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M. Sc., Centro de Investigación en Matemáticas A.C. (2004)
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Abstract

Many real-world systems are composed of multi-state items that have different performance
levels and several failure modes. Items are characterized by their cost, performance and
reliability. In a multi-state system, the system and/or its items can posses more than
two performance levels. Thereby, the system can have several levels of performance from
perfect operation to total failure. The system reliability is modeled to find the optimal items
configuration that minimizes the cost of the system subject to minimum system performance
levels.

In many new designs, item reliabilities are often uncertain. Thus, the associated system
reliability are uncertain as well. In this work, the reliability variance of multi-state systems
is studied. Applying the Delta method for the propagation of item variances through system
structure, a technique for the approximation of variance of the entire system is proposed.

There are a lot of real-world systems that require a special analysis due to their complex
structure and importance in everyday life. The vehicle routing problem has been recognized
as one of the great success stories of the operations research area. It is faced everyday by
thousands of companies and organizations engaged in the delivery and recollection of goods
and people. This dissertation studies the vehicle routing problem in presence of unavailable
paths, modeling it as a multi-state system.

An evolutionary algorithm, a modified version of the particle swarm optimization algorithm
with constraint handling rules, is introduced for solving system reliability optimization
problems.
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Resumen

Muchos sistemas del mundo real (vida diaria) están compuestos de elementos multi-estado que

tienen diferentes niveles de desempeño y varios modos de falla. Los elementos son caracterizados

por su costo, desempeño y confiabilidad. En un sistema multi-estado, el sistema y/o sus

elementos pueden poseer más de dos niveles de desempeño. Por ende, el sistema puede tener

varios niveles de desempeño que van del funcionamiento perfecto hasta la falla total. La

confiabilidad del sistema es modelada para encontrar la configuración de componentes óptima

que minimice el costo del sistema sujeto a niveles de desempeños mı́nimos.

En muchos diseños nuevos, las confiabilidades de los elementos son a menudo inciertas. Aśı,

la confiabilidad asociada al sistema, también es incierta. En este trabajo se estudia, la varianza

de la confiabilidad de sistemas multi-estado. Aplicando el método Delta para la propagación

de las varianzas de los elementos a travéss de la estructura del sistema se propone una técnica

para la aproximación de la varianza del sistema completo.

Existen muchos sistemas del mundo real que requieren un análisis especial debido a su

estructura compleja e importancia en la vida cotidiana. El problema del ruteo de veh́ıculos

se ha reconocido como una de las grandes historias de éxito en el área de investigación de

operaciones. Éste es enfrentado todos los d́ıas por los miles de compañ́ıas y organizaciones

comprometidos en la entrega y recolección de bienes y personas. Esta disertación estudia el

problema del ruteo de veh́ıculos en presencia de caminos indisponibles, modelandolo como un

sistema multi-estado.

Un algoritmo evolutivo consistente en una versión modificada del algoritmo de optimización

por enjambres de part́ıculas con reglas para el manejo de restricciones, es introducido para

resolver los problemas de optimización de la confiabilidad de sistemas.
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Quiero agradecer a una persona en especial con quien he compartido grandes momentos que
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Chapter 1

Introduction

Real-world systems are becoming more and more complex and sophisticated. Several systems

can perform their intended functions at more than two different levels, from perfectly working

to completely failed. In such cases, the system failure can lead to decreased ability to perform

the goal task, but not necessarily to a complete failure. These kind of systems are known as

multi-state systems (MSS)[83].

Considering system attributes, quality has become a mandatory requirement for customer

satisfaction and is playing an increasing role in determining the competitiveness of companies.

The concept of reliability is relatively new in the engineering disciplines, but it is becoming

increasingly important as part of the engineering design process, the establishment of preventive

maintenance programs, and others. The common sense perception of reliability is the absence

of failures. Therefore, reliability is sometimes referred as quality in the time dimension because

is determined by the failures that may or may not occur during the life time of the product.

Reliability plays a very important role for manufacturers and users. A large reliability

increases the production costs, affecting the final user. Thereby, the design reliability

optimization problems seek to improve reliability at the minimum cost. The redundancy and

reliability allocation problem is a classical optimization problem in the area of system reliability.

In general, the objective of these problems is to optimize the system design in terms of the

number of components and its reliabilities, subject to known constraints on resources as cost,

weight, volume, availability, mean time to failure, etc.

Recently, many authors have discussed and analyzed MSS reliability optimization problems

[83, 77, 124]. For instance, Lisnianski and Levitin have produced a series of reports on using

genetic algorithms (GA) with the universal generating function (UGF) [130] model for the
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optimization of MSS [64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 81, 82, 83].

The UGF technique allows one to find the entire multi-state system reliability based on

the performance distributions of its items by using algebraic procedures. It has been reported,

that the UGF technique works fast in computational optimization procedures [78]. Lisnianski

and Levitin systematically present the UGF approach for redundancy optimization for series-

parallel multi-state systems, and describe in detail how GA can be used as the optimization

engine. They deal with system optimization considering maintenance, such as joint redundancy

and maintenance optimization, imperfect preventive maintenance, and optimal replacement

scheduling [83].

1.1 Motivation

Levitin and Lisnianski applied the UGF and GA approach to the optimization of multi-state

systems with several types of structures, such as bridge topology, sliding window system, linear

consecutively connected system, weighted voting systems, systems with two failure modes and

networks. A complete overview is given in [83]. However, there are many real-world systems that

require special analysis due to their complex structure and importance in daily life. Particularly

the vehicle routing problem (VRP), described as the problem of designing least cost routes

from one depot to a set of geographically scattered points (cities, stores, warehouses, schools,

customers, etc.), occupies a central place in distribution management. VRP is faced every day

by thousands of companies and organizations engaged in the delivery and collection of goods

and people. It has been recognized as one of the great success stories of operations research and

it has been studied widely since the late fifties. In the VRP, the introduction of MSS reliability

analysis can ensure the provision of available traffic lines during incidents or unpredictable

events, which could degrade the performance of the planned route.

In real-world, the traffic network probabilities will often be approximated based on

the availability frequencies of each link. In several applications, system reliabilities are

approximated as well, particularly for new and evolving designs. Nevertheless, many methods

and models in classical reliability theory assume that all probabilities are known. In probability

theory and statistics, the variance V ar(X) of a sample is a measure of statistical dispersion.

Thereby, the variance of the estimated system reliability can be used as a measure of the

reliability dispersion around its mean value. The reliability variance of binary systems have been

studied in some works [13, 51], also for binary systems composed of dependent items [50, 52].

The variance of the system reliability is an unexplored topic in MSS. In this dissertation, a
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model without a priori life time distribution assumption is proposed based on the UGF model

and the Delta method.

An important subset of design optimization problems, as well as the VRP, contains

optimization tasks that are difficult to solve with traditional methods because objectives and

constraints (in real world problems) may not be analytically treatable. For these reasons,

evolutionary algorithms may be an attractive alternative. Evolutionary algorithms have been

widely used to solve reliability optimization problems [77, 124, 125]. For instance, GA has

been used in many works to solve reliability optimization problems [67, 83, 125]. Nevertheless,

no meta-heuristic is versatile, which could always outperform other meta-heuristics in solving

all kinds of problems [137]. The problem becomes more complicated in the presence of

a considerable number of linear and nonlinear inequality and equality constraints. The

evolutionary algorithms are unconstrained search techniques which lack an explicit mechanism

to deal with constrained search spaces [89]. Thereby, introducing new constraint-handling

evolutionary optimization approaches can benefit practitioners with more options. The particle

swarm optimization (PSO) algorithm, proposed by Kennedy and Eberhart in 1995 [55], has

triggered a considerable amount of research regarding the development of mechanisms able

to incorporate information about the constraints of a problem into the paradigm. This

dissertation introduces a new approach based on PSO with constraint-handling for MSS

reliability optimization problems.

1.2 Objectives

The following list summarizes the primary objectives of this dissertation:

• Reliable Vehicle Routing Problem (RVRP): This dissertation introduces the MSS

reliability theory to the VRP in the presence of unavailable routes (failures) possibly due

to car accidents, congestion, holiday parades, flooding, roadworks. As result an alternative

route set is obtained and their ocurrence probabilities (reliabilities) are calculated.

• Variance of MSS reliability: Based on the UGF, a technique for the estimation of the

variance of MSS reliability is developed applying the Delta method for the propagation

of the variances of estimated item reliabilities through system structure.

• Particle Evolutionary Swarm Optimization (PESO): The aim is to develop a

simple, fast, and efficient algorithm able to solve MSS reliability optimization problems. A
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modified version of the PESO algorithm [95] to solve the reliable VRP is presented in this

work. Some comparison of PESO against other evolutionary approaches are presented to

show the performance of our proposal.

1.3 Contributions

This work contributes to the fields of both evolutionary algorithms and MSS reliability.

Succinctly, it can be described as a development of an evolutionary algorithm and its application

to the MSS reliability design problem. The main contributions of this dissertation are:

• The introduction of MSS reliability analysis to one of the great area of operations

research, the VRP. It creates a reliable route able to avoid interrupted traffic flows through

alternative links.

• The approximation of the variance of MSS reliability, which can provide more reliable

designs and provide important insights to engineering design strategies involving items

with uncertain reliability.

• The development of a new bio-inspired algorithm and its application to MSS reliability

design problems. The proposal was tested empirically and shown to offer a significant

improvement in both performance and robustness.

1.4 Overview

• Chapter 2 introduces the basic concepts of reliabilty and describes the main MSS function

structures.

• Chapter 3 presents a detailed review of the universal generating function for modeling

MSS.

• Chapter 4 introduces the MSS reliability theory in the analysis of failures into a traffic

network of the VRP.

• Chapter 5 provides a brief overview of the approximation of variance in binary systems

and describes the approach based on Delta method to approximate the variance of the

MSS reliability.

4



• Chapter 6 detailedly describes the PESO algorithm and its modified vesion to solve RVRP

optmization problems.

• Chapter 7 presents artificial MSS design problems to show the peformance of the PESO

algorithm against other evolutionary algorithms to solve reliability optimization problems.

Besides, the RVRP model and the approximation of MSS reliability variance, is applied

in a real-world VRP (Corbi Bakery).

• Chapter 8 details the main contributions of this dissertation and the future work.
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Chapter 2

Background

The goal of this chapter is to review the theoretical and practical background literature of

system reliablity. It will then proceed with a description of binary and multi-state systems.

2.1 Reliability

Reliability is defined in standards like ISO 8402 and BS 4778 as “the ability of an item to

perform a requiered function, under given environmental and operational conditions and for a

stated period of time” [47, 6].

Reliability was used for the first time to compare operational safety of airplane engines

just after World War I [40]. Reliability is sometimes referred as quality in the time dimension

because is determined by the failures that may or may not occur during the life of the product.

According to the definition of reliability given above, failure can be defined as “the termination

of an item’s ability to perform a required function” [6].

Failure is regarded as a random phenomenon since it occurs at an uncertain time. Therefore,

reliability is often reported in terms of a probability. Ebeling [19] defined reliability as “the

probability that a component or system will perform a required function for a given period of

time when used under stated operating conditions. It is the probability of a non-failure over

time”.

The following sections introduce several important concepts related with the reliability of

binary and multi-state items. This item can be anything from a simple component to a complex

system.
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Figure 2.1: Time to failure in binary items

2.2 Binary Items

An item is an entity that is not further subdivided. This imply that an item, in a given reliability

study, is regarded as a self-contained unit and is not analyzed in terms of the performance of

its constituents.

A binary item possesses two crisp states: perfect functioning and complete failure. Any item

is considered in perfect functioning at the starting time t = 0. When the item changes from

functioning state to failure state, we say that it failed. The item state at time t is expressed by

a binary variable X(t), where

X(t) =

{

1 functioning

0 failed
(2.1)

An important concept emerges here, which referes the time elapsing from when the item is

put into operation until it fails for first time, called time to failure. It is not necessarily measured

in time units. It can be measured by indirect time concepts, such as cycles, distances, counting,

etc. The time to failure is modeled as a random variable T because it is subject to chance

variations. Figure 2.1 shows the relation between the state variable X(t) and the time to

failure T .

Assuming that the time to failure T is continuously distributed with probability density

f(t) and distribution function

F (t) = P (T ≤ t) =

∫ t

0
f(u)du, t > 0 (2.2)
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F (t) denotes the probability that the binary item fails within the time interval (0, t].

According the definition given by Ebeling [19] (see Section 2.1) reliability is the probability

of a non-failure over time

R(t) = 1 − F (t) = P (T > t) (2.3)

The reliability function R(t) is the probability that the item does not fail in the time interval

(0, t] and is also known as the survivor function. The reliability can be expressed as the expected

value of the state variable X(t)

E(X(t)) =
1∑

x=0

xP [X(t) = x] = P [X(t) = 1] = R(t) (2.4)

The assumption of binary state variables creates problems for the analysis of units with

a gradually decreasing performance. An acceptable limit of performance must be defined and

classify all states with a lower level of performance as failure [40]. However, traditional reliability

theory fails to represent the true behavior of the item when it has a range of intermediate states

that are not accounted for by binary system reliability estimation.

2.3 Multi-state items

A multi-state item can perform their tasks with various distinguished levels of performance

or states. The item states can vary as a result of their deterioration, or because of changing

ambient conditions, from perfect functioning to complete failure [76].

It is assumed that at the beginning (t = 0) the item is in its highest performance (perfect

functioning). Failures that lead to decrease the item performance are called partial failures.

The item state at time t is expressed by a discrete random variable G(t) that takes its values

from the state set

g(t) = {g0(t), ..., gn(t)} (2.5)

Generally, g0(t) represents the complete failure of the item. Whenever the item changes

its performance rate, we say that there is a state transition in the item. Figure 2.2 shows the

relation between the state variable G(t) and the state transition.
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Figure 2.2: State transitions in multi-state items

The probabilities associated with the different states of the item can be represented by the

set

p(t) = {p0(t), ..., pn(t)} (2.6)

pi(t) is the probability that the variable state G(t) is in the item state gi(t) at a specified

time t.

pi(t) = P [G(t) = gi(t)] (2.7)

An item can only be in one and only in one of n + 1 states. It means that the item states

compose the complete group of mutually exclusive events, and then

n∑

i=0

pi(t) = 1 (2.8)

The collection of pairs (gi, pi), i = {0, 1, · · · , n}, completely determines the performance

probability distribution of the multi-state item.

Item performances are usually associated with the ability of the item to supply a known
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demand set

d(t) = {d0(t), ..., dm(t)} (2.9)

The probabilities associated with the different demand levels can be represented by the set

q(t) = {q0(t), ..., qm(t)} (2.10)

A multi-state item can be associated with two probability functions:

• The item reliability function, R(t), denotes the probability that the item performs its task

with a performance rate gi at a given time t.

• The item availability function, A(t, w), denotes the probability that the item is able to

accomplish a demand w at a given time t.

Figure 2.3 presents an example of a item performance and its demand. Note that the item

performance is under the demand rate two times. If the demand is not accomplished the item

is considered as failed since the item performance should exceed the demand during the stated

period of time. Thus, the entire set of possible item states can be divided into two disjoint

subsets corresponding to acceptable and unacceptable item functioning.

The relation between the item performance and the demand can be expressed by the

acceptability function F (G, W ). The acceptable item states correspond to F (G, W ) = 1 and

the unacceptable states correspond to F (G, W ) = 0. The last equation defines the item failure

criterion.

2.4 System Reliability

Real-world systems consist of N components or subsystems (items) and their performance rates

are unambiguously determined by the performance rates of these items. System reliability

analyze the relation between the items performance of the system and the functioning of the

system as a whole. The state of the entire system is determined by the states of its items.

In the binary system reliability analysis, the state of each system item is represented by

a binary random variable Xj(t) that indicates the state of item j ∈ {1, 2, · · · , N} at time

t. The states of all N items composing the system are represented by the item state vector
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Figure 2.3: Example of item performance and item demand

< X1, · · · , XN >. The binary random variable X(t) indicates the state of the entire system at

time t.

X(t) = φ(X1(t), · · · , XN (t)) (2.11)

The function φ is called the system structure function. It represents the relation between

the item state vector and the system state variable. The reliabilities of the system items

compose the item reliability vector < p1(t), · · · , pN (t) >. Usually this vector is known, or can

be estimated. The system reliability can be calculated based on the system structure function.

The first attempts to build a theory for MSS reliability were made in the late 70s [98, 5].

Proper definitions of a multistate monotone system and of multistate coherent systems were

given in the 80s [32]. In 1985, Natvig presents a review of the early development in this area

[100]. Recently, the first book on multistate system reliability analysis and optimization was

published [83].

In the MSS reliability analysis, the state of each system item is represented by a random

variable Gj(t) that indicates the state of item j ∈ {1, 2, · · · , N} at time t. Gj(t) can represent

the performance of a binary or multi-state item. In this respect, MSS can be classified in two

categories [114]:

12



1. MSS that consist of binary items. The MSS performance rate depends on the performance

rates of the selected items and their operating state. Every item can process its task with

a nominal performance rate: Gj(t) = gj if it is working, and Gj(t) = 0 if it is failed.

2. MSS that consist of multi-state items. The MSS performance rate is dictated by items

that have multiple performance rates ranging from their nominal performance rate to the

complete failure.

For determining the K MSS performance rates, the states of its N items and its system

configuration are used. Assume that S = {g1, ..., gK} is a space of possible values of the system

performance rate. Each system state k = {1, 2, · · · , K} corresponds to a unique combination of

the states of the N system items CN = {g1,1, ..., g1,n1
}× {g2,1, ..., g2,n2

}× ...×{gN,1, ..., gN,nN
}.

The total number of possible combinations is

K =
N∏

j=1

nj (2.12)

The system performance rate G(t) for each combination {G1(t), ..., GN (t)} can be found

using the system structure function. The system structure function is the transform

φ(G1(t), ..., GN (t)) : CN → M , which maps the space of items states into the space of system

states.

G(t) = φ(G1(t), ..., GN (t)) (2.13)

Since all of the items are statistically independent, the probability of each unique

combination is equal to the product of the probabilities of the components states corresponding

to this combination. Therefore, for a system performance rate gk, corresponding to a

combination of N item performance rates Gj(t), its probability pk can be obtained as

pk(t) =
N∏

j=1

pj,ij (t) (2.14)

and the system performance in this state k can be obtained as

gk(t) = φ(g1,i1(t), ..., gN,iN (t)) (2.15)
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Figure 2.4: Series structure

where ij is a specific state i for every component j to obtain a system state k.

2.5 Structure Function

The MSS reliability can be obtained by determining the performance distribution of its items

and defining the system structure function.

The structure function represents the way the N items are interconnected in a system. It

is not necessarily a physical connection. Furthermore, the structure function is concerned with

logical interactions between the system items.

It is possible to invent an infinite number of different structure functions for real-world

systems. This section presents the structures that are most commonly used in binary and

multi-state system reliability analysis [76].

2.5.1 Series Structure

The series connection of system elements represents a case where a total failure of any individual

item causes an overall system failure. A series structure of order N is illustrated in Figure 2.4

When an MSS is considered one can distinguish two types of series structures:

• Transmission: a system that uses the capacity or productivity of its items as the

performance measure. The operation of these systems is associated with flow continuously

passing through the items. The item with the minimal transmission capacity becomes the

bottleneck of the system as it is shown in Figure 2.5. The bottleneck item determines the

system performance G(t) = min(G1(t), · · · , GN (t)). In real-world, this kind of systems

can be observed mainly in production lines.

• Processing: the system performance measure is characterized by an operation time or

processing speed. The operation of the systems is associated with consecutive tasks

performed by the ordered line of items. The total system operation time is equal to the

sum of the operation times of all of its items G(t) =
∑N

i=1 Gi(t). The complete failure state

of a system item corresponds to its processing speed equal to zero, which is equivalent to
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Figure 2.5: Transmission series structure

Figure 2.6: Processing series structure

an infinite operation time. In this case, the operation time of the entire system is also

infinite. Real-world systems with processing series structure can be appreciated in service

companies (fast food, carwash, package shipping, etc.). Figure 2.6 presents an example

of a processing series structure of order N .

2.5.2 Parallel Structure

The parallel connection of system elements represents a case where a system fails if and only if

all of its items completely fail. A parallel structure of order N is shown in Figure 2.7

MSS items connected in parallel means that some tasks can be performed by any one of the

items. Thus, two basic models of parallel structures are distinguished:

• Work sharing: a system that shares the work among its items. The entire system

performance rate is equal to the sum of the performance rates of the parallel items

G(t) =
∑N

i=1 Gi(t). Common work sharing systems are the queues in banks, movie

theaters, supermarkets, etc. Figure 2.9 illustrates an example of a parallel structure with

work sharing of order N .

Figure 2.7: Parallel structure
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Figure 2.8: Parallel structure with work sharing

Figure 2.9: Parallel structure without work sharing

• Without work sharing:represents a situation where only one item is operating at a time.

The system performance rate is equal to the maximal performance rate of the available

parallel items G(t) = max(G1(t), · · · , GN (t)). For instance, a taxicab radio service sends,

from a set of free taxis, the taxi which is nearest to the call. Figure 2.9 presents an

example of a parallel structure without work sharing of order N .

2.5.3 K-out-of-N Structure

The K-out-of-N system reliability is defined as the probability that at least K elements out of

N are in operable condition. A N-out-of-N system corresponds to the series structure and a

1-out-of-N system corresponds to the parallel structure. In a multi-state generalization of the

binary K-out-of-N model, the MSS is in state j if at least Kj items are in state Gj,ij (t) or above

[43]. For instance, a car with a V8 engine can walk if at least four cylinders are firing. Figure

2.10 illustrates a logical representation of a 2-out-of-3 system.
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Figure 2.10: 2-out-of-3 structure

Figure 2.11: Bridge structure

2.5.4 Bridge Structure

The system is designed to ensure the least possible effort both for the functioning and the failed

states. As a design strategy, items G1 and G2 possess the same operation attributes, but they

have different parformance levels and probabilities. Similarly, items G3 and G4 possess the

same operation attributes, and different performance levels and probabilities. Item G5 works

as interface between item pairs (G1, G4) and (G2, G3). Several security systems have a bridge

structure configuration. Figure 2.11 shows a standard bridge structure.

Figure 2.12 illustrates the logical connection of the items to ensure least possible effort for

system function.

Figure 2.12: Bridge structure: minimum functioning requirements
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Figure 2.13: Bridge structure: minimum failure requirements

Figure 2.14: System with two failure modes

In Figure 2.13 the logical connection of the items to obtain a completely failed system is

shown.

2.5.5 Systems with Two Failure Modes

Systems with two failure modes consist of devices that can fail in either of two different modes.

For example, switching systems can fail to close when commanded to close and can fail to open

when commanded to open. The system can have different levels of output performance in both

modes depending on the states of its items at any given moment. The failures in open and

closed modes are mutually exclusive events. Power switches are a typical case of a two failure

modes system. An example of a system with two failure modes is presented in Figure 2.14

2.5.6 Weighted Voting Systems

A voting system makes a decision about propositions based on the decisions of N independent

individual voting units (items). The voting units can differ in the criteria method applied or

the information used. Each unit j (j = {1, · · · , N}) produces its decision (output), which can
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Figure 2.15: Voting system

Figure 2.16: Weighted voting system

be Gj = 1 (proposition accepted), Gj = 0 (proposition rejected), or Gj =? (in the case of

abstention).

To make a decision about proposition acceptance, the system incorporates all unit decisions

into a unanimous system output which is equal to G =? if all the voting units abstain, equal

to G = 1 if at least m units produce decision Gj = 1, and otherwise equal to G = 0. A

common voting system applied in medicine is the HIV test which can be composed by the

ELISA, Western Blot, and point-of-care tests. Figure 2.15 shows a voting system of order N .

A generalization of the voting system is a weighted voting system where each unit has its

own individual weight wj expressing its relative importance within the system. The system

output is G =? if all the units abstain. It is G = 1 if the cumulative weight of all Gj = 1 units

is at least a prespecified fraction τ of the cumulative weight of all non-abstaining units Gj 6=?.

Otherwise the system output is G = 0. Figure 2.16 presents a weighted voting system of order

N .

A generalization of a weighted voting system is a weighted voting classifier consisting

of N units (items) where each one provides individual classification decisions Gj = c, c =

{1, · · · , C, ?}. Each unit obtains information about some features of an object to be classified.
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Figure 2.17: Weighted voting classifier

Figure 2.18: Functioning representation of a consecutive 2-out-of-3-from-4 system

Obviously, some units will be highly reliable in recognizing objects of a certain class and much

less reliable in recognizing objects of another class.

The entire system output is based on tallying the weighted votes for each decision and

choosing the winning one (plurality voting), or the one that has the total weight of supporting

votes greater than some specified threshold (threshold voting). The entire system may abstain

from voting G =? if no decision ultimately wins. In statistic, different pondered classifier

methods are applied to group in several clusters a data set. Figure 2.17 shows a weighted

voting system of order N .

2.5.7 Consecutive K-out-of-R-from-N Systems

The binary consecutive K-out-of-R-from-N:F system is composed by N ordered items and fails

if at least K out of any R consecutive items fail. There is a consecutive K-out-of-R-from-N:G

system that is functioning if at least K out of any R consecutive items operate. A K-out-

of-R-from-N:F system is equivalent to an (R-K+1)-out-of-R-from-N:G system. Therefore, we

consider only K-out-of-R-from-N:F systems and omit F from their denomination. Figure 2.18

shows the structure representation of a 2-out-of-3-from-4 system.
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Figure 2.19: Sliding window system

The sliding window system model is a multi-state generalization of the binary consecutive

K-out-of-R-from-N system. In this generalized model, the system consists of N linearly ordered

multi-state items. The system fails if the sum of the performance rates of any R consecutive

items is lower than a defined demand w. For instance, a closed circuit television (CCTV) must

ensure the covering of the main areas all time. The logical representation of a sliding window

system of order N is illustrated in Figure 2.19.

2.5.8 Consecutive K-out-of-N Systems

The binary consecutive K-out-of-N:F system has N ordered items and fails if at least K

consecutive items fail. In the binary consecutive K-out-of-N:G system its N items are connected

in such a way that the system works if and only if at least K consecutive items are working.

The K-out-of-N:F and K-out-of-N:G systems are duals of each other [60]. The same algorithms

for reliability evaluation can be applied to both types of system. Therefore, we consider only

K-out-of-N:F systems and omit F from their denomination.

There are two types of consecutive K-out-of-N systems. The linear model corresponds to a

consecutive K-out-of-N system as shown in Figure 2.20. The model in which the elements are

circularly connected so that the first G1 and the last GN items become adjacent to each other

is named a circular consecutive K-out-of-N system. It is illustrated in Figure 2.21.

A linear consecutively connected system is a multi-state generalization of the binary linear

consecutive K-out-of-N system [45]. In the multi-state model, when an item j is in state

Gj(t) = gj,i(t) it is able to provide connection with i following items; (j + 1, j + 2, · · · , j + i)

items following the one are assumed to be within its range. The linear multi-state consecutively

connected system fails if no path exists between its first j = 1 and last j = N items. An example
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Figure 2.20: Linear consecutive K-out-of-N system

Figure 2.21: Circular consecutive K-out-of-N system
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Figure 2.22: Linear consecutively connected system

of a linear consecutively connected system are the TV and radio transmitters composed by a

main stations and several relay stations (repeaters or translators). A general example of a linear

consecutively connected system is shown in Figure 2.22.

Obviously, there is a multi-state generalization of the binary circular consecutive K-out-of-N

system, it is called the circular consecutively connected system. As in the linear consecutively

connected system, each item can provide a connection to a different number of items. The

system functions if at least one path exists that connects any pair of its items; otherwise there

is a system failure.

2.5.9 Networks

Networks are systems consisting of a set of vertices (nodes) and a set of edges that connect these

vertices. There are two types of networks: undirected and directed. In the undirected network

the edges connect the vertices without any consideration for direction, and in the directed

network each edge is followed from one vertex to the next. The networks often have a single

root vertex (source) and one or several terminal vertex (sinks). The aim of the networks is the

transmission of information or material flow from the source to the sinks. The transmission

process intensity depends on the transmission characteristics of the network items and on the

availability of these elements. Figure 2.23 illustrates a direct network with one source and two

sinks.

The most common network objectives are:

• To maximize the flow between source and sink: the maximal amount of material or

information that can be transmitted from the source to the sink through all of the network

edges simultaneously.
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Figure 2.23: Network

• To obtain the single maximal flow path between the source and the sink: the maximal

amount of indivisible material or information that can be transmitted through the network

by choosing a single path from the source to the sink.

• To minimize the time of transmission between the source and the sink: the delivery delay

in networks having edges and/or vertices with limited transmission speed.

• To evaluate the probability that the sinks are connected to the source or the probabilic

distribution of the network performance.

According to its stochastic items, in the multi-state case, the networks can be modeled as

[86, 87]:

1. Edges model: In the multi-state edges models, the vertices are assumed fully reliable

and edges are multi-state items with a given distribution. The edges states can be

associated with transmission capacity. For instance, a power supply network composed

by an transformer substation (source), electrical lines with different voltage capacities

(edges), and energy consumers (vertices).

2. Vertices model: In the multi-state vertices models, the edges are assumed fully reliable and

the vertices are multi-state elements. Each vertex state can be associated with a certain

delay. For example, a delivery network composed by a depot (source), fixed roadways

(edges), and load or unload nodes with stocastic delay times (vertices).

3. Mixed model: In the mixed multi-state models, both the edges and the vertices are multi-

state elements. The model is generalized by assuming that the vertices can provide a
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connection to a random set of neighbouring vertices and can have random transmission

characteristics (capacity or delay) in the edges at the same time. For instance, a watering

network composed by a pipe bomb (source), pipes with different capacities (edges), and

irrigators with different coverages (vertices).

2.6 System Reliability Assessment

Traditional reliability assumes that a system and its components can be in either a completely

working, or a completely failed state only. This condition has facilitated the development of a

extensive theory to assess binary system reliability [40].

The MSS reliability assessment are based on different approaches:

• Boolean models: In 1980, Caldarola applied the Boolean logic to represent the k states

of each item as a binary vector of dependent variables [8]. In 1985, Wood handled

the dependence associated with the binary vector introducing a factorization based on

constrained Boolean algebra [138]. The binary decision diagram (BDD) introduced by

Zang et al. uses a binary fault tree for every system state [142]. The boolean models are

extremely time consuming because the number of boolean variables increases drastically

with the increase in number of states [83].

• Minimal cuts and minimal paths: A minimal path set contents only the needed items

to obtain a specific system state. On the contrary, a minimal cut set contents only the

needed items to obtain a failure or decrement in the system performance. Natvig [99],

and Hudson and Kapur [44], introduced the first minimal cut-path approches in 1982.

Recently, Yeh defines a minimal cut using a node set for evaluating network reliability

[140]. Although, there are many algorithms to enumerate minimal cut/path sets, all of

these involve advanced mathematics [121].

• Monte-Carlo simulation: Rocco and Zio extend the cellular automata-based, Monte

Carlo sampling methodology for computing network reliability [118]. Recently, Ramirez-

Marquez proposed an algorithm based on two major steps that use a probabilistic

discovery approach and Monte Carlo simulation [114]. A Monte-Carlo simulation model

may be a fairly true representation of the real world, but the main disadvantage of the

simulation technique is the time and expense involved in the development and execution

of the model [75].
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• Universal Generation Function (UGF): The UGF method was introduced in 1986

by Ushakov [130]. It involves intuitively simple recursive procedures combined with

simplification techniques. Levitin and Lisnianski have produced a series of reports on

using UGF [64, 67, 72, 74, 75, 76, 78, 82]. it has proved to be very effective in evaluating

the reliability of different types of MSS [83]. The main assumptions when using the UGF

technique was that the system items are mutually statistically independent [75]. This

assumption is not true in many real-world systems.

• Heuristics: Ramirez-Marquez and Coit developed a heuristic of three steps that can yield

good design solutions to the capacitated multi-state series-parallel redundancy allocation

problem [112]. First, an initial feasible solution is constructed. Then a methodology

is applied to try to improve this initial solution. Finally, from the best solution found,

a specified number of new solutions are investigated to improve this solution. Kuo et

al. proposed a Tabu search for the redundancy allocation problem for a series-parallel

system composed of binary items [62]. They apply a M-tuple integer vector to develop

tabu search without the need of the universal generating function. Nevertheless, these

approaches are limited to specific design reliability problems.

The procedure used in this thesis for MSS reliability assessment is based on the UGF [130].

An detailed analysis of the UGF is presented in the next chapter.

26



Chapter 3

The Universal Generating Function

in MSS Reliability

The universal generating function (UGF) was introduced by Ushakov in 1986 [130]. In

mathematics a generating function is a formal power series whose coefficients encode information

about a sequence an that is indexed by the natural numbers. The ordinary generating function

of a sequence an is

G(an; x) =

∞∑

n=0

anxn (3.1)

If an is the probability mass function of a discrete random variable, then its ordinary

generating function is called a probability generating function. Probability generating functions

are often employed because they succinctly describe the sequence of probabilities P (X = i).

The UGF represents an extension of the widely known moment generating function [130].

3.1 Moment Generating Function

In probability theory and statistics, the moment generating function M(x) generates the

moments of the probability distribution by successively differentiating itself with respect to

x. Let Mj(x) be the moment generating function of the discrete random variable Gj that can

take on a finite number nj + 1 of possible values gj,i = {gj,1, ..., gj,nj
} with its corresponding

probabilities pj,i = P (Gj = gj,i). Note that in the above and below notation, we omit variable

t since we consider the analysis for a fixed time t.
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Mj(x) = E(exGj ) =

nj∑

i=0

exgj,ipj,i (3.2)

The moment-generating function of a random variable uniquely determines its p.m.f. This

means that a one-to-one correspondence exists between the p.m.f. and the moment-generating

function. Note that Mj(0) = 1 since

Mj(0) =

nj∑

i=0

e0pj,i =

nj∑

i=0

pj,i (3.3)

Provided the moment generating function exists in an open interval around x = 0, the kth

moment is given by

E(Gk
j ) = M (k)(0) =

dkM

dtk
(0) (3.4)

There is another important property of moment generating function of special interest for

this work. Let G1, G2, ..., GN be a sequence of independent, and not necessarily identically

distributed, random variables, and

SN =

N∑

j=1

ajGj (3.5)

where the aj are constants, then the probability density function for SN is the convolution

of the probability density functions of each of the Gj and the moment generating function for

SN is given by

MSN
(x) =

N∏

j=1

Mj(ajx) (3.6)

Therefore, the moment generating function of the sum of the independent random variables

is the product of the individual moment generating functions of these variables.
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3.2 z-Transform

Related to the moment generating function are a number of other transforms that are common

in probability theory. By replacing the function ex by the variable z in the moment generating

function, we obtain another function called the z-transform of the discrete random variable Gj .

wj(z) = E(zGj ) =

nj∑

i=0

zgj,ipj,i (3.7)

The z-transform preserves some basic properties of the moment generating function:

•
wj(1) =

nj∑

i=0

1gj,ipj,i =

nj∑

i=0

pj,i = 1 (3.8)

• The first derivative of wj(z), at z = 1, is equal to the expected value of Gj .

E(Gj) =

nj∑

i=0

gj,ipj,i (3.9)

• The z-transform of the sum of N independent random variables is the product of the

individual z-transforms of these variables G1, G2, ..., GN .

w∑N
j

(z) =

N∏

j=1

wj(z) (3.10)

3.3 Universal Generating Function

The polynomial product of the z-transform, corresponding to the variables G1, G2, ..., GN ,

determines the probability mass function (p.m.f.) of the sum of these variables

G =
N∑

j=1

Gj (3.11)

In a similar way one can obtain the z-transform representing the p.m.f. of an arbitrary

function f (e.g. sum, product, minimize, power) by replacing the polynomial product by a

more general composition operator ⊗f over z-transforms of N independent variables [130]. The
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composition operator determines the p.m.f., expressed as z-transform polynomial, using simple

algebraic operations over individual z-transform polynomials.

⊗f (G1, G2, · · · , GN ) =

n1∑

i1=0

n2∑

i2=0

· · ·
nN∑

iN=0



zf(g1i1
,...,gNiN

)
N∏

j=1

pjij



 (3.12)

The technique based on the z-transform model and the composition operators ⊗f is named

universal moment generating function (UGF)[130].

In MSS reliability, the UGF uj(z) of the discrete random variable Gj , represents the

probabilities pj,i and performances levels gj,i for every item j as follows:

uj(z) =

nj∑

i=0

zgjipji(t) (3.13)

For modeling the entire performance of the MSS the u-function U(z) is used to represent

the reliability and performance level of each system state.

U(z) = ⊗f (u1(z), ..., uN (z)) (3.14)

where ⊗f represents the MSS structure function. The function f into the composition operator

⊗f expresses the entire performance of a subsystem in terms of the individual performance of

their components. The definition of the function f strictly depends on the type of connection

between the components in the reliability diagram sense (i.e. on the topology of the subsystem

structure).

3.4 Composition Operator ⊗f

The properties of composition operator ⊗f strictly depend on the properties of the function

f(G1, · · · , GN ). Since the procedure of the multiplication of the probabilities in this operator is

commutative and associative, the entire operator can also have these properties if the function

possesses them [76].

Besides, if the function f possesses the recursive property

f(G1, · · · , GN ) = f(f(G1, · · · , GN−1), GN ) (3.15)
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Then the operator ⊗f also possesses this property

U(z) = ⊗f (⊗f (u1(z), ..., uN−1(z)), uN (z)) (3.16)

Thereby, one can obtain the u-function U(z) assigning U1(z) = u1(z) and applying the

operator ⊗f iteratively

U2(z) = ⊗f (U1(z), u2(z))

U3(z) = ⊗f (U2(z), u3(z))

... =
...

U(z) = UN (z) = ⊗f (UN−1(z), uN (z))

U(z) = ⊗f (⊗f (· · · ⊗f (U1(z), u2(z)) · · · , uN−1(z)), uN (z)) (3.17)

The function f in composition operators expresses the entire performance of a subsystem

in terms of the individual performance of their items. The definition of the function f strictly

depends on the type of connection between the system items (system structure).

Several composition operators ⊗f were determined for important types of MSS by Lisnianski

and Levitin [83].

3.4.1 Series-Parallel MSS Example

Figure 3.1 shows a series-parallel MSS composed by 3 items. The operation of these systems is

associated with flow continuously passing through the items.

Figure 3.1: Series-parallel example

The vectors shown above the items, in Figure 3.1, represent the states of every item. The

u-function ui(z) for every item can be represented as follows
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u1(z) = p1,0z
1.5 + p1,1z

0.0

u2(z) = p2,0z
1.0 + p2,1z

0.0

u3(z) = p3,0z
2.0 + p3,1z

1.0 + p3,2z
0.0

The items G1 and G2 compose a work sharing parallel subsystem. The parallel subsystem

and item G3 posses a transmission series structure. The u-function U(z) represents the entire

performance of the series-parallel system shown in Figure 3.1.

U(z) = ⊗min(⊗sum[u1(z), u2(z)], u3(z))

Applying the compositon operator ⊗sum, we obtain

U(z) =
[
p1,0p2,0z

1.5+1 + p1,0p2,1z
1.5+0 + p1,1p2,0z

0+1 + p1,1p2,1z
0+0

] ⊗
min u3(z)

U(z) =
[
p1,0p2,0z

2.5 + p1,0p2,1z
1.5 + p1,1p2,0z

1 + p1,1p2,1z
0
] ⊗

min u3(z)

Finally, we obtain the entire MSS reliability applying the compositon operator ⊗min

U(z) = p1,0p2,0p3,0z
min(2.5,2.0) + p1,0p2,0p3,1z

min(2.5,1.0) + p1,0p2,0p3,2z
min(2.5,0.0)

+ p1,0p2,1p3,0z
min(1.5,2.0) + p1,0p2,1p3,1z

min(1.5,1.0) + p1,0p2,1p3,2z
min(1.5,0.0)

+ p1,1p2,0p3,0z
min(1.0,2.0) + p1,1p2,0p3,1z

min(1.0,1.0) + p1,1p2,0p3,2z
min(1.0,0.0)

+ p1,1p2,1p3,0z
min(0.0,2.0) + p1,1p2,1p3,1z

min(0.0,1.0) + p1,1p2,1p3,2z
min(0.0,0.0)

U(z) = p1,0p2,0p3,0z
2.0 + p1,0p2,0p3,1z

1.0 + p1,0p2,0p3,2z
0.0 + p1,0p2,1p3,0z

1.5

+ p1,0p2,1p3,1z
1.0 + p1,0p2,1p3,2z

0.0 + p1,1p2,0p3,0z
1.0

+ p1,1p2,0p3,1z
1.0 + p1,1p2,0p3,2z

0.0 + p1,1p2,1p3,0z
0.0

+ p1,1p2,1p3,1z
0.0 + p1,1p2,1p3,2z

0.0

U(z) = [(p1,1p2,1 + p1,1p2,0 + p1,0p2,1 + p1,0p2,0)p3,2 + p1,1p2,1p3,1 + p1,1p2,1p3,0] z
0.0

+ [(p1,1p2,0 + p1,0p2,1 + p1,0p2,0)p3,1 + p1,1p2,0p3,0] z
1.0
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+ [p1,0p2,1p3,0] z
1.5 + [p1,0p2,0p3,0] z

2.0 (3.18)

3.5 Advantages and Drawbacks

In his book chapter [78], Levitin describes the main advantages of the UGF method:

• Straightforward. It is based on intuitively simple recursive procedures and provides

a systematic method for the system states enumeration that can replace extremely

complicated combinatorial algorithms used for enumerating the possible states in some

special types of system (such as consecutive systems or networks).

• Effective. Combined with simplification techniques, it allows the system’s performance

distribution to be obtained in a short time. The UGF technique is fast enough to be

implemented in optimization procedures.

• Universal. An analyst can use the same recursive procedures for systems with a different

physical nature of performance and different types of element interaction.

Besides, the UGF method provides information about other MSS performance indices [78]:

• Expected performance (W ): The index determines the system’s expected performance.

W = E[G] =

K∑

k=1

pkgk (3.19)

• Expected acceptability (R(D)): The probability that the MSS satisfies a specific demand.

The acceptability of system state can usually be defined by the acceptability function

f(G, D) representing the desired relation between the system performance G and system

demand D. The acceptability function is f(G, D) = 1, if the system performance satisfies

the demand, and f(G, D) = 0, otherwise.

R(D) = E[f(G, D)] =
K∑

k=1

pkf(gk, D) (3.20)

• Conditional expected performance (W (D)): The index determines the system’s expected

performance given that the system is in acceptable states.
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W (D) = E[W |f(G, D) = 1] =
K∑

k=1

pkgk
f(gk, D)

R(D)
(3.21)

Although, the UGF method is powerful computationally efficient tool for the reliability

analysis of complex multi-state systems, it possesses the following drawbacks:

• Independence assumption: The main assumptions when using the UGF technique was

that the system items are mutually statistically independent [75]. This assumption is not

true in many real-world systems.

• Probability mass function (pmf): The UGF, as a probability-generating function, is a

power series representation of the probability mass function of a discrete random variable

[136]. A pmf is a function that gives the probability that a discrete random variable is

exactly equal to some value. A pmf differs from a probability density function (pdf) in that

the values of a pdf, defined only for continuous random variables, are not probabilities

as such [54]. Thereby, the UGF can be directly applied to model real-world systems

composed of items that possess a stochastic behavior, in terms of a pdf, for the item

states.

• Multi-state node networks (MNN): The UGF method is known to be very efficient in

evaluating Acyclic MNN reliability which is a special MNN without any cycle [73].

However, cycles are very common in networks. There is no proof to show the correctness

of the topological numbering of MNN up to now [141]. Yeh proposed a modified UGF

method that performs a complete examination of all possible states of each node, which

implies its correctness [141].

3.6 UGF in Real-world Systems

The UGF was first applied to MSS reliability by Ushakov in 1988 [131]. The UGF has proven

to be very effective for high dimension combinatorial problems [83, 64].

Real-world system reliability analysis generally includes evaluation of complex systems. The

explicit derivation of such systems is an extremely complicated task. But, complex systems

can be represented as a composition of the structures analyzed in Chapter 2. The reliability

block diagram (RBD) method is based on a graphical representation of the system structure.
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It recurrent distinguishes subsets of the MSS items and replaces them with single equivalent

items.

The u-function of a complex system can be obtained applying recursively the RBD method

on its system structure. The recursive approach presumes obtaining u-functions subsystems

containing several basic components and then treating every subsystem as a single item using

the obtained u-function.

Lisnianski and Levitin pointed out that UGF has two advantages in evaluating MSS

reliability [83]:

1. UGF is fast enough to be used in MSS reliability optimization due to its effectiveness in

dealing with high-dimension combinatorial problems;

2. UGF calculates the entire MSS performance distribution based on the performance

distributions of its items.

The UGF technique allows MSS performance distribution and, thereby, its reliability index

to be evaluated based on a fast procedure. The MSS reliability can be obtained as a function of

its structure (topology and number of components), performance rates, and reliability values of

its components. The UGF technique can be applied for real-world problems of MSS reliability

analysis where great number of system states need to be evaluated, which makes it difficult to

use traditional techniques [72].
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Chapter 4

The Reliable Vehicle Routing

Problem

A series of applications of MSS reliability theory have been suggested during the last years

[103]. For example, it was applied to an offshore electrical power generation system for two

nearby oilrigs, where the amounts of power that may possibly be supplied to the two oilrigs are

considered as system states [101]. Also, the MSS reliability theory was applied to the Norwegian

offshore gas pipeline network in the North Sea, as of the end of the 1980s, transporting gas to

Emden in Germany [102]. The system state depends on the amount of gas actually delivered,

but also to some extent on the amount of gas compressed mainly by the compressor component

closest to Emden. The book “Multi-state system reliability: assessment, optimization and

applications”, written by Lisnianski and Levitin, contains many examples of application of

MSS reliability to real engineering problems [83].

The field of operational research have studied many practical problems related to the delivery

of goods and transportation service. A goal of transportation management is to fulfill the

requirement of providing goods and/or services from a supply point to various geographically

dispersed points with significant economic implications. The vehicle routing problem (VRP)

is a well-known combinatorial optimization problem, introduced by Dantzig and Ramser [17],

with applications in the field of service operations management, logistic and transportation.

Vehicle Routing Problems (VRP) are all around us in the sense that many consumer

products such as soft drinks, beer, bread, snack foods, gasoline, pharmaceuticals, etc., are

delivered to retail outlets by a fleet of trucks whose operation fits the vehicle routing model. In

practice, the VRP has been recognized as one of the great success stories of operation research,
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and has been studied widely since the late fifties.

Solving a VRP means to find the best route to service all customers using a fleet of vehicles.

Each customer is to be serviced exactly once by only one vehicle, and each vehicle has a limited

capacity. In practice, the problem is aimed at minimizing the total cost of the combined routes

for a fleet of vehicles. Since cost is closely associated with distance, the alternative goal is to

minimize the distance traveled by a fleet of vehicles with various constraints.

In a real-world environment the travel time on an individual path (between two customers)

is stochastic in nature [133]. For instance, car accidents, traffic congestion, holiday parades,

flooding, roadworks (maintenance and restoration), cause traffic deviations (route modification).

Thereby, alternative links are used to avoid paths temporarily unavaliable. According to

environment conditions and locations of unavailable paths, several alternative paths to the

optimal route can be obtained, which possess different travel distances or travel costs. This can

be represented as a system with a finite number of performance rates.

Many practical systems can perform their intended functions at more than two different

levels, ranging from perfectly working to completely failed. That kind of system is known as

multi-state system [83]. The performance of such system depends on the performance of its

components and the system configuration. The availability of every component for a stated

period of time can be used for estimating the system availability.

This work applies the MSS reliability theory to the VRP to account for unavailable paths

(failures) in traffic network. As a result a reliable VRP emerges composed by an alternative

route set, each one used to avoid an unavaible path along the optimal route.

4.1 The vehicle routing problem

The VRP is a combinatorial optimization problem with applications to distribution manage-

ment. Every day thousands of companies and organizations are engaged in the delivery and

collection of goods and people. The use of computerized methods in distribution processes often

result in savings ranging from 5% to 20% in transportation costs [29]. The fact that VRP is

both of theoretical and practical interest, explains the amount of attention given to the VRP

by researchers in the past years.

The VRP concerns the transport of items between depots and customers by means of a fleet

of vehicles. In general, solving a VRP means to find the best route to service all customers

using a fleet of vehicles (See Fig. 4.1). The solution must satisfy that all customers are served,
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Figure 4.1: VRP example

respecting the operational constraints, and minimizing the total transportation cost.

Figure 4.1 shows a set of scatered points, where point 0 represents the depot and points

1, . . . , 10 represent the customers. In Figure 4.1 three routes supply the customer demands.

For instance, a route attends customers 2, 4 and 8, whose demands are 16, 12 and 10 units,

respectively. This route visits each customer exactly one time and then returns to the starting

point (as a Hamiltonian cycle). The arcs that compose the route possess travel costs of 1.8,

0.7, 0.9 and 1.2 units corresponding to the links 0− 2, 2− 4, 4− 8 and 8− 0, respectively. The

route acumulates a travel cost (distance, time, expense, etc.) of 4.6 units.

In the VRP, the decisions to be made define the order of the sequence of visits to the

customers (route). A route departs from the depot and it is an ordered sequence of visits to

be made by a vehicle to the customers, fulfilling their orders. A solution must be verified to be

feasible, checking that it does not violate any constraint, such as the one stating that the sum

of the demands of the visited vertices shall not exceed the vehicle capacity.

The elements, which define and constrain the model, are: the road network, describing the

connectivity among customers and depot; the vehicles, transporting goods between customers

and depot on the road network; and the customers, which place orders and receive goods. The

VRP is represented by a set of vehicles denoted by V , and a directed graph G, which consist of

a set of customers and a depot. The node 0 represents the depot. The set of vertices denoting

customers is N . The arc set A denotes all possible connections between the nodes (including

the node denoting depot). All routes start and end at node 0. We associate a cost cxy with each

arc (x, y) ∈ A of the routing network. Each vehicle has a capacity limit qv and each customer

n, a demand dn, n ∈ N . It is common to assume constant speed so that travel distances, travel
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times and travel costs are considered as synonymous.

The VRP then calls for the determination of a set of V routes, whose total travel cost is a

minimum (Hamiltonian cycles), and such that:

• Each customer is visited exactly once by one cycle.

• Each vehicle starts and ends at the depot.

• The total demand of the customers served by a vehicle is not greater than its capacity.

The complexity of VRP is NP-Hard, and therefore difficult to solve [63]. Due to the nature

of the problem it is not viable to use exact approaches for large instances of the VRP. Thus,

heuristic and metaheuristic based methods are the only feasible way to provide solutions for

industrial scale problems. A recently completed survey of the VRP can be found in [129].

A large number of VRP variants are reported in the literature, depending on the objective

function to be optimized and the types of constraints to be satisfied. One of the most important

extensions to the VRP is the Vehicle Routing Problem with Time Windows (VRPTW). This

variant introduces an additional constraint type: each costumer must be served within a specific

time window. Thus, at each node, the service begin-time must be greater than or equal to the

beginning of the time window, and the arrival time must be lower than or equal to the end of

the time window. When the arrival time is smaller, the vehicle has to wait. Other variants of

the problem are multi-depot VRP, VRP with pickup and deliveries, stochastic VRP, etc.

A few works consider real-world enviroment conditions. Most research in this area has

focused on routing and scheduling that incorporates variable customer demands. However,

there has been very little research on routing and scheduling explicitly incorporating the traffic

congestion component into the model. Recently, a dynamic vehicle routing problem with time-

dependent travel times due to traffic congestion was presented in [134]. The approach developed

introduced the traffic congestion component modeled using a queueing approach to traffic flows.

Explicitly making use of the time-dependent congestion results in routes that are shorter in

terms of travel time. Fan et al. proposed an adaptive optimal path algorithm based on dynamic

programming for the case where optimality is defined as maximum travel time reliability [25].

This work focuses on the risk of encountering undesirable situations and provide a means to

capture different travel preferences, specifically late-arrival aversion in the presence of stochastic

travel times.

Generally, the VRP solutions understate the interruptions of traffic flows. Most of the

models and their solution approaches are far from real-world applications where, for instance,
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Figure 4.2: Arc subset a6,1 in the RVRP

traffic congestion can occur on the used road network. In this paper, the VRP problem

considered deals with interrupted traffic flows. The motivation for describing and analyzing

congestion for interrupted traffic flows is that the vehicles in the VRP operate in a traffic network

which can be interrupted by car accidents, congestion, holiday parades, flooding, roadworks,

etc.

Transportation decisions directly affect the total logistic costs. In this context, assigning,

scheduling and routing the fleet of a transportation company is a crucial management issue.

Compared to the actual realization in real-world, taking into account the interruption of traffic

flows results in less time and effort to be invested in replanning in real-time. The approach

developed here introduces the multi-state system reliability theory into the standard VRP

model.

4.2 MSS Reliability in VRP

For introducing the MSS reliability theory in the VRP, the arc set A, that denotes all possible

connections between the nodes in the standar VRP, is extended and divided into arc subsets

axy ∈ A (items). Every arc subset axy possesses Mxy alternative connections (arcs) between

nodes x and y, namely, links lxyz. The arc subsets axy and ayx can have different sizes. A cost

cxyz is associated to each link lxyz of the routing network. For every link lxyz ∈ A, its availabity

(reliability) rxyz for a stated period of time is calculated. For instance, a link lxyz unavailable

5 days along a year has a reliability of 360 out of 365 (r = 0.9863). In general, for every pair

of nodes x-y an arc subset of size Mxy is available to avoid interrupted traffic flows. Figure 4.2

presents the arc subset a6,1 composed of three links.

Every link a6,1,z shown in Figure 4.2 represents an alternative connection between the nodes

6 and 1. Besides, Figure 4.2 presents the travel cost c and reliability r of every link l6,1,z,

z = {1, 2, 3}. In general, each link lxyz represents a multi-state item of the VRP network, which

41



Figure 4.3: RVRP example

is modeled as a MSS in the RVRP approach. The objective is to provide a set of alternative

paths to the optimal solution, which can be used as corrective actions when an interruption of

traffic flow occurs on the main route. The extra calculation time for large datasets is significant,

but is certainly worthwhile if one takes into account the saving delay time in real-time route

design. Figure 4.3 shows an example of possible corrective actions in the optimal route presented

in Figure 4.1.

The MSS reliability assessment is based on the performance distributions of its components

and its structure function. In this paper, the universal generating function (UGF) [130] is used

to find the entire MSS performance distribution.

4.3 The Reliable VRP (RVRP)

The aim of this work is to introduce the MSS reliability in the vehicle routing problem. The

approach developed here considers the interruption of traffic flow, in a MSS traffic network,

modelled through the UGF. The Reliable Vehicle Routing Problem (RVRP) arise whenever some

individual paths (i.e. roadways) of the designed route are temporaly unavailables. Common

examples are car accidents, roadworks, flooding, and traffic congestions.

The RVRP solution can be modeled as a system with N +2 consecutively nodes (customers

and depot) Cj , j ∈ {0, 1, · · · , N + 1}, where the first node C0 and the last node CN+1 are

the depot. At each node Cj , 0 ≤ j ≤ N , multi-state items (links) lji, i ∈ {1, 2, · · · , Mj} are

allocated. These Mj links provide alternative connections between the current node Cj and the
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Figure 4.4: Multi-state link example

next node Cj+1.

Besides, every link lji has mji states, where every state cjik of lji is a discrete random value

with probability mass function:

P (lji = cjik) = pjik (4.1)

where 1 ≤ k < mji, implies that a connection exists with travel cost cjik; and k = mji implies

a total failure state of link lji with travel cost cjik = ∞. Note that different states of link lji

can denote dynamic travel times [134].

The UGF uji(z) represents all the possible states of the link lji in node Cj :

uji(z) =

mji∑

k=1

pjikz
cjik (4.2)

The links lji allocated at node Cj are mutually exclusive events, meaning that the node can

always use one and only one of the Mj links. Figure 4.4 shows an example of a multi-state link

l0−6,1.

It is obvious that the optimal solution of the RVRP include the minimum travel cost between

the consecutively nodes Cj and Cj+1. Thereby, the UGF Uj(z) that represents the arc subset

aj integrated by the Mj links allocated at node Cj , can be determined as follows:
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Figure 4.5: Multi-state arc subset example

Uj(z) = ⊗min(uj1(z), ..., ujMj
(z)) (4.3)

Uj(z) =

mj1∑

k1=1

mj2∑

k2=1

· · ·
mjMj∑

kMj
=1



z
min(cj,1,k1

,...,cj,Mj,kMj
)

Mj∏

i=1

pjiki



 (4.4)

Figure 4.5 presents the integration of three multi-state links that compose the arc subset

a0−6.

The N +2 consecutively ordered nodes of the RVRP can be considered as a MSS with N +1

subsystems in serie, since multi-state components are only allocated at nodes Cj∀j ≤ N . The

total travel cost of the route is equal to the sum of the travel cost at each node Cj . Thereby,

the UGF U(z), representing the S alternative routes (states) of the optimal RVRP, can be

determined as follows:

U(z) = ⊗∑(U0(z), ..., UN (z)) (4.5)
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U(z) =

S0∑

h0=1

S1∑

h1=1

· · ·
SN∑

hN=1



z
∑N

j=0
cjhj

N∏

j=0

pjhj



 (4.6)

where hj ∈ {1, 2, · · · , Sj} represents the Sj paths (states) of each node Cj . The u-function U(z)

provides information about every RVRP state K ∈ {1, 2, · · · , S}: its travel cost gK =
∑N

j=0 cjhj

and its reliability (available time) pK =
∏N

j=0 pjhj
.

The RVRP can be modeled as a standard VRP subject to a overall reliability constraint R.

In a typical VRP, the objective is to find a route X with a minimum total travel cost TTC.

Therefore, the opimal RVRP is

minX TTC = min(g1, g2, · · · , gS) (4.7)

s.t. R ≤ 1 − pTTC=∞ (4.8)

where X is the route (visitation order), and pTTC=∞ represents the reliability of the total

failure state. Similarly, the total reliability R of the route can be determined by the summation

of the reliability values at available states TTC < ∞.

In brief, the RVRP optimal route represents the solution of a combinatorial problem with

an inequality constraint. A RVRP solution consists of S states that represent the optimal

route (no traffic interruption) and the alternative routes for every possible interruption traffic

event. The alternative routes (states K = {2, · · · , S} obtained by the RVRP, allow to complete

the optimal route (state K = 1) whenever an interruption occurs in the traffic network,

following its determined service sequence for the remaining nodes. Namely, the optimal route

X = {x0, x1, · · · , xN} is partially fulfilled from x0 to xF (0 < F < N). Then, an alternative

path, between nodes xF and xF+1, is used to complete the optimal route in the same order

xF+1, xF+2, · · · , xN .

In VRP variants, as the VRP with Time Windows (VRPTW), it is neccesary to respect

the designed node sequences, because the customers fix a period of time for accomplishing the

service. In real-world transportation management, the goods are loaded in the vehicle according

to the designed service sequence; thereby, any interruption of the sequence implies an overwork

and overtime (unloading and loading) in the route.

Several heuristic and metaheuristic methods have been proposed to solve the standard VRP
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[129]. For example, simulated annealing [107], ant colony [117], genetic algorithm [126], etc.

For solving the RVRP, the mentioned works or any other approach can be applied introducing

the MSS reliability as a constraint. In this dissertation, we use a modified version (discrete)

of the Particle Evolutionary Swarm Optimization (PESO) algorithm [94] to solve the RVRP.

A detailed description of the PESO algorithm is provided in Chapter 6. For completeness

purposes, Chapter 7 presents a real-world RVRP example and its solution with the proposed

approach.
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Chapter 5

Multi-State System Reliability

Variance

The RVRP detailed in Chapter 4 requires information of the state probability for every link

between two nodes. In a real-world RVRP, these probabilities will be estimated based on

stochastic events like car accidents, floodings, traffic congestions, etc., and deterministic events

like holiday parades, roadworks, etc. But, this problem is not exclusive of traffic networks. In

general, the probabilities of a real-world system are estimated.

Many methods and models in classical reliability theory assume that all probabilities are

known, namely, that every probability involved is perfectly determinable. For many systems,

there are limited failure and survival data at the item level. For instance, in the assessment of

new system designs, the item reliabilities are not known exactly since must be estimated based

on similar components or field-failure reporting database. If the information we have about

the functioning of items and systems is based on a statistical analysis, then a probabilistic

uncertainty model should be used in order to mathematically represent and manipulate that

information. The term variance was first introduced by Fisher to characterize the dispersion

among the measures in a given population [26]. Then, the system reliability variance σ2 must

be consider to obtain the best possible bounds for the system reliability given any information

about item reliability.

The variance of the system reliability estimate could be regarded as a significant indicator

of the estimation uncertainty at the system level. System designers and users generally prefer

a system with a high reliability estimate assured by a low uncertainty estimate [88]. But, the

reliability optimization methods do not consider uncertainty and can be demonstrated to be
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inefficient for some applications. Namely, they lead to solutions that are dominated by other

solutions with similar estimated reliability but lower variance. Therefore, maximization of the

system reliability and minimization of its estimation uncertainty are mutually important [14].

Reliability practitioners often ignore the estimation variability and treat the system and

item reliability as deterministic values. This assumption is misleading if the estimation

variability is large. To obtain risk-averse system designs, the variation of the reliability estimate

must be explicitly considered. Thus, there is a great need to combine statistical concepts

of measuring uncertainty with system reliability modeling techniques to develop truly useful

reliability estimation models and optimization algorithms based on real-world limitations on

item reliability estimation [49].

5.1 System Reliability Variance

Several works have been proposed to estimate binary system reliability and its variance based on

items information. In 1963, Rosenblatt proposed a method based on the asymptotic normality of

the maximum likelihood estimate of system reliability, which transforms the system reliability

statistic into the standard normal distribution [119]. The variance of the system reliability

estimate is estimated based on a Taylor series expansion.

In 1997, Coit proposed an approximate confidence bound for complex system reliability

estimate based on log-normal assumption on the system reliability estimate [13]. The approach

can be applied to any system that can be decomposed into a series, parallel or series-parallel

model. But, the log-normal model is sensitive to the number of subsystems, it yields more

accurate estimations when the number of subsystems exceeds eight.

In his dissertation, Jin developed models for system reliability estimations for series-parallel,

complex, and network systems [49]. Later, Jin and Coit [50] generalized the log-normal model to

systems that allows repeated items within a subsystem while subsystem reliability estimates are

statistically independent. This means reliability estimate for duplicated items are dependent.

In 2006, Ramirez-Marquez and Jiang [113] proposed to calculate the variance of series-

parallel systems based on the results obtained by Goodman [30]. They descompose a system

into a series-parallel structure using the minimal cut/path set technique. The next step is to

transform the series or parallel structure into an equivalent two component series or parallel

subsystem. This step is applied recursively until reduce the system into two series or parallel

configuration. The method is only applicable to systems that can be descomposed into series-
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parallel structures.

Recently, Jin and Coit [51] proposed an unbiased version of the model proposed by Coit

in 1997 [13] to calculate the variance of a system reliability estimate based on the estimated

variance of item reliability estimates.

Few models have been proposed for estimating MSS reliability and its variance. Recently,

Ramirez-Marquez and Levitin [115] proposed a model, based on the implementation of the

UGF technique, for the estimation of reliability confidence bounds based on item reliability and

uncertainty data for MSS with binary-capacitated items.

This chapter presents a method to estimate MSS reliability variance based on the UGF

model applying the Delta method approximation. The Delta method takes a function that is

too complex for analytically computing the variance, creates a linear approximation of that

function, and then computes the variance of the simpler linear function that can be used for

large sample inference [139].

5.2 The Delta Method

Lets start by considering the formal approach for deriving the variance of a random variable

X. In the particular case that the random variable has mean µ, we define the variance as

σ2
X = V ar(X) = E[(X − µ)2] (5.1)

Let Y a new variable defined by f(X). If the probability distribution can be specified, we can

use the method of moments to formally derive the mean and variance of the function variable

Y . Generally, the variance for functions of random variables are hard to obtain, because they

have poorly specified or unspecified distributions. In such cases, we may need other approaches.

The Delta method uses the Taylor series expansion to approximate the mean and variance

of a function of one or more random variables [31]. The Taylor series is a power series expansion

of an infinitely differentiable real (or complex) function defined on an open interval around some

specified point x = a.

f(x) ≈ f(a) +
f ′(a)(x − a)

1!
+

f ′′(a)(x − a)2

2!
+ ... +

f (n)(a)(x − a)n

n!
+ · · · (5.2)

Thereby, it is possible to approximate the moments of Y , function of a random variable X,

49



using Taylor expansions; provided that f(X) is sufficiently differentiable and that the moments

of X are finite.

The function f(X) can be approximated by a first order Taylor series, where X is evaluated

around its mean X = µX

f̂(X) ≈ f(µX) + f ′(µX)(X − µX) (5.3)

The expected value of Y can be approximated by taking the expected value of f̂(X)

E(Y ) ≈ E[f̂(X)] = E[f(µX) + f ′(µX)(X − µX)]

E(Y ) ≈ E[f(µX)] + E[f ′(µX)(X − µX)]

E(Y ) ≈ f(µX) + f ′(µX)E[(X − µX)]

E(Y ) ≈ f(µX) + f ′(µX)0

E(Y ) ≈ f(µX) (5.4)

The variance of Y can be approximated by taking the variance of f̂(X)

V ar(Y ) ≈ V ar[f̂(X)] = E[{f̂(X) − E[f̂(X)]}2]

V ar(Y ) ≈ E[{f(µX) + f ′(µX)(X − µX) − f(µX)}2]

V ar(Y ) ≈ E[f ′(µX)2(X − µX)2]

V ar(Y ) ≈ [f ′(µX)]2E[(X − µX)2]

V ar(Y ) ≈ [f ′(µX)]2σ2
X (5.5)

The Delta method is a technique for approximating expected values of functions of random

variables when direct evalutaion of the expectation is unfeasible [106]. It assumes that the

transformation is approximately linear over the expected range of the parameter.

5.3 Multivariate Delta Method

The Taylor series may also be generalized to functions of more than one variable
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f(x1, · · · , xn) ≈ f(a1, · · · , an) + ∇f(a1, · · · , an)T [(x1, · · · , xn) − (a1, · · · , an)] (5.6)

The variance of a function Y of N random variables Xi can be approximated by a first order

Taylor series

V ar(Y ) ≈
N∑

i=1

[
∂

∂Xi
f(µX1

, · · · , µXN
)

]2

σ2
Xi

+ 2
N∑

i=1

N∑

j=i+1

[
∂

∂Xi
f(µX1

, · · · , µXN
)

] [
∂

∂Xj
f(µX1

, · · · , µXN
)

]

Cov(Xi, Xj) (5.7)

Thereby, the Delta method for approximating the variance of a function f(X1, · · · , XN ) of

independent random variables is

V ar(f̂(X1, · · · , XN )) =

N∑

i=1

[
∂

∂Xi
f(µX1

, · · · , µXN
)

]2

σ2
Xi

(5.8)

5.4 MSS Reliability Variance via Delta-UGF

In Chapter 3, the UGF was used to assess the reliability of any complex MSS. The multi-state

items that compose a MSS can be represented by the u-function

uj(z) =

nj∑

i=0

zgj,ipj,i (5.9)

In this chapter, we assume that the item’s probability is estimated p̂j,i and its variance σ2
p̂j,i

can be known. Thereby, the MSS reliability variance V ar(U(z)) can be approximated applying

the Delta method to the u-function U(z) which represents the entire performance of the MSS.

U(z) = ⊗f (u1(z), ..., uN (z)) (5.10)

Since the item’s states compose the complete group of mutually exclusive events

nj∑

i=0

p̂j,i = 1 (5.11)
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Therefore the probability of any state i can be determined by the nj remaining probabilities

p̂j,s∀s 6= i [77].

uj(z) = zgj,0 p̂j,0 +

nj∑

i=1

zgj,i p̂j,i

uj(z) = zgj,0 [1 −
nj∑

i=1

p̂j,i] +

nj∑

i=1

zgj,i p̂j,i (5.12)

This interpretation of the u-function allows to simplify the approximation of the MSS

realibility variance. For instance, the u-function of a binary item can be expressed as

uj(z) =
1∑

i=0

zgj,i p̂j,i = zgj,0 p̂j,0 + zgj,1(1 − p̂j,0) (5.13)

For instance, the variance of the estimated probabilities p̂j,0 and p̂j,1 of a binary item are

V ar(p̂j,0) = σ2
p̂j,0

and V ar(p̂j,1) = V ar(1 − p̂j,0) = σ2
p̂j,0

.

In general, there is a variance vector σ2
j for every item j ∈ {1, · · · , N} that represents the

variance of the p̂j,i probabilities of the item.

σ2
j = {σ2

p̂j,1
, · · · , σ2

p̂j,nj
} (5.14)

The variances of the MSS reliabilities r̂k ∈ {1, · · · , K} are associated with the variance

vectors σ2
j , since the MSS u-transform U(z) is function of the item probability vectors p̂j .

U(z) =
K∑

k=1

r̂kz
gk (5.15)

where each reliability r̂k is expressed as a function of the estimated probabilities p̂j,i

r̂k(p̂1,1, · · · , p̂1,n1
, · · · , p̂N,nN

) =

Mk∑

m=1

N∏

j=1

pj,km
(5.16)

where km ∈ {1, · · · , nj} represents the required state of the item j, in the m − th combination,

to obtain a performance level (system state) gk = f(gj,1, · · · , gj,N ) (e.g. f = min, f = max,

f =
∑

, etc.).
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Therefore, the MSS reliability variance can be approximated applying the Delta method

for every reliability r̂k to propagate the uncertainty of the probabilities of the N items that

composed the system.

V ar(r̂k) ≈
N∑

j=1

nj∑

i=1

[
∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]2

σ2
p̂j,i

+2
N∑

j=1

nj∑

i=1

nj∑

l=i+1

[
∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

] [
∂

∂p̂j,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]

Cov(p̂j,i, p̂j,l)(5.17)

where µp̂j,i
is the expectec value or mean of p̂j,i; and Cov(p̂j,i, p̂j,l) is the covariance of the states

i and l, i, l ∈ {1, · · · , nj}, of the item j (mutually exclusive events).

5.4.1 Delta Method: First Order Taylor Expansion

For illustrating the performance of the Delta method, applying a first order Taylor series

expansion, the processing series MSS shown in Figure 5.1 is used as example.

Figure 5.1: Series MSS example

The u-function for each item is

u1(z) = 0.9z0.5 + 0.1z∞

u2(z) = 0.7z0.5 + 0.2z1.0 + 0.1z∞

The u-function U(z) of the entire MSS is

U(z) = p̂1,0p̂2,0z
1.0 + p̂1,0p̂2,1z

1.5 + p̂1,0p̂2,2z
∞ + p̂1,1p̂2,0z

∞ + p̂1,1p̂2,1z
∞ + p̂1,1p̂2,2z

∞

U(z) = p̂1,0p̂2,0z
1.0 + p̂1,0p̂2,1z

1.5 + [p̂1,0p̂2,2 + p̂1,1p̂2,0 + p̂1,1p̂2,1 + p̂1,1p̂2,2] z
∞

U(z) = p̂1,0p̂2,0z
1.0 + p̂1,0p̂2,1z

1.5 + [p̂1,0p̂2,2 + p̂1,1(p̂2,0 + p̂2,1 + p̂2,2)] z
∞
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U(z) = p̂1,0p̂2,0
︸ ︷︷ ︸

r̂1

z1.0 + p̂1,0p̂2,1
︸ ︷︷ ︸

r̂2

z1.5 + [p̂1,0p̂2,2 + p̂1,1]
︸ ︷︷ ︸

r̂3

z∞ (5.18)

The variance for every reliability r̂k can be approximated applying the Delta method for the

propagation of the probability variances σp̂j,i
. First, we model the obtained u-function U(z) of

the series system as explained in Eq. (5.12).

U(z) = (1 − p̂1,1)(1 − p̂2,1 − p̂2,2)
︸ ︷︷ ︸

r̂1

z1.0 + (1 − p̂1,1)p̂2,1
︸ ︷︷ ︸

r̂2

z1.5 + [(1 − p̂1,1)p̂2,2 + p̂1,1]
︸ ︷︷ ︸

r̂3

z∞ (5.19)

Now, applying Eq. (5.17) in Eq. (5.19), we obtain the variance of the reliabilities r̂k.

V ar(r̂1) ≈ [−(1 − p̂2,1 − p̂2,2)]
2σ2

p̂1,1
+ [−(1 − p̂1,1)]

2σ2
p̂2,1

+ [−(1 − p̂1,1)]
2σ2

p̂2,2

+ 2[−(1 − p̂1,1)][−(1 − p̂1,1)]Cov(p̂2,1, p̂2,2)

V ar(r̂2) ≈ [−p̂2,1]
2σ2

p̂1,1
+ [(1 − p̂1,1)]

2σ2
p̂2,1

+ [0]2σ2
p̂2,2

+ [(1 − p̂1,1)][0]Cov(p̂2,1, p̂2,2)

V ar(r̂3) ≈ [−p̂2,2 + 1]2σ2
p̂1,1

+ [0]2σ2
p̂2,1

+ [(1 − p̂1,1)]
2σ2

p̂2,2

+ [(1 − p̂1,1)][0]Cov(p̂2,1, p̂2,2) (5.20)

Eliminating terms equal to zero ...

V ar(r̂1) ≈ [−(1 − p̂2,1 − p̂2,2)]
2σ2

p̂1,1
+ [−(1 − p̂1,1)]

2σ2
p̂2,1

+ [−(1 − p̂1,1)]
2σ2

p̂2,2

+ 2[−(1 − p̂1,1)][−(1 − p̂1,1)]Cov(p̂2,1, p̂2,2)

V ar(r̂2) ≈ [−p̂2,1]
2σ2

p̂1,1
+ [(1 − p̂1,1)]

2σ2
p̂2,1

V ar(r̂3) ≈ [−p̂2,2 + 1]2σ2
p̂1,1

+ [(1 − p̂1,1)]
2σ2

p̂2,2
(5.21)

The following variance matrix is assumed for every item:

Σ1 =

[

0.009 −0.009

−0.009 0.009

]

Σ2 =







1.00E − 04 −4.67E − 05 −2.33E − 05

−4.67E − 05 7.62E − 05 −6.67E − 06

−2.33E − 05 −6.67E − 06 4.29E − 05







(5.22)
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Table 5.1: Reliability simulations of the processing series MSS
Entity State Peformance Min Max Mean Variance

Item 1 0 0.5 0.185477 1.000000 0.899914 9.0210E-03
1 ∞ 2.7315E-09 0.814523 0.100086 9.0210E-03

0 0.5 0.645804 0.743473 0.699999 9.9632e-05
Item 2 1 1.0 0.158530 0.247105 0.200002 7.6136e-05

2 ∞ 0.072134 0.133480 0.099998 4.2615e-05

1 1.0 0.127614 0.741661 0.629939 4.5012E-03
MSS 2 1.5 0.036331 0.239675 0.179986 4.2357E-04

3 ∞ 0.079080 0.835119 0.190075 7.3429E-03

According to the assumed item probabilities and variance values, the MSS reliability

variances are:

V ar(r̂1) ≈ 4.4957E − 03

V ar(r̂2) ≈ 4.2172E − 04

V ar(r̂3) ≈ 7.3247E − 03

For validating the Delta method performance, a simulation of the processing series MSS is

developed. The Dirichlet distribution is used to simulate the probability and variance of every

item. Appendix A presents information about the Dirichlet distribution, its probability density

function, and its random number generation.

The simulation was performed using the following Dirichlet distributions Dir(8.1, 0.9) and

Dir(1469.3, 419.8, 209.9) for every item of the processing series MSS (see Appendix A). The

results of 1, 000, 000 simulations are shown in Table 5.1.

The MSS reliability variances obtained by the Delta method, accurately approximate the

simulation results for the series system. But, the Delta method has a large approximation error

for other systems as it is shown below.

5.4.2 The Error in the Delta Method

Figure 5.2 shows a parallel MSS with work sharing.

In the experiment, a variance of σ2
p̂j,0

= σ2
p̂j,1

= 0.009 for every item is assumed. The

u-function for each item is
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Figure 5.2: Parallel MSS example

uj(z) = 0.9z1.0 + 0.1z0.0 (5.23)

The u-function U(z) of the entire MSS is

U(z) = p̂1,0p̂2,0z
2.0 + p̂1,0p̂2,1z

1.0 + p̂1,1p̂2,0z
1.0 + p̂1,1p̂2,1z

0.0

U(z) = p̂1,0p̂2,0z
2.0 + [p̂1,0p̂2,1 + p̂1,1p̂2,0]z

1.0 + p̂1,1p̂2,1z
0.0

U(z) = (1 − p̂1,1)(1 − p̂2,1)z
2.0 + [(1 − p̂1,1)p̂2,1 + p̂1,1(1 − p̂2,1)]z

1.0 + p̂1,1p̂2,1z
0.0 (5.24)

Next, the variance of the entire system is approximated applying the Delta method in the

MSS reliabilities presented in Eq. (5.24).

V ar(r̂1) ≈ [−(1 − p̂2,1)]
2σ2

p̂1,1
+ [(1 − p̂1,1)]

2σ2
p̂2,1

V ar(r̂2) ≈ [−p̂2,1 + (1 − p̂2,1)]
2σ2

p̂1,1
+ [(1 − p̂1,1) − p̂1,1]

2σ2
p̂2,1

V ar(r̂3) ≈ [p̂2,1]
2σ2

p̂1,1
+ [p̂1,1]

2σ2
p̂2,1

(5.25)

The MSS reliability variances are

V ar(r̂1) ≈ 1.4580E − 02

V ar(r̂2) ≈ 1.1520E − 02

V ar(r̂3) ≈ 1.8000E − 04

We compare the Delta method performance against the simulation of the parallel MSS using
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Table 5.2: Reliability simulations of the parallel MSS with work sharing
Entity State Peformance Min Max Mean Variance

Item 1 0 1.0 0.195248 1.000000 0.899920 8.9874E-03
1 0.0 1.4005e-10 0.804752 0.100080 8.9874E-03

Item 2 0 1.0 0.165007 1.000000 0.900249 8.9885E-03
1 0.0 3.6162e-08 0.834993 0.099751 8.9885E-03

1 2.0 0.146719 0.999968 0.810169 1.4641E-02
MSS 2 1.0 3.2429e-05 0.787680 0.179830 1.1835E-02

3 0.0 6.9370e-12 0.368007 0.010001 2.5892E-04

the next Dirichlet distribution Dir(8.1, 0.9) for both items of the system (see Appendix A). The

results of 1, 000, 000 simulations are shown in Table 5.2.

The approximation obtained by Delta method correspond to the simulation results for the

states k = 1 and k = 2 of the parallel MSS. But, the method has an approximation error of

31.12% in the state k = 3 with respect to the simulation results.

In general, the Delta method is most accurate when the function f(X) is nearly linear,

especially near E(X), and when V ar(X) is small. The quality of the estimate of V ar(f(X))

depends polynomially on V ar(X). For small values of σX , the Delta method approximation is

quite good. For larger values of σX , the quality is bad and degrades exponentially.

One immediate option is to use a higher order Taylor series approximation. Including higher

order terms in the UGF-Delta method, it can achieve a better approximation to the function

variance.

5.4.3 Delta Method: Second Order Taylor Expansion

In the parallel MSS example shown in Figure 5.2, we see that the classical Delta method, which

is based on a first order Taylor series expansion of the transformed function f(X), may not do

particularly well, if the function is highly non-linear over the range of values being examined,

and there is considerable variation in the variables.

One possible solution is to use a higher-order Taylor series approximation; by including

higher-order terms, we can achieve a better fit to the function [15].

f̂(X) ≈ f(µX) + f ′(µX)(X − µX) +
1

2
f ′′(µX)(X − µX)2 (5.26)

The expected value of f̂(X) is
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E(Y ) ≈ E

[

f(µX) + f ′(µX)(X − µX) +
1

2
f ′′(µX)(X − µX)2

]

E(Y ) ≈ f(µX) +
1

2
f ′′(µX)σ2

X (5.27)

The variance of f̂(X) is

V ar(Y ) ≈ E[{f̂(X) − E[f̂(X)]}2]

V ar(Y ) ≈ E

[

{f ′(µX)(X − µX) +
1

2
f ′′(µX)(X − µX)2 − 1

2
f ′′(µX)σ2

X

]

V ar(Y ) ≈ [f ′(µX)]2σ2
X +

1

4
[f ′′(µX)]2V ar(X2) − [f ′′(µX)]2µ2

Xσ2
X (5.28)

The second order Taylor series generalized to a r̂k function of N independent items composed

of nj mutually exclusive states, can be compactly written as:

r̂k(p̂1,1, · · · , p̂N,nN
) ≈ r̂k(µp̂1,1

, · · · , µp̂N,nN
) + ∇r̂k(µp̂1,1

, · · · , µp̂N,nN
)T







p̂1,1 − µp̂1,1

...

p̂N,nN
− µp̂N,nN







+
1

2







p̂1,1 − µp̂1,1

...

p̂N,nN
− µp̂N,nN







T

∇2r̂k(µp̂1,1
, · · · , µp̂N,nN

)







p̂1,1 − µp̂1,1

...

p̂N,nN
− µp̂N,nN







(5.29)

Before applying the Delta method, a reduction of terms in Eq. (5.29) can be performed.

Since we consider systems composed of indepent items with mutually exclusive states, the second

derivative of r̂k with respect to the same item probabilities p̂j,i, i ∈ {1, · · · , nj}, is always zero

in our model (due to there is not logically repeated items). Namely, the function r̂k is a sum of

linear products of the item probabilities p̂j,km
, j ∈ {1, · · · , N}, at a unique state km for every

item j.

58



∂2

∂p̂j,ip̂j,l
r̂k =

∂2

∂p̂j,ip̂j,w





Mk∑

m=1

N∏

j=1

pj,km



 = 0 ∀i, l ∈ {1, · · · , nj} (5.30)

Now, Eq. (5.29) can be only expressed in terms of the first derivatives and the crossed

derivatives of r̂k:

r̂k(p̂1,1, · · · , p̂N,nN
) ≈ r̂k(µp̂1,1

, · · · , µp̂N,nN
) +

N∑

j=1

nj∑

i=1

∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)
[

p̂j,i − µp̂j,i

]

+
1

2

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

2
∂2

∂p̂j,ip̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)
[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

(5.31)

We calculate the variance of the second order Taylor series expansion of r̂k at (µp̂1,1
, · · · ,

µp̂1,n1

, · · · , µp̂N,nN
) to approximate the variance of the r̂k function.

V ar(r̂k(p̂1,1, · · · , p̂N,nN
)) = E

[

{r̂k(p̂1,1, · · · , p̂N,nN
) − E[r̂k(p̂1,1, · · · , p̂N,nN

)]}2
]

(5.32)

Appendix B describes the calculation of the V ar(r̂k) to obtain the following expression:

V ar(r̂k(p̂1,1, · · · , p̂N,nN
)) ≈

N∑

j=1

nj∑

i=1

[
∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]2

σ2
p̂j,i

+2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

Cov(p̂j,i, p̂j,w)

[
∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

] [
∂

∂p̂j,w
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

[
∂2

∂p̂j,ip̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]2

σ2
p̂j,i

σ2
p̂h,l

+2
N∑

j=1

nj∑

i=1

N∑

h=1,h 6=j

nh−1
∑

l=1

nh∑

v=l+1

σ2
p̂j,i

Cov(p̂h,l, p̂h,v)

∗
[

∂2

∂p̂j,ip̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

] [
∂2

∂p̂j,ip̂h,v
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]
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+2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

N∑

h=j+1

nh−1
∑

l=1

nh∑

v=l+1

Cov(p̂j,i, p̂j,w)Cov(p̂h,l, p̂h,v)

∗
([

∂2

∂p̂j,ip̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

] [
∂2

∂p̂j,wp̂h,v
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]

+

[
∂2

∂p̂j,ip̂h,v
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

] [
∂2

∂p̂j,wp̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

])

(5.33)

Equation (5.33) is an improved model of the method presented in Eq. (5.17). The Delta

method, applying second order Taylor series expansion, approximates the MSS reliability

variance better than the classical Delta method (first order Taylor series) as it is shown below.

For a system composed of binary items, the variance of each reliability system state can be

approximated by the following expression:

V ar(r̂k(p̂1,1, · · · , p̂N,nN
)) ≈

N∑

j=1

nj∑

i=1

[
∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]2

σ2
p̂j,i

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

[
∂2

∂p̂j,ip̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)

]2

σ2
p̂j,i

σ2
p̂h,l

(5.34)

Now, the variance of the parallel MSS, shown in Figure 5.2, can be approximated applying

the Delta method with second order Taylor series expansion (Eq. (5.34)) in the MSS reliabilities

presented in Eq. (5.24).

V ar(r̂1) ≈ [−(1 − p̂2,1)]
2σ2

p̂1,1
+ [(1 − p̂1,1)]

2σ2
p̂2,1

+ [1]2σ2
p̂1,1

σ2
p̂2,1

V ar(r̂2) ≈ [−p̂2,1 + (1 − p̂2,1)]
2σ2

p̂1,1
+ [(1 − p̂1,1) − p̂1,1]

2σ2
p̂2,1

+ [−2]2σ2
p̂1,1

σ2
p̂2,1

V ar(r̂3) ≈ [p̂2,1]
2σ2

p̂1,1
+ [p̂1,1]

2σ2
p̂2,1

+ [1]2σ2
p̂1,1

σ2
p̂2,1

(5.35)

The MSS reliability variance is obtained replacing the correspondent probabilities and

variances of every item in Eq. (5.35).

V ar(r̂1) ≈ 1.4661E − 02

V ar(r̂2) ≈ 1.1844E − 02
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V ar(r̂3) ≈ 2.6100E − 04

The approximation of the MSS reliability variance obtained by the Delta Method agrees to

the simulation results presented in Table 5.2. Besides, the accuracy in the approximation is

improved in all the states of the parallel system. This improvement is also attained in other

system structures.

5.5 Delta-UGF Method: Computational Assessment

There are systems that possess complex structure functions, which are not easy to calculate

their derivatives. Although, there are numerical methods to calculate the numerical derivatives

of a function f(X), these methods possess an approximation error. Besides, the application of

a numerical method implies an additional computational effort in the MSS reliability variance

assessment.

Fortunately, an algorithm can be developed to apply the Delta method in a simple and easy

way. The variances of the MSS reliabilities can be calculated obtaining the first derivatives

and the crossed second order derivatives of the r̂k. This can be attained applying an iterative

assessment process on the u-function U(z).

The derivative of a function

f(X0, X1, · · · , XN ) =
N∑

i=0

aiXi, X0 = 1 − X1 − X2 − · · · − XN (5.36)

with respect to a variable Xi, i ∈ {1, · · · , N}, can be obtained setting the derivative variable

Xi = 1 and the dependent variable X0 = −1. The remaining values Xs, s 6= {i, 0} are set to

zero.

∂

∂Xi
f(X0, X1, · · · , XN ) = ai − a0 (5.37)

Similarly, the process can be extended to second order derivatives setting both derivative

variables, Xi and Xj (i 6= j), equal to 1. Thereby, the MSS reliability variances can be calculated

applying this property in each MSS reliability r̂k = U(z)gk
as follows:
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V ar(r̂k) ≈
N∑

j=1

nj∑

i=1

[
U(z, p̂j,i = 1, p̂j,0 = −1, p̂j,s 6=(i,0) = 0)gk

]2
σ2

p̂j,i

+

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

[
U(z, p̂j,i = 1, p̂j,0 = −1, p̂j,s 6=(i,0) = 0, p̂h,l = 1,

p̂h,0 = −1, p̂h,s 6=(l,0) = 0)gk

]2
σ2

p̂j,i
σ2

p̂h,l
(5.38)

For illustrating the UGF-Delta algorithm, the next u-function U(z) is used

U(z) = p̂1,0p̂2,0z
1.0 + p̂1,0p̂2,1z

1.5 + [p̂1,0p̂2,2 + p̂1,1(p̂2,0 + p̂2,1 + p̂2,2)] z
∞ (5.39)

This u-function corresponds to the series MSS shown in Figure 5.1. The u-function U(z)

can be expressed as function of the estimated probabilities p̂1,1, p̂2,1 and p̂2,2. The variances of

the MSS reliabilities can be obtained as it is shown in Eq. (5.38).

First derivatives of U(z):

∂

∂p̂1,1
U(z) = U(z, p̂1,1 = 1, p̂1,0 = −1) = (−1)p̂2,0

︸ ︷︷ ︸
∂r̂1

∂p̂1,1

z1.0 + (−1)p̂2,1
︸ ︷︷ ︸

∂r̂2
∂p̂1,1

z1.5

+ [(−1)p̂2,2 + (1)(p̂2,0 + p̂2,1 + p̂2,2)]
︸ ︷︷ ︸

∂r̂3
∂p̂1,1

z∞ (5.40)

∂

∂p̂2,1
U(z) = U(z, p̂2,1 = 1, p̂2,0 = −1, p̂2,2 = 0) = p̂1,0(−1)

︸ ︷︷ ︸
∂r̂1

∂p̂2,1

z1.0 + p̂1,0(1)
︸ ︷︷ ︸

∂r̂2
∂p̂2,1

z1.5

+ [p̂1,0(0) + p̂1,1(−1 + 1 + 0)]
︸ ︷︷ ︸

∂r̂3
∂p̂2,1

z∞ (5.41)

∂

∂p̂2,2
U(z) = U(z, p̂2,2 = 1, p̂2,0 = −1, p̂2,1 = 0) = p̂1,0(−1)

︸ ︷︷ ︸
∂r̂1

∂p̂2,2

z1.0 + p̂1,0(0)
︸ ︷︷ ︸

∂r̂2
∂p̂2,2

z1.5

+ [p̂1,0(1) + p̂1,1(−1 + 0 + 1)]
︸ ︷︷ ︸

∂r̂3
∂p̂2,2

z∞ (5.42)
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Second derivatives of U(z):

∂2

∂p̂1,1p̂2,1
U(z) = U(z, p̂1,1 = 1, p̂1,0 = −1, p̂2,1 = 1, p̂2,0 = −1, p̂2,2 = 0) = (−1)(−1)

︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂1
∂p̂1,1

]

z1.0

+ (−1)(1)
︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂2
∂p̂1,1

]

z1.5 + [(−1)(0) + (1)(−1 + 1 + 0)]
︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂3
∂p̂1,1

]

z∞ (5.43)

∂2

∂p̂1,1p̂2,2
U(z) = U(z, p̂1,1 = 1, p̂1,0 = −1, p̂2,2 = 1, p̂2,0 = −1, p̂2,1 = 0) = (−1)(−1)

︸ ︷︷ ︸

∂
∂p̂2,2

[

∂r̂1
∂p̂1,1

]

z1.0

+ (−1)(0)
︸ ︷︷ ︸

∂
∂p̂2,2

[

∂r̂2
∂p̂1,1

]

z1.5 + [(−1)(1) + (1)(−1 + 0 + 1)]
︸ ︷︷ ︸

∂
∂p̂2,2

[

∂r̂3
∂p̂1,1

]

z∞ (5.44)

The first and second derivatives of U(z) (Eq. 5.42 and 5.44) provide the partial derivatives

of the MSS reliabilities r̂k required for applying the Delta method to approximate the MSS

reliability variances.

V ar(r̂1) ≈ [−p̂2,0]
2σ2

p̂1,1
+ [−p̂1,0]

2σ2
p̂2,1

+ [−p̂1,0]
2σ2

p̂2,2
+ [1]2σ2

p̂1,1
σ2

p̂2,1
+ [1]2σ2

p̂1,1
σ2

p̂2,2

+ 2[−p̂1,0][−p̂1,0]Cov(p̂2,1, p̂2,2) + 2[1][1]σ2
p̂1,1

Cov(p̂2,1, p̂2,2)

V ar(r̂2) ≈ [−p̂2,1]
2σ2

p̂1,1
+ [p̂1,0]

2σ2
p̂2,1

+ [0]2σ2
p̂2,2

+ [−1]2σ2
p̂1,1

σ2
p̂2,1

+ [0]2σ2
p̂1,1

σ2
p̂2,2

+ 2[p̂1,0][0]Cov(p̂2,1, p̂2,2) + 2[−1][0]σ2
p̂1,1

Cov(p̂2,1, p̂2,2)

V ar(r̂3) ≈ [−p̂2,2 + 1]2σ2
p̂1,1

+ [0]2σ2
p̂2,1

+ [p̂1,0]
2σ2

p̂2,2
+ [0]2σ2

p̂1,1
σ2

p̂2,1
+ [−1]2σ2

p̂1,1
σ2

p̂2,2

+ 2[0][p̂1,0]Cov(p̂2,1, p̂2,2) + 2[0][−1]σ2
p̂1,1

Cov(p̂2,1, p̂2,2) (5.45)

Substituting the assumed reliability and variance values used in the series MSS shown in

Figure 5.1, we obtain more accurate MSS reliability variances than the presented in Eq. (5.23)

corresponding to the Delta method with a first order Taylor series.

V ar(r̂1) ≈ 4.4967E − 03

V ar(r̂2) ≈ 4.2241E − 04
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V ar(r̂3) ≈ 7.3255E − 03

For showing the peformance of the UGF-Delta method, the reliability variance of a series-

parallel MSS is approximated applying the explained iterative process.

5.6 Reliability Variance of a Series-Parallel MSS

Figure 5.3 shows the production line presented in Chapter 3. The MSS has a series-parallel

structure with transmission flow behavior.

Figure 5.3: Production line

The u-function for every item was presented in Section 3.4.1. Besdies, Section 3.4.1 details

how to obtain the u-function U(z) of the entire system.

U(z) = [(p̂1,1p̂2,1 + p̂1,1p̂2,0 + p̂1,0p̂2,1 + p̂1,0p̂2,0)p̂3,2 + p̂1,1p̂2,1p̂3,1 + p̂1,1p̂2,1p̂3,0]
︸ ︷︷ ︸

r̂1

z0.0

+ [(p̂1,1p̂2,0 + p̂1,0p̂2,1 + p̂1,0p̂2,0)p̂3,1 + p̂1,1p̂2,0p̂3,0]
︸ ︷︷ ︸

r̂2

z1.0

+ [p̂1,0p̂2,1p̂3,0]
︸ ︷︷ ︸

r̂3

z1.5 + [p̂1,0p̂2,0p̂3,0]
︸ ︷︷ ︸

r̂4

z2.0 (5.46)

The reliability variances V ar(r̂k)of the series-parallel MSS can be approximated applying

the UGF-Delta method with second order Taylor series expansion, as it is illustrated in Eq.

(5.38).

First, the state i = 0 of each item j is expressed as function of the remaining nj states.

p̂1,0 = 1 − p̂1,1 p̂2,0 = 1 − p̂2,1 p̂3,0 = 1 − p̂3,1 − p̂3,2 (5.47)

64



Thereby, the derivative variables are p̂1,1, p̂2,1, p̂3,1 and p̂3,2. Applying the iterative process

explained in Section 5.5 in Eq. (5.46), we obtain the partial derivatives of the MSS reliabilities

r̂k, k ∈ {1, 2, 3, 4}.

First partial derivatives:

∂

∂p̂1,1
U(z) = [(p̂2,1 + p̂2,0 − p̂2,1 − p̂2,0)p̂3,2 + p̂2,1p̂3,1 + p̂2,1p̂3,0]

︸ ︷︷ ︸
∂r̂1

∂p̂1,1

z0.0

+ [(p̂2,0 − p̂2,1 − p̂2,0)p̂3,1 + p̂2,0p̂3,0]
︸ ︷︷ ︸

∂r̂2
∂p̂1,1

z1.0 + [−p̂2,1p̂3,0]
︸ ︷︷ ︸

∂r̂3
∂p̂1,1

z1.5 + [−p̂2,0p̂3,0]
︸ ︷︷ ︸

∂r̂4
∂p̂1,1

z2.0

∂

∂p̂2,1
U(z) = [(p̂1,1 − p̂1,1 + p̂1,0 − p̂1,0)p̂3,2 + p̂1,1p̂3,1 + p̂1,1p̂3,0]

︸ ︷︷ ︸
∂r̂1

∂p̂2,1

z0.0

+ [(−p̂1,1 + p̂1,0 − p̂1,0)p̂3,1 − p̂1,1p̂3,0]
︸ ︷︷ ︸

∂r̂2
∂p̂2,1

z1.0 + [p̂1,0p̂3,0]
︸ ︷︷ ︸

∂r̂3
∂p̂2,1

z1.5 + [−p̂1,0p̂3,0]
︸ ︷︷ ︸

∂r̂4
∂p̂2,1

z2.0

∂

∂p̂3,1
U(z) = [0 + p̂1,1p̂2,1 − p̂1,1p̂2,1]

︸ ︷︷ ︸
∂r̂1

∂p̂3,1

z0.0

+ [(p̂1,1p̂2,0 + p̂1,0p̂2,1 + p̂1,0p̂2,0) − p̂1,1p̂2,0]
︸ ︷︷ ︸

∂r̂2
∂p̂3,1

z1.0 + [−p̂1,0p̂2,1]
︸ ︷︷ ︸

∂r̂3
∂p̂3,1

z1.5 + [−p̂1,0p̂2,0]
︸ ︷︷ ︸

∂r̂4
∂p̂3,1

z2.0

∂

∂p̂3,2
U(z) = [(p̂1,1p̂2,1 + p̂1,1p̂2,0 + p̂1,0p̂2,1 + p̂1,0p̂2,0) + 0 − p̂1,1p̂2,1]

︸ ︷︷ ︸
∂r̂1

∂p̂3,2

z0.0

+ [0 − p̂1,1p̂2,0]
︸ ︷︷ ︸

∂r̂2
∂p̂3,2

z1.0 + [−p̂1,0p̂2,1]
︸ ︷︷ ︸

∂r̂3
∂p̂3,2

z1.5 + [−p̂1,0p̂2,0]
︸ ︷︷ ︸

∂r̂4
∂p̂3,2

z2.0 (5.48)

Second partial derivatives:

∂2

∂p̂1,1p̂2,1
U(z) = [(1 − 1 − 1 + 1)p̂3,2 + p̂3,1 + p̂3,0]

︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂1
∂p̂1,1

]

z0.0

+ [(−1 − 1 + 1)p̂3,1 − p̂3,0]
︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂2
∂p̂1,1

]

z1.0 + [−p̂3,0]
︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂3
∂p̂1,1

]

z1.5 + [p̂3,0]
︸ ︷︷ ︸

∂
∂p̂2,1

[

∂r̂4
∂p̂1,1

]

z2.0
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∂2

∂p̂1,1p̂3,1
U(z) = [0 + p̂2,1 − p̂2,1]

︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂1
∂p̂1,1

]

z0.0

+ [(p̂2,0 − p̂2,1 − p̂2,0) − p̂2,0]
︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂2
∂p̂1,1

]

z1.0 + [p̂2,1]
︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂3
∂p̂1,1

]

z1.5 + [p̂2,0]
︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂4
∂p̂1,1

]

z2.0

∂2

∂p̂1,1p̂3,2
U(z) = [(p̂2,1 + p̂2,0 − p̂2,1 − p̂2,0) + 0 − p̂2,1]

︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂1
∂p̂1,1

]

z0.0

+ [0 − p̂2,0]
︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂2
∂p̂1,1

]

z1.0 + [p̂2,1]
︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂3
∂p̂1,1

]

z1.5 + [p̂2,0]
︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂4
∂p̂1,1

]

z2.0

∂2

∂p̂2,1p̂3,1
U(z) = [0 + p̂1,1 − p̂1,1]

︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂1
∂p̂2,1

]

z0.0

+ [(−p̂1,1 + p̂1,0 − p̂1,0) + p̂1,1]
︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂2
∂p̂2,1

]

z1.0 + [−p̂1,0]
︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂3
∂p̂2,1

]

z1.5 + [p̂1,0]
︸ ︷︷ ︸

∂
∂p̂3,1

[

∂r̂4
∂p̂2,1

]

z2.0

∂2

∂p̂2,1p̂3,2
U(z) = [(p̂1,1 − p̂1,1 + p̂1,0 − p̂1,0) + 0 − p̂1,1]

︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂1
∂p̂2,1

]

z0.0

+ [0 + p̂1,1]
︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂2
∂p̂2,1

]

z1.0 + [−p̂1,0]
︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂3
∂p̂2,1

]

z1.5 + [p̂1,0]
︸ ︷︷ ︸

∂
∂p̂3,2

[

∂r̂4
∂p̂2,1

]

z2.0 (5.49)

The MSS reliability variances of the entire series-parallel system are:

V ar(r̂1) ≈ (p̂2,1p̂3,1 + p̂2,1p̂3,0)
2 σ2

p̂1,1
+ (p̂1,1p̂3,1 + p̂1,1p̂3,0)

2 σ2
p̂2,1

+ (1 − p̂1,1p̂2,1)
2 σ2

p̂3,2

+ (p̂3,1 + p̂3,0)
2 σ2

p̂1,1
σ2

p̂2,1
+ (−p̂2,1)

2 σ2
p̂1,1

σ2
p̂3,2

+ (−p̂1,1)
2 σ2

p̂2,1
σ2

p̂3,2

V ar(r̂2) ≈ (p̂2,0p̂3,0 − p̂2,1p̂3,1)
2 σ2

p̂1,1
+ (−p̂1,1p̂3,1 − p̂1,1p̂3,0)

2 σ2
p̂2,1

+ (p̂1,0p̂2,1 + p̂1,0p̂2,0)
2 σ2

p̂3,1
+ (−p̂1,1p̂2,0)

2 σ2
p̂3,2

+ (−p̂3,1 − p̂3,0)
2 σ2

p̂1,1
σ2

p̂2,1

+ (−p̂2,1 − p̂2,0)
2 σ2

p̂1,1
σ2

p̂3,1
+ (−p̂2,0)

2 σ2
p̂1,1

σ2
p̂3,2

+ (p̂1,1)
2 σ2

p̂2,1
σ2

p̂3,2

+ 2 (p̂1,0p̂2,1 + p̂1,0p̂2,0) (−p̂1,1p̂2,0)Cov(p̂3,1, p̂3,2)

+ 2 (−p̂2,1 − p̂2,0) (−p̂2,0)σ2
p̂1,1

Cov(p̂3,1, p̂3,2)

V ar(r̂3) ≈ (−p̂2,1p̂3,0)
2 σ2

p̂1,1
+ (p̂1,0p̂3,0)

2 σ2
p̂2,1

+ (−p̂1,0p̂2,1)
2 σ2

p̂3,1
+ (−p̂1,0p̂2,1)

2 σ2
p̂3,2
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Table 5.3: Item values for the series-parallel MSS
Item State Peformance p̂j,i

1 0 1.5 0.80
1 0.0 0.20

2 0 1.0 0.90
1 0.0 0.10

0 2.0 0.70
3 1 1.0 0.20

2 0.0 0.10

+ (−p̂3,0)
2 σ2

p̂1,1
σ2

p̂2,1
+ (p̂2,1)

2 σ2
p̂1,1

σ2
p̂3,1

+ (p̂2,1)
2 σ2

p̂1,1
σ2

p̂3,2
+ (−p̂1,0)

2 σ2
p̂2,1

σ2
p̂3,1

+ (−p̂1,0)
2 σ2

p̂2,1
σ2

p̂3,2
+ 2 (−p̂1,0p̂2,1) (−p̂1,0p̂2,1) Cov(p̂3,1, p̂3,2)

+ 2 (p̂2,1) (p̂2,1)σ2
p̂1,1

Cov(p̂3,1, p̂3,2) + 2 (−p̂1,0) (−p̂1,0)σ2
p̂2,1

Cov(p̂3,1, p̂3,2)

V ar(r̂4) ≈ (−p̂2,0p̂3,0)
2 σ2

p̂1,1
+ (−p̂1,0p̂3,0)

2 σ2
p̂2,1

+ (−p̂1,0p̂2,0)
2 σ2

p̂3,1
+ (−p̂1,0p̂2,0)

2 σ2
p̂3,2

+ (p̂3,0)
2 σ2

p̂1,1
σ2

p̂2,1
+ (p̂2,0)

2 σ2
p̂1,1

σ2
p̂3,1

+ (p̂2,0)
2 σ2

p̂1,1
σ2

p̂3,2
+ (p̂1,0)

2 σ2
p̂2,1

σ2
p̂3,1

+ (p̂1,0)
2 σ2

p̂2,1
σ2

p̂3,2
+ 2 (−p̂1,0p̂2,0) (−p̂1,0p̂2,0) Cov(p̂3,1, p̂3,2)

+ 2 (p̂2,0) (p̂2,0)σ2
p̂1,1

Cov(p̂3,1, p̂3,2) + 2 (p̂1,0) (p̂1,0) σ2
p̂2,1

Cov(p̂3,1, p̂3,2) (5.50)

For demonstrating the accuracy of the approximated V ar(U(z)), a simulation of the series-

parallel MSS was perfomed. Table 5.3 provides the probabilities assumed for every item stated.

The following variance matrix is assumed for every item:

Σ1 =

[

4.00E − 04 −4.00E − 04

−4.00E − 04 4.00E − 04

]

Σ2 =

[

2.25E − 04 −2.25E − 04

−2.25E − 04 2.25E − 04

]

Σ3 =







1.00E − 04 −4.67E − 05 −2.33E − 05

−4.67E − 05 7.62E − 05 −6.67E − 06

−2.33E − 05 −6.67E − 06 4.29E − 05







(5.51)

Table 5.4 presents the results of 1, 000, 000 simulations of the entire system. The items

were simulated applying the following Dirichlet distributions: Item1 ∼ Dir(319.2, 79.8), Item2

∼ Dir(359.1, 39.9), and Item3 ∼ Dir(1469.3, 419.8, 209.9).

Table 5.4 provides the reliability variance obtained by the UGF-Delta method. The series-

parallel MSS example proves the accuracy of the UGF-Delta method approximation with respect
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Table 5.4: Reliability simulations of the parallel MSS with work sharing
Reliability Variance

Entity State Peformance Min Max Mean Simulation UGF-Delta

0 1.5 0.699225 0.887445 0.799998 3.9984E-04 4.0000E-04
Item 1 1 0.0 0.112555 0.300775 0.200002 3.9984E-04 4.0000E-04

0 1.0 0.817947 0.959192 0.900003 2.2514E-04 2.2500E-04
Item 2 1 0.0 0.040808 0.182053 0.099997 2.2514E-04 2.2500E-04

0 2.0 0.653981 0.744241 0.700014 1.0010E-04 1.0000E-04
Item 3 1 1.0 0.161896 0.241623 0.199989 7.6293E-05 7.6200E-05

2 0.0 0.070443 0.134919 0.099997 4.2890E-05 4.2900E-05
1 0.0 0.086996 0.156871 0.117997 5.1844E-05 5.1805E-05

MSS 2 1.0 0.256226 0.397308 0.321993 2.0934E-04 2.0833E-04
3 1.5 0.022678 0.105726 0.055999 7.3232E-05 7.3257E-05
4 2.0 0.420305 0.582658 0.504011 2.8161E-04 2.8424E-04

to the simulation results.

In this chapter, the Delta method is applied to propagate the variance of the item

probabilities. There is no assumed time-to-failure distribution of the items or system. This

is very practical when item or system failure time is difficult to record or few failures are

available to specify an appropriate distribution. The UGF-Delta method can be applied to the

systems presented in Chapter 2 or complex combinations of themselves.
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Chapter 6

Particle Evolutionary Swarm

Optimization

Reliability engineering involves the optimal design of complex systems for finding the suitable

tradeoff between reliability, cost and performance.

The diversity of system structures, resource constraints, and options for reliability

improvement has led to the construction and analysis of several optimization models. We

are interested in the two general redundancy allocation and reliability allocation problems. For

the first, there are discrete item choices with known characteristics (reliability, cost, weight,

etc.). The objective for this combinatorial problem is to decide which items to use and the

corresponding redundancy levels. The redundancy allocation problem has been shown to be

NP-hard [9]. For the second, item’s reliability (or a vector of distribution parameters) is treated

as a design variable, and the item’s cost is a function of its reliability.

Finding an optimal balance between these two factors is a classical reliability-redundancy

allocation problem (RRAP) [77]. Two types of decision variables are of concern in the RRAP:

real numbers representing probabilities of the items, and integer numbers representing the

number of items in each subsystem [77].

The RRAP deals with the optimization of reliability and cost. The optimization criterion

could appear of two different forms:

• Maximization of the system reliability, subject to cost constraints.

• Minimization of the system cost, subject to reliability constraints.
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Several optimization approaches have previously been used to solve the reliability allocation

problem [61]. Evolutionary algorithms have been widely used to solve the RRAP [12, 20, 77,

124, 125]. Mainly, genetic algorithms (GAs) have been used in many works for solve reliability

optimization problems [67, 83, 125]. However, the tests performed in [20] showed that the

particle swarm optimization algorithm (PSO) is able to get better results than those obtained

by a GA for several reliability optimization problems.

Evolutionary algorithms are unconstrained search techniques which lack an explicit

mechanism to deal with constrained search spaces. Therefore, introducing new good

optimization approaches can be very helpful in some specific areas and can benefit practitioners

by providing more choices [77]. This thesis proposes to apply a modified version of the PSO

algorithm to solve design MSS reliability problems.

6.1 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is a population-based optimization technique

inspired by the motion of a bird flock, or fish schooling. In the PSO model, every particle flies

over a real valued n-dimensional space of decision variables X. Each particle keeps track of its

position X, velocity V , and remembers the best position ever visited, PBest. The particle with

the best PBest value is called the leader, and its position is called global best, GBest. The next

particle’s position is computed by adding a velocity term to its current position, as follows:

Xt+1 = Xt + Vt+1 (6.1)

The velocity term combines the local information of the particle with global information of

the flock, in the following way.

Vt+1 = w ∗ Vt + φ1 ∗ (PBest − Xt) + φ2 ∗ (GBest − Xt) (6.2)

The equation above reflects the socially exchanged information. It summarizes PSO

three main features: distributed control, collective behavior, and local interaction with the

environment [21, 57].The second term is called the cognitive component, while the last term

is called the social component. w is the inertia weight, and φ1 and φ2 are called acceleration

coefficients. The inertia weight regulates the mixture of the previous velocity with the current

one.
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Figure 6.1: Neighborhood structures for PSO

When the flock is split into several neighborhoods the particle’s velocity is computed with

respect to its neighbors. The best PBest value in the neighborhood is called the local best,

LBest.

Vt+1 = w ∗ Vt + φ1 ∗ (PBest − Xt) + φ2 ∗ (LBest − Xt) (6.3)

Neighborhoods can be interconnected in many different ways. Some of the most popular

interconnection neighborhoods are shown in Figure 6.1. The star topology is in fact one big

neighborhood where every particle is connected to each other, thus enabling the computation

of a global best. The ring topology allows neighborhoods and it is, therefore, commonly used

by PSO ’s local best model.

PSO is a fast algorithm whose natural behavior is to quickly converge to the best explored

local optima. However, attainting flock’s convergence to the global optimum with high

probability implies certain adaptations. The approaches range from modifications to the main

PSO equation, to the incorporation of reproduction operators. This chapter introduces the

Particle Evolutionary Swarm Optimization algorithm (PESO), a hybrid PSO with the following
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new features:

• Two perturbation operators to keep diversity. Although perturbations are not included in

the original PSO model, they are quite common nowadays. The formal analysis of van den

Bergh shows that the PSO algorithm will only converge to the best position visited, not the

global optimum [132]. Therefore, the quest for high diversity is a sound approach to locate

the global optimum since more diversity leads to increase the exploratory capabilities of

PSO.

• Singly linked ring topology. PESO creates several neighborhoods around a new ring

topology that we called the “singly linked ring topology” (SLR). Thus PESO promotes a

flock with several local leaders to improve the exploration capacity [21, 57]).

• Constraint handling. PSO lacks an explicit mechanism to bias the search towards the

feasible region in constrained search spaces. For selecting a neighborhood leader, PESO

picks the winner through a tournament of feasibility and sum of constraint violations

(“superiority of feasible solutions” [18]).

6.2 Diversity control for PSO algorithm

A frequent problem in evolutionary computation is premature convergence. This means that

the evolutionary algorithm could be trapped in a region containing a local optimum. Premature

convergence can be caused by the loss of diversity, which occurs when the population reaches

a suboptimal state where the evolutionary algorithm can no longer produce offspring which

outperform their parents [27]. A way to keep diversity is by maintaining a proper balance

between exploration and exploitation [39].

In the standard PSO, the source of diversity, called variation, is measured as the differences

between: 1)the particle’s position X and the particle’s memory PBest, and 2)the particle’s

position X and the best particle’s neighbor LBest. Although variation provides diversity, it

can only be maintained for a limited number of generations because convergence of the flock is

necessary to refine the solution.

The need to keep diversity is a well-known topic in PSO research. It has been addressed by

several authors who have developed many variants, which are summarized (for the purposes of

this dissertation) in five categories:
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1. Modified velocity term: the formulation of the velocity update rule is modified in one

or all of its terms (inertia, cognitive and social). Garćıa-Villoria and Pastor proposed

to introduce diversity into a discrete PSO algorithm by adding a random velocity [28].

This mechanism changes dynamically the degree of the introduced diversity according

to the heterogeneity of the population. Jie and Zeng introduced a negative feedback

mechanism into PSO [48]. Through the feedback control of the diversity, their approach

can manipulate the weight of the cognitive part and the social part to fluctuate with the

search state. Das et al. [16] adapted the reproduction operator of differential evolution

[122, 123] to the PSO velocity term.

2. Swarm breeding: a breeding operator (reproduction, recombination, crossover, etc.) is

incorporated into the standard PSO to generate offspring particles benefited from two

or more parents. Lovbjerg et al. proposed a standard PSO combined with arithmetic

crossover (real valued GA crossover) [85]. Settles and Soule proposed a new crossover

operator, called VPAC, which incorporates the PSO velocity vector [120]. The VPAC

operator creates two offspring particles whose positions are between the parents positions,

but are accelerated away from their current parents’ direction.

3. Evolutionary combinations: the PSO algorithm is improved with the incorporation of

other evolutionary algorithms procedures every k generations. Zhang and Xie proposed to

compute the velocity term by taking turns between PSO and differential evolution [143].

At odd generations the individuals are updated by the rules of motion of PSO; at even

generations by the differential evolution formalism.

4. Clusters: the approaches measure and control the swarm crowding keeping away particles

among themselves. For instance, the SEPSO proposed by Krink et al., involves endowing

each particle with a radius, then causing particles to bounce off of one another [59].

Blackwell introduces the concept of “charged” particles based on an electrostatic analogy-

inter-particle repulsions [4]. A related approach, called ARPSO, measures the global

diversity of the swarm, triggering modes of global attraction or repulsion when it crosses

predefined thresholds [116].

PESO keeps diversity by applying two perturbation operators on PBest: the C-perturbation

which is oriented to sustain global exploration by keeping diversity, and the M-perturbation

oriented to the local refinement of solutions. Angeline [2], and also Eberhart and Shi [22],

proposed swarm breeding as a good mecanishm to maintain PSO diversity.
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Since the LBest is a copy of the PBest memory of the best neighbor particle, it is a good

idea to perturb the particle’s memory PBest to maintain population diversity; due to the source

of the PSO diversity is related with the differences between vectors X and PBest, and between

vectors X and LBest.

6.3 Constraint handling techniques for the PSO algorithm

Real optimization problems are subject to a number of equality and inequality constraints,

which can be linear or nonlinear. These constraints determine which areas of the search space

are feasible and which are infeasible. In addition to these constraints, boundary constraints are

usually imposed to the search space (Michalewicz, 1992). Also, there is the possibility that the

feasible space is fragmented and separated by infeasible regions, requiring that both the feasible

and infeasible regions be searched.

Several authors have noted how the adoption of a constraint handling technique may cause

diversity loss due to the additional selection pressure required to bias the population towards

the feasible region [34, 36, 89, 37].

PSO is an unconstrained search technique. Thus, adopting a constraint handling technique

into the main PSO algorithm is an open research area. There is a considerable amount

of research regarding mechanisms that allow the PSO algorithm to deal with equality and

inequality constraints. Several constraint-handling techniques have been imported from

traditional methods and from the evolutionary literature [11], while others have been developed

by exploiting specific features of the PSO algorithm [46].

Different classifications can be found in the literature to group somehow similar techniques,

although it is not always straightforward to decide which technique belongs to which group

[91, 11, 23, 46]. In general, the literature arranges the constraint-handling methods into five

categories:

1. Preserving only feasible solutions: This method requires successive random initial-

ization until a feasible solution or set of feasible solutions is generated. Hu and Eberhart

proposed a feasibility preservation strategy that determines the best particle [41, 42].

While particles can fly over infeasible regions, they are quickly pulled back to feasible

space as infeasible positions are not stored in memory.

2. Penalty functions methods: These methods transform the original constrained
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problem into an unconstrained one by penalizing the objective function associated with

infeasible solutions. The penalty function is very sensitive to the tuning of the penalty

coefficients. For instance, Parsopoulos and Vrahatis used a multi-stage assignment penalty

function without diversity control [108].

3. Superiority of feasible solutions: This method compares two feasible solutions based

on the objective function values (fitness). Between a feasible solution and an infeasible

solution, a feasible solution is always chosen rather than an infeasible one. When

comparing two infeasible solutions, constraint violations information is used as a criterion

to choose the best one. For instance Toscano and Coello [128], use a turbulence operator

(a kind of mutation) combined with a superiority of feasible solutions method [18].

4. Repair methods: In these methods, some procedures are applied so that an infeasible

candidate solution is repaired by relocating it to a nearby feasible position. For example,

He et al. proposed a “fly-back” mechanism that returns an unfeasible particle to its

previous feasible position [35].

5. Multi-objective based methods: The main idea is to think of constraint violations as

additional objectives to be minimized. Thus, constrained single-objective problems can

be tackled using multi-objective optimization techniques [90].

Early approaches did not combine a diversity maintenance strategy with the constraint

handling technique. For instance, Coath and Halgamuge [10] analyzed PSO algorithms based

on penalty and feasibility preservation methods. Their experiments clearly detect the need

of some form of diversity control. PESO uses a superiority of feasible solutions method to

handle constraints and additionally applies a dynamic tolerance technique for handling equality

constraints [97].

6.4 The PESO Algorithm

PESO is a local PSO with a singly-linked ring neighborhood. PESO handles constraints

by adopting a superiority of feasible solutions method complemented with a dynamic tolerance

(for handling equality constraints). The main components of PESO are the C-Perturbation and

M-Perturbation operators; these are applied to the variable PBest of the flock [92].

Throughout the current section, the essential components of PESO are explained: interac-

tion model, neighborhood structure, diversity mechanism and constraint-handling mechanism.
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6.4.1 Interaction Model

There are 4 interaction models proposed by Kennedy [56]; these models were defined by omitting

components of the velocity formula. The full model is composed by the cognition component

and the social component. Dropping the social component results in the cognition-only model,

whereas dropping the cognition component defines the social-only model. In a fourth model,

selfless model, the neighbourhood best is chosen only from the neighbours, without considering

the current individual. Experimental results have shown that the social-only model consistently

found solutions faster than the full model, but the reliability of the social-only model is lower

than the full model.

Parsopoulos and Vrahatis [109] proposed a new scheme that combine the global and the local

PSO variants. The approach calculates two velocity directions, one from a global full model

and another from a local full model. Both directions, global and local, are linearly combined

trough an influence parameter. In the same way, Cagnina et al. [7] proposed an extended full

model using a combination of both the global and the local PSO variants with a constriction

factor k (the k parameter affects the whole velocity equation). In PESO, the velocity equation

combines a new global term with the inertia, cognition and social terms.

Vt+1 = w ∗ Vt + φ1 ∗ (PBest − Xt) + φ2 ∗ (LBest − Xt) + φ3 ∗ (GBest − Xt) (6.4)

The inertia weight in PESO is linearly decremented from 1.0 to 0.5 according to the number

of function evaluations. Thus, at the beginning of the search, the algorithm performs more

exploration, and along the process the algorithm is gradually focused on exploitation. The

experiments suggest that the best parameters for the model are the following:

φ1 = 1.0 ∗ U(0, 1.0) = U(0, 1.0)

φ2 = 1.0 ∗ U(0, 1.0) = U(0, 1.0)

φ3 = 0.1 ∗ U(0, 1.0) = U(0, 0.1)

where U(α, β) is a uniform distribution with random numbers between α and β. Note that the

new global term in the velocity equation has a low influence (φ3) but its role is nevertheless

important to keep the flock on promising regions. This concept will be understood when we
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analyze the technique to handle equality constraints, where the incorporation of the global

influence is essential to improve the results of some test functions.

6.4.2 Neighborhood Structure

In the PSO scheme each particle moves following a leader. Particles in the same neighborhood

communicate with one another by exchanging information for moving towards a better position.

The flow of information through the flock depends on the neighborhood structure. Figure 6.1

presents a few neighborhood structures developed for PSO.

In a highly connected neighborhood structure, the information about the best particle

in the swarm (GBest) is quickly transmitted through the whole flock. This means faster

convergence, but also implies a higher risk to converge to a local minimum. Also, Kennedy

and Mendes empirically show that the star neighborhood attains faster convergence than

the other topologies, but it meets the optimal fewer times than any other one [58]. They

suggest trying the Von Neumann neighborhood structure, which performed more consistently

in their experiments than the topologies commonly found in current practice. The success of the

Von Neumann neighborhood in unconstrained optimization is due to the interaction that each

particle has with other particles, an average of 5 neighbors. This promotes the exploitation,

but unfortunately fails to provide the exploration required by the constrained optimization

problems. It is important to note that the conclusions reached by Kennedy and Mendes are valid

for unconstrained optimization problems. PESO works with a new neighborhood structure, the

singly-linked ring.

The singly-linked ring (SLR) neighborhood rises from discovering that the ring and the Von

Neumann neighborhoods are double-linked lists; like it is shown in Figure 6.2. Suppose that

every particle is assigned a permanent label which is used to construct the neighborhoods. For

each particle k, a neighborhood of size n is composed by the next n/2 linked particles, and by

n/2 previous particles; and the best particle in the neighborhood is the local best of particle k

(LBest). For example, in a neighborhood of size n = 2, particle k has two neighbors, particles

k − 1 and k + 1. In turn, particles k − 1 and k + 1 have particle k as a neighbor. In this way,

there is a mutual attraction between consecutive particles, forming overlapped clusters. Also,

the slower convergence of the ring structure has been empirically shown [58].

Now let’s, analyze a PSO based on a SLR neighborhood, see Figure 6.3, and assume particle

k is again the best of flock. But particle k now has particles k − 2 and k + 1 its as neighbors

(not k − 1 and k + 1 as in the double link). Since particle k + 1 has particles k − 1 and k + 2
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Figure 6.2: Ring structure

Figure 6.3: Singly-linked ring structure

as its neighbors, and k − 1 has particles k − 3 and k as its neighbors. Then, k attracts k − 1

but k − 1 only attracts k through particle k + 1. Therefore, the particle in between cancels

the mutual attraction. Besides, the information through the whole swarm is transmitted faster

than in the original ring topology. Therefore, the SLR structure keeps the exploration of the

search space, and increases the exploitation of the best solutions [38].

Algorithm 1 shows the procedure to find the neighbors for particle k in a SLR structure;

where Nk is the neighborhood of particle k, and P(k+m) is the particle located m positions

beyond particle k.

The procedure presented in Algorithm 1 allows neighborhoods of size N = flock/2 − 1

without mutual attraction. In neighborhoods of size N = flock/2 appears a double link between

particles k and k + flock/2. PESO uses a SLR structure with a neighborhood of size n = 4.
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Algorithm 1 Singly-linked ring neighboorhood

Nk = ∅
Step = 1
Switch = 1
repeat

Nk = Nk ∪ P(k+Switch∗Step)

Step = Step + 1
Switch = −1 ∗ Switch

until Nk = N

For each particle k, its neighbors are the particles: k + 1, k − 2, k + 3 and k − 4. A detailed

explanation of the SLR structure with 4 neighbors is given in Table 6.1.

Table 6.1 shows the neighbors for every particle k and the information flow on the

communications channels (neighbors) spawn by the proposed topology.

6.4.3 Diversity Mechanism

In his dissertation, van den Bergh gives a theorem which specifies under which conditions an

algorithm can be considered a global optimization method [132]. The theorem implies that a

general algorithm, without a priori knowledge, must be able to generate an infinite number of

samples distributed throughout the whole search space in order to guarantee that it will find

the global optimum with asymptotic probability 1.

This can be achieved by periodically adding randomized particles to the swarm. Neverthe-

less, resetting the position of the particles is not a trivial task; a bad decision affects directly

in the exploitation of the best solutions [132]. We propose, based on the observation that the

PBest particles drive the swarm, to perturb the PBest population.

Before explaining the perturbation operators, it is necessary to introduce the main algorithm

of PESO for better understanding. The complete pseudocode of the PESO algorithm is shown

in Figure 2.

Flying the particles is the main task of PSO, see Stage 1. Variables LL and UL are the lower

and upper limits of the search space. Function LocalBest returns the best neighbor, applying

a SLR structure with 4 neighbors, for each particle. Function ParticleBest updates the PBest

population. Function TheBest updates the GBest particle. The function SCV computes the

Sum of Constraint Violations, that is, total value of infeasible constraints. The number of

particles is n, d is the dimension of the space, and i is the generation index. The perturbations
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N Neighbor Structure

1 k + 1

2 k − 2

3 k + 3

4 k − 4

Table 6.1: Singly-Linked Ring Structure with n = 4 neighbors
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Algorithm 2 Pseudo-code of the PESO algorithm

X0 = Rand(LL, UL)
V0 = 0
F0 = Fitness ( X0 )
C0 = SCV ( X0 )
PBest= X0, FBest= F0, CBest= C0

for i = 1 to maxgenerations do
Stage 1
LBest = LocalBest ( FBest, CBest )
GBest = TheBest ( FBest, CBest )
V = Velocity ( V , X, PBest, LBest, GBest)
X = X + V
F = Fitness ( X )
C = SCV ( X )
[PBest, FBest, CBest] = ParticleBest ( PBest, X, FBest, F , CBest, C )
Stage 2
if U(0, 1) < pC then

PTemp = C-Perturbation (PBest )
FTemp = Fitness ( PTemp )
CTemp = SCV ( PTemp )
[PBest, FBest, CBest] = ParticleBest ( PBest, PTemp, FBest, FTemp, CBest, CTemp )
TBest = TheBest ( FBest, CBest )
if TBest ≥ GBest then

pC = pC*0.99
else

pC = min(1.0,pC*1.01)
GBest = TBest

end if
end if
Stage 3
if U(0, 1) < pC then

PTemp = M-Perturbation (PBest )
FTemp = Fitness ( PTemp )
CTemp = SCV ( PTemp )
[PBest, FBest, CBest] = ParticleBest ( PBest, PTemp, FBest, FTemp, CBest, CTemp )
TBest = TheBest ( FBest, CBest )
if TBest ≥ GBest then

pM = pM*0.99
else

pM = min(1.0,pM*1.01)
GBest = TBest

end if
end if

end for
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are applied to PBest in the next two stages.

The perturbation of PBest is what makes PESO different. Other approaches perturb the

position of the particle and later PBest is updated accordingly. PESO, however, applies the

perturbations to the memory PBest and leaves the motion of the particles to PSO.

The goal of the second stage is to add a perturbation generated from the linear combination

of three random vectors. This perturbation is preferred over other operators because it preserves

the distribution of the population (also used for reproduction by the differential evolution

algorithm [111]). In PESO this perturbation is called C-Perturbation. It is applied to the

members of PBest to yield a set of temporal particles PTemp. Then each member of PTemp

is compared with its corresponding father and PBest is updated with the child if it wins the

tournament. Algorithm 3 shows the pseudo-code of the C-Perturbation operator.

Algorithm 3 Pseudo-code of C-Perturbation

for k = 0 to n do
for j = 0 to d do

r = U(0, 1)
p1 = Random(n)
p2 = Random(n)
Temp[k, j] = PBest[k, j] + r (PBest[p1, j] - PBest[p2, j])

end for
end for

In the third stage every vector is perturbed again, so that a particle can be deviated

from its current direction as responding to external, perhaps more promissory, stimuli. This

perturbation is implemented by adding small random numbers (from a uniform distribution)

to every design variable. The perturbation, called M-Perturbation, is applied to every member

of PBest to yield a set of temporal particles PTemp. Then each member of PTemp is compared

with its corresponding father and PBest is updated with the child if it wins the tournament.

Algorithm 4 shows the pseudo-code of the M-Perturbation operator. The perturbation is

added to every dimension of the decision vector with probability 1/d (d is the dimension of the

decision variable vector).

In Figure 6.4, the position PBest is relocated to a new “best” after the perturbation

operations. Notice that this change is made to the particle’s best visited location. When

PSO takes its turn to perform its computations, it finds everything as left in the previous

generation, except that the memory PBest may now store a better position.

The cooperation between PSO and the perturbation operators has been carefully analyzed
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Algorithm 4 Pseudo-code of M-Perturbation

for k = 0 to n do
for j = 0 to d do

r = U(0, 1)
if r ≤ 1/d then

Temp[k, j] = Rand(LL, UL)
else

Temp[k, j] = PBest[k, j]
end if

end for
end for

Figure 6.4: PBest updated after the C and M perturbations
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by the author throughout the numerous experiments conducted. The PSO stage is very efficient

at refining solutions in a local space, but exploration is performed by the perturbation operators.

The perturbation operators adapt their activity along generations as follows: the operator is

invoked with probability pC = pM = 1 when the flock is flown for the first time. This probability

is decremented by a factor of 1% whenever the perturbation stage fails to improve the GBest

value, otherwise, it is incremented by a factor of 1%. Thereby, the incorporation of perturbation

to the PBest decreases along the process whenever the swarm converges to the optimal.

In his work, van den Bergh proposed two algorithms which periodically add particles

randomly to the flock for accomplishing his theorem that guarantees convergence to the global

optimum [132]. Following that line in PESO, a PTemp population is created after applying the

perturbation operators, and then used (as if they were random particles) to update the PBest

population. The perturbation of the PBest population is performed every generation, subject to

the current probabilities pC and pM of the perturbation operators. Algorithm 2 shows clearly

this feature.

6.4.4 Constraint handling approach

Deb introduced the superiority of feasible solutions selection based on the idea that

any individual in a constrained search space must first comply with the constraints and then

with the function value [18]. PESO adopted such popular tournament selection whose rules are

included in the functions LocalBest, ParticleBest and TheBest:

1. Given two feasible particles, pick the one with better function value;

2. From a pair of feasible and infeasible particles, pick the feasible one;

3. If both particles are infeasible, pick the particle with the lowest sum of constraint violation.

The sum of constraint violations is, of course, the total value by which unsatisfied constraints

are violated (computed by function SCV in Figure 2). The superiority of feasible solutions

method does not require tuning parameters or applying special operators. Just a simple

comparison is used to choose the best individual. Our approach applies this method, allowing

feasible and infeasible solutions in the swarm. It enriches the information about the search

space, especially at its boundaries.

Nevertheless, for handling equality constraints, it is not enough just converting them into

inequality constraints of the form |hj | ≤ ǫ, where ǫ is called the tolerance. PESO uses a dynamic
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tolerance technique for handling equality constraints [97]. An initial tolerance value of ǫ = 1.0

is decremented by 10% to a specified target value τ . The tolerance value is decreased whenever

a percentage of feasible particles (PFP) is attained. The initial value of PFP is 100%, and it is

updated at every generation with the following equation:

PFP =

(

1 − generation

maxgeneration

)

(6.5)

In addition, when PESO has performed 90% of the function evaluations and the tolerance

value has not reached the specified target value (ǫ > τ), the current tolerance value is replaced

with that target value (ǫ = τ). For the last 10% of the function evaluations, the tolerance

value is kept fixed (ǫ = τ); thus, the particles have additional time to achieve convergence.

Summarizing, at the beginning of the process the particles are allowed to be feasible in a

large number. Whenever the tolerance is decremented some particles might become infeasible,

resulting in the loss of promising regions [97].

6.4.5 Applications of the PESO algorithm

PESO has been applied to solve artificial constrained and unconstrained functions with

continuos and discrete variables [93, 38, 95, 96]. Also, a well-known benchmark of 24 continuous

constrained problems [89, 80] has been solved by PESO with different function evaluations (from

350,000 to 50,000) showing a robust performance [97].

A modified version of PESO, the PESDRO algorithm was developed to optimize binary

systems [92]. Furthermore, a real-world problem concerning a behavior prediction in the

Eurovision Song Contest 2008 was solved using the PESO algorithm [105].

Now, a modified version of the PESO algorithm is presented in the next section to solve the

RVRP introduced in Chapter 4.

6.5 Modified PESO Algorithm for the RVRP

In some works, PSO algorithm has been used to solve the standard VRP [135, 84]. For solving

the RVRP, this work uses a modified version of the PESO algorithm. A new partition strategy

called sectors model and adapted perturbation operators (C-perturbation and M-perturbation)

were developed to solve a combinatorial VRP optimization subject to reliability constraints.
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Figure 6.5: VRP nodes geographically scattered

Figure 6.6: Customer position in polar coordinates

6.5.1 Sectors Model

The solution of a VRP instance (see Figure 6.5) is a set of least cost routes from one depot

to a set of geographically scattered points. Every route is concerned with a customers subset

located in the same neighborhood. A smart space partitioning of the customers set can save

a lot of computational effort [24]. Spatial clustering can be applied to group similar spatial

customers together; the implicit assumption is that patterns in space tend to be grouped rather

than randomly located. A new spatial data mining technique for VRP, called sectors model,

is proposed for clustering the customers according ito ts spatial localization.

First, the customers are sorted according to their polar angle θ, which is a geographical

point in polar coordinates (r, θ) (see Fig. 6.6). Then, the customers and the depot can be

inscribed by a circumference centered at D =depot, as shown in Fig. 6.7.

Several approaches perform a cluster applying a Euclidean distance. We propose to assign

customers to vehicles by partitioning the customers into sectors according to their polar

coordinates. The number of partitions (sectors) represents the number of vehicles allocated

to find a VRP solution. The angles of sector limits (partition lines) are variables of the model.

Figure 6.8 shows a partition of the customers into 3 sectors. The sectors can share a portion of
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Figure 6.7: VRP Representation

Figure 6.8: Customers partitioned into sectors

the customer set as it is shown in Fig. 6.8.

Customers within each sector are routed minimizing distance and waiting time. Customers

into sharing regions are assigned to only one sector with probability p = 1/si, where si is the

number of sectors sharing customer i. Figure 6.9 shows an instance of the possible customer

assigment and routes obtained for the example shown in Fig. 6.8.

6.5.2 Representation

The sectors model (explained above) can be represented by a solution vector (particle) of

dimension d = 1 + 1.5 ∗ l + n
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Figure 6.9: Routes design

~x = {x0, x1, . . . , xd}

where x0 represents the number of sectors (vehicles), components x1 to xl represent the polar

angle set (l = 2 ∗ x0), the components xs+1 to xl+n are a permutation of the customer set

N = {1, 2, . . . , n}, and components xl+n+1 to xl+n+l/2 represent the route size set. The route

size determines the end and the begining of each route in the customer set.

For instance, the next vector represents the solution shown in Fig. 6.9

~x = { 3
︸︷︷︸

cars

, 75, 190, 280, 60, 200, 15
︸ ︷︷ ︸

polar angles

,

route−1
︷ ︸︸ ︷

2, 7, 10, 1,

route−2
︷ ︸︸ ︷

3, 4, 9 ,

route−3
︷ ︸︸ ︷

8, 5, 6
︸ ︷︷ ︸

customers

, 4, 3, 3
︸ ︷︷ ︸

route sizes

}

6.5.3 Algorithm

Algorithm 5 presents the pseudocode of the modified PESO to solve RVRP optimization

problems.

First, the number of partitions and the polar angle set are randomly generated. The

number of partitions is bounded by maxcars = customers in the upper limit, and mincars =

(totaldemand)/(vehiclecapacity) in the lower limit. The polar angle limits are 0 ≤ θ ≤ 360.

The customers are assigned to each route based on the sector partition generated.
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Algorithm 5 Modified PESO for RVRP

Generate randomly ~x from x0 to xl

[~y,~s]=Assign and count customers for sector set ~x
P0 = ~x ∪ ~y ∪ ~s
Assess travel cost C0 of P0

Assess MSS reliabity R0 of P0

Initialize PBest = P0, CBest = C0 and RBest = R0

for t = 1 to maxgenerations do
~x = Apply a PSO with SLR neighborhood to Pt from p0 to pl

[~y,~s]=Reassign and count customers for sector set ~x
Pt+1 = ~x ∪ ~y ∪ ~s
Assess travel cost Ct+1 of Pt+1

Assess MSS reliabity Rt+1 of Pt+1

[PBest, CBest, RBest] = Feasibility tournament [PBest, CBest, RBest] vs [Pt+1, Ct+1, Rt+1]
if U(0, 1) < pC then

PTemp = C-Perturbation (PBest )
Assess travel cost CTemp of PTemp

Assess MSS reliabity RTemp of PTemp

[PBest, CBest, RBest] = Feasibility tournament [PBest, CBest, RBest] vs
[PTemp, CTemp, RTemp]

end if
if U(0, 1) < pC then

PTemp = M-Perturbation (PBest )
Assess travel cost CTemp of PTemp

Assess MSS reliabity RTemp of PTemp

[PBest, CBest, RBest] = Feasibility tournament [PBest, CBest, RBest] vs
[PTemp, CTemp, RTemp]

end if
Pt = Pt+1

end for
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Figure 6.10: Two sectors joined after applying the Fusion route step

After initialization PBest = P0, a PSO with SLR neighborhood is applied. The step is only

performed in the first l + 1 variables of each particle. The customers are reassigned to each

route based on the sector partition generated by the PSO-SLR step. These variables compose

the Pt+1 population. A feasibility tournament is performed between PBest and Pt+1 to update

PBest population.

Next, the C-perturbation operator is performed on PBest. Algorithm 6 shows the pseudocode

of the adapted C-Perturbation operator for VRP.

Algorithm 6 Adapted C-perturbation operator for VRP

for k = 0 to swarmsize do
for j = 0 to l do

r = U(0, 1)
p1 = Random(n)
p2 = Random(n)
PTemp[k, j] = PBest[k, j] + r (PBest[p1, j] - PBest[p2, j])

end for
PTemp[k,l+1:d] = Assign and count costumers for sector set PTemp[k,0 : l]

end for
Apply fusion route on PTemp

In the fusion route step (see Algorithm 6), two sectors are joined giving place to one larger

sector that reduces the number of partitions (vehicles). The customers of one route are inserted

in the other route. Figure 6.10 presents an example of a fusion route process.

Finally, the M-perturbation operator is performed on PBest. This perturbation is

implemented by adding small random numbers (from a uniform distribution) to the first l + 1

variables. Algorithm 7 shows the pseudocode of the adapted M-Perturbation operator for VRP.
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Algorithm 7 Adapted M-perturbation operator for VRP

for k = 0 to swarmsize do
for j = 0 to l do

r = U(0, 1)
if r ≤ 1/l then

PTemp[k, j] = Rand(LL, UL)
else

PTemp[k, j] = PBest[k, j]
end if

end for
PTemp[k,l+1:d] = Assign and count costumers for sector set PTemp[k,0 : l]
Apply swapping customers on PTemp[k,l+1:d]

end for

In the swapping customers step (see Algorithm 7), two costumers into every sector are

swapped with probability 1/customers. It helps to find the optimal secuence for every route.

The PESO algorithm and its modified version to solve the RVRP are used in Chapter 7 to

optimize the design MSS problems analyzed in this dissertation.
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Chapter 7

Experiments

The experiments presented in this chapter are used to show the performance of the PESO

algorithm detailed in Chapter 6. An artificial RRAP and a MSS network are used to compare

PESO against other evolutionary algorithms applied in MSS reliability engineering. Besides,

a real-world application of the RVRP introduced in Chapter 4 is presented to illustrate the

RVRP theory.

7.1 Series-Parallel MSS: Reliability Allocation Problem

In this section, a reliability-redundancy allocation problem is used to compare our approach

against two evolutionary algorithms. Tian et al. proposed a series-parallel MSS composed of

three subsystems connected in series [127]. Every subsystem can posseses mj items of three

states gj,i = {0.0, 0.5, 1.0}.

The objective optimization problem was formulated as follows [127]:

Maximize U =
3∑

k=1

gkpk (7.1)

S. t.

3∑

j=1

cj(pj,1, pj,2)
[

mj + e
mj
4

]

≤ C0 (7.2)

pj,i ∈ [0, 1], 0 ≤ i ≤ 2, 1 ≤ j ≤ 3 (7.3)
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2∑

i=0

pj,i = 1, 1 ≤ j ≤ 3 (7.4)

0 < mj , 1 ≤ j ≤ 3 (7.5)

where C0 is the maximum allowed system cost (budget) and U is the MSS utility, expected

performance E[G] (see Chapter 3). The cost of every item j, allocated into the parallel structure

subsystems, as a function of its probabilities is

cj(pj,1, pj,2) =
2∑

i=1

αj,i

( −t

ln(pj,i)

)βj,i

(7.6)

where αj,i and βj,i are characteristic constants with respect to state i, and t is the operating

time. Figure 7.1 shows the series-parallel MSS proposed by Tian et al. [127].

Figure 7.1: Series-parallel MSS: RRAP

The final system performance levels are G = {0, 0.5, 1.0} [127]. The nine objective variables

are nj and pj,i; j = {1, 2, 3}, i = {1, 2}. The cost function parameters αj,i and βj,i are presented

in Table 7.1. The system operating time is t = 1000.

Table 7.1: Cost function characteristic constants
Subsystem j pj,1 pj,2 nj βj,2

1 1.5E-05 4.0E-05 1.2 1.5
2 0.9E-05 3.2E-05 1.2 1.5
3 5.2E-05 9.0E-05 1.2 1.5

Tian et al. use a genetic algorithm to solve its proposed series-parallel MSS [127]. This

problem was solved by Levitin et al. using a particle evolutionary swarm [77].

Table 7.2 presents the best results obtained by PESO, and reported by Tian et al. (GA)
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[127] and Levitin et al. (PSO) [77]. The total system cost was set to C0 = 89.476 for the

comparison as it was reported by [77]. PESO uses a swarm size (population) of 100 particles

and applies the PSO parameters detailed in Chapter 6.

Table 7.2: Comparision of the series-parallel MSS results
Subsystem j αj,1 αj,2 βj,1 U C

1 0.2030 0.4200 8
GA 2 0.2109 0.4300 8 0.9734 87.960264

3 0.2100 0.4000 7

1 0.2124 0.4579 7
PSO 2 0.2208 0.4712 7 0.9738 87.908320

3 0.2042 0.4066 7

1 0.262638 0.461075 7
PESO 2 0.270919 0.474427 7 0.97541 89.475952

3 0.251862 0.409796 7

Table 7.3 presents the results obtained by PESO over 30 runs and reported by Levitin et

al. (PSO) over 200 runs [77]. For every run, 100,000 and 400,000 evaluations were performed

by PESO and PSO, respectively.

Table 7.3: Comparision of PESO vs PSO
Best Mean Median Worst Std. Dev.

PSO 0.9738 0.9734 - 0.9712 5.15E-04
PESO 0.975410 0.975390 0.975410 0.975302 3.6820E-05

PESO improves the best results reported by Tian et al. [127] and Levitin et al. [77]. Also,

the worst value obtained by the PESO algorithm is better than the best solution obtained by

these works. Note that PESO performs just 25% of the fitness evaluations applied by the PSO

proposed by Levitin et al. [77].

7.2 Series-Parallel Binary System: Confidence Bounds

Figure 7.2 shows the series-parallel binary system proposed by Ramirez-Marquez and Jiang

[113]. The system is a variation of the test system presented by Coit [13].

Table 7.4 provides the nominal reliability data for every binary item. The nominal system

reliability is 0.852738.

For assessment the accuracy of the variance approximation introduced in Chapter 5, we

apply the following experiment proposed by Coit [13] and also used by Ramirez-Marquez and
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Figure 7.2: Series-parallel binary system

Table 7.4: Nominal reliabilities for the series-parallel binary system
Item Reliability Item Reliability Item Reliability

1 0.91 7 0.80 13 0.99
2 0.91 8 0.92 14 0.90
3 0.96 9 0.95 15 0.83
4 0.98 10 0.92 16 0.83
5 0.80 11 0.95 17 0.88
6 0.80 12 0.96

Jiang [113]. First, we generate binomial data associated with tha nominal probabilities shown

in Table tab:nominal to simulate the behavior of the 17 items. 10 different data sample sizes

are generate to test the robustness of our approach. Every sample has been constructed by

starting the number of available testing units per component at 10 units, and then subsequently

incrementing this number by 10, until a sample size of 100 units. Table 7.5 presents the results

of a single test run when considering a data sample size of 50 testing units per component.

For each data sample, a confidence lower bound is constructed applying the technique

introduced by Ramirez-Marquez and Jiang [113]. The distribution of the system reliability

R(t) is assumed unknown. The technique assumes that system reliability distribution can be

well approximated by a Gaussian distribution. These assumptions allow for the computation

of a (1 − α)% level confidence lower bound for R(t):

R̂(t) − Z1−α

√

V ar(R(t)) − 1

2N
≤ R(t) (7.7)

Two α levels were suggested by Ramirez-Marquez and Jiang [113], α = 10% and α = 5%.

100, 000 confidence lower bounds were constructed for every sample size (10, · · · , 100). Table

7.6 shows the coverage of the confidence lower bound for a desired α = 10%. The table presents

the coverage results obtained by 3 approximation methods: Ramirez and Jiang [113], Delta1

(first order Taylor expansion) and Delta2 (second order Taylor expansion).

Table 7.7 shows the coverage of the confidence lower bound for a desired α = 5% level.
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Table 7.5: Binomial simulation for a sample size of 50 units
Item Failures r̂i V ar(r̂i)

1 4 0.92 0.001472
2 6 0.88 0.002112
3 1 0.98 0.000392
4 1 0.98 0.000392
5 8 0.84 0.002688
6 10 0.80 0.003200
7 8 0.84 0.002688
8 1 0.98 0.000392
9 3 0.94 0.001128
10 4 0.92 0.001472
11 1 0.98 0.000392
12 1 0.98 0.000392
13 0 1 0
14 5 0.90 0.001800
15 6 0.88 0.002112
16 7 0.86 0.002408
17 3 0.94 0.001128

Table 7.6: Coverage of the confidence lower bounds α=10%
Sample Ramirez and Jiang Delta1 Delta2

size Coverage Error Coverage Error Coverage Error

10 22.37% 123.70% 21.04% 110.40% 18.45% 84.5%
20 10.42% 4.20% 10.33% 3.30% 10.09% 0.90%
30 11.75% 17.50% 11.65% 16.50% 11.40% 14.00%
40 10.65% 6.50% 10.60% 6.00% 10.36% 3.60%
50 10.84% 8.40% 10.77% 7.70% 10.55% 5.50%
60 10.79% 7.90% 10.76% 7.60% 10.68% 6.80%
70 10.32% 3.20% 10.26% 2.60% 10.09% 0.90%
80 10.54% 5.40% 10.46% 4.60% 10.33% 3.30%
90 10.33% 3.30% 10.28% 2.80% 10.12% 1.20%
100 10.38% 3.80% 10.32% 3.20% 10.28% 2.80%
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Table 7.7: Coverage of the confidence lower bounds α=5%
Sample Ramirez and Jiang Delta1 Delta2

size Coverage Error Coverage Error Coverage Error

10 19.47% 289.40% 17.77% 255.40% 14.26% 185.20%
20 9.18% 83.60% 9.04% 80.80% 8.81% 76.20%
30 8.60% 72.00% 8.41% 68.20% 7.91% 58.20%
40 7.06% 41.20% 6.96% 39.20% 6.67% 33.40%
50 6.67% 33.40% 6.62% 32.40% 6.44% 28.80%
60 6.69% 33.80% 6.62% 32.40% 6.43% 28.60%
70 6.52% 30.40% 6.44% 28.80% 6.25% 25.00%
80 6.35% 27.00% 6.34% 26.80% 6.25% 25.00%
90 6.20% 24.00% 6.17% 23.40% 6.04% 20.80%
100 6.08% 21.60% 6.04% 20.80% 5.95% 19.00%

The comparisons in Tables 7.6 and 7.7 show that the approximation based on Delta method

with second order Taylor expansion provides the best coverage against the desired α level. As

an example, the calculated α=5% for data sample size 50 is closer to a α=6.44% based on the

simulation results. The coverage results in Tables 7.6 and 7.7 are all higher than the desired α

levels. Nevertheless, as the sample size becomes larger, the simulation results shows that the

coverage of the confidence lower bound becomes closer to the desired α.

7.3 Corbi Bakery: RVRP

In this section, the Corbi bakery located in Alcoy, Alicante, Spain is used as example. Corbi

possess one bread plant and 18 bakeries (see Table 7.8). Figure 7.3 presents a urban map of

the Alcoy city [145]. More information about the Corbi bakery case is available in [144].

Table 7.8: Corbi bakeries
ID Bakery ID Bakery ID Bakery ID Bakery

0 Central 5 Carrascar 10 Espi 15 Isabel
1 Alamora 6 Cocentaina 11 Goncal 16 Isidre
2 Azorin 7 Eloi 12 Gregori 17 Poveda
3 Banyeres 8 Entenza28 13 Hispanitat 18 Torregrossa
4 Carbonell 9 Entenza99 14 Ibi

Alcoy is known as the city of the three rivers, since it is divided by the Riquer, Benisaidó

and Molinar rivers, tributaries of the Serpis river. Thereby, the bridges are the main urban

characteristic of Alcoy, which have overcome the orographic irregularities of the town. The city

of bridges possess some important festivals declared to be of International Tourist Interest. For
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Figure 7.3: The Corbi bakery Case

example, the festival of Moors and Christians usually takes place on April, closing for 3 days

some streets and avenues.

In a city as Alcoy, which possesses a limited link set (streets) to intercommunicate its zones,

alternative routes to avoid possible interrupted traffic flows are essentials. The motivation to

choose an example as the Corbi bakery comes from the weakness of its traffic network, the

bridges. Figure 7.4 shows the optimal route (white line) for the Corbi bakery case for the

standard VRP, which performs a travel distance of 14.2 units with 6 bridges in the route. An

alternative route is not given at the event of a bridge failure (or other link), but a solution is

developed using the proposed RVRP.

By applying the proposed RVRP, a set of alternative routes can be obtained to avoid bridge

failures (interruptions). Two experiments were performed to show the impact of different

reliability values in the RVRP solution.

In the experiments, only 3 out of 6 mentioned bridges are considered subject to failure.

An additional bridge is included in the analysis to provide alternative routes in the RVRP. A

probability of failure is assumed for every bridge shown in Figure 7.4 (blue arrows): A=0.9972,
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Figure 7.4: Corbi optimal route

B=0.9863, C=0.9890 and D=0.9918. The bridges B and C are one-way roads, and the bridges

A and D are two-way roads. Alternative links for several pair of nodes (i, j) were found (see

Figure 7.5).

In Figure 7.6, the Corbi’s matrix C of distances and reliability factor is presented. It was

approximated using the data base of Google Earth version 4.3 (related information about this

software can be found in [145]). Every cell cij contains information of up to 3 links between

nodes i and j, where each link 1 ≤ k ≤ 3 has a data line. Each data line lk shown in the

cell cij , represents an alternative arc between the nodes i and j, with only 2 states: available

and unavailable. The information provided in each data line lk is the travel cost cijk, and its

reliability pijk. The travel cost of an unavailable state of the link lk is considered ∞, and its

reliability qijk = 1 − pijk.

For example, the cell (2, 0) contains two data lines: (0.8, 0.9863) and (1.2, 0.9972). Namely,

there are two alternative paths between nodes 2 (Azorin) and 0 (Central), with travel cost of

0.8 and 1.2, and a reliability factor of 0.9863 and 0.9972, respectively. Their corresponding

unreliability values are 0.0137 and 0.0028, for a travel cost of ∞ (interrupted path). The

u-functions of the arcs lk allocated in cell (2, 0) are:
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Figure 7.5: Alternative links for Alcamora-Isabel vertix

u1(z) = 0.9863z0.8 + 0.0137z∞

u2(z) = 0.9972z1.2 + 0.0028z∞

The u-function of the arc set to travel from Azorin to Central (2, 0) is calculated as follows:

U2,0(z) = ⊗min(u1(z), u2(z))

U2,0(z) = 0.9863(0.9972)zmin(0.8,1.2) + 0.9863(0.0028)zmin(0.8,∞)

+0.0137(0.9972)zmin(∞,1.2) + 0.0137(0.0028)zmin(∞,∞)

U2,0(z) = 0.983538z0.8 + 0.002762z0.8 + 0.013662z1.2 + 0.000038z∞

U2,0(z) = 0.9863z0.8 + 0.013662z1.2 + 0.000038z∞

In a similar way, the u-function Ui,j(z) for every pair of nodes (i, j), i 6= j ∈ 0, 1, · · · , N is
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Figure 7.6: Matrix of travel costs and reliabilities for the Corbi bakery case
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calculated. Two reliability values are used in the experiments: 0.98 and 0.999. They correspond

to 357.70 and 364.635 available days during a year. The RVRP solution includes the total travel

cost cK , reliability pK , and links for each route (visitation order). Besides, the reliability can

be translated into available days in one year period of time Ak.

The modified version of PESO for solving the RVRP is applied with a population size of

100 particles and the PSO parameters mentioned in Chapter 6. PESO applies 350,000 fitness

evaluations for every run. The results of the 30 runs performed by PESO constantly converge

to the optimal value.

7.3.1 Corbi Bakery Case R ≥ 0.98

Table 7.9 shows the RVRP solution of the Corbi bakery case subject to a total reliability of

R ≥ 0.98. The RVRP solution of the optimal route shown in Figure 7.4 has K ∈ {1, 2, · · · , 9}
alternatives (states). In Table 7.9, the Route K column defines the visitation order of the

route, where the subscript in every node denotes the arc ai,j,k used by the route. For example,

in the first RVRP state (K = 1), the route begins with a path between nodes 0 and 3. The

subscript in node 0 (a number 1) indicates that the arc number 1 is included in the route. This

is represented as a0,3,1, which has a travel distance of c0,3,1 = 1.0, and a reliability of p0,3,1 = 1.0

(see Figure 7.5).

Table 7.9: RVRP solution of Corbi bakery case (R ≥ 0.98)
K cK pK AK Route K
1 14.2 0.9595 350 01, 31, 51, 121, 11, 161, 151, 81, 111, 41, 181, 171, 61, 131, 71, 91, 21, 101, 141

2 14.4 0.0132 5 01, 31, 51, 121, 11, 161, 151, 81, 111, 41, 181, 171, 61, 131, 71, 91, 22, 101, 141

3 16.2 0.0106 4 01, 31, 51, 121, 12, 161, 151, 81, 111, 41, 181, 171, 61, 131, 71, 91, 21, 101, 141

4 16.4 1.47E-04 0 01, 31, 51, 121, 12, 161, 151, 81, 111, 41, 181, 171, 61, 131, 71, 91, 22, 101, 141

5 19.0 6.52E-05 0 01, 31, 51, 121, 11, 161, 151, 82, 111, 41, 182, 171, 61, 131, 71, 91, 21, 101, 141

6 19.2 9.03E-07 0 01, 31, 51, 121, 11, 161, 151, 82, 111, 41, 182, 171, 61, 131, 71, 91, 22, 101, 141

7 21.0 7.23E-07 0 01, 31, 51, 121, 12, 161, 151, 82, 111, 41, 182, 171, 61, 131, 71, 91, 21, 101, 141

8 21.2 1.00E-08 0 01, 31, 51, 121, 12, 161, 151, 82, 111, 41, 182, 171, 61, 131, 71, 91, 22, 101, 141

9 ∞ 0.0163 6 Total Failure

Figure 7.7 shows the state K = 1 of the optimal RVRP subject to R ≥ 0.98. Note that the

first RVRP solution, K = 1, represents the standard VRP solution. This route could be used

only ≈ 350 out of 365 days. Namely, the standard VRP solution could be temporally unavailable

≈ 15 days during a year. Thereby, alternative routes could be used to avoid interrupted paths.

For instance, the travel cost of the route increases to 14.4 units whenever bridge B fails (state

K = 2). This alternative is required with probability p = 0.0132, that is approximately 5 days
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during a year.

Figure 7.7: RVRP optimal route (R ≥ 0.98), state K = 1

The route K = 2 replaces the unavailable arc a2,10,1 (between nodes 2 and 10) with travel

distance c2,10,2 = 0.5, and reliability p2,10,2 = 0.9863, with the alternative arc a2,10,2 with travel

distance c2,10,2 = 0.7 and reliability p2,10,2 = 0.9972. Figure 7.8 shows the alternative route

when an interruption of traffic flow occurs at bridge B (state K = 2).

Similarly, Figure 7.9 illustrates the alternative route when an interruption of traffic flow

occurs at bridge C (state K = 3). This alternative route, K = 3, replaces the unavailable arc

a1,16,1 with the alternative arc a1,16,2.

The RVRP solution presented in Table 7.9 reports that there is not an alternative route

to solve the interruption in the traffic network (state K = 9), approximately 6 days out of

365 days as it is shown in Figure 7.10. In the RVRP optimization, the reliability constraint is

introduced as a system demand to design an optimal route available at least R% for a stated

period of time. For this experiment, there are 8 available routes K ∈ {1, 2, . . . , 8}, with a total

reliability of R = 0.9837, that is ≈ 359 days during a year.

For designing a route with more available days than the current one, the reliability constraint

R is increased in the next experiment.
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Figure 7.8: RVRP optimal route (R ≥ 0.98), state K = 2

Figure 7.9: RVRP optimal route (R ≥ 0.98), state K = 3
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Figure 7.10: RVRP optimal route (R ≥ 0.98), total failure state K = 9

7.3.2 Corbi Bakery Case R ≥ 0.999

Table 7.10 shows the RVRP solution of the Corbi bakery case subject to a total reliability of

R ≥ 0.999 (≈ 365 days).

Table 7.10: RVRP solution of Corbi bakery case (R ≥ 0.999)
K cK pK AK Route K
1 14.8 0.9755 356 01, 31, 51, 121, 41, 111, 181, 11, 171, 61, 131, 71, 91, 81, 151, 161, 21, 101, 141

2 15.0 0.0135 5 01, 31, 51, 121, 41, 111, 181, 11, 171, 61, 131, 71, 91, 81, 151, 161, 22, 101, 141

3 16.4 0.0108 4 01, 31, 51, 121, 41, 111, 181, 12, 171, 61, 131, 71, 91, 81, 151, 161, 21, 101, 141

4 16.6 1.50E-04 0 01, 31, 51, 121, 41, 111, 181, 12, 171, 61, 131, 71, 91, 81, 151, 161, 22, 101, 141

5 ∞ 6.92E-05 0 Total Failure

The first RVRP solution (state K = 1) presented in Table 7.10 performs a travel distance

higher than the standard VRP solution. But, this RVRP solution reports that a total failure

state (K = 5) occurs with probability p∞ = 6.92E − 05, that is, ≈ 0 days. Therefore, there is

an alternative route always available to accomplish the customer demands. Figure 7.11 shows

the first route (state K = 1) of the Corbi bakery case subject to a total reliability of R ≥ 0.999,

which is so different to the visitation sequence shown in Figure 7.7.

Figures 7.12 and 7.13 show the alternative routes when a failure apears in bridge B and C,

respectively.
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Figure 7.11: RVRP optimal route (R ≥ 0.999), state K = 1

Figure 7.12: RVRP optimal route (R ≥ 0.999), state K = 2
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Figure 7.13: RVRP optimal route (R ≥ 0.999), state K = 3

Observing the two experiments, it is clear that there is a tradeoff between availability and

travel cost. As such, all transportation problems which intend to minimize total travel cost,

are subject to the physical considerations of unavailable traffic paths or roadways. Thereby, an

important optimization problem is part of the RVRP. The example presented in this section

shows that it is possible to find a VRP solution with standing availability, impacting slightly

on the travel cost.

7.3.3 Variance Approximation

For showing the Delta-UGF method described in Chapter 5, we assume the variance values

presented in Table 7.11 for every bridge:

Table 7.11: Variance reliabilities for Corbi’s bridges
Bridge pb σ2

b

A 0.9972 4.6913E-07
B 0.9863 5.7469E-06
C 0.9890 4.2222E-06
D 0.9918 1.8765E-06

Based on the Corbi bakery case subject to a total reliability of R ≥ 0.999, we approximate

the variance and covariance matrix of the RVRP solution shown in Table 7.10. Table 7.12 shows
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the approximation of the variance matrix of the RVRP solution subject to R ≥ 0.999.

Table 7.12: Variance matrix of the RVRP solution (R ≥ 0.999)
Bridge pb σ2

b

9.7284E-06 -5.5485E-06 -4.0335E-06 -1.1921E-07 -2.7240E-08
-5.5485E-06 5.5906E-06 -1.1881E-07 6.1359E-08 1.5377E-08
-4.0335E-06 -1.1881E-07 4.0851E-06 5.6042E-08 1.1167E-08
-1.1921E-07 6.1359E-08 5.6042E-08 1.5037E-09 3.3200E-10
-2.7240E-08 1.5377E-08 1.1167E-08 3.3200E-10 3.6357E-10

For building a confidence interval, we use the confidence lower bound applied in Section 7.2.

The availability of the RVRP solution is the sum of the routes with a travel cost different to

infinite (cK 6= ∞).

R̂(p̂1, p̂2, p̂3, p̂4) =
4∑

K=1

p̂K = 0.99995 (7.8)

Applying the Delta method, we can approximate the variance of the function R̂(p̂1, p̂2, p̂3, p̂4).

V ar(R̂(p̂1, p̂2, p̂3, p̂4)) ≈
4∑

K=1

σ2
p̂K

+ 2
3∑

K=1

4∑

H=K+1

Covp̂K , p̂H (7.9)

V ar(R̂(p̂1, p̂2, p̂3, p̂4)) ≈ 4.11958E − 10 (7.10)

The computation of a (1 − α)% level confidence lower bound for R̂(p̂1, p̂2, p̂3, p̂4) is:

R̂ − Z1−α

√

V ar(R) ≤ R

0.99995 − Z0.95

√
4.11958E − 10 ≤ R

0.9999166 ≤ R

The confidence lower bound 0.9999166 ≤ R indicates that the route is available at least

364.9696 ≈ 365 days. Namely, the RVRP solution subject to R ≥ 0.999 is available during 365

days with a confidence of 95%. This example provides a overview of the present dissertation:

RVRP (modelation via UGF), variance approximation (via Delta-UGF method) and MSS

reliability optimization (via PESO).

.
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Chapter 8

Final Remarks

This chapter summarizes the work presented in this thesis. Posteriorly, a brief discussion of

several future works is provided.

8.1 Summary

This thesis established as its objective to study the reliability of multi-state systems. The

contributions are three:

1. Approximating the MSS reliability variances.

2. Introducing the MSS reliability theory in the Vehicle Routing Problem.

3. Developing a evolutionary algorithm for the optimization of MSS relibility

designs.

8.1.1 MSS reliability variances

Nowadays, modern systems and equipment are characterized by complexity of structures and

variety of initial information. In practice, the probability of item states are obtained on the

basis of limited data so that they are affected by significant uncertainty [88].

Several methods for the assessment of MSS reliability are available in the literature.

However, theses methods assume that the item reliabilities are accurate. Thereby, a practical

approach for analyzing uncertainty in MSS reliability, can provide trustworthy designs and

improve the engineering design strategies.
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Chapter 5 describes our approach based on Delta method for the propagation of uncertainty

in a MSS. The Delta method proposed in this thesis, uses second order Taylor series

for approximating the reliability variances of the entire MSS. A computational method to

approximate the MSS reliability variances was developed based on a combination of UGF-Delta

method.

Approximating the variance of the entire MSS reliability can help to estimate the real

expected performance of a MSS composed of items with uncertain probabilities.

8.1.2 MSS reliability in the VRP

Nowadays, efficient delivery transport systems are required for increasing the competitive

power of industry. Even a tiny improvement in the efficiency in the vehicle routing process

is transformed in a sensible monetary gain, due to the fact that the distribution process is

repeated every day of the year and gains are easily cumulated over time [117].

The VRP have been studied since 1959, when it was introduced by Dantzig and Ramser

[17]. From then on, many variants have been analized: the vehicle routing problem with time

windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle

routing problem (MDVRP), the site-dependent vehicle routing problem (SDVRP), etc., [110].

Nevertheless, current works in the field of operational research have not studied the VRP with

failures into the traffic network.

The assumption that in a real-world traffic network everything goes according to an a priori

determined static schedule is unrealistic. In fact, in real-world traffic networks the availability of

roadways or paths depends on traffic congestion, weather conditions, car accidents, roadworks,

holidays, etc. Since the cost impact due to nonfulfillment delivering can be substantial, finding

an optimal routing strategy under uncertainty is an important VRP variant, especially in

emergency response and disaster management [25].

This dissertation applies the MSS reliability theory (availability) in the VRP. The key

issue considered in Chapter 4 is to incorporate alternative traffic paths between two nodes

communicated by a roadway likely to failures (unavailable).

The RVRP avoids unavailable traffic paths, using a set of alternative ways that possess an

associated set of reliability values. This allows the accomplish of the entire route, sometimes

with a slightly longer travel cost.
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8.1.3 MSS reliability design via PESO algorithm

Many evolutionary algorithms have been used to solve reliability design problems. For example,

Levitin and Lisnianski have proposed a series of methods on using the UGF approach and GA

for the optimization of multi-state systems [83]. Although, GA is very popular in engineering

design problems, other evolutionary algorithms can be applied, like ant colony optimization

[104] or particle swarm optimization [77]. Since it has been proved that there is no a meta-

heuristic that could always outperform other meta-heuristics in solving all kinds of problems

[137]; introducing new optimization approaches can provide alternative algorithms able to solve

different kind of problems or to outperform the current methods.

The PESO algorithm is a modified PSO that incorporates two perturbation operators to

keep up population diversity. Besides, PESO applies a new PSO structure called singly-linked

ring to form the local neighborhood of every particle, eliminating the mutual attraction between

two neighbors. A constraint handling mechanism based on the superiority of feasible

solutions proposed by Deb [18] is incorporated in PESO to handle equality and inequality

constraints [38].

The performance of the PESO algorithm has been shown very robust in artificial and real-

world problems with continuous and discrete variables [93, 94, 95, 96, 105]. Also, note the first

version of PESO was applied to optimize the reliability design of binary systems [92].

PESO improves the results obtained by other evolutionary algorithms in the series parallel

MSS presented in Chapter 7. Also, PESO finds the optimal results for the RVRP presented in

Chapter 7. PESO shows that is able to solve different MSS design reliability problems.

8.2 Future Research

MSS reliability is a field with a promising future research. Nowadays, quality is a word that

sounds loudly in manufacture and service companies. As it was mentioned in the introduction

of this work, reliability is concerned to quality. A system whose performance levels possess

high reliability values (rk ≈ 1.0), can derivate in lower repair expenses, lower penalty costs or

few guarantee payments. In other systems as medical machines or security systems, a reliable

system can save a human life. Thereby, more work about MSS reliability are expected in the

next years.

For this dissertation there are some interesting research lines to follow:
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• The UGF-Delta method to approximate MSS reliability variances is based on the

assumption that the system is composed of independent components. Thereby, the

inclusion of dependent measure (e.g. covariance) in the UGF-Delta method is a interesting

and important future work.

• In binary systems, there are some proposals to handle the variance as a second objective

[14]. For extending this idea to MSS, is necessary to propose a criterion possibly based

on Pareto dominance to compare the reliability and variance vectors associated to every

MSS.

• The research line mentioned above, involves design reliability problems with two objectives

that are solved applying a multi-objective optimization approach. It is a motivation to

develop a multi-objective version of the PESO algorithm.

• In this dissertation the RVRP was only applied to the standard VRP. Although, the RVRP

can be extended to any VRP variant, there are some specific details associated to every

VRP variant that should be studied to efficiently apply the MSS reliability theory. For

example, in the capacity VRP variant vehicles with different capacities are used. Thereby,

the availability (reliability) of each vehicle can be incorporated to the analysis to design

a RVRP that accomplish the customer demands.

• The RVRP avoids unavailable traffic paths using a priori information of car accidents,

roadworks, traffic congestion, etc. A dynamic RVRP with real time traffic network

information should be developed that incorporates the new failures to the model to

recalculate the cost-benefit analysis and redesing the route.

Finally, the introduction of MSS reliability theory to other practice problems can improve

the modelation of real-world applications. This contributes to narrow the discrepancies between

the industry research and academy research (theory and practice problems).
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Appendix A

Dirichlet distribution

In probability and statistics, the Dirichlet distribution (Dir(α)), is a family of continuous

multivariate probability distributions parametrized by a vector α of positive reals. It was

introduced by Johann Peter Gustav Lejeune Dirichlet.

The Dirichlet distribution is the multivariate generalization of the beta distribution,

and conjugate prior of the categorical distribution and multinomial distribution in Bayesian

statistics. That is, its probability density function returns the belief that the probabilities of

K rival events are pi given that each event has been observed αi − 1 times.

A.1 Probability Density Function

The Dirichlet distribution of order K ≥ 2 with parameters α1, α2, · · · , αK > 0 has a probability

density function with respect to Lebesgue measure on the Euclidean space RK1 given by

f(x1, x2, · · · , xK−1; α) =
1

B(α)

K∏

i=1

xαi−1
i (A.1)

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
, α = (α1, α2, · · · , αK) (A.2)

for all x1, x2, · · · , xK−1 > 0 x1 + x2 + · · · + xK−1 < 1, where xK is an abbreviation for 1x1 −
x2 − · · · − xK−1. The density is zero outside this open (K-1)-dimensional simplex.
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A.2 Properties

Let X = (X1, X2, · · · , XK) ∼ Dir(α), meaning that the first K1 components have the above

density and

XK = 1 − X1 − X2 − · · · − XK−1 (A.3)

Define

α0 =
K∑

i=1

αi (A.4)

Then

E[Xi] =
αi

α0
(A.5)

V ar[Xi] =
αi(α0 − αi)

α2
0(α0 + 1)

(A.6)

Cov[Xi, Xj ] =
−αiαj

α2
0(α0 + 1)

(A.7)

In fact, the marginals are Beta distributions:

Xi ∼ Beta(αi, α0 − αi) (A.8)

A.3 Random Number Generation

A fast method to sample a random vector x = (x1, x2, · · · , xK) from the K-dimensional Dirichlet

distribution with parameters (α1, α2, · · · , αK) can be resumed as follows:

1. Draw K independent random samples y1, y2, · · · , yK from gamma distributions, each one

with density
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Gamma(αi, 1) =
yαi−1

i e−yi

Γ(αi)
(A.9)

2. Define

y0 =

K∑

i=1

yi (A.10)

3. Finally, set

xi = yi/y0 (A.11)
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Appendix B

Multivariate Delta Method

The second order Taylor series expansion of r̂k at (µp̂1,1
, · · · , µp̂1,n1

, · · · , µp̂N,nN
) is

r̂k(p̂1,1, · · · , p̂N,nN
) ≈ r̂k(µp̂1,1

, · · · , µp̂N,nN
) +

N∑

j=1

nj∑

i=1

∂

∂p̂j,i
r̂k(µp̂1,1

, · · · , µp̂N,nN
)
[

p̂j,i − µp̂j,i

]

+
1

2

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

2
∂2

∂p̂j,ip̂h,l
r̂k(µp̂1,1

, · · · , µp̂N,nN
)
[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

(B.1)

For condensing the notation: let F be the reliability function r̂k(p̂1,1, · · · , p̂N,nN
); let Fp̂j,i

and Fp̂j,i p̂h,l
, the first and second derivatives of r̂k(µp̂1,1

, · · · , µp̂N,nN
), respectively; and let rµ be

the evaluation of r̂k(µp̂1,1
, · · · , µp̂N,nN

). Thereby, the next equation condense the second order

Taylor series expansion of r̂k:

F ≈ rµ +
N∑

j=1

nj∑

i=1

Fp̂j,i

[

p̂j,i − µp̂j,i

]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l

[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

(B.2)

The expected value of F is

E[F ] ≈ E



rµ +
N∑

j=1

nj∑

i=1

Fp̂j,i

[

p̂j,i − µp̂j,i

]
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+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l

[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]





E[F ] = E[rµ] + E





N∑

j=1

nj∑

i=1

Fp̂j,i

[

p̂j,i − µp̂j,i

]





+ E





N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l

[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]





E[F ] = rµ +
N∑

j=1

nj∑

i=1

Fp̂j,i
E

[

(p̂j,i − µp̂j,i
)
]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l
E

[

(p̂j,i − µp̂j,i
)
]

E
[

(p̂h,l − µp̂h,l
)
]

E[F ] = rµ +
N∑

j=1

nj∑

i=1

Fp̂j,i
���������:0
E

[

(p̂j,i − µp̂j,i
)
]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l
���������:0
E

[

(p̂j,i − µp̂j,i
)
]

���������:0
E

[

(p̂h,l − µp̂h,l
)
]

E[F ] = rµ (B.3)

The variance of F is

V ar(F ) = E
[

{F − E[F ]}2
]

V ar(F ) = E










rµ +

N∑

j=1

nj∑

i=1

Fp̂j,i

[

p̂j,i − µp̂j,i

]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l

[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

− rµ







2



V ar(F ) = E









��>rµ +

N∑

j=1

nj∑

i=1

Fp̂j,i

[

p̂j,i − µp̂j,i

]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l

[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

−��>rµ







2



(B.4)
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Squaring the sum of products ...

V ar(F ) = E





N∑

j=1

nj∑

i=1

F 2
p̂j,i

(

p̂j,i − µp̂j,i

)2

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

F 2
p̂j,i p̂h,l

(p̂j,i − µp̂j,i
)2(p̂h,l − µp̂h,l

)2

+ 2

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i
Fp̂h,l

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)

+ 2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

Fp̂j,i
Fp̂j,w

(p̂j,i − µp̂j,i
)(p̂j,w − µp̂j,w

)

+ 2
N∑

x=1

nx∑

y=1

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂x,y
Fp̂j,i p̂h,l

(p̂x,y − µp̂x,y
)(p̂j,i − µp̂j,i

)(p̂j,w − µp̂j,w
)

+ 2
N∑

j=1

nj∑

i=1

N∑

h=1,h 6=j

nh−1
∑

l=1

nh∑

v=l+1

Fp̂j,i p̂h,l
Fp̂j,i p̂h,v

(p̂j,i − µp̂j,i
)2(p̂h,l − µp̂h,l

)(p̂h,v − µp̂h,v
)

+ 2

N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

N∑

h=j+1

nh−1
∑

l=1

nh∑

v=l+1

(
Fp̂j,i p̂h,l

Fp̂j,w p̂h,v
+ Fp̂j,i p̂h,v

Fp̂j,w p̂h,l

)

∗ (p̂j,i − µp̂j,i
)(p̂j,w − µp̂j,w

)(p̂h,l − µp̂h,l
)(p̂h,v − µp̂h,v

)
]

(B.5)

Developing the expected value ...

V ar(F ) =
N∑

j=1

nj∑

i=1

F 2
p̂j,i

E

[(

p̂j,i − µp̂j,i

)2
]

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

F 2
p̂j,i p̂h,l

E
[

(p̂j,i − µp̂j,i
)2(p̂h,l − µp̂h,l

)2
]

+2

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i
Fp̂h,l

E
[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

+2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

Fp̂j,i
Fp̂j,w

E
[

(p̂j,i − µp̂j,i
)(p̂j,w − µp̂j,w

)
]
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+2

N∑

x=1

nx∑

y=1

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂x,y
Fp̂j,i p̂h,l

E
[

(p̂x,y − µp̂x,y
)(p̂j,i − µp̂j,i

)(p̂j,w − µp̂j,w
)
]

+2
N∑

j=1

nj∑

i=1

N∑

h=1,h 6=j

nh−1
∑

l=1

nh∑

v=l+1

Fp̂j,i p̂h,l
Fp̂j,i p̂h,v

E
[

(p̂j,i − µp̂j,i
)2(p̂h,l − µp̂h,l

)(p̂h,v − µp̂h,v
)
]

+2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

N∑

h=j+1

nh−1
∑

l=1

nh∑

v=l+1

(
Fp̂j,i p̂h,l

Fp̂j,w p̂h,v
+ Fp̂j,i p̂h,v

Fp̂j,w p̂h,l

)

∗E
[

(p̂j,i − µp̂j,i
)(p̂j,w − µp̂j,w

)(p̂h,l − µp̂h,l
)(p̂h,v − µp̂h,v

)
]

(B.6)

Calculating the expected value for every term ...

V ar(F ) =
N∑

j=1

nj∑

i=1

F 2
p̂j,i

V ar(p̂j,i)

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

F 2
p̂j,i p̂h,l

V ar(p̂j,i)V ar(p̂h,l)

+2
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i
Fp̂h,l

���������������:0

E
[

(p̂j,i − µp̂j,i
)(p̂h,l − µp̂h,l

)
]

+2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

Fp̂j,i
Fp̂j,w

Cov(p̂j,i, p̂j,w)

+2
N∑

x=1

nx∑

y=1

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂x,y
Fp̂j,i p̂h,l

���������������������:0

E
[

(p̂x,y − µp̂x,y
)(p̂j,i − µp̂j,i

)(p̂j,w − µp̂j,w
)
]

+2

N∑

j=1

nj∑

i=1

N∑

h=1,h 6=j

nh−1
∑

l=1

nh∑

v=l+1

Fp̂j,i p̂h,l
Fp̂j,i p̂h,v

V ar(p̂j,i)Cov(p̂h,l, p̂h,v)

+2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

N∑

h=j+1

nh−1
∑

l=1

nh∑

v=l+1

(
Fp̂j,i p̂h,l

Fp̂j,w p̂h,v
+ Fp̂j,i p̂h,v

Fp̂j,w p̂h,l

)

∗Cov(p̂j,i, p̂j,w)Cov(p̂h,l, p̂h,v) (B.7)

Finally ...
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V ar(F ) =
N∑

j=1

nj∑

i=1

F 2
p̂j,i

V ar(p̂j,i)

+

N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

F 2
p̂j,i p̂h,l

V ar(p̂j,i)V ar(p̂h,l)

+ 2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

Fp̂j,i
Fp̂j,w

Cov(p̂j,i, p̂j,w)

+ 2
N∑

j=1

nj∑

i=1

N∑

h=1,h 6=j

nh−1
∑

l=1

nh∑

v=l+1

Fp̂j,i p̂h,l
Fp̂j,i p̂h,v

V ar(p̂j,i)Cov(p̂h,l, p̂h,v)

+ 2
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

N∑

h=j+1

nh−1
∑

l=1

nh∑

v=l+1

(
Fp̂j,i p̂h,l

Fp̂j,w p̂h,v
+ Fp̂j,i p̂h,v

Fp̂j,w p̂h,l

)

∗Cov(p̂j,i, p̂j,w)Cov(p̂h,l, p̂h,v) (B.8)

The covariance of two system reliabilities, r̂a and r̂b, represented by the two variables, F

and G, respectively; is approximated by the following expression:

Cov(F, G) =
N∑

j=1

nj∑

i=1

Fp̂j,i
Gp̂j,i

V ar(p̂j,i)

+
N∑

j=1

nj∑

i=1

N∑

h=j+1

nh∑

l=1

Fp̂j,i p̂h,l
Gp̂j,i p̂h,l

V ar(p̂j,i)V ar(p̂h,l)

+

N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

[
Fp̂j,i

Gp̂j,w
+ Gp̂j,i

Fp̂j,w

]
Cov(p̂j,i, p̂j,w)

+
N∑

j=1

nj∑

i=1

N∑

h=1,h 6=j

nh−1
∑

l=1

nh∑

v=l+1

[
Fp̂j,i p̂h,l

Gp̂j,i p̂h,v
+ Gp̂j,i p̂h,l

Fp̂j,i p̂h,v

]

∗V ar(p̂j,i)Cov(p̂h,l, p̂h,v)

+
N∑

j=1

nj−1
∑

i=1

nj∑

w=i+1

N∑

h=j+1

nh−1
∑

l=1

nh∑

v=l+1

[(
Fp̂j,i p̂h,l

Gp̂j,w p̂h,v
+ Fp̂j,i p̂h,v

Gp̂j,w p̂h,l

)

+
(
Gp̂j,i p̂h,l

Fp̂j,w p̂h,v
+ Gp̂j,i p̂h,v

Fp̂j,w p̂h,l

)]
∗ Cov(p̂j,i, p̂j,w)Cov(p̂h,l, p̂h,v)

(B.9)

.
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[105] Ochoa A, Muñoz-Zavala A, Hernández-Aguirre A. A hybrid system using PSO and data

mining for determining the ranking of a new participant in Eurovision. In: Proceedings

of the Genetic and Evolutionary Computation Conference, GECCO 2008, 1713–1714,

Atlanta, 2008.

[106] Oehlert G. A Note on the Delta Method. The American Statistician, 46(1):27–29, 1992.

[107] Osman I. Metastrategy simulated annealing and tabu search algorithms for the vehicle

routing problems. Annals of Operations Research, 41:421–452, 1993.

[108] Parsopoulos K, Vrahatis M. Particle swarm optimization method for constrained

optimization problems. Intelligent Technologies - Theory and Application: New Trends

in Intelligent Technologies, 76:214–220, 2002.

[109] Parsopoulos K, Vrahatis M. Unified particle swarm optimization for solving constrained

engineering optimization problems. In: Proceedings of the International Conference on

Advances in Natural Computation, 582–591, Changsha, 2005.

[110] Pisinger D, Ropke S. A general heuristic for vehicle routing problems. Computers and

Operations Research, 34(8):2403–2435, 2007.

[111] Price K, Storn R, Lampinen J. Differential evolution: a practical approach to global

optimization. Berlin: Springer Verlag, 2005.

[112] Ramirez-Marquez J, Coit D. A heuristic for solving the redundancy allocation problem for

multi-state series-parallel systems. Reliability Engineering and System Safety, 83(3):341–

349, 2004.

[113] Ramirez-Marquez J, Jiang W. On improved confidence bounds for system reliability. IEEE

Transactions on Reliability, 55(1):26–36, 2006.

[114] Ramirez-Marquez J. New approaches for reliability design in multistate systems. In: Misra

K, editor, Handbook of Performability Engineering, 465–476, Springer-Verlag, 2008.

[115] Ramirez-Marquez J, Levitin G. Algorithm for estimating reliability confidence bounds of

multi-state system. Reliability Engineering and System Safety, 93(8):1231–1243, 2008.

[116] Riget J, Vesterstrom J. A diversity-guided particle swarm optimizer - the ARPSO.

Technical Report 2002-02, Department of Computer Science, University of Aarhus, 2002.

134



[117] Rizzoli A, Oliverio F, Montemanni R, Gambardella L. Ant colony optimisation for vehicle

routing problems: from theory to applications. Technical Report IDSIA-15-04, Istituto

Dalle Molle di Studi sull’Intelligenza Artificiale, 2004.

[118] Rocco C, Zio E. Solving advanced network reliability problems by means of cellular

automata and Monte Carlo sampling. Reliability Engineering and System Safety, 89(2):219–

226, 2005.

[119] Rosenbaltt J. Confidence Limits for Reliability of Complex Systems. In: Zelen M, editor,

Statistical Theory of Reliability, University of Wisconsin Press, 1963.

[120] Settles M, Soule T. Breeding swarms: a GA/PSO hybrid. In: Proceedings of the 2005

Conference on Genetic and Evolutionary Computation, 161–168, Washington, 2005.

[121] Soh S. An efficient cutset approach for evaluating communication network reliability with

heterogeneous link-capacities. IEEE Transactions on Reliability, 54(1):133–144, 2005.

[122] Storn R, Price K. Differential evolution: a simple and efficient adaptive scheme for global

optimization over continuous spaces. Technical Report TR-95-012, International Computer

Science Institute, 1995.

[123] Storn R. System design by constraint adaptation and differential evolution. IEEE

Transactions on Evolutionary Computation, 3(1):22–34, 1999.

[124] Taboada H, Espiritu J, Coit D. Design allocation of multi-state series-parallel systems for

power systems planning: a multiple objective evolutionary approach. Journal of Risk &

Reliability, 222(3):381–391, 2008.

[125] Taboada H, Espiritu J, Coit D. MOMS-GA: a multi-objective multi-State genetic

algorithm for system reliability optimization design problems. IEEE Transactions on

Reliability, 57(1):182–191, 2008.

[126] Thangiah S. Vehicle routing with time windows using genetic algorithms. In: Chambers

L, Editor, Application Handbook of Genetic Algorithms: New Frontiers Vol. II, 253-277,

Boca Raton:CRC Press, 1995.

[127] Tian Z, Zuo M, Huang H. Reliability-redundancy allocation for multi-state series-parallel

systems. IEEE Transactions on Reliability, 57(2):303–310, 2008.

135



[128] Toscano G, Coello C. A constraint-handling mechanism for particle swarm optimization.

In: Proceedings of the 2004 Congress on Evolutionary Computation, 1396–1403, Portland,

2004.

[129] Toth P, Vigo D. The vehicle routing problem. Philadelphia: SIAM Monographs on

Discrete Mathematics and Applications, 2002.

[130] Ushakov I. A universal generating function. Soviet Journal of Computer and Systems

Sciences, 24:37-49, 1986.

[131] Ushakov I. Reliability analysis of multi-state systems by means of a modified generating

function. Journal of Information Processing and Cybernetics, 34:24–29, 1988.

[132] Van den Bergh F. An analysis of particle swarm optimizers. Ph.D. Thesis, University of

Pretoria, South Africa, 2002.

[133] Van Woensel T, Kerbache L, Peremans H, Vandaele N. A queueing framework for

routing problems with time-dependent travel times. Journal of Mathematical Modelling

and Algorithms, 6(1):151–173, 2007.

[134] Van Woensel T, Kerbache L, Peremans H, Vandaele N. Vehicle routing with dynamic

travel times: a queueing approach. European Journal of Operational Research 2008,

186(3):990–1007, 2008.

[135] Wang K, Huang L, Zhou C, Pang W. Particle swarm optimization for traveling salesman

problem. In: Proceedings of the International Conference on Machine Learning and

Cybernetics 2003, 1583-1585, Xi-an, 2003.

[136] Wilf H. Generatingfunctionology. San Diego, Academic Press, 1994.

[137] Wolpert D, Macready W. No free lunch theorems for optimization. IEEE Transactions

on Evolutionary Computation, 1(1):67–82, 1997.

[138] Wood A. Multistate block diagrams and fault trees. IEEE Transactions on Reliability,

34:236–240, 1985.

[139] Xu J, Long S. Using the Delta Method to Construct Confidence Intervals for Predicted

Probabilities, Rates, and Discrete Changes. Technical Report, Indiana University,

Bloomington, USA, 2005.

136



[140] Yeh, W. A simple algorithm to search for all MCs in networks. European Journal of

Operational Research, 174(3):1694–1705, 2006.

[141] Yeh, W. A simple universal generating function method for estimating the reliability of

general multi-state node networks. IIE Transactions, 41(1):3–11, 2009.

[142] Zang X, Sun H, Trivedi K. A BDD-based algorithm for reliability analysis of phased-

mission systems. IEEE Transactions on Reliability, 48(1):50–60, 1999.

[143] Zhang J, Xie F. DEPSO: hybrid particle swarm with differential evolution operator. In:

Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 3816–

3821, Washington, 2003.

[144] http://personales.upv.es/arodrigu/rutas/documentos.htm

[145] http://earth.google.com/

137


