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Summary

The study of predator-prey models is a very active researeh and highly
applicable area nowadays. Although classical models dat& to the work of
Thomas Robert Malthus (1798) and P. F. Verhulst (1837), tseclmaodeling ideas
are still useful in our days. One highly generalized assiongh population models
is the homogeneity of their individuals. However, the rigab quite different from
this because in a population there are individuals withedgfht characteristics. Fur-
thermore, the natality and mortality coefficients usualypend on the individual’'s
age. Then, in order to improve the modeling of populationasyits it is neces-
sary to take into account the age structure or any othertateun the population
which may be considered relevant. The consequences of tiiggre an increase
in the complexity of the model, the appearance of integfteidintial equations and
instability of the solutions.

In this work, we introduce a new gamma of age-structuredgioeeprey models
and we study their solutions. These models have age steuictihe prey popula-
tion. The nonlinear analytical tools that we use are the |Pantest P-tes) and
the bifurcation theory. The main objective of this studyagtopose suitable mod-
eling terms based oanalytical modeling In order to do this, we assume general
predation terms. This allows us to study a wide variety of ei®@nd also to find
conditions in such a way that they satisfy the P-test requergs. Then, we look in
the set of functions that fulfill those requirements andaeéor periodic solutions.
This is important because the existence of periodic salatie equivalent to hav-
ing coexistence between the predator-prey species. Whest Brtthe integrability
conditions are not satisfied we are able to provide chaiatitsr of the solutions.
Finally, we study the effect of general birth rate which igpontant because the
initial set of equations change increasing the number ohtgus. We numeri-
cally find that such a birth rate can help to stabilize the rhedinout modifying
dramatically the behavior of the model.
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Introduction

The study of predator-prey models is a very active researeh these days.
This accounts for the large number of papers published yearithe subject, for
example a rapid search using Google Scholar reports 5,38 & 2012. When
we introduce predator-prey models it is inevitable to ne@nthe founders of pop-
ulation dynamics: T.R. Malthus (1798) and P.F. Verhulst {)&8ho proposed lin-
ear population growth and the logistic equation, respeltivLater, Lotka [26]
and \Volterra’s|[[45] work appeared on the competence phenarbetween species.
They proposed the model:

PO _ ptya— 00 )
PO _ byiep) - a) @

where P(t) is the prey population)(¢) is the predator population and b, ¢ and

d are positive constants. We can observe from equdtion (1)rtitee absence of
predators D(¢) = 0) the prey population®(¢)) grows in a Malthusian way. Also
from equation[(lL) we note the terfa — bP(t)) is the growth rate of the prey. Then,
this rate is reduced by the presence of predators. When tli@ppailation is zero
the predator populatio disappears, see equation (2). The tedt)P(t) in (2)

is what we call the_otka-Volterra predation termThis model considers that these
populations are homogeneous. A further analysis of thisahwah be also be found
in [29].

Clearly, there are different characteristics depending ga such as fertility
and mortality rates in a population. Then, a more completdehis obtained by
taking into account the age structure of the population. iflka of age structure
in population dynamics can be traced back to Leslie (1943). [Ble proposed a
matrix model where different stages of a population weresizared:

Ni(t 4+ At) = (1 — do) No(t) 4
No(t 4+ At) = (1 — dy) Ny (t) (5)
: (6)
Nm(t + At) = (1 - dm—l)Nm—l(t) (7)
: (8)
Nn(t + At) = (1 - dn—1>Nn—1(t)' (9)
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There,N; is the number of individuals of age in the interyal- 1,i],i = 1,...n
The birth rate of the population éfyears is denoted by andd; is the death rate.
This model is for one population. We observe that the offgpof each group of
age contributes to the population of age zerd In (3), thedmsiation of the model.
The model can be written in matrix notation as,

N(t + At) = AN(t) (10)
whereA is a square matrix and ti¥(t) is the vector,
No(t)
N(t) = Nﬂ(t) . (11)
Na(t)

Different models can be constructed using the ideas ofé&elliparticular, predator-
prey models can be analyzed using these models. Howevendtel we study in
our work has a discrete version proposed in [40]:

Pn+1) = (1= A + s 12)
=~ = 2)B() + 54, a3)

1)

B(n+1)
N cB(n+1) (u—2)cB(n)

Al +1) = —(r=2)An) +e <1+kP2(n+1) 1+/<:P2(n)>’ (14)

Py(n+ 1) = bPy(n) 4+ dB(n)Py(2) A(1 — e~972()), (15)

where P (t) is the total prey population3(¢) is the juvenile prey population, and
the predator population i8;(¢). All other letters represent positive constants. This
predator-prey model considers the age structure in the fiisymportant to remark
that this system also exhibits unbounded behavior.

On the other hand, we are interest in continuous models. fbatens that
describe this phenomenon are described in [17]:

pu(w,t) + pr(w,t) + fip(w,t) =0, (16)
B(t) = p(0,1) = / B(w w, 1) des, (17)

- d 8
P(t) /0 pleo ) (18)

wherep(w, t) indicates the number of individuals of ageat the timet, (w > 0),
t > 0), P(t) is the total population3(t) is the juvenile populationg(w, P(t))

2
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is the birth ratei is the mortality rate3(w, P(t)) is the reproductive rate at age
w and populationP(t). All parameters and variables are supposed positive. Our
work takes ideas from this work. Predator-prey models wgh atructure have
been analyzed using different techniques [33] b, 4, 14, 1]3,Aushing’s book [11]
is an excellent starting point of the topic of structuredyapon dynamics. There,
discrete and continuous models with age structure areitescr

Our work is developed in the context of predator-prey pojpamedynamics with
age structure. We study models of two interacting poputati@ne is the predator
population and the second is the prey population. Age stregs assumed in the
prey population, which allows us to study predation onlylanjtivenile population.
In addition, cannibalism can also be found in the interactibcertain populations
[24]. An undesirable characteristic of population modeihwage structure is hav-
ing unstable periodic solutions. These kinds of solutiomsidt correspond to the
biological reality where prey and predator populations caexist. Among the ef-
forts to reach coexistence are the inclusion of diversefacuch as self-limitation
of the prey, harvesting of the prey, and cannibalism of thenger prey, see for
example([[10, 25, 37].

A related model studied by Cushing in [9] is following model,

d]:l—it) + uP(t) = bh(R(t), P(t)) /0 h %P(t —a)e"da,  (19)
(t)

—a i (1 - R?) —9(R(t). P(1)), (20)

where P is predator populationR the prey populationy the mortality rate,f
the fecundity rateh and g are the fecundity function and the predation function
responses, respectively. Inthe model, we can see the ustagfdifferential system
of equations, integro-differential equations, generabtption function, etc.

As we mentioned, one drawback associated with these prewmdels is the
presence of unbounded oscillations/[17]. Therefore, a kayufe sought in these
models is the long term coexistence of species. The clasgiaoach to find-
ing criteria of mathematical coexistence is through aswtinptstability or global
asymptotic stability of a unique equilibrium point or a melic solution [46] 48].
One of the relevant aspect to consider is the predation opalption on only one
age group![24]. Our results deal with these processes buog tise Painleg test.
Applications of such tools have been done on predator-pregets, but the age
structure has not been taken into account [33]. Besides Hzanlee tools are
usually used to find conditions of integrability.

This work can be understood as the further study of the moddgmted in
[36] where there is a first modification of the way in which tremborns enter the

3
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population and also there the self-limitation was congder

dz—?:—ﬂop(t)_ﬂpu 11 kP,

%Et) = 0B(t) — uP(t)B(t) + foA(t)

L0 — a0 - w000 + 1

%t(t) — —bD(t) + cB()D(t) — A(1 — =), (21)

where P, is the predator population and the tenfi — e~*) represents the fish-
ing on the predatorB(t) is the prey juvenile population and(7") is an auxiliary
variable. All other letters are positive constants..In [8@jumerical study with dif-
ferent modelling terms was carried out. Predator-prey istemxce was numerically
found with self-limitation.

In our case, one of the techniques we use in this work is basddéamnlee
analysis, which has its origin in the work of S.V. Kovalevgavho was the first to
consider the analytical theory of differential equatiomphysics problems [20]. A
criteria to establish necessary conditions to have intglifsais the Painlee test or
for short theP-test Another technique used is the theory of bifurcation to el
the nature of equilibrium and periodic solutions which aféiological interest.
The initial model we consider is the following:

%Et) = —p,P(t) — uP? + F(P(t), B(t), A(t), D(t)),

B _ —0B(t) — pP(t)B(t) + BoAlt),

%(et) = —0A(t) — uD(t)A(t) + F(P(t), B(1), A(t), D(1)),

%ﬁt) — —bD(t) + ¢B(t)D(t), 22)

where the variables have the same meaning as the previowd bwdd = P,. Its
construction is detailed en Chapter 2.

The objective of this thesis is to introduce a new gamma ofsiigectured pop-
ulation models and to analyze their solutions using thel®&ranalysis and tech-
niques from bifurcation theory, which is what we have cali@adlytical modeling
Part of this process will be carried out using the Paialtast [1] 2| B] to propose
conditions in order to have integrability in the systems bysidering solutions
where only pole type singularities are allowed [[8] 30, 41heTmodeling is also

4
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part of this work, because one of the goals is to describéstiedbehavior of both
populations, which allows us to propose predation funstihere coexistence or
stable periodic solutions are difficult to achieve. We alaoycout numerical anal-
ysis of all models including one with a more general birtherat order to find
important information about biological aspects such agistence of predator and
prey populations.

Specific objectives
The specific objectives are:

1. To establish functional conditions for juvenile survison order to obtain
solutions where only pole type singularities are allowed.

2. To allow the predation function in the models to vary infsacway that it
allows us more flexibility to succeed in the P-test.

3. To propose viable interaction population functions thiewe coexistence.

4. To study numerically how these previous functions mottig behavior of
the system.

5. To search numerically for functions that exhibit pertsiblution in the mod-
els.

6. To consider new parametrized birth functions in orderrtmppse new age-
structured models.
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Chapter | |

Age-structured predator-prey models

1.1 Age-structured models

The model that we study in this work has evolved from the pgoneork of Gurtin
and Mac Camy([17]. They introduced a theory of population dyica with age
dependence. The equations that describe this phenomeston ar

Po(w,t) + pr(w,t) + fip(w, t) = 0, (1.1)
B(t) = p(0,1) / B(w w, t)dw, (1.2)
P(t):/O p(w, t)dw (1.3)

wherep(w, t) indicates the number of individuals of ageat the timet, (w > 0),
t > 0), P(t) is the total populationB(t) is the juvenile population;(w, P(t)) is
the birth rate,: is the mortality rate3(w, P(t)) is the reproductive rate at age
and populationP(t). All parameters and variables are supposed positive. These
eqguations involve one population, which could be eithemtteglator or the prey.

Equation[(16) describes the age structure in the populafiba variation in the
number of individuals with respect to the age (w, t)) plus its variation with re-
spect ot the time, (w, ), is proportional to the total number of individualgip(w, t).
Equation[(1F) tells us that the juvenile population is duthtonewborn population
p(0,t) of age zero. Also, the new births are proportional to the pebdf the num-
ber of individuals times the birth rate. Equatidnl(18) comegithe total population
by adding the population of all ages. The integral limits gneen from zero to
infinity, but it could be given up to a finite age.

In the following subsections, we apply this theory to camsttia predator-prey
model with age structure in the prey population which is ttaetgg point of this
thesis.
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1.1.1 The McKendrick- von Foester equation

To deduce equation (L6, we proceed as in [28]. Let us conaigepulation where
p(w, t) is the number of individuals of age at timet. The number of individuals
in the age intervaly to w + Aw, is computed as follows:

w+Aw
Plw= [ pwt)dw, (L.4)

Assuming that there is no migration, then the change in thpaifation is caused by
the arrival of individuals who have reached agehe outcome of individuals who
become older than the age growj + Aw, t). And finally, the natural death of the
members occurred in this age group. Then, we obtain

% P(t,w) = p(w,t) — p(w + Aw, ) — iP(1) (1.5)

and using equation (1.5), we find,

w+Aw

w+Aw 0
[ G0 = st plw+ duydv =i [ gt (L6)
where/ is the mortality rate. Next, we divide the function Byw and we take
the limit asAw tends to zero, we obtain,

lim
Aw—0

1 w+Aw a 1 wt+Aw
M/ ap(wi)dJrﬂm/ p(t,t) dap

+ IO(W + Aw7t> B p(w7t)] —0.
Aw

The result is the so called McKendrick- von Foester equation

0 . B, B
5w t) + (W, t) + 5~plw,t) = 0. (1.7)

or for short:

Pt + po + fip = 0. (1.8)

A different construction of this equation that shows thatieh between the
Leslie’s work [23] and the equation of MacKendrick can berfdun [11].

8



1.1. AGE-STRUCTURED MODELS

1.1.2 A first model

In order to get a well defined model, it is necessary to havesaip birth rate of
the population §(w)) and it is also necessary to define the mortality rate. Otin bir
rate selection is

B(w) = Bowe ™ (1.9)

with 5, > 0 anda > 0. This function is particularly suitable for biological aspe
because it is zero for newborns and small for ages close to Zédris is because
newborns usually do not reproduce at early stages. Anottegacteristic is that the
birth rate increases with age up to a maximum for the youn¢isdund it decreases
to zero when age becomes advanceddnds to infinity). In addition to this, if
a > 0, the birth rate suits well for many mammals. When= 0 then§ = fyw
which may be appropriate for certain fish species, wher#ifigrhcreases with age.

The mortality ratg: can depend on the age of the total population or it can de-
pend on the number of individuals of another populationgf@mple the predators.
In our case we will considei to be independent of age.

Now, we construct a system of differential equations whiatiudes the vari-
ables of the total populatio}(¢) and the population of newbori(¢). In order to
do this, we take equatioh (118)

d <0
P = o’

Then, we substitute the equation of MacKendr[ck](1.7) iA@}..

(w, t)dw. (1.10)

/ (w,t) dw — ,u/ooo p(w,t) dw . (1.11)

Using the fundamental theorem of calculus and assumingthat) — 0 asw —

oo we get,
%}Et) = p(0,t) — LP(1). (1.12)

The equation forB(t) is obtained by multiplying equatiof (116) by(w) and
then we integrate it from zero to infinity,

/ B(w wtdw—l——/ Bw wt)dw+ﬂ/m6(w)p(w,t)dw:0
’ (1.13)

/000 5(w)5%p(w, t)dw + %B(zﬁ) + B(t) = 0.
(1.14)
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This is an integro-differential equation. However, if weeustegration by parts in
the equation{1.14)

> 0 > d
/0 ﬁ(w)ﬁ—wp(w,t) dwzﬁo/o we’a“@p(w,t) dw (1.15)

= Bowe_awp(wv t)

- ﬁo/ (1 —aw)e” *p(w,t) dw
= —50/ e “p(w,t) dw+60/ awe” *“p(w,t) dw
0 0

=—f /000 e “plw,t)dw + aB(t).
(1.16)

When we plug this integral in_(1.14) we have the equation ferjtivenile popula-
tion,

aB(t) — By /OO e “p(w,t) dw + %B(t) + aB(t) = 0. (1.17)
0
Solving for 4 B(t),
%B(t) = 50/0 e “p(w,t)dw — (it + o) B(t). (1.18)

This is still an integro-differential equation but if we defian auxiliary function
as,

A(t):/ e “p(w,t)dw, (1.19)
0
the equation for the juveniles is then,

d

- B(t) = BoA(t) — (i1 + ) B(1). (1.20)

We can say that this is an auxiliary variable produced by éhection of the birth
rate. A(t) also satisfies the following differential equation,

CA) = p(0.1) — (7 + @)A(D) (1.21)

In order to summarize this section we put together the egustior one age-

10



1.1. AGE-STRUCTURED MODELS

structured population:

dP

dB

— = —0B A
It + Bo
dA

A _ _pa t

whereb, ¢, andf = « + j1 are positive constants.

This set of equations were deduced following Gurtin and Macs theory
(16)-(18). They assumed that the tepf, ¢) is equal to the baby populatidB().
However, a significant change is made in this work by taking térm as a general
function that depends on the other population variables,

p(0,t) = F(P(t), B(t), A(t), D(t)). (1.23)

Finally, this model stands for one population which we wék &s the prey
population. Our beginning model is for a predator-preyratéon. We assume that
the predator population), behaves according to a Lotka-Volterra type equation,
but feeding only on the newborns. The complete model is then,

dP

—- = —iP(t) + F(P(t), B(t), A(t), D(1)) (1.24)
dB

—r = —0B(t) + foA(1)

% — —0A(t) + F(P(t), B(t), A(t), D(t))

‘;_1; = —bD(t) + cB(H)D(t)

where the coefficients andc are positive. We will refer this model as obasic
model without self-limitation

1.1.3 Self-limitation of the prey population

A second aspect in which we are interested is the limitatidhe prey caused by the
growth of the prey population. This can understood as a la¢&au resources or
overpopulation in the prey population. The effect of sudfilgmitation is modeled
in our system by considering that the mortality function elegs linearly on the
total prey population, that is,

i = po + pP (1.25)

11



CHAPTER 1. AGE-STRUCTURED PREDATOR-PREY MODELS

with uq and . are positive constants. If we incorporafe (1.25) to theesystthe
resulting equations become:

dz—f) = — 1, P(t) — uP* 4+ F(P(t), B(t), A(t), D(t))

%@ = —0B(t) — uP(t)B(t) + BoA(t)

%Et) = —0A(t) — uD(t)A(t) + F(P(t), B(t), A(t), D(t))

%t(t) = —bD(t) + cB(t)D(t). (1.26)

With this model we begin our study and search of new modeleh#wana-
lytical modeling

12



'Chapter 2

Aspects of nonlinear analysis

2.1 Introduction

The objective of this chapter is to provide an introductiothie nonlinear tools that
we have used to achieved our objectives. The first one is timela test [30, 32]

which is an algorithm based on the theory of nonlinear daffial equations in the
complex plane. The second one is the bifurcation theoryteced in bifurcation

of equilibria and Hopf bifurcations. For the numerical as& we use AUTO, the
software developed by Doedeél [12], which is a powerful tamlthe continuation

of asymptotic solutions such as equilibrium points andquici solutions.

2.2 The Painlee Property

To begin with, we give a historic overview of the Pairdeanalysis. Later, we
explain in detail the Painlé@/test. In[[7] we can find a panoramic review of the
Painlee property in different areas. The historic referencesaiert from[43].

2.2.1 The work of Sofia Kovalevskaya and Paul Painley

Kovalevskaya was the first one to use a method based on theleongriable
theory to study a physical problern [20]. She was interestethé motion of a
heavy top about a fixed point. The system consisted of theviiallg six first-order,

13
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nonlinear differential equations:

dpi

- (B = C)qr — Bz + 0 (2.1)
d
Bd_z = (C — A)pr —yzo + az
dr
O~ = (A= B)pq — ayo + Sy
da
o = Pr—a
% = — ar
dy
g =~ Pp

wherep, q, r are the components of angular velocity and3, v, are the direction
cosines describing the orientation of the top. The rest®ftriables are parame-
ters. Kovalevskaya searched for solutions in the complareghllowing that func-
tions have singularities of only pole type. She won the Bomptize of the Paris
Academy of Science in 1888 because she found a first integirag this method:

I=(*— ¢ — 2a)+ (2pg — 2). 2.2
("~ ¢ = Fo) + (2pg = =5) (2.2)
Her work was considered a special case where analytic tremrig be used.
Meanwhile, Paul Painlév(1863-1933), was a French mathematician who was in-

terested in the classification of second-order differéeti@ations of the form,

d*t dy

— - — (2 2.
whereF is an analytic function in: and a rational function ip anddy/dz. He and
his coworkers found 50 types of equations whose only movsiblgularities were
poles. They also found six new functions defined as solutdnsnlinear ordinary
differential equations which could not be written in ternfi&oown functions such
as polynomial, trigonometric functions, etc. They areaPainle@ transcendents
[43].

2.2.2 Revival of Painlee ideas

The current research on Paindev ideas is due to several papers, in particular
Ablowitz, Ramani and Segur (ARS)![2]. They noted that redungiof partial
differential equations of soliton type gave rise to ordyndifferential equations

14



2.2. THE PAINLEVE PROPERTY

whose movable singularities were exclusively poles. Thayextured that “ All
reductions of complete integrable partial differentialations are of Painlé&type,
perhaps only after a change of variables”. ARS proposed awitdgy known as
the Painlee test which gives conditions such that an ordinary difféaéequation

to be of Painle@ type. This is the tool we amply use in this work and it needs to
be described later on this chapter. Since then, a lot of relsdss been carried
out applying the P-test to different models in the physical aon physical areas.
An important fact was the extension of the P-test to partifdiential equations by
Weiss, Tabor and Carnevale [47].

2.2.3 Definitions and conventions

Here we introduce basic definitions in the context of ordirdifferential equations
in the complex plane in order to describe efficiently the Ra@algorithm. In the
following, we will consider an ordinary differential equat of the form,

w'(z) = Flz,w(2)] (2.4)

where we assume that the functibiiz, w(z)) is an analytic functiony(z) is vector
value inC", z is a complex variable, anfl(z,w(z)) is a holomorphic mapping of
CrtltoC”

Definition 2.2.1. A singularity is a point at which the solution of an ordinary dif-
ferential equation is not holomorphic or analytic.

Example2.2.2 Let us assume that the functidf(z) = 1 is a solution of a given
ordinary differential equation. It has a singularityzat 0.

Definition 2.2.3. Singularities can be eithdixed given by the ordinary differential
equation ormovablewhich means that it depends on the initial conditions.

Example2.2.4 The equation’ = 1+ w? is satisfied by the functiomw = tan(z —
z). It has singularities in = z, + 3(2n + 1)m which are movable becausg s
arbitrary.

Example2.2.5 The equatiorcw”(z) = [w(z)]* has fixed singularities which are
z =0andz = oc.

Definition 2.2.6. A critical point is a singularity at which branching takes place.
Example2.2.7. For the complex functiorf(z) = log(z) shows the branching.

Definition 2.2.8. A differential equation is said to have tRainle\é propertyif its
general solution has no movable critical points.
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This previous definition is equivalent to find conditions fioe solutionw(z) of
(2.4), which can be written as the following Laurent series,

k

w(z) = Z a_i(z —20) 7"+ Z ai(z — 20)". (2.5)

=1

wherez, is an arbitrary point in the complex plane. For an ordinarffedential
equation to be of P-type, it is necessary that it has no mevatanch points i.e.
logarithmic or algebraic.

2.2.4 The ARS Painlee test or P-test

In this subsection, we describe the Paiglégst or P-test as it is presentedlin [2].
We make the following assumptions:

1. We will consider au-th order system of an ordinary differential equation of
the form

dwj

dz

where the functior; is analytic inz and rational in its other arguments.

= Fj(z;wy, wa, ..., wy,), j=1..,n, (2.6)

2. We assume that the dominant behavior of the function irffecguntly small
neighborhood of a movable singularity is algebraic:

wj ~ aj(z—20)" 2z — 2. (2.7)

These assumptions do not exclude logarithmic branch poAnsordinary differ-
ential equation still admits movable essential singuksiand the P-test does not
identify essential singularities.

2.2.4.1 First step of the Painleg test

Substitute
wj ~oj(z—z2)", j=1,...,n, (2.8)

into (2.6) and determine the = {p;}"_, for which there are two or more terms
in the system of equations such that in each equation theybeal It also depends
on the choice of they;’s, and the rest of terms in the equation can be ignored
whenz — z, because they do not have the higher negative pgwand they are
“dominated” by thdeading order terms
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2.2. THE PAINLEVE PROPERTY

Definition 2.2.9. For such a choice of;, the terms which balance are called the
leading order term or dominant terms

The choices of p;};. might be several. If any of thg; is not an integer, and
if (2.8) is asymptotic neat, then it represents the dominant behavior in the neigh-
borhood of a movable algebraic branch point of orgeft means that the system
(2.8) is not of Painle& type orP-type To prove that[(2]8) is asymptotic, define the
new variablev = w'/? and rewrite the systerfi (2.6 in termsofBy construction,
v vanishes at, and4 is finite. We have to show thatz) is analytic.

The P-test stops unless the only possihlare integers.

If all possibleg’s are integers, then for eaph(2.8) may represent the first term
in the Laurent series, valid in a deleted neighborhood of gafle pole. Then, the
solution of the systeni (2.6) is

w(z) = (2 — 29)? Z(z —z), |z—=| <R (2.9)

J=0

If there aren—1 arbitrary coefficientga, }, then there are constants of integra-
tion of the system of ordinary differential equations beszayy is already arbitrary.

Definition 2.2.10. The power at which these arbitrary constants enter are called
theresonances

Remark z, is an arbitrary constant in the seriés {2.9). This constadétermined
by the initial condition. For example, in the equati$h= z, its general solution
isxz(z) = e e = ce*, z (Or ¢) an arbitrary constant. If the initial condition is
x(20) = x then the solution ig(z) = zge* .

2.2.4.2 An example of the P-test application

In this section we present an example of the first step of theld®@ test. It was
taken from the book [8]. Let us consider the Lorenz model:

dd_f = U(.Z'—y)’

dy _ rr —y—r2

dt - y )

d

d_j =y — bz, (2.10)

whereo, r andb are the coefficients of the system.
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First step. Find the dominant behavior We look for solutions of pole type by
proposing as possible solutions the following ansatz fersysstem variables, y
andz,

x ~ 20X, (2.11)
y ~ Yox"?, (2.12)
2~ 20X, (2.13)

where we assume that,, yo, 20) # (0,0,0), x = t — ¢, and thep;, are to be
determined. Observe that systém (2.10) corresponds tg$tens[2.6) and that the
variablesz, y andz are thew; for j = 1,2, 3, respectively. Also, the coefficients
xo, Yo, 2o are thea; for j = 1,2, 3, respectively. The simbol means that we
are interested in the asymptotic behavior when t,. Then, we substitute in the
system[(2.100). We require that at least ppe j = 1,2, 3 to be a negative integer.

d (xox™* B

( ;;( ) = przox™ = o (ox™ — yox*?), (2.14)
d P2 - |

(ycoli( ) = oo = rzox® — Yox™ — (zox™) (20x*?), (2.15)
d D3

(Z;z( ) — p3ZOXp3_1 = 20X yoxP?: — bzoxP2. (2.16)

Let us focus on the equation one (2.14) of the last systenreTdre three terms
and their corresponding powers ape:=1, p; andp,. p; —1 dominates te, because
is more negative and in fact they can not equal. Then, thisepbas to balance with
the powem, and their corresponding dominant terms grand the—oy in the first
equation. It is easy to see that we obtain the following systé linear equations
when we balance the more dominant powers in equations! 2 1):

p1—1=ps, (2.17)
p2 — 1 =p1 + p3, (2.18)
p3—1=pi+po. (2.19)

Then, by solving for the,; we get(pi, p2, p3) = (—1,—2,—-2). It is possible to
have more than one set of values for fhesatisfying this system and such values
of p’s must also be considered. The system obtained for the ceeificis,

—p1xo + oyo = 0,
—p2Yo — To2o = 0,

—p3z0 + xToyo = 0,

18



2.2. THE PAINLEVE PROPERTY

and its solution is(xg, 4o, 20) = (2, —2ic71,2071), i? = —1. By substitut-
ing the exponents$p;, p2,p3) = (—1,—2,—3) and the coefficient$x, yo, 20) =
(2i, —2i0~',2071), in the Laurent series we obtain:

p1

2(t) =) ot —to) + > it —to)' =

j:fl j—O

Zﬁ] t—to) +Zﬁzt_t0 —

j=—1
p1

z@%z}jaﬂﬁ—my+§:%U—%Y:

j=-1 3=0
it —to) "t + Zal (t —to)’ (2.20)
= —2ic (t —to)~ +§:@t—u) (2.21)
i=—1
=20\ (t — o) +Z%t—to (2.22)
i=—2

wheret, is an arbitrary point in the complex plane. At this point wedaéinished
the application of the first step of the P-test to the Lorend@ho

2.2.4.3 Second step of the Painléuest

Let us go back to the general system of ordinary differeetiglations(216). At this
stage of the P-test we have found the exponents and coeffi@émthe dominant
terms, i.e. thgp;,a;). In the second step, we will contruct a simplified system
retaining only the leading terms. Then, we substitute thpkfied equations

wj =aj(z—20)" +kKj(z—2)"", j=1,...,n (2.23)

with the same- for everyw,. Usin the leading order i = (531, fa, . ., Bn)7,
we can obtain the system of equations:

[Q(r)] =0 (2.24)

where[Q)] is ann x n matrix, whose elements depend-rThe resonances are the
nonnegative roots of
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det[Q(r)] = 0. (2.25)

This equation corresponds to the “ indicial equation” in thethod of Frobe-
niues for finding solutions of a linear ordinary differehéguation near a regular
singular point. The aspects that must be remembered whéorméng this step
are:

i) The valuer = —1 represents the arbitrarity of. Then—1 is always a root.

ii) Ifany «; results arbitrary in the first step then zero is also a rooé ddnverse
is not always true. If we apply the change of variables f(Ln(z—z))/(z—
2p) and we obtain as a result the analyticity of the solutions tlve have a
logarithmic branch point in the original equation.

iif) If a root r of the indicial equation isRe(r) < 0 then, it must be ignored
because the dominant term was already found.

iv) Any root Re(r) > 0 means that the ordinary differential equation is not of
P-type.

v) If the rootsdet Q(j), besides -1 and 0, are positive then there are no algebraic
branch points.

vi) If det Q(r) hasn—1 distinct roots and they are non-negative then it is possible
to represent the solution by the Laurent series.
2.2.4.4 Example of the second step of the P-test

We recall the example of the Lorenz model (2.10). Then, atingrto the algo-
rithm described in the second step, we have to find the latatat which arbitrary
coefficients may be in the Laurent series. This can be dyrélcthe substituting,

X~ zoxP 4 X, (2.26)
Y~ yox + rax' TP, (2.27)
Z ~ 29XP + ka3, (2.28)
in the system formed by the dominant terms of sysiem[2.10):

de _

at gy,

&y _ —xz

dt ’

dz

— = y. 2.29

ik (2.29)
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The matrix corresponding to an arbitrary coefficient is ot#d by considering
the linear part in the variables {,x2,x3,) which stands for the arbitrary coefficients

71

K1 —r+m o 0 K1
P, |k | = 20 —r + Py —Zo Ko | = (2.30)
K3 Yo Zo —Tr —DP3 K3
—r—+1 o 0 K1
20',1 —r 4+ 2 —21 K9 (231)
—2io ! 2 —r 42 K3
and equation
detP, = —(r+1)(r—2)(r—4)=0 (2.32)

is the so called thanditial equationand its roots are the Fuchs indices.

An equivalent way to obtain this solution is to substituteaipn [2.20f2.22)
in the system of equations_(2]10) and to write as a lineartenssystem for the
coefficients of the Laurent series. Then, a recursive mdbr ther-th coefficient
(x., vy, z,) Of the Laurent series, using matrix notation, is obtained,

P.(z.,y,2) +Q, =0 (2.33)
or explicitly
—r+1 o 0 Ty —0Tr_q
2004 —r+2 =2 g | + | iz e F 12, — vy | =0
—2ic" 2 —r+2) \z S Tk — bz
(2.34)

in which theP; is a square matrix depending only on the indend the leading;,
Zo, Yo, 20 found in the first step (dominant terms). This representsaali system for
eachr. The problem of finding arbitrary coefficients of the Laursaties translates
into a linear algebra problem of finding multiple solutiorfssmagular matrix. In
order to allow arbitrary coefficients the matrlR; must be singular and its roots
have to be positive integers. Solving the indicial equatsoequivalent to allowing
arbitrary coefficients of the Laurent series. However, agtor must be in the range
of matrix P, otherwise there will not be anthat solves equatioh (2.33).

2.2.4.5 Third step. The compatibility condition

As we mentioned, the problem of representing a solution by Hurent series turns
into a linear algebra problem. This condition requires thetor in equation(2.33)
to be in the range of the matri;. This is accomplished by computing the recursive
relations to form the Laurent series up to the location ofatistrary coefficients.
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2.3 Integrability and the Painleve property

We have described the Paingegroperty and the P-Test. The first relatethtegra-
bility and the second to test necessary conditions to achievertipenty. However,
what it is not clear is what meant by integrability. The ideasociated with in-
tegrability usually are globally soluble. Even though thenRe\e consists of a
local analysis. It also implies that solutions of the syseethibits global regular
behavior, i.e. its solutions are sensitive to initial cdiwtis. On the other hand,
a non-integrable system generally implies that its sohgibehave in an irregular
way (sensitive to initial conditions) diverging from theesmge at an exponential
rate. As a conclusion of the ideas discussed in [49] aboeagmbility we can say
there is not definition of integrability suitable for all grlems. For example, if we
use the definition of integrability by quadratures the eiguat = 22 + ¢ can not be
integrated by quadratures, but it admits a linearizatian éixpresses the solution in
terms of Airy function. Then, it is integrable in such a sense

When we think of an Hamilton system with n-degree of freedoemtthe exis-
tence of n-independent integrals in involution is what wieldauville integrability.
For a system of ordinary differential equations, intedrghis the existence of.— 1
independent analytic integrals. These are two definitidmstegrability which are
compatible because an integral of an Hamiltonian systemnsiglly not integrable
as an ordinary differential system.

We can also have the notion of integrability in partial diffietial equations.
For example the existence of conservation laws which irsghat the flow of the
equations is constrained by an infinite set of symmetriesd s idea led to the
discovery of the Inverse Scattering Transform (IST) whidlegrates the KdV equa-
tion. We can say that the IST is the analogue to the Arnol'dvilteiintegrability
for the infinite dimensional case. This method was found wiesearchers were
looking for an infinite set of conservation laws. Howevee ttonexistence of such
conservation laws does no preclude integrability.

This Painlee test is one of the most powerful methods to identify intblgra
systems despite the kind of integrability we are looking fonas been useful to find
integral of equations, leads to Lax Paiad&klund transformation, etc. This method
has also shown that can reveal geometric properties andgéleraic structure that
underlies many integrable equations.

We use this method to restrict our search of possible solsitad the systems
that we study in such a way they only have singularities oépgpbe. The under-
lying idea is that we will obtain solutions with this propertThis could lead to
obtain regular solutions more easily. Another desirablratteristic we search is
periodicity.
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2.4. BIFURCATION THEORY

2.4 Bifurcation theory

Here we give a review of some aspects of bifurcation thedayfisg with the im-
plicit function theorem and some of the bifurcation resoltswhich we base our
numerical bifurcation study. This section follows the bdégR].

Let us consider the problem of the following form,

fn2)=0 (2.35)

where f is an operator ofR x B; into By, with B; and B, Banach spaces. One
might think this equation as an ordinary differential systef equations.\ is the
parameter we are interested in varying. Then, we seek ¢onslibn f such that
when a solution\z) of (Z.38) lies on a curve of solutions or bifurcation diagram
(A, z()\)) at least in a neighborhood af It might also be required thdh, z) lies

on several curves.

Definition 2.4.1. Let us assume that : (A, z()\)), is a curve of solutions of (2.B85)
and (g, zg) = (Ao, z(N\o)) be an interior point on this curve, with the property that
every neighborhood @f\y, z) in R x B contains solutions of (2.85) which are not
onI'. Then,(\y, x¢) is called abifurcation point with respect td".

There are several questions in bifurcation theory. Amoegtkve can mention:
given a curvd’ of solutions of [2.35), what are the conditions to have arb#tion
point? Given this curve, can it be continued? Does secongéuycation occur?
These questions can be solved by the systematic use of thieitrfiymction theo-
rem.

2.4.1 The implicit function theorem

In order to state the main bifurcation theorems, we reviemesomportant defini-
tions and notations. l& € 2 the derivative off ata, written f’(a) or df,, is the
n X m matrix
df, — dfi(a) (2.36)
Oz
wheref = (fi, f2, ..., fn). Hencedf, € B(R™, R") whereB(R™, R") repre-
sents the set of bounded linear m&3s — R". Let() be a open subset &, and
suppose thaf € C*(Q,R"), whereC' is the set of functions having one contin-
uous derivative. More generallg;*(B;, B,)) is the space of continuous functions
having & continuous derivatives witk € Z* which are defined o3, and take
values onB,. We are going to consider functions defined on product spdgoets
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B1, B, andB; be Banach spaces and {ébe openinB; x By. If f: U — Bz, and
u = (ug,u2) € U, we letU; be the cross section; = {z; € By : (z1,us) € U}.

We say thatf is differentiable with respect to thg variable af(u, u,) if the func-

tion g(x;) = f(x1,us) is differentiable with respect to, atu;. When this holds,
we write dg, = D1 f(uq,us); dg, is a linear map fronU; into Bs. fis said dif-
ferentiable with respect to;, on U, if it is differentiable with respecta; at each
u € U. The usual properties for partial derivatives hold in tresigral context. In
particular, if f is differentiable at: = (u1,us) € U, thenf is differentiable with
respect to bothr; andz, atu and for all(éy, &) € By X B,

dfu(§1:&2) = Dif(u) - &+ Daf(u) - & (2.37)
Now, we are ready to state the implicit function theorem.

Theorem 2.4.2.(Implicit function theorem) Letf € C(U, B) whereU is an open
setinA x B; and B, B; and A are Banach spaces. Assume that

1. f(Xo,up) = 0 for some(rg, ug) € U

2. Dof : (N u) = Dof (A, u) is continuous in a neighborhood kg, ug), Do
is the derivative off with respect ta:) and

3. Dyf(Ao, up) is nonsingular (has a bounded inverse)

Then there exists a continuous curwve= u(\) defined in a neighborhood’ of
Ao, such thatu(\g) = ug and f(A\,u(A)) = 0in N. Theseu = u(\) are the only
solutions off (A, v) in N. Finally, if f € C*(U, B), thenu € C*(N, B).

Thus, according to the implicit function theorem, we canestpbifurcation
at (Ao, up) if Dyf(Xo,up) is singular. On the other hand, evenlif f (Ao, uo) IS
singular,(\o, ug) need not be a bifurcation point.

Example2.4.3 Let us consider the functio(\, z) = A\ — 2°. It has a bifurcation
point at(0,0) and in factG(0,0) = G, (0,0). The key point in order thaD, 0) be
bifurcation point is the change of sign 6f, = 2x atx = 0.

2.4.2 Bifurcation from a single eigenvalue

Since our main focus is on the finite dimensional case (dgtiralR?), we will
present the following bifurcation theorem in this settih@t us consider the func-
tion f and for simplicity, we assume thgt\, 0) = 0 for all A € R. Using Taylor’s
theorem, we can write,
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whereLy = Dyf(Xo,0) and Ly = Dy Dy f (N, 0) aren x n matrices, and € Cs
satisfies

7’()\, 0) = 0, DQT’()\(), O) = DlDQT()\(), O) =0. (239)

Theorem 2.4.4. (Bifurcation from a single eigenvalue) Lét be an open set of
R x R* and letf € C*(U,R*) be given by

F(\ u) = Da(Ao, 0)(u) + (A — o) D1 Do f(No, 0)(u) + 7(\, u)
wherer € C?(R°) satisfies
r(A,0) =0, Dar(Ag,0) = D1 Dar(Ng,0) = 0.
Assume that the kernel éf;()g, 0) is spanned by, and thatD; D, f (Ao, 0)uy is
not in the range of),(\y, 0).

Then there is & > 0 and aC!-curvel'(s) = (A, ¢) : (—§,0) — R x {up}*
such that

2. $(0) =0
3. f(A(s), s(ug, +¢(s))) = 0for |s| < 0.

Furthermore, there is a neighborhood ©f, 0) such that any zero of either
lies on this curve or is of the forrf\, 0).

Thus (Ao, 0) is a bifurcation point forf. Note that we get some information
about the direction of bifurcatiofdu/ds = ug) ats = 0. Furthermore, if we use
the notation N(T) and R(T) to denote, respectively, the Kesind the range of an
operatorT’, then the conditions

N(DQ(/\Q, 0)) = SpCLTL{UO}, anleDQf()\o, 0>U0 ¢ R(Lo)
are equivalent to the fact that= 0 is a simple root of
det(D2()\07 O) + /'I’DIDQf(/\()? 0))7
hence, in particulatlet(Ds (g, 0)+(A—Xg) D1 Da f (Ao, 0)) changes sign at = .
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2.4.3 Stability of equilibrium branches

Let us now investigate the conditions for an equilibriumusioin (of a system of
the formfg—jj = f(u)) to be stable. Suppose thatis a solution and we make a
perturbation of the formu + ¢, then we consider the initial value problem

d
—=fw,  ul0)=a+e

We want to determine whether this solution tends @st — oo, or even if it
stays close ta for all t > 0. If we consider the linearized problem

dv

= = (V)

then if the spectrum aff; lies in the left-half complex plane, the solutiordecays
exponentially to zero as — oo. In this case, we say that is stable. On the
other hand, if the spectrum contains points in the righf-plaine, we say that is
unstable. We are interested here in the stability propedidifurcation solutions.

Let us consider the equations

du

E:f(/\vu)

wheref(),0) = 0, for all A and suppose that we have the following situation. For
A < ), the spectruna (D, f(), 0)) lies in the left-half planeRe » < 0, z € C while

for A > A o(Dyf(A,0)) intersectske z > 0,z € C. Then at\ = ) at least one
point of the spectrum crosses the imaginary axis, that ijra pf the form:ir with
rrealis ino(Dsf(X,0)). Now, if » = 0, in general, the trivial solution bifurcates
into new equilibrium solutions, while if # 0 it bifurcates into periodic solutions.
The latter occurs with a so-called Hopf’s bifurcation.

Definition 2.4.5. Let X andY be Banach spaces and Iét and K € B(X,Y).
We say thap, € C is a K-simple eigenvaluef L, (with eigenfunction.) if the
following three conditions hold:

1. dim Ker(Ly — pK) = codimR(Ly — pK) =1
2. ug spansKer(Ly — k)
3. Kuy ¢ R(Ly — pK)

The terminology comes from the case whéfe= Y, K = [, and, is a com-
pact operator. The importance of this notation comes fraamiéxt lemma, which
implies thatK -simple eigenvalues “continue” along the bifurcating lofaes.
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Lemma 2.4.6.Let i, be aK-simple eigenvalue di,, with eigenfunction.,. Then,
there existe > 0 such that ifl|L — Lo|| > p, L has a unique¥-simple eigenvalue
n(L) € Z. Alson(Ly) = po, w(Loy) = uy and the mappind. — (n(L),w(L)) is
smooth.

Let the hypotheses of Theorém 214.4 hold. ThBnf (A, 0) has0 as a single
eigenvalue ofD; D, f( Ao, 0). Let A(s) andu(s) = s(uo + ¢(s)) be the bifurcating
curve as provided by this theorem. We will the notation of dileen[2.4.4 and use
the notationf’(s) = Dyf(A(s),u(s)). Now suppose thaX C Y, the inclusion
i : X — Y is continuous is an i-simple eigenvalue ab,f(\,0). Then by
LemmdaZ.4.b, there exist functions

A= (v (A),v(A), s = (n(s),w(s)) (2.40)
defined on a neighborhood af and0, respectively, intR x X, such that
(7(20), (X)) = (0,u0) = (n(0),w(0)),v(X) —uo € Z,w(s) — uo € Z
and these neighborhoods,

Dy f (X, 0)v(A) = v(Aw(A), (2.41)

F(s)w(s) = ns)u(s). (2.42)

The following theorem is used to determine the stabilityhef bifurcating solu-
tion.

Theorem 2.4.7.Let the hypotheses of the Theollem 2.4.4 hold, ang &td 7 be
defined as above. Thef(\) # 0 and ifn(s) # 0 for s near0,
sN'(s)7' (M)

2.4.4 Hopf Bifurcation

Consider the bifurcation of a periodic orbit from the equiliion position of an au-
tonomous differential equation, the so called Hopf biftiara This type of bifur-
cation is one of the most elementary ones and is importaheithieory of nonlinear
oscillations.

Suppose that

- = AN)u+ f(A u)
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whereu € R", A € R, A(\) is ann x n matrix. A(\), f(A, ) have continuous
derivatives up through order on®,,, f (A, u) is continuous fof\| < Ay andu €
R™ f(X\,0) =0, D,f(A0) =0for|A] <X, and

=% ey )

_ A B _

(€N — 1) exists for|A| < Ao.

Theorem 2.4.8.Under the above hypotheses, there are constants 0, \g, d,
functions\(a) € R, A(0) = 0, w(0) = 27 and aw(a)-periodic functionu*(a) with
all functions having continuous first derivatives up thrbuwgder one forf\| < A,
such that*(a) is a solution of[(2.4]14) with

as|a| — 0. Furthermore, forl\| < Ao, |w — 27| < dy, everyw-periodic solutionu
of equation[(2.4)4) withi(t) < &, must be given by*(a) except for a translation
in phase.

This theorem sets conditions in order that a system of orgitiéferential equa-
tions has a bifurcation point that leads to a periodic sofutit will help us to find
periodic solutions.

2.4.5 Numerical Continuation of solutions of autonomous sys-
tems

In this section, we describe the numerical analysis of systef the form
du(t)
dt

where) denotes one (or several) parameters. Our goal is to deshalmapabilities
of AUTO, which is a software for continuation and bifurcatioroblems in ordinary
differential equations. AUTO was originally developed hysEbius Doedel.

= f(\u(t) u, feR” (2.43)
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2.4. BIFURCATION THEORY

AUTO requires the following data: the Jacobianfof% and an equilibrium
solution for some fixed values @f and \. Then the program has the following
capabilities:

1. The calculation of branches of equilibrium points.

2. The finding of the bifurcation points of the above branches
3. The finding of Hopf bifurcation points.

4. The calculation of branches of periodic solutions.

5. The calculation of stability of the solution branchesr periodic solutions
this process is achieved by solving a boundary value problem

6. The use of adapting meshes and stepsizes along the bsasfgberiodic so-
lutions.

7. The capacity to restart the calculation at certain points

8. The storing of calculations in files, allowing the use dfedent plotting pro-
grams.

2.4.6 Continuation of fixed points

In equation[(Z2.413), we have one more unknown variable thaatens, and gener-
ically such problems have families of solutions. A contitimamethod consists of
a procedure in which a known solution to Equatibn (2.43) edu® discover new
solutions. We can proceed iteratively; known solutionsl leanew solutions which
are then added to our collection of known solutions, leatiingore solutions, etc.
There are various classes of such methods and in this see#omill restrict our
attention to the class of predictor-corrector methods.s€hee the methods used
in AUTO. In predictor-corrector methods one uses some skhafvn solutions to
equation [(2.43) to generate a new paintThe new pointz is only a guess, and
typically does not lie on the bifurcation diagram, so onentherrects it to within
a given tolerance, perhaps using Newtons method, to a pantthe bifurcation
diagram.

Bifurcation diagrams are often more complex than single esir¥or example,
two curves in a bifurcation diagram may intersect. Such agrsection point is
called a bifurcation point, and there exists a whole meneag#rdifferent types of
bifurcation points. For example, a simple bifurcation i€ am which two solution
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CHAPTER 2. ASPECTS OF NONLINEAR ANALYSIS

curves with the same general properties intersect, whilegf Hifurcation is one
in which a branch of steady state solutions intersects achrafperiodic solutions.

The parameter continuation methods in AUTO may be used tquatenvery
complex bifurcation diagrams. The algorithms include théity to detect and
switch branches at bifurcations of various types. For exangme may perform the
following calculation:

e Continue a given solution until you reach the third simpleitmétion.
e Go onto a bifurcating branch and continue until reaching pftbdurcation.
e Continue the branch of periodic solutions until a certaiugat reached.

This type of modality is very common in AUTO and very complefulration
diagrams can result, with many bifurcation points and binasswitches. Therefore,
the main goal of using an interface for AUTO (such as Pytheripifacilitate the
control of the continuation algorithm and the constructibbifurcation diagrams,
whether it be for the beginning or advanced user.

2.4.7 Continuation of periodic solutions

The calculation of branches of equilibrium solutions isibaléy an algebraic prob-

lem, which consists of the bifurcation analysisfdf\, u(t)) = 0. This can be ac-

complished numerically using arclength continuation arehbh switching tech-

niques [[19]. Furthermore, the continuation of periodiaugohs can be treated in

the same framework. Let us review the basic features of tleebmiques.
Consider the operator equation

G\ u(t)) =0, (2.44)

whereG : Hi — H, is a nonlinear map between the two Hilbert spafesand
H,. If there exists a parametrized branch of solutiong)(s), A(s)), then under
appropriate smoothness assumptions the result that tivatiles of G always has a
nullspace along the branch. Assume now that we have a soloti.44) denoted
by w, and also assume that the kernet#twy) is spanned by the vectar,. Thus
the kernel is one dimensional. Let be the adjoint element such thaf w; = 1.
Then the augmented problem

Gw)=0 w) (w —wy) — s (2.45)

has the solutionv = wy, whens = 0. Further the derivativéG’'(wg, w'x)) IS
nonsingular. Hence, the implicit function theorem guagastthe existence of a
branch of solutionsu(s) for smalls.
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2.4. BIFURCATION THEORY

If G(w) = 0 represents a differential equation, then of course thetauaust
be discretized first. Further for numerical purposes it teroimore convenient to
use the approximationy;, ~ M In addition, we solve[(2.45) for only one
value ofs, says = As, then [2.45) becomes

w — wo*(w — wy)
As

Essentially the same procedure can be used to switch braathdifurcation point
after the direction of the bifurcating branch has been cdethu

Now consider the problem of determining branches of petisdiutions to the
autonomous systern (2]43). First note that not only the geriolutionu but also
its period P changes along such branch. To fix the period, one must magrlyne
(0, P) into (0, 27). This transforms the differential equation into

G(w) =0 — As=0. (2.46)

du(t)
dt

_ 5 FOuu(®) (2.47)

where the unknown period appears explicitly and whergeriodic solutions are

to be determined, that is we impose the conditidfl) = u(27). Suppose that
(Mo, Po, ug(t)) defines a known periodic solution. The objective is to sethe t
equations for finding a solution nearby on the branch. A remgidifficulty is the
inherent non-uniqueness ofdue to the fact that a periodic solution can be trans-
lated freely in time. For numerical computation the new 8ofuu must be an-
chored. To achieve this, we need to simply fix one of the coraptsnofu att = 0.
However, the resulting set of equations has an isolatedisnlonly under con-
ditions that are not required for the underlying problemalftsFor theoretical pur-
poses a better choice is the orthogonality conditioi®) — 1o (0))” f (ue(0, A)) = 0,
which ensures that(0) on the orbit to be determined occupies a similar position to
u(0) on the known orbit.
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Chapter 9 |

Nonlinear juvenile predation population
dynamics

3.1 Introduction

As we already mentioned, age structure in predator-preyetsdths been exten-
sively studied in the literature (see for example[15, [17]).24Jnstable periodic
solutions are frequently found in these models althougi tleenot correspond to
biological nature where prey and predator populations caxist. Among the ef-
forts to reach coexistence, the inclusion of diverse factuch as self limitation of
the prey, harvesting of prey and cannibalism of the youngsy, ghould be included
[36,(25].

One of the successful tools to analyze biological modelsieas the Painley
property, which has its origin in the work of S.V. Kovalevgkavho was the first
to consider the analytical theory of differential equasidiut to physical problems
[20]. Paul Painleg took these ideas and classified ordinary differential gojps
of second order according to the type of singularities oifrtb@utions [30]. Since
then, the property has been used to construct symmetriésdtexplicit solutions,
to detect control parameters and solon [27, 44].

Basically, a system of ordinary differential equations HeesRainle@ property
if its general solution has no movable critical singularmiei Equivalently, we
might say that the only singularities of the system of orgjrdifferential equations
are poles. Ablowitz, Ramani and Segur [2] described an dlgurnamed P-test,
which allows one to determine in three steps if an ODE has thpgnty: finding
a) the dominant behavior, b) the resonances and c) the cdssthintegration. It
is important to remark that this algorithm does not idenéggential singularities.

1This chapter is based on F.J. Solis, R.A. Ku, Nonlinear jilegaredation population dynamics,
Mathematical and Computer Modeling 54 (2011) 1687-1692
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CHAPTER 3. NONLINEAR JUVENILE PREDATION

The necessary conditions for a system to have the P&pleperty are established
only.

The goal of this chapter is to use the Pai@@voperty in age-structured predator-
prey models as a modeling tool in order to provide candidaiestabilize such
models and to discover essential biological factors. Thinda is to analyze a
general form of the term that models the incorporation ofritee/born prey into
the dynamics. Finally, to verify coexistence between pi@dand prey, we will use
standard techniques in bifurcation analysis.

3.2 The model

In this section we develop an age-structured model that Wvaady presented in
chapter one, but for the sake of self-contentedness we deduere again. Let it
p(w,t) be the number of prey individuals of ageat the timet. The total prey
population can be defined as

From the conservation law

d w—+Aw

< p)dw == [ ol )+ plw,) — pluw + At

dividing by Aw and taking the limit ag\w tends to zero, we obtain the equation of
evolution

pu(w,t) + pr(w, ) + pp(w, t) = 0. (3.1)

We suppose that the birth rate of the population is, at tingaven by a law of
births of the type:

Bt = [ Blw)pw,t)du,
0
wherefs(w) = Sowe™*" is the reproductive rate of individuals of age Defining
A(t) —/ e p(w,t)dw
0
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3.2. THE MODEL

and from the evolution equation (8.1), we obtain the follagvthree equations:

%it) — —u(P)P + p(0,1),
di_it) = —(u(P) + a)B(t) + BoA(t)
%ﬁ” — —(u(P) + @) A(t) + p(0, ).

Assuming that the predator populatioR, which feeds only on the newborn
prey, behaves according to a Lotka-Volterra type equati@nget

dD

dt
Moreover, if we consider(P) = uo + €P, which represents the self-limitation of
the prey, and substitute it in the model we obtain:

= —-bD + c¢BD.

— =~ mP(t) = eP(t) + p(0.1) (3.2)

%it) = — 0B(t) — cP(t)B(t) + BoA(t), (3-3)

dAY) g aw) — @AW + p(0.1) (3.4)
it

d'iz—it) — _bD(t) + eB(1)D(t), (3.5)

wherepy, €, n, 0 = a + o, By, b andc are positive parameters. We will consider a
general form of the functiop(0, ) depending orP, B, A andD as,

p(o,t) = F(P(t)vB(t)vA(t)7D<t))' (3.6)

Then, we will consider two models. In the first one, the julepredation term is
given by the general function (3.6) and the complete syssem i

%it) = — poP(t) — eP*(t) + F(P(t), B(t), A(t), D(t))) (3.7)
%it) = — 0B(t) — eP(t)B(t) + BoA(t), (3.8)
%z(ft) = — 0A(t) —eP(t)A(t) + F(P(t), B(t), A(t), D(t))  (3.9)
dDd—zft) — —bD(t) + cB()D(t), (3.10)
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wherepuy, €, 1, 0 = a + g, By, b andc are positive parameters. In the second one,

we will consider a particulap(0, t) as a benchmark, given by,

B™(t)(1 — pB(t) — o PL(t) — TAM (1))
14+ nD(t) ’

wherep, o, T are positive parameters and L and M are positive integers. The
complete system is then:

p(0,t) = (3.11)

%it) = —uoP(t) — eP?(t) + F(P(t), B(t), A(t), D(t))) (3.12)
)~ 0B(t) - <P()B1) + AL, (3.13)
%it) = —0A(t) — eP(H)A(t) + F(P(1), B(t), A(t), D(1)) (3.14)
d'il—it) = — bD(t) + ¢B(t)D(t). (3.15)

This particular function[{3.11) is a generalization of thundtion p(0,t) =
B(t)(1 + nD(t))"'. We can observe that this function models the juvenile pre-
dation on the newbornB(t¢). When the predator populatiofi¥t) is small then the
juvenile predation is large. On the contrary, if thét) is large the predation is low
because exists more competence among predator themsgheegeneral version
of it (8.11) models the predation also but also takes intmactthe competence
between the babieB(¢), the adult population®(¢) and also the auxiliary variable
A(t). This variable in particular represents a part of the pdpmra

In the following three sections we will present theoremsachhiesult from the
application of the Painlé/test. It is important to remark that the P-test was estab-
lished in the complex domain. However, we applied it to aeddhtial system of
equations iR which is valid becausk c C.

3.3 No contribution of F

In this section, we make the assumption that the fungi{ont) depends o, B, A
andD, ie. p(0,t) = F(P(t), B(t), A(t), D(t)) and also that is a rational function.
This allows us write the” function in its Laurent series:

F(P,B, A, D) Z J(t—to) i+§:ﬁ(t—to)i.
=1 =0

When the function?” does not contribute to the dominant terms in the first step of
P-test (Chapter 2) we obtain the following theorem.
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Theorem 3.3.1.Let us consider the system of differential equations (B%). If

the functionF'(P, B, A, P) does not provide dominant terms in the P-test then the
system does not have the Pairfdgroperty and the only solutions without movable
critical points are of the form:

P(t) = %51 + i @i’ (3.16)
=0
B(t) = _Tk“él + i Big’, (3.17)
pary
A(t) =y + 2 "€, (3.18)
D(t) = i o_i& " + i 5;¢', (3.19)
P pry

k4 is an arbitrary positive integer angd = t—t, wheret,, v_; andd_y, are arbitrary
constants.

Proof. We apply the P-test as described in AblowitZ ([2]).
Step 1. We start by writing down the ansatz

P(t) = a_p, &M, (3.20)
B(t) = f_i,¢ ™ (3.21)
Alt) =y, (3.22)
D(t) = 6_j, &%, (3.23)
F(t) = fot ™, (3.24)
and substitute i (312)E (3.5):
—kjo_j T = —pga_, M —ea® £ 4 TR (3.25)
ko, = =081, — sa By €T 4 My 677 (3.26)
kv gy E T = =0y T — e Yoy ETTR 4 T (3.27)
kg0 & = S g, &k, + B, €Oy 6T (3.28)

The fact that the functio” does not contribute to the dominant terms implies that
ks < k; — 1 andk; < k3 — 1. The dominant terms are those which can be equal
in each equation (3.25-328). Let us recall that e must be integer positive
numbers in order to succeed the P-test. This is accomplisitbdhe setk; = 1,
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ko =1, ks = 1 andky is an arbitrary positive integer. The corresponding domtina
terms are therP and —<P? in first equation of [3]2),B and —<PB in second
equation of(3B),A and —cPA in third equation of [34)D andc¢BD in fourth
equation of[(3.5).

Step 2. To find the resonances,we use the coefficients and the exponents
already found in step one to form the equations:

P= é(t —to) M Rt —to) (3.29)
B = %(f —to) ™+ Rt —t0) 7, (3.30)
A=yt —to) M+ kst —t) !, (3.31)
D =5y, (t —to) ™™ + Ka(t — o)™, (3.32)

Then, we substitute them in system (3[2)-(3.5).
N0—p,(r+ 1)k =0
—5%/{1 +rre =10
NES_g,V—1K1 + bk + Nd_g, k3 =0

_C(S_k4ff2 +TrKg = 0,

We take the linear part iR;, k2, k3 andr, to form the resonance matrix

No—_k, (r + 1) 0 0 0
— ks r 0 0

Q(I’) - 77857]{4,}/71 0 n57k474 0 ’ (333)
0 —C_p, 0 r

sinceF' does not provide leading terms. In order to have resonaneesjust have

det Q(r) = r*(r + 1) = 0, which exhibits a root = 0 of multiplicity three and

r = —1 of multiplicity one. Any root equal to zero must come from abitary
coefficient in order to pass the test. We already have twdrarii coefficients
given by~_; andd_;. In general, we can not find a third coefficient becatise=
—ky4/c is restricted sincé, has to be a positive arbitrary integer. Therefore the
system does not pass the Pai@ésst and (3.16-3.19) does not represent the general
solution. O

Remark Let us notice that the leading coefficient of the solutiontfa prey pop-
ulation is given byo_; = 1/e. Therefore, self-limitation in the prey population is
an important biological factor. Otherwise, the solution8 lae unbounded. In an
analogous way, we notice the importance of the predaticorfaince the leading
coefficient of the juvenile populatio3, is k4/c.
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Example3.3.2 In order to complete this section, we present an example wfie: f
tion F. Let us consider the functioA = B/(1 + nD). By taking the coefficients
and the exponents of the dominant terms we see that

P(t) =1/e¢,
B(t) =k /Cf !
A(t) =71

D(t) =4 k4f ke,

Becausé:, is arbitrary we can assume thiat = 1 then the order of the function
Fis F ~ f£°. This means that the functiafi does not contribute to the dominant
terms in the P-test. This particular case was previoushjistlin [36].

So far, we have shown that a necessary condition to pass tix& 3-the con-
tribution of leading terms from(0, t). Thus, the nonlinearity of this function is an
essential feature. Next, we make use of the specific formefuthctionp(0,¢) in
the following result.

3.4 Contribution of F
In this case, we use a specific functibP(t), B(t), A(t), D(t)):

B™(1 — pB — oPL — 7AM)
14+nD

F(P,B,A,D) = , (3.34)

wherep, o, T, k are positive parameters and L and M are positive integers.

m o — 0 L T M
O — oty -t ZL= Bl T (3.35)
%t(t) = —0B(t) — pP(t)B(t) + BoA(t) (3.36)
L0 — o) - o + ZUELEZ ST aay)
dl;—it) = —bD(t) + cB(t)D(t) (3.38)

wherepq, €, n, 0 = a + 1, By, b andc are positive parameters.
This function is a general version of the predation term us¢86] where a pre-
dation term of the forn¥’ = B/(1 +nD) was considered. This function represents
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the juvenile populatiom3 contributes to the adult populatiaf in a proportional
way. However, there is competence between the other grdugie gopulation
namedP, B or A. Because we are assuming a predation process, the vafiable
also included with a saturation effect.

The question is, whether under these general conditiors/gtem[(3.35)E(3.38)
will pass the P-test. The answer is given in the followingptieen.

Theorem 3.4.1.Let us consider the system (3.35)-(3.38). Assume that tictida
F (3.34) contributes with at least one of the dominant term&@R-test.

e If k4 is a positive integer, then the system has logarithmic bngrants.

e If k4 is a non-integer rational number, then the system has a lbrgmint of
order —ky.

In both cases, the system does not have the P@mmperty.

Proof. Again, we apply the P-test.
Step 1. In an analogous way, as in the proof of Theofem (3v@el3ubstitute
the ansatZ(3.20-3.23) in the systém (3.35)-(3.38) to nbtai

—ko_, § T = —pga_, £ —ea?, £70 (3.39)
(B, &7F2)™(1 = p(Biy€) — o(ap, E7M)E — T(ypyEF2)M)
14+ n(0-kE-1a)

—kaB k€T = 0B 1, 6T — ey BT My gy €7 (3.40)

—kg Yy €T = =0y, 70 — ey y_p, £
(Born€7) (1 = p(Bin§ ™) — ol €M) — T(rp ™))
14+ n(0-kE-14)

+

+

(3.41)
— kg0 €T = b0 g, F B, €O R (3.42)

We found that the exponents = 1, k; = 1, k3 = 1 balance at least two dominant
terms in equations (3.86) and (3/38). These equations doamt&in the function
F. For equation[{3.36) dominant terms af¢,and—cPB. The dominant terms
for equation [[3:38) aré and —<PB. Also, from these equations we have that
o = %, B_1 = —*. The coefficientsy_; andd_;, have to be determined using

c

equations[(3.35) and (3.37). For equatidns (3.35) Bnd](3tB& dominant terms
depends on the functiol. There are several cases to analyze because the function

F has parameters which have to be determined. Finally, thestep is achieved
whenk,+2 =m+106m+L 6 m+ M, where atleasttwo ofi+1, m+ L, m+ M
are equal and the third one iqual or lesser.
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Step 2. The matrix of resonances is the same as that obtaif@®8) but with
F(P,B,A,D) # 0. To find the values of the resonances, we have to find the roots
of the polynomial,

det[Q(r)] =
N6k, (r+1) + 5(0)  F£(0) 52(0) 0
= det = oF oF ! OF ! (3.43)
ned_r, -1+ 5.-(0)  55(0) no_gr+5-(0) 0
0 —CcO_g, 0 r
OF oOF
= 775—k47’2 [T2n5—k4 +r (T](S—kq + £k1 8_P(X1) + gksa_A(Xl))

OF ek OF
kg 4 k3 —
+£ _8B(X1)_C ‘f‘f 8A<X1)(1 6’)/_k3):|,

where X| = (a4, &M, B, %2 v 1,677 6_4,67%). Thus,r = 0 is always a
double root which should correspond to two arbitrary camtsta However, it is
shown in Step 1, that there is only one arbitrary constant.

In order to show that solutions exhibit logarithmic brandints, we make the
following transformation in[(3]2){ (315)

~g(Ing) _ p(Ing) ~ Y(Ing)
e B= e A= e D= e

The functionsf, g, ¢, and ¢ are analytic and therefore the system has loga-
rithmic branch points. To show that the system exhibits idiganic branches, let
us suppose that at least two dominant terms are provideld.B4)(B (3.35-3.38B).
Thenk; =1,ky =1, ks =1andks+2 =m + 10orm+ L orm + M, where at
least two ofm + 1, m + L andm + M are equal and bigger or equal than the third
one. Ifk, is an integer, we find logarithmic branch points as beforé, i not an
integer, then we define a new variable

(3.44)

A=D %,
and substitute\ in (3.34). A is analytic and as a result, the system has a branch
point of order—k,. In both cases, the system does not have the P&mmperty.
O
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Example3.4.2 In order to complete this section, we present an example whée: f
tion F. When we select the parametets= 2, L =1, M = 0andr =0

B?*(1 — pB —oP)
1+nD

F =

(3.45)

Whenk, = 1 the solutions of the systern (3185-3.38) corresponds todke s a
positive rational number and it has a logarithmic branch. iMhes a non-integer
rational number the solutions have a branch point of oreler. This function is a
more general function that the one studied_in [36].

The previous theorems have shown that the system has fhédeldinle@ test.
However, they have exhibited the complexity of the solwuion

3.5 Conditions onfF' to succeed the P-test

A natural question to ask is if we can find functioA$P, B, A, D) = p(0,t) for
which the system[(312)-(3.5) has the Pai@qwoperty. In order to answer this
question, let us suppose that the functiofP, B, A, D) can be written as

F(P,B,A,D) Zfzﬁ +Zfz. (3.46)

Then, taking the equatioh (37-3110) and the angaiz1(3.ZB)3vith the follow-
ing valuesk; = 1, ks = 1, k3 = 2, k, an arbitrary positive integery_; =
2/e, By = —kyfc, v-1 = —k4/(Boc) and d_y, is an arbitrary constant. All
these conditions are found by applying the P-test. Furtbezmwe defineX, =
(&Y BE7 v 06726 4,67%), andh = c/cky, Under these conditions we
obtain the following theorem.

Theorem 3.5.1.Let us assume that the functiéi{ P, B, A, D) is a rational func-
tion in the variablesP, B, A, D, with a pole of order two in the variableand the

polynomial
oF oF oF
() (A ) e

has two integer positive roots. Then, the system passes shéwo steps of the
P-test.
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Proof. Step 1. This step is completed for the valuesipf(i = 1,2,3,4), a_1,
B-1, 7—2 andd_, already given and with dominant terms given By eP? and
F(P,B,A,D)in (338)B, —ePB and 5)A in (3.38), A and—cPA in 3317) D
anchD in (3.38).
Step 2. As before, we make the substitution of the ansat®{3.22) with
the new values along with (3.46) in the dominant terms of ezgmation. The
resonances are the roots of the polynomial,

e (o7 (BEE ) - (B BN o aag

§h §*sBoh Bo& k2

The rootsr = —1 andr = 0 correspond to the arbitrarinesstgfandd_,, respec-
tively. Finally, sincer? — r <M — 3) — (FA(X2) + Lo(Xe) ) has two positive

& £ F3Boh T BogF2
integer roots, we find four resonances. Thus, the second$tiae test has been

accomplished.
Step 3. This is a compatibility test and it depends on a pdardorm of F. [

The last theorem shows how the tefiP, B, A, D) should be in order to pass
the P-test. This is an important issue because the succtss Bftest may indicate
integrability. There are practical aspects that we can deftwm Theorem 3. I
is a polynomial, we can instantly assure that the system mloigsave the regularity
required in its solutions . Moreover, we can find a great ditgrof examples that
satisfy the above conditions. We can achieve this task linget' = P B A%,
whereq; = 3+ mq + ma, g2 = 2 — q1 — 2g3 andgqz = my + my + z with any two
natural numbers:; andm, andz € Z arbitrary.

Example3.5.2 As an example consider the following =
the system of equatioris (8.2)-(B.5) fulfills the condltlmsuwed by Theorev@E 1
and passes the P-test. Notice the specific nonlinearityeoéxample. So, we can
discard traditional modeling terms for the functiénthat may include the law of
mass action, logistic terms and saturation terms of the ﬁ%‘%ﬁ‘

An important fact to mention is that one of the conditionsuieed to pass the
P-test is that thé'( P, B, A, D) be independent of the predator variable. This leads
to a biological inconsistency because the prey is not loaffected by the predator,
which might suggest that the system presents intrinsicablestoehavior and that
the action of the predator should be modeled in a different wa
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3.6 Numerical Results

In order to illustrate coexistence between predator ang, pre apply standard
bifurcation analysis to the ordinary differential equasosystem given by (3.2)-
(3.5). In Figuré_3.1L, we show two bifurcation diagrams ushrO (see[12]) with
common values given by = M =n=1,0=7=0,0 = 0.7, 5, = 10 and
c=2andm = 1inBJ a) andn = 2in[3.1 b). The branch labeled as 2-5 in
the first diagram is periodic and stable (4-6) in the secorel drere solid lines
denote stability. Note that the system has three solutiandires, one periodic and
the other two, equilibrium branches. Also, observe thatpi@od of the periodic
solution in Figure 1 b) tends to infinity when— 0, while the other two branches
become unstable. This fact strengthens the idea thatisetédion of the prey is an
important factor to stabilize the system. Theorems 3.1 ahdl®ow that a necessary
condition to pass the P-test is that the coefficient of theidant term of the prey
is given bya_; = 1/e. A similar behavior of the system is obtained when the
coefficientsr, o andp vary. In all of these cases, there exist critical values esén
parameters for which there is always a branch of periodigtguis. It is important
to remark that the period of the solutions tend to infinity whigese critical values
tend to zero. If we increase the valuelobr M then the critical values also increase.
Numerical experiments show a specific way to choose the peamin to order to
obtain periodic solutions. All these numerical resultsgupthe necessity that the
function F' contributes to the dominant terms in Step 1 of the P-test ab@orem
3.2
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3.7 Conclusions

In this chapter we have presented a new series of age-seuoidels in order to
show the importance of the self-limitation in order to obtsolutions without mov-
able critical points. The practical aspect of these modslis include the theoretical
possibility that an effective strategy for the prey may tegypredators can not in-
teract with a particular class of prey. Moreover, aside ftheoretical aspects, only
small amount of experimental work has been carried out tihides different bio-
logical factors of self-limitation. We have shown that trerife\vé analysis plays an
important role in modeling. We have discovered the necgssarditions which are
required in the system in order to pass the P-test. Thesetmsdrequire special
nonlinearities that discard traditional interaction terike the law of mass action,
logistic terms, etc. All these necessary conditions depmnthe the form of the
term that models the number of newborn prey. If new nonlitiearare allowed
in the model, potentially more realistic, then predation ba remodeled, since a
traditional Lotka-Volterra equation for the predators plgion was assumed. We
have shown numerically the coexistence between predatbpmay by presenting
several examples. The self-limitation is an essentialogickl factor to establish
coexistence.
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'Chapter 4

Generic predation in age structure
predator-prey models

4.1 Introduction

In Chapter three, we tested two different versions of sysfie@6] for integrability.
The results were, two cases where the system did not passtése &d a third one
where we established integrability conditions. The kewidethe last case was to
allow the predation ternk’ to be a general function and we looked for conditions
to succeed the P-test. However, these conditions werectegtrand coexistence
between predator-prey was found in one case where the Ralest Now, in this
chapter we generalize the Lotka-Volterra predation terrinenfourth equation of
the system[(1.26) and we search for conditions to pass tlestPThis led us to a
modeling strategy that we called analytical modeling.

4.2 Analytical modeling

The classical approach to finding criteria of mathematicaixcstence is through
asymptotic stability or the global asymptotic stabilityaofinique equilibrium point
or periodic solution[[46, 48]. However, from a biologicalipbof view a more
realistic criterion will be to allow the system itself to deditheir interaction by im-
posing that solutions behave in a predetermined genemc.fdhis process is what
we will refer to asanalytical modeling In order to introduce analytical modeling
in this work, we will use two well known techniques in all theabhches of nonlin-
ear science. The first one is known as the Pakest and the second one is the

1This chapter is based on F.J. Solis and R.A. Ku-CarriBeneric predation in age structure
predator-prey model&pplied Mathematics and Computation
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CHAPTER 4. GENERIC PREDATION IN AGE STRUCTURE

bifurcation theory, both of them described in Chapter 2.

Our general procedure is the following. First, we derive aegal predator-prey
model with age structure. Then, we apply the P-test and itbestine necessary
conditions to pass it. These conditions relate to the domiteams of the system,
the power of such terms and the value of the coefficients dethding order terms.
Next, we propose functions compatible with the given coodg and we also look
for biological compatibility. In particular, we select fatons that have biological
relevance. Finally, we carry a numerical bifurcation assyof the model using
the software AUTO by Doedel [12], where we find the values efghrameters for
stable equilibrium solutions and stable periodic solwion

As a practical purpose of this chapter, it is worthy to memtibat there are
biological control methods to prevent the spread of peststrpducing natural
predators as we do it in this work. There are numerous exangblaull or partial
success. Theidea s to control by finding stable periodigtgwis of the populations
involved. This type of control has received considerabterdibn because of its
potential practical benefits [35, 31].

This chapter is organized as follows. In Sectionl 4.3, we psepa general
predator-prey model with age structure that we will studySectiori 4.4 we intro-
duce the analytical modeling where we include numericatfations and interpret
the biological implications of the results. Finally, comsions are given in section

4.5.

4.3 Age-structured predator-prey models

The aim of this section is to derive predator-prey poputatimodels with age dis-
tribution that will be subject to analytical modeling in tf@lowing section. Since
our main goal in this work is to understand predation effests will propose a
generic predation in order to obtain viable interactiond also where biological
coexistence may be achieved.

Let us recall our starting model described in the previousptdr:

PO oP(t) — wP? + F(P(), B(1), A1), D)

dit@ — _0B(t) — uPO)B() + foA(?)

P~ —9A@) — uDWA(W) + F(PW), B, A1), D)

dl;—t(t) = —bD(t) + cB(t)D(t) (4.1)
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whereyy, €, n, 0 = a + o, fo, b @andc are positive parameters.

There are two important choices to make in the model. Thedirstis selecting
the incoming of offspring into the prey populatiofi(t) = p(0,t), and the second
is how to postulate the quantitative growth of the predapoocess. In Chapter
3 [37], we investigated a predator-prey model whéig) = p(0,¢) is a general
function depending on the prey, the offspring prey and treglator populations,
with the assumption that predators followed an interactimen by the classical
Lokta-Volterra evolution. Here, we again select a genenatfionp(0, t) which we
denote ad'(P, B, A, D) where D denotes the predator density and we model the
predator interactions by a general term given®P’, B, A, D). Thus, the system
of equations that we will study is:

%it) = — poP(t) —P(t)" + F(P(t), B(t), A(t), D(t))

%Et) =—0B(t) —eP(t)B(t) + BoAlt)

%it) = —0A(t) —eP(t)A(t) + F(P(t), B(t), A(t), D(t))

dDd—,Et) =—0bD(t) + G(P(t), B(t), A(t), D(t)), (4.2)

wheref = «a + . A detailed construction of a simplified version of this modah
be found in[[37, 38].

4.4 Analytical modeling process

We divide this section in two parts. In the first one, we wilbgize the different
functional forms that the functio may take in systeni (4.2) in order to obtain real
solutions where only poles as singularities are allowedst&ys with this charac-
teristic are said to possess the Paiglgvoperty. In the second one, we will select
among the successful functiogsfrom the previous step, those that guarantee pe-
riodic solutions to systeni (4.2).

Painlee analysis has proved to be one of the most successful andyveiple
plied tools in nonlinear theory. This analysis reveals gpdegrrelation between
the integrability of soliton equations and the integrapibf certain reductions to
ordinary differential equations. One may use differenthods to check whether a
nonlinear system passes the Paigl&ast. We will make use of an algorithm named
P-test. Such a test is divided in three parts. In the first treesystem is solved
only for the dominant behavior, then the second step cansfsiinding the reso-
nances (also called indices), here the whole system isgblwveroposing solutions
as truncated Laurent series of the form:
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CHAPTER 4. GENERIC PREDATION IN AGE STRUCTURE

k1 00
= Z a1 (t—to) ™" + Z a j(t —to)",

(4.3)
and the functiong” andG are assumed of the form:
ks 0o
F(P,B,A,D) = Zf_i(t —to) "+ Zfi(t — to)’
G(P,B,A,D) = Zg (t —to)~ +Zgzt—t0 (4.4)

wheret, is arbitrary. Since our system is formed by four nonlinedfedential
equations then we must ensure that four resonances arélposdie third step in
the P-test consists of verifying the compatibility of theaeances and it is impor-
tant because it tells us if the seriés {4.3) can represent@rglesolution. In order
to accomplish this step it is necessary to have the fundiign B, A, D) explicitly
and not only its general representation. Since we are dpaiiih general functions
F andG we only focus on the first two steps.

Let us recall that the role of the predation tepf, t) = F(P, B, A, D) was
already analyzed in [38] with a Loktka Volterra interacti@n predators. There, it
was shown that if the functiof” does not contribute to the dominant terms (first
step in the P-test) then the systdm (4.2) does not pass thestP-However, by
considering a general predator interaction té€¥mwe have found different classes
of models which are organized based on the dominant termsidemed in the P-
test. We obtain four cases were the P-test is successfiie first case, the function
F'is not a dominant term, which is a more general result thabvtieegiven in([33].

In cases two and three, the functibns a dominant term and also the self-limitation
has to be included. Finally, in case fofiris dominant and the system does not
have self-limitation. All the cases are presented in TaBlds 4.2 and 413 where
k123 >0, ks <O0andks = ks — 1in case 4.
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Table 4.1: Dominant terms

Leading order terms

Equations 1 2 3 4
Casel (P, eP?) (B',—ePB) (A, ePA) (D,G)
Case 2 (P, eP?) (B',—ePB) (A, ePAF) (D',G)
Case 3 (P',eP?) (B',—ePB,\A) (A ePAF) (D', G)
Case 4 (P, F) (B, BoA) (A F) (D', G)
Table 4.2: Exponents of dominant terms
Leading order exponents

Equations £, ko ks ky ks

Case 1 —1 -1 -1 kg+1 > —2

Case 2 -1 —1 >0 kg+1 —2

Case 3 -1 k3—1 <0 kg+1 > —2

Case 4 >0 >1 k1 ke +1 ks —1 <2k,

Table 4.3: Coefficients of leading order terms

Leading order coefficients

Equations ay, 1 gy 2 Qs 3 Oy 4
Casel 1/e arbitrary  arbitrary g, /k4
Case2 1/  arbitrary ki S Gk /ka

BoQs, if
Case3 1/e R g Gke/Ra
Cased  fi,/ki Bocuss/ke  frs/ks  gre/ka
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4.4.1 Case 1: No contributions of leading terms t@’

In this first case, we discover thatis not necessary as a leading term in order to
pass the P-test as it was a requiremerit in [38], which shosvsithortance of taking

a general interaction for predators. By taking= ko = k3 = —1, ky = k¢ +1 € Z,

ks > =2, apy 1 = 1/e, ag,u = Gig/ka With ay, o @anday, 5 arbitrary constants in
@3) and defining = ¢ — to andX; = (67261, 3", Ay sE L, Gig /Ral®4), We
obtain the following theorem.

Theorem 4.4.1.Consider system (4.2). Let us assume that the functioasd

G are rational functions in the variable®, B, A and D. F' with a pole of order
greater than two in the variable. If {19 (Xl) ks € Z* then all solutions of
system[(4]2) are of the form (#.3).

Proof. As described in[3], the first step in the P-test is accomplilgby solving the
system with the most dominant terms, which @ ¢ P?), (B, —sPB), (A’,ePA)
and(D’, G) corresponding to equations2, 3, and 4 of systeni (412), respectively.
Notice thatF' does not appear as a leading term in any of these equationstefpo
two, the matrix of resonances, for this case is:

r+1 0 0 0
_ EQy 2 T 0 0
Qu(r) = EQ, 3 0 r 0
18G(X1) 5—186’(X1)5 1_](§< 1) 16G( )—T—k4
The resonances, are the roots oflet Q,(r) = 0, which arer; = —1 correspond-

ing to the arbitrariness df,, andry 3 = 0 of multiplicity two corresponding to the
arbitrariness oty » anday, 3. Since the last root must be a nonnegative integer,
we must assume that = {199 (X) — ky € ZT, O

The exclusion of the termd” as a dominant term implies that a possible solution
with poles should come from others terms instead oft is worthy to mention that
¢ has to be different than zero in order to have this result. Uvgecture that self-
limitation is an important factor to obtain integrabilif@n the other hand, the term
F describes the income of the prey offspring in the system lwirichis case has
to be lesser that the order of the self-interaction amony. prais result excludes
the case where the predator interaction is of the The Lotdgela, since it can be
shown that this particular example does not provide thetigesiesonance required
by the P-test. On the other hand functions that satisfy théitions to accomplish
the second part of the P-test can be easily found.

Now to complete the first case, we will state the conditionsrater to have co-
existence by finding conditions for the systém4.2) to haréglic solutions. First,
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4.4. ANALYTICAL MODELING PROCESS

we need to find explicit candidates for the functidnandG. An heuristic method

to find suitable predation terms andG is the following. Choose particular fixed
values for the exponents, ks, ks, ks andkg that satisfy Theoreni (4.4.1). Next, we
test different functiong” and, formed by algebraic combinations of the system
variablesP, B, A and D such that their leading orders match. Of course, there
is an enormous amount of possible combinations, howevemppsing biological
restrictions we can obtain viable candidates, for exantpé £ must contain the
predator variablé> and so on.

We carried on a classical bifurcation numerical analysihefmodel using the

software AUTO by Doedel [12]. We were particularly inteexsin finding peri-
odic solutions so different functions andG were tested. One example is given by
F = fiBP/D andG = g,B*/D, which makes the systern (#.2) posses periodic
solutions and also to pass the P-test. Figure 1la exhibitéillmgum and periodic
solution branches. Figufe 4.1a shows a bifurcation diagvaere the varying pa-
rameter isf1, the coefficient ofF. There is only one branch of equilibrium solutions,
label 1. Its stability is shown as a continuous curve andnissability as a dotted
curve. Squares represent Hopf bifurcation points (HB) ssdhlzels 2 and 9. From
the HB point, label 2, an unstable periodic solution brasctoimputed with an in-
creasing period. There the total amount of individual iases when the parameter
also f; increases. This shows that species coexistence is possilaesmall range
in the parameter regime which indicates the difficulty of iingda viable system.
There is a second branch of periodic solutions, HB labeldaiBit is biologically
irrelevant. In Figuré€ 4]1b, a periodic solutions is showmg®nly the variables>,
B andD which are the prey population, juvenile prey population pretlator pop-
ulation, respectively. We can observe that an increasevenjie individual leads
to a take off in the prey population. For the predator popogtan increment is
observed up to a maximum with a subsequent decline. The imgdelm used for
G in the example shows a strong predation only on the yourgyaiiéin a saturation
term for the predators.

4.4.2 Case 2 and 3: The importance of self-limitation

It is well documented that self-limitation is an essenti@ldigical factor to estab-
lish coexistence. In our case, the self-limitation coeditiappears as a leading
term in three of the four general cases with successful 18:tdts contribution is
independent of the functional form @f, which is how the offspring enters in the
prey population. We found two general cases (case 2 and gaggh3successful
P-test, where two terms are essential, nantend self-limitation. As before, we
defined =t — to and Xy = (e7'¢ 7", vy 3", ks 3E71, g/ Ka™).
Forcase 2, wechooge = ky = —1, k3 >0, ky=ks+ 1€ Z, ks = ks — 1>
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Bifurcation Diagram
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Figure 4.1: a) Bifurcation diagram with a periodic branch &@hé PB/D, G =
B?/D, b) Periodic solution fo?, B, D
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—2, oy 1 = 1/2, s = g/ Kas hs3 = frs/ (ks — 1) With o, » being an arbitrary
constant.
For case 3, we choosg = —1, ky = ks — 1, ks <0, ky = k¢ +1, ks =

k?) -1> _27 k1 1/5 gy 2 = 52‘21—1:_313’ s 3 = k?]‘:-f—l andak’4 4 — gkﬁ/k4-
Let
r+1 0 0 0
Qulr) EQy 2 T 0 0 4.5)
r)=1 . .
2 kj’“s —Fp, —Fh ks+r+1—F%,  —F}
G G, G, Gy —1 —ky
and
r+1 0 0 0
5506%3,3 k 1 _ 0
Qs(r) = o 2+ 7; + Bo * : (4.6)
—aL+Fp F}, —(ks+7r+1)+ F} F}
G5 G G Gy —r—Fky

where we have used the notatiff} as 7 (X5). Under these conditions we obtain
the following theorem.

Theorem 4.4.2.Consider the systern (4.2). Let us assume that the funcliar
G are rational functions in the variable®, B, A and D. F with a pole of order
ks — 1.
case 2. If all zeros of the second degree polyno i r+1
tive integers then all solutions of systdm [4.2) are of thmf
case 3. If all zeros of the third degree polynon-ﬂ%gﬂ% are posmve integers
then all solutions of systern (4.2) are of the form|(4.3)

Proof. This proof is analogous to proof of Theorém 4l4.1. The firsp sif the
P-Test is accomplished by solving the system for the mostirkomh terms, which
are:

case 2(P',eP?), (B, —ePB), (A',ePA, F)and(D’,G)

case 3(P',eP?), (B, —ePB, 3,A), (A", ePA, F)and(D', G)
corresponding to equations 1, 2, 3 and 4 of the system (@&pectively. Notice,
that F does appear as a leading order term in both cases epdnst, the resonance
matrices are (4]15) anfl (4.6). The resonangeare the roots oflet Qa(r) = 0 and
det Qsz(r) = 0 for case 2 and case 3, respectively. Such rootsare —1 (case
2 and case 3) corresponding to the arbitrarinesg ,odndr, = 0 (only case 3)
corresponding to the arbitrariness, 5. Since the last root must be a nonnegative

2(r) are different posi-

integer, the roots ofl‘ff% = 0 and deﬁj = 0 must be different and are
Zr. ]
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Figure 4.2: Bifurcation diagram of model 4.2 a) Bifurcatioagtiam with a periodic
branch and” = fi25, G = f,£5, b) Periodic solution fo’, B, D

Theoreni 4.4]2 also highlights the importance of the sgiftiition because the
coefficients also appears in the resonance matrices (4.5)[and (4.6).idbiéity of
solutions of type[(4]3) rely strongly on this parameter. Gasand 3 are generaliza-
tions of Theorem 3 froni [38], where the systdm [4.2) passePifiest considering
G = —cBD as a Lotka-Volterra interaction term.

Among the possible choices of mechanisms of new incomingdiiduals
into the systen¥’ and the predation terr¥, we show as an example a particular
combination that guarantees coexistence between theespeamelyr’ = fl%
andG = f,22. It is important to remark on the similarity between thesente

1+A
and the original ones proposed in [37]. There, the systeR) (as studied with
F = ﬁ?m andG = BD, wheren is a positive constant. The new functich

suggested by our method can be described as a modified Lotk predation
term. The term:BD was by substituted by a saturation term of the fofyFL;.
The biological interpretation of this term is that resosréer the predator, other
than the prey population, are limited.
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Figure[4.2a shows a bifurcation diagram for case 2 varyimgprametery
which is one of the constants in the natality rateAgain, the lines depict equilib-
rium solutions where solid lines represent stability anel dashed lines represent
instability. The branch labels 7, 3 show unstable equilitorpoints. From this fig-
ure, we observe that thie, norm tends to zero asgrows. This fact is biologically
consistent because controls the maximum value of the natality functign The
bifurcation point label 6 is a HB point and the line labele®aand 10 is a stable
periodic solution branch. We found again a narrow existemegval of coexistence
between species. Figure 2b shows a typical periodic salitithe spacéP, B, D)
where the HB point is depicted as a red point. From this grapmuete that the
adult prey population and the predator population grow atstiime time while the
predator population remains at a low steady level. The poegepulation starts
growing after the prey population, both adult and juvertfil@s reached a peak. So
far analytical modeling has led us to predation terms weexistence between the
predator and the prey exists.

4.4.3 Case 4: No self-limitation and coexistence

Two natural questions arise. Is it possible that the syst@ssgs the P-Test without
self-limitation? Also, would be this enough to have coexisie of both species?
The answer to both questions is positive and significant usxave have widely

discussed the requirement of self-limitation to have mkd®olutions. This is a

consequence of taking generic functional formsfoandG.

By takingky > 0, ky > 1, k3 = ki, ku = ke + 1, ks = kz — 1 = 2k,

U1 = frs/R1y Qy2 = BoQrs3/k2y Qs 3 = fis/ksy Qkga = i /Fa in (@3) and
definingé = t — tg and X3 = (fi, /k1EM, gy 26%2, i, 5652, Gis /kaE™*) We obtain
the following theorem.
Theorem 4.4.3.Consider systeni (4.2). Let us assume that the functioasd
G are rational functions in the variable®, B, A and D. F' with a pole of order
less tharkk; in the variableg. If the third degree polynomiaﬂ%‘i(” has different
positive roots, then all solutions of systdm (4.2) are offthe (4.3).

Proof. The proof is similar to proofs of Theorenis (4)4.1) and (.418 this case
the resonance matrix is:

~ky—r 0 ks + 7 0
0 ]{72 +7r —]{?3 +r 0
- 4.7
Qa(r) Fp  Fp —(ks+7)+F5  F) 41
Gy  Gp G Gy -1~k
O
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L2-norm
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- 0.0200.0250.030
P 0.035

Figure 4.3: Bifurcation diagram of model 4.2 a) Bifurcatioagtiam with a periodic
branch and” = P/D, G = D?/B, b) Periodic solution fo®, B, D

The first fact we want to remark is that we found that the sonta@éxponents
k; are strictly positive, which indicates analytical solup which allows one to
use predation terms of the saturation type. The only powétwddmits a negative
value isk,. So, we have that the predator populatiorhas a pole-type behavior.

Following the procedure described above, we select funsfitandG fulfilling
Theorem 4.413 conditions. A numerical study reveals thatrder to obtain coex-
istence they all must share the same functional structwamigles of functiong”
are given byf, 5, f1£% and f, 5 with a functionG of the formG' = D/B.
This last functional term means that predation has to béethout in adults and it
exhibits saturations effects due to a portion of the preyutadfon namelyP, B or
A. Biologically, the predation term points out that predatopylation feeds from
adult prey population. However, an adverse effect is cabgdtie juvenile popu-
lation becausé’ is reduced wherB grows. This might suggest that this juvenile
population is toxic to prey population. Figure 4.3a illasés this scenario using a
bifurcation diagram were lines have the same meaning aseviqus sections. A
stable equilibrium solution branch is shown, which beconrestable at a HB point,
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label 4. From this point a stable periodic solution branatoimputed where thé,
norm abruptly increases while thedecreases, label 7. Coexistence is stable in
almost the whole branch although, the existence intervddeperiodic solution is
small. As an example, a periodic solution is presented inreld.3b. As predicted
from the modeling termg’ and G, the juvenile prey population grows proportion-
ally to the adult population. One final remark is that the pted populationD
grows with adult prey populatio® steadily, but a steep descent occurs when the
prey population is small.

4.5 Conclusions

In this chapter we have proposed an analytical way of modetirthe context of
predator-prey modeling. This is based on the P-test givamglitions to obtain so-
lutions where the only singularities are poles. An impar@ssumption was made
considering general predation functiohsand G depending only on the system
variablesP, B, A, andD. Four general cases were found to pass the first two steps
of the P-test. They establish the required conditions feath special nonlineari-
ties that discard traditional interactional terms like & of mass action, logistic
terms, etc. In all these cases, we exhibited examples wattigpion functions where
coexistence between the predator population, juvenileaaiudt, and the predator
population was achieved. The analytical modeling procediso unveiled the im-
portance of self-limitation on the prey because it was foumthree of the four
cases where the P-test was successful. Another relevaniifiscoexistence was
also obtained even though self-limitation is not used inntfegleling.
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Chapter D |

Age-structured predator-prey models
with varying prey birth rates

5.1 Introduction

So far we have been modeling the interactions between twadespeapturing es-
sential features of the interactions being modeled. Sitiwng also have reflected
those aspects of real-life behavior. There are still mamgnoguestions that we
would like to address. At each stage, we have required sopesdfivalidation con-

cerning the new features being added and the extent to wineamumbers predicted
by the model compare with real data.

In this chapter, we focus on developing age structure mosleése birth rates
can be varied. Such an analysis will help our understanditigeceffects of several
factors and management actions since there is a clearefrdinkthese factors to
vital rates than to abundance. Before attempting to modeVitakrate changes,
we needed to address the critical lack of age-structurenmdton. To do this,
we propose a parametrized birth rate which includes the oesepted in previous
chapters as a particular case.

5.2 Birth rate analysis

Population models are commonly used to study the dynameusiofal populations.
Such models are characterized by an explicit representatiage structure. This is
desirable for animals which have delayed maturation, hawg life spans, and for
which aging methods are well established. The building kidor demographic

1This chapter is based on Solis, F.J. and Ku-Carrillo, R.Am@uters and Mathematics with
Applications
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models are age-specific birth rates and survival rates

The birth rate is usually the dominant factor in determintihg rate of popu-
lation growth. It depends on both the level of fertility aretage structure of the
population. It is expected that this rate will be small fomberns and old indi-
viduals and large for young adults. We make the assumptianttte birth rate
dependence is only on age.

Mathematically, a birthrate denoted Byw), is a function defined only for non-
negative ages, that is > 0. Furthermore, it is a positive bounded function with
compact support since the birthrate for old individuals@r&hat is,5(w) = 0, for
w > A; andf(w) < A, for all w for some constantd; and A,.

There are several functional forms of the functiothat have been introduced
in the literature. For example, in Chapter 3 we have introdume appropriate
reproductive rate of the prey population given by

B(w) = Bowe™* (5.1)

with 5y > 0 anda > 0. Let us recall that itv > 0 the birth function behaves in a
way that is appropriate for many mammals and i 0 thenbeta = [yw has been
used for certain fish species. We can observe in this case/liesi the age is zero
or it tends to infinity, the correspondingis zero too. Also, it is easy to check that
it reaches a global maximum at the age- é equal top = %e‘l. All these facts
fit the biology of populations properly, that is, the younglarery old population
do not reproduce and there is naturally a better age intevvajproduce.

In this chapter, we propose a parametrized birth rate wiicludes|[(5.11) as a
particular case. This new rate is given by

Blw,m) = Bow™e™ ™ (5.2)

wherem is a natural number. Notice that the new rate has mathertgtoal bio-
logically all required properties. See Figlrel5.1 where ieéthe graph of3(w, m)
for some specific values ok. It is important to clarify that the new birth rate also
will allow us to obtain a differential system instead of ategro-differential system
as we will discuss next.

5.3 Age-structured models
In this section we develop age-structure models that irdunur new proposed
birth rate function as well as self-limitation of the preydageneric predation inter-

actions. Earlier versions of these new models were disdussarevious chapters.
In those models, a basic assumption was made by considbenthe birth rate is
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Figure 5.1: Graphs of the birth ratéw, m) for different values ofn.

equal to[(5.11). The role of this natality rate is importantdngse it allows us to have
the following system of differential equations (instea@ofintegro-differential sys-
tem):

% = — poPr —eP\* + F(Py, P, Ps, Py)

% =— 0P, — PP, + By P

% =— 0P —eP\Ps+ F(Py, Py, P, Py)

% — 0P, + G(P,, P, Py, Py), (5-3)

whereP;, P,,P; and P, represent a time, the total population of the prey, the ju-
venile population, and auxiliary variable and the totaldater population, respec-
tively. The functionst’( Py, P, P, P,) andG (P, P, Ps, P,) are general predation
functions. All other coefficients are positive constants.

Next, we will construct age-structured models based onitiie tate [5.2). Let
us consider that the prey population of agat the timef is denoted by (w, ¢). The
total population is the sum over the ages,

Pu(t) = / o, ) do. (5.4)
0
We also consider an age structure by using the McKendricktey
pu(w, t) + pe(w,t) + pp(w,t) = 0. (5.5)
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Now, let us find differential equations for the total popidat P (¢) and the
population of newborng%(¢). In order to do this, we integrate (5.5) from zero to
infinity obtaining:

dPy(t)
dt

The juvenile population is calculated &(t) = [~ 3(w, m)p(w,t) dw. Its corre-
sponding differential equation is obtained if we multighe¥) by 5yw™e~*“, which
is the new birth rate. Then, we integrate again and use mtiegrby parts,

= —u(P) Py + p(0,1). (5.6)

dPs(t)
dt

= —(u(P1) + a)Pa(t) + Bom /OOO wm_le_awIO(wv t) dw. (5.7)

This integro-differential equation can be transformedrt@alinary differential
equation defining the variablg(t),
Ps(t) = / w™ e p(w, t) dw. (5.8)
0

This new variableP; also satisfies the following differential equation obtaine
derivating [5.8) with respect toto get,

dPs(t)
dt

=—(u+a)Ps+ (m—1) /00 w™ e p(w, t) dw. (5.9)
0

Again, we get a integro-differential equation but the pohae described above
can be use by defining,

Pi(t) = / W™t e p(w, t) dw for j =2,...,m+2 (5.10)
0
In general, forj; = 2,...,m + 1 we obtain
dP;(t)

T = (P 2-) [ e e de (6.11)
0

which by definition can be written as

B — (1t )P+ (mt 2 )Pr (5.12)

Finally, for j = m + 2 we get

de+2 (t)

dt = _(:LL + a)Pm+2 + p(07 t) (513)
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Since we have discovered that an essential mechanism tevactwexistence
is the self-limitation of the prey, we will assume that= u, + ¢P;. Thus, by
substituting it in the model we obtain the following prey egjauctured model.

dP(t
M _ oy — P2 4 p(0.1)
P
d ;t(t) — —QPQ - €P1P2 + mﬁopg
P
d ;t(t) = —0P3—€P1P3+(m—1)P4
AP (t)
d;;() = _QPm-‘r? - €P1Pm+2 + p(07t)

whereyy, €, 1, 0 = a + o, By, b @andc are positive parameters.

There are two important choices to make in the model. Thedirstis selecting
the incoming of offspring into the prey populatign, t), and the second is how to
postulate the quantitative growth of the predation procksf37,38], we proposed
general predation functions suggested by the Pagrdealysis, which we will use
in this work. We will denote byP,, ;3 the predator population and its interaction

given dP’”d—f’(” = —bP,i3+ G(Py,..., Pnio, Pnys3). We make the assumption
that p(0,¢) depends only orP;(t) for j = 1,2,....m + 3. Thereforep(0,t) =
F(Py,..., Pyyo, Pyis) for some suitable functions. So our final models take the
form:
dPy(t) >
dt = —poPy — €P; +F(P1a-'~>Pm+27Pm+3) (5.14)
dP(t
;t( ) 0P, — PPyt mpoPy
dPs(t
;t() = —6P3—6P1P3+(m—].)P4
APy o(t)
d_:z() = —0Py42 —€P Pyio+ F(Pr, ..., Pyio, Prys)
dP,, . s(t
d—f() = —bPpis+ G(Pi, ..., Ppio, Pris).
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5.4 Numerical results

In this section we focus on the numerical analysis of sysg®4) by choosing
appropriate functions faf andG. Our goal is to analyze how the birth rate modifies
the behavior of system (5.114), that is to investigate thectff varying the power
m in the birth rate. In order to do this, we will select some clegiof the parameter
m. We divide our analysis into several cases that have bedwzadain previous
chapters.

In the first case we choose = fP/(1 + P,.3) andG = gP,P,, 5. This
case has been analyzed In|[37] far = 1. In the second case we selet =
[P Py.3/(14+ P;) andG = gP,, 3/ P,, in the third casé” = fP,/(1+ P,,.3) and
G = gPyP,,.3/(1+ P;), and finally, in the fourth casé = fP, P,/(c+ P,+3) and
G = gP} /(0 + P,.43). All of these combinations have presented periodic brasiche
for the casen = 1.

541 CaselF = fP/(1+ P,3)and G = gPP,, 13

This combination of functions; and F' correspond to a juvenile predation inter-
action of the Lotka-Volterra type and a saturation termpeesively. The function
F was first obtained in [37] as the following approximationwasgg that predator
populationP,, - is small:

_ B
1+ poPrnis(t)

F(Py, Prys) = cPa(t) = pioPa(t) P 3(t) +O(P7,5(1) (5.15)

where we takéd’ as the following proportional truncated form assuming that c,

_ hB(Y)
F(Py, Ppy3) = T+ Pora(d); (5.16)

The choice of functiortz, the Lotka-Volterra predation term, was made by con-
sidering the simplest case for predation interaction. Syd5.14) with this selec-
tion of functionsF and G with m = 1 and fixed coefficients was proposed as a
viable solution for coexistence between the species. Titigsan important case to
analyze by modifying the prey birth rate.

We will fix every parameter except, with valuesy = 0.77125, ¢ = 0.01,
f1 = 3.5416, a = 0.47075, 5y = 0.46875 b = 0.03 andd = 0.10. As we varya, we
find that there are eleven solution branches for every vadlueand every value of
m. Of those branches, only five are of biological interest. Fafithem correspond
to equilibrium branches and the other one is a periodic lbtrafithe stability of
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equlibria varies with the parameter But what is of paramount importance is the
fact that form = 1 such periodic branch is unstable but far > 1 it is stable.
Following the stable periodic branch solution (> 1), the period increases up to
infinity. In biological terms these results are importamicg by varying the birth
rate we are able to obtain coexistence from an unstablersysidese facts can
be seen more clearly in Figures15.215.4 where we plot thenpeter« against the
norm of the solution. For stationary solutions we use thelilean norm and for
periodic solutions we use the norm

1 T m+3
- /O > Pt)dt
j=1

whereT is the period of the solution. Branches of stable solutiontoge and
stationary are represented solid lines. A dotted curve méaat the solution is
unstable for those values of

542 Case2F = fPP,3/(1+ P)andG = gP,,3/P,

In this case we study the case for social prey which becomgessgjve towards
the predators when their number is large enough, but becsasegptible for small
numbers, for example Syncerus caffer. Thus we chébgeportional toP,, 5/ Ps.
For F' we select the truncated forii = fP, P,,,3/(1 + P,) analogous td (5.16).
This time the calculation of the continuation of equilibriypoints and periodic
solutions become more complicated. We again fix the valuedl tfie parameters
and varya. The values are the same as in the previous case, except thab
meaning that self-limitation is not considered. We find thate is only one branch
of equilibrium solutions and one branch of periodic solasidor every value of
« and only form = 1,2 and for every particular initial condition. The periodic
branch is stable and its period also increases to infinityticddhat even for the
casem = 1, coexistence is established. In Figlrel5.5 we can obserge tlaets
in detail. What is remarkable in this case is that self-litmita is not necessary to
achieve coexistence.

543 Case3F = fP/(1+ P,y3)and G = gP2P,3/(1 + Ps)

In this case, we choos@ proportional toP; P, 3/(1 + P3). For F' we select the
truncated form#” = fP,/(1 + P,,13) analogous td(5.16). The values of the con-
stants are the same as in Case 1. As in Case 2, there is only o lofaequilib-
rium solutions and one branch of periodic solutions at leaghe cases: = 1,2, 3
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Figure 5.2: Case IF' = fP,/(1 + P,,43) andG = gP> Py, 3, a)m = 1,b)m = 2
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Bifurcation Diagram
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Bifurcation Diagram Bifurcation Diagram

'
62 104

Figure 5.5: Case 2F = fP,P,.3/(1 + P) andG = gP,,3/P,, am = 1 b)
m =2

Bigger values oin were not analyzed. The periodic branch is stable and itegeri
increases faster to infinity than those for cases 1 and 2. isncisem acts as a
perturbation parameter for the Hopf bifurcation pointse S@ure$ 516 and 5.7.

5.4.4 Case4F = fP\P,/(0 + Pnys) and G = gP2/(c + Pp.3)

This case is presented only for theoretical purposes inraoddustrate the possi-
bilities in the selection of the predator interaction anel fitaction of juveniles that
survive predation. We assumed thatz 0 and we vary the parametéy instead of
the paramen. The qualitative behavior is the same as the previous cdseoiily

difference is the variation of the equilibrium branch.
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Bifurcation Diagram

Figure 5.9: Case 4" = fP, P,/(0 + Ppy3) andG = gP2/(o + Pp43), m =3

5.5 Conclusions

In this chapter we have presented a new series of age-sedatiodels to show
the importance of the birth rate in order to obtain coexistenWe have shown
that by changing the rate of birth we can obtain periodictsmhg for more simple
models. The qualitative and quantitative mathematicgb@rites and biological and
ecological consequences have been addressed. We arenglemanalyze different
functional forms of the birth rate in the near future.
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'Chapter 6

Conclusions

The mostimportant contribution of this thesis to the stuiyge-structured predator-
prey models is what we called tlamalytical modeling What we mean by this is
that integrability conditions can be used to suggest modekrms. In particular,
we were interested in setting conditions in such a way theesy®f ordinary dif-
ferential equations which models a predator-prey intevadtave singularities of
pole type only. This led us to find predation functions th&tvaéd the predator-
prey model to succeed the P-test, i.e. the singularitiebeptedator-prey model
can be only of pole type. This provides a methodology to ohicee a new gamma
of predator-prey models which already satisfied the reduiegularity. The idea
of analytical modelings a generalization of the widely applied process of finding
conditions under the parameters to have a first integral.@dewa major difference
is achieved when the P-test is used to determine modelingsteFheorerh 3.511 set
the conditions in order the modeL(B.T7)-(3.10) passes thetfilo steps of the P-test.
However, the allowed predation functiohswere biologically irrelevant.

A second contribution was accomplished applying this ganaethodology.
We considered general predation functiagnandG depending only on the system
variablesP, B, A, andD. By this mean, we were able to analyze a more general
model or a set of predator-prey models. Four general casesfaend to pass the
first two steps of the P-test. Then, we established the redjwonditions under
the modeling terms that led us to special nonlinearities discard traditional in-
teraction terms like the law of mass action, logistic tergts, In all these cases,
we presented examples with predation functions where stemde between the
predator population, juvenile and adult, and the predatpufation was achieved.

In Chapter 3, we study a specific predation function (3.46)cthincludes a
variety of models. This function is a generalization of thedation functions used
in [36]. Our results described the characteristics of tietEms where the existence
of algebraic or logarithmic branches were proved in Thedgfl. This is our
third contribution. This was made using the Paigl@nalysis and the bifurcation
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analysis. We carried out a numerical study which exhibitexiqalic solutions even
tough the integrability conditions were not satisfied.

It is well documented the importance of self-limitation astiategy to stabilize
a model. In fact, the Painlévanalysis also showed the importance of the self-
limitation of the prey (paramete) as described in section 4.4.2. With this in mind,
we can say that another contribution of the described metbgy is that we were
able to find a model where the self-limitation is not longeressary to find periodic
solutions. This modeling term was suggested by the P-test bl sectiofn 4.413 we
showed an example and Theorlem 4.4.3 gives the requiredtmradiThis improves
the results of[36, 37] where a number of modeling strategese applied to obtain
the coexistence of the species.

The last contribution is that the variation of the birth ratehe prey in Chapter
5 provided a wide variety of age-structured predator-pregats. This rate is more
general that one used in Chapters 3 and 4. And also this rdtelexthe birth rate
used in previous studies [36,/37) 38]. However, the analyasnumerically but the
bifurcation results gave us evidence that the variatiorhefliirth rate can lead to
coexistence of the predator and prey populations. Furtbernit was showed that
the variation of such parameter usually does not modifiedtheture of periodic
solutions.

Finally, we would mention several directions of future waevkich can be de-
veloped on this topic. Age structure can be associated togmyiulations: predator
and prey instead of only one population. Other approachiwtaaild be used is to
study the predator and the prey populations from the pattifgrential equations.
Let us recall that our work was done considering a set of arglidifferential equa-
tions obtained from the partial differential equations. iAmportant work could be
also to establish analytical results concerning the gébeth rate studied in Chap-
ter 5. All of these research topics are important and chgiten They will be part
of forthcoming study.
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