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ABSTRACT

Horizontal Gene Transfer (HGT) is a general term used in Biology referring to the
exchange of genes between two individuals in the same generation. HGT plays an
important role in bacterial adaptation and evolution. In harsh environments, the
acquisition of genetic material that allows bacterial adaptation occurs through the
transmission of circular DNA molecules known as plasmids. In this work, a hier-
archical model is proposed to explain and predict the plasmids’ population dynamics
when HGT is taken into account. This model is an extension of the deterministic
and stochastic models presented by Ponciano et al. (2007). The hierarchical model
consists of two parts: the first part is a hidden Markov model (HMM) that incorpo-
rates the relevant biological processes. This Markov model follows the proportion of
plasmid-free cells over many generations. In laboratory experiments called “stability
experiments”, the growth of the fraction of plasmid-free cells is monitored daily. The
data produced by such experiments consists of time series of the observed fraction of
plasmid free cells. In order to connect such data sets with the Markov model, the sec-
ond part of the hierarchical model describes the statistical sampling scheme from the
Markov model and here we chose to use a binomial distribution whose success proba-
bility changes according to the HMM. We developed intensive computational methods
based on Markov Chain Monte Carlo (MCMC) to be able to estimate the model pa-
rameters with real, experimental data sets. These parameter estimates were used to
estimate the plasmids’ persistence times for simulated data sets. The statistical tools
developed here were thoroughly tested via simulations. Finally, the methods developed
in this work are suitable to estimate persistence times in antibiotic-resistant bacteria

populations and they can be easily extended to more biologically realistic scenarios.



1 Introduction

Horizontal Gene Transfer (HGT), the exchange of genes between two individuals in
the same generation, plays an important role in bacterial adaptation and evolution.
This biological process allows individual bacteria to sample genetic material from a
diverse gene pool in a given population. Recently, Gogarten and Towsend (1995)
showed that HGT greatly complicates the evolutionary history of many microbial
organisms and that their phylogenetic histories usually cannot be elucidated unless
HGT is accounted for. In bacteria, HGT has evolved through plasmids, which are
extrachromosomal circular DNA molecules capable of autonomous replication. The
transmission of plasmids between two individual bacteria occurs through a process
known as conjugation. Plasmids can carry genetic material that can be advantageous
to their hosts. This is in fact the mechanism through which bacteria acquire genes
that code for antibiotics resistance or genes that allow them to cope with harsh envi-

ronments (Genereux and Bergstrom 1999).

Two important mechanisms govern the dynamics of plasmids in a population:
conjugation and segregation. Often, the quick spread of antibiotic resistance in a pop-
ulation occurs because plasmids are quickly spread through conjugation (Genereux
and Bergstrom 1999). Segregation occurs if during bacterial fission all of the plasmids
present in the mother cell segregate to a single daughter cell. If there are m plasmids
in the mother cell for example, the fact that one of the daughter cells may inherit
0,1,2,3,...,m plasmids makes of segregation a chance mechanism. This argument is
the basis of the stochastic model construction of the plasmid dynamics done by Seneta
and Tavaré (1983) using branching processes. In the absence of antibiotic resistance,
the advantageous genes carried by the plasmid are no longer necessary and cells that
lose the plasmid via segregation reproduce faster than the others (Levin and Stewart
1977, 1980, Bergstrom et al. 2000, Lili et al. 2007, Slater et al. 2008). In such cases,

the faster spread of the plasmid-free cells has been taken as evidence that hosting a



plasmid imposes a metabolic cost for the bacteria, and ultimately a fitness cost. As
a consequence, it is a delicate balance between conjugation, segregation and fitness
cost what determines the persistence of plasmids in a natural population (Stewart
and Levin 1980, Bergstrom et al. 2000). Modeling these key processes when this bal-
ance occurs is essential to understand plasmids’ persistence (De Gelder et al. 2004,

Bergstrom et al. 2000).

An understanding of the plasmids’ dynamics can be critical to design medi-
cal treatments. If the plasmids’ cost is high enough, in the absence of antibiotics
plasmid-free cells will tend to sweep over in a bacterial population. This is the reason
why, if a patient is infected with an antibiotic-resistant strain, a medical treatment
consists on decreasing or completely discontinuing the use of antibiotics (Genereux
and Bergstrom 1999). However the tendency to disappear is not deterministic and
seems to fluctuate widely (De Gelder et al. 2004, Ponciano et al. 2007). There are
relevant questions that can only be answered properly through a careful modeling of
the plasmids’ dynamics. One of them is knowing what are the values of the fitness
cost imposed by plasmids that guarantee their disappearance from a population of
interest. Also, one may ask what are the consequences of the wide fluctuations re-
ported by De Gelder et al. (2007), and what is the expected time to be waited until

99.9% of the bacteria disappear.

To tackle these questions, data is obtained by carrying “segregation experi-
ments”. In these experiments, a bacterial population is seeded with 100% plasmid-
carrying individuals in an antibiotic-free medium. Then, bacteria are allowed to
evolve (duplicate) during 24 hrs and a sample of, say, 50 cells is taken day after day,
for many days (e.g. 20). By carrying stability experiments with seven strains, De
Gelder et al. (2004) observed that the estimated fraction of the plasmid-free bac-

teria increased each day but this increase was “quite slow and erratic” and while



there was an average (of plasmid-free cells) trend upward there was a considerable
amount of variability (Joyce et al. 2005). Although the amount of variability in the
data seem to be higher than what would be expected under pure random sampling
from a deterministic trend, most of the plasmids’ dynamics models have been built
in a deterministic framework using either differential or difference equation systems.
Levin and Stewart (1977) modeled the population dynamics of plasmids governed
by conjugation and plasmid lost via segregation and found the biological conditions
under they persist. Later, in 1979, they considered conditions in which non self-
transmissible extrachromosomal elements were maintained. Bergstrom et al. (2000)
reviewed the plasmids’ dynamics literature and proposed that growth and conjugation
rates should be functions of the time (measured in generations). These authors also
found the mathematical expressions describing precisely the conditions for plasmid
persistence expressed as a function of conjugation and segregation rates. Later, De
Gelder et al. (2004) built a system of difference equations to model the fraction of
plasmid-free cells and connected this model to the data via rigorous statistical meth-

ods.

The main goal of the present work is to provide practitioners with the tools
to answer some of the relevant questions mentioned above by means of a stochastic
model. We develop and test the methods to fit and evaluate the proposed model,
given data from segregation experiments (De Gelder et al. 2004) . As Novozhilov
et al. (2005) point out, the use of stochastic processes to model HGT is readily jus-
tified when it is considered that the biological principles under which evolution and
adaptation are understood are essentially stochastic. In 2008, Slater et al. wrote that
deterministic models “fail to take into account some of the physiological and ecological
complexities of plasmids and their hosts in natural environments”. If the plasmids’
environment is understood as its host, and one considers that the host qualities may

widely change from individual bacteria to another, then a model with environmental



uncertainty might be a good choice to incorporate stochasticity in a plasmids’ dy-
namics model (Ponciano et al. 2007). Following this argument, the model we propose
incorporates environmental stochasticity and extends the hierarchical model proposed

by Ponciano et al. (2007).



2 Modeling Horizontal Gene Transfer

In this section we present a Markov Model (MM) for HGT in bacteria. This model
is an extension of the Hidden Markov Model (HMM) developed by Ponciano et al.
(2007) in which horizontal plasmid transfer is modelled explicitly. The model’s de-
termistic “skeleton” is a difference equation system also described by these authors.
In what follows, we first summarize the deterministic model properties and then we

characterize the MM in detail.

2.1 Mathematical Model

De Gelder et al. (2004) established a system of difference equations to model the
growth of the fraction of plasmid free cells in an anti-biotic free medium. They
assumed cells can lose plasmids but they cannot acquire it again. The number of
plasmid-free cells at time ¢ is denoted as m; and the number of plasmid-carrying cells
is denoted as n;. In this system, the abundance of plasmid-free cells m; was given by
the sum of the m,_; plasmid-free cells that grew at a rate 2'*° and the n,_; plasmid-
carrying cells that lost their plasmid at a segregation rate A\ and doubled in number
from time ¢ — 1 to time . The parameter ¢ was called the selection coefficient, or
plasmid cost. If o > 0, the selection coefficient represents the advantage in growth
speed that plasmid-free cells have over plasmid-carrying cells. On the other hand, the
number of plasmid-carrying cells at time ¢, n;, was simply given by twice the number
of plasmid-carrying at time ¢ — 1 that did not loose their plasmid. Hence,

my = 2Y7my_y 42Xy,

ng = 2(1—=XNng 4.
Then, plasmid-free cells’ proportion z; was

my

(2)

Ty = .
my + Ny

Using this basic formulation, Ponciano et al. (2007) considered a model exten-

sion to account for the fact that bacterial cells can acquire plasmid via conjugation.



These authors assumed that the plasmid conjugation rate, denoted by <, depended
linearly not only on the relative abundance of plasmid-carrying and plasmid-free cells,

but also on their probability of encounter given by

(]_ _l‘t—l)
0+ (1—x4)

=: O(xy_q).

This modification to the mass-action principle is the well-known Michaelis-
Menten formula that has been used before in a similar context (Ponciano et al. 2007).
Also, in the ecological literature, this functional form has been derived from first
principles as a probability of encounter between two individuals of different sex in a
population (Dennis, 1989). The parameter 6 is interpreted as the fraction of plasmid-

carrying cells at which the frequency of conjugations is half its maximum. Hence, the

model became

e <1 B 7%) 2 my g + 2Xny, (3)

From Equation 3, the fraction of plasmid-free cells at time ¢ was found to be

(1= itz 2 + 201 - i)
e R

(4)

Ty =

By carrying a standard stability analysis (Kot 2001) of the difference Equa-
tion 4, unique deterministic properties of the model were found. In particular,
three equilibrium solutions to equation 4 are possible. The first two were obtained
as solutions of the quadratic equation Az? + Bx + C' = 0, where A = 27 — 1,
B = (0+1)(2° —1) + A+ 279) and C = —A(f + 1). The resulting solutions

— Vv B2— _B—/B2_

The behavior of the stable solutions and of the growth rate of the fraction
of plasmid-free cells depends strongly on the value of o (see Figure 1). When the
parameter o is too small, plasmid-free cells replicate as fast as plasmid-carrying ones

so that the plasmids may never disappear from the population. When this occurs,
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Figure 1: Left panel, behavior of the fraction of plasmid-free cells (z;) at time ¢ is
shown for different values of o. In the lowest curve o = 0.055 and for the uppermost
curve 0 = 0.41. Right panel, the growth rate of the fraction of plasmid-free cells
(x4 — x4_1) is shown. The intersections with the x-axis shows the location of the

stable solutions (Taken from Ponciano et al. 2007) .

the solution x5, which is smaller than 1, is stable. The solution z; = 1 will become

stable if and only if

¥ 1—-A
P % (5)

holds. Under this last solution all cells lose their plasmid and they become sensitive

to antibiotic treatment.

The behavior of stable solutions is shown in Figure 1, where different stable
solutions for different values of the parameter o are plotted. Also in Figure 1, the
growth rate of plasmid-free cells’ fraction is shown. The different equilibria are the

points that intersect the x-axis.

The actual stability experiment carried by De Gelder et al. (2004), De Gelder



et al. (2007) and Ponciano et al. (2007), showed that the behavior of the fraction of
plasmid-free cells might not be deterministic. As shown in Figure 2, the variability of
the observations appears to be bigger than would be expected under a simple binomial
process, like the one used to find the ML estimates of the deterministic model by De
Gelder et al. (2004). To model this extra variability we assumed that the growth
process of the proportion of plasmid-free cells is a stochastic process. Then, the
growth rate of plasmid-free cells becomes a random variable. This model is explained

in detail in the next section.

2.2 Stochastic Model

A stochastic model for the growth of the proportion of plasmid-free cells can in-
clude two different sources of variability: demographic stochasticity and environmen-
tal noise. Demographic stochasticity refers to the variability given by the random loss
and acquisitions of plasmids in the population, whereas environmental noise is related
to “the effect of external factors on the individuals in the population (Ponciano et
al. 2005). A State-Space Model (SSM) has been shown to be an adequate tool to
model different sources of randomness (Dennis et al. 2006). For instance, Clark and
Bjornstad (2004) and Dennis et al. (2006) have showed that SMM are suitable to
estimate adequately different sources of variability: the process uncertainty consist-
ing of environmental noise and/or demographic stochasticity and observation error
given by data. In the experiment mentioned before, a SSM would integrate observa-
tional error (related to the fact that we do not know the total number of plasmid-free

cells) and process error (related to the uncertainty of the growth of plasmid-free cells).

The model equation in (4) does not consider process error. To introduce pro-
cess variability, Ponciano et al. (2007) proposed that the fitness cost o might be
drawn from a continuous probability distribution denoted in their model as S;, where

Sy iidN(p, 7%). Here we make the same assumption. According to the distinctions
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Figure 2: The proportion of plasmid-free cells for bacteria P18, where variability

seems bigger than expected. Taken from Ponciano et al. (2007).

mentioned above regarding the different types of process variability, including fitness
as a random variable amounts to specify a model for environmental noise. Ponciano
et al. (2007) emphasized that due to theoretical and experimental background it is
feasible to consider that “the occurrence of compensatory mutations and/or a variable
host-dependent plasmid fitness cost would dramatically alter the plasmid loss dynam-

ics”. In other words, there would be periods where loss of plasmids would be severe



11

and other periods where their loss would not be as severe. Therefore, a stochastic

formulation for the proportion of plasmid-free cells seems biologically reasonable.

Lewontin and Cohen (1969) showed that environmental noise can be modeled
by assuming that the growth rate is a normal random variable. In stochastic process
theory, the introduction of environmental noise can be derived as follows: suppose
that population growth is modeled with a density-dependent branching process model,
like a standard Galton-Watson process with non-overlaping generations, where the
mean of the offspring distribution depends on the current population density. Let
Z; denote the total number of individuals at time ¢. Then, Z;, = 2221 N; where
N; ~ g(m,v), m = E(N;) and v = V(N;). This model not only assumes that all the
individuals are identical with respect to the offspring distribution, but also that from
year to year the offspring distribution remains the same. Environmental noise can be
introduced in this model by simply letting the mean of this offspring distribution be
a random variable that changes from year to year m = m(t) (see Tier and Hanson
1981).

By introducing environmental stochasticity in the deterministic model in (4),
the fraction of plasmid-free cells X; becomes a random variable that is a function
of S; and the realization of X at time ¢t — 1, X;_;. Therefore, (X;, ¢ > 0) is an

unobservable Markov process (Hidden Markov Model).

The relationship between S; and X is

(o) N a0 o
L 2145 X, | +2(1 — X, )
= g(S). (7)

Here, X; is a Markov chain, where t represents the number of generations. The

transition density function for this Markov chain is found by using the change of
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variable theorem:

1 |99~ (x) (97 (@) — p)?
th\Xt—l(xtut*l) = /o or, erp\ — 272 I()\,oo)(l“t) (8)
where
_1 1 ( (1 — xtfl)(flft — )\)(0 +1-— l'tfl) >
Ty = In
g ( t) ln(2) :ct,l(@ + 1— xt,l)(l — .Z't) + xt,l(xt,l — 1)"}/

8g_1(.fl§'t) o 1 1 4 0 +1-— Ti—1

oxy o)\ A 0+l -2 — (1= )y

The function ¢() linking X; with S; is invertible and this property allow us to write
explicitly the transition probability (8). On the other hand S; is a normal random

variable and this allow us to easily simulate the process X; as it is shown in Figure 3.

1.0

0.8

0.6

Fraction of plasmid-free cells
0.4

0.2

0.0

T T T T T T T
0 100 200 300 400 500 600

Time (in generations)

Figure 3: Simulation of three realizations of (X;, ¢ > 0).

The stochastic dynamics model above is characterized by three unique Markov
model properties: the transition probability distribution function, its stationary prob-

ability distribution function (if it exists) and the plasmids’ persistence times.

The transition probability distribution fx,|x,_,—s,_, (#¢|7¢—1) looks like a Beta

distribution when X; ; = x; ; is set near to 1 and (5) holds. It is possible to fit a
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Beta distribution with parameters («, ) by estimating o and [ using the method of
moments. To do that, we first approximate the first and second moments of the chain

via a second order Taylor series expansion as follows:

ag(St)
0S;

10%9(Sy)
> 057

Xi| Xim1 = w1 = g(p) + (Sp— ) + (S —m)*. (9)

Then, using properties of expectation and variance we have:

1829(515)

m=EX|Xi 1 =21) = g(p) 2 952 E((S; — 1)?)
g(p) + ané?t)T2, and
v=Var(Xy| X = 1) ~ <8%(;t))2 Var(S, — p) + iaZgé?t)Var(St — w)?
~ <a%§t) ) ol ané;ft) (Var(s?) +42Var(5,))
~ <6%(;t) ) : 72% 8257;:26‘,5) (2012 + 727 + 4u272).

Finally, the approximated moment parameter estimates are

& = B%, and (10)
s (1 —m)?
b= T (1)

In Figure 4, x; 1 = 0.9 was fixed and one forward step of the chain was sim-
ulated. The histogram represents simulations and the curve is a Beta density with

parameters (@, B)

The stationary law is one of the interesting properties but calculating it for
this process is not an easy task. Properties for an ergodic chain (aperiodicity and
irreducibility, Karlin 1975) need to be proved in the continuous state space for the
fraction of plasmid-free cells. Another approach could be using a diffusion process
approximation which is again not an easy job (Meyn and Tweedie 1993). However

simulations of the process showed that a stationary law for this Markov chain might
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Figure 4: Simulations of X; conditional to X; ; = 0.9. A Beta distribution (solid

line) was fitted to the simulated data using the method of moments.

exist under certain conditions. The mode of this stationary law seems to be close to

0.9.

The last property refers to persistence times. Let 7;° = min{t > 0 : X; >
k|Xo = xo} be the first time at which the Markov chain X, is greater or equal than
k given that the chain started at xy. Then, it is possible to simulate these stoping

times using the transition pdf, as it is shown in Figure 5.

2.3 The Hierarchical Model

A hierarchical model Y is a statistical model that has random components and fixed
parameters. They have been widely used in Ecology and Biology. For example,
realistic structures using hierarchical models for capture-recapture problems were
worked by George and Robert (1992) and Basu and Ebrahimi (2001). Problems
related to fisheries stock assessment were treated by Meyer and Millar (1999). Later,

Gelfand et al. (2005) tackled a problem of geospatial models of species and habitats
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using a hierarchical model. Clark and Bjgrnstand (2004) used this type of models to
estimate different sources of variability in population time series (environmental and
process variability) and Ponciano et al. (2007) for the fraction of plasmid-free cells
without conjugation. Finally, Lele et al. (2007) review many of the applications of
these models in Ecology. Hierarchical models are usually specified using two equations
called the observation and the process model equations. These are typically written

as

X’ ¢)7
X ~ f(zlf).

observation equation Y ~ g¢(y
w (12)

process equation
The observation equation contains the specification of the statistical sampling model
by which the observations Y are obtained. This model is governed by a set of pa-

rameters, say ¢. The sampling model is used to connect the data with the stochastic

process model of interest. The process is usually denoted by X and is governed by
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the density g(z|0). The paramers § usually are the parameters of biological relevance.

The experiment described in De Gelder et al. (2004) gives the basic elements
to propose a suitable hierarchical model. In three separated colonies, stability ex-
periments were performed three times. Each colony (along with a certain antibiotic)
was inoculated in 5ml of LB!. After 24hr, these cultures were washed to remove all
antibiotics. A fraction of the 4.88 ul were transferred to 5ml of LB and they were
grown for 10 generations, this represents time 0 (it is assumed that in 24 hrs, ten

generations of bacteria span).

During 24hr they were incubated in a rotary shaker, then 4.88 ul of the cul-
tures were transferred each 24 hr. to fresh 5 ml LLB. The fraction of plasmid-free cells
was obtained by replica, picking 50 colonies per culture at random and counting how

many of them were free of plasmid through comparison of their genomic fingerprints.

Then observed data are three replica of the same process y. = (Yi1, Yias - - - » Yig),
i =1,2,3 coming from a hidden Markov process of length ¢: X, = (Xy;, Xo;, ..., Xig).
The hierarchical model proposed includes observational and process error of the ex-

periment and can be written as follows:

Yie ~ g(yie]50, Xiy), and (13)

Xi,t|Xi,t71:xi,t71 ~ in,t\Xi,t_l(«Tz’,t|xi,t71)a

where ¢(y;]50, X; ) = (;ot) (X;0)vit (1 — X;4)%°7%+ is a binomial distribution and
Ixi01x00 (Tig|Tig—1) is as in Equation (8) for 7 = 1,2,3. The model in (13) considers
environmental and demographic stochasticity, hoping that inferences based on such

model will be adequate and complete. Inferences based on model (13) will be pre-

!LB: Lysogeny broth, a medium composed by peptides, vitamins, trace elements and minerals

that is used for the growth of bacteria.



17

sented in the following sections, where point estimates using MCMC methods will be

discussed.
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3 Statistical Inference

The statistical inference for the fraction of plasmid-free cells will be based on the
hierarchical model (13). Obtaining parameter and persistence time estimates is the
main goal of the present statistical analysis. Using a posterior distribution (using a
Bayesian approach) and a likelihood function the hierarchical model proposed in the

last section is discussed.

3.1 Bayesian inference

Bayesian statistical inference is based on the analysis of posterior distributions of a
vector of parameters. The posterior distributions are formed by the product of two
important functions: The likelihood function and the joint prior distribution for the
vector of parameters. In our case, the likelihood function and the posterior distribu-
tion for the vector (X, u, 7, A, 0,7) are used to estimate the fraction of plasmid-free
cells and persistence times. The procedure to achieve this is described as follows:

For the Markov chain, let (i, 72, A, 8, v) be the set of parameters of X, = (X;y, ..., Xj,)
that govern the hidden Markov process of length ¢. Variable X is latent (unob-
served) since it only can be known through indirect observational schemes (Clark and
Bjornstad 2004). In our case, we have a sample of size 50 only. Let Y, = (Yity - - -+ Yig)
be the set of observations that come from the i-th replica of the time series experiment
which accounts for the error in the process due to the plasmid-free bacteria sampling

method. The joint posterior distribution for the parameters and the process is

3
71—(/10 7—27 )‘7 9777X17X27X3|g17g27g3) (8 HQ(QJXZ) XF(X17X27X37M77—27 )\7077)17

=1 7
Likelihood Prior

(14)
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where the joint prior distribution can be written as:

7(1171271371%7'2,)\797’7) = W(N)W(TQ)W(MXU12713)7(7|X17X2’X379)”(9)

X (w01 )7 (T02) T (03)

X H H int|Xi,tflyll:7'27)\a0:')’(xit|xiat*1’ s 7—2’ A0, 7)'

i=1 t=1
From Equation (6) the Hidden Markov process has transition distribution de-

fined by (14) if:

0 < A < minig< {Xu} = fi(X})
and if (15)

0 < 7 < minge, { PO (X 0) fori=1,2,3.

Bayesian inference requires elicitation of prior distributions. For hierarchical models,
elicitation of priors is not an easy task since priors for all the parameters and the
process need to be settled. The hidden Markov model is a process that by definition
cannot be observed and therefore, priors for unobservable quantities are difficult to
elicit. Although the influence of the prior on the final inference can be strong and
lead to different conclusions when working with different prior distributions (Lele and
Dennis 2007), if subjective priors are used, methods to evaluate the robustness of the

inferences to changes in the prior distribution exist (Ruggieri 2000).

Most of our unobservable variables are quantities between 0 and 1 or they are
related through inequalities (15), so the elicitation of prior distribution for our model

(14) was done as follows:
L m(n) = 1510,10) (1),

2. 7T(7'2) = 61_01(0’60) (7'2),

3. 7T()‘|le52713) = L I ()‘)7

min;j=1,2,3{f1(X;)} (0,min;—1,2,3{f1(X;)})

4. w(0) = Ioq)(9),
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5. 7r(7|£1)£2)£3) 9) = mini=1,2,31{f2(li’0)}I(O,mini:1,2,3{f2(£i19)})(7)7
6. m(wo) = Ii0,1y(0).

Using the above priors the resulting posterior distribution does not have a
closed simple form, therefore computational tools are needed to sample from it. This

was achieved using two different MCMC implementations to be explained in Section

4.

3.2 Likelihood Inference

A likelihood function is a function from which inferences about populations are done
using random samples. Inferences will be meaningful as long as this population is
correctly specified. The likelihood function is a function that is proportional to the
probability of observing the sample y from a population with parameter ¢. Sprott
(2000) discussed that “the likelihood function ranks the plausibility of all possible
values of 6 by how probable they make the observed y’. The likelihood function also
allows comparison of plausibilities of different values of # for the value of the observed

sample y.

For our model the likelihood function for the hierarchical model (13) is:

3
L(/'L77—27)‘7077;g17g27g3) = / / / Hg(yz,t
[0,1]¢ J[0,1]2 J[0,1]2 ;4

«Ti,tfl)dXﬁZXQdX?,-

50, X; 1) X (16)

Xin,t|Xi,t—1 (xi,t

An efficient and numerically accurate maximization of this high-dimensional integral
is difficult to achieve. Here, as it will be seen, MCMC computational tools will be
used to overcome this problem. Maximum likelihood estimates will be obtained nu-

merically and will be used to estimate the plasmids’ persistence time.
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4 Computer intensive statistical methods

4.1 ARMS within Gibbs Sampler

Markov Chain Monte Carlo (MCMC) algorithms were first described by Metropolis
et al. (1953) and later improved by Hastings (1970). It is a general procedure to
simulate from any probability distribution which is especially useful when its explicit
form is not available (Robert and Casella 2005). The MCMC algorithm assures that
the Markov chain’s stationary law is the probability distribution of interest (see ap-

pendix A.1).

A very well-known example of MCMC is the Gibbs Sampler (Gelfand and
Smith 1990, Casella and George 1992). The Gibbs sampler allows to sample from
a distribution without having its explicit form. This algorithm is based on the fact
that it is sufficient to know the full conditional distribution of each parameter to
determine a joint distribution of the parameters. This computational technique uses
sampling from each parameter’s full conditional distribution at each step and then
replacing this new sampled value in another parameter’s full conditional distribution.
In our model full conditional distributions are easy to write and have an important

property: log-concavity.

Adaptive Rejection Sampling (ARS) is an often used methodology to sample
from the conditional posterior distributions needed to carry the Gibbs sampler. To
estimate the model parameters, Ponciano et al. (2007) used an ARS variant, Adap-
tive Rejection Metropolis Sampling (ARMS) within Gibbs to sample from the full
conditionals in (17) that had the log-concavity property. Here, we first attempted to

obtain samples from the full posterior (14) by using this method.

Adaptive Rejection Sampling (ARS) was proposed by Gilks and Wild (1992).
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It is useful when we want to simulate from distributions whose logarithm is a concave
function. This algorithm is based on building a concave hull that covers the log-
density(h(-)). The concave hull is formed by intersections of lines that are tangent to
a set of ordinates. This set of ordinates is obtained from a set of abscissae 7}, of size
k that are selected at the beginning of the algorithm and have the property of being

within the support of the target density (Figure 6).

Concgye hull

logdensity
-15 -10 -5
!

-20
|

-25

x1 x2 x3 x4

-30
|

Figure 6: Log-concave density and concave hull. Using & = 4 a concave hull can be

built. The hull covers completely the log-density.

The ARS algorithm requires the target log-density h(-) to be continuous, con-
cave and differentiable in all its support D. Furthermore, D has to be a connected

set. ARS is performed through the following steps:
1. Select an abscissae set in the density’s support D: Ty = (z1, %2, ..., Tk)-

2. Calculate the intersections of the tangents in the ordinates h(z;):

h(zj) = hzy) — 200 (25510) + 250 (25)
W (x;) = h(zj41) '

Z]‘:
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3. Calculate a concave hull: = € [z;_1, 2]
uk(z) = h(z;) + (x — z;)h'(z;)

and its exponential
_exp(ug)(w)
Sp = —————————.
[ exp(ug) ()

4. Simulate z* from s, which is a mixture of exponential distributions with pa-

rameters uy(r) = h(z;) + (x — z;)h (z;).
5. Simulate u from a Uniform distribution in (0, 1), accept x* if
u < exp(h(z*) — u(z*)),
else do Ty = T U {z*}.

Gilks and Wild (1994) noted that using ARS, it is still possible to simulate from
quasi log-concave distributions (see Figure 7) if an extra Metropolis-Hastings step is
added to the algorithm described above. In the last step, if u < exp(h(x*) — ug(z*))
is true, then accept z* with probability equal to the following Metropolis-Hastings

ratio:

fat)min(f(z@), sp(=)) )
f@@)ymin(f (), sp(27))

where log(f(-)) = h(:). If u < exp(h(z*) —ug(x*)) is not true or if x* is not accepted,

p(zD, %) = min <1,

then Ty, is set as Tj, U {z*}.
For our model equation (14), the ARMS algorithm was implemented within a
Gibbs Sampler where Kernels (full conditionals) of each parameter were (considering

1 replica to simplify notation):
1. For 7-2: p(7-2|X7 K, )‘7 97 ’Y) (8 71-(7-2) ngl th\thl,u,’rz,)\,ﬂ,'y(xt|l‘t—l7 122 7—27 )\7 97 7)
2. For A: p()‘|X7 M, 7-27 97 7) X 7T()‘|X) Hg:l th\Xt—hu,TQ,/\,G,'y(xt|l‘t—17 My 7—27 )\7 97 fY)

3. For - p(7|X7 s 7—27 )‘7 0) (8 ﬂ-(f”Xa 0) ngl th\Xt_l,u,TQ,/\,G,'y(xt|xt717 My 7—27 )‘7 97 f}/)
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Figure 7: Quasi log-concave density and concave hull.
4. For #:

q
p(9|17 K, 7-27 )‘7 ’Y) (8 7T(9)7T(’Y|X, 9) H th\thl,u,T%)\,G,'y(xt|l‘t—17 122 7—27 )\7 97 7)
t=1
(17)

. 2
5. For XU. pXo\Xt>0X,#aT2:)\a%0(x0 |xt>0ga T, )‘7 ) 9) X

X ﬂ-()‘)ﬂ-(l‘o)le\Xo,u,ﬂ,)\,'yﬂ(l‘l|x0> TN, 7, 0)g(yo| o).

6. For Xta 0<t< q: pXt\Xj#X,u,TQ,/\,fyﬁ(xt|xj7étga 22 7—2; )‘7 7 9) X
X 7r()‘|X)th\Xt71,M,T2,)\,’Y,9(l‘t|xt—17 s 7-27 )‘7 v, 0) X

X th+l‘XtalJ/a7-27Aa’Ya0 (xt+1 |xt7 /’1'7 T27 )\7 ,)/7 9)9(yt|xt)-

_ 2
7. For Xy px,ix,y gur2 Ay 0 (TglTao1p, 72, 0,7, 0) o

X 77()\|X)qu|Xq_1,u,T2,)\,'y,0 (xq|xqf17 M, 7—2; )‘7 ) e)g(yq|xq)

Before carrying this Gibbs sampler and deciding whether to use ARS or ARMS,
the log-concavity of each full conditional was checked. As it is shown in Figure 8, the
log-density of parameter p its log-density is completely concave and the log-density

for x5 is quasi log-concave.
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Figure 8: Log-densities for u (left) and x5 (right).

To draw B independent samples from the posterior distribution the above Ker-
nels were sampled sequentially at each step. The values (L(O), p(©, 7200) A(0) [ 4(0) 9(0))
were set at arbitrary initial values. A sample from the marginal posterior distribution
of any parameter is obtained simply by taking the sequence of that parameter from

the total sample and high-dimensional integration is not necessary (Meyer and Millar

1999).

4.2 t-walk

The second MCMC method implemented in this work is the t-walk algorithm. The
t-walk is a general purpose scale-independent MCMC algorithm that maintains two
independent points to sample from a joint posterior distribution. Proposed by Chris-
ten and Fox (2007), this algorithm solves the problem of tuning a proposal distribution
for a MCMC. It changes the objective distribution 7(z) for f(x,z') = n(x)r(2') and
is different from running two chains simultaneously. This general MCMC algorithm

has the advantage that is not an adaptive algorithm. It uses four different moving
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strategies designed to preserve the chain’s homogeneity and ergodic properties.

The t-walk’s design is based on a general distribution ¢{(y,y')|(z,2")} that

proposes the chain moves according to:

.y) (z,h(x,z")) with probability 0.5
YY) = 3
(h(z,2"),2") with probability 0.5

where h(x,z') is a random variable associated with one the four moves described
below. In the t-walk algorithm only some of the coordinates of the points (z,2’)
are moved. If the length of z is n, n independent Bernoulli random variables ¢;,
Jj =1,...,n are simulated. If ¢; =1 then the z; coordinate will be updated accord-

ing to h(-,-).

The first of the four moves is called the walk-move. This move is closely
related to a random walk and it allows to sample from distributions that are weakly

correlated. This move is defined as:
ho (@, 2"); = x5 + dj(x; — :c;-)zj,

where z; are real random variables i.i.d. with density f,(-).

The second move is the traverse-move and it helps to sample from distributions

whose variables are strongly correlated. The traverse-move is defined as:

.+ B(x — x, =1
ht(l‘,l‘,)j — J ﬂ( J J) ¢] ’
T ¢j =0

where (3 is a positive random variable with density f;().

The final two are the hop-move and the blow-move. These two moves help

to maintain the irreducibility of the chain and to guarantee its convergence. The
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hop-move can be defined as follows:

o(x,a') —
xTj+ zj =1
hh(a?,:c’)j _ ( J 773 ) o :

l“j ¢]:0

where o(z, ') = max; ¢;|z; — 2% and z; ~ N(0,1).

Finally, the blow move is:

i +o(z,2')z g5 =1

hy(w,2"); = :
T ¢; =0

z; and o(x, ") are defined as before. It must be noticed that the difference between

the hop and the blow moves is that they start from different initial points.

By mixing the set of the four standard Metropolis-Hastings Kernels K, associ-
ated with the four moves h, (and o € {w,t, h,b}) the convergence of t-walk algorithm

is assured (Fox and Christen 2007).

The t-walk is not a sequential algorithm. It allows to sample from all the pa-
rameters in a posterior distribution at once. This property can be useful when some
conditions need to hold simultaneously among the parameters, as it is the case with

our model (see eq. 15).

The t-walk algorithm is particularly useful when the target distribution is
highly multimodal and other MCMC variant is difficult to calibrate (i.e. finding
a good proposal distribution). However, it is by definition a Metropolis-Hastings
algorithm and as such it inherits one of its difficulties, namely choosing initial points

that allow a quick convergence.
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4.3 The Prior Feedback algorithm

It is possible to take advantage from MCMC methods to perform Likelihood infer-
ence. Robert (1993) proposed a method called Prior Feedback to obtain maximum
likelihood (ML) estimates. Prior Feedback is a method that exploits the statistical
properties of the problem and finds ML estimates as a limit of bayes estimates. The
Prior Feedback algorithm updates the parameters using repeatedly the observed data
as a new prior each time. By doing that, the posterior distribution converges to a

fixed point, identical to the ML estimate.

Let f(z|0) = c(x)exp (0x — ¢(A)) be a density from a k-dimensional expo-
nential family. Let x be a single observation from f(z]f). The conjugate prior

7(0|xg, N) o exp (0o — Ap(F)) depends on x5 and A € RT parameters.

The quantity of interest is a continuous function of the parameter h(f). A
good estimate for this quantity is E,(h(f)|x) since it depends on the observed data.

The prior expectation of h(6) is:
E(h(0)|zo, \) = /h(@)ﬂ(9|x0, A)db.
Then the updated posterior expectation will be
Ex(h(0)|21,A) = Ex(h(0)]zo + z, A).

Continuing in this fashion, the Prior Feedback Estimate (PFE), denoted by

0% (), will be associated to a fixed point z* such that
0y () = Ex(h(0)]z*, X) = EL(h(0)]x* + z, \). (18)

This estimate can be interpreted as the one whose prior density agrees with
the information given by the data x (neutral distribution). Robert proved that §3(z)

converges to ML estimate of # when A goes to infinity (see Appendix A).
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Robert also showed that this method can be very useful to obtain the ML
estimates when the likelihood function is not from the exponential family. Also, he
compared this method with Simulated Annealing (SA) in the sense that the prior dis-
tribution plays, in this algorithm, the role of the temperature. Robert (1993) claimed
that it is easier for this algorithm to control priors since they have an statistical in-

terpretation, whereas for SA it is always difficult to calibrate temperatures.

Later Robert and Titterington (1998) proposed a prior feedback method cou-
pled with a Gibbs sampler for a Normal and Poisson hierarchical models to obtain
the maximum likelihood estimates of the model parameters. The basic idea of this
computational method is based on elevating to a high enough power the likelihood
function so that the effect of the prior distribution vanishes. In the context of HMM
they implemented the Gibbs sampler with an increasing number of replica of the sam-
ple of size m, asumming these replica are independent. The theoretical justification
is that the prior feedback estimate will converge to a Dirac mass located at the max-
imum likelihood estimates as m goes to infinity, since the m-th posterior distribution

of parameter 6 is

7™ (0) o w(0)L(0)™.

In the former method, m can be interpreted as the temperature of a SA algo-
rithm but regularity conditions need to hold. In particular, L(6) needs to be bounded,
which is not trivial. In fact, to implement this computational method adequately,
Robert and Titterington had to introduce a modification of the likelihood function

for the Normal and Poisson cases because they were not bounded.

In the following section, a generalization of MCMC methods for obtaining

maximum likelihood will be reviewed.
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4.4 The Data Cloning algorithm

Lele et al. (2007) proposed to take advantage of MCMC methods to avoid high-
dimensional integration and maximize likelihood functions to obtain ML estimates
for hierarchical models. Their method is called Data Cloning (DC) and as the Prior
Feedback algorithm, it is a MCMC method that converges to ML estimates as a vari-

able k goes to infinity.

When the prior distribution is positive over the space parameter the posterior

distribution of the hierarchical model (12) is

(0, 6ly) = J{o(ylX, ¢)f}E(Xy)9)dX}7T(9, 2l

where h(y) = [ g(y|X, ) f(X|0)7(0, )dXdfdp. Now,if 7(1)(0, ¢|y) is prior, the up-
dated posterior is
X, X|9)dX ™M (8,

sy - LU0
{J 9lylX, 9)f(X]0)dX}" 7 (0, )

h2(y)

{L(0.6:9)} 7(0,9)

h2(y)

If we continue this procedure & times, k-th posterior distribution is

(k) _ {L(G, ®; g)}k 77(9; ¢)
h*(y)

On other hand, if the experiment was to be carried k times and by happen-

stance the results were always the same, then the likelihood for hierarchical model

(12) would be .
{ / g(g|£¢)f(£|9)di} (L0, 650))" (19)

When (éML, qSML) are the maximum likelihood estimates for all (6, ¢),

L0, 9;y) < L(éML; GBML;Q),
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and if k£ goes to infinity:

T80, 9ly)  {L(0, ¢;9)}" 0 if (6,¢) # (O, durn),
T® (0, ly)  {L(O, ¢ )} 1 if (8,0) = (Oarr, durr).

Lele proved that as k — oo, 7 (6, ¢|y) converges in distribution to a multivariate
normal with mean the ML estimates and variance a k-th part of Fisher’s information
matrix (MVN([6, ¢, %Iil(é, ¢))). This asymptotic result makes this methodology
better than SA because it allow us to build confidence intervals easily, which is one

the main goals of doing inference, by the method of Wald.

Here, the k-th posterior, using (13)and (16), is

k
T8 (1, 72,0, 0,79, 9, 4,) X {L(M,TQ,A,H,%QI,QTQQ} X
xm(zo)m (p) (7%)m(A)m(0)m (+]6).

(20)
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5 Results and Discussion

In this thesis we proposed a new stochastic model for horizontal plasmid transfer
along with the inference tools necessary to analyze real data from the widespread
stability experiments (De Gelder et al. 2004, De Gelder et al. 2007, De Gelder et
al. 2008). One of the most important contributions of this work is to present plas-
mids’ persistence time as a random variable and the methodology to estimate its
most important properties. Furthermore, the methodology presented here was thor-
oughly tested via simulations. In what follows we present first the results with the
Gibbs sampler. Using the ARMS algorithm we show that for this particular case the
use of the Gibbs sampler is in fact inefficient. Next, we present the results obtained
from the t-walk algorithm when one and three replicated time series of the growth
of the fraction of the plasmid-free cells are available. Then, we evaluate via simu-
lations the quality of the persistence times’ estimates. Finally, we illustrate how to

carry maximum likelihood estimation via data cloning for our hierarchical model (13).

Simulations from the stochastic process (6) can be used to test thoroughly the
Bayesian methodology presented here. If many (e.g. 1,000) sets of three replicated
time series (as the ones obtained in the stability experiments) are generated accord-
ing to the model with a set of parameter values, and if each time the modes of the
marginal posterior distributions are recorded, then a histogram of these modes can be
drawn. If the methodology works properly, the histograms of the a posteriori modes
are expected to be centered around the true values, for long enough time series (that
is, time series containing enough information about how the process behaves). Pon-
ciano et al. (2007) carried that simulation exercise using the Gibbs sampler for each
simulation from a stochastic model without horizontal transfer. They showed that
indeed the histograms of the marginal a posteriori modes were centered around the
true generating values. However, as we show next, examining the marginal posterior

distribution of the parameters for a single, very long simulation, can shed some light
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on the qualities of the inference. Also, as we will demonstrate, it is not trivial to
pursue such simulation exercise for the Stochastic Horizontal Transfer model. Hence,

here we limited ourselves to examine the results with a single simulation.

Three time series of y; with ¢ = 1,2,3; ¢ = 1,2...600 were simulated. In
order to use ARMS within the Gibbs sampler to estimate the parameters for this sim-
ulated time series, one needs to sample sequentially the individual components of the
posterior distribution (14). A few (two or three) parameters can be jointly sampled
in some cases as shown in Robert and Casella (2005). Here, according to the condi-
tions (15) we would need to jointly sample the parameters in the vector (X, \, 6,7),
which contains most of the parameters of interest. To do that an MCMC is required,
and therefore the Gibbs sampler becomes extremely inefficient: in order to sample a
single point one needs to achieve stationarity of the MCMC algorithm for this mul-
tidimensional chain. Using the full conditionals described in section 3, the elements
in (X, \,0,v) were sampled one at a time and not jointly. Independent samples for
each of the parameters were obtained using ARMS on these conditionals and letting
the Gibbs sampler to run 2 x 10° times. A lag of 20,000 iterations was taken between
each sample (Figure 9), until accumulating 100 samples. The maximum a posteriori
estimates (MAP) for the parameters # and v are not close to their respective real
values and the posterior distribution is highly bimodal (Figure 9). As it will be seen,
the results with the t-walk sampler under the same simulation conditions are differ-
ent, and the posterior distribution for both # and ~ are this time unimodal, close to
the true generating value. This indicates that one-at-a-time sampling from the vector

(X;, A, 0,7) may not be adequate.

To avoid using an MCMC algorithm inside the Gibbs sampler, the t-walk al-
gorithm was used. Using one simulated time series y;, t = 1,2...600, a hundred

samples from each of the parameters were obtained taking a lag of size 20,000 (at
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stationarity). Because of the lag size (20,000) these samples are approximately in-
dependent (Figure 10). The resulting histograms of these samples are multimodal
(Figure 10), due to the total multimodality of the posterior distribution. These pos-
terior distributions also illustrate the ability of the t-walk algorithm to sample from
all the modes. A hundred a posteriori unobservable time series of the hidden Markov
process (X;,t =0,1,...,600) were sampled independently using the t-walk algorithm

and all of them were very close to true values as it is shown in Figure 11.

The stability experiments are usually triplicated, and hence, a very plausible
data set consists of three independent time series of the growth of the fraction of
plasmid free cells. That is, in contrast to what is usual in macro-ecological studies,
samples from various realizations of the stochastic population process are obtained.
These replicated realizations increase the amount of information available about the
properties of the stochastic process under study. As the number of simulated repli-
cated time series is increased, unimodality of the posterior distribution and the likeli-
hood function seems to be achieved. Three replicas y;;,7 = 1,2,3;t =1, 2,...600 were
simulated and the t-walk is run. Histograms of an independent sample of size 100 of
each of the marginal posterior distributions were drawn (Figure 12) and they appear
unimodal. Due to the increased amount of information, the posterior distributions
modes are easier to identify. Note that the mode of the parameter )\ is not close to
the true value as the other modes seem to be. That means that even 600 iterations
of the process do not contain enough information about the parameter A. It may be
possible that it is difficult to observe a single plasmid loss by segregation. In other
words, segregation might not appear; its value, 6.851 x 10~° indicates that we would
expect 6 segregations to occur in 100,000 generations (the segregation rate used to
simulate data), so that this information might not be observed in 600 generations of
the process. However, note that the drawn histograms represent only one possible

maximum a posteriori estimate for the parameters. To account for the variability of
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the maximum a posteriori estimate of the segregation parameter A (and of all of the
parameters as well) it would be necessary to carry a parametric bootstrap simulation
exercise as the one suggested at the beginning of this discussion and carried by Pon-

ciano et al. (2007) for a one parameter simpler model.

The posterior distribution of the vector (X;,¢ =0,1,...,600) is well centered
around the true unobserved process (Figure 13). Each of the samples of each element
of (X;,t =0,1,...,600) were taken at lag sizes of 12,000 MCMC iterations, as sug-

gested by the Integrated Autocorrelated Time value (Figure 14).

Simulations of size 50,000 of the persistence time TJ9% using real parameter
values were compared to those using the posterior modes of the histograms in Figure
12. The resulting histograms (Figure 15) show that their distributions are practically
the same for persistence times smaller than 150 generations (approximately 15 days).
The estimated persistence times are bigger than real ones for generations larger than
150. That can be seen in the probability plot (Figure 15) for Tp9% (that is, when we

are measuring the time until 80% of the bacteria cells are free from plasmids).

The same procedure was done to estimate Ty gy In that case, the estimated
and real stopping times distributions were very similar. In that case, the distribution
of the stopping time is much better estimated (Figurel6). Around X; = 0.80 the vari-
ance of the process is much higher than the variance of the process at X; = 0.90. This
would explain why, with the same parameter estimates, the quality of the inference
on the distribution of the stopping times varies so much between T9% and TP %S,
In order to estimate the variability around the estimated distribution of the stopping

times the values simultaneous 95 % credible intervals of all the parameters could be

used to simulated the lower and upper stopping times’ “credibility distributions”.
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The Bootstrap algorithm to evaluate the properties of the bayesian a poste-
riori modes would work as follows: Let 0 = (u, 72, A, 0,7) be the set of parameters
to be estimated and A the set of MAP estimates generated by the original three

simulated time series yg)). Then, using 6 we could simulate B hidden Markov

chains xz(tl),xz(?), ...,x5. Using the binomial sampling of (13) with each HMM we

then would obtain 3 x B new time series yg), yff), o ,yl(f). The 3 x B time series

yg),i =1,2,3;5=1,2,... B, would then be the new input for the B t-walk algorithms
that would allow us to obtain B MAP estimates 00,0 ... #(®. These bootstraped

MAP estimates could then be drawn in histograms and frequentist properties (such

as MSE, coverage and bias) could be obtained for each one of them (Figure 17).

Finally, to carry maximum likelihood inference, the Data Cloning algorithm
was tried. To find the ML estimates a big enough value of £ is needed so the esti-
mates converge. This value can be found by repeatedly doubling the number of clones
until the ML estimates do not change. If the data contains enough information about
the parameters (that is, the likelihood profile for the parameter is not flat), then the
variance of the £ marginal posterior distribution for each parameter should decrease
as k increases. If that does not happen for a given parameters, that means that the
likelihood function does not contain enough information for that particular parame-
ter. For our model, we chose £ = 20. The maximum likelihoods estimates are shown

in the following table:

k I 72 A 0 vy

10 | 0.07454193 | 0.08044456 | 6.381449 x10* | 0.1493229 | 0.01276289

20 | 0.07521905 | 0.0803876 | 6.116462 x10 % | 0.1493229 | 0.01275640

When we choose ML estimates with 20 clones, the estimated distribution of
persistence times was shifted to the right of the real distribution of persistence times,

as shown in Figure 18. The difference in the estimated versus the true distribution
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increases in the tails. Also, we found that Markov chains provided by Data Cloning
should be extremely large (more than 200,000 steps) in order to estimate adequately
variability of the estimates when using 20 clones in this model. We did not pursue an
investigation on the qualities of the ML estimates as k > 20, due to numerical diffi-

culties (insufficient memory) to estimate Fisher’s information matrix in those cases.

The plasmids’ loss dynamics and persistence times were effectively estimated
using the MAP and ML estimates for the hierarchical model (13). Given that in-
cluding process noise in the model that considers HGT (6) is a more realistic model,
we think that the methodology presented here is suitable for modeling the plasmids’
dynamics for bacterial strains where conjugation is thought to be important factor.
Conjugation might play an important role in spatially complex bacterial communi-
ties, like biofilms (Fox et al. 2008). There, this gene exchange process allows the
generation and maintenance of diversity as well as multiple resistance to harsh envi-
ronments. The model we propose here could then be extended to a spatially explicit,
multivariate model to explain the spatial plasmid dynamics. This is an area of in-
tense research in biology, yet stochastic and statistical models for such systems are
generally lacking (Lili et al. 2007). We believe that the model presented in this work
provides more flexibility and enough realism to answer the relevant questions about

plasmids’ population dynamics.
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Figure 9: 100 independent samples of the marginal posterior distributions for each
one of the parameters (u, 72, \, 0, 7), using ARMS within Gibbs. The true values are

represented in the vertical line.
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one of the parameters (i, 72, A, 0, ), using the t-walk with one time series. The true

values are represented with the vertical line.
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Figure 15: The histograms of 50,000 persistence times (7°#) simulated with real pa-
rameter values (p = 0.11,72 = 0.0625, A = 6.851044x 75,0 = 0.25,7 = 0.02443239;)
and then with the estimated parameter values(u = 0.093431,7% = 0.06678281, \ =
1.266791 x 104,60 = 0.2203061, v = 0.01855009). On the right, the probability plot,

of the simulated persistence time distribution is shown.
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of the simulated persistence time distribution is shown.
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the probability plot of the simulated persistence time distribution is shown.
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6 Conclusions

The stochastic dynamics model (6) effectively considered the three relevant process
that determine plasmids’ persistence: Segregation, conjugation and fitness cost. Fur-
thermore, in the present work, the stochastic process efficiently modeled the daily
changes in plasmid cost by proposing the fitness cost as a random variable. The
growth rate of the fraction of plasmid-free cells became a random variable as it was
expressed as a function of the fitness cost. This stochastic population dynamics model
also allowed us to effectively model the plasmids’ persistence time via simulations.
This model included environmental stochasticity, a property that reflects how exter-

nal factors influence the behavior of cells in plasmid loss dynamics.

Intensive computational methods were very useful to analyze simulated data.
The first method used was ARMS within Gibbs sampler which failed to sample cor-
rectly from the posterior distribution of the vector of parameters since it samples pa-
rameters sequentially. The posterior distribution of the vector of parameters needed
to be sampled at once because conditions (15) need to be stated a priori. The sec-
ond method used was the t-walk considering one simulated time series from (12).
Multimodality of the posterior distribution was suspected, so extensive validation of
the parameter estimates needed to be done. Then, three simulated time series were
obtained and the t-walk was run. This last methodology yielded a posterior distribu-
tion with a unique mode (Figure 12). The Maximum a Posteriori parameter (MAP)
estimates were used to compare the estimated vs. the true distribution of plasmids’
persistence times. Simulated persistence times using MAPs from the t-walk with
three time series were very close to the simulated persistence times using the real pa-
rameter values. The approximation is particularly good for true persistence times of
95%. This result was expected since the simulated time series from which the MAPs
were calculated were very long, and therefore they contained enough information on

the parameters of interest. Nonetheless, this simulation exercise is useful because it
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indirectly shows that the MCMC does converge.

Further work needs to be done to assess the statistical properties of the MAPs
obtained. In particular, a parametric Bootstrap methodology could be used to assess
the statistical properties of the Bayesian MAP estimates under different scenarios
and parameterizations. This was not done here because very intensive computational
resources are needed (for instance, the burn-in time for each t-walk in the Bootstrap
might be extremely large). For hierarchical models like the one presented in this
thesis, an exhaustive exploration of the effects of different “uninformative” a prior:
distributions also needs to be considered. Also, given that we are dealing with proper-
ties of a process that by definition is hidden, it seems difficult to elicit truly subjective
prior distributions for the parameters of interest. Thus, the elicitation of adequate
prior distributions and the evaluation of the robustness of the methods presented here

(Ruggieri 2008) are topics of further research.

The Data Cloning methodology to find the ML estimates of a hierarchical
model is a viable alternative to the current and popular Bayesian methodology for
non-linear non-gaussian state-space models when researchers are not willing to use
subjective prior distributions and when it is difficult to use “non-informative” priors.
Here, Data Cloning was used to obtain ML estimates for the model (6). We observed
that a good choice might be using 20 as the number of clones. The resulting ML
estimates from this methodology were used to simulate persistence times and it was
observed that they performed satisfactorily. To obtain interval estimates more compu-
tational power is needed in order to estimate Fisher’s information matrix and build
Wald’s intervals. Another approach to build interval estimates could be using the
methodology proposed by Ponciano et al. (2008) where a fast and efficient algorithm
to obtain the relative profile likelihoods for the parameters of interest is proposed

based on Data Cloning. As shown by these authors, such profile likelihood intervals
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are more reliable than the asymptotic Wald intervals obtained via Data Cloning, es-
pecially for short time series data sets. Again, computational calculations to fully
explore the Data Cloning methodology could be intensive since the convergence time

of data cloning might be extremely large.

Finally, the hierarchical model (12) not only is a flexible model that can be
used to analyze the stability experiments described by De Gelder et al. (2004) but
also can give the experimentalist a strong basis to understand plasmid growth dynam-
ics. In fact, with this hierarchical model, we show that it is possible to understand
simultaneously the sampling process of plasmid-free bacteria and the relevant pro-
cesses that allows plasmids to spread in the population. Because including process
noise in the model that considers HGT (6) is a more realistic model, we think that
the methodology presented here is suitable for modeling the plasmids’ dynamics for
bacterial strains where conjugation is thought to be an important factor. Conjuga-
tion might play an important role in spatially complex bacterial communities, like
biofilms (Fox et al. 2008). There, this gene exchange process allows the generation
and maintenance of diversity as well as multiple resistance to harsh environments.
The model we proposed here could then be extended to a spatially explicit, multi-
variate model to explain the spatial plasmid dynamics. This is an area of intensive
research in biology, yet stochastic and statistical models for such systems are gen-
erally lacking (Lili et al. 2007). We believe that the model presented in this work
provides more flexibility and enough realism to answer the relevant questions about

plasmids’ population dynamics.
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A Convergence of Estimates

A.1 Convergence of MCMC algorithm

The final goal of a MCMC algorithm is to obtain an independent sample from a
distribution 7 (z). To run a MCMC algorithm using a Metropolis-Hastings ratio, it
is necessary to have a proposal distribution ¢(x,y) that indicates the probability of
moving from the value x to the value y and that this proposal distribution is easy
to sample from. While the proposal distribution is being used in the algorithm a
Markov chain is being created and this created Markov chain has as stationary law

7(x). The algorithm performs the following steps:

1. Initialize with a value X = x4 at time ¢ = 0.

Fort =1,2,..., B repeat the following steps:
2. Sample z; from q(z;_1, 7).

3. Accept x; with probability

() q (0, w11) ) _

a(ri—1,r;) = min | 1,
(-1, 71 < T(x1-1)q(e—1, )

4. Else, x; = x;_1 and go to step 2.

The transition matrix of the Markov chain is defined by this algorithm as follows:

P($t|5€t71) = Q(xtflaxt)a(xtflaxt) = m(xtflaxt)-
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If a(xy—1,7;) < 1 then, we have a(zi_1, ;) = (%) and a(zy, ;) = 1. Even

more:

W(l‘t—l)m(l't—laxt) = W(th—l)Q(fUt—l,$t)a($t—1,xt),

_ 7r(:r:t_1)Q(1ft—1vxt)< L )’

T(2y—1)q(24—1, 74)

= ﬂ(xt)q(xt, «Tt—l)a
= w(x)q(zy, 2 1)a(ze, xp 1),

= w(x)m(xe, 4-1),

so that 7(x) is the stationary law of m(x;_y, z;).

A.2 Convergence of Prior Feedback estimate

Let x be a single observation from f(z]0), where f(z|) is a density of a k-th dimen-
sional exponential family. The exponential density is f(x|f) = c(z)exp (0x — ¢(0)).
The conjugate prior is 7(0|zg, A) o exp (fzg — Ap(f)) and it depends on x4 and

A € RT parameters.

The maximum likelihood estimate is  is = obtained from the following equation

6(é) - aq;—(ﬂm‘a:é -

Even more, the mode for the prior distribution is # and it can be obtained from

Zo

- 96(0)
“0="35"],,= 1

Then, if we reparameterize using () = %(;) we obtain the mean parameterization.

Hence, we can transform the a priori density as

(0o, N) ~ 7*(€|xo, N).
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The reparameterized density 7*(e|zo, A) has a mode % that is equal to its mean.

Then

. T 0 if = is fixed,
lim 3 =
Avoo a* if z is a function of \.

The prior feedback estimate of h(#), when we have the fixed point z*, will converge
to limy_o0 P (6*1(§)). But by definition of prior feedback estimate we have that

05(z) = Ex(h(0)|z*,\) = Ex(h(0)|z + 2*,\ + 1) and this implies that for a A large

(= (5)) =0 (7 (55))

By continuity of h(-) and €(-), and also by the property of reparameterization it follows

:r_*Nx*+:c
AN) T \a+1 )

so h(e ! (%)) converges to h(e '(z)) = h(A) the maximum likelihood estimate.

enough

that




