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MATEMÁTICAS APLICADAS.

ANALYTICAL AND NUMERICAL STUDIES OF
AGE-STRUCTURED PREDATOR-PREY MODELS

TESIS
QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIAS
CON ORIENTACIÓN EN
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Summary
The study of predator-prey models is a very active research area and highly

applicable area nowadays. Although classical models date back to the work of
Thomas Robert Malthus (1798) and P. F. Verhulst (1837), the basic modeling ideas
are still useful in our days. One highly generalized assumption in population models
is the homogeneity of their individuals. However, the reality is quite different from
this because in a population there are individuals with different characteristics. Fur-
thermore, the natality and mortality coefficients usually depend on the individual’s
age. Then, in order to improve the modeling of population dynamics it is neces-
sary to take into account the age structure or any other structure in the population
which may be considered relevant. The consequences of doingthis are an increase
in the complexity of the model, the appearance of integro-differential equations and
instability of the solutions.

In this work, we introduce a new gamma of age-structured predator-prey models
and we study their solutions. These models have age structure in the prey popula-
tion. The nonlinear analytical tools that we use are the Painlevé test (P-test) and
the bifurcation theory. The main objective of this study is to propose suitable mod-
eling terms based onanalytical modeling. In order to do this, we assume general
predation terms. This allows us to study a wide variety of models and also to find
conditions in such a way that they satisfy the P-test requirements. Then, we look in
the set of functions that fulfill those requirements and search for periodic solutions.
This is important because the existence of periodic solutions is equivalent to hav-
ing coexistence between the predator-prey species. When P-test or the integrability
conditions are not satisfied we are able to provide characteristics of the solutions.
Finally, we study the effect of general birth rate which is important because the
initial set of equations change increasing the number of equations. We numeri-
cally find that such a birth rate can help to stabilize the model without modifying
dramatically the behavior of the model.
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Introduction
The study of predator-prey models is a very active research area these days.

This accounts for the large number of papers published yearly on the subject, for
example a rapid search using Google Scholar reports 5,290 papers in 2012. When
we introduce predator-prey models it is inevitable to mention the founders of pop-
ulation dynamics: T.R. Malthus (1798) and P.F. Verhulst (1837) who proposed lin-
ear population growth and the logistic equation, respectively. Later, Lotka [26]
and Volterra’s [45] work appeared on the competence phenomena between species.
They proposed the model:

P (t)

dt
= P (t)(a− bD(t)) (1)

D(t)

dt
= D(t)(cP (t)− d), (2)

whereP (t) is the prey population,D(t) is the predator population anda, b, c and
d are positive constants. We can observe from equation (1) that in the absence of
predators (D(t) = 0) the prey population (P (t)) grows in a Malthusian way. Also
from equation (1) we note the term(a− bP (t)) is the growth rate of the prey. Then,
this rate is reduced by the presence of predators. When the prey population is zero
the predator populationD disappears, see equation (2). The termcD(t)P (t) in (2)
is what we call theLotka-Volterra predation term. This model considers that these
populations are homogeneous. A further analysis of this model can be also be found
in [29].

Clearly, there are different characteristics depending on age such as fertility
and mortality rates in a population. Then, a more complete model is obtained by
taking into account the age structure of the population. Theidea of age structure
in population dynamics can be traced back to Leslie (1945) [23]. He proposed a
matrix model where different stages of a population were considered:

N0(t+∆t) = b0N0(t) + b1N1(t) + · · ·+ bnNn(t) (3)

N1(t+∆t) = (1− d0)N0(t) (4)

N2(t+∆t) = (1− d1)N1(t) (5)
... (6)

Nm(t+∆t) = (1− dm−1)Nm−1(t) (7)
... (8)

Nn(t+∆t) = (1− dn−1)Nn−1(t). (9)

1
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There,Ni is the number of individuals of age in the interval[i − 1, i], i = 1, . . . n.
The birth rate of the population ofi years is denoted bybi anddi is the death rate.
This model is for one population. We observe that the offspring of each group of
age contributes to the population of age zero in (3), the firstequation of the model.
The model can be written in matrix notation as,

N(t+∆t) = AN(t) (10)

whereA is a square matrix and theN(t) is the vector,

N(t) =











N0(t)
N1(t)

...
Nn(t)











. (11)

Different models can be constructed using the ideas of Leslie. In particular, predator-
prey models can be analyzed using these models. However, themodel we study in
our work has a discrete version proposed in [40]:

P1(n+ 1) = (1− µ)P1(n) +
cB(n)

1 + kP2(n)
, (12)

B(n+ 1) = −(γ − 2)B(n) + βA, (13)

A(n+ 1) = −(γ − 2)A(n) + eα
(

cB(n+ 1)

1 + kP2(n+ 1)
+

(µ− 2)cB(n)

1 + kP2(n)

)

, (14)

P2(n+ 1) = bP2(n) + dB(n)P2(2) λ(1− e−gP2(n)), (15)

whereP1(t) is the total prey population,B(t) is the juvenile prey population, and
the predator population isP1(t). All other letters represent positive constants. This
predator-prey model considers the age structure in the prey. It is important to remark
that this system also exhibits unbounded behavior.

On the other hand, we are interest in continuous models. The equations that
describe this phenomenon are described in [17]:

ρω(ω, t) + ρt(ω, t) + µ̂ρ(ω, t) = 0, (16)

B(t) = ρ(0, t) =

∫

∞

0

β(ω, P (t))ρ(ω, t)dω, (17)

P (t) =

∫

∞

0

ρ(ω, t)dω (18)

whereρ(ω, t) indicates the number of individuals of ageω at the timet, (ω > 0),
t > 0), P (t) is the total population,B(t) is the juvenile population,β(ω, P (t))

2
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is the birth rate,̂µ is the mortality rate,β(ω, P (t)) is the reproductive rate at age
ω and populationP (t). All parameters and variables are supposed positive. Our
work takes ideas from this work. Predator-prey models with age structure have
been analyzed using different techniques [33, 5, 4, 14, 13, 11]. Cushing’s book [11]
is an excellent starting point of the topic of structured population dynamics. There,
discrete and continuous models with age structure are described.

Our work is developed in the context of predator-prey population dynamics with
age structure. We study models of two interacting populations: one is the predator
population and the second is the prey population. Age structure is assumed in the
prey population, which allows us to study predation only on the juvenile population.
In addition, cannibalism can also be found in the interaction of certain populations
[24]. An undesirable characteristic of population models with age structure is hav-
ing unstable periodic solutions. These kinds of solutions do not correspond to the
biological reality where prey and predator populations cancoexist. Among the ef-
forts to reach coexistence are the inclusion of diverse factors such as self-limitation
of the prey, harvesting of the prey, and cannibalism of the younger prey, see for
example [10, 25, 37].

A related model studied by Cushing in [9] is following model,

dP (t)

dt
+ µP (t) = bh(R(t), P (t))

∫

∞

0

β
β(a)

da
P (t− a)e−µada, (19)

dR(t)

dt
= rR(t)

(

1−
R(t)

K

)

− g(R(t), P (t)), (20)

whereP is predator population,R the prey population,µ the mortality rate,f
the fecundity rate,h andg are the fecundity function and the predation function
responses, respectively. In the model, we can see the use of delay differential system
of equations, integro-differential equations, general predation function, etc.

As we mentioned, one drawback associated with these previous models is the
presence of unbounded oscillations [17]. Therefore, a key feature sought in these
models is the long term coexistence of species. The classical approach to find-
ing criteria of mathematical coexistence is through asymptotic stability or global
asymptotic stability of a unique equilibrium point or a periodic solution [46, 48].
One of the relevant aspect to consider is the predation of a population on only one
age group [24]. Our results deal with these processes but using the Painlev́e test.
Applications of such tools have been done on predator-prey models, but the age
structure has not been taken into account [33]. Besides that,Painlev́e tools are
usually used to find conditions of integrability.

This work can be understood as the further study of the model presented in
[36] where there is a first modification of the way in which the newborns enter the

3
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population and also there the self-limitation was considered:

dP (t)

dt
= −µ0P (t)− µP 2 +

B

1 + kP2

dB(t)

dt
= −θB(t)− µP (t)B(t) + β0A(t)

dA(t)

dt
= −θA(t)− µD(t)A(t) +

B

1 + kP2

dD(t)

dt
= −bD(t) + cB(t)D(t)− λ(1− e−dP2). (21)

whereP2 is the predator population and the termλ(1 − e−dP2) represents the fish-
ing on the predator.B(t) is the prey juvenile population andA(T ) is an auxiliary
variable. All other letters are positive constants. In [36]a numerical study with dif-
ferent modelling terms was carried out. Predator-prey coexistence was numerically
found with self-limitation.

In our case, one of the techniques we use in this work is based on Painlev́e
analysis, which has its origin in the work of S.V. Kovalevskaya who was the first to
consider the analytical theory of differential equations in physics problems [20]. A
criteria to establish necessary conditions to have integrability is the Painlev́e test or
for short theP-test. Another technique used is the theory of bifurcation to analyze
the nature of equilibrium and periodic solutions which are of biological interest.
The initial model we consider is the following:

dP (t)

dt
= −µoP (t)− µP 2 + F (P (t), B(t), A(t), D(t)),

dB(t)

dt
= −θB(t)− µP (t)B(t) + β0A(t),

dA(t)

dt
= −θA(t)− µD(t)A(t) + F (P (t), B(t), A(t), D(t)),

dD(t)

dt
= −bD(t) + cB(t)D(t), (22)

where the variables have the same meaning as the previous model butD = P2. Its
construction is detailed en Chapter 2.

The objective of this thesis is to introduce a new gamma of age-structured pop-
ulation models and to analyze their solutions using the Painlevé analysis and tech-
niques from bifurcation theory, which is what we have calledanalytical modeling.
Part of this process will be carried out using the Painlevé test [1, 2, 3] to propose
conditions in order to have integrability in the systems by considering solutions
where only pole type singularities are allowed [8, 30, 41]. The modeling is also

4
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part of this work, because one of the goals is to describe realistic behavior of both
populations, which allows us to propose predation functions where coexistence or
stable periodic solutions are difficult to achieve. We also carry out numerical anal-
ysis of all models including one with a more general birth rate in order to find
important information about biological aspects such as coexistence of predator and
prey populations.

Specific objectives

The specific objectives are:

1. To establish functional conditions for juvenile survivors in order to obtain
solutions where only pole type singularities are allowed.

2. To allow the predation function in the models to vary in such a way that it
allows us more flexibility to succeed in the P-test.

3. To propose viable interaction population functions to achieve coexistence.

4. To study numerically how these previous functions modifythe behavior of
the system.

5. To search numerically for functions that exhibit periodic solution in the mod-
els.

6. To consider new parametrized birth functions in order to propose new age-
structured models.

5
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Chapter 1

Age-structured predator-prey models

1.1 Age-structured models

The model that we study in this work has evolved from the pioneer work of Gurtin
and Mac Camy [17]. They introduced a theory of population dynamics with age
dependence. The equations that describe this phenomenon are:

ρω(ω, t) + ρt(ω, t) + µ̂ρ(ω, t) = 0, (1.1)

B(t) = ρ(0, t) =

∫

∞

0

β(ω, P (t))ρ(ω, t)dω, (1.2)

P (t) =

∫

∞

0

ρ(ω, t)dω (1.3)

whereρ(ω, t) indicates the number of individuals of ageω at the timet, (ω > 0),
t > 0), P (t) is the total population,B(t) is the juvenile population,β(ω, P (t)) is
the birth rate,̂µ is the mortality rate,β(ω, P (t)) is the reproductive rate at ageω
and populationP (t). All parameters and variables are supposed positive. These
equations involve one population, which could be either thepredator or the prey.

Equation (16) describes the age structure in the population. The variation in the
number of individuals with respect to the age (ρω(ω, t)) plus its variation with re-
spect ot the timeρt(ω, t), is proportional to the total number of individuals−µ̂ρ(ω, t).
Equation (17) tells us that the juvenile population is due tothe newborn population
ρ(0, t) of age zero. Also, the new births are proportional to the product of the num-
ber of individuals times the birth rate. Equation (18) computes the total population
by adding the population of all ages. The integral limits aregiven from zero to
infinity, but it could be given up to a finite age.

In the following subsections, we apply this theory to construct a predator-prey
model with age structure in the prey population which is the starting point of this
thesis.

7



CHAPTER 1. AGE-STRUCTURED PREDATOR-PREY MODELS

1.1.1 The McKendrick- von Foester equation

To deduce equation (16, we proceed as in [28]. Let us considera population where
ρ(ω, t) is the number of individuals of ageω at timet. The number of individuals
in the age interval,ω to ω +∆ω, is computed as follows:

P (t, ω) =

∫ ω+∆ω

ω

ρ(ψ, t) dψ. (1.4)

Assuming that there is no migration, then the change in this population is caused by
the arrival of individuals who have reached ageω, the outcome of individuals who
become older than the age groupρ(ω+∆ω, t). And finally, the natural death of the
members occurred in this age group. Then, we obtain

d

dt
P (t, ω) = ρ(ω, t)− ρ(ω +∆ω, t)− µ̂P (t) (1.5)

and using equation (1.5), we find,

∫ ω+∆ω

ω

∂

∂t
ρ(ψ, t) dψ = ρ(ω, t)− ρ(ω +∆ω, t) dψ − µ̂

∫ ω+∆ω

ω

ρ(ψ, t) (1.6)

whereµ̂ is the mortality rate. Next, we divide the function by∆ω and we take
the limit as∆ω tends to zero, we obtain,

lim
∆ω→0

[

1

∆ω

∫ ω+∆ω

ω

∂

∂t
ρ(ψ, t) d + µ̂

1

∆ω

∫ ω+∆ω

ω

ρ(ψ, t) dψ

+
ρ(ω +∆ω, t)− ρ(ω, t)

∆ω

]

= 0.

The result is the so called McKendrick- von Foester equation.

∂

∂t
ρ(ω, t) + µ̂ρ(ω, t) +

∂

∂ω
ρ(ω, t) = 0. (1.7)

or for short:

ρt + ρω + µ̂ρ = 0. (1.8)

A different construction of this equation that shows the relation between the
Leslie’s work [23] and the equation of MacKendrick can be found in [11].

8



1.1. AGE-STRUCTURED MODELS

1.1.2 A first model

In order to get a well defined model, it is necessary to have a specific birth rate of
the population (β(ω)) and it is also necessary to define the mortality rate. Our birth
rate selection is

β(ω) = β0ωe
−αω (1.9)

with β0 > 0 andα ≥ 0. This function is particularly suitable for biological aspects
because it is zero for newborns and small for ages close to zero. This is because
newborns usually do not reproduce at early stages. Another characteristic is that the
birth rate increases with age up to a maximum for the young adults and it decreases
to zero when age becomes advanced (ω tends to infinity). In addition to this, if
α > 0, the birth rate suits well for many mammals. Whenα = 0 thenβ = β0ω
which may be appropriate for certain fish species, where fertility increases with age.

The mortality ratêµ can depend on the age of the total population or it can de-
pend on the number of individuals of another population, forexample the predators.
In our case we will consider̂µ to be independent of age.

Now, we construct a system of differential equations which includes the vari-
ables of the total population,P (t) and the population of newbornsB(t). In order to
do this, we take equation (18)

d

dt
P (t) =

∫

∞

0

∂

∂t
ρ(ω, t)dω. (1.10)

Then, we substitute the equation of MacKendrick (1.7) in (1.10),

d

dt
P (t) = −

∫

∞

0

∂

∂ω
ρ(ω, t) dω − µ̂

∫

∞

0

ρ(ω, t) dω . (1.11)

Using the fundamental theorem of calculus and assuming thatρ(ω, t) → 0 asω →
∞ we get,

dP (t)

dt
= ρ(0, t)− µ̂P (t). (1.12)

The equation forB(t) is obtained by multiplying equation (16) byβ(ω) and
then we integrate it from zero to infinity,
∫

∞

0

β(ω)
∂

∂ω
ρ(ω, t) dω +

d

dt

∫

∞

0

β(ω)ρ(ω, t) dω + µ̂

∫

∞

0

β(ω)ρ(ω, t) dω = 0

(1.13)
∫

∞

0

β(ω)
∂

∂ω
ρ(ω, t) dω +

d

dt
B(t) + µ̂B(t) = 0.

(1.14)

9



CHAPTER 1. AGE-STRUCTURED PREDATOR-PREY MODELS

This is an integro-differential equation. However, if we use integration by parts in
the equation (1.14)

∫

∞

0

β(ω)
∂

∂ω
ρ(ω, t) dω = β0

∫

∞

0

ωe−αω d

dω
ρ(ω, t) dω (1.15)

= β0ωe
−αωρ(ω, t)

∣

∣

∣

∞

ω=0
− β0

∫

∞

0

(1− αω)e−αωρ(ω, t) dω

= −β0

∫

∞

0

e−αωρ(ω, t) dω + β0

∫

∞

0

αωe−αωρ(ω, t) dω

= −β0

∫

∞

0

e−αωρ(ω, t) dω + αB(t).

(1.16)

When we plug this integral in (1.14) we have the equation for the juvenile popula-
tion,

αB(t)− β0

∫

∞

0

e−αωρ(ω, t) dω +
d

dt
B(t) + µ̂B(t) = 0. (1.17)

Solving for d
dt
B(t),

d

dt
B(t) = β0

∫

∞

0

e−αωρ(ω, t) dω − (µ̂+ α)B(t). (1.18)

This is still an integro-differential equation but if we define an auxiliary function
as,

A(t) =

∫

∞

0

e−αωρ(ω, t) dω, (1.19)

the equation for the juveniles is then,

d

dt
B(t) = β0A(t)− (µ̂+ α)B(t). (1.20)

We can say that this is an auxiliary variable produced by the selection of the birth
rate.A(t) also satisfies the following differential equation,

d

dt
A(t) = ρ(0, t)− (µ̂+ α)A(t). (1.21)

In order to summarize this section we put together the equations for one age-

10



1.1. AGE-STRUCTURED MODELS

structured population:

dP

dt
= −µ̂P + ρ(0, t) (1.22)

dB

dt
= −θB + β0A

dA

dt
= −θA+ ρ(0, t)

whereb, c, andθ = α + µ̂ are positive constants.
This set of equations were deduced following Gurtin and MacCamy’s theory

(16)-(18). They assumed that the termρ(0, t) is equal to the baby populationB(t).
However, a significant change is made in this work by taking this term as a general
function that depends on the other population variables,

ρ(0, t) = F (P (t), B(t), A(t), D(t)). (1.23)

Finally, this model stands for one population which we will set as the prey
population. Our beginning model is for a predator-prey interaction. We assume that
the predator population,D, behaves according to a Lotka-Volterra type equation,
but feeding only on the newborns. The complete model is then,

dP

dt
= −µ̂P (t) + F (P (t), B(t), A(t), D(t)) (1.24)

dB

dt
= −θB(t) + β0A(t)

dA

dt
= −θA(t) + F (P (t), B(t), A(t), D(t))

dD

dt
= −bD(t) + cB(t)D(t)

where the coefficientsb andc are positive. We will refer this model as ourbasic
model without self-limitation.

1.1.3 Self-limitation of the prey population

A second aspect in which we are interested is the limitation in the prey caused by the
growth of the prey population. This can understood as a lack of food resources or
overpopulation in the prey population. The effect of such self-limitation is modeled
in our system by considering that the mortality function depends linearly on the
total prey population, that is,

µ̂ = µ0 + µP (1.25)

11



CHAPTER 1. AGE-STRUCTURED PREDATOR-PREY MODELS

with µ0 andµ are positive constants. If we incorporate (1.25) to the system, the
resulting equations become:

dP (t)

dt
= −µoP (t)− µP 2 + F (P (t), B(t), A(t), D(t))

dB(t)

dt
= −θB(t)− µP (t)B(t) + β0A(t)

dA(t)

dt
= −θA(t)− µD(t)A(t) + F (P (t), B(t), A(t), D(t))

dD(t)

dt
= −bD(t) + cB(t)D(t). (1.26)

With this model we begin our study and search of new models based theana-
lytical modeling.

12



Chapter 2

Aspects of nonlinear analysis

2.1 Introduction

The objective of this chapter is to provide an introduction to the nonlinear tools that
we have used to achieved our objectives. The first one is the Painlevé test [30, 32]
which is an algorithm based on the theory of nonlinear differential equations in the
complex plane. The second one is the bifurcation theory, centered in bifurcation
of equilibria and Hopf bifurcations. For the numerical analysis we use AUTO, the
software developed by Doedel [12], which is a powerful tool for the continuation
of asymptotic solutions such as equilibrium points and periodic solutions.

2.2 The Painlev́e Property

To begin with, we give a historic overview of the Painlevé analysis. Later, we
explain in detail the Painlevé test. In [7] we can find a panoramic review of the
Painlev́e property in different areas. The historic references are taken from [43].

2.2.1 The work of Sofia Kovalevskaya and Paul Painlev́e

Kovalevskaya was the first one to use a method based on the complex variable
theory to study a physical problem [20]. She was interested in the motion of a
heavy top about a fixed point. The system consisted of the following six first-order,

13



CHAPTER 2. ASPECTS OF NONLINEAR ANALYSIS

nonlinear differential equations:

A
dp

dt
= (B − C)qr − βz0 + γy0 (2.1)

B
dq

dt
= (C − A)pr − γx0 + αz0

C
dr

dt
= (A−B)pq − αy0 + βx0

dα

dt
= βr − γq

dβ

dt
= γp− αr

dγ

dt
= αq − βp

wherep, q, r are the components of angular velocity andα, β, γ, are the direction
cosines describing the orientation of the top. The rest of the variables are parame-
ters. Kovalevskaya searched for solutions in the complex plane allowing that func-
tions have singularities of only pole type. She won the Bordinprize of the Paris
Academy of Science in 1888 because she found a first integral using this method:

I = (p2 − q2 −
x0
C
α) + (2pq −

x0
C
β). (2.2)

Her work was considered a special case where analytic theorycould be used.
Meanwhile, Paul Painlev́e (1863-1933), was a French mathematician who was in-
terested in the classification of second-order differential equations of the form,

d2t

dx2
= F (

dy

dx
, y, x) (2.3)

whereF is an analytic function inx and a rational function iny anddy/dx. He and
his coworkers found 50 types of equations whose only movablesingularities were
poles. They also found six new functions defined as solutionsof nonlinear ordinary
differential equations which could not be written in terms of known functions such
as polynomial, trigonometric functions, etc. They are called Painlev́e transcendents
[43].

2.2.2 Revival of Painlev́e ideas

The current research on Painlevé’s ideas is due to several papers, in particular
Ablowitz, Ramani and Segur (ARS) [2]. They noted that reductions of partial
differential equations of soliton type gave rise to ordinary differential equations

14
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whose movable singularities were exclusively poles. They conjectured that “ All
reductions of complete integrable partial differential equations are of Painlevé type,
perhaps only after a change of variables”. ARS proposed an algorithm known as
the Painlev́e test which gives conditions such that an ordinary differential equation
to be of Painlev́e type. This is the tool we amply use in this work and it needs to
be described later on this chapter. Since then, a lot of research has been carried
out applying the P-test to different models in the physical and non physical areas.
An important fact was the extension of the P-test to partial differential equations by
Weiss, Tabor and Carnevale [47].

2.2.3 Definitions and conventions

Here we introduce basic definitions in the context of ordinary differential equations
in the complex plane in order to describe efficiently the Painlevé algorithm. In the
following, we will consider an ordinary differential equation of the form,

w′(z) = F [z, w(z)] (2.4)

where we assume that the functionF (z, w(z)) is an analytic function,w(z) is vector
value inCn, z is a complex variable, andF (z, w(z)) is a holomorphic mapping of
C

n+1 to C
n

Definition 2.2.1. A singularity is a point at which the solution of an ordinary dif-
ferential equation is not holomorphic or analytic.

Example2.2.2. Let us assume that the functionF (z) = 1
z

is a solution of a given
ordinary differential equation. It has a singularity atz = 0.

Definition 2.2.3. Singularities can be eitherfixedgiven by the ordinary differential
equation ormovablewhich means that it depends on the initial conditions.

Example2.2.4. The equationw′ = 1+w2 is satisfied by the functionw = tan(z−
z0). It has singularities inz = z0 +

1
2
(2n + 1)π which are movable becausez0 is

arbitrary.

Example2.2.5. The equationzw′′(z) = [w(z)]2 has fixed singularities which are
z = 0 andz = ∞.

Definition 2.2.6. A critical point is a singularity at which branching takes place.

Example2.2.7. For the complex functionf(z) = log(z) shows the branching.

Definition 2.2.8. A differential equation is said to have thePainlev́e propertyif its
general solution has no movable critical points.
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CHAPTER 2. ASPECTS OF NONLINEAR ANALYSIS

This previous definition is equivalent to find conditions forthe solutionω(z) of
(2.4), which can be written as the following Laurent series,

ω(z) =
k
∑

i=1

α−i(z − z0)
−i +

∞
∑

i=0

αi(z − z0)
i. (2.5)

wherez0 is an arbitrary point in the complex plane. For an ordinary differential
equation to be of P-type, it is necessary that it has no movable branch points i.e.
logarithmic or algebraic.

2.2.4 The ARS Painlev́e test or P-test

In this subsection, we describe the Painlevé test or P-test as it is presented in [2].
We make the following assumptions:

1. We will consider an-th order system of an ordinary differential equation of
the form

dwj

dz
= Fj(z;w1, w2, ...., wn), j = 1, ..., n, (2.6)

where the functionFj is analytic inz and rational in its other arguments.

2. We assume that the dominant behavior of the function in a sufficiently small
neighborhood of a movable singularity is algebraic:

wj ∼ αj(z − z0)
pj z → z0. (2.7)

These assumptions do not exclude logarithmic branch points. An ordinary differ-
ential equation still admits movable essential singularities and the P-test does not
identify essential singularities.

2.2.4.1 First step of the Painlev́e test

Substitute
wj ∼ αj(z − z0)

pj , j = 1, . . . , n, (2.8)

into (2.6) and determine thep = {pj}
n
j=1 for which there are two or more terms

in the system of equations such that in each equation they balance. It also depends
on the choice of theαi’s, and the rest of terms in the equation can be ignored
whenz → z0 because they do not have the higher negative powerpj and they are
“dominated” by theleading order terms.
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2.2. THE PAINLEVÉ PROPERTY

Definition 2.2.9. For such a choice ofpj, the terms which balance are called the
leading order term or dominant terms

The choices of{pj}ni1 might be several. If any of thepj is not an integer, and
if (2.8) is asymptotic nearz0 then it represents the dominant behavior in the neigh-
borhood of a movable algebraic branch point of orderp. It means that the system
(2.6) is not of Painlev́e type orP-type. To prove that (2.8) is asymptotic, define the
new variablev = w1/p and rewrite the system (2.6 in terms ofv. By construction,
v vanishes atz0 and dv

dz
is finite. We have to show thatv(z) is analytic.

The P-test stops unless the only possiblepj are integers.
If all possiblesp’s are integers, then for eachp, (2.8) may represent the first term

in the Laurent series, valid in a deleted neighborhood of a movable pole. Then, the
solution of the system (2.6) is

w(z) = (z − z0)
p

∞
∑

j=0

(z − z0)
j, |z − z0| < R. (2.9)

If there aren−1 arbitrary coefficients{aj}, then there aren constants of integra-
tion of the system of ordinary differential equations becausez0 is already arbitrary.

Definition 2.2.10. The power at which these arbitrary constants enter are called
theresonances.

Remark z0 is an arbitrary constant in the series (2.9). This constant is determined
by the initial condition. For example, in the equationdx

dz
= x, its general solution

is x(z) = e−z0ez = cez, z0 (or c) an arbitrary constant. If the initial condition is
x(z0) = x0 then the solution isx(z) = x0e

z−z0.

2.2.4.2 An example of the P-test application

In this section we present an example of the first step of the Painlevé test. It was
taken from the book [8]. Let us consider the Lorenz model:

dx

dt
= σ(x− y),

dy

dt
= rx− y − xz,

dz

dt
= xy − bz, (2.10)

whereσ, r andb are the coefficients of the system.

17



CHAPTER 2. ASPECTS OF NONLINEAR ANALYSIS

First step. Find the dominant behaviorWe look for solutions of pole type by
proposing as possible solutions the following ansatz for the system variablesx, y
andz,

x ∼ x0χ
p1 , (2.11)

y ∼ y0χ
p2 , (2.12)

z ∼ z0χ
p3 , (2.13)

where we assume that(x0, y0, z0) 6= (0, 0, 0), χ = t − t0 and thepj, are to be
determined. Observe that system (2.10) corresponds to the system (2.6) and that the
variablesx, y andz are thewj for j = 1, 2, 3, respectively. Also, the coefficients
x0, y0, z0 are theαj for j = 1, 2, 3, respectively. The simbol∼ means that we
are interested in the asymptotic behavior whent → t0. Then, we substitute in the
system (2.10). We require that at least onepj, j = 1, 2, 3 to be a negative integer.

d (x0χ
p1)

dt
= p1x0χ

p1−1 = σ(x0χ
p1 − y0χ

p2), (2.14)

d (y0χ
p2)

dt
= p2y0χ

p2−1 = rx0χ
p1 − y0χ

p2 − (x0χ
p1)(z0χ

p3), (2.15)

d (z0χ
p3)

dt
= p3z0χ

p3−1 = x0χ
p1y0χ

p2 − bz0χ
p3 . (2.16)

Let us focus on the equation one (2.14) of the last system. There are three terms
and their corresponding powers are:p1−1, p1 andp2. p1−1 dominates top1 because
is more negative and in fact they can not equal. Then, this power has to balance with
the powerp2 and their corresponding dominant terms aredx

dt
and the−σy in the first

equation. It is easy to see that we obtain the following system of linear equations
when we balance the more dominant powers in equations (2.14-2.16):

p1 − 1 = p2, (2.17)

p2 − 1 = p1 + p3, (2.18)

p3 − 1 = p1 + p2. (2.19)

Then, by solving for thepi we get(p1, p2, p3) = (−1,−2,−2). It is possible to
have more than one set of values for thep′s satisfying this system and such values
of p′s must also be considered. The system obtained for the coefficients is,

−p1x0 + σy0 = 0,

−p2y0 − x0z0 = 0,

−p3z0 + x0y0 = 0,
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and its solution is(x0, y0, z0) = (2i,−2iσ−1, 2σ−1), i2 = −1. By substitut-
ing the exponents(p1, p2, p3) = (−1,−2,−3) and the coefficients(x0, y0, z0) =
(2i,−2iσ−1, 2σ−1), in the Laurent series we obtain:

x(t) =

p1
∑

j=−1

αj(t− t0)
j +

∞
∑

j=0

αi(t− t0)
i =

y(t) =

p2
∑

j=−1

βj(t− t0)
j +

∞
∑

j=0

βi(t− t0)
i =

z(t) =

p1
∑

j=−1

αj(t− t0)
j +

∞
∑

j=0

γi(t− t0)
i =

= 2i(t− t0)
−1 +

∞
∑

i=0

αi(t− t0)
i (2.20)

= −2iσ−1(t− t0)
−2 +

∞
∑

i=−1

βi(t− t0)
i (2.21)

= 2σ−1(t− t0)
−3 +

∞
∑

i=−2

γi(t− t0)
i (2.22)

wheret0 is an arbitrary point in the complex plane. At this point we have finished
the application of the first step of the P-test to the Lorenz model.

2.2.4.3 Second step of the Painlevé test

Let us go back to the general system of ordinary differentialequations (2.6). At this
stage of the P-test we have found the exponents and coefficients of the dominant
terms, i.e. the(pj, αj). In the second step, we will contruct a simplified system
retaining only the leading terms. Then, we substitute the simplified equations

wj = αj(z − z0)
pj + κj(z − z0)

pj−r, j = 1, . . . , n (2.23)

with the samer for everywj. Usin the leading order inβ = (β1, β2, . . . , βn)
T ,

we can obtain the system of equations:

[Q(r)] = 0 (2.24)

where[Q] is ann× n matrix, whose elements depend onr. The resonances are the
nonnegative roots of
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det[Q(r)] = 0. (2.25)

This equation corresponds to the “ indicial equation” in themethod of Frobe-
niues for finding solutions of a linear ordinary differential equation near a regular
singular point. The aspects that must be remembered when performing this step
are:

i) The valuer = −1 represents the arbitrarity ofz0. Then−1 is always a root.

ii) If anyαj results arbitrary in the first step then zero is also a root. The converse
is not always true. If we apply the change of variablesω = f(Ln(z−z0))/(z−
z0) and we obtain as a result the analyticity of the solutions then we have a
logarithmic branch point in the original equation.

iii) If a root r of the indicial equation isRe(r) < 0 then, it must be ignored
because the dominant term was already found.

iv) Any rootRe(r) > 0 means that the ordinary differential equation is not of
P-type.

v) If the rootsdetQ(j), besides -1 and 0, are positive then there are no algebraic
branch points.

vi) If detQ(r) hasn−1 distinct roots and they are non-negative then it is possible
to represent the solution by the Laurent series.

2.2.4.4 Example of the second step of the P-test

We recall the example of the Lorenz model (2.10). Then, according to the algo-
rithm described in the second step, we have to find the location r at which arbitrary
coefficients may be in the Laurent series. This can be directly done substituting,

X ∼ x0χ
p1 + κ1χ

r+p1 , (2.26)

Y ∼ y0χ
p2 + κ2χ

r+p2 , (2.27)

Z ∼ z0χ
p3 + κ3χ

r+p3 , (2.28)

in the system formed by the dominant terms of system (2.10):

dx

dt
= −σy,

dy

dt
= −xz,

dz

dt
= xy. (2.29)
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The matrix corresponding to an arbitrary coefficient is obtained by considering
the linear part in the variables (κ1,κ2,κ3,) which stands for the arbitrary coefficients
κj,

P r





κ1
κ2
κ3



 =





−r + p1 σ 0
z0 −r + p2 −x0
y0 x0 −r − p3









κ1
κ2
κ3



 = (2.30)





−r + 1 σ 0
2σ−1 −r + 2 −2i

−2iσ−1 2i −r + 2









κ1
κ2
κ3



 (2.31)

and equation
detP r = −(r + 1)(r − 2)(r − 4) = 0 (2.32)

is the so called theinditial equationand its roots are the Fuchs indices.
An equivalent way to obtain this solution is to substitute equation (2.20- 2.22)

in the system of equations (2.10) and to write as a linear equations system for the
coefficients of the Laurent series. Then, a recursive relation for ther-th coefficient
(xr, yr, zr) of the Laurent series, using matrix notation, is obtained,

P r(xr, yr, zr)
T +Qr = 0 (2.33)

or explicitly




−r + 1 σ 0
2σ−1 −r + 2 −2i

−2iσ−1 2i −r + 2









xr
yr
zr



+





−σxr−1
∑r−1

k=1 xkzr−k + rxr−1 − yr−1
∑r−1

k=1 xkyr−k − bzr−1



 = 0

(2.34)
in which theP j is a square matrix depending only on the indexr and the leadingpi,
x0, y0, z0 found in the first step (dominant terms). This represents a linear system for
eachr. The problem of finding arbitrary coefficients of the Laurentseries translates
into a linear algebra problem of finding multiple solutions of singular matrix. In
order to allow arbitrary coefficients the matrixP j must be singular and its roots
have to be positive integers. Solving the indicial equationis equivalent to allowing
arbitrary coefficients of the Laurent series. However, the vector must be in the range
of matrixPr otherwise there will not be anr that solves equation (2.33).

2.2.4.5 Third step. The compatibility condition

As we mentioned, the problem of representing a solution by the Laurent series turns
into a linear algebra problem. This condition requires the vector in equation (2.33)
to be in the range of the matrixPj . This is accomplished by computing the recursive
relations to form the Laurent series up to the location of thearbitrary coefficients.
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2.3 Integrability and the Painlevé property

We have described the Painlevé property and the P-Test. The first related tointegra-
bility and the second to test necessary conditions to achieve this property. However,
what it is not clear is what meant by integrability. The ideasassociated with in-
tegrability usually are globally soluble. Even though the Painlev́e consists of a
local analysis. It also implies that solutions of the systemexhibits global regular
behavior, i.e. its solutions are sensitive to initial conditions. On the other hand,
a non-integrable system generally implies that its solutions behave in an irregular
way (sensitive to initial conditions) diverging from the average at an exponential
rate. As a conclusion of the ideas discussed in [49] about integrability we can say
there is not definition of integrability suitable for all problems. For example, if we
use the definition of integrability by quadratures the equation ẋ = x2+ t can not be
integrated by quadratures, but it admits a linearization that expresses the solution in
terms of Airy function. Then, it is integrable in such a sense.

When we think of an Hamilton system with n-degree of freedom then the exis-
tence of n-independent integrals in involution is what we call Liouville integrability.
For a system of ordinary differential equations, integrability is the existence ofn−1
independent analytic integrals. These are two definitions of integrability which are
compatible because an integral of an Hamiltonian system is generally not integrable
as an ordinary differential system.

We can also have the notion of integrability in partial differential equations.
For example the existence of conservation laws which implies that the flow of the
equations is constrained by an infinite set of symmetries. And this idea led to the
discovery of the Inverse Scattering Transform (IST) which integrates the KdV equa-
tion. We can say that the IST is the analogue to the Arnol’d Louville integrability
for the infinite dimensional case. This method was found whenresearchers were
looking for an infinite set of conservation laws. However, the nonexistence of such
conservation laws does no preclude integrability.

This Painlev́e test is one of the most powerful methods to identify integrable
systems despite the kind of integrability we are looking for. It has been useful to find
integral of equations, leads to Lax Pair, Bäcklund transformation, etc. This method
has also shown that can reveal geometric properties and the algebraic structure that
underlies many integrable equations.

We use this method to restrict our search of possible solutions of the systems
that we study in such a way they only have singularities of pole type. The under-
lying idea is that we will obtain solutions with this property. This could lead to
obtain regular solutions more easily. Another desirable characteristic we search is
periodicity.
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2.4 Bifurcation theory

Here we give a review of some aspects of bifurcation theory, starting with the im-
plicit function theorem and some of the bifurcation resultson which we base our
numerical bifurcation study. This section follows the book[42].

Let us consider the problem of the following form,

f(λ, x) = 0 (2.35)

wheref is an operator onR × B1 into B2, with B1 andB2 Banach spaces. One
might think this equation as an ordinary differential system of equations.λ is the
parameter we are interested in varying. Then, we seek conditions onf such that
when a solution(λ̄x̄) of (2.35) lies on a curve of solutions or bifurcation diagram
(λ, x(λ)) at least in a neighborhood ofλ̄. It might also be required that(λ̄, x̄) lies
on several curves.

Definition 2.4.1. Let us assume thatΓ : (λ, x(λ)), is a curve of solutions of (2.35)
and(λ0, x0) ≡ (λ0, x(λ0)) be an interior point on this curve, with the property that
every neighborhood of(λ0, x0) in R×B contains solutions of (2.35) which are not
onΓ. Then,(λ0, x0) is called abifurcation point with respect toΓ.

There are several questions in bifurcation theory. Among them we can mention:
given a curveΓ of solutions of (2.35), what are the conditions to have a bifurcation
point? Given this curve, can it be continued? Does secondarybifurcation occur?
These questions can be solved by the systematic use of the implicit function theo-
rem.

2.4.1 The implicit function theorem

In order to state the main bifurcation theorems, we review some important defini-
tions and notations. Ifa ∈ Ω the derivative off at a, written f ′(a) or dfa, is the
n×m matrix

dfa =
∂fi(a)

∂xj
(2.36)

wheref = (f1, f2, . . . , fn). Hence,dfa ∈ B(Rm,Rn) whereB(Rm,Rn) repre-
sents the set of bounded linear mapsR

m → R
n. LetΩ be a open subset ofRm, and

suppose thatf ∈ C1(Ω,Rn), whereC1 is the set of functions having one contin-
uous derivative. More generally,Ck(B1, B2)) is the space of continuous functions
havingk continuous derivatives withk ∈ Z

+ which are defined onB1 and take
values onB2. We are going to consider functions defined on product spaces. Let
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B1,B2 andB3 be Banach spaces and letU be open inB1×B2. If f : U → B3, and
u = (u1, u2) ∈ U , we letU1 be the cross section ,U1 = {x1 ∈ B1 : (x1, u2) ∈ U}.
We say thatf is differentiable with respect to thex1 variable at(u1, u2) if the func-
tion g(x1) = f(x1, u2) is differentiable with respect tox1 at u1. When this holds,
we write dgu = D1f(u1, u2); dgu is a linear map fromU1 into B3. f is said dif-
ferentiable with respect tox1 onU , if it is differentiable with respectox1 at each
u ∈ U . The usual properties for partial derivatives hold in this general context. In
particular, iff is differentiable atu = (u1, u2) ∈ U , thenf is differentiable with
respect to bothx1 andx2 atu and for all(ξ1, ξ2) ∈ B1 × B2,

dfu(ξ1, ξ2) = D1f(u) · ξ1 +D2f(u) · ξ2 (2.37)

Now, we are ready to state the implicit function theorem.

Theorem 2.4.2.(Implicit function theorem) Letf ∈ C(U,B) whereU is an open
set inΛ× B1 andB,B1 andΛ are Banach spaces. Assume that

1. f(λ0, u0) = 0 for some(λ0, u0) ∈ U

2. D2f : (λ, u) → D2f(λ, u) is continuous in a neighborhood of(λ0, u0), D2

is the derivative off with respect tou) and

3. D2f(λ0, u0) is nonsingular (has a bounded inverse)

Then there exists a continuous curveu = u(λ) defined in a neighborhoodN of
λ0, such thatu(λ0) = u0 andf(λ, u(λ)) = 0 in N. Theseu = u(λ) are the only
solutions off(λ, u) in N. Finally, if f ∈ Ck(U,B), thenu ∈ Ck(N,B).

Thus, according to the implicit function theorem, we can expect bifurcation
at (λ0, u0) if D2f(λ0, u0) is singular. On the other hand, even ifD2f(λ0, u0) is
singular,(λ0, u0) need not be a bifurcation point.

Example2.4.3. Let us consider the functionG(λ, x) = λ− x3. It has a bifurcation
point at(0, 0) and in factG(0, 0) = Gx(0, 0). The key point in order that(0, 0) be
bifurcation point is the change of sign ofGx = 2x atx = 0.

2.4.2 Bifurcation from a single eigenvalue

Since our main focus is on the finite dimensional case (actually in R
4), we will

present the following bifurcation theorem in this setting.Let us consider the func-
tion f and for simplicity, we assume thatf(λ, 0) = 0 for all λ ∈ R. Using Taylor’s
theorem, we can write,

f(λ, u) = L0u+ (λ− λ0)L1u+ r(λ, u) (2.38)
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whereL0 = D2f(λ0, 0) andL1 = D1D2f(λ0, 0) aren × n matrices, andr ∈ C2

satisfies

r(λ, 0) ≡ 0, D2r(λ0, 0) = D1D2r(λ0, 0) = 0. (2.39)

Theorem 2.4.4. (Bifurcation from a single eigenvalue) LetU be an open set of
R× R

4 and letf ∈ C2(U,R4) be given by

f(λ, u) = D2(λ0, 0)(u) + (λ− λ0)D1D2f(λ0, 0)(u) + r(λ, u)

wherer ∈ C2(R5) satisfies

r(λ, 0) = 0, D2r(λ0, 0) = D1D2r(λ0, 0) = 0.

Assume that the kernel ofD2(λ0, 0) is spanned byu0, and thatD1D2f(λ0, 0)u0 is
not in the range ofD2(λ0, 0).

Then there is aδ > 0 and aC1-curveΓ(s) = (λ, φ) : (−δ, δ) → R × {u0}
⊥

such that

1. λ(0) = λ0

2. φ(0) = 0

3. f(λ(s), s(u0,+φ(s))) = 0 for |s| < δ.

Furthermore, there is a neighborhood of(λ0, 0) such that any zero off either
lies on this curve or is of the form(λ, 0).

Thus (λ0, 0) is a bifurcation point forf. Note that we get some information
about the direction of bifurcation(du/ds = u0) at s = 0. Furthermore, if we use
the notation N(T) and R(T) to denote, respectively, the kernel and the range of an
operatorT, then the conditions

N(D2(λ0, 0)) = span{u0}, andD1D2f(λ0, 0)u0 /∈ R(L0)

are equivalent to the fact thatµ = 0 is a simple root of

det(D2(λ0, 0) + µD1D2f(λ0, 0));

hence, in particular,det(D2(λ0, 0)+(λ−λ0)D1D2f(λ0, 0)) changes sign atλ = λ0.
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2.4.3 Stability of equilibrium branches

Let us now investigate the conditions for an equilibrium solution (of a system of
the form du

dt
= f(u)) to be stable. Suppose thatū is a solution and we make a

perturbation of the form̄u+ ǫ, then we consider the initial value problem

du

dt
= f(u), u(0) = ū+ ǫ

.
We want to determine whether this solution tends toū ast → ∞, or even if it

stays close tōu for all t > 0. If we consider the linearized problem

dυ

dt
= dfū(υ)

then if the spectrum ofdfū lies in the left-half complex plane, the solutionυ decays
exponentially to zero ast → ∞. In this case, we say that̄u is stable. On the
other hand, if the spectrum contains points in the right-half plane, we say that̄u is
unstable. We are interested here in the stability properties of bifurcation solutions.

Let us consider the equations

du

dt
= f(λ, u)

wheref(λ, 0) = 0, for all λ and suppose that we have the following situation. For
λ < λ̄, the spectrumσ(D2f(λ, 0)) lies in the left-half plane,Re z < 0, z ∈ C while
for λ > λ̄, σ(D2f(λ, 0)) intersectsRe z > 0, z ∈ C. Then atλ = λ̄ at least one
point of the spectrum crosses the imaginary axis, that is , a point of the formir with
r real is inσ(D2f(λ, 0)). Now, if r = 0, in general, the trivial solution bifurcates
into new equilibrium solutions, while ifr 6= 0 it bifurcates into periodic solutions.
The latter occurs with a so-called Hopf’s bifurcation.

Definition 2.4.5. LetX andY be Banach spaces and letL0 andK ∈ B(X, Y ).
We say thatµ ∈ C is aK-simple eigenvalueof L0 (with eigenfunctionu0) if the
following three conditions hold:

1. dimKer(L0 − µK) = codimR(L0 − µK) = 1

2. u0 spansKer(L0 − µK)

3. Ku0 /∈ R(L0 − µK)

The terminology comes from the case whereX = Y , K = I, andL0 is a com-
pact operator. The importance of this notation comes from the next lemma, which
implies thatK-simple eigenvalues “continue” along the bifurcating branches.
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2.4. BIFURCATION THEORY

Lemma 2.4.6.Letµ0 be aK-simple eigenvalue ofL0, with eigenfunctionu0. Then,
there existsρ > 0 such that if||L− L0|| > ρ, L has a uniqueK-simple eigenvalue
η(L) ∈ Z. Alsoη(L0) = µ0, w(L0) = u0 and the mappingL −→ (η(L), w(L)) is
smooth.

Let the hypotheses of Theorem 2.4.4 hold. Then,D2f(λ0, 0) has0 as a single
eigenvalue ofD1D2f(λ0, 0). Let λ(s) andu(s) ≡ s(u0 + φ(s)) be the bifurcating
curve as provided by this theorem. We will the notation of Theorem 2.4.4 and use
the notationf ′(s) = D2f(λ(s), u(s)). Now suppose thatX ⊂ Y , the inclusion
i : X → Y is continuous,0 is an i-simple eigenvalue ofD2f(λ0, 0). Then by
Lemma 2.4.6, there exist functions

λ→ (γ(λ), ν(λ)), s→ (η(s), w(s)) (2.40)

defined on a neighborhood ofλ0 and0, respectively, intoR×X, such that

(γ(λ0), ν(λ0)) = (0, u0) = (η(0), w(0)), ν(λ)− u0 ∈ Z,w(s)− u0 ∈ Z

and these neighborhoods,

D2f(λ, 0)ν(λ) = γ(λ)ν(λ), (2.41)

f ′(s)w(s) = η(s)w(s). (2.42)

The following theorem is used to determine the stability of the bifurcating solu-
tion.

Theorem 2.4.7.Let the hypotheses of the Theorem 2.4.4 hold, and letγ andη be
defined as above. Thenγ′(λ0) 6= 0 and ifη(s) 6= 0 for s near0,

lim
s→0

sλ′(s)γ′(λ0)

η(s)
= −1.

2.4.4 Hopf Bifurcation

Consider the bifurcation of a periodic orbit from the equilibrium position of an au-
tonomous differential equation, the so called Hopf bifurcation. This type of bifur-
cation is one of the most elementary ones and is important in the theory of nonlinear
oscillations.

Suppose that

du

dt
= A(λ)u+ f(λ, u)
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whereu ∈ R
n, λ ∈ R, A(λ) is ann × n matrix. A(λ), f(λ, u) have continuous

derivatives up through order one,Dλuf(λ, u) is continuous for|λ| < λ0 andu ∈
R

n, f(λ, 0) = 0, Duf(λ, 0) = 0 for |λ| < λ0 and

A(λ) =

(

B(λ) 0
0 C(λ)

)

B(λ) =

(

λ β(λ)
−β(λ) λ

)

β(0) = 1

(

eC(λ)2π − I
)−1

exists for|λ| < λ0.

Theorem 2.4.8.Under the above hypotheses, there are constantsa0 > 0, λ0, δ0,
functionsλ(a) ∈ R, λ(0) = 0, w(0) = 2π and aw(a)-periodic functionu∗(a) with
all functions having continuous first derivatives up through order one for|λ| < λ0,
such thatu∗(a) is a solution of (2.4.4) with

u∗(a)(t) =















a cos(w(a)t)
−a sin(w(a)t)

0
...
0















+ o(|a|)

as |a| → 0. Furthermore, for|λ| < λ0, |w − 2π| < δ0, everyw-periodic solutionu
of equation (2.4.4) withu(t) < δ0 must be given byu∗(a) except for a translation
in phase.

This theorem sets conditions in order that a system of ordinary differential equa-
tions has a bifurcation point that leads to a periodic solution. It will help us to find
periodic solutions.

2.4.5 Numerical Continuation of solutions of autonomous sys-
tems

In this section, we describe the numerical analysis of systems of the form

du(t)

dt
= f(λ, u(t)) u, f ∈ R

n (2.43)

whereλ denotes one (or several) parameters. Our goal is to describethe capabilities
of AUTO, which is a software for continuation and bifurcation problems in ordinary
differential equations. AUTO was originally developed by Eusebius Doedel.
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2.4. BIFURCATION THEORY

AUTO requires the following data: the Jacobian off, ∂f
∂λ

and an equilibrium
solution for some fixed values ofU andλ. Then the program has the following
capabilities:

1. The calculation of branches of equilibrium points.

2. The finding of the bifurcation points of the above branches.

3. The finding of Hopf bifurcation points.

4. The calculation of branches of periodic solutions.

5. The calculation of stability of the solution branches. For periodic solutions
this process is achieved by solving a boundary value problem.

6. The use of adapting meshes and stepsizes along the branches of periodic so-
lutions.

7. The capacity to restart the calculation at certain points.

8. The storing of calculations in files, allowing the use of different plotting pro-
grams.

2.4.6 Continuation of fixed points

In equation (2.43), we have one more unknown variable than equations, and gener-
ically such problems have families of solutions. A continuation method consists of
a procedure in which a known solution to Equation (2.43) is used to discover new
solutions. We can proceed iteratively; known solutions lead to new solutions which
are then added to our collection of known solutions, leadingto more solutions, etc.
There are various classes of such methods and in this sectionwe will restrict our
attention to the class of predictor-corrector methods. These are the methods used
in AUTO. In predictor-corrector methods one uses some set ofknown solutions to
equation (2.43) to generate a new pointx. The new pointx is only a guess, and
typically does not lie on the bifurcation diagram, so one then corrects it to within
a given tolerance, perhaps using Newtons method, to a pointx on the bifurcation
diagram.

Bifurcation diagrams are often more complex than single curves. For example,
two curves in a bifurcation diagram may intersect. Such an intersection point is
called a bifurcation point, and there exists a whole menagerie of different types of
bifurcation points. For example, a simple bifurcation is one in which two solution
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curves with the same general properties intersect, while a Hopf bifurcation is one
in which a branch of steady state solutions intersects a branch of periodic solutions.

The parameter continuation methods in AUTO may be used to compute very
complex bifurcation diagrams. The algorithms include the ability to detect and
switch branches at bifurcations of various types. For example, one may perform the
following calculation:

• Continue a given solution until you reach the third simple bifurcation.

• Go onto a bifurcating branch and continue until reaching a Hopf bifurcation.

• Continue the branch of periodic solutions until a certain value is reached.

This type of modality is very common in AUTO and very complex bifurcation
diagrams can result, with many bifurcation points and branch switches. Therefore,
the main goal of using an interface for AUTO (such as Python) is to facilitate the
control of the continuation algorithm and the constructionof bifurcation diagrams,
whether it be for the beginning or advanced user.

2.4.7 Continuation of periodic solutions

The calculation of branches of equilibrium solutions is basically an algebraic prob-
lem, which consists of the bifurcation analysis off(λ, u(t)) = 0. This can be ac-
complished numerically using arclength continuation and branch switching tech-
niques [19]. Furthermore, the continuation of periodic solutions can be treated in
the same framework. Let us review the basic features of thesetechniques.

Consider the operator equation

G(λ, u(t)) = 0, (2.44)

whereG : H1 −→ H2 is a nonlinear map between the two Hilbert spacesH1 and
H2. If there exists a parametrized branch of solutions(u(t)(s), λ(s)), then under
appropriate smoothness assumptions the result that the derivative ofG always has a
nullspace along the branch. Assume now that we have a solution of (2.44) denoted
byw0 and also assume that the kernel ofG′(w0) is spanned by the vectorw′

0. Thus
the kernel is one dimensional. Letw∗

0 be the adjoint element such thatw′

0
∗w′

0 = 1.
Then the augmented problem

G(w) = 0 w′

0
∗
(w − w0)− s (2.45)

has the solutionw = w0 when s = 0. Further the derivative(G′(w0, w
′∗0)) is

nonsingular. Hence, the implicit function theorem guarantees the existence of a
branch of solutionsw(s) for smalls.
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If G(w) = 0 represents a differential equation, then of course the equation must
be discretized first. Further for numerical purposes it is often more convenient to
use the approximationw′

0 ≈ w(s)−w0)
s

. In addition, we solve (2.45) for only one
value ofs, says = ∆s, then (2.45) becomes

G(w) = 0
w − w0

∗(w − w0)

∆s
−∆s = 0. (2.46)

Essentially the same procedure can be used to switch branches at a bifurcation point
after the direction of the bifurcating branch has been computed.

Now consider the problem of determining branches of periodic solutions to the
autonomous system (2.43). First note that not only the periodic solutionu but also
its periodP changes along such branch. To fix the period, one must map linearly
(0, P ) into (0, 2π). This transforms the differential equation into

du(t)

dt
=

P

2π
f(λ, u(t)) (2.47)

where the unknown period appears explicitly and where2π-periodic solutions are
to be determined, that is we impose the conditionu(0) = u(2π). Suppose that
(λ0, P0, u0(t)) defines a known periodic solution. The objective is to set up the
equations for finding a solution nearby on the branch. A remaining difficulty is the
inherent non-uniqueness ofu due to the fact that a periodic solution can be trans-
lated freely in time. For numerical computation the new solution u must be an-
chored. To achieve this, we need to simply fix one of the components ofu at t = 0.
However, the resulting set of equations has an isolated solution only under con-
ditions that are not required for the underlying problem itself. For theoretical pur-
poses a better choice is the orthogonality condition(u(0)−u0(0))

Tf(u0(0, λ)) = 0,
which ensures thatu(0) on the orbit to be determined occupies a similar position to
u0(0) on the known orbit.
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Chapter 3

Nonlinear juvenile predation population

dynamics 1

3.1 Introduction

As we already mentioned, age structure in predator-prey models has been exten-
sively studied in the literature (see for example[15, 17, 24]). Unstable periodic
solutions are frequently found in these models although they do not correspond to
biological nature where prey and predator populations can coexist. Among the ef-
forts to reach coexistence, the inclusion of diverse factors, such as self limitation of
the prey, harvesting of prey and cannibalism of the younger prey, should be included
[36, 25].

One of the successful tools to analyze biological models hasbeen the Painlev́e
property, which has its origin in the work of S.V. Kovalevskaya who was the first
to consider the analytical theory of differential equations but to physical problems
[20]. Paul Painlev́e took these ideas and classified ordinary differential equations
of second order according to the type of singularities of their solutions [30]. Since
then, the property has been used to construct symmetries, tofind explicit solutions,
to detect control parameters and so on [27, 44].

Basically, a system of ordinary differential equations has the Painlev́e property
if its general solution has no movable critical singular points. Equivalently, we
might say that the only singularities of the system of ordinary differential equations
are poles. Ablowitz, Ramani and Segur [2] described an algorithm named P-test,
which allows one to determine in three steps if an ODE has the property: finding
a) the dominant behavior, b) the resonances and c) the constants of integration. It
is important to remark that this algorithm does not identifyessential singularities.

1This chapter is based on F.J. Solis, R.A. Ku, Nonlinear juvenile predation population dynamics,
Mathematical and Computer Modeling 54 (2011) 1687-1692
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The necessary conditions for a system to have the Painlevé property are established
only.

The goal of this chapter is to use the Painlevé property in age-structured predator-
prey models as a modeling tool in order to provide candidatesto stabilize such
models and to discover essential biological factors. The main idea is to analyze a
general form of the term that models the incorporation of thenewborn prey into
the dynamics. Finally, to verify coexistence between predator and prey, we will use
standard techniques in bifurcation analysis.

3.2 The model

In this section we develop an age-structured model that was already presented in
chapter one, but for the sake of self-contentedness we deduce here again. Let it
ρ(ω, t) be the number of prey individuals of ageω at the timet. The total prey
population can be defined as

P (t) =

∫

∞

0

ρ(w, t) dw.

From the conservation law

d

dt

∫ w+∆w

w

ρ(ψ, t) dψ = −µ

∫ w+∆w

w

ρ(ψ, t) dψ + ρ(w, t)− ρ(w +∆w, t),

dividing by∆w and taking the limit as∆w tends to zero, we obtain the equation of
evolution

ρω(ω, t) + ρt(ω, t) + µρ(ω, t) = 0. (3.1)

We suppose that the birth rate of the population is, at timet, given by a law of
births of the type:

B(t) =

∫

∞

0

β(w)ρ(w, t) dw,

whereβ(w) = β0we
−αw is the reproductive rate of individuals of agew. Defining

A(t) =

∫

∞

0

e−αwρ(w, t) dw
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and from the evolution equation (3.1), we obtain the following three equations:

dP (t)

dt
= −µ(P )P + ρ(0, t),

dB(t)

dt
= −(µ(P ) + α)B(t) + β0A(t)

dA(t)

dt
= −(µ(P ) + α)A(t) + ρ(0, t).

Assuming that the predator population,D, which feeds only on the newborn
prey, behaves according to a Lotka-Volterra type equation,we get

dD

dt
= −bD + cBD.

Moreover, if we considerµ(P ) = µ0 + ǫP, which represents the self-limitation of
the prey, and substitute it in the model we obtain:

dP (t)

dt
=− µ0P (t)− εP 2(t) + ρ(0, t) (3.2)

dB(t)

dt
=− θB(t)− εP (t)B(t) + β0A(t), (3.3)

dA(t)

dt
=− θA(t)− εP (t)A(t) + ρ(0, t) (3.4)

dD(t)

dt
=− bD(t) + cB(t)D(t), (3.5)

whereµ0, ǫ, η, θ = α + µ0, β0, b andc are positive parameters. We will consider a
general form of the functionρ(0, t) depending onP, B, A andD as,

ρ(0, t) = F (P (t), B(t), A(t), D(t)). (3.6)

Then, we will consider two models. In the first one, the juvenile predation term is
given by the general function (3.6) and the complete system is:

dP (t)

dt
=− µ0P (t)− εP 2(t) + F (P (t), B(t), A(t), D(t))) (3.7)

dB(t)

dt
=− θB(t)− εP (t)B(t) + β0A(t), (3.8)

dA(t)

dt
=− θA(t)− εP (t)A(t) + F (P (t), B(t), A(t), D(t)) (3.9)

dD(t)

dt
=− bD(t) + cB(t)D(t), (3.10)
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whereµ0, ǫ, η, θ = α + µ0, β0, b andc are positive parameters. In the second one,
we will consider a particularρ(0, t) as a benchmark, given by,

ρ(0, t) =
Bm(t)(1− ρB(t)− σPL(t)− τAM(t))

1 + ηD(t)
, (3.11)

whereρ, σ, τ are positive parameters andm, L andM are positive integers. The
complete system is then:

dP (t)

dt
=− µ0P (t)− εP 2(t) + F (P (t), B(t), A(t), D(t))) (3.12)

dB(t)

dt
=− θB(t)− εP (t)B(t) + β0A(t), (3.13)

dA(t)

dt
=− θA(t)− εP (t)A(t) + F (P (t), B(t), A(t), D(t)) (3.14)

dD(t)

dt
=− bD(t) + cB(t)D(t). (3.15)

This particular function (3.11) is a generalization of the function ρ(0, t) =
B(t)(1 + ηD(t))−1. We can observe that this function models the juvenile pre-
dation on the newbornsB(t). When the predator populationsD(t) is small then the
juvenile predation is large. On the contrary, if theD(t) is large the predation is low
because exists more competence among predator themselves.The general version
of it (3.11) models the predation also but also takes into account the competence
between the babiesB(t), the adult populationsP (t) and also the auxiliary variable
A(t). This variable in particular represents a part of the population.

In the following three sections we will present theorems which result from the
application of the Painlev́e test. It is important to remark that the P-test was estab-
lished in the complex domain. However, we applied it to a differential system of
equations inR which is valid becauseR ⊂ C.

3.3 No contribution of F

In this section, we make the assumption that the functionρ(0, t) depends onP, B, A
andD, ie. ρ(0, t) = F (P (t), B(t), A(t), D(t)) and also that is a rational function.
This allows us write theF function in its Laurent series:

F (P,B,A,D) =

k5
∑

i=1

f̂−i(t− t0)
−i +

∞
∑

i=0

f̂i(t− t0)
i.

When the functionF does not contribute to the dominant terms in the first step of
P-test (Chapter 2) we obtain the following theorem.
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Theorem 3.3.1.Let us consider the system of differential equations (3.2)-(3.5). If
the functionF (P,B,A, P ) does not provide dominant terms in the P-test then the
system does not have the Painlevé property and the only solutions without movable
critical points are of the form:

P (t) =
1

ǫ
ξ−1 +

∞
∑

i=0

αiξ
i, (3.16)

B(t) =
−k4
c
ξ−1 +

∞
∑

i=0

βiξ
i, (3.17)

A(t) = γ−iξ
−1 +

∞
∑

i=0

γiξ
i, (3.18)

D(t) =

k4
∑

i=1

δ−iξ
−i +

∞
∑

i=0

δiξ
i, (3.19)

k4 is an arbitrary positive integer andξ = t−t0 wheret0, γ−1 andδ−k4 are arbitrary
constants.

Proof. We apply the P-test as described in Ablowitz ([2]).
Step 1. We start by writing down the ansatz

P (t) = α−k1ξ
−k1 , (3.20)

B(t) = β−k2ξ
−k2 (3.21)

A(t) = γ−k3ξ
−k3 (3.22)

D(t) = δ−k4ξ
−k4 , (3.23)

F (t) = f−k5ξ
−k5 , (3.24)

and substitute in (3.2)- (3.5):

−k1α−k1ξ
−k1−1 = −µ0α−k1ξ

−k1 − εα2
−k1

ξ−2k1 + f−k5ξ
−k5 (3.25)

−k2β−k2ξ
−k2−1 = −θβ−k2ξ

−k2 − εα−k1β−k2ξ
−k1−k2 + λγ−k3ξ

−k3 (3.26)

−k3γ−k3ξ
−k3−1 = −θγ−k3ξ

−k3 − εα−k1γ−k3ξ
−k1−k3 + f−k5ξ

−k5 (3.27)

−k4δ−k4ξ
−k4−1 = −bδ−k4ξ−k4 + cβ−k2ξ

−k2δ−k4ξ
−k4 . (3.28)

The fact that the functionF does not contribute to the dominant terms implies that
k5 < k1 − 1 andk5 < k3 − 1. The dominant terms are those which can be equal
in each equation (3.25-3.28). Let us recall that thek′is must be integer positive
numbers in order to succeed the P-test. This is accomplishedwith the setk1 = 1,
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k2 = 1, k3 = 1 andk4 is an arbitrary positive integer. The corresponding dominant
terms are thenṖ and−εP 2 in first equation of (3.2),Ḃ and−εPB in second
equation of(3.3),Ȧ and−εPA in third equation of (3.4)Ḋ and cBD in fourth
equation of (3.5).

Step 2. To find the resonances,r, we use the coefficients and the exponents
already found in step one to form the equations:

P =
1

ε
(t− t0)

−1 + κ1(t− t0)
r−1, (3.29)

B =
k4
c
(t− t0)

−1 + κ2(t− t0)
r−1, (3.30)

A = γ−1(t− t0)
−1 + κ3(t− t0)

r−1, (3.31)

D = δ−k4(t− t0)
−k4 + κ4(t− t0)

r−k4 , (3.32)

Then, we substitute them in system (3.2)-(3.5).

ηδ−k4(r + 1)κ1 = 0

−ε
k4
c
κ1 + rκ2 = 0

ηεδ−k4γ−1κ1 + bκ2 + ηδ−k4rκ3 = 0

−cδ−k4κ2 + rκ4 = 0,

We take the linear part inκ1, κ2, κ3 andκ4 to form the resonance matrix

Q(r) =









ηδ−k4(r + 1) 0 0 0
− εk4

c
r 0 0

ηεδ−k4γ−1 0 ηδ−k4r 0
0 −cδ−k4 0 r









, (3.33)

sinceF does not provide leading terms. In order to have resonances,we must have
det Q(r) = r3(r + 1) = 0, which exhibits a rootr = 0 of multiplicity three and
r = −1 of multiplicity one. Any root equal to zero must come from an arbitrary
coefficient in order to pass the test. We already have two arbitrary coefficients
given byγ−1 andδ−1. In general, we can not find a third coefficient becauseβ−1 =
−k4/c is restricted sincek4 has to be a positive arbitrary integer. Therefore the
system does not pass the Painlevé test and (3.16-3.19) does not represent the general
solution.

Remark Let us notice that the leading coefficient of the solution forthe prey pop-
ulation is given byα−1 = 1/ε. Therefore, self-limitation in the prey population is
an important biological factor. Otherwise, the solutions will be unbounded. In an
analogous way, we notice the importance of the predation factor since the leading
coefficient of the juvenile population,B, is k4/c.
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Example3.3.2. In order to complete this section, we present an example of a func-
tion F . Let us consider the functionF = B/(1 + ηD). By taking the coefficients
and the exponents of the dominant terms we see that

P (t) = 1/εξ−1,

B(t) = k4/cξ
−1

A(t) = γ−1ξ
−1

D(t) = δ−k4ξ
−k4 ,

Becausek4 is arbitrary we can assume thatk4 = 1 then the order of the function
F is F ∼ fξ0. This means that the functionF does not contribute to the dominant
terms in the P-test. This particular case was previously studied in [36].

So far, we have shown that a necessary condition to pass the P-test is the con-
tribution of leading terms fromρ(0, t). Thus, the nonlinearity of this function is an
essential feature. Next, we make use of the specific form of the functionρ(0, t) in
the following result.

3.4 Contribution of F

In this case, we use a specific functionF (P (t), B(t), A(t), D(t)):

F (P,B,A,D) =
Bm(1− ρB − σPL − τAM)

1 + ηD
, (3.34)

whereρ, σ, τ , k are positive parameters andm, L andM are positive integers.

dP (t)

dt
= −µoP (t)− µP 2 +

Bm(1− ρB − σPL − τAM)

1 + ηD
(3.35)

dB(t)

dt
= −θB(t)− µP (t)B(t) + β0A(t) (3.36)

dA(t)

dt
= −θA(t)− µD(t)A(t) +

Bm(1− ρB − σPL − τAM)

1 + ηD
(3.37)

dD(t)

dt
= −bD(t) + cB(t)D(t) (3.38)

whereµ0, ǫ, η, θ = α + µ0, β0, b andc are positive parameters.
This function is a general version of the predation term usedis [36] where a pre-

dation term of the formF = B/(1+ ηD) was considered. This function represents
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the juvenile populationB contributes to the adult populationP in a proportional
way. However, there is competence between the other groups of the population
namedP , B orA. Because we are assuming a predation process, the variableD is
also included with a saturation effect.

The question is, whether under these general conditions thesystem (3.35)-(3.38)
will pass the P-test. The answer is given in the following theorem.

Theorem 3.4.1.Let us consider the system (3.35)-(3.38). Assume that the function
F (3.34) contributes with at least one of the dominant terms in the P-test.

• If k4 is a positive integer, then the system has logarithmic branch points.

• If k4 is a non-integer rational number, then the system has a branch point of
order−k4.

In both cases, the system does not have the Painlevé property.

Proof. Again, we apply the P-test.
Step 1. In an analogous way, as in the proof of Theorem (3.3.1)we substitute

the ansatz (3.20-3.23) in the system (3.35)-(3.38) to obtain:

−k1α−k1ξ
−k1−1 = −µ0α−k1ξ

−k1 − εα2
−k1

ξ−2k1 (3.39)

+
(β−k2ξ

−k2)m(1− ρ(β−k2ξ
−k2)− σ(α−k1ξ

−k1)L − τ(γ−k3ξ
−k3)M)

1 + η(δ−k4ξ−k4)

−k2β−k2ξ
−k2−1 = −θβ−k2ξ

−k2 − εα−k1β−k2ξ
−k1−k2 + λγ−k3ξ

−k3 (3.40)

−k3γ−k3ξ
−k3−1 = −θγ−k3ξ

−k3 − εα−k1γ−k3ξ
−k1−k3

+
(β−k2ξ

−k2)m(1− ρ(β−k2ξ
−k2)− σ(α−k1ξ

−k1)L − τ(γ−k3ξ
−k3)M)

1 + η(δ−k4ξ−k4)
(3.41)

−k4δ−k4ξ
−k4−1 = −bδ−k4ξ−k4 + cβ−k2ξ

−k2δ−k4ξ
−k4 . (3.42)

We found that the exponentsk1 = 1, k2 = 1, k3 = 1 balance at least two dominant
terms in equations (3.36) and (3.38). These equations do notcontain the function
F . For equation (3.36) dominant terms are,Ḃ and−εPB. The dominant terms
for equation (3.38) arėD and−εPB. Also, from these equations we have that
α−1 = 1

ε
, β−1 = −k4

c
. The coefficientsγ−1 andδ−k4 have to be determined using

equations (3.35) and (3.37). For equations (3.35) and (3.37), the dominant terms
depends on the functionF . There are several cases to analyze because the function
F has parameters which have to be determined. Finally, the first step is achieved
whenk4+2 = m+1 óm+L óm+M , where at least two ofm+1,m+L,m+M
are equal and the third one iqual or lesser.
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Step 2. The matrix of resonances is the same as that obtained in (3.33) but with
F (P,B,A,D) 6= 0. To find the values of the resonances, we have to find the roots
of the polynomial,

det[Q(r)] =

= det









ηδ−k4(r + 1) + ∂F
∂κ1

(0) ∂F
∂κ2

(0) ∂F
∂κ3

(0) 0

− εk4
c

r 0 0
ηεδ−k4γ−1 +

∂F
∂κ1

(0) ∂F
∂κ2

(0) ηδ−k4r +
∂F
∂κ3

(0) 0

0 −cδ−k4 0 r









(3.43)

= ηδ−k4r
2

[

r2ηδ−k4 + r

(

ηδ−k4 + ξk1
∂F

∂P
(X1) + ξk3

∂F

∂A
(X1)

)

+ξk2
∂F

∂B
(X1)

εk4
c

+ ξk3
∂F

∂A
(X1)(1− εγ−k3)

]

,

whereX1 = (α−k1ξ
−k1 , β−k2ξ

−k2 , γ−k3ξ
−k3 , δ−k4ξ

−k4). Thus,r = 0 is always a
double root which should correspond to two arbitrary constants. However, it is
shown in Step 1, that there is only one arbitrary constant.

In order to show that solutions exhibit logarithmic branch points, we make the
following transformation in (3.2)- (3.5)

P =
f(ln ξ)

ξ
, B =

g(ln ξ)

ξ
, A =

ϕ(ln ξ)

ξ
, D =

ψ(ln ξ)

ξ
. (3.44)

The functionsf, g, ϕ, andψ are analytic and therefore the system has loga-
rithmic branch points. To show that the system exhibits logarithmic branches, let
us suppose that at least two dominant terms are provided by (3.34) in (3.35-3.38).
Thenk1 = 1, k2 = 1, k3 = 1 andk4 + 2 = m + 1 orm + L orm +M, where at
least two ofm+ 1,m+ L andm+M are equal and bigger or equal than the third
one. Ifk4 is an integer, we find logarithmic branch points as before. Ifk4 is not an
integer, then we define a new variable

∆ = D
−

1

k4 ,

and substitute∆ in (3.34). ∆ is analytic and as a result, the system has a branch
point of order−k4. In both cases, the system does not have the Painlevé property.
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Example3.4.2. In order to complete this section, we present an example of a func-
tion F . When we select the parametersm = 2, L = 1,M = 0 andτ = 0

F =
B2(1− ρB − σP )

1 + ηD
(3.45)

Whenk4 = 1 the solutions of the system (3.35-3.38) corresponds to the case is a
positive rational number and it has a logarithmic branch. When k4 is a non-integer
rational number the solutions have a branch point of order−k4. This function is a
more general function that the one studied in [36].

The previous theorems have shown that the system has failed the Painlev́e test.
However, they have exhibited the complexity of the solutions.

3.5 Conditions onF to succeed the P-test

A natural question to ask is if we can find functionsF (P,B,A,D) = ρ(0, t) for
which the system (3.2)-(3.5) has the Painlevé property. In order to answer this
question, let us suppose that the functionF (P,B,A,D) can be written as

F (P,B,A,D) =

k5
∑

i=1

f−iξ
−i +

∞
∑

i=0

fiξ
i. (3.46)

Then, taking the equation (3.7-3.10) and the ansatz (3.20-3.23) with the follow-
ing valuesk1 = 1, k2 = 1, k3 = 2, k4 an arbitrary positive integer,α−1 =
2/ε, β−1 = −k4/c, γ−1 = −k4/(β0c) and δ−k4 is an arbitrary constant. All
these conditions are found by applying the P-test. Furthermore, we defineX2 =
(α−1ξ

−1, β−1ξ
−1, γ−2ξ

−2, δ−k4ξ
−k4), andh = c/εk4, Under these conditions we

obtain the following theorem.

Theorem 3.5.1.Let us assume that the functionF (P,B,A,D) is a rational func-
tion in the variablesP , B, A, D, with a pole of order two in the variablet and the
polynomial

r2 − r

(

∂F
∂P

(X2)

ξ−k1
− 3

)

−

(

∂F
∂A

(X2)

ξ−k3β0h
+

∂F
∂B

(X2)

β0ξ−k2

)

(3.47)

has two integer positive roots. Then, the system passes the first two steps of the
P-test.
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Proof. Step 1. This step is completed for the values ofki, (i = 1, 2, 3, 4), α−1,
β−1, γ−2 andδ−k4 already given and with dominant terms given byṖ , −εP 2 and
F (P,B,A,D) in (3.35) Ḃ, −εPB andβ0A in (3.36), Ȧ and−εPA in (3.37) Ḋ
andcBD in (3.38).

Step 2. As before, we make the substitution of the ansatz (3.29-3.32) with
the new values along with (3.46) in the dominant terms of eachequation. The
resonances are the roots of the polynomial,

r(r + 1)

(

r2 − r

(

FP (X2)

ξ−k1
− 3

)

−

(

FA(X2)

ξ−k3β0h
+
FB(X2)

β0ξ−k2

))

= 0. (3.48)

The rootsr = −1 andr = 0 correspond to the arbitrariness oft0 andδ−k4, respec-

tively. Finally, sincer2 − r
(

FP (X2)

ξ−k1
− 3
)

−
(

FA(X2)

ξ−k3β0h
+ FB(X2)

β0ξ−k2

)

has two positive

integer roots, we find four resonances. Thus, the second stepof the test has been
accomplished.

Step 3. This is a compatibility test and it depends on a particular form ofF .

The last theorem shows how the termF (P,B,A,D) should be in order to pass
the P-test. This is an important issue because the success ofthe P-test may indicate
integrability. There are practical aspects that we can deduce from Theorem 3. IfF
is a polynomial, we can instantly assure that the system doesnot have the regularity
required in its solutions . Moreover, we can find a great diversity of examples that
satisfy the above conditions. We can achieve this task by setting F = P q1Bq2Aq3 ,
whereq1 = 3 +m1 +m2, q2 = 2− q1 − 2q3 andq3 = m1 +m2 + z with any two
natural numbersm1 andm2 andz ∈ Z arbitrary.

Example3.5.2. As an example consider the followingF = P 6B8

A6 . With this term,
the system of equations (3.2)-(3.5) fulfills the conditionsrequired by Theorem 3.5.1
and passes the P-test. Notice the specific nonlinearity of the example. So, we can
discard traditional modeling terms for the functionF that may include the law of
mass action, logistic terms and saturation terms of the formB

1+kDs .

An important fact to mention is that one of the conditions required to pass the
P-test is that theF (P,B,A,D) be independent of the predator variable. This leads
to a biological inconsistency because the prey is not longeraffected by the predator,
which might suggest that the system presents intrinsic unstable behavior and that
the action of the predator should be modeled in a different way.

43



CHAPTER 3. NONLINEAR JUVENILE PREDATION

Figure 3.1: a)µ = 1, b = 0.8, ρ = 0.2 m = 1 and b)µ = 0.8, b = 1.0, ρ = 0.8,
m = 2

3.6 Numerical Results

In order to illustrate coexistence between predator and prey, we apply standard
bifurcation analysis to the ordinary differential equations system given by (3.2)-
(3.5). In Figure 3.1, we show two bifurcation diagrams usingAUTO (see [12]) with
common values given byL = M = η = 1, σ = τ = 0, θ = 0.7, β0 = 10 and
c = 2, andm = 1 in 3.1 a) andm = 2 in 3.1 b). The branch labeled as 2-5 in
the first diagram is periodic and stable (4-6) in the second one. Here solid lines
denote stability. Note that the system has three solution branches, one periodic and
the other two, equilibrium branches. Also, observe that theperiod of the periodic
solution in Figure 1 b) tends to infinity whenε → 0, while the other two branches
become unstable. This fact strengthens the idea that self-limitation of the prey is an
important factor to stabilize the system. Theorems 3.1 and 3.2 show that a necessary
condition to pass the P-test is that the coefficient of the dominant term of the prey
is given byα−1 = 1/ε. A similar behavior of the system is obtained when the
coefficientsτ, σ andρ vary. In all of these cases, there exist critical values of these
parameters for which there is always a branch of periodic solutions. It is important
to remark that the period of the solutions tend to infinity when these critical values
tend to zero. If we increase the value ofL orM then the critical values also increase.
Numerical experiments show a specific way to choose the parameterε in to order to
obtain periodic solutions. All these numerical results support the necessity that the
functionF contributes to the dominant terms in Step 1 of the P-test as inTheorem
3.2
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3.7 Conclusions

In this chapter we have presented a new series of age-structure models in order to
show the importance of the self-limitation in order to obtain solutions without mov-
able critical points. The practical aspect of these models is to include the theoretical
possibility that an effective strategy for the prey may result if predators can not in-
teract with a particular class of prey. Moreover, aside fromtheoretical aspects, only
small amount of experimental work has been carried out that includes different bio-
logical factors of self-limitation. We have shown that the Painlev́e analysis plays an
important role in modeling. We have discovered the necessary conditions which are
required in the system in order to pass the P-test. These conditions require special
nonlinearities that discard traditional interaction terms like the law of mass action,
logistic terms, etc. All these necessary conditions dependon the the form of the
term that models the number of newborn prey. If new nonlinearities are allowed
in the model, potentially more realistic, then predation can be remodeled, since a
traditional Lotka-Volterra equation for the predators population was assumed. We
have shown numerically the coexistence between predator and prey by presenting
several examples. The self-limitation is an essential biological factor to establish
coexistence.

45



CHAPTER 3. NONLINEAR JUVENILE PREDATION

46



Chapter 4

Generic predation in age structure

predator-prey models 1

4.1 Introduction

In Chapter three, we tested two different versions of system (1.26) for integrability.
The results were, two cases where the system did not pass the P-test and a third one
where we established integrability conditions. The key idea in the last case was to
allow the predation termF to be a general function and we looked for conditions
to succeed the P-test. However, these conditions were restrictive and coexistence
between predator-prey was found in one case where the P-testfailed. Now, in this
chapter we generalize the Lotka-Volterra predation term inthe fourth equation of
the system (1.26) and we search for conditions to pass the P-test. This led us to a
modeling strategy that we called analytical modeling.

4.2 Analytical modeling

The classical approach to finding criteria of mathematical coexistence is through
asymptotic stability or the global asymptotic stability ofa unique equilibrium point
or periodic solution [46, 48]. However, from a biological point of view a more
realistic criterion will be to allow the system itself to define their interaction by im-
posing that solutions behave in a predetermined generic form. This process is what
we will refer to asanalytical modeling. In order to introduce analytical modeling
in this work, we will use two well known techniques in all the branches of nonlin-
ear science. The first one is known as the Painlevé test and the second one is the

1This chapter is based on F.J. Solis and R.A. Ku-Carrillo,Generic predation in age structure
predator-prey modelsApplied Mathematics and Computation
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bifurcation theory, both of them described in Chapter 2.
Our general procedure is the following. First, we derive a general predator-prey

model with age structure. Then, we apply the P-test and describe the necessary
conditions to pass it. These conditions relate to the dominant terms of the system,
the power of such terms and the value of the coefficients of theleading order terms.
Next, we propose functions compatible with the given conditions and we also look
for biological compatibility. In particular, we select functions that have biological
relevance. Finally, we carry a numerical bifurcation analysis of the model using
the software AUTO by Doedel [12], where we find the values of the parameters for
stable equilibrium solutions and stable periodic solutions.

As a practical purpose of this chapter, it is worthy to mention that there are
biological control methods to prevent the spread of pests byintroducing natural
predators as we do it in this work. There are numerous examples of full or partial
success. The idea is to control by finding stable periodic solutions of the populations
involved. This type of control has received considerable attention because of its
potential practical benefits [35, 31].

This chapter is organized as follows. In Section 4.3, we propose a general
predator-prey model with age structure that we will study. In Section 4.4 we intro-
duce the analytical modeling where we include numerical simulations and interpret
the biological implications of the results. Finally, conclusions are given in section
4.5.

4.3 Age-structured predator-prey models

The aim of this section is to derive predator-prey population models with age dis-
tribution that will be subject to analytical modeling in thefollowing section. Since
our main goal in this work is to understand predation effects, we will propose a
generic predation in order to obtain viable interactions and also where biological
coexistence may be achieved.

Let us recall our starting model described in the previous chapter:

dP (t)

dt
= −µoP (t)− µP 2 + F (P (t), B(t), A(t), D(t))

dB(t)

dt
= −θB(t)− µP (t)B(t) + β0A(t)

dA(t)

dt
= −θA(t)− µD(t)A(t) + F (P (t), B(t), A(t), D(t))

dD(t)

dt
= −bD(t) + cB(t)D(t) (4.1)
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whereµ0, ǫ, η, θ = α + µ0, β0, b andc are positive parameters.
There are two important choices to make in the model. The firstone is selecting

the incoming of offspring into the prey population,F (t) = ρ(0, t), and the second
is how to postulate the quantitative growth of the predationprocess. In Chapter
3 [37], we investigated a predator-prey model whereF (t) = ρ(0, t) is a general
function depending on the prey, the offspring prey and the predator populations,
with the assumption that predators followed an interactiongiven by the classical
Lokta-Volterra evolution. Here, we again select a general functionρ(0, t) which we
denote asF (P,B,A,D) whereD denotes the predator density and we model the
predator interactions by a general term given byG(P,B,A,D). Thus, the system
of equations that we will study is:

dP (t)

dt
=− µ0P (t)− εP (t)2 + F (P (t), B(t), A(t), D(t))

dB(t)

dt
=− θB(t)− εP (t)B(t) + β0A(t)

dA(t)

dt
=− θA(t)− εP (t)A(t) + F (P (t), B(t), A(t), D(t))

dD(t)

dt
=− bD(t) +G(P (t), B(t), A(t), D(t)), (4.2)

whereθ = α+µ0. A detailed construction of a simplified version of this modelcan
be found in [37, 38].

4.4 Analytical modeling process

We divide this section in two parts. In the first one, we will analyze the different
functional forms that the functionGmay take in system (4.2) in order to obtain real
solutions where only poles as singularities are allowed. Systems with this charac-
teristic are said to possess the Painlevé property. In the second one, we will select
among the successful functionsG from the previous step, those that guarantee pe-
riodic solutions to system (4.2).

Painlev́e analysis has proved to be one of the most successful and widely ap-
plied tools in nonlinear theory. This analysis reveals a deep interrelation between
the integrability of soliton equations and the integrability of certain reductions to
ordinary differential equations. One may use different methods to check whether a
nonlinear system passes the Painlevé test. We will make use of an algorithm named
P-test. Such a test is divided in three parts. In the first one,the system is solved
only for the dominant behavior, then the second step consists of finding the reso-
nances (also called indices), here the whole system is solved by proposing solutions
as truncated Laurent series of the form:
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P (t) =

k1
∑

i=1

α−i,1(t− t0)
−i +

∞
∑

i=0

αi,j(t− t0)
i,

B(t) =

k2
∑

i=1

α−i,2(t− t0)
−i +

∞
∑

i=0

αi,2(t− t0)
i,

A(t) =

k3
∑

i=1

α−i,3(t− t0)
−i +

∞
∑

i=0

αi,3(t− t0)
i,

D(t) =

k4
∑

i=1

α−i,4(t− t0)
−i +

∞
∑

i=0

αi,4(t− t0)
i,

(4.3)

and the functionsF andG are assumed of the form:

F (P,B,A,D) =

k5
∑

i=1

f̂−i(t− t0)
−i +

∞
∑

i=0

f̂i(t− t0)
i

G(P,B,A,D) =

k6
∑

i=1

ĝ−i(t− t0)
−i +

∞
∑

i=0

ĝi(t− t0)
i, (4.4)

wheret0 is arbitrary. Since our system is formed by four nonlinear differential
equations then we must ensure that four resonances are possible. The third step in
the P-test consists of verifying the compatibility of the resonances and it is impor-
tant because it tells us if the series (4.3) can represent a general solution. In order
to accomplish this step it is necessary to have the functionF (P,B,A,D) explicitly
and not only its general representation. Since we are dealing with general functions
F andG we only focus on the first two steps.

Let us recall that the role of the predation termρ(0, t) = F (P,B,A,D) was
already analyzed in [38] with a Loktka Volterra interactionfor predators. There, it
was shown that if the functionF does not contribute to the dominant terms (first
step in the P-test) then the system (4.2) does not pass the P-Test. However, by
considering a general predator interaction termG, we have found different classes
of models which are organized based on the dominant terms considered in the P-
test. We obtain four cases were the P-test is successful. In the first case, the function
F is not a dominant term, which is a more general result that theone given in [38].
In cases two and three, the functionF is a dominant term and also the self-limitation
has to be included. Finally, in case fourF is dominant and the system does not
have self-limitation. All the cases are presented in Tables4.1, 4.2 and 4.3 where
k1,2,3 > 0, k4 < 0 andk5 = k3 − 1 in case 4.
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4.4. ANALYTICAL MODELING PROCESS

Table 4.1: Dominant terms

Leading order terms
Equations 1 2 3 4
Case 1 (P ′, εP 2) (B′,−εPB) (A′, εPA) (D′, G)
Case 2 (P ′, εP 2) (B′,−εPB) (A′, εPA, F ) (D′, G)
Case 3 (P ′, εP 2) (B′,−εPB, λA) (A′, εPA, F ) (D′, G)
Case 4 (P ′, F ) (B′, β0A) (A′, F ) (D′, G)

Table 4.2: Exponents of dominant terms

Leading order exponents
Equations k1 k2 k3 k4 k5
Case 1 −1 −1 −1 k6 + 1 > −2
Case 2 −1 −1 ≥ 0 k6 + 1 −2
Case 3 −1 k3 − 1 ≤ 0 k6 + 1 > −2
Case 4 ≥ 0 ≥ 1 k1 k6 + 1 k3 − 1 < 2k1,

Table 4.3: Coefficients of leading order terms

Leading order coefficients
Equations αk1,1 αk2,2 αk3,3 αk4,4

Case 1 1/ε arbitrary arbitrary gk6/k4

Case 2 1/ε arbitrary
fk5
k3−1

gk6/k4

Case 3 1/ε
β0αk3,3

k2+1

fk5
k3+1

gk6/k4
Case 4 fk5/k1 β0αk3,3/k2 fk5/k3 gk6/k4
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4.4.1 Case 1: No contributions of leading terms toF

In this first case, we discover thatF is not necessary as a leading term in order to
pass the P-test as it was a requirement in [38], which shows the importance of taking
a general interaction for predators. By takingk1 = k2 = k3 = −1, k4 = k6+1 ∈ Z,
k5 > −2, αk1,1 = 1/ε, αk4,4 = ĝk6/k4 with αk2,2 andαk3,3 arbitrary constants in
(4.3) and definingξ = t− t0 andX1 = (ε−1ξ−1, αk2,3ξ

−1, αk3,3ξ
−1, ĝk6/k4ξ

k4), we
obtain the following theorem.

Theorem 4.4.1.Consider system (4.2). Let us assume that the functionsF and
G are rational functions in the variablesP,B,A andD. F with a pole of order
greater than two in the variableξ. If ξ−1 ∂G

∂D
(X1) − k4 ∈ Z

+ then all solutions of
system (4.2) are of the form (4.3).

Proof. As described in [3], the first step in the P-test is accomplished by solving the
system with the most dominant terms, which are(P ′, εP 2), (B′,−εPB), (A′, εPA)
and(D′, G) corresponding to equations1, 2, 3, and 4 of system (4.2), respectively.
Notice thatF does not appear as a leading term in any of these equations. For step
two, the matrix of resonances, for this case is:

Q1(r) =









r + 1 0 0 0
εαk2,2 r 0 0
εαk3,3 0 r 0

ξ−1 ∂G
∂P

(X1) ξ
−1 ∂G

∂P
(X1) ξ

−1 ∂G
∂P

(X1) ξ
−1 ∂G

∂D
(X1)− r − k4









The resonances,r, are the roots ofdetQ1(r) = 0, which arer1 = −1 correspond-
ing to the arbitrariness oft0, andr2,3 = 0 of multiplicity two corresponding to the
arbitrariness ofαk2,2 andαk3,3. Since the last root must be a nonnegative integer,
we must assume thatr4 = ξ−1 ∂G

∂D
(X)− k4 ∈ Z

+.

The exclusion of the termF as a dominant term implies that a possible solution
with poles should come from others terms instead ofF . It is worthy to mention that
ε has to be different than zero in order to have this result. We conjecture that self-
limitation is an important factor to obtain integrability.On the other hand, the term
F describes the income of the prey offspring in the system which in this case has
to be lesser that the order of the self-interaction among prey. This result excludes
the case where the predator interaction is of the The Lotka-Volterra, since it can be
shown that this particular example does not provide the positive resonance required
by the P-test. On the other hand functions that satisfy the conditions to accomplish
the second part of the P-test can be easily found.

Now to complete the first case, we will state the conditions inorder to have co-
existence by finding conditions for the system (4.2) to have periodic solutions. First,
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4.4. ANALYTICAL MODELING PROCESS

we need to find explicit candidates for the functionsF andG. An heuristic method
to find suitable predation termsF andG is the following. Choose particular fixed
values for the exponentsk1,k2, k3, k5 andk6 that satisfy Theorem (4.4.1). Next, we
test different functionsF andG, formed by algebraic combinations of the system
variablesP , B, A andD such that their leading orders match. Of course, there
is an enormous amount of possible combinations, however by imposing biological
restrictions we can obtain viable candidates, for example thatF must contain the
predator variableD and so on.

We carried on a classical bifurcation numerical analysis ofthe model using the
software AUTO by Doedel [12]. We were particularly interested in finding peri-
odic solutions so different functionsF andG were tested. One example is given by
F = f1BP/D andG = g1B

2/D, which makes the system (4.2) posses periodic
solutions and also to pass the P-test. Figure 1a exhibits equilibrium and periodic
solution branches. Figure 4.1a shows a bifurcation diagramwhere the varying pa-
rameter isf1, the coefficient ofF. There is only one branch of equilibrium solutions,
label 1. Its stability is shown as a continuous curve and its instability as a dotted
curve. Squares represent Hopf bifurcation points (HB) such as labels 2 and 9. From
the HB point, label 2, an unstable periodic solution branch is computed with an in-
creasing period. There the total amount of individual increases when the parameter
alsof1 increases. This shows that species coexistence is possiblefor a small range
in the parameter regime which indicates the difficulty of finding a viable system.
There is a second branch of periodic solutions, HB labeled 9,but it is biologically
irrelevant. In Figure 4.1b, a periodic solutions is shown using only the variablesP ,
B andD which are the prey population, juvenile prey population andpredator pop-
ulation, respectively. We can observe that an increase in juvenile individual leads
to a take off in the prey population. For the predator population, an increment is
observed up to a maximum with a subsequent decline. The modeling term used for
G in the example shows a strong predation only on the youngsters with a saturation
term for the predators.

4.4.2 Case 2 and 3: The importance of self-limitation

It is well documented that self-limitation is an essential biological factor to estab-
lish coexistence. In our case, the self-limitation coefficient appears as a leading
term in three of the four general cases with successful P-tests. Its contribution is
independent of the functional form ofF, which is how the offspring enters in the
prey population. We found two general cases (case 2 and case 3) with successful
P-test, where two terms are essential, namelyF and self-limitation. As before, we
defineξ = t− t0 andX2 = (ε−1ξ−1, αk2,3ξ

−1, αk3,3ξ
−1, ĝk6/k4ξ

k4).
For case 2, we choosek1 = k2 = −1, k3 ≥ 0, k4 = k6 + 1 ∈ Z, k5 = k3 − 1 >
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−2, αk1,1 = 1/ε, αk4,4 = ĝk6/k4, αk3,3 = f̂k5/(k3 − 1) with αk2,2 being an arbitrary
constant.

For case 3, we choosek1 = −1, k2 = k3 − 1, k3 ≤ 0, k4 = k6 + 1, k5 =

k3 − 1 > −2, αk1,1 = 1/ε, αk2,2 =
β0αk3,3

k2+1
, αk3,3 =

f̂k5
k3+1

andαk4,4 = ĝk6/k4.
Let

Q2(r) =











r + 1 0 0 0
εαk2,2 r 0 0

εf̂k5
k3−1

− F ∗

P , −F
∗

B, k3 + r + 1− F ∗

A, −F ∗

D

G∗

P G∗

B G∗

A G∗

D − r − k4











(4.5)

and

Q3(r) =











r + 1 0 0 0
εβ0αk3,3

k2+1
k2 + r + 1 −β0 0

− εf̂
k3+1

+ F ∗

P F ∗

B −(k3 + r + 1) + F ∗

A F ∗

D

G∗

P G∗

B G∗

A G∗

D − r − k4











(4.6)

where we have used the notationH∗

Z as ∂H
∂Z

(X2). Under these conditions we obtain
the following theorem.

Theorem 4.4.2.Consider the system (4.2). Let us assume that the functionsF and
G are rational functions in the variablesP,B,A andD. F with a pole of order
k3 − 1.

case 2. If all zeros of the second degree polynomialdetQ2(r)
r(r+1)

are different posi-
tive integers then all solutions of system (4.2) are of the form (4.3).

case 3. If all zeros of the third degree polynomialdetQ3(r)
(r+1)

are positive integers
then all solutions of system (4.2) are of the form (4.3).

Proof. This proof is analogous to proof of Theorem 4.4.1. The first step of the
P-Test is accomplished by solving the system for the most dominant terms, which
are:

case 2,(P ′, εP 2), (B′,−εPB), (A′, εPA, F ) and(D′, G)
case 3,(P ′, εP 2), (B′,−εPB, βoA), (A′, εPA, F ) and(D′, G)

corresponding to equations 1, 2, 3 and 4 of the system (4.2), respectively. Notice,
that F does appear as a leading order term in both cases. For step two, the resonance
matrices are (4.5) and (4.6). The resonances,r, are the roots ofdetQ2(r) = 0 and
detQ3(r) = 0 for case 2 and case 3, respectively. Such roots arer1 = −1 (case
2 and case 3) corresponding to the arbitrariness oft0, andr2 = 0 (only case 3)
corresponding to the arbitrarinessαk3,3. Since the last root must be a nonnegative
integer, the roots ofdetQ2(r)

r(r+1)
= 0 and detQ3(r)

(r+1)
= 0 must be different and are∈

Z
+.
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BD
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, b) Periodic solution forP ,B,D

Theorem 4.4.2 also highlights the importance of the self-limitation because the
coefficientε also appears in the resonance matrices (4.5) and (4.6). The viability of
solutions of type (4.3) rely strongly on this parameter. Cases 2 and 3 are generaliza-
tions of Theorem 3 from [38], where the system (4.2) passes the P-Test considering
G = −cBD as a Lotka-Volterra interaction term.

Among the possible choices of mechanisms of new incoming of individuals
into the systemF and the predation termG, we show as an example a particular
combination that guarantees coexistence between the species, namelyF = f1

B
1+D

andG = f2
BD
1+A

. It is important to remark on the similarity between these terms
and the original ones proposed in [37]. There, the system (4.2) was studied with
F = B

1+ηP4
andG = BD, whereη is a positive constant. The new functionG

suggested by our method can be described as a modified Lotka-Volterra predation
term. The termcBD was by substituted by a saturation term of the formf2 BD

1+A
.

The biological interpretation of this term is that resources for the predator, other
than the prey population, are limited.
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Figure 4.2a shows a bifurcation diagram for case 2 varying the parameterα
which is one of the constants in the natality rateβ. Again, the lines depict equilib-
rium solutions where solid lines represent stability and the dashed lines represent
instability. The branch labels 7, 3 show unstable equilibrium points. From this fig-
ure, we observe that theL2 norm tends to zero asα grows. This fact is biologically
consistent becauseα controls the maximum value of the natality functionβ. The
bifurcation point label 6 is a HB point and the line labeled as9 and 10 is a stable
periodic solution branch. We found again a narrow existenceinterval of coexistence
between species. Figure 2b shows a typical periodic solution in the space(P,B,D)
where the HB point is depicted as a red point. From this graph we note that the
adult prey population and the predator population grow at the same time while the
predator population remains at a low steady level. The predator population starts
growing after the prey population, both adult and juvenile,has reached a peak. So
far analytical modeling has led us to predation terms were coexistence between the
predator and the prey exists.

4.4.3 Case 4: No self-limitation and coexistence

Two natural questions arise. Is it possible that the system passes the P-Test without
self-limitation? Also, would be this enough to have coexistence of both species?
The answer to both questions is positive and significant because we have widely
discussed the requirement of self-limitation to have periodic solutions. This is a
consequence of taking generic functional forms forF andG.

By taking k1 ≥ 0, k2 ≥ 1, k3 = k1,, k4 = k6 + 1, k5 = k3 − 1 = 2k1,
αk1,1 = f̂k5/k1, αk2,2 = β0αk3,3/k2, αk3,3 = f̂k5/k3, αk4,4 = ĝk6/k4 in (4.3) and
definingξ = t − t0 andX3 = (f̂k5/k1ξ

k1 , αk2,2ξ
k2 , αk3,3ξ

k3 , ĝk6/k4ξ
k4) we obtain

the following theorem.

Theorem 4.4.3.Consider system (4.2). Let us assume that the functionsF and
G are rational functions in the variablesP,B,A andD. F with a pole of order
less than2k1 in the variableξ. If the third degree polynomialdetQ4(r)

r+1
has different

positive roots, then all solutions of system (4.2) are of theform (4.3).

Proof. The proof is similar to proofs of Theorems (4.4.1) and (4.4.2). In this case
the resonance matrix is:

Q4(r) =









−k1 − r 0 k3 + r 0
0 k2 + r −k3 + r 0
F ∗

P F ∗

B −(k3 + r) + F ∗

A F ∗

D

G∗

P G∗

B G∗

A G∗

D − r − k4









(4.7)
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Figure 4.3: Bifurcation diagram of model 4.2 a) Bifurcation diagram with a periodic
branch andF = P/D, G = D3/B, b) Periodic solution forP ,B,D

The first fact we want to remark is that we found that the some ofthe exponents
ki are strictly positive, which indicates analytical solutions, which allows one to
use predation terms of the saturation type. The only power which admits a negative
value isk4. So, we have that the predator populationD has a pole-type behavior.

Following the procedure described above, we select functionsF andG fulfilling
Theorem 4.4.3 conditions. A numerical study reveals that inorder to obtain coex-
istence they all must share the same functional structure. Examples of functionsF
are given byf1 PD

1+P
, f1 PD

1+B
andf1 PD

1+A
with a functionG of the formG = D/B.

This last functional term means that predation has to be carried out in adults and it
exhibits saturations effects due to a portion of the prey population namelyP , B or
A. Biologically, the predation term points out that predator population feeds from
adult prey population. However, an adverse effect is causedby the juvenile popu-
lation becauseF is reduced whenB grows. This might suggest that this juvenile
population is toxic to prey population. Figure 4.3a illustrates this scenario using a
bifurcation diagram were lines have the same meaning as in previous sections. A
stable equilibrium solution branch is shown, which becomesunstable at a HB point,
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label 4. From this point a stable periodic solution branch iscomputed where theL2

norm abruptly increases while theα decreases, label 7. Coexistence is stable in
almost the whole branch although, the existence interval ofthe periodic solution is
small. As an example, a periodic solution is presented in Figure 4.3b. As predicted
from the modeling termsF andG, the juvenile prey population grows proportion-
ally to the adult population. One final remark is that the predator populationD
grows with adult prey populationP steadily, but a steep descent occurs when the
prey population is small.

4.5 Conclusions

In this chapter we have proposed an analytical way of modeling in the context of
predator-prey modeling. This is based on the P-test giving conditions to obtain so-
lutions where the only singularities are poles. An important assumption was made
considering general predation functionsF andG depending only on the system
variablesP ,B,A, andD. Four general cases were found to pass the first two steps
of the P-test. They establish the required conditions leading to special nonlineari-
ties that discard traditional interactional terms like thelaw of mass action, logistic
terms, etc. In all these cases, we exhibited examples with predation functions where
coexistence between the predator population, juvenile andadult, and the predator
population was achieved. The analytical modeling procedure also unveiled the im-
portance of self-limitation on the prey because it was foundin three of the four
cases where the P-test was successful. Another relevant case with coexistence was
also obtained even though self-limitation is not used in themodeling.

59



CHAPTER 4. GENERIC PREDATION IN AGE STRUCTURE

60



Chapter 5

Age-structured predator-prey models

with varying prey birth rates 1

5.1 Introduction

So far we have been modeling the interactions between two species capturing es-
sential features of the interactions being modeled. Simulations also have reflected
those aspects of real-life behavior. There are still many open questions that we
would like to address. At each stage, we have required some type of validation con-
cerning the new features being added and the extent to which the numbers predicted
by the model compare with real data.

In this chapter, we focus on developing age structure modelswhere birth rates
can be varied. Such an analysis will help our understanding of the effects of several
factors and management actions since there is a clearer linkfrom these factors to
vital rates than to abundance. Before attempting to model thevital-rate changes,
we needed to address the critical lack of age-structure information. To do this,
we propose a parametrized birth rate which includes the one presented in previous
chapters as a particular case.

5.2 Birth rate analysis

Population models are commonly used to study the dynamics ofanimal populations.
Such models are characterized by an explicit representation of age structure. This is
desirable for animals which have delayed maturation, have long life spans, and for
which aging methods are well established. The building blocks for demographic

1This chapter is based on Solis, F.J. and Ku-Carrillo, R.A., Computers and Mathematics with
Applications
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VARYING PREY BIRTH RATES2

models are age-specific birth rates and survival rates
The birth rate is usually the dominant factor in determiningthe rate of popu-

lation growth. It depends on both the level of fertility and the age structure of the
population. It is expected that this rate will be small for newborns and old indi-
viduals and large for young adults. We make the assumption that the birth rate
dependence is only on age.

Mathematically, a birthrate denoted byβ(ω), is a function defined only for non-
negative ages, that isω ≥ 0. Furthermore, it is a positive bounded function with
compact support since the birthrate for old individuals are0. That is,β(ω) = 0, for
ω > A1 andβ(ω) < A2 for all w for some constantsA1 andA2.

There are several functional forms of the functionβ that have been introduced
in the literature. For example, in Chapter 3 we have introduced an appropriate
reproductive rate of the prey population given by

β(ω) = β0ωe
−αω (5.1)

with β0 > 0 andα ≥ 0. Let us recall that ifα > 0 the birth function behaves in a
way that is appropriate for many mammals and ifα = 0 thenbeta = β0ω has been
used for certain fish species. We can observe in this case thatwhen the ageω is zero
or it tends to infinity, the correspondingβ is zero too. Also, it is easy to check that
it reaches a global maximum at the ageω = 1

α
equal toβ = β0

α
e−1. All these facts

fit the biology of populations properly, that is, the young and very old population
do not reproduce and there is naturally a better age intervalto reproduce.

In this chapter, we propose a parametrized birth rate which includes (5.1) as a
particular case. This new rate is given by

β(ω,m) = β0w
me−αw (5.2)

wherem is a natural number. Notice that the new rate has mathematically and bio-
logically all required properties. See Figure 5.1 where we plot the graph ofβ(ω,m)
for some specific values ofm. It is important to clarify that the new birth rate also
will allow us to obtain a differential system instead of an integro-differential system
as we will discuss next.

5.3 Age-structured models

In this section we develop age-structure models that includes our new proposed
birth rate function as well as self-limitation of the prey and generic predation inter-
actions. Earlier versions of these new models were discussed in previous chapters.
In those models, a basic assumption was made by considering that the birth rateβ is
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Figure 5.1: Graphs of the birth rateβ(ω,m) for different values ofm.

equal to (5.1). The role of this natality rate is important because it allows us to have
the following system of differential equations (instead ofan integro-differential sys-
tem):

dP1

dt
=− µ0P1 − εP1

2 + F (P1, P2, P3, P4)

dP2

dt
=− θP2 − εP1P2 + β0P3

dP3

dt
=− θP3 − εP1P3 + F (P1, P2, P3, P4)

dP4

dt
=− bP4 +G(P1, P2, P3, P4), (5.3)

whereP1, P2,P3 andP4 represent a timet, the total population of the prey, the ju-
venile population, and auxiliary variable and the total predator population, respec-
tively. The functionsF (P1, P2, P3, P4) andG(P1, P2, P3, P4) are general predation
functions. All other coefficients are positive constants.

Next, we will construct age-structured models based on the birth rate (5.2). Let
us consider that the prey population of ageω at the timet is denoted byρ(ω, t). The
total population is the sum over the ages,

P1(t) =

∫

∞

0

ρ(ω, t) dω. (5.4)

We also consider an age structure by using the McKendrick equation,

ρω(ω, t) + ρt(ω, t) + µρ(ω, t) = 0. (5.5)
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Now, let us find differential equations for the total population, P1(t) and the
population of newbornsP2(t). In order to do this, we integrate (5.5) from zero to
infinity obtaining:

dP1(t)

dt
= −µ(P1)P1 + ρ(0, t). (5.6)

The juvenile population is calculated asP2(t) =
∫

∞

0
β(w,m)ρ(w, t) dw. Its corre-

sponding differential equation is obtained if we multiply (5.5) byβ0wme−αω, which
is the new birth rate. Then, we integrate again and use integration by parts,

dP2(t)

dt
= −(µ(P1) + α)P2(t) + βom

∫

∞

0

wm−1e−αwρ(w, t) dw. (5.7)

This integro-differential equation can be transformed to an ordinary differential
equation defining the variableP3(t),

P3(t) =

∫

∞

0

wm−1e−αwρ(w, t) dw. (5.8)

This new variableP3 also satisfies the following differential equation obtained
derivating (5.8) with respect tot to get,

dP3(t)

dt
= −(µ+ α)P3 + (m− 1)

∫

∞

0

wm−2e−αwρ(w, t) dw. (5.9)

Again, we get a integro-differential equation but the procedure described above
can be use by defining,

Pj(t) =

∫

∞

0

wm+2−je−αwρ(w, t) dw for j = 2, . . . ,m+ 2 (5.10)

In general, forj = 2, . . . ,m+ 1 we obtain

dPj(t)

dt
= −(µ+ α)Pj + (m+ 2− j)

∫

∞

0

wm+1−je−αwρ(w, t) dw (5.11)

which by definition can be written as

dPj(t)

dt
= −(µ+ α)Pj + (m+ 2− j)Pj+1. (5.12)

Finally, for j = m+ 2 we get

dPm+2(t)

dt
= −(µ+ α)Pm+2 + ρ(0, t). (5.13)
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Since we have discovered that an essential mechanism to achieve coexistence
is the self-limitation of the prey, we will assume thatµ = µ0 + ǫP1. Thus, by
substituting it in the model we obtain the following prey age-structured model.

dP1(t)

dt
= −µ0P1 − ǫP 2

1 + ρ(0, t)

dP2(t)

dt
= −θP2 − ǫP1P2 +mβ0P3

dP3(t)

dt
= −θP3 − ǫP1P3 + (m− 1)P4

...
...

dPm+2(t)

dt
= −θPm+2 − ǫP1Pm+2 + ρ(0, t)

whereµ0, ǫ, η, θ = α + µ0, β0, b andc are positive parameters.

There are two important choices to make in the model. The firstone is selecting
the incoming of offspring into the prey population,ρ(0, t), and the second is how to
postulate the quantitative growth of the predation process. In [37, 38], we proposed
general predation functions suggested by the Painlevé analysis, which we will use
in this work. We will denote byPm+3 the predator population and its interaction
given dPm+3(t)

dt
= −bPm+3 + G(P1, . . . , Pm+2, Pm+3). We make the assumption

that ρ(0, t) depends only onPj(t) for j = 1, 2, . . . ,m + 3. Thereforeρ(0, t) =
F (P1, . . . , Pm+2, Pm+3) for some suitable functionsF. So our final models take the
form:

dP1(t)

dt
= −µ0P1 − ǫP 2

1 + F (P1, . . . , Pm+2, Pm+3) (5.14)

dP2(t)

dt
= −θP2 − ǫP1P2 +mβ0P3

dP3(t)

dt
= −θP3 − ǫP1P3 + (m− 1)P4

...
...

dPm+2(t)

dt
= −θPm+2 − ǫP1Pm+2 + F (P1, . . . , Pm+2, Pm+3)

dPm+3(t)

dt
= −bPm+3 +G(P1, . . . , Pm+2, Pm+3).
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5.4 Numerical results

In this section we focus on the numerical analysis of system (5.14) by choosing
appropriate functions forF andG.Our goal is to analyze how the birth rate modifies
the behavior of system (5.14), that is to investigate the effect of varying the power
m in the birth rate. In order to do this, we will select some choices of the parameter
m. We divide our analysis into several cases that have been analyzed in previous
chapters.

In the first case we chooseF = fP2/(1 + Pm+3) andG = gP2Pm+3. This
case has been analyzed in [37] form = 1. In the second case we selectF =
fP1Pm+3/(1+P2) andG = gPm+3/P2, in the third caseF = fP2/(1+Pm+3) and
G = gP2Pm+3/(1+P3), and finally, in the fourth caseF = fP1P2/(σ+Pm+3) and
G = gP 2

2 /(σ+Pm+3). All of these combinations have presented periodic branches
for the casem = 1.

5.4.1 Case 1.F = fP2/(1 + Pm+3) andG = gP2Pm+3

This combination of functionsG andF correspond to a juvenile predation inter-
action of the Lotka-Volterra type and a saturation term, respectively. The function
F was first obtained in [37] as the following approximation assuming that predator
populationPm+2 is small:

F (P2, Pm+3) = cP2(t)−µ0P2(t)Pm+3(t) =
P2(t)

1 + µ0Pm+3(t)
+O(P 2

m+3(t)) (5.15)

where we takeF as the following proportional truncated form assuming thatµ0 = c,

F (P2, Pm+3) =
f1P2(t)

1 + Pm+3(t)
. (5.16)

The choice of functionG, the Lotka-Volterra predation term, was made by con-
sidering the simplest case for predation interaction. System (5.14) with this selec-
tion of functionsF andG with m = 1 and fixed coefficients was proposed as a
viable solution for coexistence between the species. Thus,it is an important case to
analyze by modifying the prey birth rate.

We will fix every parameter exceptα, with valuesµ = 0.77125, ε = 0.01,
f1 = 3.5416, α = 0.47075, β0 = 0.46875 b = 0.03 andd = 0.10. As we varyα, we
find that there are eleven solution branches for every value of α and every value of
m. Of those branches, only five are of biological interest. Fourof them correspond
to equilibrium branches and the other one is a periodic branch. The stability of
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equlibria varies with the parameterα. But what is of paramount importance is the
fact that form = 1 such periodic branch is unstable but form > 1 it is stable.
Following the stable periodic branch solution (m > 1), the period increases up to
infinity. In biological terms these results are important since by varying the birth
rate we are able to obtain coexistence from an unstable system. These facts can
be seen more clearly in Figures 5.2-5.4 where we plot the parameterα against the
norm of the solution. For stationary solutions we use the Euclidean norm and for
periodic solutions we use the norm

√

√

√

√

1

T

∫ T

0

m+3
∑

j=1

P 2
j (t) dt

whereT is the period of the solution. Branches of stable solutions periodic and
stationary are represented solid lines. A dotted curve means that the solution is
unstable for those values ofα.

5.4.2 Case 2.F = fP1Pm+3/(1 + P2) andG = gPm+3/P2

In this case we study the case for social prey which becomes aggressive towards
the predators when their number is large enough, but becomessusceptible for small
numbers, for example Syncerus caffer. Thus we chooseG proportional toPm+3/P2.
ForF we select the truncated formF = fP1Pm+3/(1 + P2) analogous to (5.16).
This time the calculation of the continuation of equilibrium points and periodic
solutions become more complicated. We again fix the values ofall the parameters
and varyα. The values are the same as in the previous case, except thatε = 0
meaning that self-limitation is not considered. We find thatthere is only one branch
of equilibrium solutions and one branch of periodic solutions for every value of
α and only form = 1, 2 and for every particular initial condition. The periodic
branch is stable and its period also increases to infinity. Notice that even for the
casem = 1, coexistence is established. In Figure 5.5 we can observe these facts
in detail. What is remarkable in this case is that self-limitation is not necessary to
achieve coexistence.

5.4.3 Case 3.F = fP2/(1 + Pm+3) andG = gP2Pm+3/(1 + P3)

In this case, we chooseG proportional toP2Pm+3/(1 + P3). For F we select the
truncated formF = fP2/(1 + Pm+3) analogous to (5.16). The values of the con-
stants are the same as in Case 1. As in Case 2, there is only one branch of equilib-
rium solutions and one branch of periodic solutions at leastfor the casesm = 1, 2, 3
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Figure 5.2: Case 1.F = fP2/(1 + Pm+3) andG = gP2Pm+3, a)m = 1, b)m = 2
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Figure 5.3: Case 1.F = fP2/(1 + Pm+3) andG = gP2Pm+3, a)m = 3, b)m = 4
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Figure 5.4: Case 1.F = fP2/(1 + Pm+3) andG = gP2Pm+3,m = 5.
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Figure 5.5: Case 2.F = fP1Pm+3/(1 + P2) andG = gPm+3/P2, a)m = 1 b)
m = 2

Bigger values ofm were not analyzed. The periodic branch is stable and its period
increases faster to infinity than those for cases 1 and 2. In this casem acts as a
perturbation parameter for the Hopf bifurcation points. See Figures 5.6 and 5.7.

5.4.4 Case 4.F = fP1P2/(σ + Pm+3) andG = gP 2
2 /(σ + Pm+3)

This case is presented only for theoretical purposes in order to illustrate the possi-
bilities in the selection of the predator interaction and the fraction of juveniles that
survive predation. We assumed thatσ ≈ 0 and we vary the parameterf1 instead of
the paramerα. The qualitative behavior is the same as the previous case. The only
difference is the variation of the equilibrium branch.
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Figure 5.6: Case 3.F = fP2/(1 + Pm+3) andG = gP2Pm+3/(1 + P3), a)m = 1
b)m = 2
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Figure 5.7: Case 3.F = fP2/(1 + Pm+3) andG = gP2Pm+3/(1 + P3),m = 3
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Figure 5.9: Case 4.F = fP1P2/(σ + Pm+3) andG = gP 2
2 /(σ + Pm+3),m = 3

5.5 Conclusions

In this chapter we have presented a new series of age-structured models to show
the importance of the birth rate in order to obtain coexistence. We have shown
that by changing the rate of birth we can obtain periodic solutions for more simple
models. The qualitative and quantitative mathematical properties and biological and
ecological consequences have been addressed. We are planning to analyze different
functional forms of the birth rate in the near future.
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Chapter 6

Conclusions

The most important contribution of this thesis to the study of age-structured predator-
prey models is what we called theanalytical modeling. What we mean by this is
that integrability conditions can be used to suggest modeling terms. In particular,
we were interested in setting conditions in such a way the system of ordinary dif-
ferential equations which models a predator-prey interaction have singularities of
pole type only. This led us to find predation functions that allowed the predator-
prey model to succeed the P-test, i.e. the singularities of the predator-prey model
can be only of pole type. This provides a methodology to introduce a new gamma
of predator-prey models which already satisfied the required regularity. The idea
of analytical modelingis a generalization of the widely applied process of finding
conditions under the parameters to have a first integral. However, a major difference
is achieved when the P-test is used to determine modeling terms. Theorem 3.5.1 set
the conditions in order the model (3.7)-(3.10) passes the first two steps of the P-test.
However, the allowed predation functionsF were biologically irrelevant.

A second contribution was accomplished applying this general methodology.
We considered general predation functionsF andG depending only on the system
variablesP , B, A, andD. By this mean, we were able to analyze a more general
model or a set of predator-prey models. Four general cases were found to pass the
first two steps of the P-test. Then, we established the required conditions under
the modeling terms that led us to special nonlinearities that discard traditional in-
teraction terms like the law of mass action, logistic terms,etc. In all these cases,
we presented examples with predation functions where coexistence between the
predator population, juvenile and adult, and the predator population was achieved.

In Chapter 3, we study a specific predation function (3.46) which includes a
variety of models. This function is a generalization of the predation functions used
in [36]. Our results described the characteristics of the solutions where the existence
of algebraic or logarithmic branches were proved in Theorem3.4.1. This is our
third contribution. This was made using the Painlevé analysis and the bifurcation
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analysis. We carried out a numerical study which exhibited periodic solutions even
tough the integrability conditions were not satisfied.

It is well documented the importance of self-limitation as astrategy to stabilize
a model. In fact, the Painlevé analysis also showed the importance of the self-
limitation of the prey (parameterε) as described in section 4.4.2. With this in mind,
we can say that another contribution of the described methodology is that we were
able to find a model where the self-limitation is not longer necessary to find periodic
solutions. This modeling term was suggested by the P-test also. In section 4.4.3 we
showed an example and Theorem 4.4.3 gives the required conditions. This improves
the results of [36, 37] where a number of modeling strategieswere applied to obtain
the coexistence of the species.

The last contribution is that the variation of the birth rateof the prey in Chapter
5 provided a wide variety of age-structured predator-prey models. This rate is more
general that one used in Chapters 3 and 4. And also this rate includes the birth rate
used in previous studies [36, 37, 38]. However, the analysiswas numerically but the
bifurcation results gave us evidence that the variation of the birth rate can lead to
coexistence of the predator and prey populations. Furthermore, it was showed that
the variation of such parameter usually does not modified thestructure of periodic
solutions.

Finally, we would mention several directions of future workwhich can be de-
veloped on this topic. Age structure can be associated to both populations: predator
and prey instead of only one population. Other approach which could be used is to
study the predator and the prey populations from the partialdifferential equations.
Let us recall that our work was done considering a set of ordinary differential equa-
tions obtained from the partial differential equations. Animportant work could be
also to establish analytical results concerning the general birth rate studied in Chap-
ter 5. All of these research topics are important and challenging. They will be part
of forthcoming study.
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