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Abstract

This work proposes a methodology for solving the tracking problem under clas-
sic visibility in the 2D Euclidean space for a pair of omnidirectional antagonistic
players, a pursuer and an evader. The methodology starts proposing motion poli-
cies for the players in a discrete state-space applying optimal motion planning in a
pursuit-evasion game. The first approach in the continuous state-space consists of
two neural networks, one per each player, acting as motion policies whose entries
are states in the environment and outputs are the actions to perform. The policies
are trained from the behaviour in the discrete state-space. Finally, we implement an
improvement for the pursuer motion policy using deep reinforcement learning (DRL)
considering a fixed trajectory for the evader. In all these cases, the action-space is
discrete. A DRL approach from scratch is compared to a initialized DRL approach,
using the weights in the neural network trained from the optimal motion planning,
and a DRL approach using a master policy (the same neural network trained from
the optimal motion planning) which generates transitions in training for a pursuer
in two proposed environments. Results show that a simple initialization is enough
to achieve favorable outcomes in a simple environment while the use of a master
policy is preferred in a more complex one.

Keywords: Tracking problem, pursuit-evasion game, deep learning, deep rein-
forcement learning.
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Chapter 1

Introduction

In the tracking problem under classic visibility, we seek to keep one or more agents,
called evaders, inside the visibility region of one or more pursuers. In an antagonistic
case, we can consider this problem as a pursuit-evasion game, where the evader (or
evaders) tries to step out from the pursuer’s (or pursuers’) visibility region as quick
as possible, while the pursuer tries to keep the evader inside it most of the time.
This kind of problem is important in surveillance cases where we want to visualize an
object for all time, or in accompaniment cases to have an autonomous companion.

The work done in this thesis is separated into two main objectives: formulate
motion policies in the discrete space, and formulate motion policies in the contin-
uous space. As particular objectives in the discrete part, we have to discretize the
environment and then establish the behaviour for every player given their map loca-
tions. In the continuous part, we first need to collect data so we can train artificial
neural networks to be used as motion policies for both players and lately we use
reinforcement learning to improve the pursuer motion policy.

1.1 Previous work

The target tracking problem has been previously tackled applying a combination of
vision and control techniques [19, 41], both in environments with obstacles [5] and
without obstacles [45]. However, the use of deep learning and reinforcement learning
techniques is recent in general [35, 49, 51] and in pursuit-evasion games [11, 20].

In our work, we consider the motion plan for both the evader and the pursuer, like
in [6], in an environment with obstacles. In [6], the authors present a pursuit-evasion
game-theoretical analysis based on visibility in a planar continuous environment with
obstacles. Both players, pursuer and evader, are holonomic with bounded speed
and know each other’s current location. The strategies proposed are functions of
the value of the game being in Nash equilibrium, they are constructed near the
termination situation which is a corner in the environment. Even thought the work
claims to be formulated in environments with obstacles, the strategies only consider
a corner remaining open the case for more complex environments, as we propose
with simulations in more obstacle populated environments.
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Optimal control has been used in [30] to formulate the pursuer’s strategy against
an intelligent evader in an obstacle-free continuous environment. Capture is done
in a time-efficient and robust fashion although the pursuer’s actions are not instan-
taneous optimal. Numerical examples are presented and compared to conventional
motion tracking algorithms showing lower capture time. Contrary to this work we
are not proposing the use of optimal control in our approach.

Other work using optimal planning, as we are using, is [55], also presented in [56].
In this work, discrete optimal planning is applied to formulate the motion strategy
for a group of robotic routers (pursuers) to provide net connection to a mobile user
(evader) as long as possible. Two cases are covered: (1) known user trajectory and
(2) adversarial user trajectory. In the first case, dynamic programming is used to
formulate the strategy based on the available user trajectory by constructing a table
storing maximum connection time and then applying backtracking. In the second
case, an algorithm is presented which computes the shortest escape trajectory from
a given initial configuration. Later on in chapter 3, we use the ideas in this work to
formulate the motion policies in the discrete space.

The work in [5] determines whether or not a pursuer is capable to maintain strong
mutual visibility of an evader in a known polygonal environment. The evader is
only able to move in the reduced visibility graph or RVG (contrary to our approach
where the evader is not constraint to this path); nevertheless, it is unpredictable
and antagonist. On the other hand, the pursuer is free to move within the entire
free space, as in our case. The method is based on an algorithm that computes
areas all of the time solving the decision problem of determine strong visibility
between the players. Other works [27, 38] deal with the tracking problem under
visibility only formulating strategies for the pursuer, considering an unpredictable
or partially-predictable evader.

While in the preceding works, models of the environment and the motion of the
players are needed, an implementation using reinforcement learning (RL) [53] tech-
niques allows to get rid of these models since the learning process consists in getting
information applying actions by the players and interacting with the environment.
RL has successfully been applied to complex real-world problems like Atari games
[35] and robotic locomotion [29]. The two main approaches in RL come in the form
of Q-learning [60] and policy gradient [54]. In the first, a state-value function is
approximated, which is then used in a policy to get the best action, while in the
other, a direct map is learned between a state and an action.

The work done in [59] presents a reinforcement learning approach in the pursuit-
evasion problem for one evader and one pursuer, which are car-like robots, in an
obstacle-free continuous environment. In it, Deep Deterministic Policy Gradient
(DDPG) [50], which is an Actor-Critic algorithm [26], is used first to train a pursuer
to catch an evader that follows an optimal strategy. Then, both players are trained
using DDPG with no prior information about the environment showing that it is
possible to apply RL to come up with motion strategies for antagonistic players in
a pursuit-evasion game. This work is different from our research in that we are
tackling the tracking problem under visibility. Even though both approaches are
formulated as pursuit-evasion games (ours and the one cited in [59]), there is no
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previous initialization on the players strategies as we propose. Note also that we are
proposing environments with obstacles, opposite to this work.

Our intention is to come up with motion strategies for an evader and a pursuer in
the tracking problem under visibility in a planar space by first formulating policies
approximations with optimal planning and then improve these strategies using policy
gradient in RL for the pursuer tracking an evader with a fixed trajectory, since a
purely RL implementation risks to need a great amount of episodes, and time, to
converge with no guarantees on the achieved performance. Other works have already
present the idea of employing some kind of initialization to a RL technique. However,
works like [65], where an evasion strategy is learned for an evader in a pursuit-evasion
game against several pursuers, propose end-to-end learning using Deep Q-Network
(DQN) by incorporating the artificial potential field method to the reward function
resulting in a combination of artificial potential field and RL.

In [48], a capture version of the pursuit-evasion games is addressed where the
problem to be solved is driving an evader to a goal destination and at the same
time avoiding being captured by a group of pursuers. The problem is formulated
in both continuous state-space and action-space. However, the multi-agent pursuit-
evasion game is first formulated as a sequence of discrete matrix games since the
task is a high-dimensional and intractable problem. The low-dimensional manifold is
obtained by implementing a nonlinear transformation on the continuous state-space
and a discrete abstraction on the continuous action-space. Min-max Q-learning is
used to get a Q-function approximation to the evader’s reward for actions taken
from any state by different players. With this Q-function a matrix describing a
two-player game per stage is constructed since only the closest pursuer attempts to
capture the evader. The solution represents the evader strategy at the current stage.
Numerical simulations evaluating the evader’s performance are presented.

In [64], a control policy is used as a supervisor policy to train a new learned
control policy for a robot by using a weighted average of the supervisor and the
learned policy during trials. A heavier weight to the supervisor policy is set initially
and, as the process goes on, the weights are adapted to favor the learned policy. This
idea is applied to perform a safer and quicker training. Actor-Critic, which is a RL
algorithm that implements a combination of Q-learning and policy gradient, is used
in the training phase. At the end, the learned policy performance out-performs or
at least matches the supervisor policy performance. This method is applied in the
OpenAI Gym to show its effectiveness. We propose a simpler algorithm to tackle
the RL part in our approach rather than Actor-Cited as cited here.

RL has also been applied in the UAV’s (Unmanned Aerial Vehicle) field [1, 9, 23].
Among these, one using an initialization to RL is the one presented in [39], where a
planning method is implemented in an autonomous drone racing, combining optimal
control and deep reinforcement learning on a single quadrotor that has to cross a
series of marked gates in minimal time. The optimal control stage is made by solving
the discretized Hamiltonian-Jacobi-Bellman (HJB) equation in a simplified, reduced
model producing a closed-loop policy. Before going through reinforcement learning,
a policy consisting in a neural network is trained in a supervised learning manner
to mimic the HJB performance. This trained policy is improved applying a policy
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gradient approach allowing the quadrotor, in simulation, to pass over a gate from
a given initial state. At the beginning of the policy gradient stage, initial states
near the center of the gate are preferred. As training goes forward, further initial
states are chosen resulting in the so-called HJB-RL policy. The race is achieved by
applying the trained policy sequentially one gate at a time. Results on simulation
are presented comparing a model-based HJB policy, a supervised learning policy
and a trajectory planning policy performance to the one achieved by the HJB-RL
policy. It is showed that the HJB-RL policy outperforms all the other policies, and a
purely RL policy was unable to complete the race. As aforementioned, [39] presents
an initialization to RL similar to the one in the present work. However, in addition
to utilizing a policy computed from a discrete state-space as a warm start for RL,
we also propose another approach that utilizes the pretrained (master) policy to
generate useful examples for RL, initially guiding the search for the RL policy.

Real-world implementations have already been applied using computer vision to
track a mobile target [32, 15, 24]. These approaches are only focused on the tracker
(pursuer), as we propose for the RL part.

1.2 Contributions

The aim in the this thesis document, is to present a methodology allowing to migrate
from the discrete to the continuous state-space in the target tracking problem to
formulate motion policies for both the evader and the pursuer. Nevertheless, in the
last step of this work we come up with motion policies for the pursuer only.

As first stage, given the work done by Onur Tekdas and Vulkan Isler in [55, 56]
about robotic routers (where the aim is to provide net connection to a mobile user
most of the time given a mobile router network under a discretized environment)
their algorithm and solutions are adapted to the tracking problem in this work with
only one evader and one pursuer. These solutions formulate motion policies for every
agent in a given environment.

Figure 1.1: Stages in the game based learning methodology.

Later on, the motion policies derived for the discrete state-space are used to
generate data sets to feed two dense1 neural networks, one for each agent, whose

1Also called fully-connected layer. Every neuron in a layer is connected to all of the neurons in
the next layer.
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(a) Env1 (b) Env2

(c) Env3 (d) Env4

Figure 1.2: Environments used in experimental simulations.

models are next used to produce motion policies for each agent now on the contin-
uous state-space. To get a better approximation in the continuous space, the grid
which separates every cell in any proposed discretized environment is augmented
in resolution. Like this, more data is available to train the models. Thereafter, re-
inforcement learning [53] techniques, namely policy gradient, are applied using the
previous trained models as initializers, which allows faster learning. Alternatively,
the previous trained models can be employed to perform an informed search to the
reinforcement learning motion policy, by means of generating suitable examples to
enhance learning. The described stages above are shown sequentially in the Figure
1.1.

The main contributions of the present work are as follows:

• An optimal motion strategy for both the pursuer and evader that solves the
tracking problem in a discrete state-space with a finite control set.

• An extension of the discrete motion policy to a continuous state space utilizing
artificial neural networks.

• Making use of reinforcement learning, a refinement of the continuous state
space policy for the pursuer that enhances its tracking capabilities is presented.
Such refinement can also be utilized as a warm initialization of an RL policy, or
as an approach to implement an informed search for the sought policy, which
speeds up and improves learning.

1.3 Simulation experiments

All along the text, descriptions of every stage in the methodology are presented, as
well as experiments over four proposed environments which are named Env1, Env2,
Env3 and Env4. They can be seen in Figure 1.2. The grid in the images are drawn
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to show the environment’s dimensions and the obstacles positions. Each cell is one
unit long per side. The obstacles in the environments are all polygonal and with
right corners.

Env1 is the simplest environment of them all since it only presents an obstacle
in the center of the scene. Env2 presents a corridor-like environment. Env3 is
the environment with the largest free-space2 among the four proposed. The most
obstacle-populated environment is Env4.

All experiments and simulations are carried out in a laptop whose specifications
are shown in table 1.1. The simulated environments are executed using the Pygame
module in Python.

CPU Intel Core i7-9750H
Clock frequency 2.60FHz

GPU RTX 2060
RAM 16 GB

Table 1.1: Specifications of the lap top used in experiments and simulations.

The rest of the content of this document is organized in five more chapters as
follows. In chapter 2, the theoretical framework used for the comprehension of the
document is presented. On it, pursuit-evasion games, discrete optimal planning,
deep learning and reinforcement learning are explained. In chapter 3, the deter-
ministic case is developed using dynamic programming to come up with motion
policies to be applied by both the evader and the pursuer in discrete environments,
the interaction with the environment generates data to be used later on. Using the
information gathered in chapter 3, artificial neural networks are trained in chapter
4, with the aim of learning the motion policies given each agent positions (state)
migrating from discrete to continuous domain solving a classification problem. Once
the neural networks are trained, their models will be used, in chapter 5, in a rein-
forcement learning framework as a warm initialization. The goal is to create new
policies for the pursuer that outperform the previous ones and provide a method
that hastens the learning process. In the last chapter, conclusions and future work
are provided.

2Space without obstacles.
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Chapter 2

Theoretical Framework

In this chapter, a theoretical framework is given in order to understand the basis
used along the next chapters. We start presenting a definition of the pursuit-evasion
games, where the tracking problem takes place. Next, a brief explanation on discrete
optimal planning is given which will be used in the discrete state-space formulation
of the problem. Neural networks are used in a supervised fashion before leading to
the reinforcement learning (RL) part of the method, thus a section in this chapter
is dedicated to deep learning defining the artificial neural networks. We then move
to RL and deep reinforcement learning (DRL) where a general framework is set
emphasizing on the policy gradient (PG) theorem which is used as the RL technique
in the methodology proposed in this work.

2.1 Pursuit-evasion games

In the family of problems known as pursuit-evasion, one group of agents or play-
ers (both terms are used indistinctly throughout the document) attempts to track
members of another group in a given environment. The main goal is to come up
with strategies that enable an autonomous player to accomplish a series of actions
against an opponent. This kind of games have relevant applications in aerospace
[52, 58] and robotics [10].

Being the environment a key piece in the formulation of this kind of problems, it
was firstly modeled geometrically [19], which is sometimes referred to as continuous
pursuit-evasion, to subsequently use a formulation where movement is constrained
by a graph [42] called discrete pursuit-evasion or even graph search.

In the continuous model, the Euclidean plane, or another manifold, is typically
chosen. On its variants, maneuverability constraints are applied to the players (range
of speed or acceleration), and the presence of obstacles is included in the geometry of
the environment. In the context of a dynamical system and differential game theory,
these formulations are closely related to optimal control problems where there exists
a single control u(t) and a single criterion to be optimized. In differential games,
two controls u1(t), u2(t) and two criteria are applied (one for each player). Each
player tries to control the state of the system, according to its goal, which responds
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to the inputs of the player.
In the discrete scenario, the environment is modeled as a graph. Pursuers and

evaders assume places at nodes of this graph and, alternatively, make movement
decisions on where to go along the edges of the graph. In the simplest case where
velocity is considered the same for all the agents, at every turn every member in
both sides must decide whether staying on its node or move to an adjacent one along
the edges of the graph. Different velocities for each agent could be considered as
the maximum number of edges that they can move along in a single turn, being the
minimum one edge (or zero edges in the case where no motion per turn is allowed),
and the maximum the idea of infinite velocity which allows an agent to move to any
node in the graph as long as there is a path to travel to.

According to the task assigned to the players, pursuit-evasion problems may have
different interpretations, being the most common:

• The pursuer (pursuers) has to capture, where capture means “get closer to a
certain distance”, the evader (evaders) [4, 19, 33, 46].

• The pursuer (pursuers) has to stay at a certain distance from the evader
(evaders) [36, 37].

• The pursuer (pursuers) has to find the evader (evaders), i.e., pursuer must
bring the evader into its visibility region [14, 21, 57].

• The pursuer (pursuers) has to maintain the evader (evaders) inside its visibility
region. This task is also known as target tracking [5, 7, 8, 36].

In antagonistic games, the evader (evaders) attempts the opposite to prevent, or
at least hinder, the pursuer’s task; namely, get further a certain distance, break the
constant distance between players, avoid being seen and escape from the pursuer’s
visibility region.

In this thesis work, we address the last of these interpretations first considering
a discrete pursuit-evasion formulation and next move to a continuous configuration.
We consider only one pursuer and one evader. The former tries to keep the latest
inside its visibility region all the time, meanwhile this last one tries to escape as
soon as possible.

2.2 Discrete Optimal Planning

In discrete planning, a strategy is formulated as a sequence of actions that leads to a
goal state or set of states. In optimal planning, the problem permits not only to find
this sequence, or a set of sequences, but to prefer the one that optimizes a certain
criterion, such like time, distance or consumed energy. For this, a stage index is used
to indicate the current plan step, a cost function is formulated as a manner to tell
the cost gathered during the plan execution, and a termination action is introduced
to indicate when to stop the plan. Two main approaches exist: fixed-length optimal
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plans, and variable-length optimal plans. Before briefly explaining each one of them
lets introduce some notations according to [28].

Let πK be a plan of length K, this plan is a sequence (u1, u2, · · · , uK) of K
actions where ui ∈ U . A sequence of states (x1, x2, · · · , xK+1), where xi ∈ X can
be derived if πK and xI = x1 are given by applying the state transition function,
f , on which xk+1 = f(xk, uk). There exists a goal set of states, XG ⊂ X, that give
termination to a plan. A cost function or loss function, L, is formulated as:

L(πK) =
K∑
k=1

l(xk, uk) + lF (xF ). (2.1)

The cost term, l(xk, uk), generates a real value for each xk ∈ X and uk ∈ U . F
denotes the final stage, F = K + 1. The final term, l(xF ), remains outside the sum
operator and it is defined as:

lF (xF ) =

{
0 if xF ∈ XG,
∞ i.o.c.

The objective now is to find a plan that minimizes the cost function, L. There is the
possibility that the term lf may vary for different states, x ∈ XG, to give preference
to certain final states over others.

In fixed-length plans one could naively compute all the feasible plans of length K
from xI to xG and then choose the one with best cost. However this would require
a O(|U |K) running time. Dynamic programming allows to avoid this exponential
complexity, under the idea that portions of an optimal plan are optimal by them-
selves. The optimality principle leads to an iterative algorithm called value-iteration
[28]. This algorithm iteratively computes optimal cost functions over the state-space.
There are two equivalent but still different versions on the value-iteration algorithm:
Backward value iteration and Forward value iteration. The cost functions computed
by every one of them are cost-to-go and cost-to-come values, respectively. Using
the backward iteration version we are finding optimal plans with fixed length from
every state as an initial state to a immovable final state, xF , determined at the
beginning of the algorithm. On the other hand, the forward iteration version finds
optimal plans from a fixed initial state, xI , to every other state as a final state.

A generalization can be achieved considering plans of unspecified length, where
there is not a bound on the maximal length K. However, a special action, uT , is
introduced. The elements explained in the previous formulation are here preserved
(X, U(x), f , xI and XG) with the only difference that in the cost function, L, in
equation (2.1) K is not a constant value, varying depending on the length of the
plan. The special action uT is the key component when computing optimal planning
with unfixed length, once this action is applied at a state, xk, it will be applied
forever unchanging the state and without accumulating any cost in the equation
(2.1). Then, ∀i ≥ k, ui = uT , xi = xk and l(xi, uT ) = 0. This generalization has its
own versions backward and forward for any value K on the optimization for plans
of length K or lower. Detailed information and examples can be found in [28].
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In the discrete pursuit-evasion game formulation on this work we apply discrete
optimal planning to determine the plan for every player to be executed according to
the time steps needed for the evader to step out from the pursuer’s visibility region
as a cost function.

2.3 Deep Learning

In order to understand deep learning (DL) lets first define what machine learning
(ML) is. In [63], authors define machine learning as “the study of powerful tech-
niques that can learn from experience” while IBM in [18] defines it as “a form of AI
that enables a system to learn from data rather than through explicit programming”.
From both definitions we can pick the words “experience” and “data” as the keys
to learn complex functions allowing, for example, to predict weather in some region
given geographic information (data) and a record of past weather (experience) or
to, given a question, answering it correctly in text or voice form.

DL exists as a branch in the ML techniques, just like this one is part of the larger
domain of artificial intelligence (AI). The relation between AI, ML and DL is shown
in Figure 2.1.

Figure 2.1: Artificial Intelligence, Machine Learning and Deep Learning.

Figure 2.2: Artificial neural network architecture.

DL makes use of artificial neural networks, abbreviated as ANN or simply NN
(for neural networks), in a set of techniques, named representation learning, that
allow a system to automatically discover the structures and representations from
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raw data to solve problems like feature detection, classification or regression. ANN
replace manual feature engineering and permits a system to use features to perform
a task. The adjective “deep” in deep learning comes from the structure of an ANN
which uses multiple layers of perceptrons, or artificial neurons as shown in Figure
2.2. Every neuron has multiple numeric values that can be tuned during the training
phase according to entering data in order to best relate features with the network
outputs and be used with data not seen before getting reasonable results.

Key components on any deep learning problem are:

• The data, used to learn from.

• A model (corresponding to the neural network architecture), which will tell us
how to transform the data.

• An objective function, used to quantify how well the model is performing.

• An optimization algorithm, to tune the model’s parameters in order to optimize
the objective function.

There exists three main kinds of learning problems where DL is widely applied:

• Supervised learning. Input data used to feed the system consists of feature-
label pairs. The goal is to come up with a model that maps any input to a
label prediction.

• Unsupervised learning. Opposite to supervised learning, input data only
consists in features, no labels are provided. The goal is to find patterns in the
entering data. A very common use to this is clustering.

• Reinforcement learning. Being the main topic in this document, it will be
deeply explained in section 2.4. By now, lets define it as the kind of learning
problem where no data is provided, instead an agent is allowed to interact with
an environment on which every action will correspond to a reward for the agent.
At the end, the agent will come up with a function, named policy, that maps
states or observations (for instance, locations of the agent in the environment)
to actions willing to maximize the received rewards. Reinforcement learning
has largely been applied in robotics in recent years [25].

Artificial Neural Networks

The core of deep learning are the ANN. To understand how they work, lets first
consider the behaviour of a single perceptron, which is also known as an artificial
neuron due to the similarity with respect to a biological neuron. A biological neuron
is composed of dendrites, a nucleus, the axon and the axon terminals, as shown in
Figure 2.3.

We can determine equivalencies between the biological neuron and the artificial
one (the perceptron) as:
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Figure 2.3: A biological neuron representation.

Dendrites → Input terminals
Nucleus → CPU

Axon → Output wire
Axon terminals → Output terminals

As a simplified picture, their behaviour is very similar: input signals, xi, coming
from the environment via sensors or from other neurons are captured by the input
terminals (or dendrites). This information is weighted by synaptic weights, wi, which
determine the effect of the inputs. These weighted inputs are added together in the
CPU (or nucleus) where a bias value, b, is aggregated, y =

∑
i xiwi + b. Typically,

after this summation, a nonlinear function is applied1, f(y). This processed infor-
mation is sent, via the output terminals (or axon terminals), to the output system
or it can serve as input signal to another neuron.

As a manner of explanation on how neural networks work, consider the regression
problems. They appear when we want to predict numerical values, which model
the relationship between one or more independent variables, x, (features) and a
dependent variable, y, (label or target). The prediction is denoted by ŷ. In linear
regression when the input consists in d features, ŷ is expressed as in equation (2.2).

ŷ = w1x1 + · · ·+ wdxd + b (2.2)

Given a data set, the goal is to chose w = (w1, w2, · · · , wd)> and b in equation
(2.2) such that the predictions made by the model best fit the values observed in
data.

By collecting the features in the vector x ∈ Rd and the weights in the vector
w ∈ Rd, we can express the equation (2.2) as (2.3).

ŷ = w>x + b (2.3)

Linear regression can be considered as a single layer neural network, Figure 2.4,
where every input, xi, is connected to the output in a dense layer.

A sole set of features put together in x is called a sample, example or observation.
In practice we will have to handle a whole data set which consists of n examples,
arranging this data set in a matrix, X ∈ Rn×d, on which every row consists of an

1The idea is to permit a neural network to approximate universal functions. Only with additions
and multiplications this is not possible
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Figure 2.4: Linear regression as a single layer neural network.

example and the columns represent the features of every one of them. In this way,
all of the predictions can be gathered in ŷ ∈ Rn and then equations (2.2) and (2.3)
become (2.4).

ŷ = Xw + b (2.4)

Given the features of a training data set, X, and the known labels, y, the goal
of linear regression is to find the weight vector, w, and the bias term, b, such that
given features of a new data example sampled from the same distribution as X, the
new examples label will (in expectation) be predicted with the lowest error. The
lowest error term leads us to the definition of a loss function.

The loss function quantifies the distance between the real and the predicted value
of the target. In general, the loss function will tell us how well or how bad our model
is doing. The smaller the loss, the better the prediction. Let ŷ(i) be the prediction
for an example i and the corresponding true value be y(i). The square error is given
in equation (2.5).

l(i)(w, b) =
1

2

(
ŷ(i) − y(i)

)2
(2.5)

To measure the quality of a model on the entire data set of n examples, we
simply average the losses on the training set, equation (2.6).

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) (2.6)

In practice we may add a regularization term to keep the model simple and avoid
overfitting [62] as it can be seen in equation (2.7). A regularization term measures
the model complexity, the more complex is the model the more penalization is given
to the model. On the other hand, overfitting occurs when parameters tuned while
training are well adjusted to training data but not to examples not seen before.
In Figure 2.5 overfitting is shown, where training data is represented by the red
dots and test data by the green squares, they are assumed to come from the same
distribution. The curved line represents the result of overfitting on training, whereas
the straight dashed line could be a desirable result.

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) + λR(w, b) (2.7)
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Figure 2.5: The effect of overfitting.

While training the model, the aim is to find the parameters (w∗, b∗) that minimize
the total loss across all training examples, equation (2.8).

w∗, b∗ = argmin
w,b

L(w, b) (2.8)

In linear regression this does not suppose any inconvenient since there exists a
close solution to find the desired values in equation (2.4), appending the bias b as
another value in w, equation (2.9).

w∗ =
(
X>X

)−1
X>y (2.9)

Finding the solution to a loss function converts the process into an optimization
problem where the most common method applied is gradient descent or any of
its variants like: stochastic gradient descent [3], Nesterov, accelerated Nesterov,
Adagrad, Adadelta, Adam [44].

Depending on the problem being solved by an ANN an appropriate loss function
must be chosen to expect good results. We have already seen that mean square error
(also known as quadratic loss or even L2 loss) is a common choice in a regression
problem and so it can be the mean absolute error (or L1 loss). When dealing
with classification problems a better choice could be the Hinge loss, also called
Multi class SVM loss, used for minimum-margin classification and support vector
machines. The most common choice in classification problems is the Cross entropy
loss, or Negative log likelihood, which increases as the predicted probability diverges
from the actual label. As a last example in the widely existent loss functions family,
the Multinomial logistic regression, also known as Softmax loss, normalizes an input
value into a vector of values that follows a probability distribution making it suitable
for a probabilistic interpretation in classification tasks.

Neural networks are considered to be universal function approximators so
they can be applied other than in linear regression problems. To do this, an activa-
tion function must be applied at the end of every neuron in the network which is a
nonlinear function. If there were not activation functions the whole neural network
would be a single linear transformation and in that case any neural network could
be treated as a single layer neural network. Common activation functions [40] are:
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• Sigmoid

• tanh

• ReLu

• Leaky ReLu

• Maxout

• ELU

In the first approximation of motion policies in the continuous state-space, we
use artificial neural networks to map actions from states for every player. These
neural networks are trained in a supervised fashion from data collected by applying
the discrete motion policies from the discrete optimal planning part.

2.4 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning where an agent
learns to take actions by interacting with an environment. After an action is applied,
a reward, r, is given to the agent as only feedback information and its state, s, is
modified into a new one, s′. As training goes on, the agent attempts to apply the
actions that maximise an accumulated reward, also called the expected return. The
RL process can be summarized in Figure 2.6.

Figure 2.6: The Reinforcement Learning process.

When the agent is at a state, s, it attempts to apply an action that gives it the
highest reward possible, but by doing so the agent is only aware of the present reward
and will not take into account the impact of future rewards along the current episode,
where an episode can be seen as the sequence of all states between an initial state
and a terminal state. To overcome this problem the concept of discounted expected
return or discounted expected reward Gt, equation (2.10), is introduced, which the
agent has to maximize in order to consider the rewards in the long term. In equation
(2.10), γ ∈ [0, 1) is the discount factor. The greater is γ, the more important the
long term reward becomes.

Gt = rt+1 + γrt+2 + · · · =
∞∑
k=0

γkrt+k+1 (2.10)

Typically, the environment is modeled in the form of a Markov decision process
(MDP) [43] since many reinforcement learning techniques make use of dynamic
programming [28]. MDP is a discrete-time stochastic control process, which provides
a framework in decision making situations where actions are determined partially
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at random and partially by an optimal controller. In it, an agent in a state s, takes
an action, a, which generates a new state, s′, receiving a reward, r. In the new state
reached, a new decision has to be made to chose an action and receive a new reward.
This process continues until a termination criterion is met.

An MDP is represented by a tuple (S,A,Φ, R) where:

• S is a finite set of states called the state-space.

• A is a set of actions called the action-space. This set can be dependant over
each state aj(si) ∈ A, j = {1, · · · ,m}.

• Φ(s′|s, a) is the state transition function describing the probability of reaching
the state s′ ∈ S from state s ∈ S after applying the action a ∈ A. Φ : S×A→
S.

• R(s, a) is a reward function which gives a scalar value according to the state-
actions pairs. This indicates how desirable it is of being at the state s ∈ S
and apply the action a ∈ A. R : S × A→ R.

MDP’s satisfy the markovian property on which the action to be applied, a, and
thus the reward, r, only depend on the current or present state, s, and the environ-
ment “rules” remain stationary all along the execution, this is that the transition
function, Φ, never changes.

An MDP defines a problem, and the solution to this problem comes in the form
of a policy, π, (which determines the agent’s behaviour) or in the form of a value
function, V π or Qπ. The policy, π, is a function that indicates which action to
take at state s, π(s)→ a. There could be a preferable policy, π∗, that optimizes the
amount of expected reward all over an execution. The value function is the expected
accumulated rewards that an agent anticipates to receive in a state s, V π(s):

V π(s) = Eπ{Gt | st = s}
= Eπ

{∑∞
k=0 γ

krt+k+1 | st = s
}
,

or in a state s taking an action a, Qπ(s, a):

Qπ(s, a) = Eπ{Gt | st = s, at = a}
= Eπ

{∑∞
k=o γ

krt+k+1 | st = s, at = a
}
,

At the end of the day, what we want to learn in any RL framework is the optimal
policy π∗. Like in a MDP, there are two approaches to train an agent to find π∗

distinguishing two family of methods:

• Value-based methods where the optimal policy is learned indirectly by teach-
ing the agent which state is more valuable and then taking the action that leads
to the more valuable states.

• Policy-based methods on which the optimal policy is learned directly by
teaching the agent which action to take given an state.
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There exist other criterion used to classify the different algorithms in reinforce-
ment learning based on the strategies of learning (Monte-Carlo and Temporal-
Difference methods) and the kind of policies (Off-Policy and On-Policy).

Monte-Carlo and Temporal-Difference strategies both make use of experience, by
interacting with the environment, to update the policy or the value function. The
distinction between them remains in the amount of steps needed before performing
an update:

• Monte-Carlo: Knowledge is attained incrementally episode-by-episode. The
return is calculated only after an episode terminates. A new episode begins
with updated knowledge.

• Temporal-Difference: This strategy differs to the previous one in that it
only requires a step to learn using rt+1 and an estimate of Gt (since we can
not compute it because a whole episode is not performed before).

The two kind of policies are briefly explained below:

• On-Policy: These algorithms estimate the value of a policy while using this
same policy for control.

• Off-Policy: There are two types of policies. A behavior policy, used to gener-
ate the agent’s actions, and a target policy, which is the one improved through-
out training.

Deep reinforcement learning (DRL) uses deep neural networks to solve RL prob-
lems allowing to take large input data (such like every pixel rendered to the screen
in a video game) that, in the traditional RL techniques, could not be possible to
compute due to its high dimensionality.

Nowadays, there is so much hype in reinforcement learning, being an important
framework with a lot of potential. However, there are limitants to have in mind
before deciding to apply RL to solve a problem. RL, and especially DRL, can be
sample inefficient requiring a long time for an agent to learn which actions are good
and which are bad, according to the received rewards, making several mistakes on
the way. This is why in some tasks, like self-driving cars, RL is not the appropriate
solving approach (at least not yet), unless knowledge could be transferred from
simulations to real-world [22]. Different approaches exist to reduce errors in RL
by maximizing sample efficiency [13], learning from demonstrations [16] or using
external knowledge [2].

Other aspects to take into account when deciding whether or not to apply RL
are if states can properly be defined and if an appropriate reward function can be
built in order to characterize the actions in the environment. On the other hand, if
having a convenient reward function, RL can be used in cases where the dynamics
of the environment (state transition functions) are not available or are inaccurate.

In our work, reinforcement learning is used to train an autonomous pursuer while
considering an evader with a fixed path on a given environment. We try training
the pursuer both from scratch and from the prior information gathered from the
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discrete formulation and from the artificial neural networks trained in a supervised
manner. The RL technique used in this document is explained below.

2.4.1 Policy Gradient

As we have settled previously, the objective of a reinforcement learning agent is to
maximize an expected reward following a policy. Lets define a policy, which maps a
state s to an action a, as πθ or simply as π where θ represents the set of parameters
that parameterize this policy. In our case, using an ANN, θ represents the set of
weights and biases units in the neural network representing the policy π. In the
Policy Gradient algorithms, the policy π is a probability distribution over actions
given states. It is more properly defined as πθ(a|s). Lets also define a trajectory, τ ,
as the sequence of states, actions rewards gathered by the agent during an episode
of length T , then τ can be written as:

τ = (s0, a0, r1 · · · , sT−1, aT−1, rT )

If we represent the total discounted reward for a given trajectory τ as G(τ) we can
formulate the objective function, J(θ), as

J(θ) = Eπ[G(τ)] = Eπ

[
T−1∑
t=0

γtrt+1

]
(2.11)

Note that rt+1 is the reward received from the state st if applied the action at.
The total reward R(τ) could also be applied instead of the total discounted reward
G(τ), where R(τ) =

∑
t rt+1.

If we are capable to come up with the parameters θ∗ that maximize J , then
we would have solved the task. Like in many other machine learning approaches,
gradient computation is used to iteratively approximate the solution. In this case
we use gradient ascent to update the parameters θ applying the rule in equation
(2.12) where α denotes a learning rate value.

θt+1 = θt + α∇J(θt) (2.12)

Where, according to the policy gradient theorem [61], the gradient of the objec-
tive function is expressed as:

∇J(θ) = E

[
T−1∑
t=0

∇θlogπθ(at, st)G(τ)

]
. (2.13)

The derivation of the equation (2.13) can be seen in the appendix A.
These ideas and the derivation lead to the REINFORCE [61] algorithm (see al-

gorithm 1), which follows a Monte Carlo approach, i.e., it updates the parameters
after completing a whole episode.
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Algorithm 1 The REINFORCE algorithm.

1: Initialize θ arbitrarily
2: for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT} do
3: for t = 1 to T − 1 do
4: θ ← θ + α∇θlogπθ(st, at)G(τ)
5: end for
6: end for
7: Return θ

In this chapter a theoretical framework was given covering the knowledge needed
in the comprehension of the concepts used throughout this document. In the next
chapters the solution to the target tracking problem in the discrete state-space is
formulated, a policy initialisation in the continuous state-space is proposed using
artificial neural networks and their improvement with reinforcement learning is per-
formed. Conclusions and future work are also discussed.

Chapter 2 19



Chapter 3

Environment Discretization and
Deterministic Motion Policies
with Discrete Optimal Planning

In discrete environments, where agents interact according to a certain profit and
where time is also discretized, it is often possible to establish a deterministic be-
haviour indicating which cell to visit at every time step t. This is the case in the
work by Tekdas and Isler [55] where the goal is to formulate motion policies for a
group of robotic routers in a discretized environment composed by a series of corri-
dors. This motion policies determine, for every robotic router, where to move as the
time (discretized) elapses, being the objective to provide net connection to a mobile
user. Based on the adversarial approach between the agents, we adapt the proposed
algorithm (which uses discrete optimal planning) to determine the shortest escape
trajectory length for the evader to step out of the pursuer’s visibility region.

3.1 Adaptation from Robotic Routers[55] solu-

tion to the target tracking problem under clas-

sic visibility

Being W the discretized space composed by n cells where each one of them is
represented as a tuple of numbers, in a coordinates fashion way, indicating the
free cells in the environment, let e0 ∈ W and p0 ∈ W be the evader and pursuer
initial location respectively. The tuple formed by (et, pt) is named a state. Ne(et)
and Np(pt) are the reachability or neighborhood functions (both terms are used
indistinctly throughout the text) for the evader and pursuer at time t which contains
the reachable locations of the agents in a time step from et and pt, respectively. We
want to determine if there exists an escape trajectory for the evader in a pursuit-
evasion game under classic visibility. If this trajectory exists we determine the steps
(locations in W) to be followed by the evader in a discretized time to get out of
the pursuer’s visibility region. In the case where this trajectory does not exist, we
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determine the pursuer motion policy to always keep the evader inside its visibility
region.

From the solutions in [55] and [56] in the case where the user trajectory is
unknown, the algorithm is adapted considering the case with only one pursuer and
one evader. Pursuer visibility from any cell location to the rest of the environment is
assumed to be given accurately1. We pre-compute the visibility between every pair
of cells inW and save it into a table by drawing a straight line segment between the
centers of the cells and checking overlapping on every obstacle in the environment.
If overlapping exists, visibility is said to be non-existent between those cells. The
table built is used in the algorithm 2 to consult visibility (lines 3-5).

Shortest escape length trajectories from any initial state are computed in algo-
rithm 2.

Algorithm 2 Escape Length Trajectory

1: ∀e∀p E[e, p]←∞
2: ∀e∀p
3: if e is out of sight from p then
4: E[e, p]← 0
5: end if
6: for k = 1 to n2 do
7: ∀e∀p
8: if mine′∈Ne(e) maxp′∈Np(p)E[e′, p′] = k − 1 then
9: E[e, p]← k

10: end if
11: end for

At the beginning of algorithm 2, a table E of dimension 2 and size n2 is created
whose entries are all initialized as infinite. The entry E[e, p] denotes the length
of the shortest escape trajectory for the evader from the initial agents’ locations,
e ∈ W and p ∈ W . This being said, the aim for the pursuer will be to maximize this
value meanwhile for the evader it will try to minimize it. If at the end of algorithm 2
one entry E[e, p] remains as infinite, we conclude that there is not a possible escape
trajectory for the evader from e and p, in other words, the pursuer is able to keep
the evader inside its visibility region no matter the actions applied by the evader.
In lines 2− 5 we set E[e, p]← 0 in the initial states where the evader is already out
of sight from the pursuer location, by consulting the visibility table built previously.
This is equivalent to say that the evader needs 0 steps to escape from the pursuer’s
visibility region (it has already escaped). After these initialization steps, the process
in lines 7 − 10 repeats n2 − 1 times. In these lines, the min −max relationship is
applied to the entire table, at each iteration the entry E[e, p] is updated only if the
shortest escape trajectory length is equal to k.

By setting n2 as the limit of iterations for lines 7 − 10 we assume that every
combination of locations has been visited (n positions for the evader from any n

1An elternative is to use a visibility function which tells if the evader is inside of the pursuer’s
visibility region given both the evader and the pursuer locations.
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positions for the pursuer) and visibility has been proved to exist for all of them,
thus considering any other iteration would be worthless and the escape length is
kept as infinite.

The time complexity of the algorithm is O(n6): there exist n2 entries in the
table E and on each iteration the entire table is visited which has complexity O(n2),
this process iterates for n2 times, to consider any escape length from one step to n2

steps, which sum up to the claimed complexity. In Theorem 1, the correctness and
optimality of the algorithm is showed. This theorem and its proof are taken from
[55].

Theorem 1. Suppose there exists a shortest escape trajectory such that the evader
is initially at location e and the pursuer at location p. Let τ(e, p) be the length of
this trajectory.

1. E[e, p] = k if and only if the length of the shortest escape trajectory τ(e, p) is
k.

2. E[e, p] = ∞ if and only if the pursuer can maintain the evader inside the
visibility region for all time.

Proof. Proof of (1): induction on k is used to show that E[e, p] = k ⇔ τ(e, p) = k.
The basis case E[e, p] = 0 ⇔ τ(e, p) = 0 holds due to the initialization step in

lines 2-5, which means that the evader is not inside the visibility region in the initial
state and E[e, p]← 0 is set.

In the inductive step we assume that ∀k, E[e, p] = k ⇔ τ(e, p) = k holds. We
prove that E[e, p] = k + 1 ⇔ τ(e, p) = k + 1 by showing that both directions hold
in the conditional statement.

To prove E[e, p] = k + 1 ⇔ τ(e, p) = k + 1, for contradiction, we suppose
that E[e, p] = k + 1 but τ(e, p) 6= k + 1. Due to the inductive step we have
τ(e, p) ≥ k+ 1 (Condition 1). Due to the inductive hypothesis τ(e, p) < k+ 1 would
imply E[e, p] < k + 1, which is a contradiction. When E[e, p] is set to k + 1 the
following holds due to the min-max relation (lines 8-9): ∃e′ ∈ Ne(e), ∃p′ ∈ Np(p)
such that E[e′, p′] = k and ∀p′′ ∈ Np(p), E[e′, p′′] 6= k. From the inductive hypothesis
and the inequality ∀p′′ ∈ Np(p), E[e′, p′′] 6= k, we have ∀p′′ ∈ Np(p), τ(e′, p′′) 6= k.
This gives us τ(e′, p′′) 6= k (Condition 2). This is because the evader can choose
to go to e′ and follow an escape trajectory of length k afterwards. From conditions
(1) and (2), we have τ(e, p) = k + 1 which contradicts the original claim. Thus,
E[e, p] = k + 1⇒ τ(e, p) = k + 1 holds (Condition 3).

To prove the backwards statement τ(e, p) = k + 1⇒ E[e, p] = k + 1 by contra-
diction, lets assume that τ(e, p) = k + 1 but E[e, p] 6= k + 1. From the inductive
hypothesis E[e, p] ≥ k + 1 holds (Condition 4). Let ψ be an escape trajectory of
length τ(e, p) = k + 1 with initial positions of the agents in e and p. Let e′ ∈ Ne(e)
be the evader location in the second step of ψ. Since the escape trajectory length
is exactly k + 1, ∀p′′ ∈ Np(p), τ(e′, p′′) 6= k. Otherwise the pursuer can increase the
surveillance time by going to p′ where τ(e′, p′) > k. Furthermore, ∃p′ ∈ Np(p), such
that τ(e′, p′) is exactly k (otherwise by going p′ the pursuer reaches an escape trajec-
tory of length less than k+1 which is a contradiction). By the induction hypothesis:
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∀p′′ ∈ Np(p), τ(e′, p′′) 6= k applying the min-max relation yields E[e, p] 6= k + 1
(Condition 5). From conditions (4) and (5) we have E[e, p] = k + 1, which is a
contradiction of the original statement. Thus τ(e, p) = k+1⇒ E[e, p] = k+1 holds
(Condition 6).

From conditions (5) and (6) the inductive step is proved and ∀k E[e, p] = k ⇔
τ(e, p) = k is showed.

Proof of (2):
For the second statement, the proof is very straightforward. The only values

for E[e, p] are k ≤ n2 or ∞ and the evader can escape according to its shortest
escape trajectory τ(e, p) or stay inside the visibility region of the pursuer for any
time t, since the number of iterations in lines 6-10 are never bigger than n2. Assume
that there is an escape trajectory whose escape length is τ(e, p) > n2 a cycle in the
sequence of tuples since the number of permutations of the tuples (e, p) is n2. But
then a shorter escape trajectory, which avoids that cycle, can be found which is a
contradiction. �

The time needed to compute the E table for every of the proposed environments
is shown in Table 3.1.

Environment Env1 Env2 Env3 Env4
Time 0.17 1.49 54.26 6.28

Table 3.1: Time, is seconds, needed to compute E table.

3.2 Deterministic Motion Policies (DMPs)

By now, we have determined if given an initial state, (e0, p0), there exists an escape
trajectory for the evader and the time steps needed to complete this path by simply
consulting the value E[e0, p0]. Nevertheless the behaviour for each agent has not
been yet discussed.

In the discretized environment, we will call a Deterministic Motion Policy (DMP
for short) to be the equation, or the set of equations, that rules the way an agent
has to react given the current state at a certain time step t. A time step t consists
in the motion of both agents. There exists the DMPevader and the DMPpursuer.
Evader and pursuer make decisions on where to move at every time step within the
execution of a game, assuming that they have access to information that helps to
determine the accurate locations of each other. For the evader it is enough to know
its current position and to stare at the pursuer’s location whereas for the pursuer,
at time t, it requires to know the evader’s position et+1 in order to apply its DMP
to move from pt to pt+1. This is illustrated in the following example.

Consider the case of a corner as in Figure 3.1 where both agents move in a
4-connectivity neighborhood2 meaning no escape for the evader due to the close-
ness between the players. Black cells represent obstacles where the agents cannot

2If an agent is in a cell with coordinates (i, j) at time step t it can move to any valid cell (i±1, j)
or (i, j ± 1) in time t+ 1.
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step into, green cells are free space inside the visibility region of the pursuer which
increases from pt (Figure 3.1a) to pt+1 (Figure 3.1b) due to the pursuer motion
(visibility between cells is considered existing if a straight segment of line can be
drawn from the center of each cell touching at most the corner of an obstacle), white
cells are free space outside the visibility region. Imagine that at time t the evader
moves first from et to et+1 stepping out from the visibility region of the pursuer at
pt (Figure 3.1a), there is a strategy for the pursuer to maintain visibility on the
evader at time t+ 1, that is to move to the location pt+1 (Figure 3.1b). Based only
on its visibility, the pursuer would not be able to guarantee surveillance the time
computed in the table E. This is why it is needed for it to know the motion for the
evader at time t. This scene appears in the limits of the visibility region, that is,
where the evader can step out of the visibility region in one step but the pursuer is
able to prevent it also moving one step.

(a) In time step t+ 1 the evader moves
from et to et+1 and steps out from the

visibility region (in green).

(b) Pursuer is able to bring back the
evader inside the visibility region in

time step t+ 1.

Figure 3.1: Pursuit-evasion in the limit of the visibility region.

In our approaches, we assume that the pursuer knows the exact evader’s location
at time step t+ 1.

Given the positions et and pt, motion policies are split into three different cases
according to the E[et, pt] value:

• Case E[et, pt] =∞

• Case 0 < E[et, pt] <∞

• Case E[et, pt] = 0

For each one of these cases the evader and pursuer DMP are explained below.
Rather than using a DMP to directly map an action from a given state, st = (et, pt),
we compute the players locations et+1 and pt+1. Then, an action is selected as
a function of et and et+1 for the DMPevader, and pt and pt+1 for the DMPpursuer.
Assuming a matrix-like localisation3 in the environments, the DMPevader determines
the action to be applied at time step t according to equation 3.1. In the same way,
the DMPpursuer is stated in equation 3.2.

3Coordinates are set with the tuple (y, x) where y ∈ Z+ and x ∈ Z+. y values go from top to
bottom, x values go from left to right.
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DMPevader(et, et+1) =


right if et+1 − et = (0, 1)
up if et+1 − et = (−1, 0)
left if et+1 − et = (0,−1)
down if et+1 − et = (1, 0)

(3.1)

DMPpursuer(pt, pt+1) =


stay if pt+1 − pt = (0, 0)
right if pt+1 − pt = (0, 1)
up if pt+1 − pt = (−1, 0)
left if pt+1 − pt = (0,−1)
down if pt+1 − pt = (1, 0)

(3.2)

3.2.1 Case E[et, pt] =∞
In this case, the evader can adopt any strategy since the pursuer guarantees to keep
track of it for all time. For instance, the evader can hurry to the closest corner
from its current location or an external user could have remote access to control its
motion.

Let pt be the pursuer current location and et+1 the known evader’s position at
time step t+ 1, the pursuer next location is determined as follows:

pt+1 =

{
pt if E[et+1, pt] =∞
argmaxp′∈Np(pt)E[et+1, p

′] i.o.c
(3.3)

As it can be seen in equation (3.3), the pursuer location can remain unchanged
from time step t to time step t+ 1 if it is guaranteed that the value in the E table
is still infinite even if the evader is now at position et+1.

3.2.2 Case 0 < E[et, pt] <∞
In this case the evader is able to escape from the pursuer’s visibility region. The
time steps needed for the escape are given by the entry E[et, pt]. Escape is achieved
if the evader goes from et to et+1 given by equation (3.4) every time.

et+1 = argmin
e′∈Ne(et)

max
p′∈{pt,Np(pt)}

E[e′, p′] (3.4)

As in case E[et, pt] = ∞, the pursuer needs to consider the evader’s location at
time step t+ 1. Pursuer next location is given by the next equations:

S =

{
p | argmax

p′∈{pt,Np(pt)}
E[et+1, p

′]

}
pt+1 = argmin

S
||et+1 − S||2

(3.5)

When computing S in equations (3.5) we are looking for a position in the neigh-
borhood, Np(pt), of the pursuer, including its current location, pt, that maximizes
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the value in the table E according to the evader new location, et+1. This search
could end up with more that one solution, we pick then the closest one to the evader
in et+1. Like this, even when the evader will escape, there will be a pretense of
surveillance with the pursuer following the evader until it is out of sight. Besides,
this particular behavior might be useful when the evader does not follow its optimal
strategy, positioning the pursuer in an advantageous location for keeping surveillance
in the future.

Lets consider an example in a simple environment with only one obstacle sur-
rendered by free spaces to show this case. In Figure 3.2 both agents move in a
4-connectivity neighborhood (just like in Figure 3.1), and the range of the visibility
of the pursuer is unbounded, meaning that it can see until the border of the environ-
ment or until an obstacle blocks the view. Green cells represent free spaces inside
the visibility region of the pursuer at time step t, white cells are free spaces outside
the visibility region and the black ones represent obstacles. In Figure 3.2a the initial
state is set, on which the length of the escape trajectory is E[e0, p0] = 3. This num-
ber can be seen in the upper right corner of the pursuer location, p0. In Figure 3.2b
the evader moves from e0 to e1 at time step t = 1, the numbers in the cells in the
neighborhood of p0 represent the length of the escape trajectory if pursuer moves
to that location; as it can be seen, there are four locations with the same value, 2,
including the current location. Since the pursuer already knows that the evader will
escape, it can even stay at the location p0 without changing the outcome, however
there will not be a sense of tracking by the pursuer. In Figure 3.2c the pursuer
moves from p0 to p1 also at time step t = 1 to give a sense of “following” the evader
by choosing the closest cell to the evader among the options with highest value. In
Figure 3.2d evader moves from e1 to e2 at time step t = 2, once more the length
of the escape trajectories given the options in the pursuer neighborhood appears in
the upper right corner of every location with the same value for all of them in this
case. In Figure 3.2e pursuer moves from p1 to p2 at time step t = 2 to continue the
sense of “following”. Finally in Figure 3.2f evader moves from e2 to e3 at time step
t = 3 stepping out the visibility region. Since the pursuer is unable to re-catch the
evader (this can be seen because of the zero value in the neighborhood of p2) the
evader has escaped.

As it could be seen, the purpose of equations (3.5) is to maximize the values in
the E table as the evader moves, and at the same time to move as close as possible
to it. Otherwise, in cases where the evader will escape in a finite amount of steps,
the pursuer could just remain at its initial state without changing the final result
(evader escaping).

3.2.3 Case E[et, pt] = 0

In this case the evader is already outside the visibility region of the pursuer’s location
at the beginning of the stage, therefore there is nothing to do: the evader has won.
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(a) Initial state. The length of the escape
trajectory is E[e0, p0] = 3.

(b) Evader moves from e0 to e1 at time
step t = 1.

(c) Pursuer moves to p1 location which is
the closest to evader position e1.

(d) Evader moves from e1 to e2 at time
step t = 2.

(e) Pursuer moves to p2 location which is
the closest to evader position e2.

(f) Evader moves from e2 to e3 and
outside the visibility region at time step

t = 3.

Figure 3.2: Pursuer follows the evader in cases where the escape length trajectory
is finite.

3.3 Deterministic Motion Policies (DMPs), Sim-

ulations

Simulations have been run testing several initial states on the environments proposed
in chapter 1 applying the equations (3.1), (3.2), (3.3), (3.4) and (3.5). Some of the
simulations are shown below. All along the simulations in the remaining of the
document, the evader is represented by a red square and the pursuer by a blue
diamond, their coordinates are considered to be in a matrix-like fashion.

In Figure 3.3 a simulation over the environment Env1 is presented with the initial
condition E[e0, p0] = ∞. The evader surrounds permanently the obstacle in the
center of the environment. A link to a video showing the simulation is here4. Figure
3.4 shows a simulation in Env3 where E[e0, p0] = 7. The evader’s path sequence is
followed until it steps out to the pursuer’s visibility region and the pursuer is not
able to re-catch it. A link to a video showing the simulation is here5.

4https://youtu.be/XvBjmohmW E
5https://youtu.be/jWkCwXGXThs
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(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5

(g) t = 6 (h) t = 7 (i) t = 8

(j) t = 9

Figure 3.3: Simulation in Env1 with E[e0, p0] =∞.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

(e) t = 4 (f) t = 5 (g) t = 6 (h) t = 7

Figure 3.4: Simulation in Env3 with E[e0, p0] = 7.
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In this chapter, we have covered the discrete state-space case, where the locations
for both the pursuer and the evader are set as cell representation in a discretized
environment with obstacles. We established an algorithm, using discrete optimal
planning, to determine the shortest escape length for the evader given the initial
players’ positions. This algorithm also allows to tell if the pursuer is able to track
the evader indefinitely. Motion policies, named DMPs, for Deterministic Motion
Policies, were formulated giving optimal strategies for both agents based on the
escape length trajectory in the initial state, and simulations examples over two
environments were shown. In the aim of applying Reinforcement Learning in our
problem, in the next chapter we first train artificial neural networks to mimic the
actions formulated by the DMPs of this chapter. Reinforcement learning is covered
in chapter 5.
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Data set Generation and Motion
Policies in the Continuous
State-Space with Artificial Neural
Networks

Once the tracking problem is solved in the discrete state-space, the next step is to
create a first motion policy approximation in the continuous state-space by imitating
the actions applied by the agents while discrete optimal planning was used. In this
chapter, we present the use of artificial neural networks (ANNs) to bring up motion
policies in the continuous state-space domain in a supervised fashion, which will
be called SMPs for Supervised Motion Policies. One SMP is defined for the evader
and other for the pursuer. In the next sections we describe the ANNs architecture
used into the SMPs, the way data is gathered from the discrete formulation of the
problem and a way of collecting more information from a given environment. Finally,
we show the obtained results after training and testing the SMPs in Env1 1.

4.1 Supervised Motion Policies (SMPs)

The core in every of the SMPs is the ANN. An ANN must be first defined by
their input and output signals. Once an ANN is trained, it is implemented in the
application it was designed for in a feed-forward mechanism by providing a valid
input signal and getting an output value. In our case, every SMP (SMPevader and
SMPpursuer) is constituted by an ANN. Recall that we are proposing an approach in
the 2D space where the pursuer knows the evader location in the next time step, et+1,
thus, the input for every SMP is defined separately as follows: (1) for the SMPevader,
it is the evader and pursuer positions at time step t; (2) for the SMPpursuer, it is the
known evader position at time step t + 1 and the pursuer location at time t. Each
agent position is defined by two values, namely, their y and x coordinates. This
order in the coordinates values is considered since it was the one used in the discrete

1For the results in the rest of the environments please consult appendix B.
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(a) SMPevader input/output
architecture.

(b) SMPpursuer input/output
architecture.

Figure 4.1: Evader and pursuer SMP architectures. Their corresponding inputs
and outputs are shown.

formulation (a matrix-like location); nevertheless, any another convention could be
used. The inputs are illustrated in Figure 4.1 where the location of the evader is
given by the tuple (ey, ex) and of the pursuer by (py, px).

The outputs of the SMPs correspond to the agents’ action to apply at time step
t, ae for the SMPevader and ap for the SMPpursuer. Opposite to the DMPs where we
needed first to calculate the agents next positions, a SMP maps directly a state to
an action.

Even though from this stage the games are executed in a continuous state-space,
the actions remain discrete. An action corresponds to moving an agent in
discrete direction right, left, up or down according to the encoding for every player
explained below. Once the direction chosen, the player moves one unit in distance
with respect to the environment. We are seeking to have a continuously moving
evader, meanwhile, the pursuer is allowed to stay still from time step t to t + 1
as it was formulated in the discrete state-space scenario. Thus, the codification is
different for every player. This codification is shown below and in Figure 4.2, where
every direction represented by the arrows is coded into the integer value on it. It
can also be appreciated in Figure 4.1 that an action is chosen, among the possible
ones, after applying a Softmax function2 in the output layer. The best action to
chose, ae and ap respectively, is the one with the highest value in this Softmax layer.

Evader actions codification:

• 0: move right

• 1: move up

• 2: move left

• 3: move down

Pursuer actions codification:

• 0: stay still

• 1: move right

• 2: move up

• 3: move left

• 4: move down
2The Softmax function is widely used in multinomial classification. It turns a vector of k

real values into a normalized vector of k values that sum 1, so that they can be interpreted as
probabilities.
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(a) Evader actions codification. (b) Pursuer actions codification.

Figure 4.2: Players actions codifications.

For our purpose, each SMP is constituted by an ANN which in turn is compre-
hended of 4 hidden layers with 256 neurons per layer, each one of this layers uses
the ReLU function as activation except for the last one where a Softmax function is
required. Connections are made in a dense fashion. This architecture was proposed
and preferred among other configurations after trying them all and measuring their
performance. These architectures can be seen in appendix B.

4.2 Data collection for training

Once a neural network architecture is defined, the next step is collecting data. Data
is collected by applying the DMPs constructed in chapter 3 in a given environment.
Since there are two neural networks (one per SMP), two data sets are built. The first
one of them is made up for the evader in which the features of each sample represents
every state in the environment where there is visibility between the players and the
corresponding label is the action applied by the evader in that state, the features
and label are shown in Table 4.1. For the case of the pursuer, remember that it
knows the evader location at time step t + 1, thus its data set is constructed by
considering the states where there is visibility, as in the evader case, and all those
cases where the pursuer can establish visibility by taking one step. The features and
label in one sample of this data set can be seen in Table 4.2.

ey ex py px ae

Table 4.1: Features and label (action) in a sample in the evader data set.

ey ex py px ap

Table 4.2: Features and label (action) in a sample in the pursuer data set.

Every state is considered to be in the center of the cell which give us a localisation
in the continuous space. For instance, consider the case in Figure 4.3a, where the
evader’s action is represented by the respective arrow. This example is added into
the data set as in Figure 4.3b according to the actions codification explained in the
previous section.
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(a) Example of states and actions added to the data set.

(b) The evader location is saved as the first two features in the example, the pursuer
locations goes next and finally the evader’s action as the label.

Figure 4.3: Evader data set sample construction.

4.2.1 Increasing environment resolutions to grow informa-
tion

It is well known that neural networks require a huge amount of data. The more data
available for training the better a neural network will perform in generalization. For
this reason, as a manner to expand the volume of data available per environment,
increasing the grid resolution is proposed. This is made by dividing every cell in
the original environment grid so that smaller cells will be formed inside. Once this
division is done, the centers of the new cells are considered to be possible locations
for the agents to step into and the equations formulated in chapter 3 for the DMPs
are employed to come up with a larger data set.

We say to be working with an environment with resolution 2 if a cell is divided
as in Figure 4.4a or to be working with resolution 3 if a division like in Figure 4.4b
is preferred.

(a) Cell increased to resolution 2. (b) Cell increased to resolution 3.

Figure 4.4: Examples of increased resolution over a cell.

When dealing with an augmented resolution in simulation, one step performed
by the agents (moving from one location to the next) will be affected since a smaller
distance will be covered, thus a time step duration has to be indirectly proportional
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Environment Time
Env1 0.17sec

Env1 res2 37.34sec
Env1 res3 39min 31.34sec

Env2 1.49sec
Env2 res2 11min 33.99sec
Env2 res3 9h 28min 56.2sec

Env3 54.26sec
Env3 res2 9h 56min 35.43sec

Env4 6.38sec
Env4 res2 1h 15min 10.03sec

Table 4.3: Time needed to compute E table.

to the resolution used in a given environment. For instance, if dealing with resolu-
tion 2, the time between time steps has to be half the time required in that same
environment with no increased resolution, and so on.

We propose expanding Env1 and Env2 into resolutions 2 and 3, meanwhile Env3
and Env4 into resolution 2 only.

In these resolution augmented environments, we have also computed the E table
explained in chapter 3. The complete time results for computing the E table are
shown in Table 4.3. It can be seen how time grows by increasing the resolution due
to the use of dynamic programming in the optimal motion planning process.

4.3 SMPs Training on the Simulated

Environments

In this section, we present the results over training the ANNs in the SMPs for both
players in the Env1 environment. The results for the rest of the environments, and
for the ones with augmented resolutions, can be found in appendix B.

Typically, when training an ANN, samples in the data set are split into a training
set and a validation set. The observations in the first are used for training, as its
name suggests, and the ones in the latter are used to compare the ANN performance
to check how well is the network doing on generalizing and avoiding overfitting. We
propose a random data set partition of 80% for the training set and 20% for the
validation set on every environment data. This partition can be seen in Table 4.4
where the amount of samples for every player is shown. In Figure 4.5, the total of
observations on each data set are split according to the action (label) assigned to
it and shown in form of percentage of observations per action. We can see that, at
least for the pursuer’s case, this distribution is unbalanced since more than 40% of
the observations are assigned with action 0 (stay), while observations with actions 2
(move up) and 4 (move down) correspond to less than 10% each. While training, the
Cross entropy loss function is used since it is preferred when dealing with unbalanced
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train sets, as it is the case for most of the rest of the data sets (see appendix C).

Samples, train and validation partition
Evader Pursuer

Total samples 1209 1425
Training samples 967 1140

validation samples 242 285

Table 4.4: Number of total observations, observations for training and validation.

(a) Evader’s actions distribution. (b) Pursuer’s actions distribution.

Figure 4.5: Data set distribution of action labels for both players in Env1.

In every training case, a batch size of 256 is fixed and a learning rate of value
1e − 3 is chosen. Other aspects like the number of epochs required for training,
the optimizer and the results over accuracy and loss values are listed in Table 4.5.
In Figure 4.6, the loss function values, for the training and validation sets, along
the epochs in training are displayed for both players. It can be seen how this value
decreases, meaning that the neural networks weights are well adjusting. Finally, in
Figure 4.7, the accuracy values, along the epochs, are shown representing how well
are the neural networks doing on learning the right action given a state in both the
training and validation sets. This value increases until it settles; at this moment,
training is stopped.

Results at the end of training
Evader Pursuer

Epochs 600 700
Optimizer Adam Adam

Training time 1min 38.7sec 2min 16.2sec
Latest train accuracy 96.38% 92.11%

Latest validation accuracy 85.89% 86.62%

Table 4.5: Training results for Evader and Pursuer in Env1 environment.
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(a) Evader loss function values. (b) Pursuer loss function values.

Figure 4.6: Evolution of loss function over epochs for the training and validation
sets for both players in Env1.

(a) Evader accuracy. (b) Pursuer accuracy.

Figure 4.7: Accuracy over epochs for the training and validation sets for both
players in Env1.

The accuracy metrics in the previous results measure how well a neural network
does on learning the right action computed with the DMP given a state. Neverthe-
less, this measurement is meaningless in the execution of the games, considering a
game as a sequence of actions applied by both players, since a player could start in
a non-well learned state applying a bad action spoiling the rest of the game, and
considering that now the players can start a game in any place in the continuous
space inside the workspace W .

As a manner of quantifying the neural networks performance in the simulation
of games, we propose comparing the evader’s escape length in time steps for several
simulations with random initial states in four game scenarios:

• Evader evaluation: SMPevader vs DMPpursuer.

• Pursuer evaluation: SMPpursuer vs DMPevader.

36 Chapter 4



Game Based Deep Reinforcement Learning for Target Tracking

• Evader and Pursuer simultaneous evaluation: SMPevader vs SMPpursuer.

• Evader and Pursuer simultaneous evaluation with generalization: SMPevader
vs SMPpursuer.

In the first three game scenarios, all initial states are coincident to the center
of cells in the discrete state-space formulation. In the fourth game scenario, the
initial states are perturbed from the center of the cells by adding a 2D Gaussian
noise with mean, µ, equals zero and standard deviation, σ, equals 1/(4r) to the cell
center, where r is the resolution of the environment which could be an integer value
in the set r ∈ {1, 2, 3}, so 95% of the perturbed initial states will remain inside the
cell they were extracted from3. We consider cell locations in order to have access to
ground truth information, in this case the evader’s escape length provided by the
table E, and compare the SMPs performance to it.

Since we have access to the total number of states with visibility (from the com-
puted data sets), we can use the formula in equation (4.1), taken from [34], to
estimate a sample size and run experiments to check the neural networks perfor-
mance. This formula gives us an idea about the sample size needed given the total
amount of data in a population. Other parameters must be provided, such as the
estimation error and the trust level.

m =
NZ2

4e2(N − 1) + Z2
(4.1)

In (4.1), m is the total simulations considered in the statistical analysis, N is
the total of states in the discrete environment where there exists initial visibility, e
is set to 0.05 accepting 5% of estimation error, Z is equal to 1.96 indicating a 95%
trust level. In the case of the environment Env1, 292 simulations are considered for
the evaluations.

In each of the four game scenarios, the evaluations are presented in two ways: a
plot representation and a confusion matrix representation. This is done taking into
consideration the evader’s escape length achieved with the DMPs as ground truth.

In the plot representation, the horizontal axis shows the difference, in time steps,
between the achieved evader’s escape length and the one resulting after applying the
DMPs from a given initial state. The vertical axis shows the percentage of simula-
tions for each difference in the horizontal axis. The percentage in the first bin (zero
difference) means that the escape length using the SMP matches the expected re-
sult with the DMP. This comparison analysis is used since the E table only provides
information about the evader’s escape length given an initial state. In Figure 4.8,
we present the results for the environment Env1. In the Evader evaluation (Figure
4.8a) 40% of the simulations presents the same evader’s escape length as if using
the DMPevader, while in the Pursuer evaluation (Figure 4.8b) nearly 90% of the
simulations achieved this length. We can conclude that learning is more favorable
for the pursuer SMPpursuer. It is harder to tell which of the SMP is better learning

3Recall that for the normal distribution, the values less than two standard deviation from the
mean account for 95.45% of the distribution.
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(a) Evader evaluation. (b) Pursuer evaluation.

(c) Evader and Pursuer simultaneous
evaluation.

(d) Evader and Pursuer simultaneous
evaluation with generalization.

Figure 4.8: SMP performance as a comparison of the evader’s escape lengths in
different cases.

in the Evader and Pursuer simultaneous evaluation cases (Figures 4.8c and 4.8d)
since both policies have similar performance. Nevertheless, we can see that mostly
the evader’s escape length presents a difference of 0 or 1 with respect to the DMPs
which can be interpreted as a good performance.

The employed confusion matrices compare whether the evader could or not es-
cape. To this end, the format shown in Table 4.6 is used. Here X represents the total
simulations where the evader escapes both using the DMPs for both of the play-
ers and the combination of policies in the evaluation analysis (Evader evaluation,
Pursuer evaluation, Evader and Pursuer simultaneous evaluation and Evader and
Pursuer simultaneous evaluation with generalization). Y is the total simulations
where the evader escapes using the DMPs but it does not using the combination
of policies in that evaluation. Z is the total simulations where the evader escapes
applying the combination of policies in the evaluation but it does not while using
the DMPs. Finally, W represents the number of simulations where the evader does
not escape with the DMP neither with the combination of policies in evaluation. It
is important to note that in the Evader evaluation case, Z is always equal to zero
since the SMPevader cannot do better than the DMPevader (since it was formulated
using optimal motion planning). Similarly, in the Pursuer evaluation case, Y is
equal to zero for the same reason considering the pursuer’s SMP and DMP. In an
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ideal result, both values Y and Z would be equal to zero which would mean that
there is not difference applying the SMPs or DMPs, however this result is never
achieved.

In Tables 4.7, 4.8, 4.9 and 4.10 we present the obtained results for the four
evaluation cases considered in the environment Env1. The nature of the game is
here presented, in the counter diagonal values, where if the pursuer mistakes a single
step it can lose visibility affecting substantially its statistics in the simulations where
there should be no escape. On the other hand, if the evader makes a mistake the
game can continue ending in a later escape. The game is less forgiving for the evader
than for the pursuer.

Evaluation policies

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
X Y

Evader
does not
escape

Z W

Table 4.6: Confusion matrix format comparing the evader’s escape.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
118 22

Evader
does not
escape

0 152

Table 4.7: Results for the case Evader
evaluation.

DMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
140 0

Evader
does not
escape

136 16

Table 4.8: Results for the case Pursuer
evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
138 2

Evader
does not
escape

118 34

Table 4.9: Results for the case Evader
and Pursuer simultaneous evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
132 8

Evader
does not
escape

78 74

Table 4.10: Results for the case Evader
and Pursuer simultaneous evaluation

with generalization.
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In this chapter, we have presented the architecture of the ANNs inside the SMPs
used in the experiments as our first motion policies in the continuous state-space,
as well as the manner in which data sets are constructed and a form of disposing
a larger amount of data to train these neural networks. Results and evaluations
were also presented achieving a considerable learning for a first approximation in
the continuous state-space. In the chapters to come, the application of DRL is
explained and results over different proposed environments are shown.
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Chapter 5

Motion Policies Improvement with
Deep Reinforcement Learning

We have covered the tracking problem in a discrete state-space using optimal plan-
ning and formulating the DMPs (Deterministic Motion Policies). Then, we have
moved to the continuous state-space applying supervised learning formulating the
SMPs (Supervised Motion Policies) to attempt to mimic the results in the discrete
state-space. In this chapter, we move forward in the continuous state-space and use
DRL techniques, both to learn from scratch and to learn from the SMPs in order
to enhance the already achieved performance. In particular, we adapt the REIN-
FORCE algorithm1 to our purposes. We explain these changes in the sections to
come. However, we only employ these algorithms to make the pursuer learn while
setting a fixed trajectory for the evader as a first approach of employing DRL in
our problem and due to the training time. We focus on two different environments,
due to the time required for training and evaluation. At the end, we compare the
achieved performance using supervised learning and DRL in a given set of initial
states on every environment. It is worth to say that we continue considering the ac-
tions for every player to be in a discrete action-space: the same formulation proposed
in the previous chapter.

5.1 The REINFORCE Algorithm Adaptation

In this section, we explain the adaptations implemented in the REINFORCE algo-
rithm to bring us to our three proposed algorithms: Policy Gradient with ε-greedy
exploration (algorithm 3), Policy Gradient with ε-greedy exploration and initializa-
tion (algorithm 4) and Policy Gradient with ε-Master assistance (algorithm 5). At
the end of each algorithm, a policy is returned conformed by an artificial neural
network whose input is a continuous state and output is the action to be applied
by the pursuer at that given state. In the first algorithm, training from scratch
is implemented getting as result the RMP, for Reinforced Motion Policy. In the
second algorithm, the weights in the SMPpursuer are used to initialize one of the

1Algorithm 1 in chapter 2.
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Figure 5.1: Exponential decay graph with εmax = 1, εmin = 0.1 and λ = 0.001.

neural networks in the algorithm. After that, the DRL process is executed as in the
first approach. The resulting policy is called the IRMP, for Initialized Reinforced
Motion Policy. In these two algorithms, an exploration-exploitation trade-off is em-
ployed, as opposite to the REINFORCED algorithm, to generate the transitions2

on each trajectory, favoring an uniform exploration in the action-space at the be-
ginning of training and a policy exploitation at the end. In the third algorithm, the
SMPpursuer is now used as a master policy to learn by generating transitions with
it in the training process. As training goes by, more transitions are generated using
the policy still in training and less by the SMPpursuer. Uniform exploration is no
longer used in this last algorithm. The produced policy is called now MRMP, for
Master Reinforced Motion Policy.

The way exploration-exploitation in algorithms 3 and 4 is done, is by implement-
ing an epsilon-greedy strategy as in the Q-learning [60] approach. In a similar way,
in algorithm 5, we use this epsilon value to determine a transition either from the
master policy or from the still learning neural network. In both cases, the epsilon
value decreases exponentially from an εmax value approaching asymptotically an εmin
level according to a decay rate value, λ, and the current number of episodes while
training. Figure 5.1 shows an example of exponential decay with values εmax = 1,
εmin = 0.1 and λ = 0.001.

Another modification in the three proposed algorithms with respect to REIN-
FORCE, is the incorporation of an evaluation part during training and a training
policy network. After the weights in the training policy are updated, the policy is
evaluated using the best action (the one with highest value in the softmax neural
network layer) in every time step within a series of evaluation initial states. Every
time a better result occurs as the sum of the obtained rewards in the evaluation, the
weights in the training policy network are copied into the RMP, IRMP or MRMP
network, respectively, returned at the end of every algorithm. This is done to keep
the best version of the training policy at the end of training. In practice, we use
batches in training so the evaluation part comes after a batch is completed and used
to update the training policy weights.

Algorithm 3 begins with a random initialization of the policy weights θRMP and

2Moving from one state to another.

42 Chapter 5



Game Based Deep Reinforcement Learning for Target Tracking

Algorithm 3 Policy Gradient with ε-greedy exploration

1: Inputs: Environment, T , α, γ, εmin, εmax, λ
2: Initialize pursuer policy weights θRMP randomly
3: Initialize training policy weights θtrain randomly
4: Rbest = 0
5: for t = 0 to T do
6: Set players on their initial state, s0
7: for h = 0 to H − 1 do
8: ε← εmin + (εmax − εmin)e−λt

9: Generate a random value x from distribution X ∼ Unif(0, 1)
10: if x < ε then
11: Choose an action ah(sh) uniformly from {a0, a1, a2, a3, a4}
12: else
13: Choose an action ah(sh) using πθtrain
14: end if
15: end for
16: Collect trajectory τ = {s0, a0, r1, · · · , sH−1, aH−1, rH}
17: Estimate return: R(τ) = (G0, G1, · · · , GH−1)
18: where Gk =

∑H
i=k+1 γ

i−k−1ri
19: Compute loss value: L(θtrain)←

∑H−1
i=0 log πθtrain(si, ai)Gi

20: Update train policy weights: θtrain ← θtrain + α∇θtrainL(θtrain)
21: Generate trajectory {s0, a0, r1, · · · , sH−1, aH−1, rH} ∼ πθtrain
22: Get trajectory accumulated reward: R←

∑H
i=1 ri

23: Update pursuer policy weights:
24: if R > Rbest then
25: θRMP ← θtrain
26: Rbest ← R
27: end if
28: end for
29: Return πθRMP

θtrain (lines 2-3) for the RMP and the training policy, respectively. A value Rbest

is initialized to 0 (line 4); this value will be used later to update the weights θRMP

in the RMP network. Next, we iterate for the total number of episodes, T , (lines
5-28). We set the players on their initial state s0 (line 6) from where a trajectory
will be collected. For every transition in this trajectory (lines 7-15), the ε value is
determined and an x value is grabbed from an uniform distribution X ∼ Unif(0, 1)
(lines 8-9). If x is lower than ε an action is chosen randomly, in an uniform fashion,
from the available set of actions on that given state ah(sh), otherwise, an action
is taken applying the policy πθtrain (lines 10-14). This will favor a random action
selection at the beginning of training to provide more exploration at this stage, and
more policy exploitation at the end as the ε value begins to fade. After a trajectory
is collected, the returned discounted reward is estimated (lines 16-18), which is used
to compute the loss value (line 19) and update the weights θtrain applying gradient
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ascent (line 20). Once this update is done, a new trajectory is generated (line 21)
to evaluate the training policy performance by computing the accumulated reward
R (line 22). If R is greater than Rbest, the θtrain weights are copied to the θRMP

weights (lines 23-27). This helps us to keep the best current trained policy. At the
end of this process, the RMP is returned.

Algorithm 4 Policy Gradient with ε-greedy exploration and initialization

1: Inputs: Environment, T , α, γ, εmin, εmax, λ, θpretrained
2: Initialize pursuer policy weights θIRMP randomly
3: Initialize training policy weights: θtrain ← θpretrained
4: Rbest = 0
5: for t = 0 to T do
6: Set players on their initial state, s0
7: for h = 0 to H − 1 do
8: ε← εmin + (εmax − εmin)e−λt

9: Generate a random value x from distribution X ∼ Unif(0, 1)
10: if x < ε then
11: Choose an action ah(sh) uniformly from {a0, a1, a2, a3, a4}
12: else
13: Choose an action ah(sh) using πθtrain
14: end if
15: end for
16: Collect trajectory τ = {s0, a0, r1, · · · , sH−1, aH−1, rH}
17: Estimate return: R(τ) = (G0, G1, · · · , GH−1)
18: where Gk =

∑H
i=k+1 γ

i−k−1ri
19: Compute loss value: L(θtrain)←

∑H−1
i=0 log πθtrain(si, ai)Gi

20: Update train policy weights: θtrain ← θtrain + α∇θtrainL(θtrain)
21: Generate trajectory {s0, a0, r1, · · · , sH−1, aH−1, rH} ∼ πθtrain
22: Get trajectory accumulated reward: R←

∑H
i=1 ri

23: Update pursuer policy weights:
24: if R > Rbest then
25: θIRMP ← θtrain
26: Rbest ← R
27: end if
28: end for
29: Return πθIRMP

Algorithm 4 presents essentially the same steps and structure than algorithm 3
except that the training policy weights are initialized by taking the weight values
from a pretrained neural network, that is another input to the algorithm. This pre-
trained network is assumed to behave reasonably well in the given environment. In
our case, the weights are provided by means of the weights of the SMPpursuer net-
work trained in the last chapter. The resulting policy is called IRMP, for Initialized
Reinforced Motion Policy.
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Algorithm 5 Policy Gradient with ε-Master assistance

1: Inputs: Environment, T , α, γ, εmin, εmax, λ, πθMaster

2: Initialize pursuer policy weights θMRMP randomly
3: Initialize training policy weights: θtrain
4: Rbest = 0
5: for t = 0 to T do
6: Set players on their initial state, s0
7: for h = 0 to H − 1 do
8: ε← εmin + (εmax − εmin)e−λt

9: Generate a random value x from distribution X ∼ Unif(0, 1)
10: if x < ε then
11: Choose an action ah(sh) using πθMaster

12: else
13: Choose an action ah(sh) using πθtrain
14: end if
15: end for
16: Estimate return: R(τ) = (G0, G1, · · · , GH−1)
17: where Gk =

∑H
i=k+1 γ

i−k−1ri
18: Compute loss value: L(θtrain)←

∑H−1
i=0 log πθtrain(si, ai)Gi

19: Update train policy weights: θtrain ← θtrain + α∇θtrainL(θtrain)
20: Generate trajectory {s0, a0, r1, · · · , sH−1, aH−1, rH} ∼ πθtrain
21: Get trajectory accumulated reward: R←

∑H
i=1 ri

22: Update pursuer policy weights:
23: if R > Rbest then
24: θMRMP ← θtrain
25: Rbest ← R
26: end if
27: end for
28: Return πθMRMP

Finally, in algorithm 5, we make a slightly different use of the ε value and
the pretrained neural network which is called now the master policy, πmaster. The
SMPpursuer policy is used to this aim. The rest of the inputs remain the same as in
the previous algorithms. It is not necessary to initialize the training policy weights,
θtrain, with specific values, so a random initialization is preferred. The same as for
the MRMP weights θMRMP (line 2). The ε value is computed as before, but this
time, it is used to determine whether to generate a transition by applying the mas-
ter policy, πmaster, or the training policy, πtrain (lines 8-14). Again, the returned
discounted reward is estimated, which is then used to calculate the loss value and
update the θtrain weights (lines 16-19). At the end the MRMP is returned, which
stands for Master Reinforced Motion Policy.
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5.2 Training Results and Simulations

Before going into the results and simulations, we must first define the environments
where reinforcement learning is to be applied and the evader’s trajectories to be
executed on each of them. Recall that we are only considering a RL approach for
the pursuer, resulting in a pursuer that watches over an evader that follows a fixed
trajectory. We consider two training cases based on the environments Env1 and
Env3. The proposed trajectories can be appreciated in Figure 5.2, in which the red
spots are the locations, at the center of the cells, where the evader can step into
and the rows represent the direction from one spot to the next. The evader can be
initially placed on any of the red spots The grid in the figures is only for dimension
reference.

(a) Evader trajectory in Env1.

(b) Evader trajectory in Env3.

Figure 5.2: Proposed trajectories for the evader in the RL process.

Even though the evader is located at the center of the cells and its actions
correspond to the ones allowed in the discrete state-space formulation, the pursuer
is able to be positioned in any place within the environment free-space.
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5.2.1 Results in Env1 using RL

Now that we have defined the evader’s behavior in every environment, the next step
is to train the pursuer and to visualize its performance over a variety of simulations.

In the case of environment Env1, we vary how data is gathered while training
in three ways. In the first and second way, we are interested to train the pursuer
to track the evader from the same start location, s0 = [1.5, 1.5, 0.5, 0.5], on each
simulation. We first generate all training data from s0, then we propose a set of
hand picked initial states along the evader’s route. Finally, in the third case, we
propose a generalized version of the problem where the training initial states are
randomly generated all over the environment free-space.

Since s0 corresponds to the centers of a pair of cells, it is possible to establish
that from s0 it is guaranteed that the pursuer is able to keep the evader inside
its visibility region for any given time steps duration3. Thus, we have a baseline
for further comparisons. Considering that, the objective of using RL, in the first
training case, is to come up with the pursuer strategy to be able to always maintain
the evader inside its visibility region. We apply algorithms 3, 4 and 5 for this goal.
In every case, the hyperparameters shown in Table 5.1 were chosen after some trial
and error tests that consisted in decreasing the learning rate vale, α, and choosing
between setting εmin to 0 or to 0.1 to allow a fixed level of exploration at the end of
every algorithm.

Hyperparameters in Env1
Total episodes 12000

batch size 12
α 0.0005
γ 0.99

εmax 1
εmin 0.1
λ 0.001

Table 5.1: Hyperparameters in all training cases for environment Env1.

The reward function gives a +1 value as reward to the pursuer if it is able
to maintain the evader inside its visibility region after an action is performed. If
visibility is lost, a 0 reward value is given and the episode is marked as complete.
In practice, it is necessary to establish a total reward limit so an episode in training
will not run forever. In our case, this value is set to be 33, meaning that the pursuer
kept visibility for twice the evader’s length path plus 1 and so it is guaranteed that
the pursuer can track the evader for any amount of time steps. This is the maximum
value we seek to achieve at the test part for all of the algorithms.

Other variation to keep in mind is the way initial states in one batch are collected
for training and how the initial states for testing are considered. First, we gather
trajectories all starting from s0 = [1.5, 1.5, 0.5, 0.5] in the training batch, the test
are also performed from s0. Results are shown in Figures 5.3, 5.4 and 5.5 where the

3According to the results applying the pursuer Deterministic Motion Policy (DMPpursuer).
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horizontal axis represents the episodes in training and the vertical axis the reward
value. Once a batch has been used for training, the total rewards per trajectory are
averaged to come up with the blue curve. The black curve is a smooth version to
the blue one that takes the average of the ten past rewards, this gives us an idea on
how rewards are rising or lowering. The orange curve is the resulting reward at the
test part of the algorithm, after applying the best learned actions from s0.

The time required to complete the 12000 episodes in training for each algorithm
is approximately 3 hours. The precise time is shown in Table 5.2.

Time for training
Algorithm Time
Algorithm 3 3h 9min 22.5sec
Algorithm 4 3h 2min 33.8sec
Algorithm 5 3h 9min 5.5sec

Table 5.2: Time required for training in environment Env1.

Figure 5.3: Training results in Env1 applying algorithm 3.

Figure 5.4: Training results in Env1 applying algorithm 4.
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Figure 5.5: Training results in Env1 applying algorithm 5.

From Figures 5.3, 5.4 and 5.5, we can see that none of the algorithms were able to
reach the reward limit (set up to 33) at the end of the training episodes. Nevertheless,
it is clear that algorithm 4 achieved the best results based on the reached rewards
at the end of training. To show the performance of the result policies, simulations
in this link4 are available. In these videos we can see how a mistaken step in the
IRMP made it lost an entire turn around the obstacle while the RMP could only
follow the evader half of a turn and the MRMP did not move after a couple of steps.

Moving forward, we propose collecting, in every training batch, trajectories start-
ing from a set of hand-picked initial states, leaving the test trajectories unchanged
(starting from s0). The proposed initial states were chosen such that they provide
suitable locations where the pursuer can maintain evader surveillance. Those states
can be appreciated in Figure 5.6. Every pair of evader and pursuer locations in this
set is distinguished with the same marker, coloring in red the evader’s positions and
in blue the pursuer’s ones. Results using this approach can be seen in Figures 5.7,
5.8 and 5.9. As we can see, the reward limit is only reached using algorithms 4 and
5, namely, the algorithms that leverage on a warm initialization or guided search
based on a dynamic programming solution in a discrete state space. Nevertheless,
we reach this level earlier with algorithm 5, after about 2000 episodes instead of
4000 with algorithm 4. The simulation videos are available in this link5. In these
videos we can see how the RMP almost achieved an entire turn around the obstacle
while the IRMP and MRMP managed to complete two turns around it proving, in
simulation, that taking several initial states in training and using a pretrained policy
is useful to achieve favorable results in this environment. The time in training is
displayed in Table 5.3, notice that the time needed in algorithm 5 is slightly lower
than the one needed for algorithm 4.

4https://youtu.be/YrLybLydIuI
5https://youtu.be/33WTsCJT6Ks
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Time for training
Algorithm Time
Algorithm 3 3h 2min 33.8sec
Algorithm 4 3h 16min 35.4sec
Algorithm 5 3h 4min 8.3sec

Table 5.3: Time required for training in
environment Env1 with middle initial

states for training. Figure 5.6: Initial states per batch train-
ing.

Figure 5.7: Training results in Env1 applying algorithm 3, using Figure 5.6 initial
states for training.

Figure 5.8: Training results in Env1 applying algorithm 4, using Figure 5.6 initial
states for training.
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Figure 5.9: Training results in Env1 applying algorithm 5, using Figure 5.6 initial
states for training.

Finally, we generalize this approach by generating a random set of initial states
and choosing, randomly again, a subset from it as batch for training. We also
propose a set of initial states for the test part in the algorithms. The training and
test sets can be seen in Figure 5.10, the red and blue spots are evader and pursuer
possible locations, respectively. The total training states are 160. The test locations
are coincident with cell centers, being these:

stest1 = [1.5, 1.5, 0.5, 0.5]

stest2 = [1.5, 5.5, 1.5, 3.5]

stest3 = [1.5, 7.5, 0.5, 9.5]

stest4 = [3.5, 7.5, 4.5, 9.5]

stest5 = [3.5, 4.5, 4.5, 2.5]

stest6 = [3.5, 1.5, 3.5, 5.5]

(a) Training initial states. (b) Test initial states.

Figure 5.10: Training and test initial states for Env1 in a generalized approach.
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By applying the DMPpursuer in the test set of Figure 5.10b we know that the
average escape length, with an optimal pursuer policy, from every initial state in
the test samples is equal6 to 20. In the test part of algorithms 3, 4 and 5 we keep
track now of the average evader’s escape length from every initial state in the test
set. Results can be appreciated in Figures 5.11, 5.12 and 5.13. Training time can
be seen in Table 5.4. As in the previous case, the time needed for algorithm 5 is
lower than the one needed for algorithm 4 suggesting that a guided policy search is
preferable for a minor training time.

Time for training
Algorithm Time
Algorithm 3 9h 12min 34.5sec
Algorithm 4 10h 42.9sec
Algorithm 5 7h 34min 55.9sec

Table 5.4: Time required for training in environment Env1 with generalization.

Figure 5.11: Training results in Env1 applying algorithm 3, using Figure 5.10a
initial states for training and 5.10b for testing.

6This was found after running simulations from every state in the test set using the fixed
trajectory for the evader and the DMP for the pursuer.
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Figure 5.12: Training results in Env1 applying algorithm 4, using Figure 5.10a
initial states for training and 5.10b for testing.

Figure 5.13: Training results in Env1 applying algorithm 5, using Figure 5.10a
initial states for training and 5.10b for testing.

Using this approach, all algorithms reach the maximum reward limit in testing
in the given number of episodes. Nevertheless, algorithm 5 does so earlier, at nearly
3300 episodes, while algorithm 4 takes approximately 11000 episodes and algorithm
3 takes 10000.
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Figure 5.14: Initial states for evaluation in Env1.

Figure 5.15: Evader’s escape length average per policy in evaluation. The values in
the graph are 3.46, 13.51, 13.53, 12.45 from left to right.

Additionally, we have implemented a complementary evaluation analysis to com-
pare the SMP, RMP, IRMP and MRMP policies in the generalized training perfor-
mance (where random initial states are generated to train the policies) over a series
of random initial states. In this environment, 160 initial states are chosen such that
the distance between the evader and the pursuer is no larger than one unit, this is
done so that the pursuer could be able to maintain visibility for most of the time
possible. These initial positions can be appreciated in Figure 5.14. Figure 5.15
shows the results of averaging the evader’s escape length of every initial position
using every one of the policies. It can be appreciated that RMP, IRMP and MRMP
outperform the results using SMP and that the value achieved with IRMP is slightly
higher than the levels reached with RMP and MRMP. Since the mean values as only
comparison risks to be insufficient, we include the box plot7 comparison displaying
the central values and variability on the escape lengths gathered in the evaluation
games in order to find out how much these values spread along the minimum and

7A box plot is a way to visualize data using five summary values: the minimum, the first quartile
(Q1), the median, the third quartile (Q3) and the maximum.
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maximum escape lengths identifying possible outliers. In figure 5.16 the SMP, RMP,
IRMP and MRMP box plots are displayed in blue, orange, green and red, respec-
tively. We can see, as in figure 5.15, how the RMP, IRMP and MRMP outperform
the SMP results. The median in the cases where RL was used are very close one
to each other being this value slightly higher in the IRMP results, additionally the
variability with this policy is less noticeable. Other very important aspect with the
IRMP is the absence of games resulting in escape lengths near the 0 value.

Figure 5.16: Box plot graphs comparing the evaluation results in Env1.

In Figure 5.17, a histogram, where the horizontal axis shows the evader’s escape
length and the vertical axis the total of initial states reaching that escape, compares
every policy one next to each other. We can see how similar are the performance
reached by the RMP, IRMP and MRMP policies and how poor is the one reached
by the SMP. One more thing that can be seen is that only the RMP and the MRMP
achieved escapes of value 33 which is the highest possible reward (or time in view)
in a game. At this point, it is worth to mention that 19 of the initial states with
RMP reached this value compared with only one with the MRMP; however, these
19 initial states were labeled as outliers in the corresponding box plot (see Figure
5.16). In this case a uniform exploration seemed to deliver better results than the
use of the SMP to generate transitions. We compare separately the SMP, RMP
and IRMP to the MRMP using this histogram fashion graph. These graphs are
shown in Figures 5.18, 5.19 and 5.20. In this simple environment it seems that,
in the evaluation, it is not necessary to start a reinforce learning with any kind
of initialization or assistance since a purely DRL from scratch approach achieved
the most of initial states reaching the highest value in reward. Two initial states
are shown in simulation in this link8. Pursuer and evader in the simulations are
considered to be point agents, the figure representing every one of them is used only
to distinguish them. In the simulations, only two instances are shown which are not
enough to bring up conclusions. That is the reason why we use average values and
box plots in the escape length for multiple random initial states in figures 5.15 and
5.16.

8https://youtu.be/BMH8vpmWCYw

Chapter 5 55

https://youtu.be/BMH8vpmWCYw


Game Based Deep Reinforcement Learning for Target Tracking

Figure 5.17: Histogram performance for SMP, RMP, IRMP and MRMP in Env1.

Figure 5.18: SMP and MRMP performance in Env1.

Figure 5.19: RMP and MRMP performance in Env1.
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Figure 5.20: IRMP and MRMP performance in Env1.

5.2.2 Results in Env3 using RL

In the Env3 case, we go directly to a generalized training generating random initial
states for training. In the test part, for every RL algorithm, the initial states are
listed below. Training and test initial states can be appreciated in figure 5.21. The
train initial states sum up 500 states.

stest1 = [1.5, 1.5, 0.5, 0.5]

stest2 = [1.5, 4.5, 4.5, 5.5]

stest3 = [0.5, 6.5, 2.5, 5.5]

stest4 = [1.5, 9.5, 0.5, 9.5]

stest5 = [11.5, 9.5, 12.5, 10.5]

stest6 = [12.5, 4.5, 13.5, 2.5]

stest7 = [5.5, 0.5, 6.5, 1.5]

(a) Training initial states. (b) Test initial states.

Figure 5.21: Training and test initial states for Env3 in a generalized approach.
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Hyperparameters in Env3
Total episodes 8000

batch size 64
α 0.003
γ 0.99

εmax 1
εmin 0.1
λ 0.001

Table 5.5: Hyperparameters in all training cases for environment Env3.

The chosen hyperparameters are shown in Table 5.5. By applying theDMPpursuer
in the test set of Figure 5.21b, we know that the expected average evader escape
from every initial state in the test samples is set to 101 since the pursuer could
maintain surveillance for an unlimited amount of time steps and we limit the time
in view in this cases to be at most twice the evader trajectory length plus 1. The
training results in this environment are shown in Figures 5.22, 5.23 and 5.24. Here
we can see that the only algorithm able to keep surveillance for the entire evader
trajectory is algorithm 5, the one that uses the SMP as a master policy. In this more
complex environment, the use of a pretrained neural network as a master policy, to
perform a guided exploration, threw better results than only using its weights as
initializers in the training network and than training a model from scratch keeping
some exploration at the end of training. The time required for training in this en-
vironment is shown in Table 5.6. Since algorithm 5 achieved better results, it was
also the one that required more time for training.

Figure 5.22: Training results in Env3 applying algorithm 3, using Figure 5.21a
initial states for training and 5.21b for testing.
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Figure 5.23: Training results in Env3 applying algorithm 4, using Figure 5.21a
initial states for training and 5.21b for testing.

Figure 5.24: Training results in Env3 applying algorithm 5, using Figure 5.21a
initial states for training and 5.21b for testing.

Time for training
Algorithm Time
Algorithm 3 31h 14min 17.4sec
Algorithm 4 24h 22min 31.9sec
Algorithm 5 43h 33min 23.9sec

Table 5.6: Time required for training in environment Env3 with generalization.

For Env3 environment we also run a set of games for evaluation as in the previous
environment. We choose randomly a set of 500 initial states such that the initial
distance between players is not greater than 3 units, this is done so that a game
would not end quickly. This distance only applies for the complementary evaluation.
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The mean escape length value on these games can be appreciated in Figure per each
policy. Conversely to the results for Env1 shown in Figure 5.16, Figures 5.25 and 5.26
shows that the MRMP clearly outperforms the SMP, RMP and IRMP. It is worth
noting that the MRMP has reached a point in the training in which it has already
found the highest possible reward (101) for several initial states. This is noticed in
the corresponding box plot (see Figure 5.26) where the third quartile (Q3) mark is
on the 101 reward value, meaning that the maximum reward has already been found
for at least 25% of the initial states. On the other hand, more training episodes are
still needed since the interquartile range is still large; nonetheless, the first quartile
(Q1) for the MRMP is above the Q1 of the other three policies.

Figure 5.25: Evader’s escape length
average per policy in Env3 in

evaluation. The values in the graph are
11.31, 20.10, 10.1, 45.28 from left to

right.

Figure 5.26: Box plot graphs comparing
the evaluation results in Env3.

Figure 5.27: Histogram performance for SMP, RMP, IRMP and MRMP in Env3.
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In Figure 5.27 we can see how the MRMP outperforms the results achieved by
the rest of the policies, since it is the only one able to reach the maximum allowed
time in view (101 steps). We can also see that the RMP policy achieved a better
result with respect to a simple initialization with the IRMP. The results in form of a
histogram comparing the MRMP with the rest of the policies are shown in Figures
5.28, 5.29 and 5.30. Two initial states are shown in simulation in this link9. As
in the simulations in the previous environment, the agents are considered point-like
players.

In this more complex environment, the MRMP achieves better results than any
other approach while the IRMP does not get any improvements compared to a DRL
approach trained from scratch.

Figure 5.28: SMP and MRMP performance in Env3.

Figure 5.29: RMP and MRMP performance in Env3.

9https://youtu.be/WNluBWtaF90
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Figure 5.30: IRMP and MRMP performance in Env3.

From environment Env1 we observe how important it is to generate trajectories
from several initial states along the environment rather than always from the same
initial state even if we want the pursuer only to be able to track the evader from this
very location. Training seems to be improved since the RL approach let the pursuer
learn how to act in different positions along the evader trajectory given the diversity
of the training initial states. Also in Env1, we observe good results by applying a
RL approach from scratch, which we called RMP. Nevertheless, the algorithms that
make use of a pretrained policy achieved better results with a need of less episodes
in training: the IRMP and the MRMP. These two policies are clear options to get
faster results. Finally, we see that the MRMP in Env1 shows competitive results
in evaluation compared to both the RMP and the IRMP policies, but in Env3 it
exhibits a clear superiority making it the best option in more complex environments.
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Conclusions and Future Work

6.1 Conclusions

In this thesis, we have worked with the tracking problem under classical visibility
formulated as a pursuit-evasion game. Our aim was to design motion policies in the
discrete state-space and to move progressively to motion policies in the continuous
state-space using deep learning and deep reinforcement learning approaches. We
contribute by solving the tracking problem in the discrete state-space with optimal
motion strategies for both players with a finite control set each, we next extend
the problem to a continuous state-space using artificial neural networks, to finally
enhance the pursuer motion policy in the continuous state-space using reinforcement
learning both from scratch and using prior information as a warm initialization or
as a way to guide policy searching to speed up and improve learning. We present
results for different given environments.

Using optimal motion planning in the discrete state-space by means of dynamic
programming, we design Deterministic Motion Policies (DMP for short) for both the
evader and the pursuer. At the beginning of a game, given the initial state (where a
state is formed by the evader and pursuer locations), it is possible to know whether
the pursuer is able to keep the evader inside its visibility region indefinitely or not.
If it does not, the amount of time steps needed for the evader to escape is returned.
In the case where the evader is able to escape, the DMPpursuer is designed such that
the pursuer will move as close to the evader as possible. Even though the evader will
escape if it applies its optimal policy, placing the pursuer as close to it as possible
will set the pursuer in an advantageous position if the evader makes a mistake or
if it does not applies its optimal policy, also this plan exhibits a chasing behaviour
by the pursuer. We consider discrete actions in the 4-connectivity neighborhood of
each player.

The first approach of motion policies in the continuous state-space consists of
two artificial neural networks, one network per player in a given environment, whose
inputs are continuous states in the environment and the outputs are the discrete
action to be applied by the player (moving on its 4-connectivity neighborhood). The
neural networks are trained with data gathered from games played in the discrete
state-space using the DMPs considering that the player’s locations lay in the center
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of a cell. Once a neural network is trained it is called an SMP, for Supervised Motion
Policy since training is done in a supervised fashion. The SMPs try to mimic the
DMPs performance but extending to the continuous state-space. Increasing the
resolution in the discrete scenario is also proposed to come up with a higher amount
of data to train the neural networks.

Finally, we propose the use of deep reinforcement learning as a manner to enhance
the motion policies in the continuous state-space only for the pursuer, considering
a fixed trajectory for the evader. We present three algorithms, all based on the
REINFORCE algorithm from the literature. The resulting policies at the end of
each algorithm are called Reinforced Motion Policy (RMP), Initialized Reinforced
Motion Policy (IRMP) and Master Reinforced Motion Policy (MRMP), respectively.

The DRL approaches are implemented in a simple environment (Env1 ) and in
a more complex one (Env3 ). Comparisons between the generated policies in the
continuous state-space are shown, for a random set of initial states. In the simple
environment, the RMP and the IRMP policies appeared to have the best perfor-
mance while in the complex environment, the MRMP outperformed the rest of the
policies. Additionally, the IRMP and MRMP showed to achieve acceptable solu-
tions in fewer episodes, hastening the policy training. Thus, utilizing approximate
pretrained policies (obtained by applying discrete optimal planning) as a warm ini-
tialization or to generate sample trajectories seems adequate to enhance the training
of RL approaches in continuous spaces.

6.2 Future Work

With the proposed approach, we have tackled the visibility problem in mobile
robotics in simulations; however, there are still several research directions than can
be followed.

In chapter 5, we apply DRL to train a pursuer considering an evader with a fixed
trajectory. First on, the next step in future work is to train both agents with a DRL
approach so that the evader could also come up with its own motion policy. To
this end, a min-max RL approach could be employed. Moreover, the trained neural
networks in chapter 4 can be used as initializers, in the DRL training, as they were
used for the purser’s case.

Additionally, all of the environments proposed in this project present a deter-
ministic behavior in the sense that there is not stochasticity in the applied actions
by the agents. Opposite to stochastic environment models [17] where, when an ac-
tion is said to be played by an agent, it is only applied with a certain probability
less than 1. This behavior allows to mimic, in some way, the uncertainty of actions
in real-world scenarios. Training and simulations in this kind of environments are
remaining to be considered by our approaches.

Continuous actions could also be considered in future work allowing both players
to have a wider action field. One possibility is to express an action as a vector in
polar coordinates in the form (r, ϕ) whose reference frame correspond to each agent
current location at time step t. In this continuous action-space proposal, r ∈ [0, rmax]
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is a step length bounded by a maximum admissible value rmax and ϕ ∈ [0, 2π) is a
direction. Furthermore, ϕ could be adapted to nonholonomic robot constraints such
like DDR (differential drive robot) or car-like robots.

This approach can be achieved by first considering an 8-connectivity1 neighbor-
hood in the discrete optimal planning formulation, and then compute a data set
for the artificial neural networks training part, whose inputs are the evader and
pursuer locations and the output is the tuple (r, ϕ). According to each location
in the neighborhood, the ϕ value is determined as in Figure 6.1. In this case, the
ANN’s are designed to solve a regression problem since we want r and ϕ to lay
within a range of continuous values. Finally, DRL could be applied to improve the
trained ANN’s. When considering a continuous action-space, reinforcement learning
algorithms other than Policy gradient can be used, such as PPO (Proximal Policy
Approximation) [47], DDPG (Deep Deterministic Policy Gradient) [50] or even TD3
(Twin Delayed DDPG) [12]. Both the DDPG and TD3 algorithms compute inter-
nally Q-values via a neural network, as an initialization to it, a neural network could
be trained to store the values in the E table computed in the discrete state-space
part of the methodology, since both the Q-values and E table are value functions.

Figure 6.1: ϕ values according to the action direction in an 8-connectivity
neighborhood.

One variation to the problem is to have a visibility region bounded by a range
radius going from the pursuer location, which is closer to real world scenarios. In
this case, the problem can be formulated considering relative coordinates instead of
absolute coordinates as we have done in our approaches. Every player motion strat-
egy considers its own coordinate system. Later on, Convolutional Neural Networks
(CNN) can be used to learn features inside the pursuer visibility region for every
possible location. This can lead to a generalization of the solution allowing to apply
the motion policy learned in one environment into a completely new one.

Finally, this approaches can be tested in real-world scenarios, such like surveil-
lance applications, by adapting the solutions according to the software and hardware
availability, mainly the pursuer and evader configurations and the visibility signals
perception and image processing. Once the tracking problem is solved in a planar
environment, we can also move to a 3D formulation and end up applying the results
to a drone as the pursuer.

1If an agent is in a cell with coordinates (i, j) at time step t it can move to any valid cell
(i± 1, j), (i, j ± 1) or (i± 1, j ± 1) in time t+ 1.
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[16] T. Hester, M. Veceŕık, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
A. Sendonaris, G. Dulac-Arnold, I. Osband, J. P. Agapiou, J. Z. Leibo, and
A. Gruslys. Learning from demonstrations for real world reinforcement learn-
ing. CoRR, abs/1704.03732, 2017.

[17] S.-M. Hung and S. N. Givigi. A q-learning approach to flocking with uavs in
a stochastic environment. IEEE Transactions on Cybernetics, 47(1):186–197,
2017.

[18] J. Hurwitz and D. Kirsh. Machine Learning For Dummies, IBM Limited Edi-
tion. Jhon Wiley & Sons, Inc., Hoboken, NJ, 2018.

[19] R. Isaacs. Differential Games: A Mathematical Theory with Applications to
Warfare and Pursuit, Control and Optimization. John Wiley & Sons, New
York, NY, 1965.

[20] Y. Ishiwaka, T. Sato, and Y. Kakazu. An approach to the pursuit problem on
a heterogeneous multiagent system using reinforcement learning. Robotics and
Autonomous Systems, 43:245–256, 06 2003.

[21] V. Isler, C. Belta, K. Daniilidis, and G. Pappas. Hybrid control for visibility-
based pursuit-evasion games. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 2,
pages 1432–1437 vol.2, 2004.

[22] M. L. Iuzzolino, M. E. Walker, and D. Szafir. Virtual-to-real-world transfer
learning for robots on wilderness trails. CoRR, abs/1901.05599, 2019.

[23] K. Kersandt, G. Mu?oz, and C. Barrado. Self-training by reinforcement learning
for full-autonomous drones of the future*. In 2018 IEEE/AIAA 37th Digital
Avionics Systems Conference (DASC), pages 1–10, 2018.

Chapter 6 67



Game Based Deep Reinforcement Learning for Target Tracking

[24] Y.-H. Kim, J.-I. Jang, and S. Yun. End-to-end deep learning for autonomous
navigation of mobile robot. In 2018 IEEE International Conference on Con-
sumer Electronics (ICCE), pages 1–6, 2018.

[25] J. Kober, J. Bagnell, and J. Peters. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32:1238–1274, 09 2013.

[26] V. Konda and J. Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen,
and K. Müller, editors, Advances in Neural Information Processing Systems,
volume 12. MIT Press, 2000.

[27] S. LaValle, H. Gonzalez-Banos, C. Becker, and J.-C. Latombe. Motion strate-
gies for maintaining visibility of a moving target. In Proceedings of International
Conference on Robotics and Automation, volume 1, pages 731–736 vol.1, 1997.

[28] S. M. LaValle. Discrete Planning, pages 28 – 76. Cambridge University Press,
Cambridge, U.K., 2006.

[29] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep
visuomotor policies, 2016.

[30] S. H. Lim, T. Furukawa, G. Dissanayake, and H. Durrant-Whyte. A time-
optimal control strategy for pursuit-evasion games problems. In IEEE Interna-
tional Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004, volume 4, pages 3962–3967 Vol.4, 2004.

[31] I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017.

[32] W. Luo, P. Sun, F. Zhong, W. Liu, T. Zhang, and Y. Wang. End-to-end active
object tracking and its real-world deployment via reinforcement learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 42(6):1317–1332,
2020.

[33] V. Macias, I. Becerra, R. Murrieta-Cid, H. M. Becerra, and S. Hutchinson. Im-
age feedback based optimal control and the value of information in a differential
game. Automatica, 90:271–285, 2018.

[34] C. Mart́ınez and E. Ediciones. Estad́ıstica y muestreo - 13ra Edición. Ciencias
exactas. Estad́ıstica. Ecoe Ediciones, 2012.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518:529–533, 2015.

[36] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya, and S. Hutchin-
son. Surveillance strategies for a pursuer with finite sensor range. The Inter-
national Journal of Robotics Research, 26(3):233–253, 2007.

68 Chapter 6



Game Based Deep Reinforcement Learning for Target Tracking

[37] R. Murrieta-Cid, U. Ruiz, J. Marroquin, J.-P. Laumond, and S. Hutchinson.
Tracking an omnidirectional evader with a differential drive robot. Auton.
Robots, 31:345–366, 11 2011.

[38] R. Murrieta-Cid, B. Tovar, and S. Hutchinson. A sampling-based motion plan-
ning approach to maintain visibility of unpredictable targets. Autonomous
Robots, 19:285–300, 2005.

[39] K. Nagami and M. Schwager. Hjb-rl: Initializing reinforcement learning with
optimal control policies applied to autonomous drone racing. In Robotics: Sci-
ence and Systems, 2021.

[40] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation Functions:
Comparison of trends in Practice and Research for Deep Learning. arXiv e-
prints, page arXiv:1811.03378, Nov. 2018.

[41] N. Papanikolopoulos, P. Khosla, and T. Kanade. Visual tracking of a moving
target by a camera mounted on a robot: a combination of control and vision.
IEEE Transactions on Robotics and Automation, 9(1):14–35, 1993.

[42] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors,
Theory and Applications of Graphs, pages 426–441, Berlin, Heidelberg, 1978.
Springer Berlin Heidelberg.

[43] M. L. Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

[44] S. Ruder. An overview of gradient descent optimization algorithms, 2016. arXiv
preprint arXiv:1609.04747.

[45] U. Ruiz. A game of surveillance between an omnidirectional agent and a dif-
ferential drive robot. International Journal of Control, 0(0):1–13, 2021.

[46] U. Ruiz, R. Murrieta-Cid, and J. Marroquin. Time-optimal motion strategies
for capturing an omnidirectional evader using a differential drive robot. IEEE
Transactions on Robotics, 29:1180–1196, 06 2013.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms, 2017.

[48] J. Selvakumar and E. Bakolas. Min-max q-learning for multi-player pursuit-
evasion games, 2020.

[49] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 01 2016.

Chapter 6 69



Game Based Deep Reinforcement Learning for Target Tracking

[50] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. De-
terministic policy gradient algorithms. In E. P. Xing and T. Jebara, editors,
Proceedings of the 31st International Conference on Machine Learning, vol-
ume 32 of Proceedings of Machine Learning Research, pages 387–395, Bejing,
China, 22–24 Jun 2014. PMLR.

[51] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without
human knowledge. Nature, 550:354–359, 10 2017.

[52] E. Staffetti, X. Li, Y. Matsuno, and M. Soler. Optimal control techniques in
aircraft guidance and control. International Journal of Aerospace Engineering,
2019:1–2, 08 2019.

[53] R. S. Sutton and A. G. Barto. Reinforcement Learning an Introduction, 2nd
edition. The MIT Press, Cambridge, Massachusetts, USA, 2018.

[54] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller, editors, Advances in Neural Information Processing Systems,
volume 12. MIT Press, 2000.

[55] O. Tekdas and V. Isler. Robotic routers. In 2008 IEEE International Conference
on Robotics and Automation, pages 19 – 23, Pasadena, CA, USA, 2008.

[56] O. Tekdas, Y. Wei, and V. Isler. Robotic routers: Algorithms and implemen-
tation. The International Journal of Robotics Research, 29(1):110 – 126, 2010.

[57] B. Tovar and S. LaValle. Visibility-based pursuit - evasion with bounded speed.
I. J. Robotic Res., 27:1350–1360, 01 2008.

[58] V. Turetsky and J. Shinar. Missile guidance laws based on pursuit–evasion
game formulations. Automatica, 39(4):607–618, 2003.

[59] M. Wang, L. Wang, and T. Yue. An application of continuous deep reinforce-
ment learning approach to pursuit-evasion differential game. In 2019 IEEE
3rd Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), pages 1150–1156, 2019.

[60] C. J. Watkins and P. Dayan. Q-learning. Kluwer Academic Publishers, 1992.

[61] R. J. Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[62] S. Ying. An overview of overfitting and its solutions. Journal of Physics Con-
ference Series, 1168(2):022022, 2019.

[63] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into deep learning. arXiv
preprint arXiv:2106.11342, 2021.

70 Chapter 6



Game Based Deep Reinforcement Learning for Target Tracking

[64] Y. Zhang, D. Balkom, and H. Li. Towards physically safe reinforcement learning
under supervision, 2019. arXiv preprint arXiv:1901.06576.

[65] J. Zhu, W. Zou, and Z. Zhu. Learning evasion strategy in pursuit-evasion by
deep q-network. In 2018 24th International Conference on Pattern Recognition
(ICPR), pages 67–72, 2018.

Chapter 71



Appendices

72



Appendix A

Derivation of the Policy Gradient
Expression

We want to derive the gradient of the objective function in the Policy Gradient RL
approach:

∇J(θ) = ∇Eπθ [G(τ)] (A.1)

Lets recall the definition to the expectation of a discrete random variable X as
the sum of the product of every event x times the probability of its occurrence P (x).

E(X) =
∑
x∈X

xP (x)

Now we can write the gradient in equation (A.1) as:

∇J(θ) = ∇Eπθ [G(τ)] = ∇θ

∑
τ

P (τ |θ)G(τ) (A.2)

where P (τ |θ) is the probability of a trajectory given the parameter θ.
Bringing the gradient operator under the summation and multiplying and divid-

ing by P (τ |θ) we can rearrange:

∇Eπθ [G(τ)] =
∑
τ

P (τ |θ)∇θP (τ |θ)
P (τ |θ)

G(τ) (A.3)

Recalling the log derivative of a variable z

∇θlog(z) =
∇θz

z

we can write:

∇Eπθ [G(τ)] =
∑
τ

P (τ |θ)∇θP (τ |θ)
P (τ |θ)

G(τ) = Eπθ [∇θlog P (τ |θ)G(τ)] (A.4)

The probability P (τ |θ) can be treated as a marginalization as follows:

P (τ |θ) = p(s0)
T−1∏
t=0

P (st+1|st, at)πθ(at, st) (A.5)
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where p(s0) is the probability of starting at the state s0 and P (st+1|st, at) represents
the transition probability of reaching the new state st+1 by applying the action at
at the state st.

After taking the log-probability of the trajectory in (A.5), we get:

log P (τ |θ) = log p(s0) +
T−1∑
t=0

[log P (st+1|st, at) + log πθ(at, st)] (A.6)

We can apply the gradient in expression (A.6) which gives us:

∇θlog P (τ |θ) = ∇θlog p(s0) +
T−1∑
t=0

[∇θlog P (st+1|st, at) +∇θlog πθ(at, st)] (A.7)

Since p(s0) and P (st+1|st, at) does not depend on the parameter θ, we can get
rid of them after the gradient, thus we can write:

∇θlog P (τ |θ) =
T−1∑
t=0

∇θlog πθ(at, st) (A.8)

Now we can replace (A.8) in (A.4):

∇Eπθ [G(τ)] = Eπθ

[
T−1∑
t=0

∇θlog πθ(at, st)G(τ)

]
(A.9)

Recalling that:
∇θJ(θ) = ∇Eπθ [G(τ)] (A.10)

We conclude

∇θJ(θ) = Eπθ

[
T−1∑
t=0

∇θlog πθ(at, st)G(τ)

]
(A.11)
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Other tested ANN architectures
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Appendix C

Artificial Neural Networks
Training Results - Continuation

In this appendix, we continue presenting the obtained results over training the SMPs
for both players, as first presented in section 4.3. Here we present the results for
the environments Env1 with resolutions 2 and 3, Env2 with resolutions 1, 2 and
3, Env3 with resolutions 1 and 2, and finally Env4 with resolutions 1 and 21. As
exposed in section 4.3, we first show the results in the training phase and then the
performance of the trained SMPs in actual games simulations according to the same
four cases as in section 4.3. These cases are recalled in form of list below:

• Evader evaluation

• Pursuer evaluation

• Evader and Pursuer simultaneous evaluation

• Evader and Pursuer simultaneous evaluation with generalization

C.1 Training results

In this section, results over the neural networks training, inside the SMPs, are
presented. Remember that we are proposing two SMPs per environment, one for the
evader and the other for the pursuer. In the table below, the number of samples used
for training and validation are displayed. In the next pages, the actions distribution
in each data set are shown in a graphical manner representing the percentage of
samples (in the vertical axis) in the data set that correspond to the action labeled
in the horizontal axis.

1As resolution grows, the time needed to compute the E table increases. That is the reason
why we keep only these resolutions.
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Samples, train and validation partition
Total Test Validation

Env1 res 2
Evader 19232 1585 3847
Pursuer 21052 16841 4211

Env1 res 3
Evader 97237 77789 19448
Pursuer 103497 82797 20700

Env2
Evader 4200 3360 840
Pursuer 4744 3795 949

Env2 res 2
Evader 67480 53984 13496
Pursuer 72084 57667 14417

Env2 res 3
Evader 342684 274147 68537
Pursuer 358556 286844 14417

Env3
Evader 27195 21756 5439
Pursuer 31027 24821 6206

Env3 res 2
Evader 429806 343844 85962
Pursuer 464801 371840 92961

Env4
Evader 3692 2953 739
Pursuer 5028 4022 1006

Env4 res 2
Evader 55994 44795 11199
Pursuer 69620 55696 13924

Total of observations and its partition in train and validation sets for every
environment.
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Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env1 res 2.

Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env1 res 3.

Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env2.
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Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env2 res 2.

Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env2 res 3.

Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env3.
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Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env3 res 2.

Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env4.

Evader’s actions distribution. Pursuer’s actions distribution.

Data set distribution of action labels for both players in Env4 res 2.
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In the table below, we can appreciate the required epochs for every SMP train-
ing, the chosen optimizer, the time required for training, and the latest accuracy
values for both the train and validation data sets. In the next pages, the evolution
of the loss function and the accuracy values is displayed.

Samples, train and validation partition

Epochs Optimizer
Training

time
Train

accuracy
Validation
accuracy

Env1 res 2
Evader 600 Adam 3min 4.1sec 96.88% 96.78%
Pursuer 700 Adam 4min 38.1sec 96.16% 94.7%

Env1 res 3
Evader 100 Adam 1min 32.9sec 95.12% 94.3%
Pursuer 150 Adam 2min 33.4sec 92.37% 91.34%

Env1 res 3
Evader 1000 Adam 3min 12.4sec 96.88% 96.78%
Pursuer 500 Adam 1min 47.2sec 96.16% 94.7%

Env2
Evader 300 Adam 3min 18.2sec 91.33% 90.11%
Pursuer 1000 AdamW[31] 13min 6.1sec 97.72% 97.29%

Env2 res 2
Evader 100 Adam 4min 28.5sec 92.08% 93.04%
Pursuer 200 AdamW 10min 45.1sec 96.35% 96.78%

Env2 res 3
Evader 300 Adam 2min 6.6sec 92.55% 89.67%
Pursuer 800 AdamW 6min 7.4sec 94.66% 91.51%

Env3
Evader 200 AdamW 15min 26.5sec 93.86% 94.41%
Pursuer 500 AdamW 39min 59.6sec 92.95% 92.86%

Env4
Evader 2000 Adam 8min 42.9sec 90.62% 73.58%
Pursuer 1000 Adamax 4min 20.4sec 83.44% 74.03%

Env4 res 2
Evader 100 AdamW 11min 6.3sec 93.95% 88.08%
Pursuer 1000 AdamW 13min 29.6sec 92.3% 89.5%

Training results for bot players in every environment.
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Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env1 res 2.

Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env1 res 3.
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Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env2 res 1.

Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env2 res 2.
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Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env2 res 3.

Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env3 res 1.
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Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env3 res 2.

Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env4 res 1.
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Evader loss function values. Pursuer loss function values.

Evader accuracy. Pursuer accuracy.

Evolution of the loss function and the accuracy over epochs for the training and
validation sets for both players in Env4 res 2.

C.2 SMPs performance results

Finally the results after using the SMPs in simulated games is exposed below. The
table shows the total simulations executed per environment. In the next pages, the
comparison of the trained SMP taking as reference the evader’s escape length, for
the initial state in every simulation, obtained as E[e0, p0] (as explained in chapter
3). Next to these comparisons we can find the confusion matrices comparing the
total of cases where there is escape, or not, applying the SMPs or the DMPs.

Total of Simulations per Environment
Env1
res2

Env1
res3

Env2
Env2
res2

Env2
res3

Env3
Env3
res2

Env4
Env4
res2

Number of
simulations

377 383 353 382 382 379 384 349 382

Total of run simulations per environment in the neural networks performance
analysis.
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Env1 res 2

Evader evaluation.

Pursuer evaluation.

Evader and Pursuer simultaneous
evaluation.

Evader and Pursuer simultaneous
evaluation with generalization.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
252 0

Evader
does not
escape

0 125

Evader evaluation.

DMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
252 0

Evader
does not
escape

97 28

Pursuer evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
252 0

Evader
does not
escape

61 64

Evader and Pursuer simultaneous evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
245 7

Evader
does not
escape

43 82

Evader and Pursuer simultaneous evaluation
with generalization.
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Env1 res 3

Evader evaluation.

Pursuer evaluation.

Evader and Pursuer simultaneous
evaluation.

Evader and Pursuer simultaneous
evaluation with generalization.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
275 22

Evader
does not
escape

0 86

Evader evaluation.

DMPevader SMPpursuer

Evader
escapes

Evader
does not
escape
D

M
P

s Evader
escapes

284 0

Evader
does not
escape

71 28

Pursuer evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
282 2

Evader
does not
escape

41 58

Evader and Pursuer simultaneous evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
279 5

Evader
does not
escape

36 63

Evader and Pursuer simultaneous evaluation
with generalization.
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Env2

Evader evaluation.

Pursuer evaluation.

Evader and Pursuer simultaneous
evaluation.

Evader and Pursuer simultaneous
evaluation with generalization.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
233 18

Evader
does not
escape

0 102

Evader evaluation.

DMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
251 0

Evader
does not
escape

99 3

Pursuer evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
241 10

Evader
does not
escape

63 39

Evader and Pursuer simultaneous evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
233 18

Evader
does not
escape

54 48

Evader and Pursuer simultaneous evaluation
with generalization.
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Env2 res 2

Evader evaluation.

Pursuer evaluation.

Evader and Pursuer simultaneous
evaluation.

Evader and Pursuer simultaneous
evaluation with generalization.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
28 39

Evader
does not
escape

0 55

Evader evaluation.

DMPevader SMPpursuer

Evader
escapes

Evader
does not
escape
D

M
P

s Evader
escapes

330 0

Evader
does not
escape

50 2

Pursuer evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
314 13

Evader
does not
escape

31 24

Evader and Pursuer simultaneous evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
311 16

Evader
does not
escape

20 35

Evader and Pursuer simultaneous evaluation
with generalization.
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Env2 res 3

Evader evaluation.

Pursuer evaluation.

Evader and Pursuer simultaneous
evaluation.

Evader and Pursuer simultaneous
evaluation with generalization.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
336 12

Evader
does not
escape

0 36

Evader evaluation.

DMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
352 0

Evader
does not
escape

28 4

Pursuer evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
344 8

Evader
does not
escape

7 25

Evader and Pursuer simultaneous evaluation.

SMPevader SMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
347 5

Evader
does not
escape

9 23

Evader and Pursuer simultaneous evaluation
with generalization.
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Env3

Evader evaluation.

Pursuer evaluation.

Evader and Pursuer simultaneous
evaluation.

Evader and Pursuer simultaneous
evaluation with generalization.

SMPevader DMPpursuer

Evader
escapes

Evader
does not
escape

D
M

P
s Evader

escapes
293 6

Evader
does not
escape

0 80

Evader evaluation.

DMPevader SMPpursuer
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