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Abstract

The noncentral configuration density under an elliptical model is derived;

it generalizes and corrects the Gaussian configuration and some Pearson

results. Then by using partition theory a number of explicit configura-

tion densities are obtained; i.e. configuration densities associated with the

matrix variate symmetric Kotz type distributions (it includes normal), the

matrix variate Pearson type VII distributions (it includes t and Cauchy

distributions), the matrix variate symmetric Bessel distribution (it includes

Laplace distribution) and the so called matrix variate symmetric Jensen-

logistic distribution.

The inference procedure for any elliptical configuration density is set

in this work in terms of published efficient algorithms involving infinite

confluent hypergeometric type series of zonal polynomials. The finite con-

figuration density study is proposed and it is applied in a finite Kotz config-

uration density subfamily, including normal; as a consequence the inference

procedure is extremely simplified because it does not require any approxi-

mation of the corresponding configuration density. Then, the applications

are based on low degree zonal polynomials, computed by our formulae, and

they include Biology (mouse vertebra, gorilla skulls, girl and boy cranio-

facial studies), Medicine (brain MR scans of schizophrenic patients) and

image analysis (postcode recognition).
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Preface

When the statistical theory of shape was placed in the setting of the non-

central multivariate analysis (Goodall and Mardia (1993)), a wide gamma

of standard theories developed in the last 60 years, were available, to solve

the new distributional problems.

As usual, the first works assumed Gaussian distributions for the land-

mark components (Goodall and Mardia (1993), Dı́az-Garćıa et al. (2003)),

and integration over Euclidean and affine transformations provided the re-

quired shape and configuration distributions, respectively, in terms of a well

study theory, the zonal polynomials of matrix argument.

Theory of integration over orthogonal and positive definite matrices in-

volving zonal polynomials led exact distributions, but the problem for large

computations remained open for years, and the use of approximations were

needed for applications. Recently, with the appearance of efficient algo-

rithms for zonal and hypergeometric functions, the exact distributions can

be studied in the corresponding inference problem, and then the applica-

tions can be potentially improved (Koev and Edelman (2006)).

However, the normal constraint stands ideal, so new enriched distribu-

tions, for example, the elliptically contoured distributions, can be considered

for the landmark components, but the corresponding new integrals, under

the Euclidean or affine transformations, demand new developments. The

Euclidean case was solved with the usual multivariate analysis and classical

integration formulae for zonal and invariant polynomials of several matrix
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arguments (Goodall and Mardia (1993), Dı́az-Garćıa et al. (2003), etc.).

But the configuration distribution (based on affine transformations) for any

elliptical model, has not been studied in literature.

Two motivations seem reasonable for solving the configuration problem,

one, the geometric meaning for the applications and second, the involved

distributional problem. The first one, is clearly the most important for

users of shape theory; the transformation refers problems which are not

equally deformed in all directions (as in the Euclidean transformation mod-

els), but uniformly deformed axe by axe. It is specially useful in growth

theory, mechanical deformations, non rigid evolution, electrophoretic gel

studies, etc. but even the classical applications studied by Euclidean trans-

formations and Gaussian distributions, can be research again by guessing

an elliptical model, previously ratified by a Schwarz’s dimensional criterion

(Schwarz (1978)), for example, and under an affine transformation. The

second topic, is a mathematical problem and it considers fundamentally ad-

vances in integration over positive definite matrices via zonal polynomials.

Noncentral multivariate analysis gives the key for studying one by one the

particular elliptical models, by solving the corresponding multiple integral,

as in the normal case (Goodall and Mardia (1993),Dı́az-Garćıa et al. (2003))

and some integrals given for Pearson models (Xu and Fang (1989)), for ex-

ample. But, this technique provides no solution for any general model and

certainly, some multiple integrals seem tedious. So, an interesting approach

could go in that general direction, by simplifying the integration problem.

Fortunately, some general results for integration on positive definite ma-
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trices are available (Teng et al (1989)) and they can be generalized and

used in the setting we need for the configuration distributions. We give all

the details and search back the necessary tools for showing those results

from a comprehensive and self-content point of view. Clearly, those results

deserve a detailed treatment because they lead that our distributional re-

sults for any elliptical model can be reduced to a computation of a single

integral.

However, the simplicity in the integration will have a price, k-th deriva-

tive expressions for the elliptical model functions. Then the second tool

for solving the problem appears, a partitional treatment for expressing the

derivative in a fashion that the single integral can be computed easily.

With the distributional problem solved, another important question re-

sults, the computation, but as we mentioned, series of zonal polynomials

can be now computed efficiently, then the inference problem based on the

exact configuration density is set in this work as a solvable numerical aspect.

But we want to go further, the series for classical elliptical families,

seem preserve a remarkable property of the Gaussian families, this is, the

series can be finite by using some generalized Kummer relations. We just

explore them for a subfamily of the Kotz distribution, which will support the

applications, and they will imply that the inference problem just depends

on the optimization of a low degree polynomial.

Now, in the next lines we give more details about our thesis problem.

Mathematical and statistical theories of shape have been studied extensively

in two decades by a number of authors; classical treatments which give
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excellent surveys about those topics are Kendall et al. (1999), Dryden and

Mardia (1998), Small (1996) and the references there in.

In the real statistical approach we can find fundamentally three tech-

niques: Shape Theory via QR Decomposition, which was founded by Goodall

and Mardia (1993) and the posterior works of these authors; Shape Theory

via SVD Decomposition, mainly studied by Le and Kendall (1993), Dı́az-

Garćıa et al. (2003) and subsequent works; and Shape Theory via Configu-

ration Density, studied by the respective groups of Goodall and Dı́az, and

many others, see Dryden and Mardia (1998).

Goodall and Mardia (1993) motivated and defined the third approach,

which is our goal in this thesis, by deriving the configuration density of

the isotropic Gaussian model, later Dı́az-Garćıa et al. (2003) corrected that

result and they also extended it to the case of the central elliptical model,

some aspects of those works will be revised here again.

By a revision of the literature around the three above-mentioned meth-

ods for statistical shape theory, we find that the least explored approach is

the configuration density technique. As we mentioned, there are two main

published results concerning that topic: the isotropic Gaussian case pro-

posed by Goodall and Mardia (1993) (and corrected by Dı́az-Garćıa et al.

(2003)), and a treatment of the configuration density of Dı́az-Garćıa et al.

(2003) for the central elliptical distribution (which resulted invariant under

this family).

Moreover, we can identify the following common general facts of the

three methods:
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1. General size-and-shape, and configuration densities are expanded in

terms of zonal polynomials, but at the time of the first appearances of

these distributions, no accurate numerical methods for large degrees

of the polynomials were given. This forced the use of approximations

of the hypergeometric functions to do the inference; but even by using

these approaches, the general inference problem (for the QR and SVD

approaches) has been studied in the isotropic case and only with σ →

0, see Goodall and Mardia (1993). We recall that inference has not

been studied in the configuration density method.

2. So the computation of zonal polynomials gives us the key for study-

ing the inference problem. One attempt is due to Gutiérrez et al.

(2000) which partially solves the numerical computation problem of

zonal polynomials, but only recently with the work of Koev and Edel-

man (2006) efficient computations of the polynomials were given;

as a comparison, we read in Koev and Edelman (2006): ”We spent

(with Gutiérrez et al. (2000)) about 8 days to obtain the 627 zonal

polynomials degree 20 with a 350 MHz Pentium II processor. In con-

trast, our Algorithm 4.2 (Koev and Edelman (2006)) takes less than

a hundredth of a second to do the same.”

Therefore the use of the algorithms for a numerical computation of

zonal polynomials of higher degrees in higher dimensions will let us

work on the inference problem.

3. There are two algorithms for hypergeometric functions, based on the
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same theoretical source: Koev and Edelman (2006) (numerically)

and Dumitriu et al (2004) (symbolically). We would like to use

directly these routines and avoid the infinite sums of the computed

zonal polynomials and the Pochhammer symbols. However, when we

contrasted both algorithms for a number of numerical hypergeometric

functions we found numerical differences. So before applying these

algorithms, we need to check the correct algorithm.

4. Working with a family of distributions (elliptical) will lead to a gamma

of unexplored possibilities in the context of shape theory.

5. The preceding works suppose σ2 → 0 (or some complicated constraints

for non-small σ2, see Mardia and Dryden (1989), Dryden and Mardia

(1998)) to make inference; it is desirable a theory which does not

consider any restriction on the variance.

6. When maximum likelihood estimation is performed and the parame-

ters for shape and variation are estimated simultaneously, classical

approaches consider unimodality, see Mardia and Dryden (1989),

Dryden and Mardia (1998). We think that the study of the exact

distributions via hypergeometric software can consider general (mul-

timodal or unimodal) likelihood.

7. Recall that the object of the Configuration density is to integrate over

linear transformations to remove location, scale and uniform shear,

and this leads to a confluent hypergeometric form. In this sense we
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see a difference with the QR and SVD methods which remove location,

rotation and scale, both of them extensively studied in literature.

Now in terms of the configuration density problem we may list the fol-

lowing particular facts:

1. As we said, only the real isotropic Gaussian case has been published.

So the whole work of real elliptical configuration densities is waiting

to be solved.

2. Even the published works about the isotropic normal configuration

density have some details: explicitly, Goodall and Mardia (1993)

proposed the density with some errors which were corrected by Dı́az-

Garćıa et al. (2003), but the Haar measure employed in the compu-

tation of the Jacobian in both papers is not specified (see Muirhead

(1982, Section 2.1.4.)), so we need to revise the Gaussian case again.

3. Once the Jacobian is computed we need to study some properties of

the function h before the integration over O(K), and F > 0. Perhaps

new integrals involving zonal polynomials or invariant polynomials of

matrix arguments, similar to those presented in Muirhead (1982) and

Dı́az-Garćıa et al. (2003), should be solved.

In this thesis we try to supply solutions to the preceding problems, and they

are placed and distributed as follows, chapter 1 provides a basic summary on

the configuration density problem, the existing results and definitions, and
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some mathematical elements that we need for finite distribution applica-

tions. Then, the main integral which supports all the distributional results

and the corresponding corollaries are full derived in chapter 2, and the last

section is devoted to the derivation of the configuration density of any el-

liptical model. Chapter 3 studies the configuration density corresponding

to the classical matrix variate elliptical contoured distributions, including,

Pearson, Kotz, Bessel, Jensen-Logistic, etc. A summary of chapters 2 and

3 is reported in Caro-Lopera et al (2008a). The work ends with chapter 4

which gives a four step procedure for doing inference with the densities here

derived and the existing algorithms for computations; then an introduction

to the finite configurations is proposed and by using our exact formulae

for zonal polynomials, two dimensional applications are studied in Biology

(mouse vertebra, gorilla skulls, young craniofacial studies), Medicine (brain

MR scans of schizophrenic patients) and image analysis (postcode recogni-

tion). A survey of chapter 4 is reported in Caro-Lopera et al (2008b).

Finally, the conclusions and subsequent research are written at the end

of the thesis.
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Chapter 1

Preliminaries

1.1 Shape theory via configuration density

Goodall and Mardia (1993) gives the following motivation for the neces-

sariness of a new shape method. In the rank 1 case, integrating size r of the

type 0 F1 size-and-shape density gives as we expected the type 1 F1 shape

density. This follows from the inductive definition of the hypergeometric

functions via the Laplace transform (see Herz (1955)). However, in the

matrix setting, the Laplace transform involves integration over the posi-

tive definite matrices. Thus, the reflection shape density is not type 1 F1.

Instead, the multivariate approach leads to distributions of type 1 F1 on

equivalence classes of figures modulo affine transformations. The next step

would be to type 2 F1 distributions of canonical correlations, James (1964).

See figure 1.1.
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Figure 1.1: Motivation for Configuration Density
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Now, an affine transformation is specified by a pair (e : K×1, E : K×K)

where e is the translation and E is nonsingular. Then we call an equivalence

class a configuration.

Definition 1.1.1. Two figures X1 : N ×K and X2 : N ×K have the same

configuration if

X2 = X1E + 1Ne′, (1.1)

for some (e, E).

Analogous to the QR decomposition of the centered figure matrix Y , the

configuration coordinates are constructed in two steps summarized in the

expression

LX = Y =

 IK

V

E = UE, (1.2)

where E : K×K, V : q×K, q = N −K−1. The matrix U : N −1×K

contains the configuration coordinates of X, analogous to the size-and-shape

coordinates of matrix T in the QR decomposition case. Let Y1 : K ×K be

nonsingular and Y2 : q = N − K − 1 ≥ 1 × K, such that Y =

 Y1

Y2

,

then V = Y2Y
−1
1 and E = Y1.

As usual, the first common step to the three methods (QR, SVD, config-

uration) filters the translation from X and it can be achieved by considering

contrasts of the data. i.e. pre-multiplying X by a suitable matrix L, for ex-

ample a Helmert sub-matrix. The Helmert sub-matrix L is the (N −1)×N

Helmert matrix without the first row. The full Helmert matrix R, is a square

12



N ×N orthogonal matrix with its first row of elements equal to 1/
√

N , and

the remaining rows are orthogonal to the first row. We drop the first row

of R so that the transformed LX does not depend on the original location

of the configuration.

Definition 1.1.2. The j-th row of the Helmert sub-matrix L is given by

(lj, . . . , lj,−jlj, 0, . . . , 0), lj = −[j(j + 1)]−1/2, (1.3)

and so the j-th row consists of lj repeated j times, followed by −jlj, and

then N − j − 1 zeros, j = 1, . . . , N − 1.

Note that

Y = LX ∈ RK(N−1) \ 0,

the origin is removed because coincident landmarks are not allowed. The

matrix Y which is refer as the Helmertized landmarks, will be the starting

point of any subsequent procedure here; i.e. for distributions and inference,

we will always assume that the data is Helmertized.

The centered landmarks are an alternative choice for removing location

and are given by

XC = CX,

where the centring matrix C is obtained by

C = IN −
1

N
1N1′N = L′L,

where 1N is the N × 1 vector of ones.

13



We can revert back to the centred landmarks from the Helmertized land-

marks by pre-multiplying by L′, as

L′Y = L′LX = CX.

Note that the configuration V is trivial when N −1 ≤ K, corresponding

to 3 or fewer landmarks in R2, 4 of fewer landmarks in R3, etc. Without

loss of generality, we assume N − 1 > K, so that q = N − 1−K ≥ 1.

Goodall and Mardia (1993) established the configuration density of the

isotropic Gaussian model, however Dı́az-Garćıa et al. (2003) correct the

expression as follows

Theorem 1.1.1. If rank Y1 = K, the configuration density is given by

2KΓK

(
N−1

2

)
πK(N−K−1)/2ΓK

(
K
2

)
|I + V ′V |(N−1)/2

etr

[
1

2σ2
(µ′U(U ′U)−1U ′µ− µ′µ)

]
1 F1

(
−q

2
;
K

2
;−µ′U(U ′U)−1U ′µ

2σ2

)
. (1.4)

The factor 2K comes from a non-explicit computation of the jacobian, so

we need to revise again that density, and for the correctness of our results,

we will derive it by three different methods.

Recall that the expression 1 F1 in the above density is a polynomial in

the latent roots of µ′U(U ′U)−1U ′µ.

Finally, Dı́az-Garćıa et al. (2003) extended the above result to the case

of the central elliptical model:

Theorem 1.1.2. Let Y ∼ EN−1×K(0, σ2IN−1, IK , h), then the configuration
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density is invariant under the elliptical family, and is given by

2KΓK

(
N−1

2

)
πK(N−K−1)/2ΓK

(
K
2

) |I + V ′V |−(N−1)/2. (1.5)

1.2 Zonal polynomials

Now we give a little survey, taken from Muirhead (1982), of a profuse studied

theory, the zonal polynomials.

The zonal polynomials of a matrix argument are defined in terms of

partitions of positive integers. Let k be a positive integer; a partition κ of k

is written as κ = (k1, k2, . . .), where
∑

i ki = k, k1 ≥ k2 ≥ · · · , and k1, k2, . . .

are not negative integers. We will order the partitions of k lexicographically;

i.e, if κ = (k1, k2, . . .) and λ = (l1, l2, . . .) are two partitions of k we will write

κ > λ if ki > li for the first index for the parts are unequal; some related

results on partitions are explored, for example in Caro-Lopera et al (2008).

Now, suppose that κ = (k1, k2, . . .) and λ = (l1, l2, . . .) are two partitions

of k (some of the parts may be zero) and let y1, . . . , ym be m variables. If

κ > λ we will say that the monomial yk1
1 · · · ykm

m is of higher weight than the

monomial yl1
1 · · · ylm

m .

Then the zonal polynomials can be defined as follows.

Let Y be an m×m symmetric matrix with latent roots y1, . . . , ym and let

κ = (k1, . . . , km) be a partition of k into not more than m parts. The zonal

polynomials of Y corresponding to κ, denoted by Cκ(Y ), is a symmetric,

homogeneous polynomial of degree k in the latent roots y1, . . . , ym such that:
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• The term of highest weight in Cκ(Y ) is yk1
1 · · · ykm

m ; that is,

Cκ(Y ) = dκy
k1
1 · · · ykm

m + terms of lower weight, (1.6)

where dκ is a constant.

• Cκ(Y ) is an eigenfunction of the differential operator ∆Y given by

∆Y =
m∑

i=1

y2
i

∂2

∂y2
i

+
m∑

i=1

m∑
j=1,j 6=i

y2
i

yi − yj

∂

∂yi

. (1.7)

• As κ varies over all the partitions of k the zonal polynomials have unit

coefficients in the expansions of (tr Y )k; that is,

(tr Y )k = (y1 + · · ·+ ym)k =
∑

κ

Cκ(Y ). (1.8)

It can be proved that the zonal polynomial Cκ(Y ) satisfies the following

partial differential equation

∆Y Cκ(Y ) = [k(m− 1) +
m∑

i=1

ki(ki − i)]Cκ(Y ). (1.9)

The zonal polynomials are expressed in terms of a number of basis, one of

them are the monomial symmetric functions. If k1, . . . , km, the monomial

symmetric function of y1, . . . , ym corresponding to κ is defined as

Mκ(Y ) =
∑

· · ·
∑

yk1
i1

yk2
i2
· · · ykp

ip
, (1.10)

where p is the number of nonzero parts in the partition κ and the summation

is over the distinct permutations (i1, . . . , ip) of p different integers from the

integers 1, . . . ,m. Hence

Mκ(Y ) = yk1
1 · · · ykm

m + symmetric terms. (1.11)
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The differential equation for Cκ(Y ) gives rise to a recurrence relation be-

tween the coefficients of the monomial symmetric function in Cκ; once the

coefficient of the term of highest weight is given, the other coefficients are

uniquely determined by the recurrence relation. So the zonal polynomials

can be expressed in terms of the monomial symmetric functions as

Cκ(Y ) =
∑
λ≤κ

cκ,λMλ(Y ), (1.12)

and this leads to the following recurrence relation for the coefficients,

cκ,λ =
∑

λ<µ≤κ

[(li + t)− (lj − t)]

ρκ − ρλ

cκ,µ, (1.13)

where λ = (l1, . . . , lm) and µ = (l1, . . . , li + t, . . . , lj − t, . . . , lm) for t =

1, . . . , lj such that, when the parts of the partition µ are arrange in de-

scending order then λ < µ ≤ κ. This algorithm is the base for the fast

routines by Koev and Edelman (2006).

However, no general formula for zonal polynomials is known; only the

above partial differential equation has been solved for m = 2, (James

(1968)), which is a particular case of a more general result established for

Jack polynomials by Caro-Lopera et al (2007). This formulae are useful for

computing finite configuration densities for two dimensional applications, as

we shall see in the last chapter of this thesis. Formulae for third degree (valid

for three dimensional applications) are only known in a recurrence way, see

for example James (1964). However, the algorithms by Koev and Edelman

(2006) can be applied for any infinite configuration density of any dimension

under certain truncation assumptions.
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The above results hold for zonal polynomials of positive definite matrix

argument, however they can be studied in the semidefinite positive case, see

Dı́az-Garćıa and Caro-Lopera (2006).

Now we give some summary of Jack polynomials and exact two dimen-

sional formulae, which particularized to zonal polynomials, will be needed

in finite configuration applications.

Let us characterize the Jack symmetric function J
(α)
κ (y1, . . . , ym) of pa-

rameter α, see Sawyer (1997). As we said before, a decreasing sequence

of nonnegative integers κ = (k1, k2, . . .) with only finitely many nonzero

terms is said to be a partition of k =
∑

ki. Let κ and λ = (l1, l2, . . .)

be two partitions of k. We write λ ≤ κ if
∑t

i=1 li ≤
∑t

i=1 ki for each t.

The conjugate of κ is κ′ = (k′1, k
′
2, . . .) where k′i = card{j : kj ≥ i}. The

length of κ is l(k) = max{i : ki 6= 0} = k′1. If l(κ) ≤ m, one often writes

κ = (k1, k2, . . . , km). The partition (1, . . . , 1) of length m will be denoted

by 1m.

And recall that the monomial symmetric function Mκ(·) indexed by a parti-

tion κ can be regarded as a function of an arbitrary number of variables such

that all but a finite number are equal to 0: if yi = 0 for i > m ≥ l(κ) then

Mκ(y1, . . . , ym) =
∑

yσ1
1 · · · yσm

m , where the sum is over all distinct permuta-

tions {σ1, . . . , σm} of {k1, . . . , km}, and if l(κ) > m then Mκ(y1, . . . , ym) = 0.

A symmetric function f is a linear combination of monomial symmetric

functions. If f is a symmetric function then f(y1, . . . , ym, 0) = f(y1, . . . , ym).

For each m ≥ 1, f(y1, . . . , ym) is a symmetric polynomial in m variables.

Thus the Jack symmetric function J
(α)
κ (y1, . . . , ym) with a parameter α,
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satisfy the following conditions:

J (α)
κ (y1, . . . , ym) =

∑
λ≤κ

jκ,λMλ(y1, . . . , ym), (1.14)

J (α)
κ (1, . . . , 1) = αk

m∏
i=1

(
m− i + 1

α

)
ki

, (1.15)

m∑
i=1

y2
i

∂2J
(α)
κ (y1, . . . , ym)

∂y2
i

+
2

α

m∑
i=1

y2
i

∑
j 6=i

1

yi − yj

∂J
(α)
κ (y1, . . . , ym)

∂yi

=

m∑
i=1

ki(ki − 1 +
2

α
(m− i))J (α)

κ (y1, . . . , ym).(1.16)

Here the constants jκ,λ do not dependent on y′is but on κ and λ, and (a)n =∏n
i=1(a+i−1). Note that if m < l(κ) then J

(α)
κ (y1, . . . , ym) = 0. The condi-

tions include the case α = 0 and then J
(0)
κ (y1, . . . , ym) = eκ′

∏m
i=1(m−i+1)ki ,

where eκ(y1, . . . , ym) =
∏l(κ)

i=1 eki
(y1, . . . , ym) are the elementary symmet-

ric functions indexed by partitions κ, if m ≥ l(κ) then er(y1, . . . , ym) =∑
i1<i2<···<ir

yi1 · · · yir , and if m < l(κ) then er(y1, . . . , ym) = 0, see Sawyer

(1997).

Now, from Koev and Edelman (2006), the Jack functions J
(α)
κ (Y ) =

J
(α)
κ (y1, . . . , ym), with y1, . . . , ym being the eigenvalues of the matrix Y , can

be normalized in such a way that

∑
κ

Cα
κ (Y ) = (tr(Y ))k,

where Cα
κ (Y ) denotes the Jack polynomials. They are related to the Jack

functions by

Cα
κ (Y ) =

αkk!

jκ

Jα
κ (Y ), (1.17)
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where

jκ =
∏

(i,j)∈κ

hκ
∗(i, j)h

∗
κ(i, j),

and hκ
∗(i, j) = kj − i + α(ki− j + 1) and h∗κ(i, j) = kj − i + 1 + α(ki− j) are

the upper and lower hook lengths at (i, j) ∈ κ, respectively.

Then by applying (1.17), we can write (1.16) as

m∑
1

y2
i

∂2C
(α)
κ (Y )

∂y2
i

+
2

α

m∑
i=1

y2
i

∑
j 6=i

1

yi − yj

∂C
(α)
κ (Y )

∂yi

=

m∑
i=1

ki(ki− 1 +
2

α
(m− i))C(α)

κ (Y ). (1.18)

Now, when m = 2 in (1.18), Caro-Lopera et al (2007) found the following

formulae for Jack Polynomials of the Second Order

C
(α)
(k1,k2)(Y )

C
(α)
(k1,k2)(I2)

= (y1y2)(k1+k2)/2A1F

(
−ρ

2
,
ρ

2
+

1
α

;
1
2
;
(y1 + y2)2

4y1y2

)

+
(y1y2)(k1+k2−1)/2

2(y1 + y2)−1
A2F

(
1
α

+
1 + ρ

2
,
1
2
− ρ

2
;
3
2
;
(y1 + y2)2

4y1y2

)
, (1.19)

with ρ being either even or odd. For distinguishing the case under consideration,

odd or even, we will use the upper indices o or e with A1 and A2. Then the

corresponding solutions are the following

Even case. If ρ = k1 − k2 = 2n, n = 0, 1, 2, . . . then

Ae
1 =

(−1)n
n−1∏
i=0

(1 + 2i)

n−1∏
i=0

(
1 + 2

(
1
α

+ i

)) and Ae
2 = 0.

Odd case. If ρ = k1 − k2 = 2n + 1, n = 0, 1, 2, . . . then

Ao
1 = 0 and Ao

2 = (2n + 1)Ae
1.
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Three particular cases are of interest in the literature: the quaternionic case

(α = 1/2), the complex zonal polynomials (α = 1) and the real zonal polynomials

(α = 2), these results are summarized in the following table:

α ρ a b c A1 A2

1
2

even −n n + 2
1
2

(−1)n3
(2n + 1)(2n + 3)

0

odd n + 3 −n
3
2

0
(−1)n3
(2n + 3)

1 even −n n + 1
1
2

(−1)n

(2n + 1)
0

odd n + 2 −n
3
2

0 (−1)n

2 even −n n + 1/2
1
2

(−1)n(2n)!
22n(n!)2

0

odd n + 3/2 −n
3
2

0
(−1)n(2n + 1)!

22n(n!)2
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The above formula for the real zonal polynomials corresponds to that derived

by James (1968) and for the complex zonal polynomials, obtained by Caro-Lopera

et al (2006). This is the first appearance of an exact formulae for quaternionic

polynomials.

We end this section with a concept (see Muirhead (1982)) which will be useful

in the Gaussian configuration density context.

The hypergeometric functions of matrix arguments are given by

pFq(a1, . . . , ap; b1, . . . , bq;X) =
∞∑

k=0

1
k!

∑
κ

(a1)κ · · · (ap)κ

(a1)κ · · · (aq)κ
Cκ(X), (1.20)

where
∑

κ denotes summation over all partitions κ(k1, . . . , km), k1 ≥ . . . km ≥ 0

of k, and

(a)κ =
m∏

i=1

(
a− 1

2
(i− 1)

)
ki

, (1.21)

where

(a)k = a(a + 1) · · · (a + k − 1), (a)0 = 1. (1.22)

Here X, the argument of the function, is a complex symmetric m × m matrix

and the parameters ai, bj are arbitrary complex. No denominator parameter bj

is allowed to be zero or an integer of half-integer ≤ 1
2(m − 1) (otherwise some

of the denominators in the series will vanish). If any numerator parameter ai is

negative integer, say, a1 = −n, then the function is a polynomial of degree mn,

because k ≥ mn + 1, (a1)κ = (−n)κ = 0. The series converges for all X if p ≤ q,

it converges for ‖X‖ < 1 if p = q + 1, ‖X‖ denotes the maximum of the absolute

values of the latent roots of X, and unless it terminates, it diverges for X 6= 0 if

p > q +1. Finally, when m = 1 the series reduces to the classical hypergeometric

function.
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Some important cases are

0F0(X) = etr(X). (1.23)

1F0(a;X) = |Im −X|−a, ‖X‖ < 1. (1.24)

If X is an m × n real matrix with m ≤ n and H = [H1 : H2] ∈ O(n), where H1

is n×m then

0F1(
1
2
n;

1
4
XX ′) =

∫
O(n)

etr(XH1)(dH), (1.25)

where (dH) denotes de normalized invariant measure on O(n).

1F1(a; c;X) =
Γm(c)

Γ(a)Γ(c− a)

∫
0<Y <Im

etr(XY )|Y |a−(m+1)/2

|I − Y |c−a−(m+1)/2(dY ), (1.26)

valid for all symmetric X, and Re(a),Re(c),Re(c− a) > 1
2(m− 1).

2F1(a, b; c;X) =
Γm(c)

Γ(a)Γ(c− a)

∫
0<Y <Im

|I −XY |−b|Y |a−(m+1)/2

|I − Y |c−a−(m+1)/2(dY ), (1.27)

valid for Re(X) < I, and Re(a),Re(c− a) > 1
2(m− 1).

And Kummer and Euler relations, respectively (Herz (1955))

1F1(a; c;X) = etr(X) 1F1(c− a; c;−X). (1.28)

2F1(a, b; c;X) = |I −X|−b
2F1(c− a, b; c;−X(I −X)−1)

= |I −X|c−a−b
2F1(c− a, c− b; c;X). (1.29)

1.3 Elliptically contoured distributions

The elliptically contoured distribution of a random matrix has been studied by

various authors, including Fang and Zhang (1990) and Gupta and Varga (1993).
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Here we just give their definition. We say that X : N ×K has a matrix variate

elliptically contoured distribution if its density respect to the Lebesgue measure

is given by:

fX(X) =
1

|Σ|K/2|Θ|N/2
h(tr((X − µ)′Σ−1(X − µ)Θ−1)), (1.30)

where µ : N × K, Σ : N × N , Θ : K × K, Σ positive definite (Σ > 0), Θ > 0.

Such a distribution is denoted by X ∼ EN×K(µ,Σ,Θ, h). We refer in this work

to (1.30) which we always assume that it exists.

The classical families of elliptically contoured distributions are given next.

1.3.1 Matrix variate Kotz type distribution

The p×n random matrix X is said to have a matrix variate symmetric Kotz type

distribution with parameters T,R, s ∈ <, M : p × n, Σ : p × p, Φ : n × n with

R > 0, s > 0 2T + np > 2, Σ > 0, and Φ > 0 if its probability density function is

sR
2T+np−2

2s Γ
(np

2

)
πnp/2Γ

(
2T+np−2

2s

)
|Σ|n/2|Φ|p/2

[
tr(X −M)′Σ−1(X −M)Φ−1

]T−1

exp
{
−R tr

[
(X −M)′Σ−1(X −M)Φ−1

]s}
.

When T = s = 1, and R = 1/2 we get the probability density function of the

absolutely continuous matrix variate normal distribution.

1.3.2 Matrix variate normal distribution

The p× n random matrix X is said to have a matrix variate normal distribution

with parameters, M : p × n, Σ : p × p, Φ : n × n with Σ > 0, and Φ > 0 if its

probability density function is

1
(2π)np/2|Σ|n/2|Φ|p/2

etr
[
−1

2
(X −M)′Σ−1(X −M)Φ−1

]
.
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1.3.3 Matrix variate Pearson type VII distribution

A p × n random matrix X is said to have a matrix variate symmetric Pearson

type VII distribution with parameters s,R ∈ R, M : p × n, Σ : p × p, Φ : n × n

with R > 0, s > np/2, Σ > 0, and Φ > 0 if its probability density function is

Γ(s)
(πR)np/2Γ

(
s− np

2

)
|Σ|n/2|Φ|p/2

(
1 +

tr(X −M)′Σ−1(X −M)Φ−1

R

)−s

.

When s = (np + R)/2, X is said to have a matrix variate t-distribution with

R degrees of freedom. And in this case, if R = 1, then X is said to have a matrix

variate Cauchy distribution.

1.3.4 Matrix variate Bessel distribution

Another interesting elliptical distribution is the so called Bessel distribution, ex-

plicitly, the p×n random matrix is said to have a matrix variate symmetric Bessel

distribution with parameters q, r ∈ R, M : p× n, Σ : p× p, Φ : n× n with r > 0,

q > −np
2 , Σ > 0, and Φ > 0 if its probability density function is

[tr(X −M)′Σ−1(X −M)Φ−1]
q
2 Kq

(
[tr(X−M)′Σ−1(X−M)Φ−1]

1
2

r

)
2q+np−1π

np
2 rnp+qΓ

(
q + np

2

)
|Σ|

n
2 |Φ|

p
2

,

where Kq(z) is the modified Bessel function of the third kind; that is

Kq(z) =
π

2
I−q(z)− Iq(z)

sin(qπ)
, | arg(z)| < π, q is integer,

and

Iq(z) =
∞∑

k=0

1
k!Γ(k + q + 1)

(z

2

)q+2k
, |z| < ∞, | arg(z)| < π.

If q = 0 and r = σ√
2
, σ > 0, this distribution is known as the matrix variate

Laplace distribution.
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1.3.5 Matrix variate Jensen-Logistic distribution

This density was proposed by Jensen (1985) and studied by Fang et al (1990),

Gupta and Varga (1993) among many others.

Note that this distribution is not a generalization of the classical univariate

logistic, thus we will refer it in the thesis as the matrix variate Jensen-Logistic

distribution.

In this case we say that the p × n random matrix X is has a matrix variate

symmetric Jensen-logistic distribution with parameters M : p × n, Σ : p × p,

Φ : n× n with Σ > 0, and Φ > 0 if its probability density function is

c etr−(X −M)′Σ−1(X −M)Φ−1

|Σ|
n
2 |Φ|

p
2 (1 + etr−(X −M)′Σ−1(X −M)Φ−1)2

,

where

c =
π

np
2

Γ
(np

2

) ∫ ∞

0
z

np
2
−1 e−z

(1 + e−z)2
dz,

see Jensen (1985), Fang et al (1990) and Gupta and Varga (1993).
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Chapter 2

Configuration Density

In this chapter we provide the technical tools for finding the configuration density

under an elliptical model. With the main integral, a sort of known results of the

matrix multivariate analysis literature, are straightforward derived without the

classical multiple technique, instead of that, they are obtained by computing a

single integral; then some errors in literature are detected and corrected. Once the

main integral is established, the non-isotropic noncentral elliptical configuration

density is derived, and the isotropic central and the isotropic gaussian cases (the

only published works in this area) are corrected and presented as corollaries.

2.1 The main integral

Matrix generalization of elliptically contoured distributions, and the respective

generalization to the classical multivariate matrix variate theory based on nor-

mality, has propitiated a number of results which cover a gamma of new distri-

butions. However, integration over positive definite symmetric spaces involving
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zonal polynomials, remains problematic even in the normal multivariate case,

widely studied by Muirhead (1982), for example. So the elliptical generalization

keeps these difficulties.

Noncentral elliptical multivariate distributions involve a number of general

integrals to study, it depends on the transformations under consideration, but all

of them are founded in an important fact, the elliptically contoured distribution

are characterized by a symmetric function, say, h(U), i.e, h(AB) = h(BA), for

any squared matrix A and B. The simplest function we can consider is the

trace of a positive definite matrix and then the zonal polynomials arise naturally,

then euclidian and affine transformations of the random matrix will precise of

integration over the orthogonal group and the positive definite space, etc. In the

case of positive definite matrices, we find in Constantine (1963) the source for

all the posterior works, in fact it inspired the following general result for elliptical

integration (see Xu and Fang (1989):

Lemma 2.1.1.∫
X>0

h(XZ)|X|a−(m+1)/2Cκ(XY )(dX)

=
|Z|−aCκ(Y Z−1)

Cκ(Im)

∫
X>0

h(X)|X|a−(m+1)/2Cκ(X)(dX), (2.1)

where Y is a symmetric m×m matrix,Z is a complex symmetric m×m matrix,

Re(Z) > 0 and Cκ(X) is the zonal polynomial of X, see Muirhead (1982).

As a convention, in this work we always assume that the integrals we meet

with exist.

Only a few number of functions h(·) have been studied, they constituted

the works of Herz, James, Constantine and Khatri, among many others, and an
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excellent survey of this works and their statistical applications are given by Muir-

head, for example. We can check easily that all the publish works for particular

h(·)’s depend on the following result due to Constantine (1963) (motivated by

Littlewood (1950)):

Lemma 2.1.2. If Y = diag(y1, . . . , ym) and X = (xij) is an m × m positive

definite matrix then

Cκ(XY ) = dκyk1
1 · · · ykm

m |X1|k1−k2 |X2|k2−k3 · · · |X|km

+terms of lower weight in the y’s, (2.2)

where Xp = (xij), i, j = 1, . . . p, κ = (k1, . . . , km) and dκ is the coefficient of the

term of highest weight in Cκ(·), see Muirhead (1982), p.228.

If Y is replaced by Y −1, the above result turns

Corollary 2.1.1. If Y = diag(y1, . . . , ym) and X = (xij) is an m ×m positive

definite matrix then

Cκ(XY −1) = dκyk1
1 · · · ykm

m |X1|−(k1−k2)|X2|−(k2−k3) · · · |X|−km

+terms of lower weight in the y’s, (2.3)

where Xp = (xij), i, j = 1, . . . p, κ = (k1, . . . , km) and dκ is the coefficient of the

term of highest weight in Cκ(·), see Muirhead (1982), p.256.

The main obstacle for getting new integrals (and then new statistical appli-

cations) comes from the multiple integration on X > 0 given in lemma 2.1.1;

we will see that the trace version of the multivariate integral can be reduced to

the computation of a single integral, if it exists. The following main integral can

be seen as a combination of two separated results by Xu and Fang (1989) and
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Teng et al (1989). However we prove it, with a didactical purpose, by using

the same standard procedure of Constantine (1963) and the multiple integral

simplification given by, for example, Caro and Nagar (2006) or Fang and Zhang

(1990).

Theorem 2.1.1. Let Z be a complex symmetric m×m matrix with Re(Z) > 0

and let Y be a symmetric m×m matrix. Then∫
X>0

h(trXZ)|X|a−(m+1)/2Cκ(XY )(dX)

=
|Z|−a(a)κΓm(a)Cκ(Y Z−1)

Γ(ma + k)
S, (2.4)

where

S =
∫ ∞

0
h(w)wma+k−1dw < ∞, (2.5)

(a)κ =
m∏

i=1

(
a− 1

2
(i− 1)

)
ki

, κ = (k1, . . . , km), k1 ≥ · · · ≥ km > 0,
m∑

i=1

ki = k,

(a)k = a(a + 1) · · · (a + k − 1), (a)0 = 1,

and

Γm(a) = πm(m−1)/4
m∏

i=1

Γ
[
a− 1

2
(i− 1)

]
, Re(a) >

1
2
(m− 1).

Proof. The first part related to the normalization procedure comes from

lemma 2.1.1 by replacing h(·) with h(tr ·), however for a didactic proposal we

give the main details.

Denote the left hand side of (2.4) by g(Y, Z), then

g(Y, Im) =
∫

X>0
h(trX)|X|a−(m+1)/2Cκ(XY )(dX). (2.6)

For any H ∈ O(m) we have:

g(HY H ′, Im) =
∫

X>0
h(trX)|X|a−(m+1)/2Cκ(XHY H ′)(dX). (2.7)
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Let U = H ′XH, which implies (dU) = (dX), so

g(HY H ′, Im) =
∫

U>0
hs(tr(−U))|U |a−(m+1)/2Cκ(UY )(dU)

= g(Y, Im). (2.8)

Thus g(Y, Im) is a symmetric function of Y. Because of (2.7) and (2.8) we get

on integrating with respect to the normalized invariant measure (dH) on O(K)

that:

g(Y, Im) = g(Y, Im)1

= g(Y, Im)
∫

O(K)
(dH)

=
∫

O(K)
g(Y, Im)(dH)

=
∫

O(K)
g(HY H ′, Im)(dH)

=
∫

O(K)

∫
X>0

h(trX)|X|a−(m+1)/2Cκ(XHY H ′)(dH)(dX)

=
∫

X>0
h(trX)|X|a−(m+1)/2

∫
O(K)

Cκ(XHY H ′)(dH)(dX)

=
∫

X>0
h(trX)|X|a−(m+1)/2 Cκ(X)Cκ(Y )

Cκ(Im)
(dX),

=
Cκ(Y )
Cκ(Im)

∫
X>0

h(trX)|X|a−(m+1)/2Cκ(X)(dX)

=
g(Im, Im)
Cκ(Im)

Cκ(Y ), (2.9)

where James (1964) was used for the integration over O(m); which ratifies (2.1)

for Z = Im and this particular h, (up here the mentioned replicated procedure of

Xu and Fang (1989) which only normalized the original integral).

Now for reducing the multiple integral in (2.9) consider the following facts.
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By definition of zonal polynomials

g(Y, Im) =
g(Im, Im)
Cκ(Im)

Cκ(Y )

=
g(Im, Im)
Cκ(Im)

dκyk1
1 · · · ykm

m + terms of lower weight in the y’s,

(2.10)

and by lemma 2.1.2

g(Y, Im) =
∫

X>0
h(trX)|X|a−(m+1)/2Cκ(XY )(dX)

= dκyk1
1 · · · ykm

m

∫
X>0

h(trX)|X|a−(m+1)/2|X1|k1−k2 |X2|k2−k3 · · · |X|km(dX)

+terms of lower weight in the y’s. (2.11)

To evaluate the last integral, put X = T ′T , where T is upper triangular with

positive diagonal elements. Then

trX =
m∑

i≤j

t2ij , |X1| = t211, |X2| = t211t
2
22, . . . , |X| =

m∏
i=1

t2ii,

with jacobian

(dX) = 2m
m∏

i=1

tm+1−i
ii (dT ),

see Muirhead (1982), p.60.
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By using Caro and Nagar (2006) or Fang and Zhang (1990), we have

g(Y, Im) = dκyk1
1 · · · ykm

m

∫
· · ·
∫

tij

h

 m∑
i≤j

t2ij

 m∏
i=1

t2a+2ki−i
ii 2m(dT )

+terms of lower weight in the y’s

= dκyk1
1 · · · ykm

m

∏m
i=1 Γ

(
a + ki − 1

2(i− 1)
)∏m

i<j Γ
(

1
2

)
Γ
(∑m

i=1

(
a + ki − 1

2(i− 1)
)

+ 1
4m(m− 1)

)∫ ∞

0
h(w)w

∑m
i=1(a+ki− 1

2
(i−1))+ 1

4
m(m−1)−1dw

+terms of lower weight in the y’s

= dκyk1
1 · · · ykm

m

∏m
i=1 Γ

(
a + ki − 1

2(i− 1)
)
π

1
4
m(m−1)

Γ(ma + k)∫ ∞

0
h(w)wma+k−1dw

+terms of lower weight in the y’s

= dκyk1
1 · · · ykm

m

(a)κΓm(a)
Γ(ma + k)

S

+terms of lower weight in the y’s, (2.12)

where the last line follows from Muirhead (1982), p. 248 and we denote

S =
∫ ∞

0
h(w)wma+k−1dw < ∞.

Equating coefficients of yk1
1 · · · ykm

m in (2.12) and (2.10) we have that

g(Im, Im)
Cκ(Im)

=
(a)κΓm(a)
Γ(ma + k)

S.

And using this in (2.9), we obtain∫
X>0

h(trX)|X|a−(m+1)/2Cκ(XY )(dX) =
(a)κΓm(a)
Γ(ma + k)

Cκ(Y )S, (2.13)

which establishes (2.4) for Z = Im; this result was derived by Teng et al (1989).

Now consider the integral (2.4) when Z > 0 is real and put V = Z1/2XZ1/2,
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so that (dV ) = |Z|(m+1)/2(dX), then (2.4) becomes

g(Y, Z) = |Z|−a

∫
V >0

h(trV )|V |a−(m+1)/2Cκ(V Z−1/2Y Z−1/2)(dV )

=
|Z|−a(a)κΓm(a)

Γ(ma + k)
Cκ(Y Z−1)S,

where the last line follows from (2.13). Thus the theorem is true for real Z > 0

and it follows for complex Z with Re(Z) > 0 by analytic continuation.

When the zonal polynomial in (2.4) is evaluated in the latent roots of X−1Y

the respective result was obtained by Runze (1997), in fact, that work proposed

(without proof) the expression for the expected values of an invariant polynomial

under a distribution type of (2.4) and then it was applied in the expectation of

zonal polynomials respect to a Pearson VII type distribution; even more, the

last particular expectation problem was full studied by Xu and Fang (1989).

But, as we shall see in subsection 2.1.1, the first result has an error (perhaps a

typographical) and the second and third results are incorrect. In any case, those

expressions can be stated easily as corollaries of theorem 2.1.1.

Next we generalize a result of Khatri (1966) (lemma 7, eq. (19)), which was

proved by expanding a Laplace transform; here the proof is straightforward.

Corollary 2.1.2.∫
X>0

etr(−XZ)(tr(XZ))j |X|a−(m+1)/2Cκ(XY )(dX)

=
Γm(a)(a)κΓ(ma + j + k)

Γ(ma + k)
|Z|−aCκ(Y Z−1), (2.14)

where Y is a symmetric m × m matrix and Z is a complex symmetric m × m

matrix with Re(Z) > 0.

Proof. Take h(y) = e−yyj in (2.5), then
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S =
∫∞
0 h(y)yma+k−1dy = Γ(ma + j + k) and (2.14) follows. When Z = Im we

have lemma 7, eq. (19) of Khatri (1966).

The result of Constantine (1963) (eq.(1)), widely used by Muirhead (1982),

is obtained in the same way

Corollary 2.1.3.∫
X>0

etr(−XZ)|X|a−(m+1)/2Cκ(XY )(dX)

= (a)κΓm(a)|Z|−aCκ(Y Z−1), (2.15)

where Y is a symmetric m × m matrix and Z is a complex symmetric m × m

matrix with Re(Z) > 0.

Proof. Or just replace j = 0 in the preceding corollary.

We already have the tools for finding the configuration densities of any ellip-

tical model, but first we need to revise some published results for a particular

model.

2.1.1 On some Pearson VII type published results

The Pearson VII type version of (2.13) and some applications were full detailed

by Xu and Fang (1989) in example 3.2, p.474-476 by the classical multivariate

procedure in order to study the generalized Wishart matrix produced by a Pear-

son VII type distribution; however the same integral give us the Pearson VII type

configuration density, but after comparisons with those works we find important

differences, then we must to revise them again and for the correctness of our

results we write this subsection and derive again the results by different ways.

It is straightforward that
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Corollary 2.1.4.∫
W>0

(
1 + m−1 trW

)−(m+np)/2 |W |
n
2
− (p+1)

2 Cκ(WU)(dW )

=
m

np
2

+k
(

n
2

)
κ
Γp

(
n
2

)
Γ
(

m
2 − k

)
Γ
(

m
2 + np

2

) Cκ(U). (2.16)

Proof. In this case take h(y) = (1 + m−1y)−(m+np)/2, then

S =
m

np
2

+kΓ(np
2 + k)Γ

(
m
2 − k

)
Γ
(

m
2 + np

2

) .

However, we must say that the corresponding value of this integral in Xu and

Fang (1989), example 3.2, p.474-476 is incorrect, and in consequence the results

(3.1) on expectations given in p.476. The respective general expectation problem

involving invariant polynomials of Davis (1980) was proposed without proof by

Runze (1997) at the end of page 69, then by a similar procedure of the page 70

we could find the right expression of the cited eq. (3.1) of Xu and Fang (1989);

but, again, we find incorrect the last expression of Runze (1997), p.69, and its

respective source, the theorem 2.3 part b of Runze (1997). As we shall see, we

just need to fill the omitted details in Runze (1997) for checking the errors.

Consider the density of B = Y ′Y given in eq. (1.5) of Runze (1997):

πnp/2cn,p

Γp

(
n
2

) |Σ|−n/2|B|(n−p−1)/2h(trΣ−1B). (2.17)

where cn,p is a normalization constant (see Runze (1997)). Then another con-

sequence of theorem 2.1.1 is the expectation of a zonal polynomial respect to B

with the above defined density.
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Corollary 2.1.5. Suppose that B has density (2.17) and A is an arbitrary sym-

metric p× p constant matrix, then

EB[Cκ(BA)] =
πnp/2cn,p

(
n
2

)
κ

Γ
(np

2 + k
) Cκ(AΣ)I, (2.18)

where

I =
∫ ∞

0
h(y)y

np
2

+k−1dy < ∞. (2.19)

Proof. Multiply the density function (2.17) of B by Cκ(BA), then integrate

over B > 0 by using theorem 2.1.1, with Z = Σ−1, a = n
2 , Y = A and m = p.

The above result is the parallel expression of corollary 2 of Runze (1997),

p.68.

Now, let A be an m×m symmetric matrix with latent roots a1, . . . , am and

recall that zonal polynomials can be expressed in terms of at least five bases (see

for example James (1964)).

In particular, recall that the j-th elementary symmetric function rj of a1, . . . , am

is defined by

r1(A) =
m∑
i

ai = tr A, r2(A) =
m∑

i<j

aiaj , . . . , rm(A) = a1 · · · am = |A|,

then zonal polynomials can be written in terms of the r’s as follows (see Little-

wood (1950))

Cκ(A) = dκrk1−k2
1 rk2−k3

2 · · · rkm
m + lower terms, (2.20)

where ”lower terms” is meant monomials in the rp similar to the one displayed

but corresponding to partitions τ < κ = (k1, . . . , km).
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Now, if κ = (1, . . . , 1) is a partition of k and l1, . . . , lm denote the latent roots

of A, then

Cκ(A) = dκl1 · · · lk + terms of lower weight

= dκrk(A), (2.21)

where rk(A) is the k-th elementary symmetric function of l1, . . . , lm; see Muirhead

(1982), p.251.

So we have

Corollary 2.1.6. Under the conditions of corollary 2.1.5

EB[rj(B)] =
πnp/2cn,p

(
n
2

)
κ

Γ
(np

2 + k
) rj(Σ)I, (2.22)

where j = 1, . . . , p.

At this point we have studied integrals involving zonal polynomials (with

one matrix argument), but recall that the noncentral multivariate analysis was

revolutionized by Davis (1980) when extended those polynomials to invariant

polynomials of several matrix argument; then a number of distributional results

in every field of statistics could be solved.

For example, the expectation under the above defined B of invariant polyno-

mials can be stated; this result was proposed without details by Runze (1997),

theorem 2.3, part b; but as we shall see some modifications must be done, for

that reason we present the complete proof here as a consequence of our theorem

2.1.1 and corollary 2.1.5.

Corollary 2.1.7. Suppose that B has density (2.17) and A and R are arbitrary

symmetric p× p constant matrices, then

EB[Cκ,λ
φ (BR,BU)] =

πnp/2cn,p

(
n
2

)
φ

Γ
(np

2 + k + l
)Cκ,λ

φ (RΣ, UΣ)I, (2.23)
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where

I =
∫ ∞

0
h(y)y

np
2

+k+l−1dy < ∞, (2.24)

κ, λ and φ are partitions of k, l and k + l, respectively; see Davis (1980) for the

theory of invariant polynomials.

Proof. Let B = Σ1/2XΣ1/2, where (dB) = |Σ|(p+1)/2(dU); then from (2.17)

EB[Cκ,λ
φ (BR,BU)] =

πnp/2cn,p

Γp

(
n
2

) |Σ|−n/2

∫
B>0

|B|(n−p−1)/2h(trΣ−1B)Cκ,λ
φ (BR,BU)(dB)

=
πnp/2cn,p

Γp

(
n
2

)∫
X>0

|X|(n−p−1)/2h(trX)Cκ,λ
φ (Σ1/2XΣ1/2R,Σ1/2XΣ1/2U)(dX)

= EX [Cκ,λ
φ (Σ1/2XΣ1/2R,Σ1/2XΣ1/2U)].

Note that the distribution of X is invariant under the transformation X →

H ′XH, H ∈ O(p), then by Davis (1980) we have that

EX [Cκ,λ
φ (Σ1/2XΣ1/2R,Σ1/2XΣ1/2U)]

= EX

[∫
O(p)

Cκ,λ
φ (XHΣ1/2RΣ1/2H ′, XHΣ1/2UΣ1/2H ′)(dH)

]

=
Cκ,λ

φ (Σ1/2RΣ1/2,Σ1/2UΣ1/2)

Cφ(Ip)
EX [Cφ(X)] ;

and by (2.18)

EX [Cφ(X)] =
πnp/2cn,p

(
n
2

)
φ

Γ
(np

2 + k + l
)Cφ(Ip)

∫ ∞

0
h(y)y

np
2

+k+l−1dy,

which establishes the required result.
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This is the same result proposed by Runze (1997) except for the uncorrect

reference for φ in the gamma argument.

As an example of expectations for zonal and invariant polynomials we return

to example 3.2 of Xu and Fang (1989), p.474-476 (explicitly their eq. (3.1)) by

deriving the correct result by two methods.

First, if we take h(B) = (1+m−1 trB)−(m+np)/2 in corollary 2.1.5 we have that

I = mk+np/2B(k + np/2,−k + m/2) , cn,p = Γ[(m + np)/2]/[πnp/2mnp/2Γ(m/2)]

and

EB[Cκ(BA)] =
mkΓ[m

2 − k]
(

n
2

)
κ

Γ
(

m
2

) Cκ(AΣ). (2.25)

For the correctness of the results, note that if we change a little the procedure

here derived we obtain the expression for ECκ(B−1A) given by Runze (1997),

p. 69.

And second, the corollary 2.1.7 in this case turns

EB[Cκ,λ
φ (BR,BU)] =

mk+lΓ[m
2 − k − l]

(
n
2

)
φ

Γ(m/2)
Cκ,λ

φ (RΣ, UΣ), (2.26)

this expression is also computed by Runze (1997), p. 69. however that result is

incorrect.

Finally, we can check again (2.25) by using properties of invariant polyno-

mials in (2.26). In fact, just take R = 0, then Cκ,λ
φ (0, BU) = 0 for k > 0 and

Cκ,λ
φ (0, BU) = Cλ(BU) for k = 0, then

EB[Cλ(BU)] = EB[Cκ,λ
φ (0, BU)]

=
mlΓ[m

2 − l]
(

n
2

)
λ

Γ(m/2)
Cλ(UΣ),

which corresponds with (2.25).
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Finally, recall that if we take m = 1 in the family of Pearson VII distributions

we obtain the multivariate Cauchy distribution; thus by replacing this parameter

in (2.25) we must have that 1
2 ≥ k, which means that the Cauchy distribution

has no moments.

2.2 Configuration Density

First, we recall a definition given by Goodall and Mardia (1993) (see section

1.1).

Two figures X : N × K and X1 : N × K have the same configuration, or

affine shape, if X1 = XE +1Ne′, for some translation e : K×1 and a nonsingular

E : K ×K.

The configuration coordinates are constructed in two steps summarized in the

expression

LX = Y = UE. (2.27)

The matrix U : N − 1 × K contains configuration coordinates of X. Let

Y1 : K × K be nonsingular and Y2 : q = N − K − 1 ≥ 1 × K, such that

Y = (Y ′
1 | Y ′

2)
′. Define also U = (I | V ′)′, then V = Y2Y

−1
1 and E = Y1.

Where L is an N − 1×N Helmert sub-matrix, see (1.3).

Now we establish an important jacobian:

Lemma 2.2.1. Let (F 1/2)2 = F > 0, H ∈ O(K), and E = F 1/2H so for

Y = UF 1/2H then

(dY ) = 2−K |F |(q−1)/2(dV )(dF )(H ′dH). (2.28)
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Proof. Let E = F 1/2H, with E a K × K invertible matrix, H orthogonal

and F 1/2 > 0. So E′E = H ′FH, because E′E and F are symmetric and H

non singular, then (E′E) = |H|K+1(dF ) = (dF ) . But by theorem 2.1.14 of

Muirhead (1982): (dE) = 2−K |E′E|−1/2(E′E)(H ′dH). Then we obtain: (dE) =

2−K |H ′FH|−1/2(dF )(H ′dH) = 2−K |F |−1/2(dF )(H ′dH). Summarizing we get

E = F 1/2H ⇒ (dE) = 2−K |F |−1/2(dF )(H ′dH). (2.29)

Now,

Y =

 I

V

E =

 E

V E

 .

Differentiating and computing the exterior product, we get

(dY ) = |E|q(dV )(dE), but |E| = |F 1/2H| = |F |1/2, so

(dY ) = |F |q/2(dV )(dE). (2.30)

Replacing (2.29) in (2.30) we obtain the required result.

Now we can state with the help of theorem 2.1.1 the main statistical result

of this work, the general case of the configuration density under a non-isotropic

noncentral elliptical model.

Theorem 2.2.1. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), for Σ positive

definite (Σ > 0), µ 6= 0N−1×K , then the configuration density is given by

πK2/2ΓK

(
N−1

2

)
|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

) ∞∑
t=0

1

t!Γ
(

K(N−1)
2 + t

) ∞∑
r=0

1
r!
[
tr
(
µ′Σ−1µ

)]r
∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ (U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1)S. (2.31)

where

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞, (2.32)
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Proof. The density of Y is given by

1

|Σ|
K
2

h[tr[(Y − µ)′Σ−1(Y − µ)]], (2.33)

If we factorize Y according to lemma 2.2.1, then the joint density of U , F and H

is

2−K |F |(q−1)/2

|Σ|
K
2

(2.34)

h
[
tr
(
µ′Σ−1µ + FU ′Σ−1U

)
+ tr

(
−2µ′Σ−1UF 1/2H

)]
(H ′dH)(dF )(dV ).

Assuming that h admits a Taylor expansion (see Fang (1990a,b)), the joint density

of U , F and H becomes:

2−K |F |(q−1)/2

|Σ|
K
2

∞∑
t=0

1
t!

h(t)
(
tr
(
FU ′Σ−1U

)
+ tr

(
µ′Σ−1µ

))
[
tr
(
−2µ′Σ−1UF 1/2H

)]t
(H ′dH)(dF )(dV ).

Now, recall that ∫
O(m)

[tr(XH)]r(dH) = 0 for odd r, (2.35)

and ∫
O(m)

[tr(XH)]2k(dH) =
∑

κ

(
1
2

)
k(

1
2m
)
κ

Cκ(XX ′), (2.36)

(see James (1964)) then integration with respect to H gives the joint density of

F and U as follows

πK2/2|F |(q−1)/2

|Σ|
K
2 ΓK

(
K
2

) ∞∑
t=0

1
t!

h(2t)
(
tr
(
FU ′Σ−1U

)
+ tr

(
µ′Σ−1µ

))
∑

τ

1(
K
2

)
τ

Cτ

(
U ′Σ−1µµ′Σ−1UF

)
(dF )(dV ). (2.37)

And noting that h2t(·) admits a Taylor expansion, then the joint density of

F and U finally takes the form:
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πK2/2|F |(q−1)/2

|Σ|
K
2 ΓK

(
K
2

) ∞∑
t=0

1
t!

∞∑
r=0

1
r!

h(2t+r)
(
tr
(
FU ′Σ−1U

)) [
tr
(
µ′Σ−1µ

)]r
∑

τ

1(
K
2

)
τ

Cτ

(
U ′Σ−1µµ′Σ−1UF

)
(dF )(dV ).

So integration over F > 0 gives the configuration density as follows

πK2/2

|Σ|
K
2 ΓK

(
K
2

) ∞∑
t=0

1
t!

∞∑
r=0

1
r!
[
tr
(
µ′Σ−1µ

)]r∑
τ

1(
K
2

)
τ

(2.38)∫
F>0

h(2t+r)
(
tr
(
FU ′Σ−1U

))
|F |(q−1)/2Cτ

(
U ′Σ−1µµ′Σ−1UF

)
(dF ).

Goodall and Mardia (1993), corrected by Dı́az-Garćıa et al. (2003), derived

the configuration density in the normal case, by evaluating the above multivariate

integral using the classical results of Constantine (1963) (in Muirhead (1982)).

So, it is clear that the advances in this kind of problems depend on evaluation of

this multiple integral for non gaussian cases, and only a few of them are available.

However, if we compare (2.38) and (2.4) we find that the configuration density

of any elliptical model reduces to the computation of a single integral, simplifying

the above multivariate problem into a simple ordinary integration (providing that

h(2t+r)(y) and the improper integral exist, of course).

So, the integral in (2.38) is reduced by (2.4) to∫
F>0

h(2t+r)
(
tr
(
FU ′Σ−1U

))
|F |(q−1)/2Cτ

(
U ′Σ−1µµ′Σ−1UF

)
(dF )

=
|U ′Σ−1U |−

N−1
2

(
N−1

2

)
τ
ΓK

(
N−1

2

)
Cτ (U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1)

Γ
(

K(N−1)
2 + t

) S,

where

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞,
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and the required result follows.

The central non-isotropic configuration density must receive an special atten-

tion (see Dı́az-Garćıa et al. (2003) for the central isotropic case).

First we need a preliminary result which ratifies our main assertion in this

work, the multiple elliptical integrals (if exist) over positive definite matrix X

with kernel f(trZX) might reduce to the computation of a single integral (if

exist).

Lemma 2.2.2. Let Z be a complex symmetric m ×m matrix with Re(Z) > 0.

Then ∫
X>0

h(trXZ)|X|a−(m+1)/2(dX)

=
|Z|−aΓm(a)

Γ(ma)
S, (2.39)

where

S =
∫ ∞

0
h(y)yma−1dy < ∞. (2.40)

Proof. We give three proofs of this result. A first heuristic proof comes

from considering (2.4). For k > 0 and Y = 0, CκY X = 0, so there is nothing

to prove. But if k = 0 and Y = 0, then by definition (a)κ = 1, and Cκ(A) = 1

(both heuristic-trivial definitions can be seen equivalent to the heuristic definition

0! = 1, see Muirhead (1982) p.258, and Xu and Fang (1989), p.477), the result

follows.

A second heuristic proof comes from eq. (2.5) of Runze (1997), where

X = W , Y = U , Z = Ip, apply the same definitions recalling that Γp(a) =

πp(p−1)/4
∏p

i=1 Γ[a− (i− 1)/2] and the same result is found.

45



In a third proof we just solve the multiple integral without zonal polynomi-

als. As it was establish historically (Wishart) the multivariate gamma function

around the 20′s (preceding the zonal’s integrals by the 60’s). The ”normaliza-

tion” procedure is typical, suppose that Z > 0 is real. Put X = Z−1/2V Z−1/2,

so that (dX) = |Z|−(m+1)/2(dV ) and the l.h.s of (2.39) becomes∫
X>0

h(trXZ)|X|a−(m+1)/2(dX)

= |Z|−a

∫
V >0

h(trV )|V |a−(m+1)/2(dV ). (2.41)

To solve the above integral we proceed as in proof of (2.4). put V = T ′T , where

T is upper triangular with positive diagonal elements and

(dV ) = 2m
∏m

i=1 tm+1−i
ii (dT ); then trV =

∑m
i≤j t2ij , |V | =

∏m
i=1 t2ii.

Hence by Caro and Nagar (2006) or Fang and Zhang (1990) we have, after some

simplification, that∫
V >0

h(trV )|V |a−(m+1)/2(dV ) =
∫
· · ·
∫

tij

h

 m∑
i≤j

t2ij

 m∏
i=1

t2a−i
ii 2m(dT )

=
∏m

i=1 Γ
(
a− 1

2(i− 1)
)
π

1
4
m(m−1)

Γ(ma)

∫ ∞

0
h(y)yma−1dy,

and using this in (2.41), we get the required result for real Z; and it follows for

complex Z by analytic continuation. Since Re(Z) > 0, |Z| 6= 0 and |Z|a is well

defined in continuation.

Note that if we take Z = Σ−1 and h(y) = e−y/2 which implies S = 2maΓ(ma);

we have the classical result for multivariate gamma function proved in detail by

Muirhead (1982), p.61-63.∫
A>0

etr(−1
2
Σ−1A)|A|a−(m+1)/2(dA)

=
m∏

i=1

Γ
(

a− 1
2
(i− 1)

)
π

1
4
m(m−1)|Σ|a2ma. (2.42)
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So, finally the central case of the configuration density follows easily from

lemma 2.2.2.

Corollary 2.2.1. If Y ∼ EN−1×K(0N−1×K ,ΣN−1×N−1 ⊗ IK , h), for Σ > 0,

then the central configuration density is invariant under the elliptically contoured

distributions and it is given by

ΓK

(
N−1

2

)
π

Kq
2 |Σ|

K
2 ΓK

(
K
2

) |U ′Σ−1U |−
N−1

2 . (2.43)

The preceding proposition generalizes theorem 3.2 of Dı́az-Garćıa et al. (2003)

(see (1.5)) which concerned the isotropic case, Σ = σ2IN−1, (recall that |U ′U | =

|IK +V ′V |); in this case both expression coincide excepting their factor 2K , since

Goodall and Mardia (1993) and Dı́az-Garćıa et al. (2003) did not described

the Haar measure (H ′dH) employed in the computation of the jacobian of Y =

UF 1/2H, see our lemma 2.2.1 for solving this discrepancy.

Most of the applications in statistical theory of shape resides on the isotropic

model (see Dryden and Mardia (1998)), so in the case of the noncentral elliptical

configuration density if we take Σ = σ2IN−1 in theorem 2.2.1 we obtain

Corollary 2.2.2. If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), then the isotropic

noncentral configuration density is given by

πK2/2ΓK

(
N−1

2

)
|IK + V ′V |

N−1
2 ΓK

(
K
2

) ∞∑
t=0

1

t!Γ
(

K(N−1)
2 + t

) ∞∑
r=0

1
r!

[
tr
(

1
σ2

µ′µ

)]r

∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
1
σ2

U ′µµ′U(U ′U)−1

)
S, (2.44)

where

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞. (2.45)
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Remark 2.2.1. We have seen that (2.4) and Runze (1997), eq. (2.5) provides

parallel results very closed related. So we could try defining a new configuration

density based on another factorization which lead to those integrals of Runze

and to replicate our procedure for finding the new distribution. But unfortu-

nately, the conditions on q = N − K − 1 ≥ 1 and the conditions for gamma’s

provides useless integrals for configurations. Explicitly, if we factorized Y by

Y = UF−1/2H so that (dY ) = 2−K |F |−(q−1)−(K+1)(dV )(H ′dH)(dF ) which sup-

poses absurd constraint q ≤ −K in the shape theory context. By the other

hand, note that distributions type eq. (2.5) of Runze (1997) are valid only

where a > k1 +(p− 1)/2 important restriction when Taylor series expansions are

considered.

Remark 2.2.2. A new enrichment family of shape distributions can be proposed

if we replace (2.4) by the following integral. Let Y be a symmetric m×m matrix,

Re(a) > (m− 1)/2, Re(b) > (m− 1)/2∫
0<Z<Im

|Z|a−
1
2
(m+1)|I − Z|b−

1
2
(m+1)∫

X>0
h(trXZ)h(trX(I − Z))|X|a+b−(m+1)/2(dX)Cκ(ZY )(dZ)

=
Cκ(Y )
Cκ(Im)

S,

where

S =
∫

0<Z<Im

∫
X>0

|Z|a−
1
2
(m+1)|I − Z|b−

1
2
(m+1)|X|a+b−(m+1)/2

h(trXZ)h(trX(I − Z))Cκ(Z)(dZ)(dX),

and the respective simplification of S with the general technique studied for (2.4).

Then multivariate Beta type integrals can be included in the repertory of shape

distributions. However we leave this study for a subsequent work.

48



Chapter 3

Families of elliptical

configuration densities

We already found the noncentral non-isotropic configuration density with a re-

markable property, given an elliptically contoured distribution, we do not need

to compute as usual a multivariate integral but a single integral. However, the

difficulty sometimes will arise on the derivatives and the series simplifications

involved. But as we shall see all the classical elliptical families can be computed

explicitly and all of them will be suitable for inference on the exact distribution.

In this chapter we derive explicit configuration densities for matrix variate

symmetric Kotz type distributions (it includes normal), matrix variate Pearson

type VII distributions (it includes t and Cauchy distributions), matrix variate

symmetric Bessel distribution (it includes Laplace distribution) and matrix vari-

ate symmetric Jensen-logistic distribution.

We must refer for applications the posterior study of the isotropic case because
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it is the more widely used in all the applications of shape theory, see Dryden and

Mardia (1998).

3.1 Normal configuration density

We start with this case because it is the simplest one and the only noncentral

(isotropic) published result. Goodall and Mardia (1993) proposed that density

but it was corrected by Dı́az-Garćıa et al. (2003), however an imprecision in the

information of the haar measure employed in both derivations motivated our

lemma 2.2.1 and we have to clarify this distribution again. As we shall see it will

be derived by three different methods, as direct corollary of theorem 2.2.1 and as

two consequences of the Kotz distribution.

Recall that the p×n random matrix X is said to have a matrix variate normal

distribution with parameters, M : p × n, Σ : p × p, Φ : n × n with Σ > 0, and

Φ > 0 if its probability density function is

1
(2π)np/2|Σ|n/2|Φ|p/2

etr
[
−1

2
(X −M)′Σ−1(X −M)Φ−1

]
.

The first method is given below.

Corollary 3.1.1. If Y ∼ NN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK), for Σ > 0, then

the non-isotropic noncentral normal configuration density is given by

ΓK

(
N−1

2

)
etr
(

1
2U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1 − 1

2µ′Σ−1µ
)

πKq/2|Σ|
K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1F1

(
−q

2
;
K

2
;−1

2
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
. (3.1)

Proof. See (2.31), so for the normal case take

h(y) =
1

(2π)K(N−1)/2
e−

1
2
y
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thus

h(y)(2t+r) =
(−2)−2t−r

(2π)K(N−1)/2
e−

1
2
y,

and (2.32) becomes

S =
Γ
(

K(N−1)
2 + t

)
(−1)r2t+rπK(N−1)/2

.

Replacing S in (2.31), using aCκ(A) = Cκ(akA) and q = N − 1−K ≥ 1, we have

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

) ∞∑
t=0

1
t!

{ ∞∑
r=0

1
r!

[
tr
(
−1

2
µ′Σ−1µ

)]r
}

∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
1
2
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
.

The term in braces is clearly exp(·) which does not depend on t and if we use the

definition of hypergeometric function of matrix arguments (see (1.20)), explicitly

1F1(a; b;X) =
∑∞

t=0
1
t!

∑
τ

(a)τ

(b)τ
Cτ (X), we have

ΓK

(
N−1

2

)
etr
(
−1

2µ′Σ−1µ
)

πKq/2|Σ|
K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1F1

(
N − 1

2
;
K

2
;
1
2
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
.

The normal non-isotropic configuration density follows by the Kummer relations

1F1(a; c;X) = etrX1F1(c− a; c;−X), (3.2)

see (1.28), i.e.

ΓK

(
N−1

2

)
etr
(

1
2U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1 − 1

2µ′Σ−1µ
)

πKq/2|Σ|
K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1F1

(
−q

2
;
K

2
;−1

2
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
.

Now, if we take Σ = σ2IN−1, the isotropic case, we get
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Corollary 3.1.2. If Y ∼ NN−1×K(µN−1×K , σ2IN−1 ⊗ IK), then the isotropic

noncentral normal configuration density is given by

ΓK

(
N−1

2

)
πKq/2|IK + V ′V |

N−1
2 ΓK

(
K
2

) etr
(

1
2σ2

µ′U(U ′U)−1U ′µ− 1
2σ2

µ′µ

)

1F1

(
−q

2
;
K

2
;− 1

2σ2
µ′U(U ′U)−1U ′µ

)
. (3.3)

See (1.4), this is the same result of Dı́az-Garćıa et al. (2003) (proposed by

Goodall and Mardia (1993) with some errors) except for the factor 2k which

comes from their anonymous jacobian computation (see (2.28)), both woks com-

puted the configuration density by using classical results of Muirhead (1982)

(Constantine (1963)) which supposes integration over F > 0, note that we re-

place that by using theorem 2.1.1 which requires the computation of a single

integral, in this case the matrix S in (2.32). Of course, the multiple integrals

used by the cited works are consequence of theorem 2.1.1 as we proved in corol-

lary 2.1.2 and 2.1.3.

We shall derive (3.1) again as a consequence of the Kotz non-isotropic con-

figuration density.

3.2 Pearson type VII configuration density

In this section we derive the non-isotropic noncentral Pearson type VII configura-

tion density as a simple consequence of (2.31) instead of performing the classical

multiple integration, suggested by this kind of distribution.

Recall that a p×n random matrix X is said to have a matrix variate symmetric

Pearson type VII distribution with parameters s,R ∈ R, M : p×n, Σ : p× p, Φ :

n× n with R > 0, s > np/2, Σ > 0, and Φ > 0 if its probability density function

52



is

Γ(s)
(πR)np/2Γ

(
s− np

2

)
|Σ|n/2|Φ|p/2

(
1 +

tr(X −M)′Σ−1(X −M)Φ−1

R

)−s

.

When s = (np + R)/2, X is said to have a matrix variate t-distribution with

R degrees of freedom. And in this case, if R = 1, then X is said to have a matrix

variate Cauchy distribution.

We already discussed some facts of this distributions in subsection 2.1.1, see

corollary 2.1.4, and (2.25).

Now the corresponding configuration is derived.

Corollary 3.2.1. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1⊗IK , h), for Σ > 0, then

the non-isotropic noncentral Pearson type VII configuration density is given by

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1P1

(s− K(N − 1)
2

)
t

(
1 +

tr
(
µ′Σ−1µ

)
R

)−s+
K(N−1)

2
−t

:

N − 1
2

;
K

2
;

1
R

U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
, (3.4)

where

1P1(f(t) : a; b;X) =
∞∑

t=0

f(t)
t!

∑
τ

(a)τ

(b)τ
Cτ (X), (3.5)

Proof. In this case we take

h(y) =
Γ(s)

(πR)
K(N−1)

2 Γ
(
s− K(N−1)

2

) (1 +
y

R

)−s
,

then

h(y)(2t+r) =
Γ(s)(−1)r(s)2t+r

(πR)
K(N−1)

2 Γ
(
s− K(N−1)

2

)
R2t+r

(
1 +

y

R

)−(s+2t+r)
,
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and after some simplification, (2.32) becomes

S =
(−1)rΓ

(
K(N−1)

2 + t
)(

s− K(N−1)
2

)
t+r

π
K(N−1)

2 Rt+r
.

Thus (2.31) takes the form

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
∞∑

t=0

1
t!


∞∑

r=0

(
s− K(N−1)

2

)
t+r

r!

[
tr
(
− 1

R
µ′Σ−1µ

)]r


∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
1
R

U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
.

Surprisingly, as in the normal case the term in braces preserves the core of the

distribution (this does not happen in the remaining configurations), in this case

it is (a)t(1+u/R)−a−t, with a = s−K(N − 1)/2 > 0 (see the above definition of

the Pearson type VII distribution), u = tr(µ′Σ−1µ), so we get the non-isotropic

noncentral Pearson type VII configuration density as follows

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
∞∑

t=0

(
s− K(N−1)

2

)
t

(
1 +

tr(µ′Σ−1µ)
R

)−s+
K(N−1)

2
−t

t!∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
1
R

U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
.

Remark 3.2.1. The similarity of the preceding series with the hypergeometric
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functions on the normal case motivates us the following notation

1P1(f(t) : a; b;X) =
∞∑

t=0

f(t)
t!

∑
τ

(a)τ

(b)τ
Cτ (X),

where

1P1(f(t) : a; b;X) = 1F1(1 : a; b;X).

Given the above generalization of the hypergeometric function it should be im-

portant a further study of the series 1P1(f(t) : a; b;X), and we leave it for a

subsequent work.

If we take s = (K(N−1)+R)/2 in corollary 3.2.1 we obtain the configuration

density associated to a matrix variate t-distribution with R degrees of freedom.

Corollary 3.2.2. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

then the non-isotropic noncentral t configuration density is given by

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1P1

(R

2

)
t

(
1 +

tr
(
µ′Σ−1µ

)
R

)−R
2
−t

:

N − 1
2

;
K

2
;

1
R

U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
. (3.6)

And if we replace R = 1 in the above density, we obtain the respective Cauchy

configuration density.

Corollary 3.2.3. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,
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then the non-isotropic noncentral Cauchy configuration density is given by

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1P1

((
1
2

)
t

(
1 + tr

(
µ′Σ−1µ

))− 1
2
−t :

N − 1
2

;
K

2
;U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
. (3.7)

3.3 Kotz type configuration density

In this section we study in detail the full non-isotropic noncentral Kotz config-

uration density by using some results in partition theory, which are the key for

applying (2.31) for all the parameters of the family.

First, the class of elliptically contoured distribution is defined. The p×n ran-

dom matrix X is said to have a matrix variate symmetric Kotz type distribution

with parameters T,R, s ∈ <, M : p × n, Σ : p × p, Φ : n × n with R > 0, s > 0

2T + np > 2, Σ > 0, and Φ > 0 if its probability density function is

sR
2T+np−2

2s Γ
(np

2

)
πnp/2Γ

(
2T+np−2

2s

)
|Σ|n/2|Φ|p/2

[
tr(X −M)′Σ−1(X −M)Φ−1

]T−1

exp
{
−R tr

[
(X −M)′Σ−1(X −M)Φ−1

]s}
. (3.8)

When T = s = 1, and R = 1/2 we get the probability density function of the

absolutely continuous matrix variate normal distribution.

Now, for finding a closed form of (2.31) we need some additional theory, in

this case the partition theory provides suitable expressions for derivatives, we use

here the results by Caro-Lopera et al (2008), chapter 2, see also Faà di Bruno’s

formula.
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Lemma 3.3.1. Let h(t) = s(t)f(g(t)), where s, f and g have derivatives of all

orders, if w(k) denotes dkw(t)
dtk

then

h(k) =
k∑

m=0

(
k

m

)
s(m)[f(g(t))](k−m), (3.9)

where

[f(g(t))](k) =
∑

κ=(kνk ,(k−1)νk−1 ,··· ,3ν3 ,2ν2 ,1
ν1 )

k!∏k
i=1 νi!(i!)νi

f (
∑k

i=1 νi)
k∏

i=1

(g(i))νi .

(3.10)

Note that the functions h considered in the elliptically contoured distributions

admits Taylor expansions then the above expressions always exists for all k.

A particular important case of the above lemma applies for the Kotz type

distribution h(y) = cyT−1 e−Rys
, where c is the normalization constant, R > 0,

s > 0 and 2T + K(N − 1) > 2; (recall that K and N , are the dimension and

number of landmarks, as usual in the configuration density and they are related

by q = N − 1−K ≥ 1).

In order to simplify the expressions due to the preceding lemma, we divide

the study of the Kotz type configuration density in three subfamilies:

1. s = 1, T > 1−K(N−1)/2; 2. T = 1, s > 0; 3. s 6= 1, T 6= 1, see Caro-Lopera et

al (2008), chapter 2. We refer them by Kotz type I, Kotz type II and Kotz type

III, respectively. However we can take off the restriction of case 3 and it serves

for the general expression, but we consider the division for a didactic reason and

for showing easily the main corollary, the normal case.

Lemma 3.3.2. Let h(y) = yT−1 e−Rys
, where, R > 0, s > 0, 2T +K(N − 1) > 2

and N − 1 −K ≥ 1; if w(k) denotes dkw
dyk and

∑
κ∈Pr

is the summation over all

the partitions κ = (kνk , (k − 1)νk−1 , · · · , 3ν3 , 2ν2 , 1ν1 ) of r, then we have
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• Case 1: s = 1, h(y) = yT−1 e−Ry,

h(k) = (−R)kyT−1 e−Ry

{
1 +

k∑
m=1

(
k

m

)[m−1∏
i=0

(T − 1− i)

]
(−Ry)−m

}
.

(3.11)

• Case 2: T = 1, h(y) = e−Rys
,

h(k) = e−Rys
∑
κ∈Pk

k!(−R)
∑k

i=1 νi
∏k−1

j=0(s− j)
∑k

i=j+1 νi∏k
i=1 νi!(i!)νi

y
∑k

i=1(s−i)νi .

(3.12)

• Case 3: T 6= 1, s 6= 1, h(y) = yT−1 e−Rys
,

h(k) = yT−1 e−Rys

∑
κ∈Pk

k!(−R)
∑k

i=1 νi
∏k−1

j=0(s− j)
∑k

i=j+1 νi∏k
i=1 νi!(i!)νi

y
∑k

i=1(s−i)νi

+
k∑

m=1

(
k

m

)[m−1∏
i=0

(T − 1− i)

]
∑

κ∈Pk−m

(k −m)!(−R)
∑k−m

i=1 νi
∏k−m−1

j=0 (s− j)
∑k−m

i=j+1 νi∏k−m
i=1 νi!(i!)νi

y
∑k−m

i=1 (s−i)νi−m

 .

(3.13)

So with these expressions the Kotz type configuration density can be found

in a closed form.

3.3.1 Kotz type I configuration density

In this case the subfamily comes from s = 1, then

h(y) =
RT−1+

K(N−1)
2 Γ

(
K(N−1)

2

)
πK(N−1)/2Γ

(
T − 1 + K(N−1)

2

)yT−1 e−Ry,
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see (3.8), so by using (3.11), after some simplification, and provided that the

gamma’s exist (by suitable conditions on the corresponding parameters), the

integral S in (2.32) becomes

S =
(−1)rRt+rΓ

(
K(N−1)

2

)
πK(N−1)/2Γ

(
T − 1 + K(N−1)

2

) {Γ
(

T − 1 +
K(N − 1)

2
+ t

)

+
2t+r∑
m=1

(
2t + r

m

)[m−1∏
i=0

(T − 1− i)

]
(−1)mΓ

(
T − 1−m +

K(N − 1)
2

+ t

)}
.

Thus replacing this expression in (2.31), we have

Corollary 3.3.1. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

then the Kotz type I non-isotropic noncentral configuration density is given by

ΓK

(
N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

) ∞∑
t=0

Γ
(

K(N−1)
2

)
t!Γ
(

K(N−1)
2 + t

)
Γ
(
T − 1 + K(N−1)

2

)
∞∑

r=0

1
r!
[
tr
(
−Rµ′Σ−1µ

)]r∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
RU ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
{

Γ
(

T − 1 +
K(N − 1)

2
+ t

)
(3.14)

+
2t+r∑
m=1

(
2t + r

m

)[m−1∏
i=0

(T − 1− i)

]
(−1)mΓ

(
T − 1−m +

K(N − 1)
2

+ t

)}
.

Remark 3.3.1. Note that we demand that T − 1 − m + K(N−1)
2 + t > 0, in

other words, in order to perform inference we need to truncate the above series

at some t and r, so the Kotz type I configuration density will be defined for

T > 1 + t + r − K(N−1)
2 (recall that the elliptical Kotz type I density demands

only that T > 1− K(N−1)
2 ).

Now, consider T = 1 in (3.14), then a confluent hypergeometric class of

densities indexed by R are obtained, i.e.
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Corollary 3.3.2. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0

and T = 1, then the Kotz type I non-isotropic noncentral configuration density

simplifies to

ΓK

(
N−1

2

)
etr
(
RU ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1 −Rµ′Σ−1µ

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1F1

(
−q

2
;
K

2
;−RU ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
(3.15)

Proof. When T = 1 in (3.14) the summation in the braces over m = 1, . . .

clearly vanishes. Then the series in r goes to exponential, independent of t, thus

the confluent hypergeometric definition can be applied and the result follows by

Kummer relations (3.2).

Finally the normal configuration density can be derived again, but in this

case, as a simple consequence of the preceding result, by taking R = 1
2 .

Corollary 3.3.3. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

T = 1, R = 1
2 then the Kotz type I non-isotropic noncentral configuration density

simplifies to normal configuration density and it is given by

ΓK

(
N−1

2

)
etr
(

1
2U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1 − 1

2µ′Σ−1µ
)

πKq/2|Σ|
K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

)
1F1

(
−q

2
;
K

2
;−1

2
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
, (3.16)

see corollary 3.1.1.

3.3.2 Kotz type II configuration density

The corresponding subfamily comes from T = 1 in (3.8), then

h(y) =
sR

K(N−1)
2s Γ

(
K(N−1)

2

)
πK(N−1)/2Γ

(
K(N−1)

2s

) e−Rys
,
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and by using (3.12), the integral S in (2.32) is

S =
Γ
(

K(N−1)
2

)
πK(N−1)/2Γ

(
K(N−1)

2s

)
∑

κ∈P2t+r

(2t + r)!(−1)
∑2t+r

i=1 νi
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1 νi∏2t+r
i=1 νi!(i!)νi

R

∑2t+r
i=1

iνi−t

s Γ

(
2
∑2t+r

i=1 (s− i)νi + K(N − 1) + 2t

2s

)
; (3.17)

and the particular configuration density follows:

Corollary 3.3.4. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

then the Kotz type II non-isotropic noncentral configuration density is given by

ΓK
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N−1

2

)
πKq/2|Σ|

K
2 |U ′Σ−1U |

N−1
2 ΓK

(
K
2

) ∞∑
t=0

Γ
(

K(N−1)
2

)
t!Γ
(

K(N−1)
2 + t

)
Γ
(

K(N−1)
2s

)
∞∑

r=0

1
r!
[
tr
(
µ′Σ−1µ

)]r∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1

)
∑

κ∈P2t+r

(2t + r)!
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1 νiΓ
(

2
∑2t+r

i=1 (s−i)νi+K(N−1)+2t
2s

)
(−1)

∑2t+r
i=1 νiR−

∑2t+r
i=1

iνi−t

s
∏2t+r

i=1 νi!(i!)νi

.

(3.18)

Again, for the existence of the density we proceed as in remark 3.3.1, by

truncating the series at some t and r and then imposing the restriction on s in

terms of t, r,K,N , in order to obtain 2
∑2t+r

i=1 (s−i)νi+K(N−1)+2t
2s > 0

We can get again corollary 3.3.2, and for third time the normal case, by

taking s = 1 in (3.18) and noting that in this trivial case ν1 = 2t + r, νi = 0

for i = 2, . . . , 2t + r, and
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1 νi = (1− 0)
∑2t+r

i=0+1 νi = 12t+r = 1.

Then the last summation of (3.18) becomes (−1)rRt+rΓ
(

K(N−1)
2 + t

)
and the
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result follows easily by exponential series, hypergeometric function definition and

Kummer formula.

3.3.3 Kotz type III configuration density

Finally, the last subfamily which completes the study of the Kotz configuration

density can be established with the same technique.

In this case T 6= 1 and s 6= 1 so from (3.8),

h(y) =
sR

2T+K(N−1)−2
2s Γ

(
K(N−1)

2

)
πK(N−1)/2Γ

(
2T+K(N−1)−2

2s

)yT−1 e−Rys
,

and from (3.13) we have the required derivative; then the integral (2.32) becomes

S =
Γ
(

K(N−1)
2

)
πK(N−1)/2Γ

(
2T+K(N−1)−2

2s

)


∑
κ∈P2t+r

(2t + r)!
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1 νiΓ
(

2
∑2t+r

i=1 (s−i)νi+2T−2+K(N−1)+2t
2s

)
(−1)

∑2t+r
i=1 νiR

−
∑2t+r

i=1
iνi+t

s
∏2t+r

i=1 νi!(i!)νi

+
2t+r∑
m=1

(
2t + r

m

)[m−1∏
i=0

(T − 1− i)

]
∑

κ∈P2t+r−m

(2t + r −m)!
∏2t+r−m−1

j=0 (s− j)
∑2t+r−m

i=j+1 νi

(−1)
∑2t+r−m

i=1 νiR
−

∑2t+r−m
i=1

iνi−m+t

s
∏2t+r−m

i=1 νi!(i!)νi

Γ

(
2
∑2t+r−m

i=1 (s− i)νi − 2m + 2T − 2 + K(N − 1) + 2t

2s

)}
. (3.19)

Finally the corresponding configuration density results:

Corollary 3.3.5. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

then the Kotz type III non-isotropic noncentral configuration density is given by
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ΓK
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(
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2

) ∞∑
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2

)
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2

)
τ(

K
2

)
τ

Cτ

(
U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1
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∑
κ∈P2t+r

(2t + r)!
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1 νiΓ
(

2
∑2t+r

i=1 (s−i)νi+2T−2+K(N−1)+2t
2s

)
(−1)

∑2t+r
i=1 νiR

−
∑2t+r

i=1
iνi+t

s
∏2t+r

i=1 νi!(i!)νi

+
2t+r∑
m=1

(
2t + r

m

)[m−1∏
i=0

(T − 1− i)

]
∑

κ∈P2t+r−m

(2t + r −m)!
∏2t+r−m−1

j=0 (s− j)
∑2t+r−m

i=j+1 νi

(−1)
∑2t+r−m

i=1 νiR
−

∑2t+r−m
i=1

iνi−m+t

s
∏2t+r−m

i=1 νi!(i!)νi

Γ

(
2
∑2t+r−m

i=1 (s− i)νi − 2m + 2T − 2 + K(N − 1) + 2t

2s

)}
. (3.20)

Here we need to supply conditions on T and s, as before in remark 3.3.1.

First we truncate the series at some t and r, then we propose limits for T and s

in such way the Gamma arguments are positive.

In fact the restriction T 6= 1 and s 6= 1 can be omitted en the above expression

and it serve as the full Kotz type configuration density and the cases I and II

can be proved trivially, by seen carefully the null derivatives; but we divided the

Kotz in the three groups as a didactic way for showing easily the particular cases

and their relationships.

Recall that if the above densities exists, then the arguments in gamma’s must

be positive and this suggest a careful election of the Kotz parameters for doing

inference, more over, given the complexity of the expressions it is necessary to

truncate the series for some t and r in such way that the parameters T, s and R

can be selected.
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Remark 3.3.2. Published works involving Kotz shape distributions find the k-

th derivative of h(y) = yT−1 e−Rys
, by expanding the exponential as a Maclaurin

series, and then deriving the subsequent power; for example Dı́az-Garćıa and

Gutiérrez-Jáimez (2006) write (using their notation and their context)

h(v) =
αb(2c+kr−2)/2αΓ[(1/2)kr]
πkr/2Γ[(2c + kr − 2)/2α]

vc−1 exp(−bvα)

=
αb(2c+kr−2)/2αΓ[(1/2)kr]
πkr/2Γ[(2c + kr − 2)/2α]

∞∑
l=0

(−b)lvαl+c−1

l!

and then

h2t(v) =
αb(2c+kr−2)/2αΓ[(1/2)kr]
πkr/2Γ[(2c + kr − 2)/2α]

∞∑
z=0

(−b)z+2t(α(z + 2t) + c− 1)2t

v−(α(z+2t)+c−1−2t)(z+2t)!
.

(3.21)

First, note that it cannot be used in the general derivation we gave for Kotz

configuration density, because the integration and sum can not be interchanged.

And second, recall that (a)n = Γ(a+n)
Γ(a) , then the Pochhammer argument in (3.21)

must be positive and this restricts importantly their use in the usual papers

on Kotz shapes distributions, because they are not valid for all the parameters

r, s > 0 involved in the matrix variate Kotz definition.

This ratifies the importance of our partitional derivative fashion which leads

integration-sum interchange and it is valid for all the Kotz parameters.

3.4 Bessel configuration density

Another elliptical distribution is the so called Bessel distribution, explicitly, the

p×n random matrix is said to have a matrix variate symmetric Bessel distribution

with parameters q, r ∈ R, M : p × n, Σ : p × p, Φ : n × n with r > 0, q > −np
2 ,

Σ > 0, and Φ > 0 if its probability density function is
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[tr(X −M)′Σ−1(X −M)Φ−1]
q
2 Kq

(
[tr(X−M)′Σ−1(X−M)Φ−1]

1
2

r

)
2q+np−1π

np
2 rnp+qΓ

(
q + np

2

)
|Σ|

n
2 |Φ|

p
2

, (3.22)

where Kq(z) is the modified Bessel function of the third kind; that is

Kq(z) =
π

2
I−q(z)− Iq(z)

sin(qπ)
, | arg(z)| < π, q is integer,

and

Iq(z) =
∞∑

k=0

1
k!Γ(k + q + 1)

(z

2

)q+2k
, |z| < ∞, | arg(z)| < π.

If q = 0 and r = σ√
2
, σ > 0, this distribution is known as the matrix variate

Laplace distribution.

In this case the function h takes the form

h(y) =
y

q
2 Kq

(
1
ry

1
2

)
2q+K(N−1)−1π

K(N−1)
2 rK(N−1)+qΓ

(
q + K(N−1)

2

) , (3.23)

and the required derivatives for the modified Bessel function are given by

K(k)
q =

(−1)k

2k

k∑
m=0

(
k

m

)
Kq−k+2m(z).

Then, the k-th derivative of (3.23) can be computed by lemma 3.3.1 and after

some simplification it results
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h(k) =
1

2q+K(N−1)−1π
K(N−1)

2 rK(N−1)+qΓ
(
q + K(N−1)

2

)
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1
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i=1 νir
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)
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i=1 ( 1

2
−i)νi+

q
2
−m.

Thus the integral S in (2.32) can be now computed:

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy

=
1
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i=1 νi∑
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i=1 νi

n

)

Γ

(
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(1− i) νi −m +
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2
+ t− n

)

Γ

(
−

2t+r−m∑
i=1

iνi + q −m +
K(N − 1)

2
+ t + n)

)
,

The conditions for the existence of S are the same indicated for the Bessel dis-

66



tribution plus the conditions demanded by the derivative and the arguments of

the gamma’s, which must be positive, see remark 3.3.1, for example.

Thus the configuration density follows from (2.31):

Corollary 3.4.1. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

then the Bessel non-isotropic noncentral configuration density is given by
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i=1 νi∑

n=0
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n

)

Γ

(
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2
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)

Γ
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2t+r−m∑
i=1
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2
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)
.

Finally, if q = 0 and r = σ√
2
, σ > 0 in corollary 3.4.1, then we have the

Laplace non-isotropic noncentral configuration density.

Again it is important to note that for doing inference the above series must

be truncated and the Bessel parameters chosen in order that the gamma’s exist,

see remark 3.3.1, for example.
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3.5 Jensen-Logistic configuration density

Recall that the p×n random matrix X is said to have a matrix variate symmetric

Jensen-logistic distribution with parameters M : p× n, Σ : p× p, Φ : n× n with

Σ > 0, and Φ > 0 if its probability density function is

c etr−(X −M)′Σ−1(X −M)Φ−1

|Σ|
n
2 |Φ|

p
2 (1 + etr−(X −M)′Σ−1(X −M)Φ−1)2

, (3.24)

where

c =
π

np
2

Γ
(np

2

) ∫ ∞

0
z

np
2
−1 e−z

(1 + e−z)2
dz.

For this case we put h as

h(y) = c e−y
(
1 + e−y

)−2
, (3.25)

then the k-th derivative can be performed by using again lemma 3.3.1, and after

some simplification we obtain

h(k) =

c
k∑

m=0

(
k

m

) ∑
κ∈Pk−m

(k −m)!
(∑k−m

i=1 νi + 1
)
! e−(1+

∑k−m
i=1 νi)y

(−1)m+
∑k−m

i=1 (1+i)νi
∏k−m

i=1 νi!(i!)νi (1 + e−y)2+
∑k−m

i=1 νi

.

So (2.32) becomes

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy

= c
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(
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m

) ∑
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!
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(1 + e−y)2+
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i=1 νi
y

K(N−1)
2

+t−1dy;
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and finally, we get the configuration from (2.31):

Corollary 3.5.1. If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0,

then the Jensen-logistic non-isotropic noncentral configuration density is given by
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i=1 νi + 1
)
!

(−1)m+
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∏2t+r−m

i=1 νi!(i!)νi∫ ∞
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e−(1+
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(1 + e−y)2+
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i=1 νi
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K(N−1)
2

+t−1dy (3.26)

And by definition of νi and t, providing that the integral in c exists, we can see

that the above integral also exists, however, for inference and for a meaningful

sample of configuration, the above series must be truncated enough and them

much of the terms in the derivatives vanish.

Remark 3.5.1. A general configuration density.

We have seen that the classical matrix variate elliptically contoured distri-

butions proposed in the generalized multivariate analysis (Pearson, Kotz, Bessel,

Jensen-Logistic) can be studied with our simplification formula for the configura-

tion density, by expressing the function h as h(y) = s(y)g(f(y)), so, lemma 3.3.1

can be applied for the required derivative in (2.32). However we can take a more

general form of h, that is h(y) = s(r(y))g(f(y)) which also can be derived by

lemma 3.3.1 and, if the normalization constant of the distribution has a closed

form, then the integral can be computed.

Clearly the integral S in (2.32) cannot be computed in general, but provided
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its finiteness, then the corresponding elliptically configuration can exists under

certain parameter conditions.
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Chapter 4

Inference and Applications

In the preceding chapters, we derived the noncentral configuration density under

an elliptical model and by using partition theory, a number of explicit config-

uration densities were obtained; i.e. configuration densities associated with the

matrix variate symmetric Kotz type distributions (it includes normal), the matrix

variate Pearson type VII distributions (it includes t and Cauchy distributions),

the matrix variate symmetric Bessel distribution (it includes Laplace distribution)

and the matrix variate symmetric Jensen-logistic distribution. The configuration

density of any elliptical model was set in terms of zonal polynomials which now

can be efficiently computed by Koev and Edelman (2006), and in consequence,

the inference problem can be studied and solved with the exact densities in-

stead of usual constraints and asymptotic distributions, and approximations of

the statistical shape theory works (see Goodall and Mardia (1993), Dryden and

Mardia (1998) and the references there in). The general procedure becomes very

clear now and the underlying problem, the programming problem, is simply time

consuming.
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Thus two perspectives can be explored, first, the inference based on exact

distributions and second, their applications in shape theory.

The general procedure for performing inference of any elliptical model is pro-

posed and it is set in such manner that the published efficient numerical algo-

rithms for confluent infinite series type involving zonal polynomials, can be used;

this is outlined in section 4.1.

More over, a further simplification of the closed computational problem is also

proposed, the study of finite configuration densities (section 4.2); a subfamily of

them is derived and as a simple example of their use, exact inference for testing

configuration location differences in some applied problems are provided in section

4.3. The applications involve Biology (mouse vertebra, gorilla skulls, girl and boy

craniofacial studies), Medicine (brain MR scans of schizophrenic patients) and

image analysis (postcode recognition).

4.1 Inference for elliptical configuration

models

Our proposal is to use the elliptically contoured distribution to model population

configurations (2.31) for some particular cases. For this, we consider a random

sample of n independent and identically distributed observations U1, . . . , Un ob-

tained from

Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), i = 1, . . . , n,

by mean of (2.27).

Now we define the configuration population parameters. Let CD(U ;U , σ2) be

72



the exact configuration density, where U is the location parameter matrix of the

configuration population (we just say configuration location) and σ2 is population

scale parameter. Both U and σ2 are the parameters to estimate. More exactly,

let µ 6= 0N−1×K be the parameter matrix of the elliptical density Y considered

in theorem 2.2.1; if we write it as µ = (µ′1 | µ′2)′, where µ1 : K ×K (nonsingular)

and µ2 : q = N −K − 1 ≥ 1 ×K, then, according to (2.27), we can define the

configuration location parameter matrix U : N − 1×K as follows: U = (IK | V ′)′

where V = µ2µ
−1
1 ; and V : q = N −K − 1 ≥ 1×K contains q ×K configuration

location parameters to estimate. Then, taking into account this remark and using

the same notation of Dryden and Mardia (1998), p. 144-145. we have:

log L(U1, . . . , Un;V, σ2) =
n∑

i=1

log CD(Ui;V, σ2).

Finally, the maximum likelihood estimators for location and scale parameters

are

(Ṽ, σ̃2) = arg sup
V, σ2

log L(U1, . . . , Un;V, σ2). (4.1)

The general configuration density is an infinite series in the eigenvalues of

the zonal polynomial argument, and as usual in other shape densities involv-

ing those polynomials (see Goodall and Mardia (1993)), the exact likelihood

estimators cannot be found, at present, in an exact form, then we need to per-

form a numerical optimization. Fortunately, the classical elliptical configuration

densities can be efficiently computable (see step III below) and the likelihood

maximization procedure is computationally possible. Now, for the numerical op-

timization we can use a number of routines, which, clearly, are based on the

initial point for estimation. In our case, consider the Helmertized landmark

data Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h) i = 1, . . . , n (see (2.27)) and let
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µ̃ = (µ̃′1 | µ̃′2)
′ and σ̃2 be the maximum likelihood estimators of the location pa-

rameter matrix µN−1×K and the scale parameter σ2 of the elliptical distribution

under consideration, so, given that

U ′
iΣ

−1µµ′Σ−1Ui(U ′
iΣ

−1Ui)−1 = Y ′
i Σ−1µµ′Σ−1Yi(Y ′

i Σ−1Yi)−1,

then an initial point can be x0 = (vec′(V ′0), σ2
0), where V0 = µ̃2µ̃

−1
1 and σ2

0 = σ̃2.

Now, we propose the directions for solving the inference in the next few steps.

4.1.1 Step I. Families of isotropic elliptical configura-

tion densities

A first step considers a list of configuration densities. We just write down below

the whole group of classical densities in the matrix case studied by standard books

in matrix elliptically contoured distributions such as Gupta and Varga (1993).

But we must note that any function h(·) which satisfies (2.32) and the conditions

of theorem 2.2.1 can be appropriate.

Most of the applications in statistical theory of shape reside on the isotropic

model (see Dryden and Mardia (1998)), so in the case of the noncentral ellipti-

cal configuration density if we take Σ = σ2IN−1 in the preceding non-isotropic

densities we get a list of suitable distributions for inference; which, we noted are

expanded in terms of zonal polynomials and they can be computed, after an effi-

cient method of Edelman’s group (see Koev and Edelman (2006) and Dumitriu

et al (2004)). Note, that we can consider a more enriched structure, for example

Σ = diag(σ2
1, σ

2
2, . . . , σ

2
N−1) (which suppose a different variance in each landmark

component), and similar diagonal structures.

In the isotropic case we have the following list of the densities here derived
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Person type VII configuration density

Corollary 4.1.1. If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), then the isotropic

noncentral Pearson type VII configuration density is given by

ΓK

(
N−1

2

)
πKq/2|IK + V ′V |

N−1
2 ΓK

(
K
2

)
1P1

(s− K(N − 1)
2

)
t

(
1 +

tr
(

1
σ2 µ′µ

)
R

)−s+
K(N−1)

2
−t

:

N − 1
2

;
K

2
;

1
Rσ2

U ′µµ′U(U ′U)−1

)
, (4.2)

where

1P1(f(t) : a; b;X) =
∞∑

t=0

f(t)
t!

∑
τ

(a)τ

(b)τ
Cτ (X). (4.3)

Corollary 4.1.2. If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), then the isotropic

noncentral t configuration density is given by

ΓK

(
N−1

2

)
πKq/2|IK + V ′V |

N−1
2 ΓK

(
K
2

)
1P1

(R

2

)
t

(
1 +

tr
(

1
σ2 µ′µ

)
R

)−R
2
−t

:

N − 1
2

;
K

2
;

1
Rσ2

U ′µµ′U(U ′U)−1

)
. (4.4)

Corollary 4.1.3. If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), then the isotropic

noncentral Cauchy configuration density is given by

ΓK

(
N−1

2

)
πKq/2|IK + V ′V |

N−1
2 ΓK

(
K
2

)
1P1

((
1
2

)
t

(
1 + tr

(
1
σ2

µ′µ

))− 1
2
−t

:

N − 1
2

;
K

2
;

1
σ2

U ′µµ′U(U ′U)−1

)
. (4.5)
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Kotz type configuration density

Recall that the series must be truncated at some t and r, then the limits for the

parameters T and s are selected in such way that the Gamma’s arguments are

positive, see remark 3.3.1.

Corollary 4.1.4. If Y ∼ EN−1×K(µN−1×K , σ2IN−1⊗IK , h), then the Kotz type

I isotropic noncentral configuration density is given by

ΓK

(
N−1

2

)
πKq/2|IK + V ′V |

N−1
2 ΓK

(
K
2

) ∞∑
t=0

Γ
(

K(N−1)
2

)
t!Γ
(

K(N−1)
2 + t

)
Γ
(
T − 1 + K(N−1)

2

)
∞∑

r=0

1
r!

[
tr
(
− R

σ2
µ′µ

)]r∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
R

σ2
U ′µµ′U(U ′U)−1

)
{

Γ
(

T − 1 +
K(N − 1)

2
+ t

)
(4.6)

+
2t+r∑
m=1

(
2t + r

m

)[m−1∏
i=0

(T − 1− i)

]
(−1)mΓ

(
T − 1−m +

K(N − 1)
2

+ t

)}
.

Corollary 4.1.5. If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h) and T = 1, then

the Kotz type I isotropic noncentral configuration density simplifies to

ΓK

(
N−1

2

)
etr
(

R
σ2 µ′U(U ′U)−1U ′µ− R

σ2 µ′µ
)

πKq/2|IK + V ′V |
N−1

2 ΓK

(
K
2

)
1F1

(
−q

2
;
K

2
;− R

σ2
µ′U(U ′U)−1U ′µ

)
. (4.7)

Corollary 4.1.6. If Y ∼ EN−1×K(µN−1×K , σ2IN−1⊗IK , h), T = 1, R = 1
2 then

the Kotz type I isotropic noncentral configuration density simplifies to normal

configuration density and it is given by

ΓK

(
N−1

2

)
etr
(

1
2σ2 µ′U(U ′U)−1U ′µ− 1

2σ2 µ′µ
)

πKq/2|IK + V ′V |
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2
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−q

2
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)
. (4.8)
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Corollary 4.1.7. If Y ∼ EN−1×K(µN−1×K , σ2IN−1⊗IK , h), then the Kotz type

II isotropic noncentral configuration density is given by

ΓK
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s
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i=1 νi!(i!)νi

.

(4.9)

Corollary 4.1.8. If Y ∼ EN−1×K(µN−1×K , σ2IN−1⊗IK , h), then the Kotz type

III isotropic noncentral configuration density is given by
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. (4.10)
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Bessel configuration density

Corollary 4.1.9. If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), then the Bessel

isotropic noncentral configuration density is given by
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)
.

Recall that the positive Gamma arguments are supplied after the truncation

of the series at some t and r, then the bounds for the remaining parameters can

be obtained.

Finally, if q = 0 and r = σ√
2
, σ > 0 in corollary 4.1.9, then we have the

Laplace isotropic noncentral configuration density.
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Jensen-Logistic configuration density

Corollary 4.1.10. If Y ∼ EN−1×K(µN−1×K , σ2IN−1⊗ IK , h), then the Jensen-

logistic isotropic noncentral configuration density is given by
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(1 + e−y)2+
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i=1 νi
y

K(N−1)
2

+t−1dy. (4.11)

4.1.2 Step II. Choosing the elliptical configuration

density

Here we have the main advantage of working with elliptical models, the possibility

of choosing a distribution for the landmark data, recall that the normal assump-

tion is constantly repeated in the statistical shape theory context. Recall that

the main assumptions for inference in this works are supported by independent

and identically elliptically contoured distributed observations

Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), i = 1, . . . , n.

According to our assumptions we can consider Schwarz (1978) as an ap-

propriate technique for choosing the elliptical model. Explicitly, the procedure

is as follows: consider k elliptical models, then perform the maximization of

the likelihood function separately for each model j = 1, . . . , k, obtaining say,
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Mj(Y1, . . . , Yn), then Schwarz’s criterion for a large-sample is given by

Choose the model for which log Mj(Y1, . . . , Yn)− 1
2
kj log n is largest ,

where kj is the dimension (number of parameters) of the model j.

Remark 4.1.1. The preceding result can be implemented for choosing a shape

model, i.e. given an independent and identically distributed random sample of

landmark data and a list of shape distributions: pre-shape, size and shape, shape,

reflection shape, reflection size and shape, cone, disk, (all of them supported by

Euclidean transformations), configuration (supported by affine transformations),

and projection, etc. we can select the best shape-transformation-model. How-

ever, it is constrained by the computation of the densities, and as we can check

statistical shape literature, the Euclidean based shape densities have important

difficulties for computations even in the gaussian case (most of them have no

an elliptical version yet), see Goodall and Mardia (1993), Dryden and Mardia

(1998) and the references there in, but it is not the case with our configuration

densities. We will let these comparisons for a subsequent work.

4.1.3 Step III. Configuration Location

Once the elliptical model is selected we find the estimators of configuration lo-

cation and scale parameters by mean of (4.1). The crucial point here is the

computation of the configuration density; If the selected model is the Gaussian

one, then the matlab algorithms for confluent hypergeometric functions of matrix

argument by Koev and Edelman (2006) gives the solution very efficiently, this

solves in fact the inference problem proposed by Goodall and Mardia (1993),

corrected by Dı́az-Garćıa et al. (2003) and corrected again here. We highlight

80



that the cited computation of the 1F1(a; c;X) series restricted to the truncation

and it is an open problem addressed in the last section of Koev and Edelman

(2006), however the fast algorithms let a sort of numerical experiments until a

given precision is reached, so the optimization problem remains in terms of the

truncation and the set precision, but this occurs, clearly, since it is an intrinsic

problem of any numerical optimization problem.

But, if the selected model is not Gaussian, we could think that the prob-

lems remains open, but fortunately, the configuration densities can be computed

efficiently by using the same work of Koev and Edelman (2006).

First, represent the configuration density in theorem 2.2.1 by using the nota-

tion 1P1(f(t) : a; c;X) introduced in corollary 3.2.1, (see (3.5)) i.e.

1P1(f(t) : a; c;X) =
∞∑

t=0

f(t)
t!

∑
τ

(a)τ

(c)τ
Cτ (X),

thus the configuration density is written as

A 1P1(f(t) : a; c;X), (4.12)

where
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πK2/2ΓK
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tr
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)]r
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a =
N − 1

2
, c =

K

2
, (4.15)

and

X = U ′Σ−1µµ′Σ−1U(U ′Σ−1U)−1. (4.16)
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Note that f depends on r, but we are interested in the whole series indexed by

t, however the r dependency should be clear in the context. And given that

the integral S is finite then the series A 1P1(f(t) : a; b;X), the configuration,

is a density and thus 1P1(·) converges, and the series f(t) also converges in the

respective domain given a the particular elliptical distribution is considered.

Unfortunately, the configuration density A 1P1(f(t) : a; c;X) is an infinite

series, given that a = N−1
2 and c = K

2 are positive. (recall that N is the number

of landmarks, K is de dimension and N −K − 1 ≥ 1). So a truncation is needed

if we want to use it directly by using computation of zonal polynomials.

Expression (4.12) belongs to the class of eq. (1.6), p.3 from Koev and Edelman

(2006), and as they affirm ”With minimal changes our algorithms (for hypergeo-

metric functions of one matrix arguments) can approximate the hypergeometric

function of two matrix arguments..., and more generally functions of the form

G(x) =
∑∞

k=0

∑
κ aκCα

κ (X), for arbitrary coefficients aκ at a similar computa-

tional cost,” see, eq. (6.5) of Koev and Edelman (2006), and they add ”Although

the expression (6.5) is not a hypergeometric function of a matrix argument, its

truncation for |κ| ≤ m has the form (1.6), and is computed analogously.”

Then, in principle, the configuration densities can be evaluated efficiently with

the fast algorithms of Koev and Edelman (2006) and the corresponding inferences

problem can be solved numerically. And at this stage, by using for example the

compatible matlab routine fminsearch with the modified matlab files of Koev

and Edelman (2006), we have the estimators for the configuration location and

the scale parameters of the ”best” elliptical model chosen with Schwarz’s criterion.

We arrive then, to the final step.

82



4.1.4 Step IV. Hypothesis testing

Finally, given that the likelihood can be evaluated and optimized, then a sort of

likelihood ratio tests can be performed for testing a particular configuration for

a population, or testing for differences in configuration between two populations,

or testing one-dimensional uniform shear of two populations, etc.

In the statistical shape analysis, the large sample standard likelihood ratio

tests are the most frequently used, see for example Dryden and Mardia (1998),

by mean of Wilk’s theorem.

Explicitly, for testing whether

H0 : U ∈ Ω0

versus

Ha : U ∈ Ω1,

where Ω0 ⊂ Ω1 ⊆ RKq, with dim(Ω0) = p < Kq and dim(Ωa) = r ≤ Kq. Thus,

the −2 log-likelihood ratio is given by

−2 log Λ = 2 sup
Ha

log L(U , σ2)− 2 sup
H0

log L(U , σ2)

and by the Wilk’s theorem for large samples, the distribution of the null hypoth-

esis H0 obeys

−2 log Λ ≈ χ2
r−p,

see Dryden and Mardia (1998).

In a similar way we can test differences in configuration between two popu-

lations, etc.

Suppose that the last hypothesis is rejected, then an interesting test can be

performed one-dimensional uniform shear of two populations which determines
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the amount of deformation axes by axes. Note that the classical statistical shape

analysis (pre-shape, size and shape, shape, reflection shape, reflection size and

shape, cone, disk,) which is based on Euclidean transformations assume that any

shape is uniform deformed in any dimension, which certainly is very idealistic,

but the configuration density accept different uniform shearing among the axes.

Explicitly, if we want to test uniform shear in the i coordinate of two popula-

tions, then the testing procedure lies on H0 : µ1B = µ1B versus H0 : µ1B 6= µ1B,

where B = (0, . . . , i, . . . , 0)′ and the configuration density U goes to UB. Note

that the new configuration density is simpler, since it is just a vector density and

it is easier of computing.

Thus, the whole inference procedure of the above four steps can be carried out

for a particular landmark data, and up here we can consider our thesis problem

solved.
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4.2 Further simplifications: finite configura-

tion densities

Even though the whole elliptical configuration problem is clear, there are interest-

ing simplifications which open promissory future work. We explore the problem

in this section, before ending this work with some applications.

Consider now the complex problem of the estimation of the configuration

location; as we highlighted before, no published works using and exact non central

density expressed in terms of zonal polynomials is available, only the asymptotic

expansions and non feasible assertions on variance have been use for testing mean

shape differences in other contexts, the ratification of this idea revealed in every

application of the excellent and summary work on shape theory by Dryden and

Mardia (1998). So any improvement of this problem by working with the exact

density can be considered a good achievement in a theory which sums more than

50 years of probability density functions expanded by zonal polynomials.

In the context of shape theory for example, the general size-and-shape, and

the isotropic gaussian configuration densities (Goodall and Mardia (1993) and

Dı́az-Garćıa et al. (2003)) are expanded in terms of zonal polynomials, but at

the time of the first appearances of these distributions, no accurate numerical

methods for large degrees of the polynomials were known. This forced to use

approximations of the hypergeometric functions to do the inference, but even by

using these approaches, the inference problem has been studied in the isotropic

case and only with σ → 0, see Goodall and Mardia (1993). Only, very recently,

Koev and Edelman (2006) solved the problem of computation of zonal and

hypergeometric type functions, as we described in the last section, and clearly
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the efficient computation is the key for doing inference, but only 2 years ago the

solution of numerical computation for those polynomials was given by Edelman’s

gruop (the general formulae for any degree remains open, only up second order is

solved for general Jack polynomials, which include zonal polynomials, see Caro-

Lopera et al (2007)).

However, as the zonal polynomials are computable very fast, the problem now

resides in the convergence and the truncation of the above series for performing

the numerical optimization. In fact, in the same reference of Koev and Edelman

(2006) we read:

”Several problems remain open, among them automatic detection of conver-

gence .... and it is unclear how to tell when convergence sets in. Another open

problem is to determine the best way to truncate the series. ”

Thus the implicit numerical difficulties for truncation of any configuration

density series of type (4.12) motivates two areas of investigation: one, continue

the numerical approach started by (Koev and Edelman (2006)) with the confluent

hypergeometric functions and extend it to the case of some configuration series

type Kotz, Pearson, Bessel, Jensen-Logistic, for example; or second, propose a

theoretical approach for solving the problem analytically.

In the next few lines we establish the second question and leave their impli-

cations for future work.

First represent the configuration density in theorem 2.2.1 by using the nota-

tion 1P1(f(t) : a; c;X), as it was done in (4.12)-(4.16).

Unfortunately, the configuration density A 1P1(f(t) : a; c;X) is an infinite

series, given that a = N−1
2 and c = K

2 are positive. (recall that N is the number

of landmarks, K is de dimension and N −K − 1 ≥ 1). So a truncation is needed
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as we explained in the step III of the general inference procedure.

But the above series can be finite if we use the following basic principle.

Lemma 4.2.1. Let N−K−1 ≥ 1 as usual, and consider the infinite configuration

density

CD1 = A 1P1

(
f(t) :

N − 1
2

;
K

2
;X
)

.

If the dimension K is even (odd) and the number of landmarks N is odd (even),

respectively, then the equivalent configuration density

CD2 = A 1P1

(
g(t) : −

(
N − 1

2
− K

2

)
;
K

2
;h(X)

)
is a polynomial of degree K

(
N−1

2 − K
2

)
in the latent roots of the matrix X (oth-

erwise the series is infinite).

By equivalent configuration we just mean that CD1 = CD2, and the functions

g(t) and h(X) depends on the function f(t) under consideration, and which can

be established by using the integral representation of CD1.

Proof. Recall that τ = (t1, . . . , tK), t1 ≥ t2 ≥ · · · tK ≥ 0, is a partition of t

and

(α)τ =
K∏

i=1

(
α− 1

2
(i− 1)

)
ti

,

where

(α)t = α(α + 1) · · · (α + t− 1), (α)0 = 1.

Now, If K is even (odd) and N is odd (even) then −
(

N−1
2 − K

2

)
= − q

2 is a

negative integer and clearly (− q
2)τ = 0 for every t ≥ Kq

2 + 1, then CD2 is a

polynomial of degree Kq
2 in the latent roots of X.

So, the addressed truncation problem of an infinite configuration density can

be solved by finding an equivalent finite configuration density according to the

preceding lemma and selecting an appropriate number of landmarks in the figure.
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Given an elliptical configuration density CD1 indexed by function f(t), a =

N−1
2 > 0,c = K

2 > 0, the crucial point consists of finding an integral representa-

tion valid for c−a = − q
2 < 0 leading an equivalent elliptical configuration density

CD2 indexed by some function g(t). Then the finiteness of CD2 follows from K

even (odd) and N odd (even), respectively.

We already saw a type of these relations, when f(t) is a constant, i.e. in

corollary 4.1.5; in this case the main principle is reduced to the Kummer relations;

and the corresponding configuration densities (which include Gaussian) are finite

by selecting an odd (even) number of landmarks N according to an even (odd)

dimension K, respectively. The implications of the finiteness for applications will

avoid the addressed open problem for truncation proposed in Koev and Edelman

(2006).

The relations (3.2) were studied by Herz in the 50’s and constitute the so

called Kummer relations as a generalization of the known scalar case. In this

sense, we can see the relations in lemma 4.2.1 as the the generalized Kummer

relations associated to the elliptical based non constant function f(t).

Perhaps a comment about the proof of (3.2) and their use in the normal

configuration density is convenient. Herz (1955) (eq. (2.8), p.488) proved that

1F1(a; c;X) = etrX1F1(c− a; c;−X)

is valid for all Re c > (K + 1)/2 − 1 by using a Laplace integral representation

of 1F1(a; c;X), and clearly it admits c − a < 0 which is the key point for the

finiteness of the normal configuration density here derived (see also Goodall and

Mardia (1993), Dı́az-Garćıa et al. (2003)). However there is another representa-

tion of confluent hypergeometric, a beta type integral, which leads the Kummer

relations, also proved by Herz (1955) (eq. (2.9), p.488), but it is not true for our
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configuration density requirements c− a < 0; in particular, Muirhead (1982), p.

265. Th. 7.4.3, proves Kummer relations by using the last representation (Muir-

head (1982), p. 264. Th. 7.4.2), but precisely Dı́az-Garćıa et al. (2003), p. 143,

cite Muirhead’s th. 7.4.3 for the gaussian configuration density simplification,

which is not valid for c − a < 0, the right citation should be Herz (1955) (eq.

(2.8), p.488, which uses the Laplace representation.

The above discussion it is important for generalization of Kummer rela-

tions; for example, the author has not knowledge of this relations for non con-

stant f(t), i.e. expressions of g(t) and h(X) for non normal models. Some

advances in this direction are available from the author, for example, the gener-

alized Kummer relations for a Kotz type I (T positive integer), and a Pearson

type VII, based on a Beta type integral representation; which have ratified that

1P1 (f(t) : a; c;X) =1 P1 (g(t) : c− a; c;−X), for the corresponding f, g, but in

the case of c− a > 0. The next step is to prove the relations for c− a < 0, by a

Laplace representation type, then lemma 4.2.1 can be applied to Kotz type and

Pearson type VII configuration densities and the respective series become finite.

However, the addressed last problem requires the evaluation of certain new inte-

grals involving invariant polynomials (Davis (1980)), so the first stage relations

are good motivations for continuing to study the referred generalized relations.

Meanwhile, fortunately, we can performed inference with finite series (3.15)

specially with the Gaussian case R = 1
2 .

Corollary 4.2.1. If Y ∼ NN−1×K(µN−1×K , σ2IN−1 ⊗ IK), K is even (odd)

and N is odd (even), respectively, then the finite isotropic noncentral normal
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configuration density is given by

ΓK

(
N−1

2

)
πKq/2|IK + V ′V |

N−1
2 ΓK

(
K
2

) etr
(

1
2σ2

µ′U(U ′U)−1U ′µ− 1
2σ2

µ′µ

)

1F1

(
−q

2
;
K

2
;− 1

2σ2
µ′U(U ′U)−1U ′µ

)
, (4.17)

and it is a polynomial of degree K
(

N−1
2 − K

2

)
in the latent roots of 1

2σ2 µ′U(U ′U)−1U ′µ.

4.3 Applications

In this section, we consider planar classical applications in statistical shape anal-

ysis. The following situations are sufficiently studied by shape based on Euclidian

transformations and asymptotic formulae. We will use here exact inference in the

sense that we will use the exact densities and compute the likelihood exactly by

using zonal polynomial theory.

We will test configuration differences under the exact gaussian configuration

density, and the applications include Biology (mouse vertebra, gorilla skulls, girl

and boy craniofacial studies), Medicine (brain MR scans of schizophrenic pa-

tients) and image analysis (postcode recognition).

According to the preceding section, we perform exact inference based on the

finite normal configuration density and a sort of landmark data usually studied

in the context of normal shape distributions.

First we start with the two dimensional case, then corollary 4.2.1 turns:

Corollary 4.3.1. If Y ∼ NN−1×2(µN−1×2, σ
2IN−1 ⊗ I2), and N is odd , then

the finite two dimensional isotropic noncentral normal configuration density is
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given by

Γ2

(
N−1

2

)
πN−3|I2 + V ′V |

N−1
2 ΓK (1)

etr
(

1
2σ2

µ′U(U ′U)−1U ′µ− 1
2σ2

µ′µ

)
1F1

(
−N − 3

2
; 1;− 1

2σ2
µ′U(U ′U)−1U ′µ

)
, (4.18)

and it is a polynomial of degree N − 3 in the two latent roots of

1
2σ2 µ′U(U ′U)−1U ′µ.

Given that most of the applications in shape theory comes from two dimen-

sional images (see Dryden and Mardia (1998)), then it is important to give

explicit expressions for the finite series when N = 5, 7, 9, . . . is small. Let x, y be

the eigenvalues of Ω, then we have for N = 5, 7, . . . , 21 the following polynomials

of degree Kq/2 = N − 3 in the eigenvalues x, y of Ω; expressions useful for exact

inference of the corresponding configuration densities. We use in this case exact

formulae for zonal polynomials given by James (1968) see also Caro-Lopera et al

(2007). In fact all the applications studied in Dryden and Mardia (1998) have

maximum 21 landmarks (which supposes a polynomial of 18 degree in the two

eigenvalues of corresponding matrix), so the following confluent hypergeometric

expressions are sufficient for their corresponding configuration analysis. Note

that the cited applications demand formulae for zonal polynomials of second or-

der up maximum twenty degree, and this expressions are available since 60’s, so

the numerical algorithms of Koev and Edelman (2006) very useful for infinite

series but with the addressed problem of truncations, are not needed here and

the exact inference on configuration densities historically could be studied since

they were proposed by Goodall and Mardia (1993).

Note that the selection of an odd number of landmarks for planar appli-

cations suggest deleting one of them of the available tables usually studied for
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approximations methods, clearly it is also possible to reduce in one, any group

of preset even landmark, however we leave the decision to an expert. According

to the number of odd landmarks, we suggest some problems studied by Dryden

and Mardia (1998) but in the context of finite gaussian configuration densities

(we put in parenthesis the original number of landmarks studied by Dryden and

Mardia (1998)).

The involved series up 15 landmarks are easily computed as (see section 1.19):

• N = 5: Mouse vertebra (6),

1 + y + x + 2 yx (4.19)

• N = 7: Gorilla skulls (8),

1 + 2 y + 2 x +
1
2

y2 + 7 yx +
1
2

x2 + 2 y2x + 2 yx2 +
2
3

y2x2 (4.20)

• N = 9:

1 + 3 y + 3 x +
3
2

y2 + 15 yx +
3
2

x2 +
1
6

y3 +
17
2

y2x

+
17
2

yx2 +
1
6

x3 + y3x +
16
3

y2x2 + yx3 +
2
3

y3x2

+
2
3

y2x3 +
4
45

y3x3 (4.21)

• N = 11: Sooty mangabeys (12).

1 + 4 x + 22 y2x + 4 y +
81
4

y2x2 + 5 y2x3 + 5 y3x2 + 22 yx2

+
31
6

y3x +
31
6

yx3 + 26 yx +
1
24

x4 +
1
3

yx4 +
1
3

y4x

+
2

315
y4x4 +

4
45

y4x3 +
4
45

y3x4 +
1
3

y4x2 +
58
45

y3x3

+
1
3

y2x4 + 3 y2 + 3 x2 +
2
3

y3 +
2
3

x3 +
1
24

y4 (4.22)
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• N = 13: Brain MR scans of schizophrenic patients (13), postcode recogni-

tion (13)

1 + 5 x + 45 y2x + 5 y +
655
12

y2x2 +
241
12

y2x3 +
241
12

y3x2 + 45 yx2

+
95
6

y3x +
95
6

yx3 + 40 yx +
5
24

x4 +
49
24

yx4 +
49
24

y4x +
1
12

yx5

+
4

14175
y5x5 +

2
315

y5x4 +
2

315
y4x5 +

2
45

y5x3 +
46
315

y4x4

+
2
45

y3x5 +
1
9

y5x2 +
47
45

y4x3 +
47
45

y3x4 +
1
9

y2x5

+
1
12

y5x +
8
3

y4x2 +
689
90

y3x3 +
8
3

y2x4 + 5 y2

+5x2 +
5
3

y3 +
5
3

x3 +
5
24

y4 +
1

120
y5 +

1
120

x5 (4.23)

• N = 15:

1 + 6 x + 80 y2x + 6 y +
1445
12

y2x2 +
353
6

y2x3 +
353
6

y3x2 + 80 yx2

+
75
2

y3x +
75
2

yx3 + 57 yx +
5
8

x4 +
29
4

yx4 +
29
4

y4x +
71
120

yx5

+
134

14175
y5x5 +

34
315

y5x4 +
34
315

y4x5 +
1
36

y6x2 +
23
45

y5x3

+
263
210

y4x4 +
23
45

y3x5 +
1
36

y2x6 +
1
60

y6x +
35
36

y5x2 +
181
30

y4x3

+
181
30

y3x4 +
35
36

y2x5 +
1
60

yx6 +
2

135
y6x3 +

2
135

y3x6 +
1

315
y6x4

+
1

315
y4x6 +

4
14175

y6x5 +
4

467775
y6x6 +

4
14175

y5x6 +
1

720
x6

+
1

720
y6 +

71
120

y5x +
187
16

y4x2 +
5339
180

y3x3 +
187
16

y2x4 +
15
2

y2

+
15
2

x2 +
10
3

y3 +
10
3

x3 +
5
8

y4 +
1
20

y5 +
1
20

x5 (4.24)
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• N = 17:

1 + 7 x + 7 y +
1

945
y4x7 + 77 yx +

21
2

y2 +
21
2

x2 +
259
2

y2x

+
259
2

yx2 +
931
4

y2x2 +
35
6

y3 +
35
6

x3 +
455
6

y3x +
455
6

yx3

+
567
4

y3x2 +
567
4

y2x3 +
3199
36

y3x3 +
8

42567525
y7x7 +

35
24

y4

+
35
24

x4 +
469
24

y4x +
469
24

yx4 +
1799
48

y4x2 +
1799
48

y2x4

+
1

945
y7x4 +

3457
144

y4x3 +
3457
144

y3x4 +
416
63

y4x4 +
2

14175
y5x7

+
7
40

y5 +
7
40

x5 +
287
120

y5x +
287
120

yx5 +
1121
240

y5x2 +
1121
240

y2x5

+
73
24

y5x3 +
73
24

y3x5 +
2

14175
y7x5 +

107
126

y5x4 +
107
126

y4x5

+
523
4725

y5x5 +
4

467775
y7x6 +

4
467775

y6x7 +
7

720
y6 +

7
720

x6

+
97
720

y6x +
97
720

yx6 +
4
15

y6x2 +
4
15

y2x6 +
19
108

y6x3 +
19
108

y3x6

+
47
945

y6x4 +
47
945

y4x6 +
31

4725
y6x5 +

31
4725

y5x6 +
184

467775
y6x6

+
1

5040
y7 +

1
5040

x7 +
1

360
y7x +

1
360

yx7 +
1

180
y7x2

+
1

180
y2x7 +

1
270

y7x3 +
1

270
y3x7 (4.25)
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• N = 19:

1 + 8 x + 8 y +
31

1890
y4x7 + 100 yx + 14 y2 + 14 x2 + 196 y2x

+196 yx2 +
819
2

y2x2 +
28
3

y3 +
28
3

x3 +
413
3

y3x +
413
3

yx3

+
896
3

y3x2 +
896
3

y2x3 +
10073

45
y3x3 +

44
3869775

y7x7 +
35
12

y4

+
35
12

x4 +
133
3

y4x +
133
3

yx4 +
1183
12

y4x2 +
1183
12

y2x4 +
31

1890
y7x4

+
1357
18

y4x3 +
1357
18

y3x4 +
104071
4032

y4x4 +
41

14175
y5x7 +

7
15

y5

+
7
15

x5 +
217
30

y5x +
217
30

yx5 +
1

40320
x8 +

491
30

y5x2 +
491
30

y2x5

+
1

2520
y8x +

9151
720

y5x3 +
9151
720

y3x5 +
41

14175
y7x5 +

247
56

y5x4

+
247
56

y4x5 +
3089
4050

y5x5 +
122

467775
y7x6 +

122
467775

y6x7 +
1

1080
y2x8

+
7

180
y6 +

7
180

x6 +
11
18

y6x +
11
18

yx6 +
2017
1440

y6x2 +
2017
1440

y2x6

+
1189
1080

y6x3 +
1189
1080

y3x6 +
1

2520
yx8 +

2921
7560

y6x4 +
2921
7560

y4x6

+
319
4725

y6x5 +
319
4725

y5x6 +
1129

187110
y6x6 +

1
40320

y8 +
1

630
y7

+
1

630
x7 +

127
5040

y7x +
1

1080
y8x2 +

127
5040

yx7 +
7

120
y7x2 +

7
120

y2x7

+
5

108
y7x3 +

5
108

y3x7 +
1

1350
y8x3 +

1
1350

y3x8 +
1

3780
y8x4

+
1

3780
y4x8 +

2
42525

y8x5 +
2

42525
y5x8 +

2
467775

y8x6 +
2

467775
y6x8

+
8

42567525
y8x7 +

8
42567525

y7x8 +
2

638512875
y8x8 (4.26)
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• N = 21: Microfossils (21).

1 + 9 x + 9 y +
109
840

y4x7 +
1

8100
y3x9 + 126 yx + 18 y2 + 18 x2

+282 y2x + 282 yx2 +
1343

2
y2x2 + 14 y3 + 14 x3 +

1
7560

y9x2 + 231 y3x

+231 yx3 +
2

1403325
y6x9 +

1141
2

y3x2 +
1141

2
y2x3 +

1
85050

y9x5

+
7462
15

y3x3 +
349

1576575
y7x7 +

1
18900

y9x4 +
21
4

y4 +
21
4

x4 +
357
4

y4x

+
357
4

yx4 +
1

18900
y4x9 +

903
4

y4x2 +
903
4

y2x4 +
109
840

y7x4 +
4013
20

y4x3

+
4013
20

y3x4 +
184099
2240

y4x4 +
2

638512875
y8x9 +

1613
56700

y5x7 +
21
20

y5

+
21
20

x5 +
91
5

y5x +
91
5

yx5 +
1

4480
x8 +

2809
60

y5x2 +
2809
60

y2x5

+
23

5760
y8x +

10133
240

y5x3 +
10133
240

y3x5 +
1613
56700

y7x5 +
353047
20160

y5x4

+
353047
20160

y4x5 +
1711063
453600

y5x5 +
1061

311850
y7x6 +

1061
311850

y6x7 +
1

8100
y9x3

+
2

189
y2x8 +

7
60

y6 +
7
60

x6 +
41
20

y6x +
41
20

yx6 +
2563
480

y6x2 +
2563
480

y2x6

+
21041
4320

y6x3 +
21041
4320

y3x6 +
23

5760
yx8 +

2
1403325

y9x6 +
643
315

y6x4

+
643
315

y4x6 +
50333
113400

y6x5 +
50333
113400

y5x6 +
2

638512875
y9x8

+
49279
935550

y6x6 +
1

7560
y2x9 +

1
4480

y8 +
1

140
y7 +

1
140

x7 +
71
560

y7x

+
2

189
y8x2 +

71
560

yx7 +
4

42567525
y7x9 +

3361
10080

y7x2 +
3361
10080

y2x7

+
221
720

y7x3 +
221
720

y3x7 +
1

20160
yx9 +

1
20160

y9x +
53

5400
y8x3

+
53

5400
y3x8 +

79
18900

y8x4 +
79

18900
y4x8 +

4
97692469875

y9x9

+
157

170100
y8x5 +

157
170100

y5x8 +
1

85050
y5x9 +

52
467775

y8x6

+
52

467775
y6x8 +

1
362880

x9 +
62

8513505
y8x7 +

62
8513505

y7x8

+
2

8292375
y8x8 +

1
362880

y9 +
4

42567525
y9x7 (4.27)

Now, we apply the above confluent hypergeometric’s in a sort of problems
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and as motivations of future works with other elliptical models and situations.

4.3.1 Biology: mouse vertebra

This problem has been studied deeply by Dryden and Mardia (1998). The data

come from an investigation into the effects of selection for body weight on the

shape of mouse vertebra and the experiments consider the second thoracic ver-

tebra T2 of 30 control (C), 23 large (L) and 23 small (S) bones. The control

group contains unselected mice, the large group contains mice selected at each

generation according to large body weight and the small group was selected for

small body weight. In order to apply the finite densities we do not consider the

third landmark of the total 6, they proposed (see Dryden and Mardia (1998),

p.10 and the data given in p. 313-316). One of the aims is to study configura-

tion changes among the three groups. We suppose that normality assumption is

correct according to the analysis of Dryden and Mardia (1998) in that sense.

Inference is based on (4.19), a confluent hypergeometric polynomial of degree

2 in the two eigenvalues of the zonal polynomial argument, then after a very sim-

ple computation we have the following configuration locations of the three groups.

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2

Control -0.10766 0.15599 -0.0020584 -0.97058 0.0016491

Large -0.084652 0.12434 -0.0050449 -1.0786 0.0021276

Small -0.091618 0.21291 -0.0062915 -1.0179 0.0019793

Then the likelihood ratios for the paired tests H0 : U1 = U2 vs Ha : U1 6= U2,

C-L,L-S and C-S of equal configuration locations with the corresponding p-values

are given next
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Control-Large Control-Small Large-Small

−2 log Λ ≈ χ2
4 45.72 26.66 50.48

p 0.0000000028 0.0000232863 0.0000000003

So, we can say that there is strong evidence for different configuration changes,

and the most important is given between small and large, as we expected. These

results agree with those given by Dryden and Mardia (1998), but a further

comparison between the two approaches and some tests for checking uniform

deformations (see step IV), can be done in a future work.

Removing a landmark at random from a figure deserves a deep study, we just

explore in the next few lines some aspects in the particular context of the mouse

vertebra and gorilla skulls applications, and we leave this interesting problem for

a future research. In the mouse vertebra example we removed the third landmark,

now we explore, a little, the importance of removing one landmark at random in

this example, for this, we show in the next table, the results of all the possible

removals and the corresponding tests H0 : U1 = U2 vs Ha : U1 6= U2 of equal

configuration locations with the corresponding p-values. We focus the attention

on the small (S) and large groups (L); the removed landmark is specified after the

group, for example, S3 refers the original group small without the third landmark;

the last column of the following table gives the p-value of the S-L test.

The six anatomical landmarks on the second thoracic mouse vertebra are

shown in figure 4.1. They are symmetrically selected by measuring the extreme

positive and negative curvature of the bone. See Dryden and Mardia (1998) for

more details.
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Figure 4.1: Mouse vertebra
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Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2 p-value

S1 1.44E+00 -8.19E-01 3.18E+00 -3.50E+00 1.39E-02 6.02E-03

L1 1.42E+00 -7.43E-01 2.97E+00 -3.04E+00 1.46E-02

S2 1.66E-01 -6.31E-02 1.19E+00 -2.30E+00 5.33E-03 1.59E-08

L2 1.90E-01 -1.35E-01 9.97E-01 -2.05E+00 5.94E-03

S3 -9.16E-02 2.13E-01 -6.29E-03 -1.02E+00 1.98E-03 3.00E-10

L3 -8.47E-02 1.24E-01 -5.04E-03 -1.08E+00 2.13E-03

S4 -1.90E-01 7.24E-01 1.28E-01 -1.68E+00 3.29E-03 2.10E-16

L4 -2.03E-01 7.08E-01 1.92E-01 -2.05E+00 6.70E-03

S5 -1.81E-01 1.65E+00 1.25E-01 -1.92E+00 6.58E-03 1.82E-10

L5 -2.57E-01 1.99E+00 2.02E-01 -2.38E+00 8.73E-03

S6 -1.82E-01 1.66E+00 -1.49E-01 3.21E-01 1.89E-03 7.70E-24

L6 -2.53E-01 2.01E+00 -1.41E-01 2.16E-01 4.41E-03

The strong symmetry of the figure maybe explains some differences in the

results, and maybe suggests that the isotropic assumption proposed by Dryden

and Mardia (1998) in the original example is non appropriate. The isotropic

model is not convenient because some correlations are expected between parts

that lie either side of the axis of symmetry. The equality or inequality in curvature

of symmetric points maybe explains the remaining differences, see the p-values

of landmarks (3, 5), (4, 6) and (1, 2).

This results seem to show that the extreme values are not key points in the

discrimination process. In any case we have some evidence that the two configu-

ration populations are different independently of the landmark being removed.

Perhaps an study of this situation involving, non isotropic models, symmetry

and curvature, can provide more details about the corresponding discrimination

process in the mouse vertebra.
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4.3.2 Biology: gorilla skulls

In this application Dryden and Mardia (1998) investigate the cranial differences

between the 29 male and 30 female apes by studying 8 anatomical landmarks.

The landmarks are: pr (1), l (2), o (3), ba (4), st (5), na (6), n (7), b (8).

For the finiteness of the configuration density we remove the third landmark

o (see Dryden and Mardia (1998) p.11, and the data in p. 317-318) and the

corresponding confluent hypergeometric is a polynomials of degree 4, see (4.20).

The estimators of the configuration location and scale parameters are given

below

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22

Female -0.28033 0.31315 -0.42269 -0.59672

Male -0.33313 0.42484 -0.43594 -0.5734

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · 0.27398 -1.4695 0.7363 -1.2665 0.0042665

· · · 0.30563 -1.306 0.73169 -1.0594 0.0050404

So the likelihood ratio for H0 : U1 = U2 vs Ha : U1 6= U2 of configuration

location cranial difference between the sexes of the apes, with the corresponding

p-values, is the following.

Female-Male

−2 log Λ ≈ χ2
8 72.94

p 0.000000000001274

This ratifies strong evidence for differences between the female and male con-
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figuration locations. These results agree with those given by Dryden and Mardia

(1998), but a further comparison between the two approaches and uniform defor-

mation tests must be done in a future work.

Now, in this case there is no symmetry, so we should expect that a random

removal of one landmark does not change significantly the results of the tests.

In the next table we provide all the possible removals and the corresponding

tests H0 : U1 = U2 vs Ha : U1 6= U2 of configuration location cranial difference

between male (M) and female (F) groups, along with the p-values. Recall that

the landmarks on the midline section of the ape cranium are: prosthion pr (1),

lambda l (2), opisthion o (3), basion ba (4), staphylion st (5), nariale na (6),

nasion n (7), bregma b (8). See figure 4.2. The face region is taken to be

comprised of landmarks 7, 4, 5, 1 and 6. The braincase region is taken to be

comprised of landmarks 7, 8, 2, 3 and 4.
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Figure 4.2: Gorilla skull
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Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

M1 -1.79E+00 3.55E+00 -4.37E+00 6.22E+00 -3.58E+00 3.12E+00

F1 -1.29E+00 2.85E+00 -3.00E+00 4.81E+00 -2.98E+00 2.70E+00

M2 -6.12E-01 9.77E-01 -2.31E-01 -1.45E+00 2.41E+00 -6.29E+00

F2 -4.21E-01 4.93E-01 -8.28E-02 -2.16E+00 3.53E+00 -1.01E+01

M3 -3.33E-01 4.25E-01 -4.36E-01 -5.73E-01 3.06E-01 -1.31E+00

F3 -2.80E-01 3.13E-01 -4.23E-01 -5.97E-01 2.74E-01 -1.47E+00

M4 -4.62E-01 4.44E-01 -3.88E-01 -5.85E-01 4.82E-01 -1.33E+00

F4 -3.74E-01 2.50E-01 -3.75E-01 -5.69E-01 4.49E-01 -1.35E+00

M5 -1.70E-01 7.26E-01 -4.61E-01 -6.56E-01 4.23E-01 -1.40E+00

F5 -1.44E-01 5.98E-01 -4.35E-01 -6.59E-01 4.00E-01 -1.43E+00

M6 -1.67E-01 7.23E-01 -4.34E-01 2.71E-01 4.13E-01 -1.58E+00

F6 -1.43E-01 5.97E-01 -3.49E-01 1.02E-01 3.81E-01 -1.58E+00

M7 -1.70E-01 7.27E-01 -4.34E-01 2.72E-01 -3.81E-01 -7.28E-01

F7 -1.45E-01 5.98E-01 -3.48E-01 1.04E-01 -3.70E-01 -6.95E-01

M8 -1.68E-01 7.26E-01 -4.33E-01 2.72E-01 -3.83E-01 -7.28E-01

F8 -1.44E-01 5.98E-01 -3.49E-01 1.03E-01 -3.72E-01 -6.94E-01
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Group Ṽ41 Ṽ42 σ̃2 p-value

M1 -1.33E+00 -4.41E-01 2.94E-02 1.55E-15

F1 -1.50E+00 -1.84E-01 1.30E-02

M2 3.36E+00 -6.94E+00 8.60E-02 1.78E-15

F2 4.97E+00 -1.17E+01 1.55E-01

M3 7.32E-01 -1.06E+00 5.04E-03 1.28E-12

F3 7.36E-01 -1.27E+00 4.26E-03

M4 8.73E-01 -1.08E+00 5.85E-03 3.90E-14

F4 8.85E-01 -1.17E+00 3.26E-03

M5 8.23E-01 -1.13E+00 4.83E-03 3.34E-08

F5 8.45E-01 -1.23E+00 3.54E-03

M6 8.16E-01 -1.29E+00 6.00E-03 3.59E-14

F6 8.29E-01 -1.36E+00 3.98E-03

M7 9.54E-01 -1.44E+00 4.53E-03 1.13E-18

F7 9.60E-01 -1.52E+00 2.87E-03

M8 4.86E-01 -1.49E+00 4.95E-03 6.35E-14

F8 4.51E-01 -1.49E+00 3.45E-03

All the cases are very similar and support the conclusion about the difference

in the configuration of both populations, and the conclusion is independent of

the landmark being removed, we should expect minor extreme differences when

there is not symmetry and under the isotropic model.

We noted that removing 1 landmark, the conclusion of this problem is pre-

served, now, the next question goes in terms of the possibility of removing three

points and obtaining the same conclusion. In the following lines we removed two

landmarks after removing the landmark o. We are taking advantage of our finite

configuration density which can be computed easily for all possible combinations,
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and without approximations. In this problem of 8 points, we can remove maxi-

mum 3 landmarks in order to obtain a non trivial configuration. If the three digit

after the male (M) and the female (F) groups represent the landmarks removed

of the original figure, we have the following populations parameter estimations

and the p-values of the corresponding tests H0 : U1 = U2 vs Ha : U1 6= U2 of

configuration location cranial difference between both groups. In this example,

we remove at the third landmark (o) and all the possible groups of two points

after that.
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Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2 p-value

S312 -6.20E+00 3.56E+00 -8.29E+00 3.74E+00 7.13E-02 3.04E-12

L312 -4.02E+00 2.38E+00 -5.17E+00 2.17E+00 4.64E-02

S314 -1.24E+00 1.25E+00 -1.32E+00 5.92E-01 6.47E-03 1.84E-17

L314 -1.02E+00 9.92E-01 -1.05E+00 3.31E-01 9.75E-03

S315 -1.11E+00 6.72E-01 -1.20E+00 9.30E-02 4.79E-03 6.36E-11

L315 -1.02E+00 5.63E-01 -1.04E+00 1.82E-04 5.56E-03

S316 -2.20E+00 2.01E+00 -1.60E+00 5.70E-01 9.73E-03 6.51E-10

L316 -2.23E+00 1.80E+00 -1.41E+00 3.70E-01 1.02E-02

S317 -1.13E+00 2.11E+00 -1.88E+00 5.45E-01 1.02E-02 5.68E-18

L317 -1.37E+00 2.16E+00 -1.63E+00 2.75E-01 1.29E-02

S318 -1.12E+00 2.11E+00 -1.98E+00 1.53E+00 1.05E-02 3.44E-14

L318 -1.38E+00 2.17E+00 -1.94E+00 1.32E+00 1.06E-02

S324 2.43E+00 5.40E+00 3.83E+00 6.36E+00 4.07E-02 3.01E-01

L324 2.95E+00 6.05E+00 4.44E+00 7.20E+00 6.92E-02

S325 2.53E+00 5.39E+00 3.57E+00 6.22E+00 4.89E-02 3.20E-02

L325 3.08E+00 6.25E+00 4.07E+00 6.99E+00 7.89E-02

S326 9.69E-01 -1.30E+01 2.10E+00 -1.47E+01 3.43E-01 4.88E-07

L326 3.67E-01 -6.57E+00 1.13E+00 -7.19E+00 1.02E-01

S327 -4.53E-01 -3.00E+00 2.76E+00 -2.21E+01 2.39E-01 1.74E-13

L327 -5.05E-01 -1.27E+00 1.36E+00 -9.29E+00 6.60E-02

S328 -4.29E-01 -3.06E+00 1.47E+00 -1.67E+01 2.19E-01 1.07E-14

L328 -5.08E-01 -1.24E+00 5.47E-01 -6.88E+00 6.91E-02
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Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2 p-value

S345 2.96E+00 6.18E+00 2.91E+00 4.90E+00 9.89E-02 2.80E-03

L345 3.24E+00 6.44E+00 2.93E+00 4.58E+00 2.01E-01

S346 -3.35E-01 -2.03E+00 2.21E-01 -1.62E+00 1.14E-02 6.18E-17

L346 -2.46E-01 -1.53E+00 2.88E-01 -1.14E+00 1.38E-02

S347 -5.37E-01 -5.80E-01 2.68E-01 -2.01E+00 7.54E-03 2.08E-23

L347 -5.42E-01 -4.76E-01 3.59E-01 -1.43E+00 9.65E-03

S348 -5.38E-01 -5.76E-01 -2.08E-01 -1.96E+00 8.92E-03 6.37E-16

L348 -5.43E-01 -4.74E-01 -1.18E-01 -1.48E+00 1.07E-02

S356 1.09E-01 -1.43E+00 5.71E-01 -1.14E+00 6.80E-03 1.89E-08

L356 1.25E-01 -1.25E+00 5.52E-01 -9.25E-01 6.77E-03

S357 -4.74E-01 -5.03E-01 7.24E-01 -1.39E+00 4.34E-03 8.14E-13

L357 -4.98E-01 -4.50E-01 7.14E-01 -1.14E+00 4.31E-03

S358 -4.76E-01 -5.01E-01 2.37E-01 -1.36E+00 5.51E-03 7.98E-07

L358 -5.00E-01 -4.50E-01 2.59E-01 -1.18E+00 4.93E-03

S367 -2.80E-01 3.16E-01 6.74E-01 -1.60E+00 5.21E-03 1.14E-17

L367 -3.33E-01 4.27E-01 6.71E-01 -1.36E+00 6.46E-03

S368 -2.80E-01 3.15E-01 1.86E-01 -1.56E+00 6.46E-03 2.05E-11

L368 -3.32E-01 4.27E-01 2.14E-01 -1.40E+00 6.82E-03

S378 -2.79E-01 3.18E-01 -4.14E-01 -6.07E-01 2.36E-03 6.61E-14

L378 -3.30E-01 4.27E-01 -4.27E-01 -5.81E-01 2.42E-03

Note that even in the case where the first removal is at random, in this case the

landmark o, the second and third removals preserve the conclusion, in 18 times of

the possible 21 combinations, about rejecting the null hypothesis, i.e. the strong

evidence for differences in both populations is preserved. However, the opposite

results of combinations 324 and 325, and 345 in a minor sense, maybe is explained
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by the approximately collinearity of points 3, 4, 5 and the importance of this

three combinations for comprising the braincase and the curvature information

(see Dryden and Mardia (1998)). But it deserves a deep study in this particular

combinations.

In any case one random landmark removal do not alter sufficiently the results

of the mouse and gorilla experiments, even in symmetric figures, but 3 or more

removals requires additional studies.

However we can improve our conclusions and avoid the false positive about

rejecting the null hypothesis by using a selecting model criterion in this two

particular examples.

Explicitly, we can apply the Schwarz’s criterion in order to select the best

candidate to be removed, for example, landmark 6 and landmark n are maybe

the best selections in the mouse and gorilla skulls problems, respectively, see the

next table. The Schwarz criterion is based on the configuration likelihood instead

of the classical elliptical likelihood, because we can take advantage of the finite

configuration, which in this two examples is a polynomial of degree two and five

respectively.

M-F landmark removed Schwarz’s crit. S-L landmark removed Schwarz’s crit.

pr 8.74E+01 1 1.44E+01

l 8.71E+01 2 4.21E+01

o 7.29E+01 3 5.05E+01

ba 8.05E+01 4 7.96E+01

st 5.05E+01 5 5.14E+01

na 8.07E+01 6 1.15E+02

n 1.03E+02

b 7.94E+01
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In any case, we have noticed that in the mouse vertebra and gorilla skull

applications, the conclusions do not differ to much from the tests based on the

landmarks we removed (3 and o, respectivelly) in our examples, and the equality

of both configuration mean populations, in any case, is highly rejected.

As a conclusion of this exploratory examples, we note that symmetry (joint

with curvature) and the isotropic model play an important role in the landmark

removal procedure and it is important to potentiate the use of our finite config-

uration densities in this two situations.

4.3.3 Biology: The university school study subsample

In this experiment Bookstein (1991) studies sex shape differences between 8

craniofacial landmarks for 36 normal Ann Arbor boys and 26 girls near the ages

of 8 years. In order to get a finite configuration density we discard the landmark

Sella (see Bookstein (1991), p.401-405), then the hypergeometric functions is a

polynomial of degree 4, see (4.20). We can study all the possible combinations

of landmarks as in the above example, we have similar conclusions, because the

figures are not symmetric.

Then, the estimators of the configuration location and scale parameters are

the following

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22

Male -1.2425 2.1948 0.46435 -1.3752

Female -1.2483 2.2331 0.43685 -1.3845
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· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · -0.91487 0.66127 0.15775 -0.069042 0.0032908

· · · -0.92903 0.70439 0.1616 -0.077236 0.0059142

In this case, the likelihood ratio for H0 : U1 = U2 vs Ha : U1 6= U2 of

configuration location cranialfacial difference between boys and girls, with the

corresponding p-values, is the following.

Male-Female

−2 log Λ ≈ χ2
8 5.48

p 0.7053

And the difference between these two configuration locations is insignificant.

A similar global conclusion gives Bookstein (1991), however a more detailed

study of landmark subsets is required, then possible differences can be detected,

as Bookstein (1991) ratifies in a different shape context.

4.3.4 Medicine: brain MR scans of schizophrenic pa-

tients

We return to the applications in Dryden and Mardia (1998), in this case, they

study 13 landmarks on a near midsagittal two dimensional slices from magnetic

resonance (MR) brain scans of 14 schizophrenic patients and 14 normal patients.

Given that the number of two dimensional landmarks is odd we preserve them

leading a 10 degree confluent hypergeometric polynomial, easy to compute, see

(4.23).

Thus, the estimators of the configuration location and scale parameters are
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given by

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

Normal -0.64099 2.6942 -1.2744 -2.8323 -0.42155 -1.003

Squizo. -0.68623 2.393 -1.145 -2.8484 -0.37349 -1.0744

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-0.31011 -2.3094 -0.30236 -3.5261 0.36 -0.90135

-0.23173 -2.1929 -0.20173 -3.3226 0.38123 -0.84316

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

0.1597 -2.2205 0.8518 -0.7578 1.8686 0.86501

0.20429 -2.109 0.84683 -0.56588 1.7948 0.88466

Ṽ10,1 Ṽ10,2 σ̃2

-0.14205 0.20718 0.010843

-0.079005 0.1378 0.054064

Dryden and Mardia (1998) advert about the small sample size of this exper-

iment and obviously this can explain the opposite result

Normal-Squizophrenic

−2 log Λ ≈ χ2
20 11.96

p 0.9174

Mean shape difference is concluded in Dryden and Mardia (1998), but con-

figuration difference is definitely insignificant. The controversial configuration

location results could suggest a deep study for small sample likelihood and per-

haps it can ratify important different conclusions of studies about schizophrenia
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classification based only on MR scans. But the most important fact here is the

geometric meaning of the data, because it certainly differs from the preceding

applications, which have an explicit geometric explanation.

4.3.5 Image analysis: postcode recognition

Again, a 13 landmark problem, which supposes a 10 degree confluent hyperge-

ometric appears, in this case Dryden and Mardia (1998) studies a 30 random

sample of handwritten digit 3 for postcode recognition. The data is available in

Dryden and Mardia (1998), p. 318-320.

The next table shows, the configuration location and scale parameter esti-

mates, joint the configuration coordinates of a template number 3 digit, with two

equal sized arcs, and 13 landmarks (two coincident) lying on two regular octagons

see Dryden and Mardia (1998), p.153.

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

Digit 3 -0.79087 1.9432 -2.1073 1.5875 -2.713 0.81862

Template -2.0908 2.2071 -4.0409 2.8051 -4.5904 2.2904

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-2.8084 -0.066901 -2.5712 0.71315 -2.6934 1.2955

-4.2069 1.3688 -3.3126 1.7582 -3.5881 2.7053

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

-3.1548 1.6802 -3.8004 1.34 -4.0517 0.33141

-5.4996 4.0629 -7.5557 4.8428 -8.2514 4.4208
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Ṽ10,1 Ṽ10,2 σ̃2

-3.7659 -0.6583 0.22904

-6.9108 2.8899

And clearly, this enormous difference must be revealed in the corresponding

test

Digit-Template

−2 log Λ ≈ χ2
20 494.88

p ≈ 0

This result was corroborated with probability≈ 0.0002 by Dryden and Mardia

(1998), p. 153. under a shape model. In any case there is strong evidence that

the configuration location does not have the configuration of the ideal template

for digit 3.

Remark 4.3.1. Finally, we must note that the remaining bidimensional applica-

tions in Dryden and Mardia (1998), and Bookstein (1991), etc. can be studied

with the finite configuration densities and exact formulae for zonal polynomials;

in fact the three dimensional applications available in the literature (see Goodall

and Mardia (1993)) and others in genetics for 3D DNA part, etc, can be studied

in an exact form with the help of corollary 4.1.5 via lemma 4.2.1 and exact for-

mulae for zonal polynomials of third degree in James (1964), avoiding the open

truncation problems implicit in Koev and Edelman (2006).

Of course the study of finite configuration densities associated to Pearson,

Bessel, Jensen-logistic and the general Kotz, will facilitate exact inference and

will avoid the addressed truncation problem, but it will depends on some devel-

114



opments in integration and series representation. This topic is been investigated.
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Conclusions

• This thesis provides the necessary mathematical tools in integration and

partition theory, for deriving the noncentral configuration density of any

elliptical model by the computation of a simple single integral.

• It avoids the multivariate calculation performed in the published works, the

isotropic Gaussian and some supported Pearson VII type integrals, both of

them here revised and corrected.

• Exact expressions for the classical elliptical families are derived by using

some partition results and single integration, explicitly:

– Kotz configuration density,

– Pearson VII type configuration density,

– Bessel configuration density,

– Jensen-Logistic configuration density.

• The general procedure for performing inference of any elliptical model is

proposed and it is set in such manner that the published efficient numerical

algorithms for confluent infinite series type involving zonal polynomials, can

be used.
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• Moreover, a further simplification of the closed computational problem is

also proposed: the study of finite configuration densities.

• Then a subfamily of finite configurations is derived and as a simple example

of their use, exact inference for testing configuration location differences in

some applied problems is provided.

• Thus, by using our formulae for zonal polynomials, some two dimensional

applications of the shape literature are studied.

• The applications include:

– Biology: mouse vertebra,

– Biology: gorilla skulls,

– Biology: girl and boy craniofacial studies,

– Medicine: brain MR scans of schizophrenic patients,

– Image analysis: postcode recognition.

• Given the simplicity in computations involving finite configuration densi-

ties, we can study deeply the landmark selection methodology surveyed in

the mouse vertebra and gorilla skulls applications; they suggest to study

the symmetry (joint with curvature) and the isotropy of the model in order

to characterize the sensibility of the classification and the construction of

model criteria for this particular and exceptional finite configurations.

• Some of the theoretical results of the thesis are summarized in Caro-Lopera

et al (2008a).
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• The inference and applications of the thesis are surveyed in Caro-Lopera

et al (2008b).
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Future works

We can divide the future research in two groups:

Research area I.

• Matrix Generalized Kummer relations.

• Finite noncentral elliptical configuration densities.

• Applications with exact densities avoiding the truncation problem of Koev

and Edelman (2006).

Research area II.

• Construction of new shape models via hypergeometric induction.

• Matrix Generalized Euler relations.

• Finite shape densities via Euler relations and applications.
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J. A. Dı́az-Garćıa, and F. J. Caro-Lopera. (2006). An Alternative Approach for

Deriving the Laplace-Beltrami Operator for the Zonal Polynomials of Positive

Semidefinite and Definite Matrix Argument. Far East Journal of Mathematical

Sciences, 22 (3), 273–290.

I. L. Dryden and K.V. Mardia. (1998). Statistical shape analysis. John Wiley and

Sons, Chichester.

I. Dumitriu, A. Edelman, and G. Shuman. (2004). MOPS:Multivariate

orthogonal polynomials (simbolically). http://math.berkeley.edu/ du-

mitriu/mopspage.html

121



K.T. Fang, and Y. T. Zhang. (1990). Generalized Multivariate Analysis. Science

Press, Springer-Verlag, Beijing.

K.T. Fang, S. Kotz, and K.W.Ng. (1990). Symmetric Multivariate and Related

Distributions. Chapman and Hall, New York.

C. R. Goodall, and K.V. Mardia. (1993). Multivariate Aspects of Shape Theory.

The Annals of Statistics, 21, 848–866.

A. K. Gupta, and T. Varga. (1993). Elliptically Contoured Models in Statistics,

Kluwer Academic Publishers, Dordrecht.
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