
A Hidden Markov Model of Horizontal GeneTransfer in Ba
teria
A ThesisPresented in Partial Ful�llment of the Requirements for theDegree of Master of S
ien
ewith aMajor in Probability and Statisti
sin CIMATbyRosana Teresa Zenil L�opez

Major Professor: Jos�e Miguel Pon
iano Castellanos, Ph.D.November 28, 2008



iA
knowledgementsMy deep gratitude to Dr. Jos�e Miguel Pon
iano for his guidan
e and advi
e duringthese 18 months that ended in this thesis.I would like to thank my 
ommittee members Dr. Andr�es Christen and Dr. MiguelNakamura who greatly enri
hed my knowledge with their ex
eptional insights intostatisti
s.I would like to 
onvey thanks to CONACYT for providing the �nan
ial means to mystudies. My gratitude to CIMAT that provided all the means to study and resear
h.I have to thank also COMECYT for the thesis s
holarship that allowed me to �nishthis work.To my father Jorge and my mother Ma. del Rosario for their endless love and under-standing that allowed me to 
ontinue my studies.To my brother Jorge for being honest and trustful, you have always been my strength.To my sister Jessi
a for a

epting us as your family.To my sister Lu
��a who always has a smile for everyone, you are be
oming a wonderfulmother.To my ni
e Ma
arena for being so sweet and making me laugh all the time.To my grandparents Co
o and Yeye your love and 
ompany have been my inspirationto grow as a better person.To the L�opez family, thank you for the wonderful times, for all the di�eren
es thatmake you all spe
ial and unique.



iiContents1 Introdu
tion 22 Modeling Horizontal Gene Transfer 62.1 Mathemati
al Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Sto
hasti
 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 The Hierar
hi
al Model . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Statisti
al Inferen
e 183.1 Bayesian inferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.2 Likelihood Inferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Computer intensive statisti
al methods 214.1 ARMS within Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . 214.2 t-walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.3 The Prior Feedba
k algorithm . . . . . . . . . . . . . . . . . . . . . . 284.4 The Data Cloning algorithm . . . . . . . . . . . . . . . . . . . . . . . 305 Results and Dis
ussion 326 Con
lusions 47A Convergen
e of Estimates 55A.1 Convergen
e of MCMC algorithm . . . . . . . . . . . . . . . . . . . . 55A.2 Convergen
e of Prior Feedba
k estimate . . . . . . . . . . . . . . . . 56



iiiList of Figures1 Deterministi
 fra
tion of plasmid-free 
ells. . . . . . . . . . . . . . . . 82 Stability experiment time series. Ba
teria P18. . . . . . . . . . . . . . 103 Sto
hasti
 fra
tion of plasmid-free 
ells. . . . . . . . . . . . . . . . . . 124 Approximated 
onditional: Beta distribution. . . . . . . . . . . . . . 145 Histograms of persisten
e times. . . . . . . . . . . . . . . . . . . . . . 156 Log-
on
ave density and 
on
ave hull. . . . . . . . . . . . . . . . . . . 227 Quasi log-
on
ave density and 
on
ave hull. . . . . . . . . . . . . . . 248 Log-densities for some parameters. . . . . . . . . . . . . . . . . . . . 259 An independent sampling of marginal posterior distributions using theARMS within Gibbs sampler. . . . . . . . . . . . . . . . . . . . . . . 3810 An independent sampling of the marginal posterior distributions usingthe t-walk with one time series. . . . . . . . . . . . . . . . . . . . . . 3911 An independent sampling of the hidden Markov model using the t-walkwith one time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4012 An independent sampling of marginal posterior distributions using thet-walk with three time series. . . . . . . . . . . . . . . . . . . . . . . 4113 An independent sampling of the three hidden Markov models using thet-walk with three time series. . . . . . . . . . . . . . . . . . . . . . . 4214 Estimation of the Integrated Auto
orrelated Time of the t-walk MCMCsamples of the posterior distribution (14). . . . . . . . . . . . . . . . 4215 Real persisten
e times and estimated persisten
e times for 0.8 stoppingtime using the t-walk with three time series. . . . . . . . . . . . . . . 4316 Real persisten
e times and estimated persisten
e times for 0.95 stop-ping time using the t-walk with three time series. . . . . . . . . . . . 4417 The bootstrap algorithm for model (13). . . . . . . . . . . . . . . . . 4518 Real persisten
e times and estimated persisten
e times for 0.95 stop-ping time using Data Cloning with three time series. . . . . . . . . . 46



1ABSTRACT
Horizontal Gene Transfer (HGT) is a general term used in Biology referring to theex
hange of genes between two individuals in the same generation. HGT plays animportant role in ba
terial adaptation and evolution. In harsh environments, thea
quisition of geneti
 material that allows ba
terial adaptation o

urs through thetransmission of 
ir
ular DNA mole
ules known as plasmids. In this work, a hier-ar
hi
al model is proposed to explain and predi
t the plasmids' population dynami
swhen HGT is taken into a

ount. This model is an extension of the deterministi
and sto
hasti
 models presented by Pon
iano et al. (2007). The hierar
hi
al model
onsists of two parts: the �rst part is a hidden Markov model (HMM) that in
orpo-rates the relevant biologi
al pro
esses. This Markov model follows the proportion ofplasmid-free 
ells over many generations. In laboratory experiments 
alled \stabilityexperiments", the growth of the fra
tion of plasmid-free 
ells is monitored daily. Thedata produ
ed by su
h experiments 
onsists of time series of the observed fra
tion ofplasmid free 
ells. In order to 
onne
t su
h data sets with the Markov model, the se
-ond part of the hierar
hi
al model des
ribes the statisti
al sampling s
heme from theMarkov model and here we 
hose to use a binomial distribution whose su

ess proba-bility 
hanges a

ording to the HMM. We developed intensive 
omputational methodsbased on Markov Chain Monte Carlo (MCMC) to be able to estimate the model pa-rameters with real, experimental data sets. These parameter estimates were used toestimate the plasmids' persisten
e times for simulated data sets. The statisti
al toolsdeveloped here were thoroughly tested via simulations. Finally, the methods developedin this work are suitable to estimate persisten
e times in antibioti
-resistant ba
teriapopulations and they 
an be easily extended to more biologi
ally realisti
 s
enarios.



21 Introdu
tionHorizontal Gene Transfer (HGT), the ex
hange of genes between two individuals inthe same generation, plays an important role in ba
terial adaptation and evolution.This biologi
al pro
ess allows individual ba
teria to sample geneti
 material from adiverse gene pool in a given population. Re
ently, Gogarten and Towsend (1995)showed that HGT greatly 
ompli
ates the evolutionary history of many mi
robialorganisms and that their phylogeneti
 histories usually 
annot be elu
idated unlessHGT is a

ounted for. In ba
teria, HGT has evolved through plasmids, whi
h areextra
hromosomal 
ir
ular DNA mole
ules 
apable of autonomous repli
ation. Thetransmission of plasmids between two individual ba
teria o

urs through a pro
essknown as 
onjugation. Plasmids 
an 
arry geneti
 material that 
an be advantageousto their hosts. This is in fa
t the me
hanism through whi
h ba
teria a
quire genesthat 
ode for antibioti
s resistan
e or genes that allow them to 
ope with harsh envi-ronments (Genereux and Bergstrom 1999).Two important me
hanisms govern the dynami
s of plasmids in a population:
onjugation and segregation. Often, the qui
k spread of antibioti
 resistan
e in a pop-ulation o

urs be
ause plasmids are qui
kly spread through 
onjugation (Genereuxand Bergstrom 1999). Segregation o

urs if during ba
terial �ssion all of the plasmidspresent in the mother 
ell segregate to a single daughter 
ell. If there are m plasmidsin the mother 
ell for example, the fa
t that one of the daughter 
ells may inherit0; 1; 2; 3; : : : ; m plasmids makes of segregation a 
han
e me
hanism. This argument isthe basis of the sto
hasti
 model 
onstru
tion of the plasmid dynami
s done by Senetaand Tavar�e (1983) using bran
hing pro
esses. In the absen
e of antibioti
 resistan
e,the advantageous genes 
arried by the plasmid are no longer ne
essary and 
ells thatlose the plasmid via segregation reprodu
e faster than the others (Levin and Stewart1977, 1980, Bergstrom et al. 2000, Lili et al. 2007, Slater et al. 2008). In su
h 
ases,the faster spread of the plasmid-free 
ells has been taken as eviden
e that hosting a



3plasmid imposes a metaboli
 
ost for the ba
teria, and ultimately a �tness 
ost. Asa 
onsequen
e, it is a deli
ate balan
e between 
onjugation, segregation and �tness
ost what determines the persisten
e of plasmids in a natural population (Stewartand Levin 1980, Bergstrom et al. 2000). Modeling these key pro
esses when this bal-an
e o

urs is essential to understand plasmids' persisten
e (De Gelder et al. 2004,Bergstrom et al. 2000).An understanding of the plasmids' dynami
s 
an be 
riti
al to design medi-
al treatments. If the plasmids' 
ost is high enough, in the absen
e of antibioti
splasmid-free 
ells will tend to sweep over in a ba
terial population. This is the reasonwhy, if a patient is infe
ted with an antibioti
-resistant strain, a medi
al treatment
onsists on de
reasing or 
ompletely dis
ontinuing the use of antibioti
s (Genereuxand Bergstrom 1999). However the tenden
y to disappear is not deterministi
 andseems to 
u
tuate widely (De Gelder et al. 2004, Pon
iano et al. 2007). There arerelevant questions that 
an only be answered properly through a 
areful modeling ofthe plasmids' dynami
s. One of them is knowing what are the values of the �tness
ost imposed by plasmids that guarantee their disappearan
e from a population ofinterest. Also, one may ask what are the 
onsequen
es of the wide 
u
tuations re-ported by De Gelder et al. (2007), and what is the expe
ted time to be waited until99.9% of the ba
teria disappear.To ta
kle these questions, data is obtained by 
arrying \segregation experi-ments". In these experiments, a ba
terial population is seeded with 100% plasmid-
arrying individuals in an antibioti
-free medium. Then, ba
teria are allowed toevolve (dupli
ate) during 24 hrs and a sample of, say, 50 
ells is taken day after day,for many days (e.g. 20). By 
arrying stability experiments with seven strains, DeGelder et al. (2004) observed that the estimated fra
tion of the plasmid-free ba
-teria in
reased ea
h day but this in
rease was \quite slow and errati
" and while



4there was an average (of plasmid-free 
ells) trend upward there was a 
onsiderableamount of variability (Joy
e et al. 2005). Although the amount of variability in thedata seem to be higher than what would be expe
ted under pure random samplingfrom a deterministi
 trend, most of the plasmids' dynami
s models have been builtin a deterministi
 framework using either di�erential or di�eren
e equation systems.Levin and Stewart (1977) modeled the population dynami
s of plasmids governedby 
onjugation and plasmid lost via segregation and found the biologi
al 
onditionsunder they persist. Later, in 1979, they 
onsidered 
onditions in whi
h non self-transmissible extra
hromosomal elements were maintained. Bergstrom et al. (2000)reviewed the plasmids' dynami
s literature and proposed that growth and 
onjugationrates should be fun
tions of the time (measured in generations). These authors alsofound the mathemati
al expressions des
ribing pre
isely the 
onditions for plasmidpersisten
e expressed as a fun
tion of 
onjugation and segregation rates. Later, DeGelder et al. (2004) built a system of di�eren
e equations to model the fra
tion ofplasmid-free 
ells and 
onne
ted this model to the data via rigorous statisti
al meth-ods. The main goal of the present work is to provide pra
titioners with the toolsto answer some of the relevant questions mentioned above by means of a sto
hasti
model. We develop and test the methods to �t and evaluate the proposed model,given data from segregation experiments (De Gelder et al. 2004) . As Novozhilovet al. (2005) point out, the use of sto
hasti
 pro
esses to model HGT is readily jus-ti�ed when it is 
onsidered that the biologi
al prin
iples under whi
h evolution andadaptation are understood are essentially sto
hasti
. In 2008, Slater et al. wrote thatdeterministi
 models \fail to take into a

ount some of the physiologi
al and e
ologi
al
omplexities of plasmids and their hosts in natural environments". If the plasmids'environment is understood as its host, and one 
onsiders that the host qualities maywidely 
hange from individual ba
teria to another, then a model with environmental



5un
ertainty might be a good 
hoi
e to in
orporate sto
hasti
ity in a plasmids' dy-nami
s model (Pon
iano et al. 2007). Following this argument, the model we proposein
orporates environmental sto
hasti
ity and extends the hierar
hi
al model proposedby Pon
iano et al. (2007).



62 Modeling Horizontal Gene TransferIn this se
tion we present a Markov Model (MM) for HGT in ba
teria. This modelis an extension of the Hidden Markov Model (HMM) developed by Pon
iano et al.(2007) in whi
h horizontal plasmid transfer is modelled expli
itly. The model's de-termisti
 \skeleton" is a di�eren
e equation system also des
ribed by these authors.In what follows, we �rst summarize the deterministi
 model properties and then we
hara
terize the MM in detail.2.1 Mathemati
al ModelDe Gelder et al. (2004) established a system of di�eren
e equations to model thegrowth of the fra
tion of plasmid free 
ells in an anti-bioti
 free medium. Theyassumed 
ells 
an lose plasmids but they 
annot a
quire it again. The number ofplasmid-free 
ells at time t is denoted as mt and the number of plasmid-
arrying 
ellsis denoted as nt. In this system, the abundan
e of plasmid-free 
ells mt was given bythe sum of the mt�1 plasmid-free 
ells that grew at a rate 21+� and the nt�1 plasmid-
arrying 
ells that lost their plasmid at a segregation rate � and doubled in numberfrom time t � 1 to time t. The parameter � was 
alled the sele
tion 
oeÆ
ient, orplasmid 
ost. If � > 0, the sele
tion 
oeÆ
ient represents the advantage in growthspeed that plasmid-free 
ells have over plasmid-
arrying 
ells. On the other hand, thenumber of plasmid-
arrying 
ells at time t, nt, was simply given by twi
e the numberof plasmid-
arrying at time t� 1 that did not loose their plasmid. Hen
e,mt = 21+�mt�1 + 2�nt�1;nt = 2(1� �)nt�1: (1)Then, plasmid-free 
ells' proportion xt wasxt = mtmt + nt : (2)Using this basi
 formulation, Pon
iano et al. (2007) 
onsidered a model exten-sion to a

ount for the fa
t that ba
terial 
ells 
an a
quire plasmid via 
onjugation.



7These authors assumed that the plasmid 
onjugation rate, denoted by 
, dependedlinearly not only on the relative abundan
e of plasmid-
arrying and plasmid-free 
ells,but also on their probability of en
ounter given by(1� xt�1)� + (1� xt�1) =: �(xt�1):This modi�
ation to the mass-a
tion prin
iple is the well-known Mi
haelis-Menten formula that has been used before in a similar 
ontext (Pon
iano et al. 2007).Also, in the e
ologi
al literature, this fun
tional form has been derived from �rstprin
iples as a probability of en
ounter between two individuals of di�erent sex in apopulation (Dennis, 1989). The parameter � is interpreted as the fra
tion of plasmid-
arrying 
ells at whi
h the frequen
y of 
onjugations is half its maximum. Hen
e, themodel be
ame mt = �1� 
 (1�xt�1)�+(1�xt�1)� 21+�mt�1 + 2�nt�1;nt = 2(1� �)nt�1 + 21+�mt�1
 (1�xt�1)�+(1�xt�1) : (3)From Equation 3, the fra
tion of plasmid-free 
ells at time t was found to bext = �1� 
 (1�xt�1)�+1�xt�1� xt�121+� + 2�(1� xt�1)21+�xt�1 + 2(1� xt�1) : (4)By 
arrying a standard stability analysis (Kot 2001) of the di�eren
e Equa-tion 4, unique deterministi
 properties of the model were found. In parti
ular,three equilibrium solutions to equation 4 are possible. The �rst two were obtainedas solutions of the quadrati
 equation Ax2 + Bx + C = 0, where A = 2� � 1,B = ((� + 1)(2� � 1) + � + 2�
) and C = ��(� + 1). The resulting solutionsare x1 = 1, x2 = �B+pB2�4AC2A and x3 = �B�pB2�4AC2A .The behavior of the stable solutions and of the growth rate of the fra
tionof plasmid-free 
ells depends strongly on the value of � (see Figure 1). When theparameter � is too small, plasmid-free 
ells repli
ate as fast as plasmid-
arrying onesso that the plasmids may never disappear from the population. When this o

urs,
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Figure 1: Left panel, behavior of the fra
tion of plasmid-free 
ells (xt) at time t isshown for di�erent values of �. In the lowest 
urve � = 0:055 and for the uppermost
urve � = 0:41. Right panel, the growth rate of the fra
tion of plasmid-free 
ells(xt � xt�1) is shown. The interse
tions with the x-axis shows the lo
ation of thestable solutions (Taken from Pon
iano et al. 2007) .the solution x2, whi
h is smaller than 1, is stable. The solution x1 = 1 will be
omestable if and only if 
� � 1� 1� �2� (5)holds. Under this last solution all 
ells lose their plasmid and they be
ome sensitiveto antibioti
 treatment.The behavior of stable solutions is shown in Figure 1, where di�erent stablesolutions for di�erent values of the parameter � are plotted. Also in Figure 1, thegrowth rate of plasmid-free 
ells' fra
tion is shown. The di�erent equilibria are thepoints that interse
t the x-axis.The a
tual stability experiment 
arried by De Gelder et al. (2004), De Gelder



9et al. (2007) and Pon
iano et al. (2007), showed that the behavior of the fra
tion ofplasmid-free 
ells might not be deterministi
. As shown in Figure 2, the variability ofthe observations appears to be bigger than would be expe
ted under a simple binomialpro
ess, like the one used to �nd the ML estimates of the deterministi
 model by DeGelder et al. (2004). To model this extra variability we assumed that the growthpro
ess of the proportion of plasmid-free 
ells is a sto
hasti
 pro
ess. Then, thegrowth rate of plasmid-free 
ells be
omes a random variable. This model is explainedin detail in the next se
tion.2.2 Sto
hasti
 ModelA sto
hasti
 model for the growth of the proportion of plasmid-free 
ells 
an in-
lude two di�erent sour
es of variability: demographi
 sto
hasti
ity and environmen-tal noise. Demographi
 sto
hasti
ity refers to the variability given by the random lossand a
quisitions of plasmids in the population, whereas environmental noise is relatedto \the e�e
t of external fa
tors on the individuals in the population (Pon
iano etal. 2005). A State-Spa
e Model (SSM) has been shown to be an adequate tool tomodel di�erent sour
es of randomness (Dennis et al. 2006). For instan
e, Clark andBj�rnstad (2004) and Dennis et al. (2006) have showed that SMM are suitable toestimate adequately di�erent sour
es of variability: the pro
ess un
ertainty 
onsist-ing of environmental noise and/or demographi
 sto
hasti
ity and observation errorgiven by data. In the experiment mentioned before, a SSM would integrate observa-tional error (related to the fa
t that we do not know the total number of plasmid-free
ells) and pro
ess error (related to the un
ertainty of the growth of plasmid-free 
ells).The model equation in (4) does not 
onsider pro
ess error. To introdu
e pro-
ess variability, Pon
iano et al. (2007) proposed that the �tness 
ost � might bedrawn from a 
ontinuous probability distribution denoted in their model as St, whereSt iidN(�; � 2). Here we make the same assumption. A

ording to the distin
tions
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Figure 2: The proportion of plasmid-free 
ells for ba
teria P18, where variabilityseems bigger than expe
ted. Taken from Pon
iano et al. (2007).mentioned above regarding the di�erent types of pro
ess variability, in
luding �tnessas a random variable amounts to spe
ify a model for environmental noise. Pon
ianoet al. (2007) emphasized that due to theoreti
al and experimental ba
kground it isfeasible to 
onsider that \the o

urren
e of 
ompensatory mutations and/or a variablehost-dependent plasmid �tness 
ost would dramati
ally alter the plasmid loss dynam-i
s". In other words, there would be periods where loss of plasmids would be severe



11and other periods where their loss would not be as severe. Therefore, a sto
hasti
formulation for the proportion of plasmid-free 
ells seems biologi
ally reasonable.Lewontin and Cohen (1969) showed that environmental noise 
an be modeledby assuming that the growth rate is a normal random variable. In sto
hasti
 pro
esstheory, the introdu
tion of environmental noise 
an be derived as follows: supposethat population growth is modeled with a density-dependent bran
hing pro
ess model,like a standard Galton-Watson pro
ess with non-overlaping generations, where themean of the o�spring distribution depends on the 
urrent population density. LetZt denote the total number of individuals at time t. Then, Zt = Pti=1Ni whereNi � g(m; v), m = E(Ni) and v = V (Ni). This model not only assumes that all theindividuals are identi
al with respe
t to the o�spring distribution, but also that fromyear to year the o�spring distribution remains the same. Environmental noise 
an beintrodu
ed in this model by simply letting the mean of this o�spring distribution bea random variable that 
hanges from year to year m = m(t) (see Tier and Hanson1981). By introdu
ing environmental sto
hasti
ity in the deterministi
 model in (4),the fra
tion of plasmid-free 
ells Xt be
omes a random variable that is a fun
tionof St and the realization of X at time t � 1, Xt�1. Therefore, (Xt; t � 0) is anunobservable Markov pro
ess (Hidden Markov Model).The relationship between St and Xt isXt = �1� 
 (1�Xt�1)�+1�Xt�1�Xt�121+St + 2�(1�Xt�1)21+StXt�1 + 2(1�Xt�1) (6)= g(St): (7)Here, Xt is a Markov 
hain, where t represents the number of generations. Thetransition density fun
tion for this Markov 
hain is found by using the 
hange of



12variable theorem:fXtjXt�1(xtjxt�1) = 1�p2� �����g�1(xt)�xt ���� exp��(g�1(xt)� �)22� 2 � I(�;1)(xt) (8)where g�1(xt) = 1ln(2) ln� (1� xt�1)(xt � �)(� + 1� xt�1)xt�1(� + 1� xt�1)(1� xt) + xt�1(xt�1 � 1)
��g�1(xt)�xt = 1ln(2) � 1xt � � + � + 1� xt�1� + 1� xt�1 � (1� xt�1)
� :The fun
tion g(_) linking Xt with St is invertible and this property allow us to writeexpli
itly the transition probability (8). On the other hand St is a normal randomvariable and this allow us to easily simulate the pro
ess Xt as it is shown in Figure 3.
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Figure 3: Simulation of three realizations of (Xt; t � 0).The sto
hasti
 dynami
s model above is 
hara
terized by three unique Markovmodel properties: the transition probability distribution fun
tion, its stationary prob-ability distribution fun
tion (if it exists) and the plasmids' persisten
e times.The transition probability distribution fXtjXt�1=xt�1(xtjxt�1) looks like a Betadistribution when Xt�1 = xt�1 is set near to 1 and (5) holds. It is possible to �t a



13Beta distribution with parameters (�; �) by estimating � and � using the method ofmoments. To do that, we �rst approximate the �rst and se
ond moments of the 
hainvia a se
ond order Taylor series expansion as follows:XtjXt�1 = xt�1 � g(�) + �g(St)�St (St � �) + 12 �2g(St)�S2t (St � �)2: (9)Then, using properties of expe
tation and varian
e we have:m = E(XtjXt�1 = xt�1) � g(�) + 12 �2g(St)�S2t E((St � �)2)� g(�) + �2g(St)�S2t � 2; andv = V ar(XtjXt�1 = xt�1) � ��g(St)�St �2 V ar(St � �) + 14 �2g(St)�S2t V ar(St � �)2� ��g(St)�St �2 � 2 14 �2g(St)�S2t (V ar(S2t ) + 4�2V ar(St))� ��g(St)�St �2 � 2 14 �2g(St)�S2t (2(�2 + � 2)� 3 + 4�2� 2):Finally, the approximated moment parameter estimates are~� = ~� m1�m; and (10)~� = m (1�m)2v +m� 1 : (11)In Figure 4, xt�1 = 0:9 was �xed and one forward step of the 
hain was sim-ulated. The histogram represents simulations and the 
urve is a Beta density withparameters (~�; ~�).The stationary law is one of the interesting properties but 
al
ulating it forthis pro
ess is not an easy task. Properties for an ergodi
 
hain (aperiodi
ity andirredu
ibility, Karlin 1975) need to be proved in the 
ontinuous state spa
e for thefra
tion of plasmid-free 
ells. Another approa
h 
ould be using a di�usion pro
essapproximation whi
h is again not an easy job (Meyn and Tweedie 1993). Howeversimulations of the pro
ess showed that a stationary law for this Markov 
hain might
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Figure 4: Simulations of Xt 
onditional to Xt�1 = 0:9. A Beta distribution (solidline) was �tted to the simulated data using the method of moments.exist under 
ertain 
onditions. The mode of this stationary law seems to be 
lose to0.9. The last property refers to persisten
e times. Let T x0k = minft > 0 : Xt �kjX0 = x0g be the �rst time at whi
h the Markov 
hain Xt is greater or equal thank given that the 
hain started at x0. Then, it is possible to simulate these stopingtimes using the transition pdf, as it is shown in Figure 5.2.3 The Hierar
hi
al ModelA hierar
hi
al model Y is a statisti
al model that has random 
omponents and �xedparameters. They have been widely used in E
ology and Biology. For example,realisti
 stru
tures using hierar
hi
al models for 
apture-re
apture problems wereworked by George and Robert (1992) and Basu and Ebrahimi (2001). Problemsrelated to �sheries sto
k assessment were treated by Meyer and Millar (1999). Later,Gelfand et al. (2005) ta
kled a problem of geospatial models of spe
ies and habitats
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Figure 5: Left panel, the histogram of 50000 simulations of T 0:0060:80 shows that atmost in 300 generations the fra
tion of plasmid-free 
ells hits for the �rst time 0.8.Right panel, the histogram of 50000 simulations of T 0:0060:95 shows that at most in 1000generations the fra
tion of plasmid-free 
ells hits for the �rst time the boundary of0.95.using a hierar
hi
al model. Clark and Bj�rnstand (2004) used this type of models toestimate di�erent sour
es of variability in population time series (environmental andpro
ess variability) and Pon
iano et al. (2007) for the fra
tion of plasmid-free 
ellswithout 
onjugation. Finally, Lele et al. (2007) review many of the appli
ations ofthese models in E
ology. Hierar
hi
al models are usually spe
i�ed using two equations
alled the observation and the pro
ess model equations. These are typi
ally writtenas observation equation Y � g(yjX; �);pro
ess equation X � f(xj�): (12)The observation equation 
ontains the spe
i�
ation of the statisti
al sampling modelby whi
h the observations Y are obtained. This model is governed by a set of pa-rameters, say �. The sampling model is used to 
onne
t the data with the sto
hasti
pro
ess model of interest. The pro
ess is usually denoted by X and is governed by



16the density g(xj�). The paramers � usually are the parameters of biologi
al relevan
e.The experiment des
ribed in De Gelder et al. (2004) gives the basi
 elementsto propose a suitable hierar
hi
al model. In three separated 
olonies, stability ex-periments were performed three times. Ea
h 
olony (along with a 
ertain antibioti
)was ino
ulated in 5ml of LB1. After 24hr, these 
ultures were washed to remove allantibioti
s. A fra
tion of the 4.88 �l were transferred to 5ml of LB and they weregrown for 10 generations, this represents time 0 (it is assumed that in 24 hrs, tengenerations of ba
teria span).During 24hr they were in
ubated in a rotary shaker, then 4.88 �l of the 
ul-tures were transferred ea
h 24 hr. to fresh 5 ml LB. The fra
tion of plasmid-free 
ellswas obtained by repli
a, pi
king 50 
olonies per 
ulture at random and 
ounting howmany of them were free of plasmid through 
omparison of their genomi
 �ngerprints.Then observed data are three repli
a of the same pro
ess yi = (yi1; yi2; : : : ; yiq),i = 1; 2; 3 
oming from a hidden Markov pro
ess of length q: X i = (X1i; X2i; : : : ; Xiq).The hierar
hi
al model proposed in
ludes observational and pro
ess error of the ex-periment and 
an be written as follows:Yi;t � g(yi;tj50; Xi;t); and (13)Xi;tjXi;t�1 = xi;t�1 � fXi;tjXi;t�1(xi;tjxi;t�1);where g(yitj50; Xi;t) = � 50yi;t�(Xi;t)yi;t(1�Xi;t)50�yi;t is a binomial distribution andfXi;tjXi;t�1(xi;tjxi;t�1) is as in Equation (8) for i = 1; 2; 3. The model in (13) 
onsidersenvironmental and demographi
 sto
hasti
ity, hoping that inferen
es based on su
hmodel will be adequate and 
omplete. Inferen
es based on model (13) will be pre-1LB: Lysogeny broth, a medium 
omposed by peptides, vitamins, tra
e elements and mineralsthat is used for the growth of ba
teria.



17sented in the following se
tions, where point estimates using MCMC methods will bedis
ussed.



183 Statisti
al Inferen
eThe statisti
al inferen
e for the fra
tion of plasmid-free 
ells will be based on thehierar
hi
al model (13). Obtaining parameter and persisten
e time estimates is themain goal of the present statisti
al analysis. Using a posterior distribution (using aBayesian approa
h) and a likelihood fun
tion the hierar
hi
al model proposed in thelast se
tion is dis
ussed.3.1 Bayesian inferen
eBayesian statisti
al inferen
e is based on the analysis of posterior distributions of ave
tor of parameters. The posterior distributions are formed by the produ
t of twoimportant fun
tions: The likelihood fun
tion and the joint prior distribution for theve
tor of parameters. In our 
ase, the likelihood fun
tion and the posterior distribu-tion for the ve
tor (Xi; �; �; �; �; 
) are used to estimate the fra
tion of plasmid-free
ells and persisten
e times. The pro
edure to a
hieve this is des
ribed as follows:For the Markov 
hain, let (�; � 2; �; �; 
) be the set of parameters ofX i = (Xi1; : : : ; Xiq)that govern the hidden Markov pro
ess of length q. Variable Xt is latent (unob-served) sin
e it only 
an be known through indire
t observational s
hemes (Clark andBj�rnstad 2004). In our 
ase, we have a sample of size 50 only. Let yi = (yi1; : : : ; yiq)be the set of observations that 
ome from the i-th repli
a of the time series experimentwhi
h a

ounts for the error in the pro
ess due to the plasmid-free ba
teria samplingmethod. The joint posterior distribution for the parameters and the pro
ess is�(�; � 2; �; �; 
;X1; X2; X3jy1; y2; y3) / 3Yi=1 g(yijX i)| {z }Likelihood � �(X1; X2; X3; �; � 2; �; �; 
)| {z }Prior ;(14)



19where the joint prior distribution 
an be written as:�(X1; X2; X3; �; � 2; �; �; 
) = �(�)�(� 2)�(�jX1; X2; X3)�(
jX1; X2; X3; �)�(�)��(x01)�(x02)�(x03)� 3Yi=1 qYt=1 fXitjXi;t�1;�;�2;�;�;
(xitjxi;t�1; �; � 2; �; �; 
):From Equation (6) the Hidden Markov pro
ess has transition distribution de-�ned by (14) if:0 < � < min1�t�qfXitg = f1(X i)and if0 < 
 < min1�t�q n (�+1�Xi;t�1)(1�Xit)1�Xi;t�1 o = f2(X i; �) for i = 1; 2; 3: (15)Bayesian inferen
e requires eli
itation of prior distributions. For hierar
hi
al models,eli
itation of priors is not an easy task sin
e priors for all the parameters and thepro
ess need to be settled. The hidden Markov model is a pro
ess that by de�nition
annot be observed and therefore, priors for unobservable quantities are diÆ
ult toeli
it. Although the in
uen
e of the prior on the �nal inferen
e 
an be strong andlead to di�erent 
on
lusions when working with di�erent prior distributions (Lele andDennis 2007), if subje
tive priors are used, methods to evaluate the robustness of theinferen
es to 
hanges in the prior distribution exist (Ruggieri 2000).Most of our unobservable variables are quantities between 0 and 1 or they arerelated through inequalities (15), so the eli
itation of prior distribution for our model(14) was done as follows:1. �(�) = 110I(0;10)(�),2. �(� 2) = 160I(0;60)(� 2),3. �(�jX1; X2; X3) = 1mini=1;2;3ff1(Xi)gI(0;mini=1;2;3ff1(Xi)g)(�),4. �(�) = I(0;1)(�),



205. �(
jX1; X2; X3; �) = 1mini=1;2;3ff2(Xi;�)gI(0;mini=1;2;3ff2(Xi;�)g)(
),6. �(x0) = I(0;1)(x0).Using the above priors the resulting posterior distribution does not have a
losed simple form, therefore 
omputational tools are needed to sample from it. Thiswas a
hieved using two di�erent MCMC implementations to be explained in Se
tion4.3.2 Likelihood Inferen
eA likelihood fun
tion is a fun
tion from whi
h inferen
es about populations are doneusing random samples. Inferen
es will be meaningful as long as this population is
orre
tly spe
i�ed. The likelihood fun
tion is a fun
tion that is proportional to theprobability of observing the sample y from a population with parameter �. Sprott(2000) dis
ussed that \the likelihood fun
tion ranks the plausibility of all possiblevalues of � by how probable they make the observed y'. The likelihood fun
tion alsoallows 
omparison of plausibilities of di�erent values of � for the value of the observedsample y.For our model the likelihood fun
tion for the hierar
hi
al model (13) is:L(�; � 2; �; �; 
; y1; y2; y3) = Z[0;1℄q Z[0;1℄q Z[0;1℄q 3Yi=1 g(yi;tj50; Xi;t)� (16)�fXi;tjXi;t�1(xi;tjxi;t�1)dX1dX2dX3:An eÆ
ient and numeri
ally a

urate maximization of this high-dimensional integralis diÆ
ult to a
hieve. Here, as it will be seen, MCMC 
omputational tools will beused to over
ome this problem. Maximum likelihood estimates will be obtained nu-meri
ally and will be used to estimate the plasmids' persisten
e time.



214 Computer intensive statisti
al methods4.1 ARMS within Gibbs SamplerMarkov Chain Monte Carlo (MCMC) algorithms were �rst des
ribed by Metropoliset al. (1953) and later improved by Hastings (1970). It is a general pro
edure tosimulate from any probability distribution whi
h is espe
ially useful when its expli
itform is not available (Robert and Casella 2005). The MCMC algorithm assures thatthe Markov 
hain's stationary law is the probability distribution of interest (see ap-pendix A.1).A very well-known example of MCMC is the Gibbs Sampler (Gelfand andSmith 1990, Casella and George 1992). The Gibbs sampler allows to sample froma distribution without having its expli
it form. This algorithm is based on the fa
tthat it is suÆ
ient to know the full 
onditional distribution of ea
h parameter todetermine a joint distribution of the parameters. This 
omputational te
hnique usessampling from ea
h parameter's full 
onditional distribution at ea
h step and thenrepla
ing this new sampled value in another parameter's full 
onditional distribution.In our model full 
onditional distributions are easy to write and have an importantproperty: log-
on
avity.Adaptive Reje
tion Sampling (ARS) is an often used methodology to samplefrom the 
onditional posterior distributions needed to 
arry the Gibbs sampler. Toestimate the model parameters, Pon
iano et al. (2007) used an ARS variant, Adap-tive Reje
tion Metropolis Sampling (ARMS) within Gibbs to sample from the full
onditionals in (17) that had the log-
on
avity property. Here, we �rst attempted toobtain samples from the full posterior (14) by using this method.Adaptive Reje
tion Sampling (ARS) was proposed by Gilks and Wild (1992).



22It is useful when we want to simulate from distributions whose logarithm is a 
on
avefun
tion. This algorithm is based on building a 
on
ave hull that 
overs the log-density(h(�)). The 
on
ave hull is formed by interse
tions of lines that are tangent toa set of ordinates. This set of ordinates is obtained from a set of abs
issae Tk of sizek that are sele
ted at the beginning of the algorithm and have the property of beingwithin the support of the target density (Figure 6).
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Figure 6: Log-
on
ave density and 
on
ave hull. Using k = 4 a 
on
ave hull 
an bebuilt. The hull 
overs 
ompletely the log-density.The ARS algorithm requires the target log-density h(�) to be 
ontinuous, 
on-
ave and di�erentiable in all its support D. Furthermore, D has to be a 
onne
tedset. ARS is performed through the following steps:1. Sele
t an abs
issae set in the density's support D: Tk = (x1; x2; : : : ; xk).2. Cal
ulate the interse
tions of the tangents in the ordinates h(xj):zj = h(xj+1)� h(xj)� xj+1h0(xj+1) + xjh0(xj)h0(xj)� h0(xj+1) :



233. Cal
ulate a 
on
ave hull: x 2 [zj�1; zj℄uk(x) = h(xj) + (x� xj)h0(xj)and its exponential sk = exp(uk)(x)RD exp(uk)(x) :4. Simulate x� from sk, whi
h is a mixture of exponential distributions with pa-rameters uk(x) = h(xj) + (x� xj)h0(xj).5. Simulate u from a Uniform distribution in (0; 1), a

ept x� ifu � exp(h(x�)� uk(x�));else do Tk+1 = Tk [ fx�g.Gilks and Wild (1994) noted that using ARS, it is still possible to simulate fromquasi log-
on
ave distributions (see Figure 7) if an extra Metropolis-Hastings step isadded to the algorithm des
ribed above. In the last step, if u � exp(h(x�)� uk(x�))is true, then a

ept x� with probability equal to the following Metropolis-Hastingsratio: �(x(i); x�) = min�1; f(x�)min(f(x(i)); sk(x(i)))f(x(i))min(f(x�); sk(x�)) � ;where log(f(�)) = h(�). If u � exp(h(x�)�uk(x�)) is not true or if x� is not a

epted,then Tk+1 is set as Tk [ fx�g.For our model equation (14), the ARMS algorithm was implemented within aGibbs Sampler where Kernels (full 
onditionals) of ea
h parameter were (
onsidering1 repli
a to simplify notation):1. For � 2: p(� 2jX; �; �; �; 
) / �(� 2)Qqt=1 fXtjXt�1;�;�2;�;�;
(xtjxt�1; �; � 2; �; �; 
):2. For �: p(�jX; �; � 2; �; 
) / �(�jX)Qqt=1 fXtjXt�1;�;�2;�;�;
(xtjxt�1; �; � 2; �; �; 
):3. For 
: p(
jX; �; � 2; �; �) / �(
jX; �)Qqt=1 fXtjXt�1;�;�2;�;�;
(xtjxt�1; �; � 2; �; �; 
):
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Figure 7: Quasi log-
on
ave density and 
on
ave hull.4. For �:p(�jX; �; � 2; �; 
) / �(�)�(
jX; �) qYt=1 fXtjXt�1;�;�2;�;�;
(xtjxt�1; �; � 2; �; �; 
):(17)5. For X0: pX0jXt>0Y ;�;�2;�;
;�(x0jxt>0y; �; � 2; �; 
; �) // �(�)�(x0)fX1jX0;�;�2;�;
;�(x1jx0; �; � 2; �; 
; �)g(y0jx0):6. For Xt, 0 < t < q: pXtjXj 6=tY ;�;�2;�;
;�(xtjxj 6=ty; �; � 2; �; 
; �) // �(�jX)fXtjXt�1;�;�2;�;
;�(xtjxt�1; �; � 2; �; 
; �)�� fXt+1jXt;�;�2;�;
;�(xt+1jxt; �; � 2; �; 
; �)g(ytjxt):7. For Xq: pXq jXq�1;y�;�2;�;
;�(xqjxq�1�; � 2; �; 
; �) // �(�jX)fXq jXq�1;�;�2;�;
;�(xqjxq�1; �; � 2; �; 
; �)g(yqjxq).Before 
arrying this Gibbs sampler and de
iding whether to use ARS or ARMS,the log-
on
avity of ea
h full 
onditional was 
he
ked. As it is shown in Figure 8, thelog-density of parameter � its log-density is 
ompletely 
on
ave and the log-densityfor x1;2 is quasi log-
on
ave.
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Figure 8: Log-densities for � (left) and x1;2 (right).To draw B independent samples from the posterior distribution the above Ker-nels were sampled sequentially at ea
h step. The values (x(0)i ; �(0); � 2(0); �(0); 
(0); �(0))were set at arbitrary initial values. A sample from the marginal posterior distributionof any parameter is obtained simply by taking the sequen
e of that parameter fromthe total sample and high-dimensional integration is not ne
essary (Meyer and Millar1999).
4.2 t-walkThe se
ond MCMC method implemented in this work is the t-walk algorithm. Thet-walk is a general purpose s
ale-independent MCMC algorithm that maintains twoindependent points to sample from a joint posterior distribution. Proposed by Chris-ten and Fox (2007), this algorithm solves the problem of tuning a proposal distributionfor a MCMC. It 
hanges the obje
tive distribution �(x) for f(x; x0) = �(x)�(x0) andis di�erent from running two 
hains simultaneously. This general MCMC algorithmhas the advantage that is not an adaptive algorithm. It uses four di�erent moving



26strategies designed to preserve the 
hain's homogeneity and ergodi
 properties.The t-walk's design is based on a general distribution qf(y; y0)j(x; x0)g thatproposes the 
hain moves a

ording to:(y; y0) = 8<: (x; h(x; x0)) with probability 0.5(h(x; x0); x0) with probability 0.5 ;where h(x; x0) is a random variable asso
iated with one the four moves des
ribedbelow. In the t-walk algorithm only some of the 
oordinates of the points (x; x0)are moved. If the length of x is n, n independent Bernoulli random variables �j,j = 1; : : : ; n are simulated. If �j = 1 then the xj 
oordinate will be updated a

ord-ing to h(�; �).The �rst of the four moves is 
alled the walk-move. This move is 
loselyrelated to a random walk and it allows to sample from distributions that are weakly
orrelated. This move is de�ned as:hw(x; x0)j = xj + �j(xj � x0j)zj;where zj are real random variables i.i.d. with density fw(�).The se
ond move is the traverse-move and it helps to sample from distributionswhose variables are strongly 
orrelated. The traverse-move is de�ned as:ht(x; x0)j = 8<: x0j + �(x0j � xj) �j = 1xj �j = 0 ;where � is a positive random variable with density ft(�).The �nal two are the hop-move and the blow-move. These two moves helpto maintain the irredu
ibility of the 
hain and to guarantee its 
onvergen
e. The



27hop-move 
an be de�ned as follows:hh(x; x0)j = 8<: (xj + zj �(x;x0)3 ) �j = 1xj �j = 0 ;where �(x; x0) = maxj �jjxj � x0jj and zj � N(0; 1).Finally, the blow move is:hb(x; x0)j = 8<: x0j + �(x; x0)zj �j = 1xj �j = 0 ;zj and �(x; x0) are de�ned as before. It must be noti
ed that the di�eren
e betweenthe hop and the blow moves is that they start from di�erent initial points.By mixing the set of the four standard Metropolis-Hastings Kernels K� asso
i-ated with the four moves h� (and � 2 fw; t; h; bg) the 
onvergen
e of t-walk algorithmis assured (Fox and Christen 2007).The t-walk is not a sequential algorithm. It allows to sample from all the pa-rameters in a posterior distribution at on
e. This property 
an be useful when some
onditions need to hold simultaneously among the parameters, as it is the 
ase withour model (see eq. 15).The t-walk algorithm is parti
ularly useful when the target distribution ishighly multimodal and other MCMC variant is diÆ
ult to 
alibrate (i.e. �ndinga good proposal distribution). However, it is by de�nition a Metropolis-Hastingsalgorithm and as su
h it inherits one of its diÆ
ulties, namely 
hoosing initial pointsthat allow a qui
k 
onvergen
e.



284.3 The Prior Feedba
k algorithmIt is possible to take advantage from MCMC methods to perform Likelihood infer-en
e. Robert (1993) proposed a method 
alled Prior Feedba
k to obtain maximumlikelihood (ML) estimates. Prior Feedba
k is a method that exploits the statisti
alproperties of the problem and �nds ML estimates as a limit of bayes estimates. ThePrior Feedba
k algorithm updates the parameters using repeatedly the observed dataas a new prior ea
h time. By doing that, the posterior distribution 
onverges to a�xed point, identi
al to the ML estimate.Let f(xj�) = 
(x) exp (�x� �(�)) be a density from a k-dimensional expo-nential family. Let x be a single observation from f(xj�). The 
onjugate prior�(�jx0; �) / exp (�x0 � ��(�)) depends on x0 and � 2 R+ parameters.The quantity of interest is a 
ontinuous fun
tion of the parameter h(�). Agood estimate for this quantity is E�(h(�)jx) sin
e it depends on the observed data.The prior expe
tation of h(�) is:E(h(�)jx0; �) = Z h(�)�(�jx0; �)d�:Then the updated posterior expe
tation will beE�(h(�)jx1; �) = E�(h(�)jx0 + x; �):Continuing in this fashion, the Prior Feedba
k Estimate (PFE), denoted byÆ��(x), will be asso
iated to a �xed point x� su
h thatÆ��(x) = E�(h(�)jx�; �) = E�(h(�)jx� + x; �): (18)This estimate 
an be interpreted as the one whose prior density agrees withthe information given by the data x (neutral distribution). Robert proved that Æ��(x)
onverges to ML estimate of � when � goes to in�nity (see Appendix A).



29Robert also showed that this method 
an be very useful to obtain the MLestimates when the likelihood fun
tion is not from the exponential family. Also, he
ompared this method with Simulated Annealing (SA) in the sense that the prior dis-tribution plays, in this algorithm, the role of the temperature. Robert (1993) 
laimedthat it is easier for this algorithm to 
ontrol priors sin
e they have an statisti
al in-terpretation, whereas for SA it is always diÆ
ult to 
alibrate temperatures.Later Robert and Titterington (1998) proposed a prior feedba
k method 
ou-pled with a Gibbs sampler for a Normal and Poisson hierar
hi
al models to obtainthe maximum likelihood estimates of the model parameters. The basi
 idea of this
omputational method is based on elevating to a high enough power the likelihoodfun
tion so that the e�e
t of the prior distribution vanishes. In the 
ontext of HMMthey implemented the Gibbs sampler with an in
reasing number of repli
a of the sam-ple of size m, asumming these repli
a are independent. The theoreti
al justi�
ationis that the prior feedba
k estimate will 
onverge to a Dira
 mass lo
ated at the max-imum likelihood estimates as m goes to in�nity, sin
e the m-th posterior distributionof parameter � is �(m)(�) / �(�)L(�)m:In the former method, m 
an be interpreted as the temperature of a SA algo-rithm but regularity 
onditions need to hold. In parti
ular, L(�) needs to be bounded,whi
h is not trivial. In fa
t, to implement this 
omputational method adequately,Robert and Titterington had to introdu
e a modi�
ation of the likelihood fun
tionfor the Normal and Poisson 
ases be
ause they were not bounded.In the following se
tion, a generalization of MCMC methods for obtainingmaximum likelihood will be reviewed.



304.4 The Data Cloning algorithmLele et al. (2007) proposed to take advantage of MCMC methods to avoid high-dimensional integration and maximize likelihood fun
tions to obtain ML estimatesfor hierar
hi
al models. Their method is 
alled Data Cloning (DC) and as the PriorFeedba
k algorithm, it is a MCMC method that 
onverges to ML estimates as a vari-able k goes to in�nity.When the prior distribution is positive over the spa
e parameter the posteriordistribution of the hierar
hi
al model (12) is�(1)(�; �jy) = R fg(yjX; �)f(Xj�)dXg�(�; �)h(y) ;where h(y) = R g(yjX; �)f(Xj�)�(�; �)dXd�d�. Now,if �(1)(�; �jy) is prior, the up-dated posterior is �(2)(�jy) = R fg(yjX; �)f(Xj�)dXg�(1)(�; �)h2(y)�R g(yjX; �)f(Xj�)dX	2 �(�; �)h2(y)�L(�; �; y)	2 �(�; �)h2(y) :If we 
ontinue this pro
edure k times, k-th posterior distribution is�(k) = �L(�; �; y)	k �(�; �)hk(y) :On other hand, if the experiment was to be 
arried k times and by happen-stan
e the results were always the same, then the likelihood for hierar
hi
al model(12) would be �Z g(yjX�)f(Xj�)dX�k = �L(�; �; y)	k : (19)When (�̂ML; �̂ML) are the maximum likelihood estimates for all (�; �),L(�; �; y) � L(�̂ML; �̂ML; y);



31and if k goes to in�nity:�(k)(�; �jy)�(k)(�̂; �̂jy) = fL(�; �; y)gkfL(�̂; �̂; y)gk = 8<: 0 if (�; �) 6= (�̂ML; �̂ML);1 if (�; �) = (�̂ML; �̂ML):Lele proved that as k ! 1, �(k)(�; �jy) 
onverges in distribution to a multivariatenormal with mean the ML estimates and varian
e a k-th part of Fisher's informationmatrix (MVN([�̂; �̂℄0; 1kI�1(�̂; �̂))). This asymptoti
 result makes this methodologybetter than SA be
ause it allow us to build 
on�den
e intervals easily, whi
h is onethe main goals of doing inferen
e, by the method of Wald.Here, the k-th posterior, using (13)and (16), is�(k)(�; � 2; �; �; 
; y1; y2; y3) / nL(�; � 2; �; �; 
; y1; y2; y3)ok ���(x0)�(�)�(� 2)�(�)�(�)�(
j�): (20)



325 Results and Dis
ussionIn this thesis we proposed a new sto
hasti
 model for horizontal plasmid transferalong with the inferen
e tools ne
essary to analyze real data from the widespreadstability experiments (De Gelder et al. 2004, De Gelder et al. 2007, De Gelder etal. 2008). One of the most important 
ontributions of this work is to present plas-mids' persisten
e time as a random variable and the methodology to estimate itsmost important properties. Furthermore, the methodology presented here was thor-oughly tested via simulations. In what follows we present �rst the results with theGibbs sampler. Using the ARMS algorithm we show that for this parti
ular 
ase theuse of the Gibbs sampler is in fa
t ineÆ
ient. Next, we present the results obtainedfrom the t-walk algorithm when one and three repli
ated time series of the growthof the fra
tion of the plasmid-free 
ells are available. Then, we evaluate via simu-lations the quality of the persisten
e times' estimates. Finally, we illustrate how to
arry maximum likelihood estimation via data 
loning for our hierar
hi
al model (13).Simulations from the sto
hasti
 pro
ess (6) 
an be used to test thoroughly theBayesian methodology presented here. If many (e.g. 1,000) sets of three repli
atedtime series (as the ones obtained in the stability experiments) are generated a

ord-ing to the model with a set of parameter values, and if ea
h time the modes of themarginal posterior distributions are re
orded, then a histogram of these modes 
an bedrawn. If the methodology works properly, the histograms of the a posteriori modesare expe
ted to be 
entered around the true values, for long enough time series (thatis, time series 
ontaining enough information about how the pro
ess behaves). Pon-
iano et al. (2007) 
arried that simulation exer
ise using the Gibbs sampler for ea
hsimulation from a sto
hasti
 model without horizontal transfer. They showed thatindeed the histograms of the marginal a posteriori modes were 
entered around thetrue generating values. However, as we show next, examining the marginal posteriordistribution of the parameters for a single, very long simulation, 
an shed some light



33on the qualities of the inferen
e. Also, as we will demonstrate, it is not trivial topursue su
h simulation exer
ise for the Sto
hasti
 Horizontal Transfer model. Hen
e,here we limited ourselves to examine the results with a single simulation.Three time series of yit with i = 1; 2; 3; t = 1; 2 : : : 600 were simulated. Inorder to use ARMS within the Gibbs sampler to estimate the parameters for this sim-ulated time series, one needs to sample sequentially the individual 
omponents of theposterior distribution (14). A few (two or three) parameters 
an be jointly sampledin some 
ases as shown in Robert and Casella (2005). Here, a

ording to the 
ondi-tions (15) we would need to jointly sample the parameters in the ve
tor (X i; �; �; 
),whi
h 
ontains most of the parameters of interest. To do that an MCMC is required,and therefore the Gibbs sampler be
omes extremely ineÆ
ient: in order to sample asingle point one needs to a
hieve stationarity of the MCMC algorithm for this mul-tidimensional 
hain. Using the full 
onditionals des
ribed in se
tion 3, the elementsin (X i; �; �; 
) were sampled one at a time and not jointly. Independent samples forea
h of the parameters were obtained using ARMS on these 
onditionals and lettingthe Gibbs sampler to run 2� 106 times. A lag of 20,000 iterations was taken betweenea
h sample (Figure 9), until a

umulating 100 samples. The maximum a posterioriestimates (MAP) for the parameters � and 
 are not 
lose to their respe
tive realvalues and the posterior distribution is highly bimodal (Figure 9). As it will be seen,the results with the t-walk sampler under the same simulation 
onditions are di�er-ent, and the posterior distribution for both � and 
 are this time unimodal, 
lose tothe true generating value. This indi
ates that one-at-a-time sampling from the ve
tor(X i; �; �; 
) may not be adequate.To avoid using an MCMC algorithm inside the Gibbs sampler, the t-walk al-gorithm was used. Using one simulated time series yt, t = 1; 2 : : : 600, a hundredsamples from ea
h of the parameters were obtained taking a lag of size 20,000 (at



34stationarity). Be
ause of the lag size (20,000) these samples are approximately in-dependent (Figure 10). The resulting histograms of these samples are multimodal(Figure 10), due to the total multimodality of the posterior distribution. These pos-terior distributions also illustrate the ability of the t-walk algorithm to sample fromall the modes. A hundred a posteriori unobservable time series of the hidden Markovpro
ess (Xt; t = 0; 1; : : : ; 600) were sampled independently using the t-walk algorithmand all of them were very 
lose to true values as it is shown in Figure 11.The stability experiments are usually tripli
ated, and hen
e, a very plausibledata set 
onsists of three independent time series of the growth of the fra
tion ofplasmid free 
ells. That is, in 
ontrast to what is usual in ma
ro-e
ologi
al studies,samples from various realizations of the sto
hasti
 population pro
ess are obtained.These repli
ated realizations in
rease the amount of information available about theproperties of the sto
hasti
 pro
ess under study. As the number of simulated repli-
ated time series is in
reased, unimodality of the posterior distribution and the likeli-hood fun
tion seems to be a
hieved. Three repli
as yit; i = 1; 2; 3; t = 1; 2; : : : 600 weresimulated and the t-walk is run. Histograms of an independent sample of size 100 ofea
h of the marginal posterior distributions were drawn (Figure 12) and they appearunimodal. Due to the in
reased amount of information, the posterior distributionsmodes are easier to identify. Note that the mode of the parameter � is not 
lose tothe true value as the other modes seem to be. That means that even 600 iterationsof the pro
ess do not 
ontain enough information about the parameter �. It may bepossible that it is diÆ
ult to observe a single plasmid loss by segregation. In otherwords, segregation might not appear; its value, 6:851� 10�5 indi
ates that we wouldexpe
t 6 segregations to o

ur in 100,000 generations (the segregation rate used tosimulate data), so that this information might not be observed in 600 generations ofthe pro
ess. However, note that the drawn histograms represent only one possiblemaximum a posteriori estimate for the parameters. To a

ount for the variability of



35the maximum a posteriori estimate of the segregation parameter � (and of all of theparameters as well) it would be ne
essary to 
arry a parametri
 bootstrap simulationexer
ise as the one suggested at the beginning of this dis
ussion and 
arried by Pon-
iano et al. (2007) for a one parameter simpler model.The posterior distribution of the ve
tor (Xt; t = 0; 1; : : : ; 600) is well 
enteredaround the true unobserved pro
ess (Figure 13). Ea
h of the samples of ea
h elementof (Xt; t = 0; 1; : : : ; 600) were taken at lag sizes of 12,000 MCMC iterations, as sug-gested by the Integrated Auto
orrelated Time value (Figure 14).Simulations of size 50,000 of the persisten
e time T 0:0060:8 using real parametervalues were 
ompared to those using the posterior modes of the histograms in Figure12. The resulting histograms (Figure 15) show that their distributions are pra
ti
allythe same for persisten
e times smaller than 150 generations (approximately 15 days).The estimated persisten
e times are bigger than real ones for generations larger than150. That 
an be seen in the probability plot (Figure 15) for T 0:0060:8 (that is, when weare measuring the time until 80% of the ba
teria 
ells are free from plasmids).The same pro
edure was done to estimate T 0:950:006. In that 
ase, the estimatedand real stopping times distributions were very similar. In that 
ase, the distributionof the stopping time is mu
h better estimated (Figure16). Around Xt = 0:80 the vari-an
e of the pro
ess is mu
h higher than the varian
e of the pro
ess at Xt = 0:90. Thiswould explain why, with the same parameter estimates, the quality of the inferen
eon the distribution of the stopping times varies so mu
h between T 0:0060:8 and T 0:0060:95 .In order to estimate the variability around the estimated distribution of the stoppingtimes the values simultaneous 95 % 
redible intervals of all the parameters 
ould beused to simulated the lower and upper stopping times' \
redibility distributions".



36The Bootstrap algorithm to evaluate the properties of the bayesian a poste-riori modes would work as follows: Let � = (�; � 2; �; �; 
) be the set of parametersto be estimated and �̂(0) the set of MAP estimates generated by the original threesimulated time series y(0)it . Then, using �̂(0) we 
ould simulate B hidden Markov
hains x(1)it ; x(2)it ; : : : ; xBit . Using the binomial sampling of (13) with ea
h HMM wethen would obtain 3 � B new time series y(1)it ; y(2)it ; : : : ; y(B)it . The 3 � B time seriesy(j)it ; i = 1; 2; 3; j = 1; 2; : : :B; would then be the new input for the B t-walk algorithmsthat would allow us to obtain B MAP estimates �̂(1); �̂(2); : : : ; �̂(B). These bootstrapedMAP estimates 
ould then be drawn in histograms and frequentist properties (su
has MSE, 
overage and bias) 
ould be obtained for ea
h one of them (Figure 17).Finally, to 
arry maximum likelihood inferen
e, the Data Cloning algorithmwas tried. To �nd the ML estimates a big enough value of k is needed so the esti-mates 
onverge. This value 
an be found by repeatedly doubling the number of 
lonesuntil the ML estimates do not 
hange. If the data 
ontains enough information aboutthe parameters (that is, the likelihood pro�le for the parameter is not 
at), then thevarian
e of the kth marginal posterior distribution for ea
h parameter should de
reaseas k in
reases. If that does not happen for a given parameters, that means that thelikelihood fun
tion does not 
ontain enough information for that parti
ular parame-ter. For our model, we 
hose k = 20. The maximum likelihoods estimates are shownin the following table:k � � 2 � � 
10 0.07454193 0.08044456 6.381449 �10�4 0.1493229 0.0127628920 0.07521905 0.0803876 6.116462 �10�4 0.1493229 0.01275640When we 
hoose ML estimates with 20 
lones, the estimated distribution ofpersisten
e times was shifted to the right of the real distribution of persisten
e times,as shown in Figure 18. The di�eren
e in the estimated versus the true distribution



37in
reases in the tails. Also, we found that Markov 
hains provided by Data Cloningshould be extremely large (more than 200,000 steps) in order to estimate adequatelyvariability of the estimates when using 20 
lones in this model. We did not pursue aninvestigation on the qualities of the ML estimates as k > 20, due to numeri
al diÆ-
ulties (insuÆ
ient memory) to estimate Fisher's information matrix in those 
ases.The plasmids' loss dynami
s and persisten
e times were e�e
tively estimatedusing the MAP and ML estimates for the hierar
hi
al model (13). Given that in-
luding pro
ess noise in the model that 
onsiders HGT (6) is a more realisti
 model,we think that the methodology presented here is suitable for modeling the plasmids'dynami
s for ba
terial strains where 
onjugation is thought to be important fa
tor.Conjugation might play an important role in spatially 
omplex ba
terial 
ommuni-ties, like bio�lms (Fox et al. 2008). There, this gene ex
hange pro
ess allows thegeneration and maintenan
e of diversity as well as multiple resistan
e to harsh envi-ronments. The model we propose here 
ould then be extended to a spatially expli
it,multivariate model to explain the spatial plasmid dynami
s. This is an area of in-tense resear
h in biology, yet sto
hasti
 and statisti
al models for su
h systems aregenerally la
king (Lili et al. 2007). We believe that the model presented in this workprovides more 
exibility and enough realism to answer the relevant questions aboutplasmids' population dynami
s.
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Figure 9: 100 independent samples of the marginal posterior distributions for ea
hone of the parameters (�; � 2; �; �; 
), using ARMS within Gibbs. The true values arerepresented in the verti
al line.
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Figure 10: 100 independent samples of the marginal posterior distributions for ea
hone of the parameters (�; � 2; �; �; 
), using the t-walk with one time series. The truevalues are represented with the verti
al line.
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Figure 11: 100 independent samples for the hidden Markov pro
ess Xt (grey points)using the t-walk with one time series. The true value of the Markov 
hain is shownin bla
k.
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Figure 12: 100 independent samples of the marginal posterior distributions for ea
hone of the parameters (�; � 2; �; �; 
), using the t-walk with three time series. The truevalues are represented with the verti
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Figure 13: 100 independent samples for the three hidden Markov pro
esses xit (greypoints) using the t-walk with three time series. The true value of the three Markov
hains are shown in bla
k.
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Figure 14: Estimation of the Integrated Auto
orrelated Time of the t-walk MCMCsamples of the posterior distribution (14).
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Figure 15: The histograms of 50,000 persisten
e times (T 0:8) simulated with real pa-rameter values (� = 0:11; � 2 = 0:0625; � = 6:851044��5; � = 0:25; 
 = 0:02443239;)and then with the estimated parameter values(� = 0:093431; � 2 = 0:06678281; � =1:266791� 10�4; � = 0:2203061; 
 = 0:01855009). On the right, the probability plot,of the simulated persisten
e time distribution is shown.
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Figure 16: The histograms of 50,000 persisten
e times (T 0:95) simulated with real pa-rameter values (� = 0:11; � 2 = 0:0625; � = 6:851044��5; � = 0:25; 
 = 0:02443239;)and then with the estimated parameter values(� = 0:093431; � 2 = 0:06678281; � =1:266791� 10�4; � = 0:2203061; 
 = 0:01855009). On the right, the probability plotof the simulated persisten
e time distribution is shown.
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Figure 17: The bootstrap methodology for model (13). It is possible to give boot-straped interval estimates for all the parameters using this algorithm.
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Figure 18: The histograms of 50,000 persisten
e times (T 0:95) simulated with real pa-rameter values (� = 0:11; � 2 = 0:0625; � = 6:851044��5; � = 0:25; 
 = 0:02443239;)and then with the estimated parameter values(� = 0:07521905; � 2 = 0:0803876; � =6:116462 � 10�4; � = 0:1493229; 
 = 0:01275640) with k = 20 
lones. On the right,the probability plot of the simulated persisten
e time distribution is shown.



476 Con
lusionsThe sto
hasti
 dynami
s model (6) e�e
tively 
onsidered the three relevant pro
essthat determine plasmids' persisten
e: Segregation, 
onjugation and �tness 
ost. Fur-thermore, in the present work, the sto
hasti
 pro
ess eÆ
iently modeled the daily
hanges in plasmid 
ost by proposing the �tness 
ost as a random variable. Thegrowth rate of the fra
tion of plasmid-free 
ells be
ame a random variable as it wasexpressed as a fun
tion of the �tness 
ost. This sto
hasti
 population dynami
s modelalso allowed us to e�e
tively model the plasmids' persisten
e time via simulations.This model in
luded environmental sto
hasti
ity, a property that re
e
ts how exter-nal fa
tors in
uen
e the behavior of 
ells in plasmid loss dynami
s.Intensive 
omputational methods were very useful to analyze simulated data.The �rst method used was ARMS within Gibbs sampler whi
h failed to sample 
or-re
tly from the posterior distribution of the ve
tor of parameters sin
e it samples pa-rameters sequentially. The posterior distribution of the ve
tor of parameters neededto be sampled at on
e be
ause 
onditions (15) need to be stated a priori. The se
-ond method used was the t-walk 
onsidering one simulated time series from (12).Multimodality of the posterior distribution was suspe
ted, so extensive validation ofthe parameter estimates needed to be done. Then, three simulated time series wereobtained and the t-walk was run. This last methodology yielded a posterior distribu-tion with a unique mode (Figure 12). The Maximum a Posteriori parameter (MAP)estimates were used to 
ompare the estimated vs. the true distribution of plasmids'persisten
e times. Simulated persisten
e times using MAPs from the t-walk withthree time series were very 
lose to the simulated persisten
e times using the real pa-rameter values. The approximation is parti
ularly good for true persisten
e times of95%. This result was expe
ted sin
e the simulated time series from whi
h the MAPswere 
al
ulated were very long, and therefore they 
ontained enough information onthe parameters of interest. Nonetheless, this simulation exer
ise is useful be
ause it



48indire
tly shows that the MCMC does 
onverge.Further work needs to be done to assess the statisti
al properties of the MAPsobtained. In parti
ular, a parametri
 Bootstrap methodology 
ould be used to assessthe statisti
al properties of the Bayesian MAP estimates under di�erent s
enariosand parameterizations. This was not done here be
ause very intensive 
omputationalresour
es are needed (for instan
e, the burn-in time for ea
h t-walk in the Bootstrapmight be extremely large). For hierar
hi
al models like the one presented in thisthesis, an exhaustive exploration of the e�e
ts of di�erent \uninformative" a prioridistributions also needs to be 
onsidered. Also, given that we are dealing with proper-ties of a pro
ess that by de�nition is hidden, it seems diÆ
ult to eli
it truly subje
tiveprior distributions for the parameters of interest. Thus, the eli
itation of adequateprior distributions and the evaluation of the robustness of the methods presented here(Ruggieri 2008) are topi
s of further resear
h.The Data Cloning methodology to �nd the ML estimates of a hierar
hi
almodel is a viable alternative to the 
urrent and popular Bayesian methodology fornon-linear non-gaussian state-spa
e models when resear
hers are not willing to usesubje
tive prior distributions and when it is diÆ
ult to use \non-informative" priors.Here, Data Cloning was used to obtain ML estimates for the model (6). We observedthat a good 
hoi
e might be using 20 as the number of 
lones. The resulting MLestimates from this methodology were used to simulate persisten
e times and it wasobserved that they performed satisfa
torily. To obtain interval estimates more 
ompu-tational power is needed in order to estimate Fisher's information matrix and buildWald's intervals. Another approa
h to build interval estimates 
ould be using themethodology proposed by Pon
iano et al. (2008) where a fast and eÆ
ient algorithmto obtain the relative pro�le likelihoods for the parameters of interest is proposedbased on Data Cloning. As shown by these authors, su
h pro�le likelihood intervals



49are more reliable than the asymptoti
 Wald intervals obtained via Data Cloning, es-pe
ially for short time series data sets. Again, 
omputational 
al
ulations to fullyexplore the Data Cloning methodology 
ould be intensive sin
e the 
onvergen
e timeof data 
loning might be extremely large.Finally, the hierar
hi
al model (12) not only is a 
exible model that 
an beused to analyze the stability experiments des
ribed by De Gelder et al. (2004) butalso 
an give the experimentalist a strong basis to understand plasmid growth dynam-i
s. In fa
t, with this hierar
hi
al model, we show that it is possible to understandsimultaneously the sampling pro
ess of plasmid-free ba
teria and the relevant pro-
esses that allows plasmids to spread in the population. Be
ause in
luding pro
essnoise in the model that 
onsiders HGT (6) is a more realisti
 model, we think thatthe methodology presented here is suitable for modeling the plasmids' dynami
s forba
terial strains where 
onjugation is thought to be an important fa
tor. Conjuga-tion might play an important role in spatially 
omplex ba
terial 
ommunities, likebio�lms (Fox et al. 2008). There, this gene ex
hange pro
ess allows the generationand maintenan
e of diversity as well as multiple resistan
e to harsh environments.The model we proposed here 
ould then be extended to a spatially expli
it, multi-variate model to explain the spatial plasmid dynami
s. This is an area of intensiveresear
h in biology, yet sto
hasti
 and statisti
al models for su
h systems are gen-erally la
king (Lili et al. 2007). We believe that the model presented in this workprovides more 
exibility and enough realism to answer the relevant questions aboutplasmids' population dynami
s.
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55A Convergen
e of EstimatesA.1 Convergen
e of MCMC algorithmThe �nal goal of a MCMC algorithm is to obtain an independent sample from adistribution �(x). To run a MCMC algorithm using a Metropolis-Hastings ratio, itis ne
essary to have a proposal distribution q(x; y) that indi
ates the probability ofmoving from the value x to the value y and that this proposal distribution is easyto sample from. While the proposal distribution is being used in the algorithm aMarkov 
hain is being 
reated and this 
reated Markov 
hain has as stationary law�(x). The algorithm performs the following steps:1. Initialize with a value X = x0 at time t = 0.For t = 1; 2; : : : ; B repeat the following steps:2. Sample xt from q(xt�1; xt).3. A

ept xt with probabilitya(xt�1; xt) = min�1; �(xt)q(xt; xt�1)�(xt�1)q(xt�1; xt)� :4. Else, xt = xt�1 and go to step 2.The transition matrix of the Markov 
hain is de�ned by this algorithm as follows:P (xtjxt�1) = q(xt�1; xt)a(xt�1; xt) = m(xt�1; xt):



56If a(xt�1; xt) < 1 then, we have a(xt�1; xt) = � �(xt)q(xt;xt�1)�(xt�1)q(xt�1;xt)� and a(xt; xt) = 1. Evenmore: �(xt�1)m(xt�1; xt) = �(xt�1)q(xt�1; xt)a(xt�1; xt);= �(xt�1)q(xt�1; xt)� �(xt)q(xt; xt�1)�(xt�1)q(xt�1; xt)� ;= �(xt)q(xt; xt�1);= �(xt)q(xt; xt�1)a(xt; xt�1);= �(xt)m(xt; xt�1);so that �(x) is the stationary law of m(xt�1; xt).A.2 Convergen
e of Prior Feedba
k estimateLet x be a single observation from f(xj�), where f(xj�) is a density of a k-th dimen-sional exponential family. The exponential density is f(xj�) = 
(x) exp (�x� �(�)).The 
onjugate prior is �(�jx0; �) / exp (�x0 � ��(�)) and it depends on x0 and� 2 R+ parameters.The maximum likelihood estimate is �̂ is x obtained from the following equation�(�̂) = ��(�)�� ����=�̂ = x:Even more, the mode for the prior distribution is ~� and it 
an be obtained from�(~�) = ��(�)�� ����=~� = x0� :Then, if we reparameterize using �(�) = ��(�)�� we obtain the mean parameterization.Hen
e, we 
an transform the a priori density as�(�jx0; �) � ��(�jx0; �):



57The reparameterized density ��(�jx0; �) has a mode x0� that is equal to its mean.Then lim�!1 x0� = 8<: 0 if x0 is �xed;a� if x0 is a fun
tion of �:The prior feedba
k estimate of h(�), when we have the �xed point x�, will 
onvergeto lim�!1 h ���1(x�� )�. But by de�nition of prior feedba
k estimate we have thatÆ��(x) = E�(h(�)jx�; �) = E�(h(�)jx + x�; � + 1) and this implies that for a � largeenough h���1�x�� �� � h���1�x� + x�+ 1 �� :By 
ontinuity of h(�) and �(�), and also by the property of reparameterization it followsthat �x�� � � �x� + x�+ 1 � ;so h(��1 �x�� �) 
onverges to h(��1(x)) = h(�̂) the maximum likelihood estimate.


