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Chapter 1

Introduction

Discrete exterior calculus (DEC) is a relatively new numerical method first proposed by Hirani in

his PhD thesis in 2003 [1]. It is based on exterior differential calculus, a theory that generalizes dif-

ferentiation and integration to curved spaces or manifolds, which are of great relevance in physical

theories such as gravitation and cosmology. It is not surprising that such a physically important

mathematical theory would lead to a discrete theory that allows the development of a numerical

method for solving partial differential equations (PDEs).

In his original work, Hirani presented DEC as a purely theoretical model, which can be seen as

differential calculus over finite simplicial complexes1 of arbitrary dimension. He also explained that

DEC can be applied to variational problems. The first article where DEC was used as a numerical

method was published in 2015 where Darcy’s law was solved [2] and from then on, DEC has been

used successfully for the solutions of several PDE such as Maxwell equations [3], Navier-Stokes

equations [4] to mention a few examples.

1Triangular mesh built from domain

1



2 CHAPTER 1. INTRODUCTION

In this thesis, we focus our attention on solving the Transport equation with dominant ad-

vection. This is a continuation of Noguez’s work [5], where he proposed a discretization of the

Transport equation for arbitrary velocity vector fields. Our main contribution is the application

of a correction scheme to the artificial diffusion technique for DEC and the Finite element method

(FEM). We use FEM results in order to asses the performance of DEC.

Chapter 2 explains the basic theory of DEC, the Transport equation and some techniques used

when dominant advection is considered. Chapter 3.1 describes the DEC-discretization of the Trans-

port equation and presents a comparision with FEM for the discretized advection and diffusion

terms. Numerical examples are shown in chapter 4 and conclusions are given in chapter 5.



Chapter 2

Theoretical Framework

In order to describe the transport equation using DEC, we need to explain forst some concepts of

Differential Exterior Calculus such as the exterior derivative, the wedge product and the Hodge

star operator. Although DEC can be applied in any dimension, for the sake of simplicity, we will

explain the aforementioned concepts in 2 dimensions.

2.1 Differential Exterior Calculus

As previously mentioned, Differential Exterior Calculus is a subject in differential geometry. Differ-

entials are defined as linear mappings from tangent spaces to the real numbers. Differential forms

are linear functionals whose arguments are k−dimentional volumes. For example, let f : Rn → R

be a smooth function. We can integrate f along a curve (using a 1−form) and over a surface (using

a 2−form) by taking the integrals (2.1a) and (2.1b), respectively

∫
f(x)dl, (2.1a)

∫
f(x)dS, (2.1b)

where x ∈ Rn, dl is a 1−form and dS is a 2−form.

3



4 CHAPTER 2. THEORETICAL FRAMEWORK

One important property of integrals is that they take orientation into account. For instance,

consider a line integral along a curve from point A to point B. If we calculate the integral but

along the same curve but in the oppsite direction, we will get

∫ B

A

f(x)dl = −
∫ A

B

f(x)dl. (2.2)

The same happens with surface integrals. Let u : R2 → R2 be a smooth vector field, then the

integral ∫∫
u(x) · ndS, n is the unit normal to the surface, (2.3)

changes sign if we perform the dot product with the reverse direction of the normal vector −n.

Note that the orientation of the surface is determined by the choice of normal vector.

2.1.1 Differential Forms

Let {dxi}ni=1 be the basic 1−forms for Rn and u ∈ Rn. We have

dxi(u) = ui, (2.4)

where ui is the i−th component of u. We can express any 1−form α in terms on basic 1−forms

as

α =
n∑
i=1

αidx
i (2.5)

which means that the action of a 1−form α on a vector u

α(u) =
n∑
i=1

αidx
i(u) =

n∑
i=1

αiu
i = 〈α,u〉 ∈ R (2.6)

is the component of the vector u in α direction.
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We know that two vectors u,v ∈ Rn form a parallelogram. The action of dx1 ∧ dx2 on the

pair of vectors u and v is defined as follows

dx1 ∧ dx2(u,v) = dx1(u)dx2(v)− dx1(v)dx2(u)

= u1v2 − v1u2,
(2.7)

which means that dx1 ∧ dx2(u,v) returns the area of the projection of the parallelogram onto

x1x2−plane.Then, for two 1−forms α, β we get

α ∧ β(u,v) = α(u)β(v)−α(v)β(u). (2.8)

By its definition, the wedge product is an antisymmetric product, which means

dxi ∧ dxj = −dxj ∧ dxi, i 6= j. (2.9)

An inmediate result of (2.9) is dxi ∧ dxi = 0. It is important to notice that, by definition, the

length of any built from the basic 1−forms is one, i.e.

|dx1 ∧ dx2| = 1. (2.10)

Now that we have a geometric interpretation for differential forms, we can see that if we take line

integral of a vector field u = (ui), where i = 1, 2, the integrand will take its general form as a

linear combination of basic 1−forms

∫
u1dx

1 + u2dx
2, (2.11)

which is equivalent to integrate the 1−form u[ = u1dx
1 + u2dx

2,

∫
u[. (2.12)

Similarly, for surface integrals ∫
f(x)dS =

∫
fdx1 ∧ dx2, (2.13)
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equivalent to the integration of the 2−form f(x)dx1 ∧ dx2.

The coefficients u1, u2 and f(x) described in equations (2.11) and (2.13) are 0−forms.

The operator used in equation (2.12) is called the flat operator [ which gives a 1−form associated

to a vector. Note that

u[(v) = 〈u,v〉, (2.14)

where u and v are vectors while u[ is the 1−form associated to u.

Just as there is an operator that maps from vectors to 1−forms, there is also an operator mapping

from 1−forms to vectors called the sharp operator ] and if α = α1dx
1 + α2dx

2

α] = (α1, α2). (2.15)

Thus α] is the vector associated to α.

2.1.2 Hodge star

The main idea of the Hodge star of a form is to find a complementary form in order to obtain

a multiple of the volume form in the given dimension. In 2 dimensions, considering the basic

1−forms {dx1,dx2}, by definition

?dx1 = dx2,

?dx2 = −dx1,

?(dx1 ∧ dx2) = = 1,

?1 = dx1 ∧ dx2.
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Figure 2.1: Geometric visualization for Hodge star

For a geometrical representation of Hodge star on R2, take k = 1, so that α ∧ ?α must corre-

spond to a square with side |α| as shown on figure 2.1.

In dimension 3,

?dx1 = dx2 ∧ dx3,

?dx2 = dx3 ∧ dx1,

?dx3 = dx1 ∧ dx2,

?(dx1 ∧ dx2) = dx3,

?(dx2 ∧ dx3) = dx1,

?(dx3 ∧ dx1) = dx2,

?(dx1 ∧ dx2 ∧ dx3) = 1,

?1 = dx1 ∧ dx2 ∧ dx3.

2.1.3 Exterior Derivative

Now, we will introduce the concept of exterior derivative in order to rewrite vector calculus op-

erators using exterior calculus. In order to achieve that, we must consider n = 3 so that we can

reproduce gradient, divergence and rotational operations.
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In general, the exterior derivative d gives us information about how a k−form varies along any

possible direction.

The exterior derivative of a function or 0−form f(x) is the 1−form

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3. (2.16)

We can recognize that (2.16) is equivalent to

df = (∇f)[ (2.17)

or equivalently

(df)] =∇f.

Similarly, the exterior derivative of the 1−form u = u1dx
1 + u2dx

2 + u3dx
3 will result in the

2−form

du = d(u1dx
1 + u2dx

2 + u3dx
3). (2.18)

Since d is a linear operator, we get

du = d(u1dx
1) + d(u2dx

2) + d(u3dx
3), (2.19)

and rewriting uidxi as the wedge product between a 0−form and a 1−form ui ∧ dxi, then

du = d(u1 ∧ dx1) + d(u2 ∧ dx2) + d(u3 ∧ dx3), (2.20)

using product rule

d(ui ∧ dxi) = dui ∧ dxi + ui ∧ ddxi, (2.21)

where ddxi = 0, so that

du = d(u1 ∧ dx1) + d(u2 ∧ dx2) + d(u3 ∧ dx3)

= du1 ∧ dx1 + du2 ∧ dx2 + du3 ∧ dx3,
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using (2.16) for u1, u2 and u3

du =du1 ∧ dx1 + du2 ∧ dx2 + du3 ∧ dx3

=

(
∂u1

∂x1
dx1 +

∂u1

∂x2
dx2 +

∂u1

∂x3
dx3

)
∧ dx1

+

(
∂u2

∂x1
dx1 +

∂u2

∂x2
dx2 +

∂u2

∂x3
dx3

)
∧ dx2

+

(
∂u3

∂x1
dx1 +

∂u3

∂x2
dx2 +

∂u3

∂x3
dx3

)
∧ dx3,

since wedge product is also linear, using antisymmetric property

dxi ∧ dxj =

−dx
j ∧ dxi i 6= j

0 i = j

, (2.22)

rearranging terms, we get

du =

(
∂u2

∂x1
− ∂u1

∂x2

)
dx1 ∧ dx2 +

(
∂u3

∂x2
− ∂u2

∂x3

)
dx2 ∧ dx3 +

(
∂u1

∂x3
− ∂u3

∂x2

)
dx3 ∧ dx1. (2.23)

Summarizing, we have seen so far that exterior derivative maps 0−forms to 1−forms and 1−forms

to 2−forms as shown in equations (2.16) and (2.23), respectively. If we continue with this proce-

dure, eventually we will see that exterior derivative d maps k−forms to (k + 1)−forms.

Now, we will obtain the equivalence for the curl of a vector field in vector calculus using exterior

calculus by taking the dual of (2.23)

? du =

(
∂u2

∂x1
− ∂u1

∂x2

)
dx3 +

(
∂u3

∂x2
− ∂u2

∂x3

)
dx1 +

(
∂u1

∂x3
− ∂u3

∂x2

)
dx2, (2.24)

rearranging terms

? du =

(
∂u3

∂x2
− ∂u2

∂x3

)
dx1 +

(
∂u1

∂x3
− ∂u3

∂x1

)
dx2 +

(
∂u2

∂x1
− ∂u1

∂x2

)
dx3, (2.25)

and again, we can observe that

? du ≡∇× u, (2.26)
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where u = (u1, u2, u3)T ∈ R3.

In order to get the equivalence for the divergence with exterior calculus, we take the dual of u,

? u = u1dx
2 ∧ dx3 + u2dx

3 ∧ dx1 + u3dx
1 ∧ dx2, (2.27)

now we take its exterior derivative and applying product rule, ddxi = 0 for i = 1, 2, 3, the

antisymmetric property for wedge product (2.22) and rearranging terms, we get

d ? u =

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
dx1 ∧ dx2 ∧ dx3, (2.28)

and taking its dual

? d ? u =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
, (2.29)

which is equal to a vector field divergence

? d ? u =∇ · u. (2.30)

Finally, for the laplacian of a scalar field f , starting with its 1−form df , we compute its dual

? df =
∂f

∂x1
dx2 ∧ dx3 +

∂f

∂x2
dx3 ∧ dx1 +

∂f

∂x3
dx1 ∧ dx2, (2.31)

taking its exterior derivative, simplifying and rearranging terms

d ? df =

(
∂2f

∂(x1)2
+

∂2f

∂(x2)2
+

∂2f

∂(x3)2

)
dx1 ∧ dx2 ∧ dx3, (2.32)

we can see that its dual corresponds to the laplacian of f

? d ? df = ∆f. (2.33)

Now that we have found equivalences of vector calculus using dicrete calculus for basic operations,

we can get equalities by using flat [ and sharp ] operators, which means that our operations take
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the form as follows

∇f = (df)], (2.34a)

∆f = ?d ? df, (2.34b)

∇× u = (?du[)], (2.34c)

∇ · u = ?d ? u[. (2.34d)

With these expressions we now need to understand the discrete version of exterior derivative d

and Hodge star ? in order to describe how DEC works.

2.1.4 Integration Theorems

In this section, we will review some integration theorems in vector calculus and rewrite them with

exterior calculus so that we use Stokes’ theorem for exterior calculus discretization.

Fundamental Theorem of Calculus

The fundamental theorem of calculus is stated as follows

Theorem 2.1.1 (Fundamental Theorem of Calculus). Let f be a real-valued function on a closed

interval [a, b] and F any antiderivative of f in (a, b), is f is Riemann integrable on (a, b), then

∫ b

a

f(x)dx = F (b)− F (a). (2.35)

We can see that equation (2.35) corresponds to dimension m = 1 and that boundary operator

∂ acts on 1D domain Ω = [a, b] such that on the right side of the equation we are integrating over

its boundary ∂Ω = a, b which corresponds to a 0D domain as shown in figure 2.2.

Figure 2.2: Boundary operator on 1D domain
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If we define F (x) = ω(x) and f(x) = ∂ω
∂x
, then equation (2.35) can be rewritten as

∫
[a,b]

∂ω

∂x
dx =

∫
∂[a,b]

ω. (2.36)

Recall that scalar functions like ω are just 0−forms and its derivative is given by equation (2.16),

so once again, we can write ∫
Ω

dω =

∫
∂Ω

ω. (2.37)

Green’s theorem

Now, for surfaces (2D manifolds) we know from vector calculus Green’s theorem, which relates a

double integral over a 2D domain Ω to a line integral over the boundary of the domain ∂Ω, as it

is stated below

Theorem 2.1.2 (Green’s Theorem). Let C a positively oriented simple closed curve, D the region

enclosed by C and u = (u1, u2)T have continuous first order partial derivatives on D, then

∫
D

(
∂u2

∂x
− ∂u1

∂y

)
dA =

∫
C

u1dx+ u2dy. (2.38)

Figure 2.3: Boundary operator on 2D domain

As we previously pointed out, this is the case for 2D manifolds (n = 2), which means we

may use 2D exterior calculus objects to rewrite (2.38). First we can identify, using the boundary

operator ∂, D = Ω and C = ∂Ω for integration domains, as shown in figure 2.3, and x = x1 and

y = x2 for cartesian coordinates, so we get

∫
Ω

(
∂u2

∂x1
− ∂u1

∂x2

)
dA =

∫
∂Ω

u1dx
1 + u2dx

2. (2.39)
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Recall that ω = u[ = u1dx
1 + u2dx

2 is the 1−form associated to vector field u, its exterior

derivative is given by equation (2.23), as we are working on R2 we must keep with just the first

term, and the 2−forms dA = dx1 ∧ dx2 so that we rewrite equation (2.39) as

∫
Ω

dω =

∫
∂Ω

ω. (2.40)

Divergence Theorem

For case n = 3 we have the Divergence theorem, which relates surface integral of a vector field,

which is called the flux through the surface, to the volume integral of the divergence over the

region inside the surface.

Theorem 2.1.3 (Divergence theorem). Let V be a solid region and S is the boundary of V with

positive orientation. Let u be a vector field whose components have continuous first order partial

derivatives. Then, ∫
V

∇ · udV =

∫
S

u · n̂dS, (2.41)

where n̂ is the normal vector to S.

As we are considering a closed surface, we can split the surface integral on the right hand side

as follows

∫
S

u · n̂dS =

∫
S

u · n̂3dx
1 ∧ dx2 + u · n̂1dx

2 ∧ dx3 + u · n̂2dx
3 ∧ dx1, (2.42)

where n̂1 = (1, 0, 0)T , n̂2 = (0, 1, 0)T and n̂3 = (0, 0, 1)T because each direction is orthogonal to

its respective 2−form. This means that

∫
S

u · n̂dS =

∫
S

u3dx
1 ∧ dx2 + u1dx

2 ∧ dx3 + u2dx
3 ∧ dx1, (2.43)

and we can recognize from (2.27) ∫
S

u · n̂dS =

∫
S

?u[. (2.44)

As the Hodge star represents the orthogonal complement for any k−form on Rm, it is no wonder

the 2−form ?u[ represents the orthogonal components on a surface of 1−form u[. On the other
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hand, we can see that volume integral takes the form

∫
V

∇ · udV =

∫
V

(?d ? u[)dx1 ∧ dx2 ∧ dx3 =

∫
V

d ? u[, (2.45)

thus, taking Ω = V , ∂Ω = S and ω = ?u[, divergence theorem is written as

∫
Ω

dω =

∫
∂Ω

ω. (2.46)

Stokes’ theorem

So far, we have seen integration theorems on 1, 2 and 3 dimentional spaces and we showed that

each one of them can be expressed in the same way. This is because those integration theorems

are particular cases of Stokes’ theorem. This is quite an important result on differential geometry

and an essential result for exterior calculus discretization, which is stated as

Theorem 2.1.4 (Stokes’ theorem). Let ω a (k− 1)−form, Ω a k−dimensional oriented manifold

with ∂Ω its boundary, then ∫
Ω

dω =

∫
∂Ω

ω. (2.47)

This theorem will allow us to obtain discrete operators from differential operations, i.e. discrete

exterior calculus.

Taking a similar notation as the inner product 〈〈·, ·〉〉 for integrals, we can rewrite (2.47) as

〈〈dω,Ω〉〉 = 〈〈ω, ∂Ω〉〉, (2.48)

then, from

〈Aa, b〉 = 〈a,ATb〉, (2.49)

where A ∈ Rd1 ×Rd2 , a ∈ Rd2 and b ∈ Rd1 , we can associate exterior derivative d with boundary

operator as

d = ∂T . (2.50)



2.2. DISCRETE EXTERIOR CALCULUS 15

2.2 Discrete Exterior Calculus

In the preceding section we reviewd the language of exterior calculus and its key concepts for DEC,

such as the exterior derivative d and the Hodge star ?, and we showed some common operations in

vector calculus using those elements. In this section we will build discrete versions of continuous

operators so that we are able to express partial differential equations as a system of equations. In

order to achieve this, we must describe the geometric objects needed for this theory.

2.2.1 Simple and Dual Meshes

When solving a PDE, we first need to define the domain Ω we are working on. Like other numerical

methods, such as finite differences, finite volume, finite element, etc., DEC must discretize the

domain. In particular, DEC does this by using a set of triangles, just like FEM when using

triangular elements, which is constitutes a simplicial complex. From this mesh, called a primal

mesh, we must define another discretization known as the dual mesh that comes from the use of

Hodge star on elements from the primal mesh as shown in figure 2.4. One uses the circumcenters

of the triangles to generate the dual edges.

(a) Primal mesh (b) Dual mesh

Figure 2.4: Relationship between primal and dual meshes
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2.2.2 Discrete Differential Forms

DEC performs operations on each positively oriented triangle (2-simplex ) and its dual. From now

on, we will be describing every 2−simplex as [v1, v2, v3] with local numeration, where [v1], [v2] and

[v3] are its vertices (0−simplices) and [v1, v2], [v2, v3] and [v3, v1] its oriented edges (1−simplices),

it can be seen in figure 2.5.

Figure 2.5: Simplex and its lower dimentional components

We know that each vertex is a 0−dimensional geometric object. The edges and the faces are

1-dimensional and 2−dimensional geometrical objects respectively. This allows us to discretize

k−forms according to their dimensionality. For example, we can discretize 0−forms over vertices,

1−forms over edges and 2−forms over faces.

Let φ be a 0−form, then its discretization over a vertex [vi] is just an evaluation (integration) on

the corresponding point pi = (xi, yi)∫
[vi]

φ = φ(pi) = φi, i = 1, 2, 3. (2.51)

Thus, we get a vector

φ→ φ =


φ1

φ2

φ3

 . (2.52)
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2.2.3 Discrete Operators

So far, we have seen the discretizations of 0−forms and 1−forms. In this section, we will focus on

discretizing the exterior calculus operators (on primal and dual meshes).

Discrete Exterior Derivative

Previously, we described how to discretize 1−forms such as u[. For 1−forms obtained as differen-

tials of functions (0−forms) we can use Stokes’ theorem as follows

(dφ)[vi,vj ] =

∫
[vi,vj ]

dφ =

∫
∂[vi,vj ]

φ =

∫ [vj ]

[vi]

φ = φj − φi, i, j = 1, 2, 3. (2.53)

In 2 dimension, this allow us to get a matrix representation for the discrete exterior derivative

operator on 0−forms

(dφ)[vi,vj ] →


φ2 − φ1

φ3 − φ2

φ1 − φ3

 =


−1 1 0

0 −1 1

1 0 −1



φ1

φ2

φ3

 = D0,1φ. (2.54)

In general, the symbol Dk,k+1 will represent the discrete exterior derivative mapping primal

k−forms to primal (k + 1)−forms.

We can also obtain D0,1 using the relationship d = ∂T , but we need to recall the definition of the

boundary operator. For a (k + 1)−simplex, the boundary operator is defined as follows

∂k+1,k[v1, v2, . . . , vk, vk+1] =
k∑
j=1

(−1)j−1[v1, v2, . . . , v̂j, . . . , vk, vk+1], (2.55)

where v̂j indicates that vj is missing from the sequence.

Then taking the definition for boundary operator on 1−simplex we get

∂[v1, v2] = [v2]− [v1], (2.56a)

∂[v2, v3] = [v3]− [v2], (2.56b)
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∂[v3, v1] = [v1]− [v3], (2.56c)

we can observe that

∂[v1, v2] = −[v1] + [v2] + 0[v3] =
[
[v1] [v2] [v3]

]
−1

1

0

 , (2.57a)

∂[v2, v3] = 0[v1]− [v2] + [v3] =
[
[v1] [v2] [v3]

]
0

−1

1

 , (2.57b)

∂[v3, v1] = [v1] + 0[v2]− [v3] =
[
[v1] [v2] [v3]

]
1

0

−1

 , (2.57c)

thus getting the matrix

∂1,0 =


−1 0 1

1 −1 0

0 1 −1

 , (2.58)

i.e.

D0,1 = ∂T1,0 =


−1 1 0

0 −1 1

1 0 −1

 . (2.59)

The same procedure can be made to obtain D1,2 by applying ∂2,1 to a 2−simplex

∂[v1, v2, v3] = [v2, v3]− [v1, v3] + [v1, v2] = [v1, v2] + [v2, v3] + [v3, v1] (2.60)

which means

∂2,1 =


1

1

1

 (2.61)
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and

D1,2 = ∂T2,1 =
[
1 1 1

]
. (2.62)

Note that this matrix depends very much on the orientation of the 1−simplices and the order in

which we list them.

Discrete Hodge Star

As we mentioned at the beginning of 2.2, in order to define the discrete Hodge star operator, we

must first define a dual mesh. Its elements must be orthogonal to their respective elements from

the primal mesh. Just like in the definition of the continuous Hodge star, the action of discrete

Hodge star operator on a k−dimentional element of a n−dimentional primal mesh will give a

(n− k)−dimentional element on dual mesh.

In the case n = 2, for a given triangle we have

• Dual element of a primal 2−simplex (triangle) [v1, v2, v3] corresponds on the circumcenter

[v1, v2, v3]∗ as shown in figure 2.6(a)

• Dual element of a primal 1−simplex (edge) [vi, vj] corresponds on the [vi, vj]
∗ segment which

is define as the oriented line that goes from the edge’s middle point pi to [v1, v2, v3]∗ as can

be seen in figure 2.6(b)

• Dual element of a primal 0−simplex (vertex) [vi] corresponds on the quadrilateral [vi]
∗ which

is positively oriented (counter-clockwise), formed by middle points of [vi] adjacent edges,

circumcenter and [vi] showed in figure 2.6(c)
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(a) Dual 0−form (b) Dual 1−form

(c) Dual 2−form

Figure 2.6: Dual mesh elements

k−forms associated to the primal mesh are called primal k−forms, and those associated to the

dual mesh are called dual k−forms. One type of discrete form can be transformed into the other

by using the discrete Hodge star ?̂, which is defined as follows

∫
σ∗
k

?ω =
|σ∗k|
|σk|

∫
σk

ω, (2.63)

where the integration of the primal k−form ω over the primal k−simplex σk will give us the dis-

cretization for ω over σk, and similarly the integration of dual k−form ?ω over the dual k−simplex

σ∗k. As before, the symbol | · | denotes the length for the corresponding k−simplex or k−cell. In

particular, the length of a vertex is defined to be equal to one, |σ0| = 1.

We can see that when applying the discrete Hodge star, every primal k−form will be multiplied
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(a) Discrete primal 1−simplex and its dual (b) Discrete primal 0−simplex and its dual

Figure 2.7: Orientations of primal and dual mesh elements for M1,1 and M0,2

by a scalar, which means we will get a diagonal matrix that shall be denoted byMk,n−k, mapping

discrete primal k−forms to dual (n− k)−forms.

In 2 dimensions, we can build the matrices M1,1 and M0,2

M1,1 =


|[v1,v2]|∗
|[v1,v2]| 0 0

0 |[v2,v3]|∗
|[v2,v3]| 0

0 0 |[v3,v1]|∗
|[v3,v1]|

 (2.64)

and

M0,2 =


|[v1]|∗
|[v1]| 0 0

0 |[v2]|∗
|[v2]| 0

0 0 |[v3]|∗
|[v3]|

 , (2.65)

respectively, this can be visualized in figure 2.7.
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Discrete Dual Exterior Derivative

Now that we have defined dual k−cell and dual k−forms, we must also know how to operate

on them. The Hodge star helps us by mapping primal k−forms to dual k−forms and viceversa,

but we also need to know how the derivative acts on dual k−forms. Consider a dual 1−form ?ω

discretized over each dual 1−simplex

? ω →


(?ω)[v1,v2]∗

(?ω)[v2,v3]∗

(?ω)[v3,v1]∗

 , (2.66)

and by the given orientation shown in figure 2.7(b), we get

(d(?ω))[v1,v2]∗ =

∫
[v1]∗

d(?ω) =

∫
∂[v1]∗

?ω = (?ω)[v1,v2]∗ − (?ω)[v3,v1]∗ , (2.67a)

(d(?ω))[v2,v3]∗ =

∫
[v2]∗

d(?ω) =

∫
∂[v2]∗

?ω = (?ω)[v2,v3]∗ − (?ω)[v1,v2]∗ , (2.67b)

(d(?ω))[v3,v1]∗ =

∫
[v3]∗

d(?ω) =

∫
∂[v3]∗

?ω = (?ω)[v3,v1]∗ − (?ω)[v2,v3]∗ , (2.67c)

consequently, we can write discrete dual exterior derivative of a dual 1−form with D∗1,2 matrix as

D∗1,2 =


1 0 −1

−1 1 0

0 −1 1

 . (2.68)

In general, we will denote by D∗k,k+1 discrete dual exterior derivative operator, which maps dual

k−forms to dual (k + 1)−forms in Rn.

We can see that D0,1 and D∗1,2 have the following relationship

D∗1,2 = (−1)DT
0,1. (2.69)
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In fact, the general relationship for both discrete primal and dual exterior derivatives is given by

(see [1])

D∗(n−k),(n−k)+1 = (−1)kDT
k−1,k. (2.70)

Then, for D∗0,1 we get

D∗0,1 = DT
1,2 =

[
1 1 1

]
, (2.71)

as shown on Hirani’s original work [1].

Now, we will focus on describing the transport equation in order to get its discretization by using

the discrete operators described in this section.

2.3 The Transport Equation

In order to describe the transport equation, also called the convection-diffusion equation, we need

to recall that the most fundamental law of physics is the law of energy conservation, which is such

that for every branch of physics it has a different interpretation. For example, in thermodynamics

it reads as follows
∂φ̃

∂t
+∇ · j = 0, (2.72)

where φ̃ is the volumetric density of heat and j is the heat flow. This tells us that the heat that

flows outside a certain domain Ω must be the same as the variation of the heat density over time,

i.e. heat is conserved.

The flux j can be divided into two terms: the convective and the diffusive terms j = jconvection +

jdiffusion. The convection term is the quantity of the transported field which moves across the

boundaries because of the flow, and is proportional to the velocity field of the medium u

jconvection = uφ. (2.73)

According to the second law of thermodynamics, heat is transferred from one body to another with

lower thermal energy if there is an interaction between these two bodies by means of the diffusion
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flux jdiffusion, so that jdiffusion is porportional to the negative temperature gradient

jdiffusion = −k∇φ, (2.74)

where k is the thermal conductivity of the material and φ is the temperature of the material.

On the other hand

φ̃ = ρcφ, (2.75)

where ρ is the material density and c is the specific heat of the material. Substituting (2.73), (2.74)

and (2.75) in the continuity equation (2.72) and taking ν = ρc, we get

∂(νφ)

∂t
+∇ · (uφ− k∇φ) = 0. (2.76)

Consider an isotropic material (k constant) with constant material density and a specific heat

constant over time (ν constant). We obtain

ν
∂φ

∂t
+∇ · (uφ)− k∇2φ = 0, (2.77)

where ∇2 =∇ ·∇ is the Laplacian. As we mentioned before, equation (2.77) describes a temper-

ature conservation. Nevertheless, the transport equation can be seen as a generalization for law of

energy conservation due to the presence of a scalar source q. In the case we are analyzing, we will

get the dynamic convection-diffusion equation

ν
∂φ

∂t
+∇ · (uφ)− k∇2φ = q. (2.78)



Chapter 3

Methodology

In this chapter, we will discretize the dynamic transport equation using DEC and will make a

comparision with FEM. We will also describe the cases where numerical instability must be taken

into consideration and some techniques to deal with this issue. In particular, we use a correction

scheme, which is our main contribution.

3.1 DEC Discretization for Transport Equation

Recall the dynamic transport equation (2.78)

ν
∂φ

∂t
+∇ · (uφ)− k∇2φ = q. (3.1)

First, we will focus on the discretization for source term q, diffusion term −k∇2φ, convection term

∇ · (uφ) and lastly the dynamic term ν ∂φ
∂t
.

25
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3.1.1 Source Term Discretization

The discretization of the source term is quite straight forward as far as DEC is concerned, since

we just have to discretize primal 0−form q on every primal 0−simplex σ0 (vertex)

q → q̃ =


q1

q2

q3

 . (3.2)

Later on, we will see that
qDEC =M0,2q̃

=


|[v1]∗|
|[v1]| 0 0

0 |[v2]∗|
|[v2]| 0

0 0 |[v3]∗|
|[v3]|



q1

q2

q3



=


|[v1]∗|
|[v1]| q1

|[v2]∗|
|[v1]| q2

|[v3]∗|
|[v1]| q3


(3.3)

is of greater interest for the source term discretization.

3.1.2 Diffusion Term Discretization

We must recall that the Laplacian of a scalar function (0−form) is expressed in exterior differential

calculus as follows, ∇2φ = ?d ? dφ. This means that we only have to replace each operator with

its corresponding discrete operator. Consider the discretization of a primal 0−form φ on primal

0−simplices

φ→ φ =


φ1

φ2

φ3

 . (3.4)
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We can see that first exterior derivative maps from a primal 0−form to primal 1−form, meaning

we must use D0,1

dφ→D0,1φ =


−1 1 0

0 −1 1

1 0 −1



φ1

φ2

φ3

 . (3.5)

Now, we see that the first Hodge star maps from a primal 1−form to dual 1−form, thus we use

M1,1

? dφ→M1,1D0,1φ =


−m(1)

1,2 m
(1)
1,2 0

0 −m(1)
2,3 m

(1)
2,3

m
(1)
3,1 0 −m(1)

3,1



φ1

φ2

φ3

 , (3.6)

where

m
(1)
i,j =

|[vi, vj]∗|
|[vi, vj]|

. (3.7)

The second application of the exterior derivative now corresponds to mapping a dual 1−form to

dual 2−form as follows

d ? dφ→D∗1,2M1,1D0,1φ, (3.8)

using the relationship D∗1,2 = −DT
0,1, we get

d ? dφ→ −DT
0,1M1,1D0,1φ

= −


m

(1)
1,2 +m

(1)
3,1 −m(1)

1,2 −m(1)
3,1

−m(1)
1,2 m

(1)
1,2 +m

(1)
2,3 −m(1)

2,3

m
(1)
3,1 −m(1)

2,3 m
(1)
2,3 +m

(1)
3,1



φ1

φ2

φ3

 . (3.9)

For further consideration, we take

KDEC = kDT
0,1M1,1D0,1. (3.10)

Finally, the second Hodge star is replaced by M2,0 to map a dual 2−form into primal 0−form,

which means that the discretized diffusion term is

−∇2φ = − ? d ? dφ→ −M2,0(−KDEC)φ = M2,0KDECφ. (3.11)
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Before writing its corresponding matrix components, consider Poisson equation (dynamic and

convection terms are ignored from equation (2.78))

− k∇2φ = q → − ? d ? dφ = q. (3.12)

If we apply Hodge star we get

− d ? dφ = ?q (3.13)

and the ? of the right hand side if replaced by the discrete operatorM0,2. The system of equations

obtained are

KDECφ = qDEC (3.14)

which is equivalent to

M2,0KDECφ = q̃ (3.15)

due to the relationship

M2,0 = M−1
0,2 . (3.16)

In order to keep working with the diffusion matrix KDEC and the source vector qDEC , we will

apply the Hodge star operator on the remaining terms of the dynamic transport equation, which

will correspond to multiplying by M0,2 on the left.

3.1.3 Convection Term Discretization

The convection term ∇ · (uφ) can be split into two terms by the product rule

∇ · (uφ) = u ·∇φ+ (∇ · u)φ, (3.17)

the first term on the right hand side corresponds to the directional derivative of φ on u direction

and the second term corresponds to the velocity field divergence, whose physical meaning is the

compresibility of the velocity field u. We will discretize each term on its own as shown below.
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Directional Derivative Discretization

First, we need to build directional derivative of φ on each edge direction. Considering primal

1−simplex [v1] and recalling

(dφ)[vi,vj ] = φj − φi, (3.18)

then, we take directional derivative of φ at [v1] on [v1, v2] and [v3, v1] directions and denoting by

w1 as the gradient vector, then we get the system of equations

(p2 − p1) ·w1 = φ2 − φ1 (3.19)

(p1 − p3) ·w1 = φ1 − φ3, (3.20)

recall that pi represents the vector associated to point pi on [vi] vertex. Which results in

w1 =
1

2|[v1, v2, v3]|

−(p3 − p2)yφ1 − (p1 − p3)yφ2 − (p2 − p1)yφ3

(p3 − p2)xφ1 + (p1 − p3)xφ2 + (p2 − p1)xφ3

 , (3.21)

where (pj − pi)x represents the x component of the vector pj − pi and (pj − pi)y represents the y

component of the same vector.

By repeating this procedure at [v2] and [v3] with their respective associated primal 1−simplices for

gradient vectors w2 and w3, respectively, we get

w1 = w2 = w3. (3.22)

Taking the inner product of the gradient vector with the velocity vector field at each vertex, we

get

u ·∇ϕ→W1ϕ =


u1 ·w1

u2 ·w2

u3 ·w3

 =
1

|[v1, v2, v3]|


u1

2,3 u1
3,1 u1

1,2

u2
2,3 u2

3,1 u2
1,2

u3
2,3 u3

3,1 u3
1,2



ϕ1

ϕ2

ϕ3

 , (3.23)

where ui = u(pi) and

uki,j =
1

2
[−(uk)x(pj − pi)y + (uk)y(pj − pi)x. (3.24)
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The matrix associated to the directional derivative term is

U 1
DEC = M0,2W1

=


|[v1]∗|

|[v1,v2,v3]|u
1
2,3

|[v1]∗|
|[v1,v2,v3]|u

1
3,1

|[v1]∗|
|[v1,v2,v3]|u

1
1,2

|[v2]∗|
|[v1,v2,v3]|u

2
2,3

|[v2]∗|
|[v1,v2,v3]|u

2
3,1

|[v2]∗|
|[v1,v2,v3]|u

2
1,2

|[v3]∗|
|[v1,v2,v3]|u

3
2,3

|[v3]∗|
|[v1,v2,v3]|u

3
3,1

|[v3]∗|
|[v1,v2,v3]|u

3
1,2

 . (3.25)

Field Divergence discretization

The transport equation with incompressible flow has been studied in [6]. Here we propose a

discretization for compressible flow given by the term (∇ ·u)φ. In order to discretize this term we

must observe that, unlike the directional derivative u ·∇, the differential operator ∇· acts on a

known object u, so that we can compute ∇ · u and consider it as a given function

f(x, y) =∇ · u, (3.26)

which is a 0−form. Thus, the discretization is

(∇ · u)φ→


f1φ1

f2φ2

f3φ3


= W2φ

=


f1 0 0

0 f2 0

0 0 f3



φ1

φ2

φ3


(3.27)

where {f1, f2, f3} is the discretization of f on the vertices. Thus, the matrix associated to velocity

field divergence is
U 2
DEC = M0,2W2

=


|[v1]∗|f1 0 0

0 |[v2]∗|f2 0

0 0 |[v3]∗|f3

 . (3.28)
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We will be considering UDEC = U 1
DEC +U 2

DEC .

3.1.4 Dynamic Term Discretization

In order to get a discretization for the dynamic term, we can perform an Euler approximation

∂φ

∂t
≈ φt+1 − φt

∆t
, (3.29)

where ∆t is the time step size.

Taking the discretization of φ and multiplying by M0,2 on the left side, we get

∂φ

∂t
→ 1

∆t
M0,2φ

t+1 − 1

∆t
M0,2φ

t. (3.30)

3.2 Comparision with FEM

The Finite Element Method, FEM, allows us to solve PDEs numerically using different types of

meshes of the doimain in which the equation of interest is defined. As its name reveals, this method

focuses on performing computations on the elements composing the mesh by using a variational

formulation with the help of interpolation functions. The case we are now interested is in R2. In

this case FEM can use triangular or quadrilateral elements.

Figure 3.1: Linear triangular element

Since the discretization with DEC was formulated with a triangular mesh with three nodes (ver-

tices) on each element, we will use the same element type and linear interpolation with FEM. In
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order to make comparisions with both numerical methods, we will use the same notation we used

in DEC.

Recall the positively oriented triangular elment shown in Figure 3.1. In order to compute the

integral in the variational formulation, we just need to use Gauss quadrature. For a triangular

linear element, we only need one integration point which corresponds to the triangle’s barycenter

Let

N1(ϕ, η) = 1− ϕ− η, (3.31a)

N2(ϕ, η) = ϕ, (3.31b)

N3(ϕ, η) = η, (3.31c)

where

ϕ =
1

2|[v1, v2, v3]|
[−(y1 − y3)x+ (x1 − x3)y + x2y3 − x3y2], (3.32a)

η =
1

2|[v1, v2, v3]|
[−(y2 − y1)x+ (x2 − x1)y + x1y2 − x2y1], (3.32b)

and

x =
3∑
i=1

Nixi = (x2 − x1)ϕ+ (x3 − x1)η + x1, (3.33a)

y =
3∑
i=1

Niyi = (y2 − y1)ϕ+ (y3 − y1)η + y1, (3.33b)

Since Gauss quadrature and linear triangular elements are used, the only integration point is

(ϕG, ηG) = (1/3, 1/3) and its respective integration weight is wG = 1/2, meaning

N1(ϕG, ηG) = N2(ϕG, ηG) = N3(ϕG, ηG) =
1

3
(3.34)

and

xG =
3∑
i=1

Ni(ϕG, ηG)xi =
1

3

3∑
i=1

yi = x, (3.35a)

yG =
3∑
i=1

Ni(ϕG, ηG)yi =
1

3

3∑
i=1

yi = y. (3.35b)
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With this in mind, we will now proceed to the description of each term of the transport equation

using the finite element method.

3.2.1 Source Term Discretization

The variational formulation for the source term q is given by

∫
[v1,v2,v3]

Nxqxdxdy =

∫
Ω

Nϕqϕ|J |dϕdη, (3.36)

where |J | = 2|[v1, v2, v3]| is the determinant of jacobian matrix J , Ω is the integration domain for

local coordinates, the subscript x denotes functions using cartesian coordinates while the subscript

ϕ denotes functions using local coordinates and Ni represents the i−th component of vector of

interpolation functions

N =


N1

N2

N3

 . (3.37)

The source vector is

qFEM =

∫
Ω

Nϕqϕ|J |dϕdη. (3.38)

As previously mentioned, the finite element method approximates the integral by using Gauss

quadrature

qFEM ≈NGqG|J |wG =
|[v1, v2, v3]|

3
qG


1

1

1

 , (3.39)

where qG = q(ϕG, ηG) and NG = N (ϕG, ηG). Now, comparing with

qDEC =


|[v1]∗|
|[v1]| q1

|[v2]∗|
|[v1]| q2

|[v3]∗|
|[v1]| q3

 , (3.40)
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we can observe that if we use a constant source

q(ϕ, η) = q (3.41)

and a equilateral triangle

|[v1]∗| = |[v2]∗| = |[v3]∗| = |[v1, v2, v3]|
3

, (3.42)

then qDEC = qFEM .

3.2.2 Diffusion Term Discretization

In this case, using the variational formulation and integration by parts we get the diffusion term

− k
∫

[v1,v2,v3]

Ni∇2φdxdy = k

∫
[v1,v2,v3]

∇Ni ·∇φdxdy, (3.43)

and we can write

φ =
3∑
i=1

Niφi = NTφ, (3.44)

which gives us the discrete diffusion term

− k∇2φ→ k

∫
[v1,v2,v3]

∇N ·∇NTdxdyφ, (3.45)

this means our diffusion matrix is given by

KFEM = k

∫
[v1,v2,v3]

∇N ·∇NTdxdy (3.46)

which is commonly written as

KFEM =

∫
[v1,v2,v3]

BTDBdxdy. (3.47)

It has been shown that KDEC = KFEM (see [7]).
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3.2.3 Convection Term Discretization

Just as with DEC, we will discretize directional derivative u ·∇φ and velocity field divergence

(∇ · u)φ terms on its own.

Directional Derivative Discretization

The variational formulation associated to this term is given by

∫
[v1,v2,v3]

N (x, y)u(x, y) ·∇xφ(x, y)dxdy =

∫
[v1,v2,v3]

N (x, y)u(x, y) ·∇xφ(x, y)dxdy (3.48)

where

∇x =

 ∂
∂x

∂
∂y

 and ∇ϕ =

 ∂
∂ϕ

∂
∂η

 (3.49)

are the gradients using cartesian and local coordinates, respectively. We get the relationship

between ∇x and ∇ϕ using the chain rule

∇x =

 ∂
∂x

∂
∂y

 =

∂ϕ∂x ∂
∂ϕ

+ ∂η
∂x

∂
∂η

∂ϕ
∂y

∂
∂ϕ

+ ∂η
∂y

∂
∂η

 =

∂ϕ∂x ∂η
∂x

∂ϕ
∂y

∂η
∂y

 ∂
∂ϕ

∂
∂η

 = J−1∇ϕ. (3.50)

Observe
u ·∇φ→

∫
[v1,v2,v3]

N (x, y)u(x, y) ·∇xφ(x, y)dxdy

=

∫
[v1,v2,v3]

(
Nu1

∂

∂x
+Nu2

∂

∂y

)
φdxdy

=

∫
[v1,v2,v3]

[
N N

]u1 0

0 u2

∇xφdxdy.

(3.51)
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Replacing (3.50) and φ = NTφ on (3.51), we get

u ·∇φ→
∫

[v1,v2,v3]

[
N N

]u1 0

0 u2

∇xφdxdy

=

∫
Ω

[
N N

]u1 0

0 u2

J−1∇ϕN
T |J |dϕdηφ.

(3.52)

Thus, the matrix associated to directional derivative is

U 1
FEM =

[
N N

]u1 0

0 u2

J−1∇ϕN
T |J |dϕdη. (3.53)

By using Gauss quadrature, we get the matrix

U 1
FEM =

∫
Ω

[
NG NG

]u1(ϕG, ηG) 0

0 u2(ϕG, ηG)

J−1
G (∇ϕN

T )G|J |GwG

=
1

3


u2,3 u3,1 u1,2

u2,3 u3,1 u1,2

u2,3 u3,1 u1,2

 ,
(3.54)

where

ui,j =
1

2
[−u1(x, y)[vi, vj]2 + u2(x, y)[vi, vj]1]. (3.55)

Recall the convection matrix obtained with DEC

U 1
DEC =


|[v1]∗|

|[v1,v2,v3]|u
1
2,3

|[v1]∗|
|[v1,v2,v3]|u

1
3,1

|[v1]∗|
|[v1,v2,v3]|u

1
1,2

|[v2]∗|
|[v1,v2,v3]|u

2
2,3

|[v2]∗|
|[v1,v2,v3]|u

2
3,1

|[v2]∗|
|[v1,v2,v3]|u

2
1,2

|[v3]∗|
|[v1,v2,v3]|u

3
2,3

|[v3]∗|
|[v1,v2,v3]|u

3
3,1

|[v3]∗|
|[v1,v2,v3]|u

3
1,2

 , (3.56)

where

uki,j =
1

2
[−(uk)x(pj − pi)y + (uk)y(pj − pi)x. (3.57)
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We can see that the differences between the FEM and DEC matrices lie in the factors 1/3 that

appear in each entry of UFEM as opposed to the factors |[vi]∗|/|[v1, v2, v3]| and the evaluation of the

velocity field at the average node, which corresponds to the barycenter of the triangle for FEM,

or at each node according to the matrix input for DEC. This means that both matrices will be

the same if |[v1]∗| = |[v2]∗| = |[v3]∗|, i.e. the triangular element is a equilateral triangle and u is a

constant velocity field.

Field Divergence Discretization

If f(x, y) =∇ · u, the variational formulation associated to this term is given by

(∇ · u)φ→
∫

[v1,v2,v3]

NfNTdxdyφ =

∫
Ω

fNNT |J |dϕdηφ, (3.58)

which means the corresponding matrix is

U 2
FEM =

∫
Ω

fNNT |J |dϕdηφ. (3.59)

Using Gauss quadrature and diagonalizing we get

U 2
FEM =

|[v1, v2, v3]|
3

f(ϕG, ηG)I (3.60)

and again, we will consider UFEM = U 1
FEM +U 2

FEM .

Comparing U 2
DEC and U 2

FEM , we can see that if |[v1]∗| = |[v2]∗| = |[v3]∗|, i.e. the triangular element

is a equilateral triangle and there is a constant velocity field divergence ∇ ·u = f =constant, then

both matrices will be equal. Meaning that for UDEC = UFEM we need u constant and the

triangular element to be an equilateral triangle.
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3.2.4 Dynamic Term Discretization

For this term, we must recall the Euler approximation algorithm. The variational formulation

allows us to write

∂φ

∂t
→ 1

∆t

∫
[v1,v2,v3]

(
Nφt+1 −Nφt

)
dxdy

=
1

∆t

∫
[v1,v2,v3]

NNTdxdyφt+1 − 1

∆t

∫
[v1,v2,v3]

NNTdxdyφt.

(3.61)

We can observe the so called mass matrix M̂FEM

M̂FEM =

∫
[v1,v2,v3]

NNTdxdy. (3.62)

By using Gauss quadrature and diagonalizing M̂FEM , we get

MFEM =


|[v1,v2,v3]|

3
0 0

0 |[v1,v2,v3]|
3

0

0 0 |[v1,v2,v3]|
3

 =
|[v1, v2, v3]|

3
I, (3.63)

where I ∈ M3×3(R) is the identity matrix. Again, we can see that if the triangular element is an

equilateral triangle, then M0,2 = MFEM .

3.3 Stabilization technique

In this section we will describe a technique used to deal with numerical instability on the convection-

diffusion equation. The solution of this equation is often challenging because of the nature of the

governing equation that lies on the convective and diffusion components.

3.3.1 Péclet number and numerical instability

The influence of both convection and diffusion effects are described by the Péclet number Pe, which

is defined as

Pe =
convective transport rate
diffusion transport rate

. (3.64)
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When there is a large Péclet number Pe > 1, means there is convective dominance on the transport

equation, while diffusion-dominated processes means we have a low Péclet number Pe < 1.

When attempting to solve convection-diffusion equation by discretizing it with any numerical

method, it is common to observe oscillations in the computed solution. These oscillations may

be due to physical phenomena or numerical instability. We can use the Péclet number to predict

whether or not numerical instability will be present. For the convection-diffusion equation, Péclet

is expressed as

Pe =
|u|h
2k

, (3.65)

where |u| is the magnitude of the mean velocity vector on the local element, k is the diffusion

coefficient and h is the element’s size, which may refer to the longest edge or the diameter of

the circumsphere. If we are modeling a convection-dominated process Pe > 1, then we expect

numerical instability to occur. There are several ways to deal with this situation. We will focus

on two of them.

3.3.2 Artificial Diffusion and Correction Scheme

We can observe that convection dominance implies |u|h > 2k, which means that, in order to

stabilize numerical solutions, we must decrease |u|h. We can only modify h, meaning we can

decrease Pe by taking finer elements h′ < h with a finer mesh so that |u|h > 2k > |u|h′.

Consider adding an artificial diffusion component ka on the static transport equation

∇ · (uφ)− (k + ka)∇2φ = q, (3.66)

such that 2k′ = 2(k+ ka) > |u|h causing the numerical solution to not oscillate, nevertheless, this

solution is not able to represent the original physical process. For this reason, we can come up

with a technique able to remove the contribution of artificial diffusion to the stabilized solution,

this technique is described below.
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Discretizing equation (3.66) using any numerical method we get the stabilized system of equa-

tions

(K +Ka +U)φ0 = q, (3.67)

where K, Ka and U represent the matrices for diffusion, artificial diffusion and convection terms,

respectively while q is the source vector and φ0 the stabilized solution vector. In order to remove

artificial diffusion, we must add the same contribution on the right hand side of the equation.

Thus, we solve the system of equations

(K +Ka +U )φ1 = q +Kaφ0 (3.68)

such that φ1 is a stabilized solution with less contribution of artificial diffusion than φ0.

We continue with this procedure

(K +Ka +U)φj = q +Kaφj−1 (3.69)

until
|φj − φj−1|
|φj|

< τ (3.70)

holds, where τ is a tolerance error. This iterative algorithm is written below.

Algorithm 1 Static correction scheme for artificial diffusion
Require: U , K, Ka, q
Ensure: φN = (K +U)−1q
1: j ← 1
2: τ0 ← 1
3: Solve (K +Ka +U)φ0 = q
4: while |τj| < τ do
5: Solve (K +Ka +U)φj = q +Kaφj−1

6: τj ← |φj − φj−1|/|φj|
7: j ← j + 1
8: end while



3.3. STABILIZATION TECHNIQUE 41

We can see that this static correction scheme, shown in equation (3.69), can be represented in

the general form for an iterative algorithm as

φj = q′ +Cφj−1 (3.71)

where the constant vector and the iterative matrix are q′ = B−1q and C = B−1Ka, respectively.

We know our algorithm converges when the spectral radius of the iterative matrix is lower than 1

ρ(C) < 1. The spectral radius of a matrix A with eigenvalues {λi} is defined as

ρ(A) = max{|λi|}. (3.72)

In this case, if we define our artificial diffusion matrix as

Ka = δK, δ ∈ R+, (3.73)

we can see that the δ parameter allows us to modify the eigenvalues for C = 1
δ
B−1K.

On the other hand, we may ask, what exactly is happening when performing the previous algo-

rithm? To answer this, we must recall, the main idea is

(U +K)φj − q ≈ 0 (3.74)

for j large enough, where Q = B −Ka and B = U +K +Ka. By using (3.69), we can see what

the actual result is
Qφj − q = Kaφj−1 −Kaφj

= −Ka(φj − φj−1)
(3.75)

and observe that the term on the right-hand side corresponds to the numerator on the stopping

criteria (3.70). This implies (3.75) will tend to zero, ensuring our algorithm will stop and remove

the artificial diffusion contribution if (3.74) holds.
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Since we must first solve

Bφ0 = q (3.76)

then B has to be invertible, i.e. B−1 exists. This allows us to write the equation (3.69) as

φj = B−1q +B−1Kaφj−1 (3.77a)

and

φj−1 = B−1q +B−1Kaφj−2. (3.77b)

Replacing (3.77) in (3.75) we get

Qφj − q = −Ka(B
−1Kaφj−1 −B−1Kaφj−2)

= −(KaB
−1)1Ka(φj−1 − φj−2).

(3.78)

Repeating this procedure j − 1 times we will get

Qφj − q = −(KaB
−1)jKa(φ0 − φ−1), (3.79)

where φ−1 = 0. Finally, replacing (3.76) in (3.79)

Qφj − q = −(KaB
−1)j+1q = − 1

δj+1
(KB−1)j+1q. (3.80)

Let {σi} and {wi} be the eigenvalues and eigenvectors of KB−1 respectively. Writting q as a

linear combination of {wi}

q =
∑
i

αiwi (3.81)

we can see
Qφj − q = − 1

δj+1
(KB−1)j+1q

= − 1

δj+1
(KB−1)j+1

∑
i

αiwi

= −
∑
i

(
λi
δ

)j+1

αiwi.

(3.82)
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Thus, our algorithm achieves its purpose when max{λi/δ} < 1, which can be also achieved

modifying the parameter δ.

We can apply the same idea for the dynamic transport equation

ν
∂φ

∂t
+∇ · (uφ)− (k + ka)∇2φ = q, (3.83)

with the system of equations

( ν

∆t
M +K +Ka +U

)
φt+1 = q +

ν

∆t
Mφt, (3.84)

where t ∈ [0, T ]. Taking B = K +Ka +U and Q = K +U then equation (3.84) can be written

as ( ν

∆t
M +B

)
φt+1 = q +

ν

∆t
Mφt. (3.85)

We will perform an interpolation between solutions on two consecutive times t and t+ 1 using

Bφt+1 → θBφt+1 + (1− θ)Qφt, (3.86)

where θ ∈ [0, 1], such that solutions are smooth between two consecutive times, i.e.

( ν

∆t
M + θB

)
φt+1 = q +

[ ν
∆t
M − (1− θ)Q

]
φt. (3.87)

By defining

A(θ) =
ν

∆t
M + θB, (3.88)

we get

A(θ)φt+1 = [A(θ − 1) + (1− θ)Ka]φ
t + q, (3.89)

meaning the dynamic correction scheme is written as

A(θ)φtj+1 = ψt(θ) +Kaφ
t
j, (3.90)
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where

ψt
j(θ) = [A(θ − 1) + (1− θ)Ka]φ

t
j + q. (3.91)

Recall φ0 must be provided in order to compute φ1
0 so that the static correction scheme is applied

to get φ1
k solution with no contribution of artificial diffusion and we repeat this procedure on every

time step t ∈ [0, T ].

The corresponding algorithm is written as

Algorithm 2 Dynamic correction scheme for artificial diffusion
Require: U , K, Ka, q,φ0, T, θ
1: t← 0
2: while t < T do
3: Compute ψt

0(θ)← [A(θ − 1) + (1− θ)Ka]φ
t
0 + q

4: j ← 0
5: τj ← 1
6: while τj < τ do
7: Solve A(θ)φtj+1 = ψt

j(θ) +Kaφ
t
j

8: τj ← |φj+1 − φj|/|φj+1|
9: j ← j + 1
10: end while
11: t← t+ ∆t
12: end while

We can observe that this algorithm consists of applying the static correction scheme at every time

step usingA(θ) instead ofB and ψt instead of q. Our convergence analysis also works for dynamic

correction scheme.
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Numerical Examples

In this section we show the performance of DEC, as well as that of the stabilization technique

described in the previous section, in three different numerical experiments for the transport equa-

tion.

4.1 Sinusoidal Velocity Field

For the first numerical example we consider a rectangular domain of dimentions 10 × 5 with its

characteristics shown in figure 4.1, with the following configuration

• Diffusion coefficient k = 0.05

• Vector field u(x, y) = (x, sinx)T

• Dynamic coefficient ν = 1

• Initial value φ(0, x, y) = φ0 = 0

• Final time T = 5

• Interpolation parameter θ = 0.6
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Figure 4.1: Rectangular domain and its characteristics for numerical experiments

When equilibrium has been reached, the static and the dynamic solutions must coincide, which

means that in order to prove that the dynamic correction scheme works for both methods, we

compared a static solution with a fine mesh (of 46, 246 elements) with the solution obtained from

other three fine meshes, as shown in figure 4.2, in which we did use dynamic correction scheme

with the following configuration

• Parameter for artificial diffusion δ = 20

• Tolerance error τ = 10−10

• Maximum number of iterations N = 104 on each time step
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(a) 5,964 nodes and 11,626 elements (b) 12,026 nodes and 23,620 elements

(c) 23,434 nodes and 46,246 elements (d) 144,989 nodes and 288,476 elements

Figure 4.2: Fine meshes used for rectangular geometry

We plot the solutions obtained along the horizontal symmetric axis as shown in figure 4.3

Figure 4.3: Static solution without correction scheme
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We show in figure 4.4 the comparision for both methods with static and dynamic correction

solutions using fine meshes.

(a) Static and dynamic results using DEC

(b) Static and dynamic results using FEM

Figure 4.4: Solutions obtained from DEC and FEM for sinusoidal velocity
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We can observe that the dynamic solutions obtained from both methods match the correspond-

ing static solution, which means that the dynamic correction scheme is able to approximate the

solution for the original equation by removing artificial diffusion at each time step.

We can see in Figures 4.5, 4.6 and 4.7 that the solutions from both methods behave similarly on

each fine mesh. Nevertheless, we must have some measurements for better comparisions for these

solutions.

Figure 4.5: Comparision of dynamic solutions from methods on mesh 4.2(a)

Figure 4.6: Comparision of dynamic solutions from methods on mesh 4.2(b)
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For numerical comparisions, we must first define the scaled error between both methods as

|φDEC − φFEM |2
np

, (4.1)

where np is the number of nodes on the horizontal axis and | · |2 denotes the L2 norm. Recall that

the cosine between two vectors is gien by

〈φDEC ,φFEM〉
|φDEC |2|φFEM |2

. (4.2)

In table 4.1 we can see the comparisions with the previously described quantities for each mesh.

Figure 4.7: Comparision of dynamic solutions from methods on mesh 4.2(d)

Mesh # Nodes # Elements Scaled error Cosine
Fig. 4.2(a) 5,964 11,626 5.016398× 10−5 9.999957× 10−1

Fig. 4.2(b) 12,026 23,620 2.278808× 10−5 9.999987× 10−1

Fig. 4.2(d) 144,989 288,476 1.172347× 10−6 1.000000× 100

Table 4.1: Comparision for dynamic solutions from both methods

It is easy to see that indeed both methods get quite similar results using the dynamic correction

scheme for fine meshes.

We might also ask, what was the performance for each method as far as correction scheme is
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concerned. For this reason, we show in figure 4.8 how many cumulative iterations were used for

both DEC and FEM on each mesh.

We can observe that the finer the mesh, the more iterations are needed to converge regardless

of the method used.

(a) DEC behavior on each fine mesh

(b) FEM behavior on each fine mesh

Figure 4.8: Cumulative iterations per method

We show in figure 4.9 the performance of both methods on each fine mesh for cumulative itera-

tions when using the dynamic correction scheme and we can observe DEC has a slightly better
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performance, i.e. DEC needed less iterations than FEM, on each time step on every fine mesh as

also shown in table 4.2 where we can observe that FEM used 282 and 167 more iterations than

DEC on meshes 4.2(a) and 4.2(b) respectively.

(a) Mesh 4.2(a) (b) Mesh 4.2(b)

(c) Mesh 4.2(d)

Figure 4.9: Cumulative iterations per mesh

Mesh characteristics Total iterations
Mesh # Nodes # Elements DEC FEM

Fig. 4.2(a) 5,964 11,626 19, 680 19, 962
Fig. 4.2(b) 12,026 23,620 20, 544 20, 711
Fig. 4.2(d) 144,989 288,476 21, 542 21, 542

Table 4.2: Dynamic correction performance of both methods

Now that we know correction scheme works, we must compare the performance for both meth-

ods using coarse meshes so that the dynamic correction scheme must to be used. We will use the

DEC solution for mesh 4.2(d) as the analytical approximation to compare with solutions for coarse
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meshes shown in figure 4.10. We can observe that in the second set of meshes to use are so coarse

(a) 91 nodes and 146 elements (b) 276 nodes and 490 elements

(c) 400 nodes and 722 elements

Figure 4.10: Coarse meshes used for rectangular geometry

that on its finest mesh we can barely distinguish the source term disk on the rectangular domain.

In figures 4.11, 4.12 and 4.13 are shown the results obtained on coarse meshes from both methods.

Figure 4.11: Comparision of dynamic solutions on mesh 4.10(a)
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Figure 4.12: Comparision of dynamic solutions on mesh 4.10(b)

Figure 4.13: Comparision of dynamic solutions on mesh 4.10(c)

We can observe that in the case in figure 4.11 the DEC solution results in a smoother curve

than FEM’s, while for the other coarse meshes we observe similar behavior on both methods. We

can even observe that we get a good approximation using a mesh with just 722 elements for the

analytical solution.
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On the other hand, we can also observe both methods’ performances by comparing cumulative

iterations on each time step as shown in figures 4.14, where it is quite notorious that DEC had a

better performance on meshes 4.10(a) and 4.10(c) than FEM, while on mesh 4.10(b) both method

seems to give similar results. Summarising, we show on table 4.3 the scaled error for both methods

(a) Mesh 4.10(a) (b) Mesh 4.10(b)

(c) Mesh 4.10(c)

Figure 4.14: Cumulative iterations per mesh

with respect to the analytical approximation along the horizontal symmetry axis and the total

cumulative iterations used for DEC and FEM on each mesh. It is easy to see the FEM had a

smaller error with respect to DEC’s on mesh 4.10(b) while DEC was superior on the other two

coarse meshes.

Scaled error Total iterations
Mesh x points DEC FEM DEC FEM

Fig. 4.10(a) 15 1.412452× 10−2 1.961930× 10−2 10, 703 11, 937
Fig. 4.10(b) 22 6.643699× 10−3 6.311415× 10−3 10, 979 11, 009
Fig. 4.10(c) 33 2.296155× 10−3 2.448873× 10−3 15, 788 16, 722

Table 4.3: Comparision for dynamic solutions from both methods
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4.2 Rotational Velocity Field

For the next numerical example we consider a circular domain with radius R = 2 with its charac-

teristics shown in figure 4.15, with the following configuration

• Diffusion coefficient k = 0.02

• Vector field u(x, y) = (y,−x)T

• Dynamic coefficient ν = 0.1

• Initial value φ0 = 0

• Final time T = 40

• Interpolation parameter θ = 0.6

Figure 4.15: Circular domain and its characteristics for numerical experiments

In this case, the mesh used for the static solution consisted of 75, 080 elements so that correction

scheme is not needed and we compared its solution with other three fine meshes as shown in figure

4.16 in which we did use dynamic correction scheme with the following configuration

• Parameter for artificial diffusion δ = 250

• Tolerance error τ = 10−10

• Maximum number of iterations N = 104 on each time step
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(a) 4,717 nodes and 9,016 el-
ements

(b) 10,057 nodes and 19,488
elements

(c) 38,167 nodes and 75,080
elements

(d) 148,304 nodes and
294,098 elements

Figure 4.16: Fine meshes used for circular geometry

We plot the solutions obtained along the vertical symmetric axis as shown in figure 4.17

Figure 4.17: Static solution without correction scheme
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We show in figure 4.18 the comparision for both methods with static and dynamic correction

solutions using fine meshes

(a) Static and dynamic results using DEC

(b) Static and dynamic results using FEM

Figure 4.18: Solutions obtained from DEC and FEM for rotational velocity
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Just as in the sinusoidal case, we observe dynamic solutions obtained from both methods

match its corresponding static solution, and once again, the dynamic correction scheme is able

to approximaye the solution for the original equation by removing artificial diffusion at each time

step.

We can see in Figures 4.19, 4.20 and 4.21 that solutions from both methods behave quite similarly

on each fine mesh. In table 4.4 we show the comparisions between the solutions of both methods

for each mesh.

Figure 4.19: Comparision of dynamic solutions from methods on mesh 4.16(a)

Figure 4.20: Comparision of dynamic solutions from methods on mesh 4.16(b)
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Figure 4.21: Comparision of dynamic solutions from methods on mesh 4.16(b)

We can observe that solutions from both methods on each mesh get quite similar results and

we only need a fine mesh like 4.16(b) to get the same solution from DEC and FEM.

Mesh # Nodes # Elements Scaled error Cosine
Fig. 4.16(a) 4,717 9,016 3.481729× 10−5 9.999998× 10−1

Fig. 4.16(b) 10,057 19,488 1.052727× 10−5 1.000000× 100

Fig. 4.16(d) 148,304 294,098 2.313405× 10−7 1.000000× 100

Table 4.4: Comparision for dynamic solutions from both methods

In figure 4.22 we show the number of cumulative iterations per time step for both methods and

we observe the same behavior between the methods just as in the sinusoidal case but a completely

different behavior as far as fine meshes are concerned. We can see that the finer the mesh the

fewer iterations are used for each method.
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(a) DEC behavior on each fine mesh (b) FEM behavior on each fine mesh

Figure 4.22: Cumulative iterations per method

Now, we compare on each fine mesh the performance of dynamic correction scheme for both

methods as shown on table 4.5 and in figure 4.23 where we can observe DEC used fewer iterations

than FEM on each mesh. In fact, the finer the mesh the greater the difference between the

iterations used.

(a) Mesh 4.16(a) (b) Mesh 4.16(b)

(c) Mesh 4.16(d)

Figure 4.23: Cumulative iterations per mesh



62 CHAPTER 4. NUMERICAL EXAMPLES

Mesh characteristics Total iterations
Mesh # Nodes # Elements DEC FEM

Fig. 4.16(a) 4,717 9,016 73, 014 73, 165
Fig. 4.16(b) 10,057 19,488 69, 452 70, 352
Fig. 4.16(d) 148,304 294,098 61, 095 65, 350

Table 4.5: Dynamic correction performance of both methods

We now proceed to compare the performance of each method using coarse meshes so that the

dynamic correction scheme must to be used (see figure 4.24). We will use the solution for mesh

4.16(d) as the analytical approximation to compare with.

(a) 4,717 nodes and 9,016 el-
ements

(b) 10,057 nodes and 19,488
elements

(c) 38,167 nodes and 75,080
elements

Figure 4.24: Coarse meshes used for circular geometry

Figures 4.25, 4.26 and 4.27 shows the results obtained on coarse meshes from both methods.

Figure 4.25: Comparision of dynamic solutions on mesh 4.24(a)
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Figure 4.26: Comparision of dynamic solutions on mesh 4.24(b)

Figure 4.27: Comparision of dynamic solutions on mesh 4.24(c)

In this case, we observe the opposite behavior to the sinusoidal velocity field, FEM seems to

have better results for coarse meshes than DEC. This can be due to the shape of the triangles for

each mesh, because DEC captures the information of the velocity field u on each vertex while FEM

only uses the value of u on the triangle’s barycenter. As a matter of fact, we can observe that

the triangles in the coarse meshes of the rectangular domain are not as distorted as the triangles

of coarse meshes of the circular domain. This may explain why there are better DEC results, in

comparision with FEM, for the previous case than in this one.

We can also observe both methods’ performances by comparing cumulative iterations at each time

step as shown in figure 4.28.
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(a) Mesh 4.24(a) (b) Mesh 4.24(b)

(c) Mesh 4.24(c)

Figure 4.28: Cumulative iterations per mesh

Where we can see, once again, FEM used fewer iterations than DEC on all coarse meshes,

which reinforces the previous explanation.

Summarising, we show in table 4.6 the scaled error for both methods with respect to the analytical

approximation along the vertical symmetry axis and total cumulative iterations used for DEC and

FEM on each mesh. As previously mentioned, FEM’s performance was better than DEC’s both

in solution obtained and total number of iterations used during dynamic scheme correction.

Scaled error Total iterations
Mesh y points DEC FEM DEC FEM

Fig. 4.24(a) 15 1.439571× 10−2 0.663578× 10−2 80, 639 76, 233
Fig. 4.24(b) 20 9.735095× 10−3 6.953187× 10−3 94, 860 76, 324
Fig. 4.24(c) 28 4.218274× 10−3 3.237909× 10−3 84, 639 78, 446

Table 4.6: Comparision for dynamic solutions from both methods
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4.3 Rotational Velocity with disturbances

For the final numerical example we consider an square domain with side L = 4 and its character-

istics can be seen in figure 4.29.

Figure 4.29: Square domain and its characteristics for numerical experiments

In this example our main goal is to show how different the solutions are when we consider a

significant field divergence on transport equation, here we consider the following configuration

• Diffusion coefficient k = 0.02

• Vector field u = (−y, x)T + ε(x, y)T , ε ∈ {0.0, 0.5, 2.0}

• Dynamic coefficient ν = 0.05

• Initial value φ0 = 0

• Final time T = 21

• Interpolation parameter θ = 0.6

We will use one fine, regular and coarse meshes, as shown in figure 4.30, for different values of

ε and the dynamic correction scheme will only be used for regular and coarse meshes. Since the

geometry for this example allows us to work with triangles which are not very obtuse, DEC is the

best option for solving it, therefore we only use DEC.
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(a) 242 nodes and 426 elements (b) 1,941 nodes and 3,720 ele-
ments

(c) 20,941 nodes and 41,344 ele-
ments

Figure 4.30: Coarse, regular and fine meshes used for square geometry, respectively

The static solutions obtained on the finer mesh for different ε values are shown in figure 4.31.

(a) ε = 0.0 (b) ε = 0.5 (c) ε = 2.0

Figure 4.31: Solutions for different ε values on mesh 4.30(c)

It is quite notorious the effect of a strong field divergence perturbation, the temperatures distribu-

tion changes all over the domain, we notice the larger ε gets, the more the distribution loses radial

symmetry. In order to compare how the distribution changes, we plot the solutions obtained along

the horizontal and vertical symmetry axes for the coarse and regular meshes using the following

configuration for the dynamic correction scheme

• Parameter for artificial diffusion δ = 250

• Tolerance error τ = 10−10

• Maximum number of iterations N = 104 on each time step
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First, we show in figures 4.32 and 4.33 how the distribution of the solution changes over the

domain for ε values on horizontal and vertical axes, respectively, for the finest mesh.

Figure 4.32: Temperature variation along horizontal symmetric axis

Figure 4.33: Temperature variation along vertical symmetric axis

Clearly, the larger ε the more the temperature distribution decreases along both horizontal and

vertical axes. Now we proceed to show the solutions obtained on each mesh for both axis with

ε = 0.0, 0.5, 2.0 in figures 4.34, 4.35 and 4.36, respectively.
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Figure 4.34: Solutions for ε = 0.0 on each mesh for both axis

Figure 4.35: Solutions for ε = 0.5 on each mesh for both axis

Figure 4.36: Solutions for ε = 2.0 on each mesh for both axis

We can observe that symmetry is indeed lost, the temperature distribution on horizontal axis

is thinner than on vertical axis regardless of the mesh.

It is interesting to ask, what happens with the performance of the dynamic correction scheme

when the field divergence increases? This can be answered by looking at Figures 4.37 and 4.38,

where we can observe that it is way faster to remove artificial diffusion when there is a non-zero

divergence, this may be due to the elemental matrix associated to field divergence term (∇ · u)φ,

since it is a diagonal matrix, it does not destabilize the transport equation unlike the directional

derivative term u ·∇φ .
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Figure 4.37: Cumulative iterations for ε values on mesh 4.30(a)

Figure 4.38: Cumulative iterations for ε values on mesh 4.30(b)

Summarising, we show the results of the comparision for the solutions obtained with the coarse

and regular meshes with the fine mesh for each ε value in table 4.7.

Scaled error
∇ · u = 2ε Mesh x axis y axis Total iterations

ε = 0.0
Fig. 4.30(a) 3.127980× 10−2 3.455932× 10−2 885, 224
Fig. 4.30(b) 0.185643× 10−2 0.170706× 10−2 1′061, 080

ε = 0.5
Fig. 4.30(a) 1.014965× 10−2 1.020167× 10−2 177, 608
Fig. 4.30(b) 0.079939× 10−2 0.095330× 10−2 313, 365

ε = 2.0
Fig. 4.30(a) 2.519354× 10−3 5.869518× 10−3 152, 163
Fig. 4.30(b) 0.277767× 10−3 0.421625× 10−3 329, 690

Table 4.7: Comparision for solutions for ε values on coarse and regular meshes
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Chapter 5

Conclusions and Future Work

Discrete exterior calculus is a numerical method for partial differential equations that that was

introduced almost 20 years ago. Many discretization proposals have been made for differential

terms that appear on a wide variety of partial differential equations. However, the transport

equation has two important situations as far as DEC is concerned

1-. Full convective term discretization ∇ · (uφ) = (∇ · u)φ+ u ·∇φ

2-. Numerical instability for dominant convection

In this thesis, we worked and solved both situations. The key idea to solve the first one is to

understand that we build discrete operators (matrices) conrresponding to differential operators

acting on unknown quantities, such as φ and u ·∇φ. However, we must proceed differently with

the term (∇ · u)φ, since the differential operation, divergence, acts on the known quantity u.

Thus, we treat the scalar term ∇ ·u as a 0−form f =∇ ·u. This is also applied for finite element

method (FEM) and we showed there is consistency for both methods.

For the second situation, we must deal with dominant convection by using artificial diffusion

on the transport equation which is a common way to stabilize this equation. Nevertheless, since

we are modifying the equation, the stabilized solution obtained will not be the solution for the

original phenomena.

We proposed an iterative algorithm, correction scheme, to remove artificial diffusion once the

71
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system of equations has been stabilized in order to solve correctly the original equation. We

showed this scheme not only works for both DEC and FEM, but also it is faster when working

on meshes whose elements (triangles) and not very obtuse, and for vector fields with non-zero

divergence.

We also showed DEC is a numerical method able to compete with FEM because it obtains more

information over the elemental formulation for all the terms (vertices and edges) while FEM sim-

plifies it on convective and dynamic terms. This can result in an advantage or disadvantage for

DEC and it will depend on how distorted the triangular elements are.

As a continuation of this work, it is planned to work with non-autonomous vector fields u =

u(t, x, y) in the transport equation.
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