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1ABSTRACT
Horizontal Gene Transfer (HGT) is a general term used in Biology referring to theexhange of genes between two individuals in the same generation. HGT plays animportant role in baterial adaptation and evolution. In harsh environments, theaquisition of geneti material that allows baterial adaptation ours through thetransmission of irular DNA moleules known as plasmids. In this work, a hier-arhial model is proposed to explain and predit the plasmids' population dynamiswhen HGT is taken into aount. This model is an extension of the deterministiand stohasti models presented by Poniano et al. (2007). The hierarhial modelonsists of two parts: the �rst part is a hidden Markov model (HMM) that inorpo-rates the relevant biologial proesses. This Markov model follows the proportion ofplasmid-free ells over many generations. In laboratory experiments alled \stabilityexperiments", the growth of the fration of plasmid-free ells is monitored daily. Thedata produed by suh experiments onsists of time series of the observed fration ofplasmid free ells. In order to onnet suh data sets with the Markov model, the se-ond part of the hierarhial model desribes the statistial sampling sheme from theMarkov model and here we hose to use a binomial distribution whose suess proba-bility hanges aording to the HMM. We developed intensive omputational methodsbased on Markov Chain Monte Carlo (MCMC) to be able to estimate the model pa-rameters with real, experimental data sets. These parameter estimates were used toestimate the plasmids' persistene times for simulated data sets. The statistial toolsdeveloped here were thoroughly tested via simulations. Finally, the methods developedin this work are suitable to estimate persistene times in antibioti-resistant bateriapopulations and they an be easily extended to more biologially realisti senarios.



21 IntrodutionHorizontal Gene Transfer (HGT), the exhange of genes between two individuals inthe same generation, plays an important role in baterial adaptation and evolution.This biologial proess allows individual bateria to sample geneti material from adiverse gene pool in a given population. Reently, Gogarten and Towsend (1995)showed that HGT greatly ompliates the evolutionary history of many mirobialorganisms and that their phylogeneti histories usually annot be eluidated unlessHGT is aounted for. In bateria, HGT has evolved through plasmids, whih areextrahromosomal irular DNA moleules apable of autonomous repliation. Thetransmission of plasmids between two individual bateria ours through a proessknown as onjugation. Plasmids an arry geneti material that an be advantageousto their hosts. This is in fat the mehanism through whih bateria aquire genesthat ode for antibiotis resistane or genes that allow them to ope with harsh envi-ronments (Genereux and Bergstrom 1999).Two important mehanisms govern the dynamis of plasmids in a population:onjugation and segregation. Often, the quik spread of antibioti resistane in a pop-ulation ours beause plasmids are quikly spread through onjugation (Genereuxand Bergstrom 1999). Segregation ours if during baterial �ssion all of the plasmidspresent in the mother ell segregate to a single daughter ell. If there are m plasmidsin the mother ell for example, the fat that one of the daughter ells may inherit0; 1; 2; 3; : : : ; m plasmids makes of segregation a hane mehanism. This argument isthe basis of the stohasti model onstrution of the plasmid dynamis done by Senetaand Tavar�e (1983) using branhing proesses. In the absene of antibioti resistane,the advantageous genes arried by the plasmid are no longer neessary and ells thatlose the plasmid via segregation reprodue faster than the others (Levin and Stewart1977, 1980, Bergstrom et al. 2000, Lili et al. 2007, Slater et al. 2008). In suh ases,the faster spread of the plasmid-free ells has been taken as evidene that hosting a



3plasmid imposes a metaboli ost for the bateria, and ultimately a �tness ost. Asa onsequene, it is a deliate balane between onjugation, segregation and �tnessost what determines the persistene of plasmids in a natural population (Stewartand Levin 1980, Bergstrom et al. 2000). Modeling these key proesses when this bal-ane ours is essential to understand plasmids' persistene (De Gelder et al. 2004,Bergstrom et al. 2000).An understanding of the plasmids' dynamis an be ritial to design medi-al treatments. If the plasmids' ost is high enough, in the absene of antibiotisplasmid-free ells will tend to sweep over in a baterial population. This is the reasonwhy, if a patient is infeted with an antibioti-resistant strain, a medial treatmentonsists on dereasing or ompletely disontinuing the use of antibiotis (Genereuxand Bergstrom 1999). However the tendeny to disappear is not deterministi andseems to utuate widely (De Gelder et al. 2004, Poniano et al. 2007). There arerelevant questions that an only be answered properly through a areful modeling ofthe plasmids' dynamis. One of them is knowing what are the values of the �tnessost imposed by plasmids that guarantee their disappearane from a population ofinterest. Also, one may ask what are the onsequenes of the wide utuations re-ported by De Gelder et al. (2007), and what is the expeted time to be waited until99.9% of the bateria disappear.To takle these questions, data is obtained by arrying \segregation experi-ments". In these experiments, a baterial population is seeded with 100% plasmid-arrying individuals in an antibioti-free medium. Then, bateria are allowed toevolve (dupliate) during 24 hrs and a sample of, say, 50 ells is taken day after day,for many days (e.g. 20). By arrying stability experiments with seven strains, DeGelder et al. (2004) observed that the estimated fration of the plasmid-free ba-teria inreased eah day but this inrease was \quite slow and errati" and while



4there was an average (of plasmid-free ells) trend upward there was a onsiderableamount of variability (Joye et al. 2005). Although the amount of variability in thedata seem to be higher than what would be expeted under pure random samplingfrom a deterministi trend, most of the plasmids' dynamis models have been builtin a deterministi framework using either di�erential or di�erene equation systems.Levin and Stewart (1977) modeled the population dynamis of plasmids governedby onjugation and plasmid lost via segregation and found the biologial onditionsunder they persist. Later, in 1979, they onsidered onditions in whih non self-transmissible extrahromosomal elements were maintained. Bergstrom et al. (2000)reviewed the plasmids' dynamis literature and proposed that growth and onjugationrates should be funtions of the time (measured in generations). These authors alsofound the mathematial expressions desribing preisely the onditions for plasmidpersistene expressed as a funtion of onjugation and segregation rates. Later, DeGelder et al. (2004) built a system of di�erene equations to model the fration ofplasmid-free ells and onneted this model to the data via rigorous statistial meth-ods. The main goal of the present work is to provide pratitioners with the toolsto answer some of the relevant questions mentioned above by means of a stohastimodel. We develop and test the methods to �t and evaluate the proposed model,given data from segregation experiments (De Gelder et al. 2004) . As Novozhilovet al. (2005) point out, the use of stohasti proesses to model HGT is readily jus-ti�ed when it is onsidered that the biologial priniples under whih evolution andadaptation are understood are essentially stohasti. In 2008, Slater et al. wrote thatdeterministi models \fail to take into aount some of the physiologial and eologialomplexities of plasmids and their hosts in natural environments". If the plasmids'environment is understood as its host, and one onsiders that the host qualities maywidely hange from individual bateria to another, then a model with environmental



5unertainty might be a good hoie to inorporate stohastiity in a plasmids' dy-namis model (Poniano et al. 2007). Following this argument, the model we proposeinorporates environmental stohastiity and extends the hierarhial model proposedby Poniano et al. (2007).



62 Modeling Horizontal Gene TransferIn this setion we present a Markov Model (MM) for HGT in bateria. This modelis an extension of the Hidden Markov Model (HMM) developed by Poniano et al.(2007) in whih horizontal plasmid transfer is modelled expliitly. The model's de-termisti \skeleton" is a di�erene equation system also desribed by these authors.In what follows, we �rst summarize the deterministi model properties and then weharaterize the MM in detail.2.1 Mathematial ModelDe Gelder et al. (2004) established a system of di�erene equations to model thegrowth of the fration of plasmid free ells in an anti-bioti free medium. Theyassumed ells an lose plasmids but they annot aquire it again. The number ofplasmid-free ells at time t is denoted as mt and the number of plasmid-arrying ellsis denoted as nt. In this system, the abundane of plasmid-free ells mt was given bythe sum of the mt�1 plasmid-free ells that grew at a rate 21+� and the nt�1 plasmid-arrying ells that lost their plasmid at a segregation rate � and doubled in numberfrom time t � 1 to time t. The parameter � was alled the seletion oeÆient, orplasmid ost. If � > 0, the seletion oeÆient represents the advantage in growthspeed that plasmid-free ells have over plasmid-arrying ells. On the other hand, thenumber of plasmid-arrying ells at time t, nt, was simply given by twie the numberof plasmid-arrying at time t� 1 that did not loose their plasmid. Hene,mt = 21+�mt�1 + 2�nt�1;nt = 2(1� �)nt�1: (1)Then, plasmid-free ells' proportion xt wasxt = mtmt + nt : (2)Using this basi formulation, Poniano et al. (2007) onsidered a model exten-sion to aount for the fat that baterial ells an aquire plasmid via onjugation.



7These authors assumed that the plasmid onjugation rate, denoted by , dependedlinearly not only on the relative abundane of plasmid-arrying and plasmid-free ells,but also on their probability of enounter given by(1� xt�1)� + (1� xt�1) =: �(xt�1):This modi�ation to the mass-ation priniple is the well-known Mihaelis-Menten formula that has been used before in a similar ontext (Poniano et al. 2007).Also, in the eologial literature, this funtional form has been derived from �rstpriniples as a probability of enounter between two individuals of di�erent sex in apopulation (Dennis, 1989). The parameter � is interpreted as the fration of plasmid-arrying ells at whih the frequeny of onjugations is half its maximum. Hene, themodel beame mt = �1�  (1�xt�1)�+(1�xt�1)� 21+�mt�1 + 2�nt�1;nt = 2(1� �)nt�1 + 21+�mt�1 (1�xt�1)�+(1�xt�1) : (3)From Equation 3, the fration of plasmid-free ells at time t was found to bext = �1�  (1�xt�1)�+1�xt�1� xt�121+� + 2�(1� xt�1)21+�xt�1 + 2(1� xt�1) : (4)By arrying a standard stability analysis (Kot 2001) of the di�erene Equa-tion 4, unique deterministi properties of the model were found. In partiular,three equilibrium solutions to equation 4 are possible. The �rst two were obtainedas solutions of the quadrati equation Ax2 + Bx + C = 0, where A = 2� � 1,B = ((� + 1)(2� � 1) + � + 2�) and C = ��(� + 1). The resulting solutionsare x1 = 1, x2 = �B+pB2�4AC2A and x3 = �B�pB2�4AC2A .The behavior of the stable solutions and of the growth rate of the frationof plasmid-free ells depends strongly on the value of � (see Figure 1). When theparameter � is too small, plasmid-free ells repliate as fast as plasmid-arrying onesso that the plasmids may never disappear from the population. When this ours,
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Figure 1: Left panel, behavior of the fration of plasmid-free ells (xt) at time t isshown for di�erent values of �. In the lowest urve � = 0:055 and for the uppermosturve � = 0:41. Right panel, the growth rate of the fration of plasmid-free ells(xt � xt�1) is shown. The intersetions with the x-axis shows the loation of thestable solutions (Taken from Poniano et al. 2007) .the solution x2, whih is smaller than 1, is stable. The solution x1 = 1 will beomestable if and only if � � 1� 1� �2� (5)holds. Under this last solution all ells lose their plasmid and they beome sensitiveto antibioti treatment.The behavior of stable solutions is shown in Figure 1, where di�erent stablesolutions for di�erent values of the parameter � are plotted. Also in Figure 1, thegrowth rate of plasmid-free ells' fration is shown. The di�erent equilibria are thepoints that interset the x-axis.The atual stability experiment arried by De Gelder et al. (2004), De Gelder



9et al. (2007) and Poniano et al. (2007), showed that the behavior of the fration ofplasmid-free ells might not be deterministi. As shown in Figure 2, the variability ofthe observations appears to be bigger than would be expeted under a simple binomialproess, like the one used to �nd the ML estimates of the deterministi model by DeGelder et al. (2004). To model this extra variability we assumed that the growthproess of the proportion of plasmid-free ells is a stohasti proess. Then, thegrowth rate of plasmid-free ells beomes a random variable. This model is explainedin detail in the next setion.2.2 Stohasti ModelA stohasti model for the growth of the proportion of plasmid-free ells an in-lude two di�erent soures of variability: demographi stohastiity and environmen-tal noise. Demographi stohastiity refers to the variability given by the random lossand aquisitions of plasmids in the population, whereas environmental noise is relatedto \the e�et of external fators on the individuals in the population (Poniano etal. 2005). A State-Spae Model (SSM) has been shown to be an adequate tool tomodel di�erent soures of randomness (Dennis et al. 2006). For instane, Clark andBj�rnstad (2004) and Dennis et al. (2006) have showed that SMM are suitable toestimate adequately di�erent soures of variability: the proess unertainty onsist-ing of environmental noise and/or demographi stohastiity and observation errorgiven by data. In the experiment mentioned before, a SSM would integrate observa-tional error (related to the fat that we do not know the total number of plasmid-freeells) and proess error (related to the unertainty of the growth of plasmid-free ells).The model equation in (4) does not onsider proess error. To introdue pro-ess variability, Poniano et al. (2007) proposed that the �tness ost � might bedrawn from a ontinuous probability distribution denoted in their model as St, whereSt iidN(�; � 2). Here we make the same assumption. Aording to the distintions



10

Figure 2: The proportion of plasmid-free ells for bateria P18, where variabilityseems bigger than expeted. Taken from Poniano et al. (2007).mentioned above regarding the di�erent types of proess variability, inluding �tnessas a random variable amounts to speify a model for environmental noise. Ponianoet al. (2007) emphasized that due to theoretial and experimental bakground it isfeasible to onsider that \the ourrene of ompensatory mutations and/or a variablehost-dependent plasmid �tness ost would dramatially alter the plasmid loss dynam-is". In other words, there would be periods where loss of plasmids would be severe



11and other periods where their loss would not be as severe. Therefore, a stohastiformulation for the proportion of plasmid-free ells seems biologially reasonable.Lewontin and Cohen (1969) showed that environmental noise an be modeledby assuming that the growth rate is a normal random variable. In stohasti proesstheory, the introdution of environmental noise an be derived as follows: supposethat population growth is modeled with a density-dependent branhing proess model,like a standard Galton-Watson proess with non-overlaping generations, where themean of the o�spring distribution depends on the urrent population density. LetZt denote the total number of individuals at time t. Then, Zt = Pti=1Ni whereNi � g(m; v), m = E(Ni) and v = V (Ni). This model not only assumes that all theindividuals are idential with respet to the o�spring distribution, but also that fromyear to year the o�spring distribution remains the same. Environmental noise an beintrodued in this model by simply letting the mean of this o�spring distribution bea random variable that hanges from year to year m = m(t) (see Tier and Hanson1981). By introduing environmental stohastiity in the deterministi model in (4),the fration of plasmid-free ells Xt beomes a random variable that is a funtionof St and the realization of X at time t � 1, Xt�1. Therefore, (Xt; t � 0) is anunobservable Markov proess (Hidden Markov Model).The relationship between St and Xt isXt = �1�  (1�Xt�1)�+1�Xt�1�Xt�121+St + 2�(1�Xt�1)21+StXt�1 + 2(1�Xt�1) (6)= g(St): (7)Here, Xt is a Markov hain, where t represents the number of generations. Thetransition density funtion for this Markov hain is found by using the hange of



12variable theorem:fXtjXt�1(xtjxt�1) = 1�p2� �����g�1(xt)�xt ���� exp��(g�1(xt)� �)22� 2 � I(�;1)(xt) (8)where g�1(xt) = 1ln(2) ln� (1� xt�1)(xt � �)(� + 1� xt�1)xt�1(� + 1� xt�1)(1� xt) + xt�1(xt�1 � 1)��g�1(xt)�xt = 1ln(2) � 1xt � � + � + 1� xt�1� + 1� xt�1 � (1� xt�1)� :The funtion g(_) linking Xt with St is invertible and this property allow us to writeexpliitly the transition probability (8). On the other hand St is a normal randomvariable and this allow us to easily simulate the proess Xt as it is shown in Figure 3.
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Figure 3: Simulation of three realizations of (Xt; t � 0).The stohasti dynamis model above is haraterized by three unique Markovmodel properties: the transition probability distribution funtion, its stationary prob-ability distribution funtion (if it exists) and the plasmids' persistene times.The transition probability distribution fXtjXt�1=xt�1(xtjxt�1) looks like a Betadistribution when Xt�1 = xt�1 is set near to 1 and (5) holds. It is possible to �t a



13Beta distribution with parameters (�; �) by estimating � and � using the method ofmoments. To do that, we �rst approximate the �rst and seond moments of the hainvia a seond order Taylor series expansion as follows:XtjXt�1 = xt�1 � g(�) + �g(St)�St (St � �) + 12 �2g(St)�S2t (St � �)2: (9)Then, using properties of expetation and variane we have:m = E(XtjXt�1 = xt�1) � g(�) + 12 �2g(St)�S2t E((St � �)2)� g(�) + �2g(St)�S2t � 2; andv = V ar(XtjXt�1 = xt�1) � ��g(St)�St �2 V ar(St � �) + 14 �2g(St)�S2t V ar(St � �)2� ��g(St)�St �2 � 2 14 �2g(St)�S2t (V ar(S2t ) + 4�2V ar(St))� ��g(St)�St �2 � 2 14 �2g(St)�S2t (2(�2 + � 2)� 3 + 4�2� 2):Finally, the approximated moment parameter estimates are~� = ~� m1�m; and (10)~� = m (1�m)2v +m� 1 : (11)In Figure 4, xt�1 = 0:9 was �xed and one forward step of the hain was sim-ulated. The histogram represents simulations and the urve is a Beta density withparameters (~�; ~�).The stationary law is one of the interesting properties but alulating it forthis proess is not an easy task. Properties for an ergodi hain (aperiodiity andirreduibility, Karlin 1975) need to be proved in the ontinuous state spae for thefration of plasmid-free ells. Another approah ould be using a di�usion proessapproximation whih is again not an easy job (Meyn and Tweedie 1993). Howeversimulations of the proess showed that a stationary law for this Markov hain might
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Figure 4: Simulations of Xt onditional to Xt�1 = 0:9. A Beta distribution (solidline) was �tted to the simulated data using the method of moments.exist under ertain onditions. The mode of this stationary law seems to be lose to0.9. The last property refers to persistene times. Let T x0k = minft > 0 : Xt �kjX0 = x0g be the �rst time at whih the Markov hain Xt is greater or equal thank given that the hain started at x0. Then, it is possible to simulate these stopingtimes using the transition pdf, as it is shown in Figure 5.2.3 The Hierarhial ModelA hierarhial model Y is a statistial model that has random omponents and �xedparameters. They have been widely used in Eology and Biology. For example,realisti strutures using hierarhial models for apture-reapture problems wereworked by George and Robert (1992) and Basu and Ebrahimi (2001). Problemsrelated to �sheries stok assessment were treated by Meyer and Millar (1999). Later,Gelfand et al. (2005) takled a problem of geospatial models of speies and habitats
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16the density g(xj�). The paramers � usually are the parameters of biologial relevane.The experiment desribed in De Gelder et al. (2004) gives the basi elementsto propose a suitable hierarhial model. In three separated olonies, stability ex-periments were performed three times. Eah olony (along with a ertain antibioti)was inoulated in 5ml of LB1. After 24hr, these ultures were washed to remove allantibiotis. A fration of the 4.88 �l were transferred to 5ml of LB and they weregrown for 10 generations, this represents time 0 (it is assumed that in 24 hrs, tengenerations of bateria span).During 24hr they were inubated in a rotary shaker, then 4.88 �l of the ul-tures were transferred eah 24 hr. to fresh 5 ml LB. The fration of plasmid-free ellswas obtained by replia, piking 50 olonies per ulture at random and ounting howmany of them were free of plasmid through omparison of their genomi �ngerprints.Then observed data are three replia of the same proess yi = (yi1; yi2; : : : ; yiq),i = 1; 2; 3 oming from a hidden Markov proess of length q: X i = (X1i; X2i; : : : ; Xiq).The hierarhial model proposed inludes observational and proess error of the ex-periment and an be written as follows:Yi;t � g(yi;tj50; Xi;t); and (13)Xi;tjXi;t�1 = xi;t�1 � fXi;tjXi;t�1(xi;tjxi;t�1);where g(yitj50; Xi;t) = � 50yi;t�(Xi;t)yi;t(1�Xi;t)50�yi;t is a binomial distribution andfXi;tjXi;t�1(xi;tjxi;t�1) is as in Equation (8) for i = 1; 2; 3. The model in (13) onsidersenvironmental and demographi stohastiity, hoping that inferenes based on suhmodel will be adequate and omplete. Inferenes based on model (13) will be pre-1LB: Lysogeny broth, a medium omposed by peptides, vitamins, trae elements and mineralsthat is used for the growth of bateria.



17sented in the following setions, where point estimates using MCMC methods will bedisussed.



183 Statistial InfereneThe statistial inferene for the fration of plasmid-free ells will be based on thehierarhial model (13). Obtaining parameter and persistene time estimates is themain goal of the present statistial analysis. Using a posterior distribution (using aBayesian approah) and a likelihood funtion the hierarhial model proposed in thelast setion is disussed.3.1 Bayesian infereneBayesian statistial inferene is based on the analysis of posterior distributions of avetor of parameters. The posterior distributions are formed by the produt of twoimportant funtions: The likelihood funtion and the joint prior distribution for thevetor of parameters. In our ase, the likelihood funtion and the posterior distribu-tion for the vetor (Xi; �; �; �; �; ) are used to estimate the fration of plasmid-freeells and persistene times. The proedure to ahieve this is desribed as follows:For the Markov hain, let (�; � 2; �; �; ) be the set of parameters ofX i = (Xi1; : : : ; Xiq)that govern the hidden Markov proess of length q. Variable Xt is latent (unob-served) sine it only an be known through indiret observational shemes (Clark andBj�rnstad 2004). In our ase, we have a sample of size 50 only. Let yi = (yi1; : : : ; yiq)be the set of observations that ome from the i-th replia of the time series experimentwhih aounts for the error in the proess due to the plasmid-free bateria samplingmethod. The joint posterior distribution for the parameters and the proess is�(�; � 2; �; �; ;X1; X2; X3jy1; y2; y3) / 3Yi=1 g(yijX i)| {z }Likelihood � �(X1; X2; X3; �; � 2; �; �; )| {z }Prior ;(14)



19where the joint prior distribution an be written as:�(X1; X2; X3; �; � 2; �; �; ) = �(�)�(� 2)�(�jX1; X2; X3)�(jX1; X2; X3; �)�(�)��(x01)�(x02)�(x03)� 3Yi=1 qYt=1 fXitjXi;t�1;�;�2;�;�;(xitjxi;t�1; �; � 2; �; �; ):From Equation (6) the Hidden Markov proess has transition distribution de-�ned by (14) if:0 < � < min1�t�qfXitg = f1(X i)and if0 <  < min1�t�q n (�+1�Xi;t�1)(1�Xit)1�Xi;t�1 o = f2(X i; �) for i = 1; 2; 3: (15)Bayesian inferene requires eliitation of prior distributions. For hierarhial models,eliitation of priors is not an easy task sine priors for all the parameters and theproess need to be settled. The hidden Markov model is a proess that by de�nitionannot be observed and therefore, priors for unobservable quantities are diÆult toeliit. Although the inuene of the prior on the �nal inferene an be strong andlead to di�erent onlusions when working with di�erent prior distributions (Lele andDennis 2007), if subjetive priors are used, methods to evaluate the robustness of theinferenes to hanges in the prior distribution exist (Ruggieri 2000).Most of our unobservable variables are quantities between 0 and 1 or they arerelated through inequalities (15), so the eliitation of prior distribution for our model(14) was done as follows:1. �(�) = 110I(0;10)(�),2. �(� 2) = 160I(0;60)(� 2),3. �(�jX1; X2; X3) = 1mini=1;2;3ff1(Xi)gI(0;mini=1;2;3ff1(Xi)g)(�),4. �(�) = I(0;1)(�),



205. �(jX1; X2; X3; �) = 1mini=1;2;3ff2(Xi;�)gI(0;mini=1;2;3ff2(Xi;�)g)(),6. �(x0) = I(0;1)(x0).Using the above priors the resulting posterior distribution does not have alosed simple form, therefore omputational tools are needed to sample from it. Thiswas ahieved using two di�erent MCMC implementations to be explained in Setion4.3.2 Likelihood InfereneA likelihood funtion is a funtion from whih inferenes about populations are doneusing random samples. Inferenes will be meaningful as long as this population isorretly spei�ed. The likelihood funtion is a funtion that is proportional to theprobability of observing the sample y from a population with parameter �. Sprott(2000) disussed that \the likelihood funtion ranks the plausibility of all possiblevalues of � by how probable they make the observed y'. The likelihood funtion alsoallows omparison of plausibilities of di�erent values of � for the value of the observedsample y.For our model the likelihood funtion for the hierarhial model (13) is:L(�; � 2; �; �; ; y1; y2; y3) = Z[0;1℄q Z[0;1℄q Z[0;1℄q 3Yi=1 g(yi;tj50; Xi;t)� (16)�fXi;tjXi;t�1(xi;tjxi;t�1)dX1dX2dX3:An eÆient and numerially aurate maximization of this high-dimensional integralis diÆult to ahieve. Here, as it will be seen, MCMC omputational tools will beused to overome this problem. Maximum likelihood estimates will be obtained nu-merially and will be used to estimate the plasmids' persistene time.



214 Computer intensive statistial methods4.1 ARMS within Gibbs SamplerMarkov Chain Monte Carlo (MCMC) algorithms were �rst desribed by Metropoliset al. (1953) and later improved by Hastings (1970). It is a general proedure tosimulate from any probability distribution whih is espeially useful when its expliitform is not available (Robert and Casella 2005). The MCMC algorithm assures thatthe Markov hain's stationary law is the probability distribution of interest (see ap-pendix A.1).A very well-known example of MCMC is the Gibbs Sampler (Gelfand andSmith 1990, Casella and George 1992). The Gibbs sampler allows to sample froma distribution without having its expliit form. This algorithm is based on the fatthat it is suÆient to know the full onditional distribution of eah parameter todetermine a joint distribution of the parameters. This omputational tehnique usessampling from eah parameter's full onditional distribution at eah step and thenreplaing this new sampled value in another parameter's full onditional distribution.In our model full onditional distributions are easy to write and have an importantproperty: log-onavity.Adaptive Rejetion Sampling (ARS) is an often used methodology to samplefrom the onditional posterior distributions needed to arry the Gibbs sampler. Toestimate the model parameters, Poniano et al. (2007) used an ARS variant, Adap-tive Rejetion Metropolis Sampling (ARMS) within Gibbs to sample from the fullonditionals in (17) that had the log-onavity property. Here, we �rst attempted toobtain samples from the full posterior (14) by using this method.Adaptive Rejetion Sampling (ARS) was proposed by Gilks and Wild (1992).



22It is useful when we want to simulate from distributions whose logarithm is a onavefuntion. This algorithm is based on building a onave hull that overs the log-density(h(�)). The onave hull is formed by intersetions of lines that are tangent toa set of ordinates. This set of ordinates is obtained from a set of absissae Tk of sizek that are seleted at the beginning of the algorithm and have the property of beingwithin the support of the target density (Figure 6).
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Figure 6: Log-onave density and onave hull. Using k = 4 a onave hull an bebuilt. The hull overs ompletely the log-density.The ARS algorithm requires the target log-density h(�) to be ontinuous, on-ave and di�erentiable in all its support D. Furthermore, D has to be a onnetedset. ARS is performed through the following steps:1. Selet an absissae set in the density's support D: Tk = (x1; x2; : : : ; xk).2. Calulate the intersetions of the tangents in the ordinates h(xj):zj = h(xj+1)� h(xj)� xj+1h0(xj+1) + xjh0(xj)h0(xj)� h0(xj+1) :



233. Calulate a onave hull: x 2 [zj�1; zj℄uk(x) = h(xj) + (x� xj)h0(xj)and its exponential sk = exp(uk)(x)RD exp(uk)(x) :4. Simulate x� from sk, whih is a mixture of exponential distributions with pa-rameters uk(x) = h(xj) + (x� xj)h0(xj).5. Simulate u from a Uniform distribution in (0; 1), aept x� ifu � exp(h(x�)� uk(x�));else do Tk+1 = Tk [ fx�g.Gilks and Wild (1994) noted that using ARS, it is still possible to simulate fromquasi log-onave distributions (see Figure 7) if an extra Metropolis-Hastings step isadded to the algorithm desribed above. In the last step, if u � exp(h(x�)� uk(x�))is true, then aept x� with probability equal to the following Metropolis-Hastingsratio: �(x(i); x�) = min�1; f(x�)min(f(x(i)); sk(x(i)))f(x(i))min(f(x�); sk(x�)) � ;where log(f(�)) = h(�). If u � exp(h(x�)�uk(x�)) is not true or if x� is not aepted,then Tk+1 is set as Tk [ fx�g.For our model equation (14), the ARMS algorithm was implemented within aGibbs Sampler where Kernels (full onditionals) of eah parameter were (onsidering1 replia to simplify notation):1. For � 2: p(� 2jX; �; �; �; ) / �(� 2)Qqt=1 fXtjXt�1;�;�2;�;�;(xtjxt�1; �; � 2; �; �; ):2. For �: p(�jX; �; � 2; �; ) / �(�jX)Qqt=1 fXtjXt�1;�;�2;�;�;(xtjxt�1; �; � 2; �; �; ):3. For : p(jX; �; � 2; �; �) / �(jX; �)Qqt=1 fXtjXt�1;�;�2;�;�;(xtjxt�1; �; � 2; �; �; ):
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Figure 7: Quasi log-onave density and onave hull.4. For �:p(�jX; �; � 2; �; ) / �(�)�(jX; �) qYt=1 fXtjXt�1;�;�2;�;�;(xtjxt�1; �; � 2; �; �; ):(17)5. For X0: pX0jXt>0Y ;�;�2;�;;�(x0jxt>0y; �; � 2; �; ; �) // �(�)�(x0)fX1jX0;�;�2;�;;�(x1jx0; �; � 2; �; ; �)g(y0jx0):6. For Xt, 0 < t < q: pXtjXj 6=tY ;�;�2;�;;�(xtjxj 6=ty; �; � 2; �; ; �) // �(�jX)fXtjXt�1;�;�2;�;;�(xtjxt�1; �; � 2; �; ; �)�� fXt+1jXt;�;�2;�;;�(xt+1jxt; �; � 2; �; ; �)g(ytjxt):7. For Xq: pXq jXq�1;y�;�2;�;;�(xqjxq�1�; � 2; �; ; �) // �(�jX)fXq jXq�1;�;�2;�;;�(xqjxq�1; �; � 2; �; ; �)g(yqjxq).Before arrying this Gibbs sampler and deiding whether to use ARS or ARMS,the log-onavity of eah full onditional was heked. As it is shown in Figure 8, thelog-density of parameter � its log-density is ompletely onave and the log-densityfor x1;2 is quasi log-onave.
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Figure 8: Log-densities for � (left) and x1;2 (right).To draw B independent samples from the posterior distribution the above Ker-nels were sampled sequentially at eah step. The values (x(0)i ; �(0); � 2(0); �(0); (0); �(0))were set at arbitrary initial values. A sample from the marginal posterior distributionof any parameter is obtained simply by taking the sequene of that parameter fromthe total sample and high-dimensional integration is not neessary (Meyer and Millar1999).
4.2 t-walkThe seond MCMC method implemented in this work is the t-walk algorithm. Thet-walk is a general purpose sale-independent MCMC algorithm that maintains twoindependent points to sample from a joint posterior distribution. Proposed by Chris-ten and Fox (2007), this algorithm solves the problem of tuning a proposal distributionfor a MCMC. It hanges the objetive distribution �(x) for f(x; x0) = �(x)�(x0) andis di�erent from running two hains simultaneously. This general MCMC algorithmhas the advantage that is not an adaptive algorithm. It uses four di�erent moving



26strategies designed to preserve the hain's homogeneity and ergodi properties.The t-walk's design is based on a general distribution qf(y; y0)j(x; x0)g thatproposes the hain moves aording to:(y; y0) = 8<: (x; h(x; x0)) with probability 0.5(h(x; x0); x0) with probability 0.5 ;where h(x; x0) is a random variable assoiated with one the four moves desribedbelow. In the t-walk algorithm only some of the oordinates of the points (x; x0)are moved. If the length of x is n, n independent Bernoulli random variables �j,j = 1; : : : ; n are simulated. If �j = 1 then the xj oordinate will be updated aord-ing to h(�; �).The �rst of the four moves is alled the walk-move. This move is loselyrelated to a random walk and it allows to sample from distributions that are weaklyorrelated. This move is de�ned as:hw(x; x0)j = xj + �j(xj � x0j)zj;where zj are real random variables i.i.d. with density fw(�).The seond move is the traverse-move and it helps to sample from distributionswhose variables are strongly orrelated. The traverse-move is de�ned as:ht(x; x0)j = 8<: x0j + �(x0j � xj) �j = 1xj �j = 0 ;where � is a positive random variable with density ft(�).The �nal two are the hop-move and the blow-move. These two moves helpto maintain the irreduibility of the hain and to guarantee its onvergene. The



27hop-move an be de�ned as follows:hh(x; x0)j = 8<: (xj + zj �(x;x0)3 ) �j = 1xj �j = 0 ;where �(x; x0) = maxj �jjxj � x0jj and zj � N(0; 1).Finally, the blow move is:hb(x; x0)j = 8<: x0j + �(x; x0)zj �j = 1xj �j = 0 ;zj and �(x; x0) are de�ned as before. It must be notied that the di�erene betweenthe hop and the blow moves is that they start from di�erent initial points.By mixing the set of the four standard Metropolis-Hastings Kernels K� assoi-ated with the four moves h� (and � 2 fw; t; h; bg) the onvergene of t-walk algorithmis assured (Fox and Christen 2007).The t-walk is not a sequential algorithm. It allows to sample from all the pa-rameters in a posterior distribution at one. This property an be useful when someonditions need to hold simultaneously among the parameters, as it is the ase withour model (see eq. 15).The t-walk algorithm is partiularly useful when the target distribution ishighly multimodal and other MCMC variant is diÆult to alibrate (i.e. �ndinga good proposal distribution). However, it is by de�nition a Metropolis-Hastingsalgorithm and as suh it inherits one of its diÆulties, namely hoosing initial pointsthat allow a quik onvergene.



284.3 The Prior Feedbak algorithmIt is possible to take advantage from MCMC methods to perform Likelihood infer-ene. Robert (1993) proposed a method alled Prior Feedbak to obtain maximumlikelihood (ML) estimates. Prior Feedbak is a method that exploits the statistialproperties of the problem and �nds ML estimates as a limit of bayes estimates. ThePrior Feedbak algorithm updates the parameters using repeatedly the observed dataas a new prior eah time. By doing that, the posterior distribution onverges to a�xed point, idential to the ML estimate.Let f(xj�) = (x) exp (�x� �(�)) be a density from a k-dimensional expo-nential family. Let x be a single observation from f(xj�). The onjugate prior�(�jx0; �) / exp (�x0 � ��(�)) depends on x0 and � 2 R+ parameters.The quantity of interest is a ontinuous funtion of the parameter h(�). Agood estimate for this quantity is E�(h(�)jx) sine it depends on the observed data.The prior expetation of h(�) is:E(h(�)jx0; �) = Z h(�)�(�jx0; �)d�:Then the updated posterior expetation will beE�(h(�)jx1; �) = E�(h(�)jx0 + x; �):Continuing in this fashion, the Prior Feedbak Estimate (PFE), denoted byÆ��(x), will be assoiated to a �xed point x� suh thatÆ��(x) = E�(h(�)jx�; �) = E�(h(�)jx� + x; �): (18)This estimate an be interpreted as the one whose prior density agrees withthe information given by the data x (neutral distribution). Robert proved that Æ��(x)onverges to ML estimate of � when � goes to in�nity (see Appendix A).



29Robert also showed that this method an be very useful to obtain the MLestimates when the likelihood funtion is not from the exponential family. Also, heompared this method with Simulated Annealing (SA) in the sense that the prior dis-tribution plays, in this algorithm, the role of the temperature. Robert (1993) laimedthat it is easier for this algorithm to ontrol priors sine they have an statistial in-terpretation, whereas for SA it is always diÆult to alibrate temperatures.Later Robert and Titterington (1998) proposed a prior feedbak method ou-pled with a Gibbs sampler for a Normal and Poisson hierarhial models to obtainthe maximum likelihood estimates of the model parameters. The basi idea of thisomputational method is based on elevating to a high enough power the likelihoodfuntion so that the e�et of the prior distribution vanishes. In the ontext of HMMthey implemented the Gibbs sampler with an inreasing number of replia of the sam-ple of size m, asumming these replia are independent. The theoretial justi�ationis that the prior feedbak estimate will onverge to a Dira mass loated at the max-imum likelihood estimates as m goes to in�nity, sine the m-th posterior distributionof parameter � is �(m)(�) / �(�)L(�)m:In the former method, m an be interpreted as the temperature of a SA algo-rithm but regularity onditions need to hold. In partiular, L(�) needs to be bounded,whih is not trivial. In fat, to implement this omputational method adequately,Robert and Titterington had to introdue a modi�ation of the likelihood funtionfor the Normal and Poisson ases beause they were not bounded.In the following setion, a generalization of MCMC methods for obtainingmaximum likelihood will be reviewed.



304.4 The Data Cloning algorithmLele et al. (2007) proposed to take advantage of MCMC methods to avoid high-dimensional integration and maximize likelihood funtions to obtain ML estimatesfor hierarhial models. Their method is alled Data Cloning (DC) and as the PriorFeedbak algorithm, it is a MCMC method that onverges to ML estimates as a vari-able k goes to in�nity.When the prior distribution is positive over the spae parameter the posteriordistribution of the hierarhial model (12) is�(1)(�; �jy) = R fg(yjX; �)f(Xj�)dXg�(�; �)h(y) ;where h(y) = R g(yjX; �)f(Xj�)�(�; �)dXd�d�. Now,if �(1)(�; �jy) is prior, the up-dated posterior is �(2)(�jy) = R fg(yjX; �)f(Xj�)dXg�(1)(�; �)h2(y)�R g(yjX; �)f(Xj�)dX	2 �(�; �)h2(y)�L(�; �; y)	2 �(�; �)h2(y) :If we ontinue this proedure k times, k-th posterior distribution is�(k) = �L(�; �; y)	k �(�; �)hk(y) :On other hand, if the experiment was to be arried k times and by happen-stane the results were always the same, then the likelihood for hierarhial model(12) would be �Z g(yjX�)f(Xj�)dX�k = �L(�; �; y)	k : (19)When (�̂ML; �̂ML) are the maximum likelihood estimates for all (�; �),L(�; �; y) � L(�̂ML; �̂ML; y);



31and if k goes to in�nity:�(k)(�; �jy)�(k)(�̂; �̂jy) = fL(�; �; y)gkfL(�̂; �̂; y)gk = 8<: 0 if (�; �) 6= (�̂ML; �̂ML);1 if (�; �) = (�̂ML; �̂ML):Lele proved that as k ! 1, �(k)(�; �jy) onverges in distribution to a multivariatenormal with mean the ML estimates and variane a k-th part of Fisher's informationmatrix (MVN([�̂; �̂℄0; 1kI�1(�̂; �̂))). This asymptoti result makes this methodologybetter than SA beause it allow us to build on�dene intervals easily, whih is onethe main goals of doing inferene, by the method of Wald.Here, the k-th posterior, using (13)and (16), is�(k)(�; � 2; �; �; ; y1; y2; y3) / nL(�; � 2; �; �; ; y1; y2; y3)ok ���(x0)�(�)�(� 2)�(�)�(�)�(j�): (20)



325 Results and DisussionIn this thesis we proposed a new stohasti model for horizontal plasmid transferalong with the inferene tools neessary to analyze real data from the widespreadstability experiments (De Gelder et al. 2004, De Gelder et al. 2007, De Gelder etal. 2008). One of the most important ontributions of this work is to present plas-mids' persistene time as a random variable and the methodology to estimate itsmost important properties. Furthermore, the methodology presented here was thor-oughly tested via simulations. In what follows we present �rst the results with theGibbs sampler. Using the ARMS algorithm we show that for this partiular ase theuse of the Gibbs sampler is in fat ineÆient. Next, we present the results obtainedfrom the t-walk algorithm when one and three repliated time series of the growthof the fration of the plasmid-free ells are available. Then, we evaluate via simu-lations the quality of the persistene times' estimates. Finally, we illustrate how toarry maximum likelihood estimation via data loning for our hierarhial model (13).Simulations from the stohasti proess (6) an be used to test thoroughly theBayesian methodology presented here. If many (e.g. 1,000) sets of three repliatedtime series (as the ones obtained in the stability experiments) are generated aord-ing to the model with a set of parameter values, and if eah time the modes of themarginal posterior distributions are reorded, then a histogram of these modes an bedrawn. If the methodology works properly, the histograms of the a posteriori modesare expeted to be entered around the true values, for long enough time series (thatis, time series ontaining enough information about how the proess behaves). Pon-iano et al. (2007) arried that simulation exerise using the Gibbs sampler for eahsimulation from a stohasti model without horizontal transfer. They showed thatindeed the histograms of the marginal a posteriori modes were entered around thetrue generating values. However, as we show next, examining the marginal posteriordistribution of the parameters for a single, very long simulation, an shed some light



33on the qualities of the inferene. Also, as we will demonstrate, it is not trivial topursue suh simulation exerise for the Stohasti Horizontal Transfer model. Hene,here we limited ourselves to examine the results with a single simulation.Three time series of yit with i = 1; 2; 3; t = 1; 2 : : : 600 were simulated. Inorder to use ARMS within the Gibbs sampler to estimate the parameters for this sim-ulated time series, one needs to sample sequentially the individual omponents of theposterior distribution (14). A few (two or three) parameters an be jointly sampledin some ases as shown in Robert and Casella (2005). Here, aording to the ondi-tions (15) we would need to jointly sample the parameters in the vetor (X i; �; �; ),whih ontains most of the parameters of interest. To do that an MCMC is required,and therefore the Gibbs sampler beomes extremely ineÆient: in order to sample asingle point one needs to ahieve stationarity of the MCMC algorithm for this mul-tidimensional hain. Using the full onditionals desribed in setion 3, the elementsin (X i; �; �; ) were sampled one at a time and not jointly. Independent samples foreah of the parameters were obtained using ARMS on these onditionals and lettingthe Gibbs sampler to run 2� 106 times. A lag of 20,000 iterations was taken betweeneah sample (Figure 9), until aumulating 100 samples. The maximum a posterioriestimates (MAP) for the parameters � and  are not lose to their respetive realvalues and the posterior distribution is highly bimodal (Figure 9). As it will be seen,the results with the t-walk sampler under the same simulation onditions are di�er-ent, and the posterior distribution for both � and  are this time unimodal, lose tothe true generating value. This indiates that one-at-a-time sampling from the vetor(X i; �; �; ) may not be adequate.To avoid using an MCMC algorithm inside the Gibbs sampler, the t-walk al-gorithm was used. Using one simulated time series yt, t = 1; 2 : : : 600, a hundredsamples from eah of the parameters were obtained taking a lag of size 20,000 (at



34stationarity). Beause of the lag size (20,000) these samples are approximately in-dependent (Figure 10). The resulting histograms of these samples are multimodal(Figure 10), due to the total multimodality of the posterior distribution. These pos-terior distributions also illustrate the ability of the t-walk algorithm to sample fromall the modes. A hundred a posteriori unobservable time series of the hidden Markovproess (Xt; t = 0; 1; : : : ; 600) were sampled independently using the t-walk algorithmand all of them were very lose to true values as it is shown in Figure 11.The stability experiments are usually tripliated, and hene, a very plausibledata set onsists of three independent time series of the growth of the fration ofplasmid free ells. That is, in ontrast to what is usual in maro-eologial studies,samples from various realizations of the stohasti population proess are obtained.These repliated realizations inrease the amount of information available about theproperties of the stohasti proess under study. As the number of simulated repli-ated time series is inreased, unimodality of the posterior distribution and the likeli-hood funtion seems to be ahieved. Three replias yit; i = 1; 2; 3; t = 1; 2; : : : 600 weresimulated and the t-walk is run. Histograms of an independent sample of size 100 ofeah of the marginal posterior distributions were drawn (Figure 12) and they appearunimodal. Due to the inreased amount of information, the posterior distributionsmodes are easier to identify. Note that the mode of the parameter � is not lose tothe true value as the other modes seem to be. That means that even 600 iterationsof the proess do not ontain enough information about the parameter �. It may bepossible that it is diÆult to observe a single plasmid loss by segregation. In otherwords, segregation might not appear; its value, 6:851� 10�5 indiates that we wouldexpet 6 segregations to our in 100,000 generations (the segregation rate used tosimulate data), so that this information might not be observed in 600 generations ofthe proess. However, note that the drawn histograms represent only one possiblemaximum a posteriori estimate for the parameters. To aount for the variability of



35the maximum a posteriori estimate of the segregation parameter � (and of all of theparameters as well) it would be neessary to arry a parametri bootstrap simulationexerise as the one suggested at the beginning of this disussion and arried by Pon-iano et al. (2007) for a one parameter simpler model.The posterior distribution of the vetor (Xt; t = 0; 1; : : : ; 600) is well enteredaround the true unobserved proess (Figure 13). Eah of the samples of eah elementof (Xt; t = 0; 1; : : : ; 600) were taken at lag sizes of 12,000 MCMC iterations, as sug-gested by the Integrated Autoorrelated Time value (Figure 14).Simulations of size 50,000 of the persistene time T 0:0060:8 using real parametervalues were ompared to those using the posterior modes of the histograms in Figure12. The resulting histograms (Figure 15) show that their distributions are pratiallythe same for persistene times smaller than 150 generations (approximately 15 days).The estimated persistene times are bigger than real ones for generations larger than150. That an be seen in the probability plot (Figure 15) for T 0:0060:8 (that is, when weare measuring the time until 80% of the bateria ells are free from plasmids).The same proedure was done to estimate T 0:950:006. In that ase, the estimatedand real stopping times distributions were very similar. In that ase, the distributionof the stopping time is muh better estimated (Figure16). Around Xt = 0:80 the vari-ane of the proess is muh higher than the variane of the proess at Xt = 0:90. Thiswould explain why, with the same parameter estimates, the quality of the infereneon the distribution of the stopping times varies so muh between T 0:0060:8 and T 0:0060:95 .In order to estimate the variability around the estimated distribution of the stoppingtimes the values simultaneous 95 % redible intervals of all the parameters ould beused to simulated the lower and upper stopping times' \redibility distributions".



36The Bootstrap algorithm to evaluate the properties of the bayesian a poste-riori modes would work as follows: Let � = (�; � 2; �; �; ) be the set of parametersto be estimated and �̂(0) the set of MAP estimates generated by the original threesimulated time series y(0)it . Then, using �̂(0) we ould simulate B hidden Markovhains x(1)it ; x(2)it ; : : : ; xBit . Using the binomial sampling of (13) with eah HMM wethen would obtain 3 � B new time series y(1)it ; y(2)it ; : : : ; y(B)it . The 3 � B time seriesy(j)it ; i = 1; 2; 3; j = 1; 2; : : :B; would then be the new input for the B t-walk algorithmsthat would allow us to obtain B MAP estimates �̂(1); �̂(2); : : : ; �̂(B). These bootstrapedMAP estimates ould then be drawn in histograms and frequentist properties (suhas MSE, overage and bias) ould be obtained for eah one of them (Figure 17).Finally, to arry maximum likelihood inferene, the Data Cloning algorithmwas tried. To �nd the ML estimates a big enough value of k is needed so the esti-mates onverge. This value an be found by repeatedly doubling the number of lonesuntil the ML estimates do not hange. If the data ontains enough information aboutthe parameters (that is, the likelihood pro�le for the parameter is not at), then thevariane of the kth marginal posterior distribution for eah parameter should dereaseas k inreases. If that does not happen for a given parameters, that means that thelikelihood funtion does not ontain enough information for that partiular parame-ter. For our model, we hose k = 20. The maximum likelihoods estimates are shownin the following table:k � � 2 � � 10 0.07454193 0.08044456 6.381449 �10�4 0.1493229 0.0127628920 0.07521905 0.0803876 6.116462 �10�4 0.1493229 0.01275640When we hoose ML estimates with 20 lones, the estimated distribution ofpersistene times was shifted to the right of the real distribution of persistene times,as shown in Figure 18. The di�erene in the estimated versus the true distribution



37inreases in the tails. Also, we found that Markov hains provided by Data Cloningshould be extremely large (more than 200,000 steps) in order to estimate adequatelyvariability of the estimates when using 20 lones in this model. We did not pursue aninvestigation on the qualities of the ML estimates as k > 20, due to numerial diÆ-ulties (insuÆient memory) to estimate Fisher's information matrix in those ases.The plasmids' loss dynamis and persistene times were e�etively estimatedusing the MAP and ML estimates for the hierarhial model (13). Given that in-luding proess noise in the model that onsiders HGT (6) is a more realisti model,we think that the methodology presented here is suitable for modeling the plasmids'dynamis for baterial strains where onjugation is thought to be important fator.Conjugation might play an important role in spatially omplex baterial ommuni-ties, like bio�lms (Fox et al. 2008). There, this gene exhange proess allows thegeneration and maintenane of diversity as well as multiple resistane to harsh envi-ronments. The model we propose here ould then be extended to a spatially expliit,multivariate model to explain the spatial plasmid dynamis. This is an area of in-tense researh in biology, yet stohasti and statistial models for suh systems aregenerally laking (Lili et al. 2007). We believe that the model presented in this workprovides more exibility and enough realism to answer the relevant questions aboutplasmids' population dynamis.
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Figure 9: 100 independent samples of the marginal posterior distributions for eahone of the parameters (�; � 2; �; �; ), using ARMS within Gibbs. The true values arerepresented in the vertial line.
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Figure 10: 100 independent samples of the marginal posterior distributions for eahone of the parameters (�; � 2; �; �; ), using the t-walk with one time series. The truevalues are represented with the vertial line.
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Figure 11: 100 independent samples for the hidden Markov proess Xt (grey points)using the t-walk with one time series. The true value of the Markov hain is shownin blak.
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Figure 12: 100 independent samples of the marginal posterior distributions for eahone of the parameters (�; � 2; �; �; ), using the t-walk with three time series. The truevalues are represented with the vertial line.
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Figure 13: 100 independent samples for the three hidden Markov proesses xit (greypoints) using the t-walk with three time series. The true value of the three Markovhains are shown in blak.
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Figure 15: The histograms of 50,000 persistene times (T 0:8) simulated with real pa-rameter values (� = 0:11; � 2 = 0:0625; � = 6:851044��5; � = 0:25;  = 0:02443239;)and then with the estimated parameter values(� = 0:093431; � 2 = 0:06678281; � =1:266791� 10�4; � = 0:2203061;  = 0:01855009). On the right, the probability plot,of the simulated persistene time distribution is shown.



44

persistence time

F
re

qu
en

cy

0 200 600 1000

0
50

00
10

00
0

15
00

0
20

00
0

estimated persistence time

F
re

qu
en

cy

0 200 600 1000

0
50

00
10

00
0

15
00

0
20

00
0

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

persistence time

es
tim

at
ed

 p
er

si
st

en
ce

 ti
m

e

Figure 16: The histograms of 50,000 persistene times (T 0:95) simulated with real pa-rameter values (� = 0:11; � 2 = 0:0625; � = 6:851044��5; � = 0:25;  = 0:02443239;)and then with the estimated parameter values(� = 0:093431; � 2 = 0:06678281; � =1:266791� 10�4; � = 0:2203061;  = 0:01855009). On the right, the probability plotof the simulated persistene time distribution is shown.
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Figure 17: The bootstrap methodology for model (13). It is possible to give boot-straped interval estimates for all the parameters using this algorithm.
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Figure 18: The histograms of 50,000 persistene times (T 0:95) simulated with real pa-rameter values (� = 0:11; � 2 = 0:0625; � = 6:851044��5; � = 0:25;  = 0:02443239;)and then with the estimated parameter values(� = 0:07521905; � 2 = 0:0803876; � =6:116462 � 10�4; � = 0:1493229;  = 0:01275640) with k = 20 lones. On the right,the probability plot of the simulated persistene time distribution is shown.



476 ConlusionsThe stohasti dynamis model (6) e�etively onsidered the three relevant proessthat determine plasmids' persistene: Segregation, onjugation and �tness ost. Fur-thermore, in the present work, the stohasti proess eÆiently modeled the dailyhanges in plasmid ost by proposing the �tness ost as a random variable. Thegrowth rate of the fration of plasmid-free ells beame a random variable as it wasexpressed as a funtion of the �tness ost. This stohasti population dynamis modelalso allowed us to e�etively model the plasmids' persistene time via simulations.This model inluded environmental stohastiity, a property that reets how exter-nal fators inuene the behavior of ells in plasmid loss dynamis.Intensive omputational methods were very useful to analyze simulated data.The �rst method used was ARMS within Gibbs sampler whih failed to sample or-retly from the posterior distribution of the vetor of parameters sine it samples pa-rameters sequentially. The posterior distribution of the vetor of parameters neededto be sampled at one beause onditions (15) need to be stated a priori. The se-ond method used was the t-walk onsidering one simulated time series from (12).Multimodality of the posterior distribution was suspeted, so extensive validation ofthe parameter estimates needed to be done. Then, three simulated time series wereobtained and the t-walk was run. This last methodology yielded a posterior distribu-tion with a unique mode (Figure 12). The Maximum a Posteriori parameter (MAP)estimates were used to ompare the estimated vs. the true distribution of plasmids'persistene times. Simulated persistene times using MAPs from the t-walk withthree time series were very lose to the simulated persistene times using the real pa-rameter values. The approximation is partiularly good for true persistene times of95%. This result was expeted sine the simulated time series from whih the MAPswere alulated were very long, and therefore they ontained enough information onthe parameters of interest. Nonetheless, this simulation exerise is useful beause it



48indiretly shows that the MCMC does onverge.Further work needs to be done to assess the statistial properties of the MAPsobtained. In partiular, a parametri Bootstrap methodology ould be used to assessthe statistial properties of the Bayesian MAP estimates under di�erent senariosand parameterizations. This was not done here beause very intensive omputationalresoures are needed (for instane, the burn-in time for eah t-walk in the Bootstrapmight be extremely large). For hierarhial models like the one presented in thisthesis, an exhaustive exploration of the e�ets of di�erent \uninformative" a prioridistributions also needs to be onsidered. Also, given that we are dealing with proper-ties of a proess that by de�nition is hidden, it seems diÆult to eliit truly subjetiveprior distributions for the parameters of interest. Thus, the eliitation of adequateprior distributions and the evaluation of the robustness of the methods presented here(Ruggieri 2008) are topis of further researh.The Data Cloning methodology to �nd the ML estimates of a hierarhialmodel is a viable alternative to the urrent and popular Bayesian methodology fornon-linear non-gaussian state-spae models when researhers are not willing to usesubjetive prior distributions and when it is diÆult to use \non-informative" priors.Here, Data Cloning was used to obtain ML estimates for the model (6). We observedthat a good hoie might be using 20 as the number of lones. The resulting MLestimates from this methodology were used to simulate persistene times and it wasobserved that they performed satisfatorily. To obtain interval estimates more ompu-tational power is needed in order to estimate Fisher's information matrix and buildWald's intervals. Another approah to build interval estimates ould be using themethodology proposed by Poniano et al. (2008) where a fast and eÆient algorithmto obtain the relative pro�le likelihoods for the parameters of interest is proposedbased on Data Cloning. As shown by these authors, suh pro�le likelihood intervals



49are more reliable than the asymptoti Wald intervals obtained via Data Cloning, es-peially for short time series data sets. Again, omputational alulations to fullyexplore the Data Cloning methodology ould be intensive sine the onvergene timeof data loning might be extremely large.Finally, the hierarhial model (12) not only is a exible model that an beused to analyze the stability experiments desribed by De Gelder et al. (2004) butalso an give the experimentalist a strong basis to understand plasmid growth dynam-is. In fat, with this hierarhial model, we show that it is possible to understandsimultaneously the sampling proess of plasmid-free bateria and the relevant pro-esses that allows plasmids to spread in the population. Beause inluding proessnoise in the model that onsiders HGT (6) is a more realisti model, we think thatthe methodology presented here is suitable for modeling the plasmids' dynamis forbaterial strains where onjugation is thought to be an important fator. Conjuga-tion might play an important role in spatially omplex baterial ommunities, likebio�lms (Fox et al. 2008). There, this gene exhange proess allows the generationand maintenane of diversity as well as multiple resistane to harsh environments.The model we proposed here ould then be extended to a spatially expliit, multi-variate model to explain the spatial plasmid dynamis. This is an area of intensiveresearh in biology, yet stohasti and statistial models for suh systems are gen-erally laking (Lili et al. 2007). We believe that the model presented in this workprovides more exibility and enough realism to answer the relevant questions aboutplasmids' population dynamis.
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55A Convergene of EstimatesA.1 Convergene of MCMC algorithmThe �nal goal of a MCMC algorithm is to obtain an independent sample from adistribution �(x). To run a MCMC algorithm using a Metropolis-Hastings ratio, itis neessary to have a proposal distribution q(x; y) that indiates the probability ofmoving from the value x to the value y and that this proposal distribution is easyto sample from. While the proposal distribution is being used in the algorithm aMarkov hain is being reated and this reated Markov hain has as stationary law�(x). The algorithm performs the following steps:1. Initialize with a value X = x0 at time t = 0.For t = 1; 2; : : : ; B repeat the following steps:2. Sample xt from q(xt�1; xt).3. Aept xt with probabilitya(xt�1; xt) = min�1; �(xt)q(xt; xt�1)�(xt�1)q(xt�1; xt)� :4. Else, xt = xt�1 and go to step 2.The transition matrix of the Markov hain is de�ned by this algorithm as follows:P (xtjxt�1) = q(xt�1; xt)a(xt�1; xt) = m(xt�1; xt):



56If a(xt�1; xt) < 1 then, we have a(xt�1; xt) = � �(xt)q(xt;xt�1)�(xt�1)q(xt�1;xt)� and a(xt; xt) = 1. Evenmore: �(xt�1)m(xt�1; xt) = �(xt�1)q(xt�1; xt)a(xt�1; xt);= �(xt�1)q(xt�1; xt)� �(xt)q(xt; xt�1)�(xt�1)q(xt�1; xt)� ;= �(xt)q(xt; xt�1);= �(xt)q(xt; xt�1)a(xt; xt�1);= �(xt)m(xt; xt�1);so that �(x) is the stationary law of m(xt�1; xt).A.2 Convergene of Prior Feedbak estimateLet x be a single observation from f(xj�), where f(xj�) is a density of a k-th dimen-sional exponential family. The exponential density is f(xj�) = (x) exp (�x� �(�)).The onjugate prior is �(�jx0; �) / exp (�x0 � ��(�)) and it depends on x0 and� 2 R+ parameters.The maximum likelihood estimate is �̂ is x obtained from the following equation�(�̂) = ��(�)�� ����=�̂ = x:Even more, the mode for the prior distribution is ~� and it an be obtained from�(~�) = ��(�)�� ����=~� = x0� :Then, if we reparameterize using �(�) = ��(�)�� we obtain the mean parameterization.Hene, we an transform the a priori density as�(�jx0; �) � ��(�jx0; �):



57The reparameterized density ��(�jx0; �) has a mode x0� that is equal to its mean.Then lim�!1 x0� = 8<: 0 if x0 is �xed;a� if x0 is a funtion of �:The prior feedbak estimate of h(�), when we have the �xed point x�, will onvergeto lim�!1 h ���1(x�� )�. But by de�nition of prior feedbak estimate we have thatÆ��(x) = E�(h(�)jx�; �) = E�(h(�)jx + x�; � + 1) and this implies that for a � largeenough h���1�x�� �� � h���1�x� + x�+ 1 �� :By ontinuity of h(�) and �(�), and also by the property of reparameterization it followsthat �x�� � � �x� + x�+ 1 � ;so h(��1 �x�� �) onverges to h(��1(x)) = h(�̂) the maximum likelihood estimate.


