de calidad del 

proceso, la meta de la metodología del diseño robusto es alcanzar insensibilidad a 

los factores de ruido. Esto consiste en obtener el valor objetivo de la característica 

de calidad, y  minimizar simultáneamente la varianza y el costo de proceso. 

 

Los métodos que presentamos en esta tesina son el enfoque de Taguchi, el diseño 

arreglo combinado y el diseño de parcelas divididas para experimentación 

robusta. El enfoque de Taguchi consiste en un diseño doble arreglo ortogonal, 

uno para factores de diseño y otro para factores de ruido. Taguchi propone el 

análisis de datos basado en la Razón Señal a Ruido. El diseño arreglo combinado 

considera ambos tipos de factores en un diseño. Este diseño permite el análisis 

de interacciones entre factores de diseño y de ruido, y reduce el número de 

tratamientos requeridos para realizar un experimento. El análisis de datos 

consiste en ajustar un modelo de regresión en términos de factores de diseño y 

factores de ruido. Del modelo ajustado, se obtienen dos superficies de respuesta, 

una para la media de la característica de calidad, y otra para la varianza. El 

diseño de parcelas divididas asigna los factores de ruido en toda la parcela y los 

de control a sub-parcelas. El término de error se divide en dos términos.     

  

Ilustramos el enfoque de Taguchi, el diseño arreglo combinado y el diseño a 

parcelas divididas con un ejemplo de proceso químico. El objetivo de esta 

aplicación es realizar un experimento para obtener las condiciones de 

funcionamiento que mejoran el proceso. La mejora consiste en la reducción del 

número de impurezas en el producto, y minimización del costo. Utilizamos la 
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función de pérdida de calidad para evaluar el costo causado por la desviación de 

la característica de calidad de su valor objetivo. Aunque las condiciones óptimas 

de funcionamiento obtenidas por el análisis de datos basado en enfoque de 

Taguchi sean ligeramente diferentes de las obtenidas en diseño arreglo 

combinado, la conclusión común es que reducen el número de impurezas en el 

producto y el costo del proceso. El impacto económico de realizar experimentos 

está verificado usando la función de pérdida de calidad. 

 

Analizando los datos como diseño a parcelas divididas, los resultados permiten la 

misma conclusión que la obtenida en enfoque de Taguchi y en el diseño arreglo 

combinado. Esto es, los factores 1x  y 2x , que son respectivamente la temperatura 

de reacción y la concentración del catalizador, tienen efectos principales y efecto 

de interacciones significativos sobre el número de impurezas. 

 

Exponemos el método integrado de diseño de parámetro y diseño de tolerancia. 

La metodología de diseño de parámetro está basada en ideas de ingeniería y 

estadística, y su objetivo es mejorar el sistema, haciendo su funcionamiento 

insensible a los factores de ruido. Esto se logra obteniendo las condiciones de 

funcionamiento óptimas en términos de combinación de los niveles de factores de 

diseño. El diseño de tolerancia se introduce en el proceso cuando la variabilidad 

de la característica de calidad es todavía grande. Una tolerancia más pequeña 

alrededor del valor nominal da lugar a una variación más pequeña, pero causa 

un costo adicional. El método integrado de diseño de parámetro y de tolerancia 

da lugar a un problema de optimización. Damos una aplicación ilustrativa de la 

minimización de costo en la producción de la poliamida resina. 
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Annexes 
 

This part of Annexes contains tables and graph of the data used as applications 

in this thesis. Annexes are presented by chapter. 

Chapter 1: Double Orthogonal Array Design 
 

Annex 1.1: Coded and real levels of the factors. 

Levels 
Design factors -1 0 1 

1x  180 210 240 

2x  25 30 35 

3x  12 15 18 
Noise factors -1 1 

1z  10 20 

2z  30 40 

 

Annex 1.2: Sixty runs of the chemical process. 
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Annex 1.3: ANOVA for the Mean. 

 

 

Annex 1.4: ANOVA for the Standard deviation. 
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Annex 1.5: ANOVA for the Variance. 

 

 

Annex 1.6: ANOVA for the SNR. 
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Annex 1.7: Runs for the half fractional design. 

Red coloured data: 1st group 

Blue coloured data: 2nd group 

 

 

 

Annex 1.8:  

Results for the half fractional design (Mean- Standard deviation- Variance- SNR). 
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Annex 1.9: ANOVA for the Mean.  

 

1st group 

 

 

2nd group 
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Annex 1.10: ANOVA for the Standard deviation.   

 

1st group 

 

 

2nd group 
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Annex 1.11: ANOVA for the Variance.   

 

1st group 

 

 

2nd group 
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Annex 1.12: ANOVA for the SNR.   

 

1st group 

 

 

2nd group 
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Chapter 2: Combined Array Design  

 

Annex 2.1: Sixty runs of the chemical process. 
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Annex 2.2: ANOVA for the number of impurities.  

 

 

Annex 2.3: Coefficients of the regression model for the number of impurities. 
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Annex 2.4: Thirty runs of the 1st group. 

    

Annex 2.5: ANOVA for the number of impurities for the 1st group.  
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Annex 2.6:  

Coefficients of the regression model for the number of impurities (1st group).  

 

Annex 2.7: Thirty runs of the 2nd group. 
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Annex 2.8: ANOVA for the number of impurities for the 2nd group.  

 

 

Annex 2.9:  

Coefficients of the regression model for the number of impurities (2nd group).  
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Chapter 3:  

Integrated method of Parameter design and Tolerance design 

 

Annex 3.1: Factors, design and response values. 

 

Level Temperature Agitation Rate 1x  2x  3x  

High 200 10.0 25 1+  1+  1+  

Center 175 7.5 20 0  0  0  

Low 150 5.0 15 1−  1−  1−  

 

Standard  order 1x  2x  3x  y  

1 1−  1−  0  53 

2 1+  1−  0  58 

3 1−  1+  0 59 

4 1+  1+  0  56 

5 1−  0  1−  64 

6 1+  0  1−  45 

7 1−  0 1+  35 

8 1+  0  1+  60 

9 0  1−  1−  59 

10 0 1+  1−  64 

11 0  1−  1+  53 

12 0  1+  1+  65 

13 0  0  0  65 

14 0  0  0  59 

15 0  0  0  62 
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Annex 3.2: Analysis of variance for the viscosity of the polyamide resin. 

================================================================================ 
Source                Sum of Squares     Df   Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
A:x1                         73.8174      1        73.8174       7.20     0.0436 
B:x2                        0.101077      1       0.101077       0.01     0.9248 
C:x3                          96.818      1         96.818       9.45     0.0277 
AA                           200.827      1        200.827      19.59     0.0069 
AB                              16.0      1           16.0       1.56     0.2668 
AC                             484.0      1          484.0      47.22     0.0010 
BB                           12.9808      1        12.9808       1.27     0.3115 
BC                             12.25      1          12.25       1.20     0.3241 
CC                           48.5192      1        48.5192       4.73     0.0816 
Total error                    51.25      5          10.25 
-------------------------------------------------------------------------------- 
Total (corr.)                933.733     14 
================================================================================ 
 

 

 

Annex 3.3: Tolerances and costs. 

 

Temperature   Agitation   Rate   

Tolerance Cost Tolerance Cost Tolerance Cost 

1 2.09 0.2 1.55 0.3 1.602 

1.5 1.663 0.25 1.307 0.35 1.35 

2.5 1.254 0.35 1.06 0.45 1.17 

5 0.872 0.5 0.827 0.6 0.91 

7 0.74 0.7 0.654 0.8 0.74 

10 0.605 1 0.54 1.1 0.612 

15 0.514 1.4 0.444 1.5 0.479 

20 0.45 1.9 0.385 2 0.41 

30 0.375 2.5 0.333 2.6 0.35 

 

 



92 

 

 

 

 

Temperature

Tolerance

C
o

st

0 5 10 15 20 25 30
0

0.4

0.8

1.2

1.6

2

2.4

Agitation

Tolerance

C
o

st
0 0.5 1 1.5 2 2.5

0

0.4

0.8

1.2

1.6

Rate

Tolerance

C
o

st

0 0.5 1 1.5 2 2.5 3

0

0.3

0.6

0.9

1.2

1.5

1.8

Cost vs Tolerance

 

 

 

 



93 

 

Chapter 4: Split-Plot Design for Robust Experimentation 

 

Annex 4.1: Sixty runs in Split-plot design structure. 

 

 WP Z  1x   2x    3x  Impurities   WP Z  1x   2x    3x  Impurities  

1 -1 -1 -1 0 57.8 3 -1 -1 -1 0 42.87 

1 -1 1 -1 0 24.9 3 -1 1 -1 0 8.23 

1 -1 -1 1 0 13.2 3 -1 -1 1 0 10.1 

1 -1 1 1 0 13.3 3 -1 1 1 0 10.3 

1 -1 -1 0 -1 27.7 3 -1 -1 0 -1 22.28 

1 -1 1 0 -1 11.4 3 -1 1 0 -1 5.44 

1 -1 -1 0 1 30.7 3 -1 -1 0 1 20.24 

1 -1 1 0 1 14.9 3 -1 1 0 1 4.3 

1 -1 0 -1 -1 42.7 3 -1 0 -1 -1 21.64 

1 -1 0 1 -1 13.6 3 -1 0 1 -1 9.85 

1 -1 0 -1 1 50.6 3 -1 0 -1 1 18.84 

1 -1 0 1 1 15.2 3 -1 0 1 1 9.78 

1 -1 0 0 0 19.6 3 -1 0 0 0 13.14 

1 -1 0 0 0 20.6 3 -1 0 0 0 12.06 

1 -1 0 0 0 20.2 3 -1 0 0 0 14.06 
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 WP Z  1x   2x    3x  Impurities   WP Z  1x   2x    3x  Impurities  

2 1 -1 -1 0 37.3 4 1 -1 -1 0 47.07 

2 1 1 -1 0 4.35 4 1 1 -1 0 14.69 

2 1 -1 1 0 9.51 4 1 -1 1 0 11.19 

2 1 1 1 0 9.15 4 1 1 1 0 11.23 

2 1 -1 0 -1 20.2 4 1 -1 0 -1 24.23 

2 1 1 0 -1 4.48 4 1 1 0 -1 8.23 

2 1 -1 0 1 18.4 4 1 -1 0 1 24.45 

2 1 1 0 1 2.29 4 1 1 0 1 8.49 

2 1 0 -1 -1 22.4 4 1 0 -1 -1 30.3 

2 1 0 1 -1 10.1 4 1 0 1 -1 11.38 

2 1 0 -1 1 13.2 4 1 0 -1 1 30.97 

2 1 0 1 1 7.44 4 1 0 1 1 11.82 

2 1 0 0 0 12.3 4 1 0 0 0 14.54 

2 1 0 0 0 11.5 4 1 0 0 0 13.49 

2 1 0 0 0 12.2 4 1 0 0 0 13.89 
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Annex 4.2: Thirty runs of the 1st group. 

 

 

 WP  Z 1x   2x   3x    Impurities WP  Z  1x   2x    3x  Impurities  

1 -1 -1 -1 0 57.8 3 -1 1 -1 0 8.2 

1 -1 -1 1 0 13.2 3 -1 1 1 0 10 

1 -1 -1 0 -1 27.7 3 -1 1 0 -1 5.4 

1 -1 -1 0 1 30.7 3 -1 1 0 1 4.3 

1 -1 0 -1 -1 42.7 3 -1 0 1 -1 9.9 

1 -1 0 -1 1 50.6 3 -1 0 1 1 9.8 

1 -1 0 0 0 19.6 3 -1 0 0 0 12 

1 -1 0 0 0 20.2 4 1 -1 -1 0 47 

2 1 1 -1 0 4.35 4 1 -1 1 0 11 

2 1 1 1 0 9.15 4 1 -1 0 -1 24 

2 1 1 0 -1 4.48 4 1 -1 0 1 24 

2 1 1 0 1 2.29 4 1 0 -1 -1 30 

2 1 0 1 -1 10.1 4 1 0 -1 1 31 

2 1 0 1 1 7.44 4 1 0 0 0 15 

2 1 0 0 0 11.5 4 1 0 0 0 14 
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Annex 4.3:  

Analysis of variance for the number of impurities considering the 1st group. 

======================================================== 
Source   DF     SS      Adj.SS    Adj. MS      F      P 
-------------------------------------------------------- 
Z        1   194.92     177.43     177.43   3.36  0.458  
WP(Z)    2  3341.83     105.73      52.86   1.72  0.208 
x1       1    57.50     476.04     476.04  15.51  0.001 
x2       1  1251.78    1251.78    1251.78  40.78  0.000 
x3       1     2.04       2.04       2.04   0.07  0.800 
x1*x2    1   953.75     953.75     953.75  31.07  0.000 
x1*x3    1     5.27       5.27       5.27   0.17  0.684 
x2*x3    1    15.96      15.96      15.96   0.52  0.481 
Z*x1     1    20.54       2.25       2.25   0.07  0.790 
Z*x2     1    38.10      38.10      38.10   1.24  0.281 
Z*x3     1    11.54      11.54      11.54   0.38  0.548 
Error   17   521.79     521.79      30.69 
Total   29  6415.03 
======================================================== 
Stand. error = 5.54019    
R-squar. = 91.87%    
R-squar.(adjust.) = 86.12% 
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Annex 4.4: Thirty runs of the 2nd group. 

 

 WP Z  1x   2x   3x   Impurities   WP Z  1x   2x   3x   Impurities  

1 -1 1 -1 0 24.89 3 -1 -1 -1 0 42.87 

1 -1 1 1 0 13.29 3 -1 -1 1 0 10.1 

1 -1 1 0 -1 11.4 3 -1 -1 0 -1 22.28 

1 -1 1 0 1 14.94 3 -1 -1 0 1 20.24 

1 -1 0 1 -1 13.56 3 -1 0 -1 -1 21.64 

1 -1 0 1 1 15.21 3 -1 0 -1 1 18.84 

1 -1 0 0 0 20.6 3 -1 0 0 0 13.14 

2 1 -1 -1 0 37.29 3 -1 0 0 0 14.06 

2 1 -1 1 0 9.51 4 1 1 -1 0 14.69 

2 1 -1 0 -1 20.24 4 1 1 1 0 11.23 

2 1 -1 0 1 18.4 4 1 1 0 -1 8.23 

2 1 0 -1 -1 22.42 4 1 1 0 1 8.49 

2 1 0 -1 1 13.19 4 1 0 1 -1 11.38 

2 1 0 0 0 12.29 4 1 0 1 1 11.82 

2 1 0 0 0 12.2 4 1 0 0 0 13.49 
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Annex 4.5:  

Analysis of variance for the number of impurities considering the 2nd group. 

======================================================= 
Source   DF     SS      Adj.SS    Adj. MS      F      P 
------------------------------------------------------- 
Z        1    90.79     100.17     100.17   1.01  0.616  
WP(Z)    2   239.23     197.64      98.82   8.56  0.003 
x1       1   119.76     475.59     475.59  41.21  0.000 
x2       1   792.17     792.17     792.17  68.64  0.000 
x3       1     6.28       6.28       6.28   0.54  0.471 
x1*x2    1   258.67     258.67     258.67  22.41  0.000 
x1*x3    1     7.37       7.37       7.37   0.64  0.435 
x2*x3    1    24.92      24.92      24.92   2.16  0.160 
Z*x1     1     0.11       3.53       3.53   0.31  0.588 
Z*x2     1    26.53      26.53      26.53   2.30  0.148 
Z*x3     1     7.18       7.18       7.18   0.62  0.441 
Error   17   196.20     196.20      11.54 
Total   29  1769.21 
======================================================= 
Stand. error = 3.39721    
R-squar. = 88.91%    
R-squar.(adjust.) = 81.08% 
 

 

 


