
ADVANCES IN BAYESIAN
UNCERTAINTY QUANTIFICATION

T E S I S
Que para obtener el grado de

Doctor en Ciencias
con Especialidad en

Probabilidad y Estadı́stica

Presenta:
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Director de Tesis:
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education and allow me to use their facilities and resources to complete this work. I am also
grateful to the Consejo Nacional de Ciencia y Tecnologı́a (CONACYT) for the four years of my
doctoral studies’ economic support through scholarship No. 333114.

i



Summary

Inverse problems (IPs) appear in many science and mathematics branches, mainly when quan-
tities of interest are different from those we can measure; model parameter values must be
estimated from the observed data. The Bayesian approach to IPs, recently known as Bayesian
uncertainty quantification (UQ), is becoming ever more popular to approach these kinds of prob-
lems. The posterior distribution of the unknown parameters quantifies the uncertainty of these
parameters’ possible values consistent with the observed data. However, explicit analytic forms
are usually not available for the posterior distributions, so sampling approaches such as the
Markov chain Monte Carlo are required to characterize it. These methods involve repeated
forward map (FM) solutions to evaluate the likelihood function. And, we usually do not have
an analytical or computationally precise implementation of the FM and necessarily involves a
numerical approximation, leading to a numerical/approximate posterior distribution. Thus, the
numerical solution of the FM will introduce some numerical error in the posterior distribution.

In this thesis, a bound on the relative error (RE), in posterior expectations for some func-
tional, is found. This bound is later used to justify a bound in the error of the numerical method
used to approximate the FM for Bayesian UQ problems. Moreover, our contribution is a nu-
merical method to compute the after-the-fact (i.e., a posteriori) error estimates of the numerical
solution of a class of semilinear evolution partial differential equations and show the potential
applicability of the result previously obtained for bounding the RE in posterior statistics for
Bayesian UQ problems. Several numerical examples are presented to demonstrate the efficiency
of the proposed algorithms.

We also present a Bayesian approach to infer a fault displacement from geodetic data in a
slow slip event (SSE). Our physical model of the slip process reduces to a multiple linear regres-
sion subject to constraints. Assuming a Gaussian model for the geodetic data and considering a
multivariate truncated normal (MTN) prior distribution for the unknown fault slip, the resulting
posterior distribution is also MTN. Regarding the posterior, we propose an ad hoc algorithm
based on Optimal Directional Gibbs that allows us to efficiently sample from the resulting high-
dimensional posterior distribution without supercomputing resources. As a by-product of our
approach, we are able to estimate moment magnitude for the 2006 Guerrero SSE with UQ.
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List of Contributions

• A bound on the RE, in posterior expectations (PEs) for some functional, is found. This is
later used to justify a bound in the error of the numerical method used to approximate the
FM for Bayesian UQ problems (see Sec. 2.3).

• We implemented a method of lines for the solution of semilinear evolution PDEs with
numerical after-the-fact (a posteriori) error estimates. This error estimation allows me
to apply the results obtained in Sec. 2.3 for bounding the expected RE (ERE) in the re-
spective numerical PE for Bayesian UQ problems (see Sec. 3). This represents a novel
goal-oriented mesh design, considering the inference problem at hand (the posterior dis-
tribution).

• A Bayesian approach to infer a fault slip from geodetic data of a slow slip event is pre-
sented. I developed a framework in modeling the data as well as the prior, a numerical
sampling method, and an improved analysis through posterior sample-based inference.
I apply the methodology to a real data set, for the 2006 Guerrero Slow Slip Event (see
Sec. 4.4).
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CHAPTER 1

Introduction

A wide range of applications are concerned with the solution of an IP (Kaipio and Fox 2011;
Cai et al. 2011; Chadan et al. 1997; Holder 2004; Burggraf 1964; Snieder and Trampert 1999;
Daza et al. 2017): given some observations of an output, y = (y1, . . . , yn), determine the corre-
sponding inputs θ such that yi = F(θ) + error.

We refer to the evaluation of F as solving the forward problem and, consequently, F is
called the FM. In general, the FM is a complex non-linear map, with input parameters θ, defined
by an initial/boundary value problem for a system of ordinary differential equations (ODEs) or
partial differential equations (PDEs). Then, to evaluate F(θ), we must solve an initial/boundary
value problem for a system of (O, P)DEs.

IPs appear in many branches of science and mathematics, mainly in situations where quanti-
ties of interest are different from those we can measure. In IPs, model parameter values must be
estimated from the observed data. Historically, IPs have been studied as deterministic problems
in analysis, and only relatively recently have been correctly treated as problems in statistical
inference. In deterministic inversion from noisy data, the IPs there may have no solution, or
the solution may not be unique, or it may depend sensitively on measurements yi (Kaipio and
Somersalo 2006). A way to approach these difficulties is to formulate the IP in the Bayesian
framework. Stuart (2010) studied conditions for the well-posedness of one particular Bayesian
formulation of IPs. In this framework, a noise model is assumed for the observations, for exam-
ple, an additive Gaussian noise model

yi = F(θ) + εi,

where the errors, εi, follow a normal distribution with mean zero and variance σ2. This obser-
vational model generates a probability density of y given the parameters Φ = (θ, σ), namely
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PY|Φ (y|θ, σ). For fixed data y, and as a function of Φ, we call this the likelihood function.
Based on the available information, a prior model PΦ(·) is stated for Φ, and a posterior distribu-
tion PΦ|Y (θ, σ|y) is obtained through Bayes theorem.

In a frequentist (classical) statistical paradigm, we often maximize the likelihood to obtain a
single estimate for the parameter of interest. Uncertainty is defined by the sampling distribution
based on the idea of infinite repeated sampling. In contrast, the goal of Bayesian inversion is not
only to obtain a single estimate for the unknowns but to quantify their uncertainty consistently
with the observed data. Therefore, we describe the unknowns by probability distributions. Be-
fore any observation is available, we have much uncertainty in the unknown. After making the
measurements, the uncertainty is reduced, and the task is to quantify it and provide probabilis-
tic answers to questions of interest (Kaipio and Fox 2011). Previous information regarding the
physics of the problem, which is not specific enough to be incorporated into the direct problem,
may be incorporated into the prior probability distribution. The posterior distribution of the un-
known parameter quantifies the uncertainty of the possible values of these parameters consistent
with the observed data.

However, explicit analytic forms are usually not available for the posterior distributions, so
sampling approaches such as the Markov chain Monte Carlo (MCMC) are required to charac-
terize it. These methods involve repeated FM solutions used to evaluate the likelihood function.
Furthermore, we usually do not have an analytical or computationally precise and straightfor-
ward implementation of the FM. It necessarily requires a numerical approximation,Fα(n), where
α(n) represents a discretization used to approximate the FM, leading to a numerical/approximate
posterior distribution. Thus, the numerical solution of the FM will introduce some numerical
error in the posterior distribution, and in any PE. In general, numerical errors in the FM can
be controlled and reduced to an arbitrarily low level through finer discretizations. What numer-
ical error must be tolerated in the FM to obtain a correct and acceptable numerical posterior
distribution or some desired numerical error in a posterior statistic?

Several approaches start by building computationally-cheap approximations of the FM and
using these approximations as surrogates in the sampling procedure (Marzouk et al. 2007; Gal-
bally et al. 2010; Lieberman et al. 2010; Rasmussen et al. 2003). Although such approaches
can be quite effective at reducing computation cost, there has been little analysis of posterior
inference approximation. Recently, adaptive multi-fidelity techniques have been developed to
control the numerical posterior error for Bayesian UQ (Cui et al. 2015; Peherstorfer et al. 2018;
Yan and Zhou 2019b;a; Li and Marzouk 2014). In Li and Marzouk (2014), the authors pro-
posed an adaptive multi-fidelity polynomial chaos MCMC algorithm to find a distribution that
is “close” to the posterior in the sense of Kullback–Leibler divergence. Similar approaches were
proposed in Yan and Zhou (2019a) using an adaptive multi-fidelity polynomial chaos based
ensemble Kalman inversion technique.
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Close in spirit to the works mentioned, in Capistrán et al. (2016), the authors proposes the
use of Bayes factors (BF; the odds in favor) between the true posterior distribution and the
numerical approximated posterior distribution. In an ODE framework, they show that the BF
converge to 1, in the same order as the numerical solver used.

Later, this idea was generalized in Capistrán et al. (2021) to consider also PDEs and the
use of the expected absolute Bayes factor (EABF), before observing data. This results in more
practical and workable guidelines in a more realistic multidimensional setting. The main result
in Capistrán et al. (2021) is that convergence in a consistent discretization of the FM leads to
convergence of the EABF and also shows that the EABF can be bounded by bounding the error
in the numerical FM (from the true FM).

In Chapter 2, we present the main result of Capistrán et al. (2021) but justify the method not
in term of BF but considering the PE in posterior statistics. The proposal is to bound the error,
or the RE, in PEs for some functional. Indeed, as in Capistrán et al. (2021), a reliable estimate
of the error for the numerical solver used is the central point in the calculation of this bound.

Current efforts to estimate the discretization error focus on after-the-fact methods (i.e., a
posteriori methods, we prefer to call them after-the-fact to avoid the obvious confusion with the
Bayesian jargon). These methods provide an error estimate only after the numerical solution
has been computed. They use the computed solution of the discrete equations, possibly with
additional information supplied by the equations, to estimate the RE to the exact solution of the
mathematical model (Roy 2010). Most of the previous works are based on higher error bounds
with asymptotic convergence when the mesh size tends to zero (Babuška and Rheinboldt 1978;
Berzins 1988; De S. R. Gago et al. 1983; Ainsworth and Oden 2011; Rognes and Logg 2013).
Unfortunately, these estimates imply “constants of stability” generally unknown and difficult to
calculate. The resulting error estimation techniques, in practice, do not provide mathematically
proven bounds that, in general, can be computed efficiently (Grätsch and Bathe 2005).

In Chapter 3, we present a numerical method for computing the after-the-fact error estimates
for semilinear evolution PDEs, and show the potential applicability of a result in Chapter 2
for bounding the ERE in the respective numerical PE for Bayesian. We obtain the numerical
solution with the method of lines; discretizing first in the space with the finite difference (FD)
method and solving the resulting system in time with the Runge-Kutta Cash–Karp (RKCK)
method (Cash and Karp 1990). Our error estimation uses the estimate available for the RKCK
method, and the spatial discretization error is treated as the solution of an initial value problem,
approximated by the RKCK method.

A common IP in Geophysics is to infer quantities about Earth’s interior in terms of surface
measurements. In specific, to estimate the magnitude and distribution of a slip along a fault plane
from geodetic data. Fault slips may consist of complex and heterogeneous source processes,
while limited geodetic data typically leads to an ill-posed IP. Bayesian methods provide a natural
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method to explore the posterior distribution of IPs and provide formal UQ.
In Chapter 4, we present a novel Bayesian approach to infer a fault displacement from geode-

tic data in a SSE. Our physical model of the slip process reduces to a multiple linear regression
subject to constraints. A Gaussian model is assumed for the geodetic data and we propose an
MTN prior slip distribution, with a detailed correlation structure, to impose natural coherence in
the fault movement. The resulting posterior distribution is also MTN. Regarding the posterior,
we propose an ad hoc algorithm based on Optimal Directional Gibbs that allows us to efficiently
sample from the resulting high-dimensional posterior distribution without resorting to super-
computing resources. We apply our method to quantify the uncertainty in the IP of seismic slip
along the subduction interface in the 2006 Guerrero, Mexico, SSE. Moreover, with our method,
we are able to provide the posterior distribution of the moment magnitude for this event in a
straightforward manner.

The thesis is organized as follows. Chapter 2 describes the main result of Capistrán et al.
(2021) and, using a similar mathematical approach, a bound on the RE, in PEs for some func-
tional is proposed. It is also explained in detail how this bound can be used to find a dis-
cretization in the numerical method used to approximate the FM. We also present two examples
considering Bayesian UQ problems for 1D and 2D heat equations, respectively. In Chapter 3,
we propose a numerical method for computing the after-the-fact error estimates for semilinear
evolution PDEs, and show the potential applicability of a result in Chapter 2. Chapter 4 presents
a Bayesian approach to infer a fault displacement from geodetic data of a SSE. The methodol-
ogy is applied to a real data set, for the 2006 Guerrero SSE. Finally, general conclusions and a
discussion of future work are presented in Chapter 5.
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CHAPTER 2

Bounds for numeric error in posterior
statistics with two examples in an IP of the

heat equation

This Chapter describes how to bound the numeric error in posterior statistics. Namely, a bound
on the ERE, in PE for some functional, is found directly, in Theorem 2 (the proof is based on
how convergence rates are exported using a similar mathematical approach to a combination
of results from Christen and Pérez-Garmendia (2021) and Capistrán et al. (2021)). It is also
detailed how this bound can be used to find a discretization level in the numerical method used
to approximate the FM. Two examples are presented considering Bayesian UQ problems for 1D
and 2D heat equations, respectively, to illustrate the proposed strategy performance.

2.1 Setting

Let Θ ⊂ Rq be the parameter space (i.e., we only consider finite-dimensional space parameters).
Let F : Θ→ V be the FM (typically F(θ), for all θ ∈ Θ, is the solution of a system of PDE’s),
and let H : V → A ⊆ Rm be the observation operator (e.g., H (F(θ)) is one particular state
variable, for which we have observations). The composition H ◦ F defines a mapping from the
parameter space Θ to the data sample space in Rm.

Assume that we observe a process y = (y1, . . . , ym) at locations z1, . . . , zm ∈ D. This is a
general setting, to include PDEs and other IPs, in which the domain D may include, for example,
space and time: zi = (xi, ti). That is, yi is an observation at coordinates xi and at time ti. Also,
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assume that f(y|θ) is a density for data y:

f(y|θ) := fo(y|H(F(θ))); θ ∈ Θ,

where fo(y|η(θ)) is a density function that interacts with θ only through η(θ) ∈ Rm.
Let Fα(n) be a discretized version of the FM, F . Here α(n) represents a discretization used

to approximate the FM and as n increases the discretization becomes finer and the approximation
error decreases. This is the actual numerical version of the FM defined on our computers. Let
fn(y|θ) := fo(y|H(Fα(n)(θ))) be the resulting discretized numerical likelihood. In particular,
note that θ is always finite dimensional and the same for the theoretical and numerical models,
specifically, the prior π is the same in both cases (indeed, in some other contexts, θ may depend
of the FM discretization, for example, but we do not consider this possibility).

In the rest of the Chapter, we take the following assumption.

Assumption 1. Assume that, for all y ∈ Rm, the observation model fo(y|η) is uniformly Lip-
schitz continuous on η, and for y ∈ Rm, fo(y|η) is bounded. Moreover, the FMs H ◦ F and
H ◦ Fα(n) are continuous.

Assumption 2. Assume a global error control of the numeric FM as

||H(F(θ))−H(Fα(n)(θ))||∞ < Kα(n). (2.1)

Note that this is a global bound, valid for all θ ∈ Θ, and includes already the observational
operator. That is, it is a global bound, but is only a statement at the locations Hi’s where each
yi is observed.

Finally, assuming a proper prior probability π for the parameter θ, we will use the notation
Qy[π] for the theoretical posterior to make the dependency on the prior explicit. Furthermore,
when substituting the likelihood with the numerical approximation fn(y|θ), we denote the cor-
responding numeric posterior as Qn

y [π].

2.2 Consistency and other results

If H ◦ F and H ◦ Fα(n) are continuous then θ 7→ f(y|θ) and θ 7→ fn(y|θ) are continuous.
Therefore, the posterior measures Qy[π] and Qn

y [π] are well defined (see, for example, Christen
and Pérez-Garmendia 2021, and references therein).

Since we have ensured the existence of the theoretical and numerical versions of the posterior
measure, let’s look at the following consistency result. If the FM discretization is consistent, that
is Fα(n) → F , and under assumptions 1 and 2, the authors in Christen and Pérez-Garmendia
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2.2. CONSISTENCY AND OTHER RESULTS

(2021) proved that the numeric posterior converge, i.e.,∥∥Qy[π]−Qn
y [π]

∥∥
TV
→ 0

as n increases, in the Total Variation norm ∥·∥TV, and that the normalization constants converge,
|Z(y)− Zn(y)| → 0, where

Z(y) =

∫
f(y|θ)π(dθ),

and Zn(y) is the corresponding numeric normalization constant when substituting the likelihood
with the numerical approximation fn(y|θ).

To find reasonable guidelines, to choose a discretization level, Capistrán et al. (2016) com-
pare the numeric posterior Qn

y [π] with the theoretical posterior Qy[π] using Bayesian model
selection, namely BF. Assuming an equal prior probability π for both models, the BF is the ratio
of the normalization constants Zn(y)

Z(y)
for fixed y.

Later, Capistrán et al. (2021) try to control the BF between the discretized model and the
theoretical model, through the use of the Absolute BF. To do that, they bound the expected
Absolute BF, namely EABF = EY

[
1
2

∣∣∣Zn(y)
Z(y)

− 1
∣∣∣]. In Theorem 1, we state the main result of

Capistrán et al. (2021). Here we reproduce this theorem, and its proof in detail, since it will be
instrumental to the prove of (our main) Theorem 2. In addition, two small errors in the proof of
Capistrán et al. (2021) are corrected, mentioned below.

Theorem 1. (Capistrán et al. (2021)) With assumptions 1–2, and assuming independent data,
y, arising from a location-scale family, with scale parameter σ2 and location parameter η =

H(F(θ)) = (H1(F(θ)), . . . ,Hm(F(θ)))T , namely

fo(y|η) =
m∏
i=1

σ−1ρ

(
yi − ηi

σ

)
, (2.2)

with ρ a bounded C1 symmetric Lebesgue density in R, ρ′(x) < 0 for all x ∈ (0,∞), and∫∞
−∞ x2ρ(x)dx = 1, then

EABF =

∫
1

2

∣∣∣∣Zn(y)

Z(y)
− 1

∣∣∣∣Z(y)λ(dy) < ρ(0)
Kα(n)

σ
m. (2.3)

Note that the model in (2.2) can be written as

yi = Hi(F(θ)) + σεi, i = 1, . . . ,m,

where each εi has zero mean and unit variance, and its probability distribution function belongs
to the location-scale family.

7



Proof. Notice that∫
1

2

∣∣∣∣Zn(y)

Z(y)
− 1

∣∣∣∣Z(y)λ(dy) =

∫
1

2
|Zn(y)− Z(y)|λ(dy).

To bound the last integral, observe that

|Zn(y)− Z(y)| =
∣∣∣∣∫ fn(y|θ)π(dθ)−

∫
f(y|θ)π(dθ)

∣∣∣∣ = ∣∣∣∣∫ (fn(y|θ)− f(y|θ))π(dθ)
∣∣∣∣

=

∣∣∣∣∫ f(y|θ) (Rn (θ)− 1) π(dθ)

∣∣∣∣ ≤ ∫ f(y|θ) |Rn (θ)− 1| π(dθ),

with Rn (θ) =
fn(y|θ)
f(y|θ) . For η close enough to η1, for assumption 1, the likelihood ratio fo(y|η)

fo(y|η1) is
near 1, and∣∣∣∣ fo (y|η)fo (y|η1)

− 1

∣∣∣∣ ∼= ∣∣∣∣log( fo (y|η)
fo (y|η1)

)∣∣∣∣ = |ϕy(η)− ϕy(η1)| = |ϕy(η1)− ϕy(η)| ,

where ϕy(η) = − log fo(y|η). With the first-order Taylor approximation ϕy(η) = ϕy(η1) +

∇ϕy(η1) · (η − η1) + E, we have1

|Rn (θ)− 1| = |ϕy(η1)− ϕy(η)| =
∣∣∇ϕy (H(F(θ))) ·

(
H(Fα(n)(θ))−H(F(θ))

)
+ E

∣∣ .
Ignoring the higher order terms in the residual E, we have

|Rn (θ)− 1| =

∣∣∣∣∣
m∑
j=1

∂

∂ηj
ϕy (H(F(θ)))

(
Hj(Fα(n)(θ))−Hj(F(θ))

)∣∣∣∣∣
and using the global error bound in assumption 2, we have

f(y|θ) |Rn (θ)− 1| < f(y|θ)Kα(n)

m∑
j=1

∣∣∣∣ ∂

∂ηj
ϕy (H(F(θ)))

∣∣∣∣ (2.4)

since |
∑

aj(θ)bj(θ)| < c
∑
|aj(θ)| with |bj(θ)| < c for all θ. Then,∫

1

2
|Zn(y)− Z(y)|λ(dy) <

∫
1

2

∫
f(y|θ) |Rn (θ)− 1| π(dθ)λ(dy)

<
Kα(n)

2

∫ ∫
fo(y|η)

m∑
j=1

∣∣∣∣ ∂

∂ηj
ϕy (H(F(θ)))

∣∣∣∣ π(dθ)λ(dy)
Note how the global error bound is needed for all j as in assumption 2, nonetheless, we

1In the proof given in Capistrán et al. (2021), the authors had ∇ϕy

(
H(Fα(n)(θ))

)
instead of∇ϕy (H(F(θ))).
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2.3. SETTING BOUNDS ON POSTERIOR STATISTICS

could restrict this bound for θ ∈ supp{π} ⊂ Θ since we are integrating w.r.t π(·).
We calculate the remaining double integral by changing the order of integration to calculate∫

M(H(F(θ)))π(dθ), where

M(η) =
m∑
i=1

∫ ∣∣∣∣ ∂∂ηiϕy(η)

∣∣∣∣ fo(y|η)λ(dy). (2.5)

From the above equation, assuming data arising from model (2.2), note that∫ ∣∣∣∣ ∂∂ηiϕy(η)

∣∣∣∣ fo(y|η)λ(dy) = ∫ ∞

−∞

∣∣∣∣ ∂∂ηiϕy(η)

∣∣∣∣ fo(yi|η)λ(dyi)∫ ∞

−∞
fo(y−i|η)λ(dy−i︸ ︷︷ ︸)

1

=

∫ ∞

−∞

∣∣∣∣∣σ−1ρ
′ (yi−ηi

σ

)
ρ
(
yi−ηi

σ

) ∣∣∣∣∣σ−1ρ

(
yi − ηi

σ

)
dyi

= σ−1

∫ ∞

−∞
|ρ′ (x)| dx

Now2, if ρ′(x) < 0 for all x ∈ (0,∞), then the integral on the right side is in fact equal to∫∞
−∞ |ρ

′ (x)| dx = −2
∫∞
0

ρ′ (x) dx = 2ρ (0). Thus,

∫
M(H(F(θ)))π(dθ) =

∫ m∑
i=1

σ−12ρ (0)π(dθ) = 2
ρ (0)

σ
m. (2.6)

Therefore, ∫
1

2
|Zn(y)− Z(y)|λ(dy) < Kα(n)

2
2
ρ (0)

σ
m = ρ (0)

Kα(n)

σ
m.

2.3 Setting bounds on posterior statistics

To fix a discretization level to compute the posterior distribution, we do not follow the above
approach and find an alternative, using a similar mathematical procedure but with a different
purpose and justification. Namely, let h : Θ → R+ be a positive functional, and we are inter-
ested in the PE of this functional (e.g., a Quantity of Interest, or QoI), ĥy =

∫
h(θ)Qy[π](dθ).

Moreover, we have the numeric version of such posterior statistic ĥn
y =

∫
h(θ)Qn

y [π](dθ). The

2In the proof given in Capistrán et al. (2021), the authors do not explicitly assume that the derivative is negative
and forgot the minus sign after removing the absolute value.
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proposal is to bound the error, or the RE, in ĥn
y ,

∣∣∣ĥn
y − ĥy

∣∣∣ or

∣∣∣ĥn
y − ĥy

∣∣∣
ĥy

.

Theorem 2. With the setting of Theorem 1, let h : Θ → R+ be measurable and ĥn
y =∫

h(θ)Qn
y [π](dθ) and ĥy =

∫
h(θ)Qy[π](dθ) exists. Then

ERE =

∫ ∣∣∣ĥn
y − ĥy

∣∣∣
ĥy

Z(y)λ(dy) < 4ρ(0)
Kα(n)

σ
m. (2.7)

Moreover, ∫ ∥∥Qn
y [π]−Qy[π]

∥∥
TV
Z(y)λ(y) < 2ρ(0)

Kα(n)

σ
m.

Proof. From inequality (2.4) it follows that

|fn (y|θ)− f (y|θ)| < f (y|θ)Kα(n)k1 (y, θ) .

where k1 (y, θ) =
∑m

j=1

∣∣∣ ∂
∂ηj

ϕy

(
H(Fα(n)(θ))

)∣∣∣. Therefore,

|Zn (y)− Z (y)| =
∣∣∣∣∫ fn (y|θ) π(dθ)−

∫
f (y|θ) π(dθ)

∣∣∣∣
≤
∫
|fn (y|θ)− f (y|θ)| π(dθ)

< Kα(n)

∫
f (y|θ) k1 (y, θ)π(dθ)︸ ︷︷ ︸

k2(y)

.

10



2.3. SETTING BOUNDS ON POSTERIOR STATISTICS

Then, working with a modified version of the proof of Lemma 3.1 in Christen and Pérez-
Garmendia (2021), we have∣∣∣∣fn (y|θ)

Zn (y)
− f (y|θ)

Z (y)

∣∣∣∣ < f (y|θ)
Z (y)

Kα(n)k2 (y)

Z (y)
+

f (y|θ)
Z (y)

Kα(n)k1 (y, θ) .

Thus, ∀y we have∣∣∣ĥn
y − ĥy

∣∣∣ = ∣∣∣∣∫ h (θ)
fn (y|θ)
Zn (y)

π(dθ)−
∫

h (θ)
f (y|θ)
Z (y)

π(dθ)

∣∣∣∣
≤
∫

h (θ)

∣∣∣∣fn (y|θ)
Zn (y)

− f (y|θ)
Z (y)

∣∣∣∣ π(dθ)
<

∫
h(θ)

f (y|θ)
Z (y)

Kα(n)k2 (y)

Z (y)
π(dθ) +

∫
h(θ)

f (y|θ)
Z (y)

Kα(n)k1 (y, θ) π(dθ)

< ĥy
Kα(n)k2 (y)

Z (y)
+ ĥyK

α(n)k1 (y, θ)

or ∣∣∣ĥn
y − ĥy

∣∣∣
ĥy

<
Kα(n)k2 (y)

Z (y)
+Kα(n)k1 (y, θ) .

The bound is not directly computable, however, for the expected value of this RE, ERE =

EY

[
|ĥn

y−ĥy|
ĥy

]
, we have

ERE =

∫ ∣∣∣ĥn
y − ĥy

∣∣∣
ĥy

Z(y)λ(dy) < Kα(n)

∫
k2 (y)λ(dy) +

∫
Kα(n)k1 (y, θ)Z(y)λ(dy).

Note that, for location-scale families and from Eq. (2.6), it follows that∫
k2(y)λ(dy) =

∫
M(H(F(θ)))π(dθ) < 2

ρ(0)

σ
m,

where M(H(F(θ))) is given in Eq. (2.5). Now, for the second term,∫
Kα(n)k1 (y, θ)Z(y)λ(dy) = Kα(n)

∫
k1 (y, θ)

∫
f(y|θ)π(dθ)λ(dy)

= Kα(n)

∫ ∫
f(y|θ)k1 (y, θ) π(dθ)λ(dy)

= Kα(n)

∫
k2(y)λ(dy) < 2ρ(0)

Kα(n)

σ
m.
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Therefore

ERE < 4ρ(0)
Kα(n)

σ
m.

Moreover, if |h(θ)| < 1 then

EY

[∥∥Qn
y [π]−Qy[π]

∥∥
TV

]
=

∫
1

2
max
|h|≤1

∣∣∣∣∫ h (θ)Qn
y [π] (dθ)−

∫
h (θ)Qy[π] (dθ)

∣∣∣∣Z(y)λ(y)
< 2ρ(0)

Kα(n)

σ
m,

and we obtain the second result.

2.3.1 Choosing a solver discretization

The bound given in Eq. (2.7) allows us to define precision to run the solver. The idea is to keep
the ERE below a threshold b (e.g., b = 1

10
) so that the ERE between the numeric and theoretical

posterior statistic is of, at most, b × 100%. We can guarantee ERE < 4ρ(0)K
α(n)

σ
m < b by

choosing the numerical error in the FM in (2.1) to satisfy

Kα(n) <
σ

m

b

4ρ(0)
. (2.8)

In Capistrán et al. (2021), the authors bound the EABF in (2.3) with ρ(0)K
α(n)

σ
m < b∗ and

suggest b∗ = 1
20

, which corresponds to ERE < 4b∗ = 1
5
. That is, in this new perspective they

allow a maximum RE of 20%. Instead, here, b should be set in the perspective of the precision
needed to estimate the QoI, for example, and is decided by the user in a case by case basis.

Note that, in practice, it is not necessary to establish the global bound (2.1) a priori, but rather
by a careful strategy using an after-the-fact error estimation. That is, in most cases, the posterior
distribution is sampled using MCMC, which requires evaluation of the approximated likelihood
at each of many iterations; an automatic process of global error estimation and control will be
necessary to comply with (2.8). This we explain in detail in the next Section.

2.3.2 Choosing the MCMC sample size

MCMC methods have an approximation error due to the use of a finite sample, and certainly,
as the MCMC sample size increases, this error decreases. Thus, necessarily, the bound on the
ERE, in any statistic, must be larger than that of the MCMC to see the desired effect. Indeed,
the MCMC estimate of ĥn

y should have a lower RE than the desired bound on the ERE for ĥn
y.

To calculate the MCMC error, we will use the result of (Molina and Christen 2021). In
Molina and Christen (2021), the authors present a criterion to determine the sample size of a

12



2.3. SETTING BOUNDS ON POSTERIOR STATISTICS

stochastic simulation with MCMC, which guarantees a certain precision in the estimation of the
parameters. This criterion is based on simple classical usage of the Centra Limit Theorem to
build a confidence interval on MC estimates. This simple procedure is put in terms of the desired
significant digits for the estimate. It includes a heuristic procedure to produce a rough estimate
of the coefficient of variation (CV) of the functional from an initial small sample size.

Consequently, as in Molina and Christen (2021), to select the MCMC sample size to obtain
the desired precision, we proceed as follows. Let a ∈ R+ be a QoI, and expressing this number
in scientific notation, we have:

a = ma10
q = a0.a1a2...10

q with a0 ̸= 0 and q ∈ Z, (2.9)

ma is referred to as the mantissa of a, 1 ≤ ma ≤ 10, and a0.a1a2... is the decimal expansion of
ma. The idea is to establish how many digits p are required to be correct with probability close
to 1 in an MC estimator of a. Thus, they are correct from a0 to ap and the exponent q.

For our case, we consider a functional h : Θ → R+, as in Sec. 2.3, and the QoI is the PE
of this functional, ĥy =

∫
h(θ)Qy[π](dθ). Let X1, X2, . . . , XT be an independent sample of the

posterior distribution Qy[π], obtained from MC simulation, and let

ĥT =
1

T

T∑
i=1

h (Xi)

be an estimator of ĥy. Expressing ĥy in scientific notation gives ĥy = mh10
q. Now, taking

the exponent of ĥy we will express ĥT in the following form, hT = mT10
q. The integrated

autocorrelation time (IAT) of the MCMC sample is estimated. Then we thin our chains, i.e., we
discard all but every k-th (k is the calculated IAT) observation, to obtain a pseudo-independent
sample.

In Molina and Christen (2021), the authors ensure, with high probability (> .9999), that with
a sample size of T = 16 (CV)2 102p in the MCMC, an accuracy of precision of p significant
figures is achieved in the estimation of the mantissa of ĥy, i.e.,

|mh −mT | <
1

2
10−(p−1).

Note that, in general, one cannot directly estimate the CV = σ
µ

, since doing so incurs a
circular argument concerning the primary goal of guaranteeing accuracy in the estimation of
mh. First, a preliminary estimate of the CV is made with a small sample size to see roughly the
sample size needed. Then a more accurate conventional estimate of the CV is made.

Now, expressing the numeric version of the QoI, ĥn
y =

∫
h(θ)Qn

y[π](dθ), in scientific nota-
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tion, taking the exponent of ĥy, we have ĥn
y = mn

h10
q. Then, the RE in ĥn

y is given by∣∣∣∣∣ ĥy − hn
y

ĥy

∣∣∣∣∣ =
∣∣∣∣mh10

q −mn
h10

q

mh10q

∣∣∣∣ = ∣∣∣∣mh −mn
h

mh

∣∣∣∣ < |mh −mn
h| ,

since 1 ≤ mh < 10.

So, if we want an RE of l significant figures in the mantissa (i.e., |mh −mn
h| < 1

2
10−(l−1)),

the error in the MCMC must have p > l significant figures (i.e., |mh −mT | < 1
2
10−(p−1)), to be

able to see the effect correctly.

The way to proceed in the examples that we present in this thesis will be as follows. First,
define the desired ERE ℓ (number of significant figures), and choose a sample size T in the
MCMC that guarantees a precision p = ℓ + 1. We will then round the estimate obtained with
the MCMC to p decimal places, both for the theoretical and the numerical version, and then we
will calculate the RE with these estimates.

In the next Sections, we present two examples considering Bayesian UQ problems for 1D
and 2D heat equations, respectively, to illustrate the proposed strategy and its performance for
bounding ERE.

2.4 A 1D heat equation inferring the thermal conductivity

The determination of the thermal conductivity is essential in many thermal design problems
since the calculated thermal results depend on the estimated thermal conductivity. In the follow-
ing example, we present one application of inverse heat conduction problem.

Let us consider the thermal conductivity problem for the stationary heat equation in 1D.
Namely

− d

dx

(
a (x)

du (x)

dx

)
=f(x), x ∈ (0, 1) , (2.10)

subject to Dirichlet boundary conditions u (0) = u (1) = 0, with forcing term f (x) = sin (πx)

and thermal conductivity a(x) > 0 that varies with the space parameter x. Here, the functions a
and f are assumed to be continuous on [0, 1], and 0 < α0 ≤ a(x) ≤ α1 < ∞, ∀x ∈ (0, 1). The
FM in this case is: given a(x), solve the above differential equation to find u, namely F[a] = u.

In this example, the FM is not available analytically, and a numeric FM is used. We use an
error estimation in the FM to bound the ERE of the PE of the function a(x).

The Finite Element Method (FEM) is a numerical method for solving PDEs (see Brenner
and Scott 2008; Reddy 2006, for example). The numerical solution of (2.10) is computed using
the FEM, which allows us to calculate a local error estimation in the L2 norm (see Babuška and
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2.4. A 1D HEAT EQUATION INFERRING THE THERMAL CONDUCTIVITY

Rheinboldt 1978, for more details), given by

∥uh − u∥L2(Ii)
=

(∫ xi

xi−1

(uh − u)2 dx

)1/2

≤ h2

π2aimin
∥r∥L2(Ii)

, i = 1, . . . , n,

where n is the number of elements, uh the numerical solution with step size h, Ii = [xi−1, xi],
r(x) = f(x) + d

dx

(
a(x)duh(x)

dx

)
is the residual, and

aimin = min
x∈Ii

a(x) = a

(
xi + xi−1

2

)
(1 +O(h)) as h→ 0.

Then, the error estimation K̂0 is computed by

K̂0 = max
Ii

h2

π2aimin
∥r∥L2(Ii)

, i = 1, . . . , n. (2.11)

The inference problem is the estimation of the function a(x) (in particular, we are going to
infer the logarithmic transformation b(x) = log(a(x))) given the observation functionalH(u) =
(u(x1), u(x2), . . . , u(xm))

′ at a fixed locations xj , j = 1, . . . ,m.

We simulate a synthetic data set with the true thermal conductivity given by a (x) = k0 −
r k0
1+exp(−xa+a

s )
, and error model yj = u (xj) + σεj , where εj ∼ N (0, 1), with the following

parameters k0 = 5, r = 0.9, a = 20, s = 2 and σ = 0.0005 (to maintain a 0.01 signal-to-noise
ratio). The data are plotted in Figure 2.1(b). We consider m = 30 observations at locations xj

regularly spaced between 0 and 1.

In order to define the parametric space, the function a(x) is represented as a third-order
b-spline that passes through the set of points {ai}ki=0, where ai = exp(b(xi)). Therefore, the
parameter space is defined by θ = {bi}ki=0, where bi = b(xi). In this case, since the FEM used
is numerically demanding we keep the prior truncation fixed to k + 1 terms; namely the control
points {ai}ki=0, at locations {xi}ki=0, for the third-order b-spline. In this example we take k = 10.

Regarding the prior distribution for the parameters {bi}ki=0, we define their prior using a
Gaussian Markov random field with zero mean and a sparse precision matrix (inverse-covariance),
encoding statistical assumptions regarding the value of each element bi based on the values of
its neighbors (see details in Bardsley and Kaipio 2013). We restrict the support of −∞ < β1 ≤
b(x) ≤ β2 <∞, this implies that ai = exp(bi) ∈ [exp(β1), exp(β2)]. Then the parameter space
is compact and there exists a global bound for (2.11), complying with (2.1). To sample from the
posterior distribution, we use the t-walk (Christen and Fox 2010).

Note that, considering independent data with a Gaussian model (ρ(0) = 1√
2π

), the first part
of assumption 1 is right, and furthermore, as the observation operator is the identity, H ◦ F
and H ◦ Fα(n) are continuous. Thus, all the necessary assumptions for Theorem 1 are satisfied.
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True PE-n=500 PE-n=150 RE b
a0 5.00× 100 5.07× 100 5.06× 100 1.8×10−3 1.5×10−1

a1 5.00× 100 5.08× 100 5.12× 100 8.5×10−3 1.5×10−1

a2 4.99× 100 4.97× 100 4.93× 100 8.7×10−3 1.5×10−1

a3 4.92× 100 4.95× 100 4.96× 100 2.0×10−3 1.5×10−1

a4 4.46× 100 4.39× 100 4.37× 100 4.6×10−3 1.5×10−1

a5 2.75× 100 2.86× 100 2.85× 100 1.0×10−3 1.5×10−1

a6 1.04× 100 1.29× 100 1.26× 100 1.6×10−2 1.5×10−1

a7 5.81×10−1 6.08×10−1 6.44×10−1 5.9×10−2 1.5×10−1

a8 5.11×10−1 4.92×10−1 4.64×10−1 5.7×10−2 1.5×10−1

a9 5.02×10−1 4.60×10−1 4.76×10−1 3.5×10−2 1.5×10−1

a10 5.00×10−1 5.14×10−1 4.59×10−1 1.1×10−1 1.5×10−1

Table 2.1: Comparison of the PE for parameters {ai}ki=0 using n = 150 and n = 500 elements in
the FEM. The estimated RE for each parameter and the tolerance b for the ERE is also presented.
It is observed that the RE is less than b in all cases.

Therefore, if we want to guarantee a ERE of 15% (b = 1.5×10−1) in the numerical PE of
parameters {ai}ki=0, then the threshold in (2.8), for the numerical error in the FM, is B :=
σ
m

b
4ρ(0)

= 1.68× 10−6.

Regarding the numerical solver, we begin with a relatively large step size h = 0.02 (con-
sidering n = 50 elements in the FEM) and start the MCMC. At each iteration the FM is first
computed along with its error estimation K̂0. If the solution uh does not satisfy the estimated
global bound, i.e., K̂0 > B, we increase the number of elements by 50 (h = 1/(n + 50)), until
the bound is met. For h = 0.0066, n = 150 elements in the FEM, the bound is achieved for all
iterations.

For comparison, a finer grid is considered with h = 0.002, n = 500 elements. It is important
to point out that we will use this as a reference since we do not have the exact solution of
u(·). The results are shown in Figure 2.1. We took 100,000 iterations of the t-walk, with
the resulting IAT this guarantees that the error in the MCMC (0.5 × 10−1.1) is less than b =

0.5 × 10−.52 (15%) for all parameters {ai}ki=0. Note that with an ERE of 15% 1 significant
figures are achieved, while with the MCMC 2 significant figures are achieved, as explained in
Sec. 2.3.2. With n = 150 the sampling took 3 min and with n = 500, 16 min; in a standard
2.6Ghz processor computer.

We can see that the RE is less than the tolerance b in all parameters. We observe that for
several ai’s the RE was much lower than b, but for a10, the RE was very close to tolerance. This
may speak about the tightness of the bound in (2.8).

16



2.5. A 2D HEAT EQUATION INFERRING THE INITIAL CONDITION

(a) Thermal conductivity a(x) (b) Solution u(x)

Figure 2.1: (a) The true conductivity a(x) (black), the PE with n = 150 elements (red) and
n = 500 elements (green) in the FEM. (b) The exact solution u(x) (black), the PE with n = 150
elements (red) and n = 500 elements (green). Shaded areas represent the uncertainty in the
model fit, as draws from the posterior distribution, using 150 elements (blue) and 500 elements
(yellow).

2.5 A 2D heat equation inferring the initial condition

In this example, we consider a 2D PDE inverse problem. The FM is available analytically, and a
numeric FM is also used. In this case, the numeric error is directly calculated, and we infer only
two parameters.

We present a 2D heat equation problem to determine the initial conditions from observations
of transient temperature measurements taken within the domain at a time t = t1. The heat
transfer PDE is given by

∂u

∂t
= α∆u, in D = (0, 1)× (0, 1) , (2.12)

u(x, y, t) = 0 on ∂D

u(x, y, 0) = f (x, y) .

Taking the forcing term f (x, y) = b sin (πx) sin (πy) + c sin (2πx) sin (πy) as initial condition,
the PDE has an analytical solution

u(x, y, t) = b exp
(
−2απ2t

)
sin (πx) sin (πy) + c exp

(
−5απ2t

)
sin (2πx) sin (πy) .

A numerical solution of the boundary value represented in (2.12) is also computed using the
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FEM within FEniCS (Martin et al. 2015), which allows us to calculate the error in the numerical
solver using the exact solution.
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Figure 2.2: Heat equation in 2D, (a) exact solution at t = t1, (b) numerical solution using FEM
with FEniCS with mesh 40 × 40 with ∆t = 0.067 and (c) numerical solution with an additive
Gaussian noise with variance σ = 0.3 and data point locations.

The inferential problem is to estimate θ = (b, c) given measurements of u at time t1 = 0.3.
A priori we took independent truncated Gamma distributions for b and c with parameters (2, 0.7)
and (2, 0.4) respectively, both restricted to [0, 8]. Certainly, the theoretical and the numeric FMs
are continuous, and since the support is compact we may conclude that the error bound in (2.1)
exists for all θ.

We simulate a synthetic data set with the error model

Yi = u(xi, yi, t1) + σεi,

where εi ∼ N (0, 1) i = 1, . . . ,m, σ = 0.3 (using a the signal to noise ratio of 5%), with
b = 3 and c = 5. The data are plotted in Figure 2.2(b). We consider m = 25 observations,
(xi, yi), i = 1, 2, . . . ,m regularly spaced on D. Since we have an analytic solution, if we run
the PDE solver we may calculate the maximum absolute error, K0, exactly.

Here, as in Example 2.4, all the requirements of the Theorem 1 are fulfilled. Therefore, if
we want to guarantee an ERE of 20% (b = 2.0e − 1) in the numerical PE of parameters, then
the error bound for the FM as stated in (2.8) is B ≃ 0.0015. To sample from the posterior
distribution, we also use the t-walk.

Regarding the numerical solver we start with a large step size of ∆x = ∆y = 0.1 and
∆t = 0.268, and calculate K0. If the solution does not comply with the bound, that is if K0 > B,
a new solution is attempted by reducing the step-size in ∆x,∆y and ∆t by half, until the global
absolute errors are within the bound, i.e., K0 ⩽ B. The resulting mesh is ∆x = ∆y = 0.025

and ∆t = 0.067.
We compare the above FEM numerical FM with the exact FM, with 200,000 iterations of

our MCMC, to guarantee the error in the MCMC (0.5 × 10−1.45) is less than b = 0.5 × 10−0.39
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2.6. DISCUSSION
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Figure 2.3: Comparison between numerical (blue) a theoretical (magenta) posteriors for param-
eters b (left) and c (right), of the initial conditions of the 2D heat equation. The prior, in this
scale, appears in green.

for both parameters. The results are shown in Figure 2.3 and in Table 2.2. We see that the RE
of the PEs of the two parameters are less than the tolerance b, in this case, by several orders of
magnitude. Note that with an ERE of 20% 1 significant figure is required, while with the MCMC
2 significant figures are achieved, as explained in Sec. 2.3.2. In table 2.2, the PE was rounded to
3 figures because if it were rounded to 2 figures, the RE would give 0 in both parameters.

True PE-Exact PE-FEM RE b
b 3.00× 100 2.936× 100 2.938× 100 6.8×10−4 2.0×10−1

c 5.00× 100 5.101× 100 5.098× 100 7.8×10−4 2.0×10−1

Table 2.2: Comparison of the PE for parameters b and c using the exact FM and the FEM
approximate FM. The estimated RE for each parameter and the tolerance b for the ERE is also
presented. It is observed that the RE is less than b in both cases. Note that the PE was rounded
to 3 figures because if it was rounded to 2 the RE would give 0 in both parameters.

2.6 Discussion

Here, we found a bound on the RE in PEs for some functional. Also we detailed how this bound
can be used to find a discretization in the numerical method used to approximate the FM. We
also presented two examples (we have experimented with several others). In all cases, using the
bound (2.8), the RE in the PEs of parameters is less than the established tolerance b, i.e., the
numerical error in the posterior was successfully bounded. With these examples, we showed
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the importance of having an estimator for the absolute global error (AGE) of the numeric FM,
which is feasible, general, and applicable.

Our results lead to the error bound for the FM’s error in (2.8) that is quite simple to calculate,
provided, as we said, that after-the-fact error estimates of the FM numeric approximation are
available. This bound depends on the specific maximum RE (b) selected and on the noise for
the data (σ, and on ρ(0)). The posterior variance, or specifically, the CV of the statistic, enters
through the MCMC estimation, and statistics with larger CV will require larger effective sample
sizes for their estimation.

We have not discussed the scenario when error parameters σ are unknown and/or there is
a correlation in the data. In this case, we may consider that a priori θ and σ are independent,
a correlation structure for y, and equivalent results should follow. This was discussed in an
unpublished manuscript (Christen et al. 2016) with a previous version of Capistrán et al. (2021).
We only need to prove that the new likelihood follows assumption 1, in particular, that it is
bounded.

In general, one needs to decide, sooner or later, a discretization level n. Although there
are multilevel methods that work with several discretizations simultaneously (Cliffe et al. 2011;
Katsiolides et al. 2018), even, in that case, one nevertheless needs, a priori, a sense of what is a
large or a small FM error. Our bound in (2.8) is an attempt to provide precisely that, a sense of
what is a large or a small FM error in the perspective of the Bayesian UQ problem at hand and
the selected QoI’s, taking into account the noise level in the data (σ) and the sample size.

Nonetheless, our approach only makes sense in the case when working with different dis-
cretizations for the FM is computationally feasible.

20



CHAPTER 3

Bounding numerical posterior error
in the Bayesian UQ analysis of a

semilinear evolution PDE

In this Chapter, we elaborate on results obtained in Chapter 2 for bounding the numerical pos-
terior error for Bayesian UQ problems, now considering FMs arising from the solution of a
semilinear evolution PDE. Results in Chapter 2 demand an estimate for the AGE of the numeric
FM. Our contribution is a numerical method for computing the AGE for semilinear evolution
PDEs and shows the potential applicability of our results in Chapter 2 in this important wide
range family of PDEs. Numerical examples are given to illustrate the efficiency of the proposed
method by keeping an ERE in the PEs of parameters less than an established tolerance b. We
will experiment with b = 0.05 and b = 0.1.

3.1 Introduction

Physical models involving semilinear evolution PDE’s arise in several fields of science and engi-
neering (Tzafestas 2013; Diagana 2018). These PDEs are used to describe many complex non-
linear settings in applications such as vibration and wave propagation, fluid mechanics, plasma
physics, quantum mechanics, nonlinear optics, solid-state physics, chemical kinematics, physi-
cal chemistry, population dynamics, and many other areas of mathematical modeling.

In this Chapter, we derive an after-the-fact error estimate for a numerical approximation of
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semilinear evolution PDEs of the form

∂u

∂t
= D

∂2u

∂x2
+ F

(
u,

∂u

∂x
, θ

)
, (3.1)

defined on the region t ∈ [0, τ ], x ∈ [a, b], with left and right boundary conditions

u(a, t) = g(t) and u(b, t) = h(t), 0 ≤ t ≤ τ, (3.2)

and initial condition
u(x, 0) = f(x), a ≤ x ≤ b. (3.3)

In Eq. (3.1), D is the diffusion coefficient, θ is a parameter (possibly a vector) of interest, and F

is a non-linear operator.

We obtain the numerical solution for Eq. (3.1) with the method of lines; discretizing first in
the space with the FD method and solving the resulting system in time with the RKCK method.
This scheme is widely used to solve numerically evolution PDEs (Bellman and Kalaba 1965;
Bastani and Salkuyeh 2012; Sari and Gürarslan 2011). However, computable after-the-fact error
estimates for these methods have not yet been derived.

The idea behind our construction of the error estimates for the PDE in Eq. (3.1) is the error
estimate available for the RKCK method. Our numerical method uses these error estimates, in
time, for the resulting ODE system. The spatial discretization error is treated as the solution of an
initial value problem, approximated by the RKCK method. The truncation error (TE) introduced
for the approximation with FDs is computed using the solutions in two different mesh sizes. In
modern computers, the added computational effort can be reduced to an equivalent result to that
solving the PDE conventionally (on a single mesh) since evaluating the solution in two different
meshes may be easily parallelized.

We will then use this after-the-fact error estimate to apply the results of Chapter 2, for the
solution of the Bayesian UQ problem associated with the PDE given in Eq. (3.1), to bound the
ERE in a QoI. Numerical examples are given to illustrate the efficiency of the proposed method.
We obtain RE in the PEs of unknown parameters less than the established tolerance b.

The Chapter is organized as follows. In Section 3.2, we present a numerical method used for
solving evolution PDEs numerically. In Section 3.3, we derive our after-the-fact error estimate
for semi-linear evolution differential equations. The accuracy of our error estimate is evaluated
for some classic examples. In Section 3.4, we propose an algorithm that incorporates the after-
the-fact error estimate to bound the posterior numerical error in a QoI. Numerical examples are
given in Section 3.5 to illustrate the efficiency of the proposed Algorithm. Finally, a conclusion
is given in Section 3.6.
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3.2. NUMERICAL SOLUTION

3.2 Numerical solution

This Section introduces a particular version of a standard numerical procedure, namely, the
method of lines, to solve semilinear evolution PDEs. This procedure has been widely used
for solving evolution PDEs (Bellman and Kalaba 1965; Bastani and Salkuyeh 2012; Sari and
Gürarslan 2011). The basic idea of the method is to replace the spatial derivatives on the PDE
with an algebraic approximation in order to obtain an ODE system. The resulting system is then
solved with a standard ODE solver. We discretize in the space with the FD method and solve the
ODE system with the RKCK method. We called this method FD-RKCK. In the next Section,
we will then use this method to build a computable after-the-fact error estimate in order to be
able to use the posterior error bound results of Chapter 2.

For simplicity, we denote u̇ := ∂u
∂t

, u′ := ∂u
∂x

, and F (u, u′) instead of F (u, u′, θ). Moreover,
without losing generality, we can set D = 1 in Eq. (3.1). We consider a one-dimensional uniform
mesh, Ωh, on the region [a, b], with nodes xi, for i = 0, 1, . . . , N , where

Ωh : a = x0 < x1 < · · · < xN = b, (3.4)

and a constant step size h between any two successive nodes (i.e., h = xi − xi−1).

To solve the PDE in Eq. (3.1), we start by linearizing it by using the quasilinearization
method which was proposed by Bellman and Kalaba (1965). We split the function F into its
linear (L) and nonlinear (N) components, and rewriting Eq. (3.1) in the form

u̇ = u′′ + L[u, u′] + N[u, u′]. (3.5)

For example, in Section 3.3 we use the Fisher equation where F = ru(1− u), thus L = ru and
N = −ru2. Afterwards, the nonlinear operator N is approximated with a Taylor series, assuming
that the difference ui+1,· − ui,· and all its spatial derivatives are small. Hence

N[ui+1,·, u
′
i+1,·] ≈ N[ui,·, u

′
i,·] +ϕ0,i[ui,·, u

′
i,·] · (ui+1,·−ui,·)+ϕ1,i[ui,·, u

′
i,·] · (u′

i+1,·−u′
i,·), (3.6)

where ui,· := u(xi, t) is the solution of Eq. (3.1) evaluated in (xi, t), and

ϕk,i[ui,·, u
′
i,·] :=

∂N[ui,·, u
′
i,·]

∂u(k)
, k = 0, 1.

For simplicity, u(i) denotes the i-th derivative. Substituting Eq. (3.6) into Eq. (3.5), we get

u̇i+1,· ≈ u′′
i+1,·+L[ui+1,·, u

′
i+1,·]+N[ui,·, u

′
i,·]+ϕ0,i[ui,·, u

′
i,·]·(ui+1,·−ui,·)+ϕ1,i[ui,·, u

′
i,·]·(u′

i+1,·−u′
i,·),

(3.7)
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for i = 1, ..., N − 2. Now, the spatial partial derivatives are approximated using the central
difference formula. For simplicity, we use the simplest spatial derivative approximations here,
while the analysis can be extended for other (e.g., five-point stencil) approximations as well,

u′
i,· ≈

ui+1,· − ui−1,·

2h
, u′′

i ≈
ui+1,· − 2ui,· + ui−1,·

h2
, (3.8)

for i = 1, . . . , N − 1, and

u′
0,· ≈

u1,· − u0,·

h
. (3.9)

Substituting Eqs. (3.8)–(3.9) in to Eq. (3.7), joint with the boundary condions (3.2) and initial
condition (3.3), we get the following semi-discrete differential equation:

V̇h(t) =
1

h2
AxxVh(t) + F(t,Vh(t)) (3.10)

Vh(0) = U(0) (3.11)

where Vh(t) = (v1,·, v2,·, . . . , vN−1,·)
T approximates

U(t) = (u1,·, u2,·, . . . , uN−1,·)
T , (3.12)

which U is the exact solution of the PDE (3.1) on the mesh Ωh, and F is the approximate
operator F in matrix form, see A.1 for details.

Remark. The semi-discrete differential equation (3.10) have a TE O(hp):

(i) If F does not have a nonlinear component, the quasi-linear approximation (3.6) is not
necessary. Thus, the TE for the central difference formula is not affected (p = 2).

(ii) If N is non-linear in u′, the quasi-linear approximation (3.6) introduces a TE of first-order,
which is propagated when u′ is approximated using the central difference formula. Thus,
the order of the TE for (3.10) is less than 2 (p < 2).

(iii) If N is non-linear in u and linear in u′, the TE introduced for the quasi-linear approxi-
mation (3.6) is not propagated as in case (ii). Then, the TE in (3.10) is slightly affected
(p ≈ 2).

In order to solve the resulting ODE system (3.10)-(3.11), with N − 2 equations, we use the
RKCK method. This method uses six function evaluations to calculate fourth and fifth-order
accurate solutions. The difference between these solutions is then taken to be the error (fourth-
order) of the solution; see Burden and Faires (2011) for details. The available error estimate is
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3.3. AFTER-THE-FACT ERROR ESTIMATES

the reason to solve the resulting ODE’s system with this Runge-Kutta (RK) method, and it will
be used in turn, in Section 3.3, for computing the after-the-fact error of the numerical solution
of Eq. (3.1).

Setting G(t,Vh(t)) = 1
h2AxxVh(t) + F(t,Vh(t)), a RK scheme applied to the ODE sys-

tem (3.10), at a uniform time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = τ ; tn+1 = tn + k, (3.13)

is given by

K1,n = G (tn,W·,n) , (3.14)

Kl,n = G

(
tn + clk,W·,n + k

l−1∑
j=1

aljKj,n

)
, l = 2, 3, . . . , 6, (3.15)

W·,n+1 = W·,n + k
6∑

l=1

blKl,n, n = 1, . . . ,M − 1,

where W·,n+1 is the approximation for Vh(tn+1), (alj) are the Runge-Kutta coefficients, b =

(b1, b2, . . . , b6) are the quadrature nodes, and c = (c1, c2, . . . , c6) are the quadrature weights of
the RK scheme. k = ∆t > 0 is the step size in time and define a uniform grid.

In order to have stable solutions in explicit schemes, the step size in time is related to the dis-
cretization through the Courant-Friedrichs-Lewy (CFL) condition (Courant et al. 1928), which
restricts the step size in time based on the eigenspectrum of the discretized spatial operator. The
CFL condition for the FD-RKCK scheme considering only the pure diffusion is

∆t

∆x2
≤ 1

4
Bm,

where Bm = maxi bi, and b1, b2, . . . , b6 are the quadrature nodes for the RK method used, see
A.2 for details.

3.3 After-the-fact error estimates

In this Section, we propose a numerical procedure to obtain an after-the-fact error estimate of
the AGE for the numerical solution of Eq. (3.1) presented above. We use the error estimation
in the time-stepping given for the RKCK method and estimate the leading term of the TE in
space stepping. This scheme can be extended for differential equations of non-linear evolution,
but some additional considerations regarding the stability of the solution must be taken into
account.
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In Section 3.2, we obtained the semi-discrete differential equation (3.10)–(3.11), with a
unique solution vector, Vh(t), being a grid function on Ωh. This initial value problem solved
with the RKCK method yields approximations W.,n to Vh(tn). The global error at the spatial
mesh points at knot tn is defined by

Eh(tn) := W.,n −U(tn), (3.16)

where U is the exact solution of the PDE (3.1) on the mesh Ωh defined in (3.12). The vector Eh

may also be written as a combination of the ODE global error, this is defined as the error made
by the solver, i.e.,

eh(tn) = W.,n −Vh(tn), (3.17)

and the spatial discretization error defined by

ηh(tn) = Vh(tn)−U(tn). (3.18)

The function η(t) represents the accumulation of the spatial TE when we solve (3.10)-(3.11),

TEh(t) = G(t,U)− U̇(t). (3.19)

From Eqs. (3.17)–(3.18), the global error Eh(tn) may be written as the sum of the global
time and spatial error, i.e.,

Eh(tn) = eh(tn) + ηh(tn). (3.20)

We assume that u(t, x) is p-times differentiable with respect to x and fourth-times continuously
differentiable with respect to t. Then, it holds for the global space and time error that ||ηh|| =
O(hp) and ||eh(tn)|| = O(k4), n = 1, . . . ,M , respectively.

Although there are already articles that propose an error estimation of this type of PDE’s
(Bellman and Kalaba 1965; Bastani and Salkuyeh 2012; Sari and Gürarslan 2011), they do not
show a direct way for computing such error. These estimations leave constants that cannot be
easily computed. More importantly, these methods do not guarantee that the error estimate is an
upper bound for the actual error.

Note that, ||Eh(tn)||∞ ≤ ||eh(tn)||∞+||ηh(tn)||∞, i.e., what we are proposing, is a bound for
the global error, which is required in Assumption 2. The ODE global error (3.17) is calculated
using the error estimation of RKCK (Bellman and Kalaba 1965). The spatial discretization error
(3.18) is treated as the solution of an initial value problem (3.21)-(3.22), approximated by the
RKCK method, which involves an estimation for the TE. The Richardson extrapolation provides
a suitable estimate of the TE (Roy 2010). The idea is to calculate the solution using a one-step
size h and then compute them again with half the space step (h/2). The result obtained using
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3.3. AFTER-THE-FACT ERROR ESTIMATES

two steps size is more accurate than using the single-step size h. Their difference can be used as
an estimate of the TE, which is proportional to hp. In the following Sections, we find an entirely
computable upper bound (our error estimate) of the numerical error, with the same asymptotic
behavior as the true error.

3.3.1 Spatial discretization error

We may obtain an equation for the evolution of η(t) by adding terms to both sides of (3.10):

V̇h(t)− U̇(tn) = G(t,Vh)−G(t,U) +G(t,U)− U̇(tn).

From the initial condition (3.11) and using the definition η(t) in the above equation, the accu-
mulation of the spatial discretization error is the solution to the initial value problem:

η̇(t) = G(t,Vh)−G(t,U) + TEh(t), t ∈ (0, τ ] (3.21)

η(0) = 0. (3.22)

Assuming G to be twice continuously differentiable, we use the approximation:

∂G

∂Vh

≈ G(t,Vh)−G(t,U)

Vh −U
. (3.23)

Finally, we rewrite (3.21)-(3.22) to get

η̇(t) =
∂G

∂Vh

η(t) + TEh(t), t ∈ (0, τ ] (3.24)

η(0) = 0. (3.25)

The integration of (3.24)–(3.25) is performed using M steps of size k of the RKCK method,
as in the solution of the semi-discrete differential equation (3.10)–(3.11). In each RKCK step,
∂G
∂Vh

is approximated using the approximations W.,n and W.,n+1 to Vh at time tn+1, i.e.,

∂G

∂Vh

≈ G(tn+1,W.,n+1)−G(tn+1,W.,n)

W.,n+1 −W.,n

. (3.26)

3.3.2 Spatial and time error

The ODE global error (3.17) is computed by the error estimation given by the RKCK method.
This scheme uses an RK method with a fifth-order local TE to estimate the local error in an RK
method of fourth-order. Both with the same number of stages s = 6, Runge Kutta matrix A,
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and weights c, while their nodes b̂ and b, respectively, are different; see Bellman and Kalaba
(1965) for details.

Let W·,n+1 the n+ 1 approximation of Vh(tn+1) of fourth-order, and let Y·,n+1 be obtained
by the fifth-order method starting at W·,n, namely

W·,n+1 = W·,n + k

s∑
i=1

biKi,n and Y·,n+1 = W·,n + k

s∑
i=1

b̂iKi,n, (3.27)

The local TE τ̂·,n+1 at node tn+1 of the RK method is defined as the error made in step n+1

of the solver if starting at the exact value W·,n. The estimation of τ̂·,n+1 for the RKCK method
is given by

τ̂·,n+1 = Y·,n+1 −W·,n+1 = k

s∑
i=1

(b̂i − bi)Ki,n,

and the global error at knot tn+1 is

ê.,n+1 =
n+1∑
j=1

τ̃·,j. (3.28)

In each RK iteration, we solve the equation for the spatial discretization error (3.24)–(3.25),

η̂n+1 = η̂n + k
s∑

i=1

biK̂i,n, (3.29)

where

K̂1,n = H(tn, η̂n)

K̂l,n = H

(
tn + clk, ηn + k

l−1∑
j=1

aljK̂j,n

)
, l = 2, 3, . . . , 6.

H is the right side of (3.24). From (3.28)–(3.29), an estimation for the global error Eh (3.20) at
knot tn is given by,

Ê.,n+1 ≈ ê.,n+1 + η̂n+1. (3.30)

Note that to solve fully (3.24)–(3.25), we need an estimate for the TE. This estimation is
done in parallel to be used in (3.29). Below we give details for computing the TE.

3.3.3 Spatial truncation error

The TE is the difference between the discretized equations and the original partial differential
equations. It contains the errors due to the discretization of the PDE and the errors due to the
grid. For the finite difference scheme used to approximate the spatial operator, we have that the
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3.3. AFTER-THE-FACT ERROR ESTIMATES

TE at time t has rate order O(hp),

TEh(t) ≈ O(hp).

An efficient strategy to estimate the spatial TE by Richardson extrapolation is proposed in
Roy (2010). We will adopt this approach to our setting. The actual mesh used to compute the
numerical solution to the PDE is used as the fine mesh in the Richardson extrapolation process.
Suppose we are given a second semi-discretization of the PDE system (3.1), now with doubled
local mesh sizes defined as follows,

Ω2h : a = z0 < z1 < z2 < . . . < zN/2 = b, zi = x2i, i = 0, . . . , N.

This mesh is called the coarse mesh. We assume that the solution V2h(t) to the discretized
PDE, on the coarse mesh 2h, exists and is unique. The Richardson extrapolation gives an esti-
mation of the TE for the fine mesh at time t,

T̂E(t) ≈ V2h −R2h(Vh)

2p − 1
, (3.31)

where R2h(Vh) is the operator that returns the solution Vh in the grid Ω2h.

Remark. The after-the-fact error estimate of the AGE for the FD-RKCK solution of (3.1), on
Ωh × (0, τ ], is given by

K̂ = ||Ê.,M ||∞,

where Ωh is defined in (3.4), the discretization grid for (0, τ ] is defined in (3.13), and Ê.,M is an
estimate for the global error (3.20).

In Algorithm 1, we describe the steps necessary to compute the numerical solution of Eq. (3.1),
with the after-the-fact error estimation. We call this algorithm DF-RKCK.

To test our algorithm, we consider three classical semi-linear PDEs, of the form (3.1): Ex-
ample 1 (Fisher equation), Example 2 (Fitzhugh-Nagumo equation), and Example 3 (Burgers-
Fisher equation). The three examples used also have analytic solutions, allowing us to compute
the actual numerical error and compare it with our estimates. In Figure 3.1, a graphical com-
parison is shown between our numerical implementation approximations and the exact solution
for the three examples. Table 3.1 shows the convergences order of the solution obtained with
the DF-RKCK Algorithm. It can be seen that the method achieves full convergence for the error
(order 2) for Examples 1 and 2, but the order of convergence for Example 3 is 1, and this is due
to the non-linearity of F in u′, as was mentioned before.

Remark. To compute the numerical convergence rate, we use

p = log2

(
||u4h − u2h||∞
||u2h − uh||∞

)
.
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Algorithm 1: DF-RKCK
Step 1. Initialization:

• Spatial step size h. The step size in time is given for keeping the stability condition
k = αhp

• Initial conditions W h
0 and W 2h

0 ; initial time t0; parameter θ; ê.,0 = 0 and T̂E = 0

• The RK matrix A = (aij), the nodes b and b̂, and the weights c

Step 2. Discretizing (3.1) with the FD method for h and 2h, as is described in Section
3.2;
Step 3. Solve (3.10) with the Cash–Karp method for the step size h and 2h;

For n = 1, 2, . . . ,M :
Kh

1,n = G (tn,W·,n) ; K̂1,n = H (tn, η̂n)

K2h
1,n = G (tn,W·,n)

Step 4. For i = 2, 3, . . . , 6:

Kh
i,n = G

(
tn + cik,W·,n + k

i−1∑
j=1

aijK
h
j,n

)

K̂i,n = H

(
tn + cik, η̂n + k

i−1∑
j=1

aljK̂j,n

)

K2h
i,n = G

(
tn + cik,W·,n + k

i−1∑
j=1

aijK
2h
j,n

)
Step 5. Compute

Wh
·,n+1 = Wh

·,n + k
6∑

i=1

biK
h
i ; η̂n+1 = η̂n + k

6∑
i=1

biK̂i,n

W2h
·,n+1 = W2h

·,n + k

6∑
i=1

biK
2h
i ; T̂E =

∥∥R2h(W
h
·,n+1)−W2h

·,n+1

∥∥
∞

hp (2p − 1)

ê.,n+1 = ê.,n + k
6∑

i=1

(bi − b̂i)K
h
i

Ê.,n+1 = ê.,n+1 + η̂n+1

Step 6. Compute the maximum AGE in the solution approximated Wh,

K̂ =
∥∥∥Ê∥∥∥

∞

Step 7: Output: Wh, K̂
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Figure 3.1: The analytical and approximate solution in x = 0.1, 0.3, 0.5, 0.7, with step sizes
in space h = 0.0125 and in time k = 0.0001, for (a) the Fisher’s equation, (b) the Fitzhugh-
Nagumo equation, and (c) the Burgers-Fisher equation. Both solutions overlap in all cases.

In Figure 3.2, we show the maximum error between the exact solution and the numerical
solution for the three examples considered, comparing it to our error estimates. We can see
that the estimation proposed for the AGE is an upper bound for the exact error. The numerical
implementation has been performed in Python, using the scipy, numpy, and matplotlib packages.
For the sake of reproducibility, all code is available in a Github repository (see Daza-Torres and
Montesinos-López (2020)).

Example 1 (Fisher equation).

Fisher’s equation belongs to the class of reaction-diffusion equation and is encountered in
chemical kinetics and population dynamics applications. The equation is given by

∂u

∂t
=

∂2u

∂2x
+ ru (1− u) , (3.32)
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h Example 1 Example 2 Example 3
0.0125 2.098279 1.992578 1.075049
0.0083 2.068255 1.995410 1.052625

0.00625 2.052187 1.996692 1.040450
0.005 2.042208 1.997418 1.032826

Table 3.1: Convergence Order.
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Figure 3.2: The maximum error between the exact solution and our DF-RKCK method against
the error estimation: (a) the Fisher and the Burgers-Fisher equation, (b) the Fitzhugh-Nagumo
equation. Different step sizes (h) in space are taken and for time we let k = αh2, with α = 3/4.
The triangles indicate the slope of the exact error.

with boundary and initial conditions

u(0, t) =
1

(1 + e−5t)2
, 0 ≤ t ≤ τ,

u(1, t) =
1

(1 + e1−5t)2
, 0 ≤ t ≤ τ,

u(x, 0) =
1

(1 + ex)2
, 0 ≤ x ≤ 1.

This PDE has the following analytic close form solution

u (x, t) =
1[

1 + exp
(√

r
6
x− 5r

6
t
)]2 , x ∈ [0, 1] , and t ∈ [0, τ ] ,

where r is a parameter. The non-linear operator is F (u, u′, r) = ru(1−u); hence the appropriate
linear component is L = ru, and the non-linear component is N = −ru2; we see that the operator
F does not depend on u′ so the method achieves order 2, as can be seen in Table 3.1. For the
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3.3. AFTER-THE-FACT ERROR ESTIMATES

examples in Figs. (3.1)–(3.2) and Table 3.1, we use r = 4, and this parameter will be tried to be
identified using synthetic data in Section 3.5.

Example 2 (Fitzhugh-Nagumo equation).

The Fitzhugh-Nagumo equation is given by

∂u

∂t
=

∂2u

∂2x
+ u (1− u) (u− a) , 0 < a < 1, (3.33)

with boundary and initial conditions

u(0, t) =
1

2
(1 + a) +

1

2
(1− a) tanh

(
(1− a2)

4
t

)
, 0 ≤ t ≤ τ,

u(1, t) =
1

2
(1 + a) +

1

2
(1− a) tanh

(√
2 (1− a)

1

4
+

(1− a2)

4
t

)
, 0 ≤ t ≤ τ,

u(x, 0) =
1

2
(1 + a) +

1

2
(1− a) tanh

(√
2 (1− a)

x

4

)
, 0 ≤ x ≤ 1.

The analytic solution for this PDE is given by

u (x, t) =
1

2
(1 + a)+

1

2
(1− a) tanh

(√
2 (1− a)

x

4
+

(1− a2)

4
t

)
, x ∈ [0, 1] , and t ∈ [0, τ ] ,

where a is a parameter. The non-linear operator is F (u, u′, a) = u (1− u) (u− a); hence the
appropriate linear component is L = −au, and the non-linear component is N = u2 (1− u+ a);
we see that the operator F does not depend on u′, so the method achieves order 2, as can be
seen in Table 3.1. For the examples in Figs. (3.1)–(3.2) and Table 3.1, we use a = 0.3 and this
parameter will be tried to identify using synthetic data in Section 3.5.

Example 3 (Burgers-Fisher equation).

The Burgers-Fisher equation is given by

∂u

∂t
=

∂2u

∂2x
− ruu′ + su (1− u) , (3.34)

with the initial condition

u (x, 0) =
1

2
+

1

2
tanh

(
−r

4
x
)
, 0 ≤ x ≤ 1,
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and with boundary and initial conditions

u(0, t) =
1

2
+

1

2
tanh

((
r2

8
+

s

2

)
t

)
, 0 ≤ t ≤ τ,

u(1, t) =
1

2
+

1

2
tanh

(
−r

4

[
1−

(
r

2
+

2s

r

)
t

])
, 0 ≤ t ≤ τ,

u(x, 0) =
1

2
+

1

2
tanh

(
−r

4
x
)
, 0 ≤ x ≤ 1.

This problem also has an analytic solution given by

u (x, t) =
1

2
+

1

2
tanh

(
−r

4

[
x−

(
r

2
+

2s

r

)
t

])
, x ∈ [0, 1] , and t ∈ [0, τ ] ,

where r and s are parameters. The non-linear operator is F (u, u′, a) = −ruu′ + su (1− u);
hence the appropriate linear component is L = su, and the non-linear component is N =

−ruu′ − su2. Note that the order of convergence for the error is 1 because F is nonlinear
in u′. For the examples in Figs. (3.1)–(3.2) and Table 3.1, we use r = 4.5 and s = 5.5, and these
parameters will be tried to identify using synthetic data in the next Section.

3.4 Numeric posterior error bounds

In this Section, we discuss how to incorporate the after-the-fact error estimate, proposed in
Section 3.3, in the results of Chapter 2, to bound the error on posterior statistics. To do that,
we propose a MCMC algorithm with refinement to fulfill the global bound (2.8) for all θ in the
parametric space of interest.

Algorithm 2 describes a strategy for incorporating the bound (2.8) and the after-the-fact error
estimate, proposed in Section 3.3, to bound the error on posterior statistics.

The basic idea of Algorithm 2 is to start with a relatively large step size (e.g., h = 0.1), and
the step size in time is established to keep the stability condition k = 3

4
h2. At each iteration,

θi, of the MCMC, the FM, Fh(θi), is computed, including the after-the-fact error estimate K̂h
θi ,

using Algorithm 1. If the error in the FM does not comply with the bound in (2.8), then run the
solver again reducing the spatial step size by half. In this process, we therefore assure (2.1) for
all θ ∈ Θ.

3.5 Numerical examples

In this Section, we use the three previous examples to show the performance of Algorithm 2, in
the solution of the corresponding Bayesian UQ problem, using simulated data sets.
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Algorithm 2: Numerical refinement for the FM in the MCMC algorithm
Step 1: Initialization:

• Spatial step size h (large)

• Standard error (σ), sample size (m), and ρ(0)

• Calculate the error bound B = σ
m

b
4ρ(0)

, with a tolerance b

• Initial value for the parameter, θ0

• MCMC length M (number of simulations)

for i← 1 to M do
Step 2. Compute the FM, Fh(θi−1), and the error estimation K̂h

θi−1 , using Algorithm
1;
Step 3.;
if K̂h

θi−1 > B then
- Set h = h/2;
- Return to Step 2;

else
- Simulate θi with some MCMC algorithm;

Step 4: Output: (θ0, θ1, . . . , θM)

We simulate data as follows. The (synthetic) observations, y = (y1, . . . , ym), are generated
under an independent Gaussian model

fo(y|η) =
m∏
i=1

σ−1ρ

(
yi − ηi

σ

)

with ρ(x) = 1√
2π
e−

x2

2 , i.e.,
yi = Hi(F(θ)) + σεi, (3.35)

where the εi’s are independent and identically distributed as N (0, 1), θ ∈ Θ ⊂ Rd is a vector of
unknown parameters, andF(θ) represents the FM. In all our examples, we consider the variance,
σ2, to be known.

The solution of (3.1) with its initial and boundary conditions defines our FM, and we take
H(x) = x as the observation operator. We consider the Bayesian UQ problem to estimate
the parameter θ given observations Hi(F(θ)) = u(xi, t1, θ) at some points in space xi, for
i = 1, 2, . . . ,m and at a fixed time 0 < t1 ≤ τ . We let the system evolve until time t1 and then
observe it at the spacial locations xi’s. The resulting observations are yi = u(xi, t1, θ)+σεi; εi ∼
N (0, 1). In particular, the QoI is the PE of the parameter Θ. The implementation was done using
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MCMC, through a generic MCMC algorithm, called the t-walk (Christen and Fox 2010).
Note that considering independent data with a Gaussian model, the first part of assumption 1

is right, and we only require to verify thatH◦F andH◦Fα(n) are continuous. Indeed, the latter
is true if the observation operator is the identity. With this scheme, all the necessary assumptions
for Theorem 1 are satisfied. And, in this case, ρ(0) = 1√

2π
and the threshold B := σ

m
b

4ρ(0)
in

(2.8), for the numerical error in the FM, is

B =
b

4

σ

m

√
2π. (3.36)

Example 4 (IP, Fisher’s equation).

We consider the IP to estimate θ = r in Fisher’s equation of Example 1, given measurements
ofHi(F(θ)) at time t1 = 0.4. The synthetic data are simulated with the error model (3.35), using
the analytical solution for the FM, and the following parameters: θ = 4 and σ = 0.008. The
solution of (3.32) with its initial and boundary conditions defines our FM. We consider n = 8

observations at locations xi regularly spaced between 0 and 1. The data are plotted in Fig. 3.3
(a).

Considering a tolerance in the ERE of 5% (b = 0.5×10−1), and with the standard error and
sample size used, the error bound for the FM is B = 3.52×10−5. We require a prior distribution,
π (·), for the parameter θ; it is assumed θ ∼ Gamma(α1, β1) with all known hyperparameters.
Regarding the numerical solver, we begin with a (relatively) large step size, h = 0.05, and the
step size in time is established to keep the stability condition k = 3

4
h2. Then, we start the

Algorithm 2. For h = 0.0067, the bound is achieved for all iterations.
We compare the posterior distributions using the numerical FM vs. the exact FM, with

350,000 iterations of the t-walk, to guarantee the precision of 3 decimal places in the PE (i.e.,
the error in the MCMC, 0.5 × 10−2.4, is less than b = 0.5×10−1). Results are reported with
345,000 samples since the first (burn-in) 5,000 are discarded. The results are shown in Fig. 3.3
(b) and Table 3.2. The PE was rounded to 3 figures; it is observed that the RE of the posterior
means is less than the tolerance b.

Example 5 (IP, Fitzhugh-Nagumo equation).

For this example, the IP is to estimate θ = a in the Fitzhugh-Nagumo equation of Example 2,
given measurementsHi(F(θ)) at time t1 = 0.3. The synthetic data are simulated with the error
model (3.35), using the analytical solution for the FM, and the following parameters: θ = 0.3

and σ = 0.009. The solution of (3.33) with its initial and boundary conditions defines our FM.
We consider n = 8 observations at locations xi regularly spaced between 0 and 1. The data are
plotted in Fig. 3.4 (a).

To be able to get the posterior distributions, we assume that θ ∼ Gamma(α2, β2) with
all known hyperparameters. With the standard error and sample size used, and considering
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Figure 3.3: (a) Fisher equation example data (blue points) and true model (black line), consid-
ering r = 4. (b) Comparison between numerical (blue) and theoretical (magenta) posterior for
parameter r. The green line represents the prior distribution.

a tolerance in the ERE of 5% (b = 0.5×10−1), we have that the error bound for the FM is
B = 3.52 × 10−5. Regarding the numerical solver, we begin with a step size, h = 0.1, and
the step size in time k = 3

4
h2. Then, we start the Algorithm 2. For h = 0.0077, the bound is

achieved for all iterations.
We compare the posterior distributions using the numerical FM vs. the exact FM, with

200,000 iterations of the t-walk, to guarantee that the error in the MCMC, 0.5 × 10−2.4, is less
than the tolerance b = 0.5×10−1. Results are reported with 180,000 samples since the first
(burn-in) 20,000 are discarded. The results are shown in Fig. 3.4 (b) and in Table 3.2. Note that
with an ERE of 5%, 2 significant figures are achieved, while with the MCMC 2.6 significant
figures are achieved, as explained in Sec. 2.3.2. In Table 3.2, the PE was rounded to 4 figures
because if it were rounded to 2 or 3 figures, the RE would give 0; it is observed that the RE of
the PE is less than the tolerance b.

Example 6 (IP, Burgers-Fisher equation).

For this example, the IP is to estimate θ = (r, s) in the Burgers-Fisher equation of Example
4, given measurements Hi(F(θ)) at time t1 = 0.2. The synthetic data are simulated with
the error model (3.35), using the analytical solution for the FM, and the following parameters:
θ = (4.5, 5.5) and σ = 0.05. The solution of (3.34) with its initial and boundary conditions
defines our FM. We consider n = 10 observations at locations xi regularly spaced between 0
and 1. The data are plotted in Fig. 3.5 (a).

To get the posterior distributions, we assume independent priors between the parameters of
the model. We assume r ∼ Gamma (αr, βr) and s ∼ Gamma (αs, βs) with all known hyperpa-
rameters. With the standard error and sample size used, and considering a tolerance in the ERE
of 10% (b = 0.5× 10−0.7), we have that the error bound for the FM is B = 6× 10−4. Regarding
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Figure 3.4: (a) Fitzhugh-Nagumo equation example data (blue points) and true model (black
line), considering a = 0.3. (b) Comparison between numerical (blue) and theoretical (magenta)
posterior for parameter a. The green line represents the prior distribution.

Example 1 Example 2 Example 3
Parameter r a r s

True 4× 100 3×10−1 4.5× 100 5.5× 100

PE-Exact 3.992× 100 2.9853×10−1 4.18× 100 5.54× 100

PE-Numeric 3.990× 100 2.9859×10−1 4.19× 100 5.53× 100

RE 5.00×10−4 3.40×10−4 2.4×10−3 3.6×10−3

b 5.00×10−2 5.00×10−2 1.0×10−1 1.0×10−1

Table 3.2: Comparison of the PE of each parameter using the exact and the numeric FM. The PE
for each example was rounded to the first decimal place where the RE was not 0, because if we
had rounded to the significant figures guaranteed by the MCMC (3,2, and 1, respectively), the
RE would have been 0 for all parameters. In all cases, the RE of the PE is less than the tolerance
b.

.

the numerical solver, we begin with a step size h = 0.1, and the step size in time k = 3
4
h2. Then,

we start the Algorithm 2. For h = 0.0017, the bound is achieved for all iterations.

We compare the posterior distributions using the numerical FM vs. the exact FM, with
100,000 iterations of the t-walk, to guarantee that the error in the MCMC, 0.5 × 10−1.5, is less
than the tolerance b = 0.5 × 10−0.7. Results are reported with 99,500 samples since the first
(burn-in) 500 are discarded. The results are shown in Fig. 3.5 (b)–(c) and in Table 3.2. Note that
for this case, with the MCMC, only 1 decimal figure is guaranteed in the PE, and with an ERE
of 10% less than 1 decimal figure is required. Still, in Table 3.2, the PE was rounded to 2 figures
because if it were rounded to 1 figure, the RE would give 0. It is observed that the RE of the PE
is less than the tolerance b.
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Figure 3.5: (a) Burgers-Fisher equation example data (blue points) and true model (black line),
considering θ = (4.5, 5.5). Histogram from the numerical (blue) and theoretical (magenta)
posterior distribution for: (b) parameter r and (c) parameter s. The green line represents the
prior distribution.

3.6 Conclusion

This Chapter proposed an error estimation for a class of PDEs motived by its application in the
UQ area. Our error estimation allows us to apply the results obtained in Chapter 2 for bound-
ing the ERE in the respective numerical posterior statistics for IPs when the forward mapping
involves a semilinear evolution PDE.

We presented three worked examples considering different levels of accuracy for both MCMC
and ERE; in all cases, the RE in the PE of parameters is less than the established tolerance b,
i.e., the RE in the numerical posterior statistics was successfully bounded.

Although two numerical solutions are required for the error estimation, the added computa-
tional effort can be reduced to an equivalent result to that solving the PDE conventionally (on a
single mesh) since evaluating the solution in two different meshes may be easily parallelized.
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CHAPTER 4

Uncertainty quantification for fault slip
inversion

We propose an efficient Bayesian approach to infer a fault displacement from geodetic data
in a SSE. Our physical model of the slip process reduces to a multiple linear regression with
constraints. Assuming a Gaussian model for the geodetic data and considering a MTN prior
distribution for the unknown fault slip, the resulting posterior distribution is also MTN. We
propose a prior slip distribution with a detailed correlation structure, to impose natural coherence
in the fault slip. Regarding the posterior, we propose an ad hoc algorithm based on Hybrid
Optimal Directional Gibbs sampler that allows us to efficiently sample from the resulting high-
dimensional posterior slip distribution without supercomputing resources. A synthetic fault slip
example illustrates the flexibility and accuracy of the proposed approach. The methodology
is also applied to a real data set, for the 2006 Guerrero, Mexico, SSE, where the objective is
to recover the fault slip on a known interface that produces displacements observed at ground
geodetic stations. As a by-product of our approach, we are able to estimate moment magnitude
for the 2006 Guerrero SSE with UQ.

4.1 Introduction

A major task of geophysics is to make quantitative statements about Earth’s interior in terms
of surface measurements. One fundamental element of earthquake investigations is to estimate
the magnitude and distribution of slip along a fault plane. Fault slips may consist of complex
and heterogeneous source processes, while limited geodetic data typically leads to an ill-posed
IP. Conventionally, regularization is used to transform such IPs into a well-posed optimization
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4.1. INTRODUCTION

problem for a single-source model. The most common approach is to add Tikhonov regular-
ization terms to smooth the solution (Calvetti et al. 2000; McCaffrey et al. 2007; Wallace and
Beavan 2010; Radiguet et al. 2011), as well as including positivity constraints and reducing
the solution space (Tago et al. 2021). All these regularization terms try to be justified by the
physical processes being modeled. These strategies lead to the solution of a well-posed approx-
imate and computationally feasible problem. However, the uncertainty involved in the solution
is not methodologically sound solely using regularization. These schemes produce only limited
point-wise solution estimates. Moreover, the lack of sufficient physical interpretation of some
critical regularization terms may introduce bias in the solutions without proper justification. For
more robust and informative IP solutions, and to formally quantify their uncertainty, we require
a different approach.

The Bayesian statistical approach provides a rigorous framework to handle constrains and
UQ of IPs. A model for observations is assumed (leading to a likelihood) and prior information
is incorporated using probability density functions (PDFs) to determine the posterior distribution
through Bayes theorem, which quantifies our inference’s uncertainty. A prior PDF is established
through its interpretation as a modeling device of the probabilistic prior knowledge available on
source movements and imposing model restrictions using truncated PDFs (Fukuda and Johnson
2008; Minson et al. 2013; Amey et al. 2018; Nocquet 2018).

Bayesian techniques have been of limited use for slip inversions, mainly because the simula-
tion from the posterior distribution is not straightforward. This typically occurs when there are
many parameters, such as in SSEs (see below for more details).

In modern Bayesian analyses, MCMC algorithms (Robert and Casella 2013) are standard
tools to sample from the posterior distribution. Many versions of the MCMC method have been
proposed in the literature, but the Metropolis-Hastings and the Gibbs sampler algorithms are the
most common (Robert and Casella 2013).

In Minson et al. (2013), the authors developed a framework for Bayesian inversion of finite
fault earthquake models. They combined a Metropolis algorithm with simulated annealing and
genetic algorithms to sample high-dimensional problems in a parallel computing framework.
The method remains computationally expensive despite parallelization. A finite-dimensional
Gaussian processes approximation to allow for inequality constraints in the entire domain is
proposed in Maatouk and Bay (2017). Their problem is equivalent to simulating a Gaussian
vector restricted to convex sets, and they use an improved rejection sampling (see Maatouk and
Bay (2016)) in which only the random coefficients in the convex set are selected. They mention
that the MTN simulation can be accelerated by MCMC or Gibbs sampling methods (Geweke
1991).

There are many methods available for simulating the MTN distribution (Breslaw 1994;
Kotecha and Djuric 1999; Robert 1995; Yu and Tian 2011). Most of these are based on the
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Gibbs sampler, which is simple to use and has the advantage of accepting all proposals gener-
ated and, therefore, is not affected by poor acceptance rates, such as rejection sampling. These
methods work well in many situations but may become very slow in the presence of high corre-
lation and/or high dimensionality.

The authors in Nocquet (2018) show that a MTN prior can be applied to achieve positiv-
ity or bound constraints. He employs recent findings in MTN probability calculations (Genz
and Bretz 2009) to derive relevant posterior statistics (e.g., posterior marginal PDF, mean and
covariances) without performing MCMC sampling. However, the evaluation of these quantities
require complex numerical integration over an hyper-rectangle while quantifying the uncertainty
of a function f of the parameters (e.g., moment magnitude Mw) is not straightforward. In con-
trast, when we have available Monte Carlo samples from the posterior, the posterior uncertainty
of the quantities of interest may be directly obtained. In Michalak (2008), the author provides a
statistically rigorous methodology for geostatistical interpolation and inverse modeling, subject
to multiple and spatially-variable inequality constraints. The approach uses a Gibbs sampler to
characterize the marginal probability distribution at each estimation point, using a MTN prior
probability distribution. This kind of algorithms are systematic Gibbs samplers which makes
CPU time increase linearly with dimension (Christen et al. 2017). The authors in Christen et al.
(2017) explore an optimality criterion for the MCMC Direction Gibbs algorithm to simulate
from a MTN distribution. This criterion consists of minimizing the Mutual Information be-
tween two consecutive steps of the Markov chain. The algorithm proposed in Christen et al.
(2017) is especially suited for high correlation and high dimensionality; one of the main advan-
tages is that the number of iterations to obtain an independent sample only increases linearly
with dimensionality and is commonly close to theoretical limits.

In this work, we propose a Bayesian approach for estimating the parameters in a constrained
multiple linear regression model. We propose a prior slip distribution with a detailed correla-
tion structure, to impose natural coherence in the fault movement. Combining the algorithm
proposed in Christen et al. (2017) and in Montesinos-López and Christen (2016), we propose
an Hybrid Optimal Directional Gibbs algorithm that allows us to sample from high-dimensional
problems efficiently when the posterior distribution is a MTN distribution. With the methodol-
ogy from Christen et al. (2017) the burn-in period is reduced, while with the Montesinos-López
and Christen (2016) approach the chain’s correlations is reduced. Besides presenting a synthetic
example, we apply our method to quantify the uncertainty in the IP of seismic slip along the sub-
duction interface in the 2006 Guerrero, Mexico, SSE. Moreover, with our method, we are able
to provide the posterior distribution of the moment magnitude for this event in a straightforward
manner.

A SSE is a slip produced at a fault that does not generate seismic waves. However, the
induced deformation may be registered at the surface from SSEs lasting several weeks to a
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couple of months. SSEs have been observed in different fault configurations around the world
(Gao et al. 2012), and the role they play in the seismic cycle is an active research topic (Kato
et al. 2012; Ruiz et al. 2014; Radiguet et al. 2016; Cruz-Atienza et al. 2021).

In Mexico, SSEs have been identified in different segments along the subduction region, on
the Pacific coast, where the Cocos Plate and the North American Plate collide. In the so-called
Guerrero GAP (GGap), before the great Mw8.2 Tehuantepec event on 8 September 2017, SSEs
showed a periodicity of approximately four years and a duration from six to twelve months
(Cruz-Atienza et al. 2021). The SSE, occurred within Guerrero state in 2006, one of the most
studied globally, was recorded at 15 continuous GPS stations (Radiguet et al. 2011; 2012; Cav-
alié et al. 2013; Bekaert et al. 2015; Tago et al. 2021) as millimetrical displacements on the
surface. This event offers the opportunity to analyze the slip’s spatial evolution and delimit the
characteristics of a typical SSE in the GGap. In this case, the IP consists of recovering the
slip along a known interface that produces displacements at the surface observed at those 15
continuous GPS geodetic stations.

4.2 Methodology

4.2.1 Forward map

For the direct problem in our particular setting, we begin with the elastostatic equations repre-
sentation theorem that models the displacement u(x), at the coordinates x of the GPS station,
due to a slip d(ξ), produced at a fault Γ, as

uj (x) =

∫
Γ

Tk (Sij (ξ;x) , n̂ (ξ)) dk (ξ) dS(ξ), j ∈ {x, y, z} (4.1)

where Tk (·, ·) is the k-component of the traction on the fault computed through the Somigliana
tensor, Sij (ξ;x), and the fault normal vector n̂ (ξ) (Udı́as et al. 2014). If the traction and the slip
are projected along the dip component, d-direction, and along the strike direction, s-direction,
Eq. (4.1) can be written in matrix form as ux (x)

uy (x)

uz (x)

 =

∫
Γ

Ts (Six (ξ;x) , n̂ (ξ)) Td (Six (ξ;x) , n̂ (ξ))

Ts (Siy (ξ;x) , n̂ (ξ)) Td (Siy (ξ;x) , n̂ (ξ))

Ts (Siz (ξ;x) , n̂ (ξ)) Td (Siz (ξ;x) , n̂ (ξ))

[ds (ξ)
dd (ξ)

]
dS(ξ),

or in a more compact vector notation as

u (x) =

∫
Γ

T (ξ;x)d (ξ) dS(ξ).

43



We assume to know the fault’s geometry, which is discretized in M subfaults, with coordi-
nates {ξ1, ξ2, . . . , ξM}, such that the integral can be approximated as

u (x) ≃
M∑
i=1

AiT
(
ξi;x

)
d
(
ξi
)
,

where Ai is the i-subfault area. Finally, if we want to compute the displacement for N receivers,
we can order the displacements in a single vector such that the entire computation is reduced to
a simple matrix-vector product as

u (x1)

u (x2)
...

u
(
xN
)

 =


A1T

(
ξ1;x1

)
A2T

(
ξ2;x1

)
· · · AMT

(
ξM ;x1

)
A1T

(
ξ1;x2

)
A2T

(
ξ2;x2

)
· · · AMT

(
ξM ;x2

)
...

... . . . ...
A1T

(
ξ1;xN

)
A2T

(
ξ2;xN

)
· · · AMT

(
ξM ;xN

)



d
(
ξ1
)

d
(
ξ2
)

...
d
(
ξM
)

 ,

or more compactly as
U = XD, (4.2)

where U ∈ R3N is the vector of surface displacements, North, East and Vertical for the N

stations stored in a single ordered vector, X ∈ R3N×2M is the discretized FM operator built with
the subfault tractions and areas, and D ∈ R2M is the unknown vector of sub-fault slips, along
dip and along strike for each of the M sub-faults stored in a single ordered vector.

4.2.2 Data likelihood

The IP consists of recovering the slip at each subfault, of a known interface, that produces
displacements observed at geodetic stations. Due to the linearity of the FM in Eq. (4.2), we solve
the Bayesian inversion as a multiple linear regression model with constraints on the coefficients.
We use a simple representation of observation and modeling errors by assuming a Gaussian
multiple linear model of the form

Y = XD+ ε,

where ε follows a Gaussian distribution, ε ∼ N3N (0,Σ), and Σ = I⊗ γ is a known covariance
matrix associated with the data errors, with γ = diag

([
σ2
x, σ

2
y, σ

2
z

])
are the North, East, and

Vertical standard deviations of the measurements process, I is an identity matrix of order N , and
⊗ denote the Kronecker product. That is,

Y|D ∼ N3N (XD,Σ) , (4.3)
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where Y ∈ R3N are the observed displacements (3 components for each station) at the N

geodetic stations stored in a single ordered vector, as in Eq. (4.2). Therefore, the likelihood is
given by

π (Y|D) = (2π)−3N/2 |A|1/2 exp
{
−1

2
(Y −XD)T A (Y −XD)

}
, (4.4)

where A = Σ−1 is the precision matrix.

4.2.3 Prior elicitation

Bayesian formulation of IPs requires that we specify a prior distribution for each model param-
eter. Proposal of the prior density is an essential step of Bayesian analyses and is often the most
challenging and critical part of the approach. Usually, the major problem while proposing an
adequate prior density lies in the nature of the prior information. The prior specification is less
critical for large sample sizes since the likelihood typically dominates the posterior distribution.
The prior distribution plays a much more crucial role in small sample sizes because the posterior
distribution represents a compromise of the prior knowledge and the observed evidence. On the
one hand, for the 2006 Guerrero SSE, there are only 45 observations (N = 15 GPS stations)
and 1178 parameters (M = 589 subfaults) to estimate (for the proposed model). On the other
hand, the problem is so ill-posed that the inversion becomes useless unless prior knowledge is
put into the problem in terms of at least simple restrictions on the possible solutions for D.
Thus, defining an adequate prior distribution is crucial for the inversion within the framework of
a formal Bayesian approach. We use a Gaussian process prior for the joint PDF of the fault slip
displacements D, to be explained next.

Gaussian process priors

In statistics, a Gaussian process (GP) is a stochastic process (a collection of random variables
indexed by time or space), such that every finite collection of those random variables has a
multivariate normal distribution. The most commonly used probability densities in statistical
IPs are undoubtedly Gaussian since they are easy to construct. However, they form a much
more versatile class of densities than is usually believed (Kaipio and Somersalo 2006).

For the slip vector D = (d1s, d
1
d, d

2
s, d

2
d, . . . , d

M
s , dMd )T , we consider a GP prior distribution,

that is, D ∼ N (0,Σ0), but with truncated support, along strike dis ∈ (as, bs) and along dip
did ∈ (ad, bd), i = 1, . . . ,M , where Σ0 = σ2

βA
−1
0 denote the covariance matrix, with A0 =

βWC−1Wβ and σ2
β is an unknown scale factor that characterizes the magnitude of D (see

Appendix B.1 with further considerations on how to establish the hyperparameter σβ), and β =

I ⊗ β, with β = diag ([βs, βd]), where different precisions, βs and βd, are considered for the
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along strike and along dip components, respectively. We consider an along dip variance five
times greater than the along strike variance(i.e., βs = 1 and βd = 1/5); since we expect most of
the slip along the opposite of the subduction direction. The matrix W of weights were included
in the inversion scheme to penalize movements at depths greater than zlim = 50 km

W (i, j) =

1 + 0.5 (depth (i, j)− zlim) /1e3 depth (i, j) > zlim

1 depth (i, j) ≤ zlim.
(4.5)

The correlation matrix C is used to introduce correlation between parameters of nearby sub-
faults, and it is constructed using the Matérn covariance function, explained in Sect. 4.2.3. Thus,
the prior density is

π (D) =
1

Zprior

exp

{
− 1

2σ2
β

DTA0D

}
1(a,b)(D), (4.6)

where 1(a,b) is the indicator function, a = 1M ⊗ [as, ad], b = 1M ⊗ [bs, bd], with 1M the
all-ones vector of length M , and Zprior is an unknown normalization constant of this MTN
distribution. The constraints as ≤ dis ≤ bs and ad ≤ did ≤ bd, i = 1, . . . ,M , imposed on D, are
based on available information on the physical processes being modeled. If we assume that the
coupling has been removed from the GPS data, then we should only consider the displacement
due to an SSE. However, we allow some negative slip (ad < 0) for the dip component since,
on one hand, we expect that there will be subfaults where there is no slip1, on the other hand,
the coupling removal is not precise. Together with the constraints on the support, the density
function Eq. (4.6) is indeed a MTN distribution.

Matérn covariance

The Matérn covariance (Minasny and McBratney 2005) is a covariance function widely used in
spatial statistics to define the covariance between measurements made at two points separated
by d distance units.

In a GP, the essential ingredient is the covariance function, and this is used to introduce a
correlation between nearby points (i.e., spatial smoothing). To construct the correlation matrix
C, we use the most simplified form of the Matérn covariance function corresponding to C1

function (i.e., the space of functions that admit derivatives of first order). In the discretized

1If a random variable is positive, then its expected value is positive. In this way, if we consider ad > 0, we
would be forcing small slips in all subfaults.
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subfaults model, the element (i, j) of C is given by the relation

C (i, j) = γ2

(
1 +
√
3
d (i, j)

λ

)
exp

{
−
√
3
d (i, j)

λ

}
, (4.7)

where d(i, j) is the distance between the subfault i and the subfault j, γ2 represent the variance,
and λ is the correlation length. Note that as λ increases, more coefficients of the matrix C

become relevant (i.e., more subfaults are correlated).

Different correlation lengths, λs and λd, are considered for the along -strike and along -dip
components, respectively. Also, we consider that the strike component of subfault i has zero
correlation with the dip component of the subfault j. It is important to mention that fault conti-
nuity signifies that a slip in the dip direction of a subfault induces a slip in the strike direction of
neighboring subfaults, if they are strongly coupled. However, we do not know how to determine
this dependence so that we will assume independence between the strike and the dip compo-
nents. The correlation lengths, λs and λd, are chosen to minimize the Deviance Information
Criterion (DIC); see Sect 4.2.6 for more details.

We consider γ2 = 1 in Eq. (4.7) to control the variance of the slips with the scale factor
σ2
β , the weight matrix W, and the vector β = diag ([βs, βd]), throughout the precision matrix,

A0 =
1
σ2
β
βWC−1Wβ, of the density function given in Eq. (4.6).

4.2.4 Posterior distribution

The likelihood function given in Eq. (4.4) and the prior distribution given in Eq. (4.6) are com-
bined to form the posterior distribution, namely

π (D|Y) ∝ π (Y|D)π (D)

∝ exp

{
−1

2
(Y −XD)T A (Y −XD)

}
exp

{
− 1

2σ2
β

DTA0D

}
1(a,b)(D)

∝ exp

{
−1

2

[
DTXTAXD− 2YTAXD+

1

σ2
β

DTA0D

]}
1(a,b)(D)

= exp

{
−1

2

[
DT

(
XTAX+

1

σ2
β

A0

)
D− 2DTXTAY

]}
1(a,b)(D)

= exp

{
−1

2

[
DTApD− 2DTApA

−1
p XTAY

]}
1(a,b)(D)

= exp

{
−1

2

[(
D− µp

)T
Ap

(
D− µp

)]}
1(a,b)(D),
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where Ap = XTAX+ 1
σ2
β
A0, A0 = βWC−1Wβ and µp = A−1

p XTAY. Thus,

π (D|Y) =
1

Zpost

exp

{
−1

2

[(
D− µp

)T
Ap

(
D− µp

)]}
1(a,b)(D),

where Zpost is an unknown normalization constant. Therefore, D|Y has a MTN distribution.
To obtain information from D|Y one needs to calculate relevant posterior statistics, e.g.,

marginals of the subfaults movements, expected values, quantifying the uncertainty of a function
of D, etc. This is not trivial and accordingly we propose, as already mentioned, to use a MCMC
sampler. In the next section, we propose an Algorithm to simulate from the MTN distribution.

4.2.5 Posterior exploration and MCMC

The Gibbs sampler (Gelfand and Smith 1990) is an MCMC algorithm that systematically or
randomly simulates conditional distributions on a set of directions. A general case of the Gibbs
sampler is the Optimal Direction Gibbs sampling, which chooses an arbitrary direction e ∈ Rn

such that ∥e∥ = 1, and samples from the conditional distribution along such direction2. This
can be written as,

X(t+1) = X(t) + re,

where the length r ∈ R has distribution proportional to π(x(t) + re) (Liu 2008).
The authors in Christen et al. (2017) propose the use of the mutual information as a measure

of dependence between two consecutive iterations of the Gibbs sampler. The mutual information
of two random variables X and Y, I(X,Y), is the Kullback-Leibler divergence between the
joint model fY,X and the independent alternative fY (y) fX (x), namely,

I (Y,X) =

∫ ∫
fY,X (y,x) log

fY,X (y,x)

fY (y) fX (x)
dx dy.

From the properties inherited from the Kullback-Leibler divergence I ≥ 0 and, from the Jensen
inquality it is easy to prove that I = 0 if and only if fY,X = fY (y) fX (x), i e., if and only if X
and Y are independent.

From mutual information, the authors in Christen et al. (2017) explore a criterion of op-
timality for the Direction Gibbs algorithm. This criterion consists in minimizing the mutual
information between two consecutive steps, X(t) and X(t+1), of the Markov chain generated by
the algorithm. They also propose, in a heuristic way, a direction distribution for the case where
the target distribution is the MTN distribution. They take the directions, e, as the eigenvectors
of the precision matrix A, so e = {e1, e2, . . . , en}. The i-th direction will be selected with

2If we choose the directions systematically or randomly from the canonical base, we obtain the standard Gibbs
sampler or the Random Scan Gibbs, respectively.
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probability proportional to λ−b
i , where λi is the eigenvalue corresponding to the i-th eigenvector,

i = 1, 2, . . . , n, and b is a random variable with a Beta distribution. Then, the probability of
selecting the i-th direction is given by

h1 (ei) = λ−b
i /k1,

where k1 =
∑n

i=1 λ
−b
i . See Christen et al. (2017) for more details.

Now, let X = X(t) and Y = X(t) + re be two consecutive steps, and denote by Xi, Yi,
i = 1, . . . , n, the elements of X and Y, respectively. In Montesinos-López and Christen (2016),
the authors propose the Mutual Information as dependence measure, but now no longer on the
complete vectors X and Y, instead, they obtain it with Yi and the full vector X. They call this
the marginal mutual information

Ie (Yi,X) :=

∫ ∫
fYi,X (y,x) log

fYi,X (y,x)

fYi
(y) fX (x)

dx dy.

The idea is to choose directions for which Ie (Yi,X), ∀i = 1, . . . , n, is minimized. In this way,
the dependency of each entry of the new generated vector Y with the current state X is reduced.

Suppose we have a multivariate normal distribution, with precision matrix An×n and mean
vector µn×1, but with truncated support, xi ∈ (ai, bi), −∞ ≤ ai < bi ≤ ∞, i = 1, . . . , n. The
probability density function of this MTN can be written as

π (x;µ,A, a,b) =
exp

{
−1

2
(x− µ)T A (x− µ)

}
∫ b

a
exp

{
−1

2
(x− µ)T A (x− µ)

}
dx

1(a,b)(x).

To generate samples from the MTN distribution, in Montesinos-López and Christen (2016)
the authors take the directions e as the standardized columns of the covariance matrix A−1, so
e = {e1, e2, . . . , en}. The i−th direction will be selected with probability (h2 (ei)) proportional
to I−1

i , with

Ii :=
n∑

j=1

Iei (Yj,X) = −1

2

n∑
j=1

log
(
ρ2ij
)
,

where ρij is the correlation between the variables Zi and Zj , with Z ∼ π. Then, the probability
of selecting the i-th direction is given by

h2 (ei) = I−1
i /k2,

where k2 =
∑n

i=1 I
−1
i . See Montesinos-López and Christen (2016) for more details of its

derivation. Thus, they give more weights to the directions that make the Ii’s small.
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In this article, we slightly modify the probability of selecting the i-th direction as follows,

h3 (ei) = I−b
i /k3,

where k3 =
∑n

i=1 I
−b
i and b is a random variable with Beta distribution. This modification

slightly reduces the time to obtain a pseudo-independent sample (by 3%) and also reduces the
initial burn-in length.

We will refer to these algorithms as ODG1 or ODG3 when the direction distribution used is
h1 or h3, respectively. This paper combines the ODG1 and ODG3 algorithms in a hybrid Gibbs.
The ODG1 algorithm provides a faster convergence to the target distribution reducing the burn-
in, while with the ODG3 algorithm the chain’s correlations is reduced, saving 60% of the time
to obtain a pseudo-independent sample compared to the ODG1 algorithm. By combining both
algorithms, we reduce the chain’s correlations, and the support is better explored. The resulting
algorithm, which we call the HODG algorithm, is described in Algorithm 3.

4.2.6 Pragmatic approach to correlation lengths selection using the DIC

Note that if the full conditional distribution for the slip vector D had a known tractable form,
then full MCMC sampling could be performed on the low-dimensional marginal posterior dis-
tribution over hyperparameters (Norton et al. 2018; Fox and Norton 2016), namely λs and λd. In
Fox and Norton (2016), the authors propose sampling the low-dimensional marginal posterior
distribution over hyperparameters in a linear-Gaussian inverse problem. Then, the full condi-
tional for the latent variable is sampled using only the approximately independent samples of
the hyperparameters obtained from a MCMC run over its marginal distribution. However, in
our case, sampling from the marginal distribution of λs and λd can be challenging since the
way these parameters interact in the correlation matrix C makes it impossible to factorize them.
In addition, marginalizing these hyperparameters would require evaluating the normalization
constant of the MTN posterior, which requires a very high computational cost (Genz and Bretz
2009; Nocquet 2018).

Setting a prior distribution for λs and λd and including these parameters in the posterior
would be the theoretical correct way to proceed, but it is computationally unfeasible, as just
noted. Instead, we follow a more pragmatic approach. Using prior information on the values
of these hyperparameters, we proposed a grid search applying the DIC to select appropriate
correlation lengths.

The correlation length selection for the MTN prior model must be done carefully since each
correlation length defines a different matrix C, hence different results. Several criteria have been
proposed to select between competing models. In the maximum-likelihood framework, the most
well-known criterion for model comparison is the Akaike Information Criterion (AIC), which
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Algorithm 3: HODG: Multivariate Truncated Normal
input : The means vector µn×1, the precision matrix An×n, the support (a,b), a initial

value X(0), and the number of simulations M .
output: A sample of size M from X ∼MTN(µn×1,An×n, a,b), with the truncated

support xi ∈ (ai, bi), i = 1, . . . , n.

Step 1. Compute the eigenvectors and eigenvalue of the precision matrix A,
{e1, e2, . . . , en} and λ1, λ2, . . . , λn, respectively;

Step 2. Normalize the columns of the covariance matrix Σ = A−1, these will be
{ec1, ec2, . . . , ecn};

Step 3. Compute the correlation matrix (ρ) corresponding to Σ;
Step 4. Compute the weights Ii,

Ii = −
1

2

n∑
j=1

log
(
ρ2ij
)
,

where ρij is the correlation between the variables Xi and Xj;

for t← 1 to M do
Set x = X(t−1);
Simulate b ∼ B(2., 9), where B is the Beta distribution;
Simulate p ∼ U(0, 1), where U is the uniform distribution;
if p < 0.5 then

h (ei) = λ−b
i /k1, where k1 =

∑n
i=1 λ

−b
i ;

else
h (eci) = I−b

i /k2, where k2 =
∑n

i=1 I
−b
i ;

Step 5. Propose a direction e from the direction distribution h(·);
Step 6. Simulate r ∼ TN (µr, τr, c, d), where TN is the univariate truncated normal
distribution, µr = −eTA(x−µ)

eTAe
is the mean, τr = eTAe is the precision, and

c = max
i∈{1,...,n}

({
ai − xi

ei
: ei > 0

}
∪
{
bi − xi

ei
: ei < 0

})
,

d = min
i∈{1,...,n}

({
ai − xi

ei
: ei < 0

}
∪
{
bi − xi

ei
: ei > 0

})
Step 7. Set X(t) = x+ re;

involves the marginal likelihood (Akaike 1974). The Deviance Information Criterion (DIC) has
been proposed as Bayesian alternative to the AIC (Spiegelhalter et al. 2002) to select the model
that better fits the data between a pool of competing models. The DIC is particularly useful in
Bayesian model selection problems where the model’s posterior distributions have been obtained
by MCMC simulation. The DIC’s advantages is that it reduces each model to a single number
summary and that the models to be compared do not need to be nested.
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For a model with parameters θ and data y, the DIC is calculated as

DIC = D(θ) + pD = D(θ̄) + 2pD.

where D(θ) := −2 log(likelihood) = −2 log(p(y|θ)) is called the model deviance, D(θ) =

E [D(θ)|y] is the posterior expected deviance, θ̄ = E [θ|y] is the posterior mean, and pD =

D(θ)−D(θ̄) is called the effective number of parameters. In our case, the expectations may be
easily calculated using the MCMC sample. We then proceed to calculate the DIC for all models
of interest and choose the one with the smallest DIC value. For further discussion of the DIC
see Spiegelhalter et al. (2002). Note that –up to our knowledge– DIC has not been applied for
model comparison in geophysical inverse modeling.

4.3 Results

4.3.1 Synthetic example

To verify how much fault movements and correlation lengths are recoverable, using the actual
data collecting design we have for the real data presented in Sec.4.4, we proceed as follows.
We generate a synthetic data set based on the same fault geometry and geodetic stations con-
figuration as for the 2006 Guerrero SSE. For this, we assume a priori that the slips (D) have a
MTN with zero mean vector (i.e., in average we consider that there is no slipping), restricting
the support according to the information we have on the GGap. That is, D ∼ N

(
0, 1

σ2
β
A0

)
,

subject to −.0804 ≤ did ≤ 0.4, −0.1 ≤ dis ≤ 0.1, i = 1, 2, . . . ,M , where A0 = βWC−1Wβ,
C is the correlation matrix given by Eq. (4.7), and W is the matrix of weights computed with
Eq. (4.5). For the remaining parameters we consider λs = 40, λd = 45, σ2

β = 0.0002, βs = 1

and βd = 0.2. To generate the synthetic example, we fix a slip in a subfault Di (approximately
in the same place where the maximum slip is suspected in the real 2006 GGap SSE) and the rest
of the subfault slips are simulated from the conditional distribution D−i|Di = di (also a MTN).

Once the slip vector D has been generated, we solve the forward problem (U = XD) adding
Gaussian noise to obtain our synthetic observations. Figure 4.2 (a) shows the true slip movement
D and the synthetic measurements. Following this strategy of simulation of the synthetic data
and considering the statistical model given in Sec. 4.2.1, we obtain simulations of the MTN
distribution using the HODG algorithm. We set the hyperparameter σ2

β as explained in appendix
B.1.

We consider different correlation lengths for λs and for λd in the a priori distributions, see
Fig. 4.1 and 4.2. To choose the correlation lengths, we computed the DIC in a grid search along
the hyperparameter space λs : [35, 45] km × λd : [45, 60] km, see Fig. 4.1. The correlation
lengths of λs = 40 km and λd = 55 km were finally selected.
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Figure 4.1: The DIC’s obtained with the MCMC output considering synthetic data, for different
combinations of correlation lengths. The correlation lengths of λs = 40 km and λd = 55 km
were finally selected, although the other DIC’s are similar. The actual correlation lengths used
for simulation are λs = 40 and λd = 45. The Bayesian inversion is quite similar in all cases (see
Figure 4.2), as predicted by the similarities in the DIC’s. The selection of the correlation length
in this scale is robust and, on the other hand, in general estimating correlation is commonly a
difficult statistical problem.

4.3.2 Posterior distribution and uncertainty representations

The median of the posterior samples of each subfault was plotted for the chosen correlation
lengths in Fig. 4.2 (b) and Fig. 4.3 (a), with a heat map. We also plot the GPS stations locations
with triangles and the their corresponding data using arrows. The black contours at the arrow-
heads represent the posterior error calculated for the inversion in the data. We can see that the
data fit is excellent in all cases and the slip solution is almost perfect, in relation to the true slip
seen in Fig. 4.2 (a).

Since we have access to the conditional posterior distribution of D, conditioned on estimates
of the covariance parameters, we can look at point estimators such as the posterior mean, the
posterior median, the maximum a posteriori (MAP). However, these point estimators may be
unrepresentative of the actual posterior. The mean and median may be misleading for long-
tailed asymmetric PDFs, and the MAP may be unrepresentative in the presence of skewness.
In this synthetic case, we obtain far better results with the median of the posterior samples,
shown in Figs. 4.2 (b) and 4.3 (a). For comparisons, and to observe the crucial importance of the
inclusion of correctly modeled prior information, we include a Maximum Likelihood Estimation
(MLE) estimation in Fig. 4.3 (b).

An advantage of the Bayesian approach is that it does not only produce one optimal model,
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(a) True synthetic displacements

(b) Bayesian inversion: λs = 40, λd = 45

Figure 4.2: Slip models on the plate interface (heat colors) and the associated model surface
displacement predictions (arrows): (a) True synthetic displecements and (b) the median of the
posterior samples for the slip inversion using correlation lengths λs = 40, λd = 45. Blue-solid
and red-solid arrows show the observed (synthetic) surface displacements while dashed arrows
show the predictions. The black contours at the arrowheads represent the data uncertainty; see
the zoomed insert in (b). Green triangles show the GPS station locations. Black lines represent
the isodepth contours (in km) of the subducted oceanic slab.
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(a) Bayesian inversion: λs = 35, λd = 50

(b) MLE

Figure 4.3: Slip models on the plate interface (heat colors) and the associated model surface
displacement predictions (arrows): (a) The median of the posterior samples for the slip inversion
using correlation lengths λs = 35, λd = 50 and (b) a MLE estimation.
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but the sampling yields a large ensemble of probable models, sampled from the posterior dis-
tribution. In Figs. 4.4 (a) and (b), we represent the median and the uncertainty of the slips
considering λs = 40 and λd = 55, respectively. These correlation lengths provide the lowest
DIC (see Fig. 4.1).

Now we turn to the question of uncertainty representation. This is not a straight forward task
for a posterior distribution on a high dimensional vector field. Here we resort to the posterior co-
efficient of variation (CV) at each sub-fault. The CV is a statistical measure of the dispersion of
a probability distribution around its mean. The CV represents the ratio of the standard deviation
σ to the mean µ (CV = σ

µ
), showing a relative quantity of the degree of variation, independent of

the scale of the variable. This metric provides a tool to compare the data dispersion between dif-
ferent data series. We use the MCMC simulations to estimate the CV at each subfault. In Fig. 4.4
(b) the CV is plotted to compare the posterior uncertainty in the inferred (inverted) movements
in each subfault. We can see that in the areas where the largest slip was found, we have the least
relative uncertainty, that is, the median is more representative. Note also that where the GPS
stations are located, we have a clear decrease in uncertainty. These regions of low uncertainty
are consistent with the regions with maximum restitution index computed by Tago et al. (2021)
through a mobile checkerboard strategy. The map with the displacement medians along with the
map with their corresponding CVs, as in Fig. 4.4, is our representation of the posterior distribu-
tion, and the UQ representation of this inversion. In the next section we use the same strategy to
study the 2006 GGap SSE inversion.

4.4 Real case: 2006 Guerrero Slow Slip Event

In this section we present a real data application to illustrate the performance of our approach.
We study the 2006 Guerrero SSE with data collected by the Instituto de Geofı́sica (IGF), Univer-
sidad Nacional Autónoma de México (UNAM), and the Servicio Sismológico Nacional (SSN).
In 2006, a SSE in Guerrero was recorded by N = 15 GPS stations. The stations are located
mainly along the coast and on a transect perpendicular to the trench, between Acapulco and
the north of Mexico city (Radiguet et al. 2011). We used these same locations in the synthetic
analysis presented in the previous Section.

4.4.1 Observations and data preprocessing

The GPS data must be preprocessed taking into account the time-varying climate phenomena.
Besides, the inter-SSE steady-state motion is subtracted to isolate the GPS data related with an
SSE event, that is, the tectonic coupling is removed. For the actual GPS data in the GGap 2006
event, we used the data processed by Radiguet et al. (2011) with the their proposed standard
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4.4. REAL CASE: 2006 GUERRERO SLOW SLIP EVENT

(a) Bayesian inversion: λ1 = 40, λ2 = 55

(b) Coefficient of variation

Figure 4.4: Slip posterior median (a) and its CV (b), resulting from the Bayesian inversion of
synthetic GPS cumulative displacements for the correlation lengths λs = 40 and λd = 55, see
Fig. 4.2 for more details. The CV is expressed as a percentage and quantifies the uncertainty
in the inverted slip shown in (a). Higher (darker) CV values implies more uncertainty in the
inferred slip.
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Figure 4.5: Results for the 2006 Guerrero SSE Bayesian inversions: The DICs obtained with
the MCMC output, for different combinations of correlation lengths. The correlation lengths of
λs = 40 km and λd = 45 km were finally selected.

deviations, σx = 0.0021, σy = 0.0025, and σz = 0.0051 in the north, east and vertical directions,
respectively. All these quantities are measured in meters. The time window that was considered
to compute the displacements was from January 2, 2006 to May 15, 2007.

We solve the Bayesian inversion as a multiple linear regression model with constraints on
the coefficients, considering the statistical model (4.3) as explained in Sect. 4.2.1. For the GPS
data, we took σ2

x = 0.0021, σ2
y = 0.0025, and σ2

z = 0.0051 as the standard deviations in the
north, east and vertical directions, respectively (Radiguet et al. 2011). As in the synthetic case,
the regularization parameter, σ2

β , is obtained by minimizing Eq. (B.4) given in Appendix B.1.

To sample from the resulting MTN posterior distribution we use the HODG sampler ex-
plained in Algorithm 3. To choose the correlation lengths, we computed the DIC in a grid
search along the hyperparameter space λs : [30, 45] km × λd : [42, 50] km, see Fig. 4.5. The
correlation lengths of λs = 40 and λd = 45 were finally selected.

The median of the posterior samples for the static inversion was plotted (heat colors) in
Fig. 4.6. The black contours at the arrowheads represent the data uncertainty, and the horizontal
lines in the vertical component represent the quantiles 0.025, 0.5, 0.975, respectively. The CV is
plotted in Fig. 4.7.

All GPS data is well recovered by the method within the estimated uncertainty bounds. The
median of the posterior show a compact region where most of the displacement took place. It
is consistent with the most recent inversions, where the region of maximum slip is located from
30 to 40 km depth and with a slight updip penetration in the north-west section (Bekaert et al.
2015; Tago et al. 2021). Recent offshore observations showed that the mechanical properties
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4.4. REAL CASE: 2006 GUERRERO SLOW SLIP EVENT

Figure 4.6: Bayesian inversion (Posterior median) of fault slips of the 2006 Guerrero SSE for
correlation lengths λs = 40, λd = 45, following the same conventions as in Fig. 4.2.
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Figure 4.7: Bayesian inversion (CV, expressed as a percentage) of fault slips of the 2006 Guer-
rero SSE for correlation lengths λs = 40, λd = 45, following the same conventions as in Fig. 4.2.

in that segment of the subduction slab are different and it may explain the inferred updip slip
(Plata-Martı́nez et al. 2021). However, since in that region the CV is high, > 50%, it should
be taken with caution. A better instrumentation deployment should be considered to avoid any
misinterpretation. Despite the similarities with previous studies, it is important to mention that
most of previous works are supported on constrained optimization framework, a different point-
wise estimate than the one presented here (e.g., Radiguet et al. (2011); Tago et al. (2021)). As
explained in the introduction, these estimates may be biased and the comparison with our results
should be made carefully.

A novelty of our procedure is depicted in Fig. 4.6 (b) where we are able to estimate the
posterior CV, as measure of the uncertainty in our solution. Uncertainty is low in the region
where the fault’s displacement is concentrated, and nearby coastline GPS stations. The former
is a consequence of solution to the IP, the latter is expected since the GPS station illuminates the
nearby faults. On the upper part of the color map, where the Cocos plate dives into the mantle,
the uncertainty is also low. This is a consequence of the prior information built into our prior
distribution. Specifically, by using the weight matrix W, and represents our knowledge that the
Cocos and North American plates are not coupled at such depths. Therefore, very low or no
uncertainty in the displacement is to be observed in this region.
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4.4. REAL CASE: 2006 GUERRERO SLOW SLIP EVENT

(a) Synthetic (b) 2006 Guerrero SSE

Figure 4.8: Posterior distributions of the moment magnitude Mw, along with the MAP (red)
and median (green) point estimates: (a) Synthetic case fault displacement inversion presented
in Fig. 4.4, the black marker represents the true Mw. (b) 2006 Guerrero SSE fault displacement
inversion presented in Fig. 4.6.

4.4.2 Uncertainty Quantification of the moment magnitude

Given a particular displacements vector D, the moment magnitude Mw(D) is computed as

Mw(D) =
2

3

(
log10

M0(D)

N ·m
− 9.1

)
,

where M0(D) = µAD is the seismic moment in N·m, µ is the crustal rigidity in Pa and A is
the surface that slipped in m2 (Stein and Wysession 2009). We take the 1 cm slip contour as the
effective SSE area, and we consider a typical crustal rigidity µ = 32 · 109 Pa.

Using the Bayesian approach has a further advantage; we can consistently produce estimates
and UQ of inferred parameters. That is, the posterior distribution of Mw(D) is well defined,
as the transformation of the random vector D|Y. Moreover, since we already have a Monte
Carlo sample, D(1),D(2), . . . ,D(T ), of the posterior D|Y, M (i)

w = Mw(D
(i)), i = 1, 2, . . . , T ,

is a Monte Carlo sample from the posterior distribution of the moment magnitude. The poste-
rior distributions for the Mw of the synthetic and 2006 Guerrero SSE examples are presented in
Fig. 4.8. For comparisons, also the moment magnitude of the MAP and the median displace-
ments are plotted in Fig. 4.8. In Fig. 4.8 (a), the synthetic case, the true Mw is plotted; indeed
calculated from the true displacements used to simulate the exercise (see Fig. 4.2 (a)). Note
how the posterior of Mw is skewed and would suggest larger values that what is estimated using
the MAP or the median. The Mw of the median coincides nicely with the true value and both
are contained in the posterior (note that for this non-linear functional, the Mw of the median
displacements need not to coincide with the median of the posterior for Mw).
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For the 2006 Guerrero SSE, we can extract from the posterior distribution of Mw the point
estimates Mwmedian

= 7.4 and MwMAP
= 7.3. The former is consistent with the value computed

by Tago et al. (2021), the later with study by Bekaert et al. (2015) and both are below the
Mw = 7.5 estimated by Radiguet et al. (2011). Clearly our point estimates are consistent with
previous studies, however the skewed posterior distribution has not been showed before. From
the synthetic data, it seems that the median is a better point estimate but further research must
be done.

4.5 Discussion

Solutions to IPs that include UQ in geophysics are challenging problems. Computationally
feasible methods such as Tikhonov regularization may introduce biases due to non-physically
justified regularization terms and solutions may misrepresent part of the phenomena. Moreover,
different considerations in the regularization terms may produce dissimilar solutions. Bayesian
methods provide a natural alternative to explore the posterior distribution of IPs and provide
formal UQ.

In this work, we developed an efficient Bayesian approach to estimate fault slip induced
by a SSE. We calculated the fault slip posterior through a constrained multiple linear regression
model and geodetic observations. We postulate a Gaussian model for geodetic data, and a model
of the prior information as MTN prior distribution for the unknown slip. The resulting fault slip
posterior PDF is also a MTN. Regarding the posterior, we proposed an efficient Optimal Direc-
tion Gibbs sampler algorithm to sample from this high-dimensional MTN. The computations
can be carried out in a personal computer as opposed to other MCMC samplers that require
high-performance computing. An advantage of our MCMC algorithm is that no parameter has
to be adapted or tuned.

Prior elicitation is a fundamental part of the modeling process regarding the particular phys-
ical problem under study. We use the Matérn covariance function to control the subfault autoco-
variance and to impose physically-consistent slip restrictions (on the prior distribution). Differ-
ent correlation lengths are considered in the prior distribution. As a model selection criteria, we
propose the DIC to choose the correlation lengths.

In many applications the MAP estimator is chosen as a representative solution to the IP due
to its computational feasibility by usual regularization schemes. Our results in the synthetic data
case shows that the MAP is biased. Instead, we propose the posterior median as an alternative to
fault slips’s point-wise estimate. Moreover, UQ is represented by the CV. We compare variability
between subfaults and show areas where we have the most certainty. Since we have Monte Carlo
samples of the full conditional posterior distribution, conditioned on estimates of the covari-
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4.5. DISCUSSION

ance parameters, both these quantities are readily available, in sharp contrast to regularization
methods, where these quantities can not be recovered. For the 2006 Guerrero SSE, the median of
the posterior distribution of the slip shows a compact slip patch where most of the slip is located
from 30 to 40 km depth with a slight updip penetration in the north-west section. Both of these
main characteristics are consistent with the most recent studies of Bekaert et al. (2015) and Tago
et al. (2021). Besides those coincidences, through the CV we can assess the uncertainty which is
lower where the most of the slip is located. With the posterior distribution of the slip, we could
easily compute the posterior distribution of Mw which showed to be skewed with the median
and MAP estimates also consistent with the above mentioned studies.

One limitation of our current approach is that the FM needs to be linearized in order to
obtain a MTN posterior. A more general FM could also be analyzed, although adding severe
computational burden and difficulties in a highly multidimensional MCMC.

The Bayesian framework allows us to also consider different representations of uncertainty.
It is clear that more SSE’s should be analyzed for the GGap, and elsewhere. A further improve-
ment would be to learn parameters of the particular fault slip from multiple SSE’s analyses such
as the correlation length. Moreover, border effects should be formally included in the covariance
matrix, by improving the covariance operator (Daon and Stadler 2018). For the moment, bor-
der effects do not seem apparent in the maps produced by the median, as seen in the examples
presented here. However, we leave these ideas for future research.

Computationally efficient Bayesian methods are being developed for many IPs in geophysics.
In many cases, they provide access to full posterior distributions, which provide better and more
informative estimates for the solutions as well as UQ. Our proposed methodology is applied to a
real data set, for the 2006 Guerrero SSE, where the objective was to recover the slip on a known
interface from observations at few geodetic stations. Lastly, once the slip inversion is available,
calculating the seismic moment, with formal UQ, is a simple subproduct of our methodology, a
result that –up to our knowledge– is new.
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CHAPTER 5

Discussion

The Bayesian UQ analysis of IPs continues to be a very challenging problem. In this thesis, we
addressed two fairly broad research questions. First, what numerical error may be tolerated in
the FM to obtain a correct and acceptable numerical posterior distribution? Second, how may
we estimate the magnitude and distribution of slip along a fault plane with limited geodetic data?
The provided answers and some of the following issues are summarized and discussed in these
concluding remarks. In each Chapter, particular conclusions have already been drawn.

For the first question, a bound on the ERE, in posterior expectations for some functional, is
found. It is also detailed how this bound can be used to find a discretization in the numerical
method used to approximate the FM. Moreover, we proposed a numerical method of computing
the after-the-fact error estimates of the numerical solver of a class of semilinear evolution PDEs.
Our error estimation allows us to apply the result obtained previously for bounding the ERE in
the respective numerical posterior expectation for Bayesian UQ problems. In all the presented
examples, RE in the numerical posterior statistics was successfully bounded, i.e., the RE in the
posterior expectation of parameters was smaller than the established tolerance b, this considering
different levels of accuracy for both MCMC and ERE. Although the bound appears to not be
quite tight, i.e., the margin between b and the RE is considerable, the point here is that there are
no similar results for comparison in the UQ literature or elsewhere, to our knowledge.

For future work, we plan to extend the method used for computing the error estimates of
nonlinear evolution PDEs, but some considerations regarding the solution’s stability and the
convergence orders most likely will need to be added.

For the second question, we developed an Bayesian approach to estimate fault slips in an
SSE. We calculated the fault slip posterior through a constrained multiple linear regression
model and geodetic observations. We postulate a Gaussian model for geodetic data and a MTN
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prior distribution for the unknown slip. The resulting fault slip posterior PDF is also a MTN.
Regarding the posterior, we proposed an efficient Optimal Direction Gibbs sampler algorithm to
sample from this high-dimensional MTN.

Computationally efficient Bayesian methods are being developed for many IPs in geophysics.
In many cases, they provide access to full posterior distributions, which provide better and more
informative estimates for the solutions as well as UQ. Our proposed methodology is applied to a
real data set for the 2006 Guerrero SSE, where the objective was to recover the slip on a known
interface from observations at few geodetic stations. However, our method may in principle be
used for any earthquake slip inversion as long as the FM can be linearized. Lastly, once the slip
inversion is available, calculating the seismic moment with formal UQ is a simple subproduct
of our methodology. A new and very interesting result, we believe.

One limitation of our approach is that the FM needs to be linearized to obtain a MTN poste-
rior. A more general FM could also be analyzed, although adding severe computational burden
and difficulties in a highly multidimensional MCMC.
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Montesinos-López, J. C. and Christen, J. A. (2016). Distribución de direcciones en el Gibbs
sampler generalizado. Master’s thesis, Centro de Investigación en Matemáticas, CIMAT.
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APPENDIX A

A.1 Details of the numerical solution

For the reader’s convenience, here we describe in detail the numerical method introduced in
Section 3.2.

To solve the PDE in Eq. (3.1), we start by separating the function F into a linear (L) and a
nonlinear (N) component and rewriting the Eq. (3.1) in the form

u̇ = u′′ + L[u, u′] + N[u, u′]. (A.1)

The nonlinear operator N is approximated with a Taylor series, assuming that the difference
ui+1,· − ui,· and all its spatial derivatives are small, hence

N[ui+1,·, u
′
i+1,·] ≈ N[ui,·, u

′
i,·]+ϕ0,i[ui,·, u

′
i,·] · (ui+1,·−ui,·)+ϕ1,i[ui,·, u

′
i,·] · (u′

i+1,·−u′
i,·), (A.2)

where ui,· := u(xi, t) is the solution of Eq. (3.1) evaluated in (xi, t) and ϕk,i[ui,·, u
′
i,·] :=

∂kN
∂u(k) [ui,·, u

(k)
i,· ], k = 0, 1.

Substituting Eq. (A.2) into Eq. (A.1), we get

u̇i+1,· = u′′
i+1,·+L[ui+1,·, u

′
i+1,·]+N[ui,·, u

′
i,·]+ϕ0,i[ui,·, u

′
i,·]·(ui+1,·−ui,·)+ϕ1,i[ui,·, u

′
i,·]·(u′

i+1,·−u′
i,·),

(A.3)
for i = 1, ..., N − 2.

Now, the spatial partial derivatives are approximated using the central difference formula
(3.8)-(3.9). We write in matrix form the central differences approximations

V′
h =

1

2h
AxVh +Cx, (A.4)
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and
V′′

h =
1

h2
AxxVh +Cxx, (A.5)

where Vh = (v1,·, v2,·, . . . , vN−1,·)
T approximates U = (u1,·, u2,·, . . . , uN−1,·)

T ,

Ax =



0 1 0 . . . 0

−1 0 1 . . . 0

0 −1 0 . . .
...

...
...

... . . . 1

0 . . . 0 −1 0


(N−2)×(N−2)

, Cx =
1

2h


−u0,·

0
...
0

uN,·


(N−2)×1

,

Axx =



−2 1 0 . . . 0

1 −2 1 . . .
...

0 1 −2 · · · ...
...

... . . . . . . 1

0 . . . 0 1 −2


(N−2)×(N−2)

, and Cxx =
1

h2


u0,·

0
...
0

uN,·


(N−2)×1

.

Now, u′
0,· is approximated with the forward difference scheme (3.9), which leaves us

V̂′
h =

1

2h
ÂxVh + Ĉx, (A.6)

Âx =



2 0 0 . . . 0

0 1 0 . . .
...

−1 0 1 · · · ...
...

... . . . . . . 1

0 . . . 0 1 0


(N−2)×(N−2)

, and Ĉx =
1

2h


−2u0,·

−u0,·
...
0

uN,·


(N−2)×1

.

where V̂h = (v0,·, v1,·, . . . , vN−2,·)
T .

Finally, substituting the approximate derivatives in Eqs. (A.4)–(A.6) into Eq. (3.7), joint
with the boundary conditions given in Eq. (3.2), we get the following semi-discrete differential
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A.2. STABILITY CONSIDERATIONS

equation:

V̇h =
1

h2
AxxVh +Cxx + L

(
Vh,

1

2h
AxVh +Cx

)
+ N

(
V̂h,

1

2h
ÂxVh + Ĉ

)
+Φ0

[
V̂,

1

2h
ÂxVh + Ĉ

]
·
(
Vh − V̂h

)
+Φ1

[
V̂h,

1

2h
ÂxV + Ĉ

]
·
(

1

2h
(Ax − Âx)Vh + (Cx − Ĉx)

)
, (A.7)

where Φk[V̂, V̂′] = (ϕk,0[v0,·, v
′
0,·], ϕk,1[v1,·, v

′
1,·], . . . , ϕk,N−3[vN−3,·, v

′
N−3,·])

T .

Note that the right-hand side of equation (A.7) only depends on V and t, due v0,· and vN,·

are known (3.2). Thus, we can write (A.7) in a compact form,

V̇ =
1

h2
AxxV + F(t,V) (A.8)

with

F(t,V) = Cxx + L

(
Vh,

1

2h
AxVh +Cx

)
+ N

(
V̂h,

1

2h
ÂxVh + Ĉ

)
+Φ0

[
V̂,

1

2h
ÂxVh + Ĉ

]
·
(
Vh − V̂h

)
+Φ1

[
V̂h,

1

2h
ÂxV + Ĉ

]
·
(

1

2h
(Ax − Âx)Vh + (Cx − Ĉx)

)
.

A.2 Stability considerations

We briefly describe stability considerations for the DFRK method introduced in Section 3.2.

Let

W·,n+1 = W·,n +

(
b1k

h2
AxxW·,n + kb1F (tn,W·,n)

)
+

6∑
i=2

bik

h2
Axx

(
W·,n + k

i−1∑
j=1

aijKj

)

+ k
6∑

i=2

biF

(
tn + cik,W·,n + k

i−1∑
j=1

aijKj

)

the solution of (3.1) using the FD-RKCK method (see Section 3.2). To determine the CFL
condition, we consider only the pure diffusion. Thus, the scheme is stable only if ρ (A) ≤ 1

(Burden and Faires 2011), where

A =
Bmk

h2
Axx Bm = max

i
bi.
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The eigenvalues of A can be shown to be

µi = −4λ
(
sin

(
iπ

2N

))2

, for i = 1, 2, . . . , N − 2,

where λ = Bm
k
h2 . So, the condition for stability consequently reduces to determining if

ρ (A) = max
1≤i≤N−2

∣∣∣∣∣−4λ
(
sin

(
iπ

2N

))2
∣∣∣∣∣ ≤ 1,

and this simplifies to

0 ≤ λ

(
sin

(
iπ

2N

))2

≤ 1

4
, ∀i = 1, 2, . . . , N − 2.

Stability requires that this inequality condition hold as h→ 0, or, equivalently, as N →∞,

lim
N→∞

[
sin

(
(N − 1) π

2N

)]2
= 1.

Thus, stability occurs if only if 0≤ λ ≤1
4
. By definition λ = Bm

k
h2 , so this inequality

requires that h and k be chosen such that

Bm
k

h2
≤ 1

4
.

The method converges to the solution with a rate of convergence O (hp + k4), provided Bm
k
h2 ≤

1
4
. For the numerical implementation, we take k = αh2, with α = 1

4Bm
.
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APPENDIX B

B.1 Determining the variance σ2
β

Note that the variance σ2
β could be considered a random variable. The full conditional σ2

β has
also a known form, namely σ2

β| · · · ∼ Inv-Gamma
(
d
2
+ aβ,

1
2
DTA0D+ bβ

)
, an could in prin-

ciple be included in the Gibbs sampling. However, this requires a computationally expensive
reevaluation and inversion of the precision matrix Ap at each MCMC step. For this reason, we
decided to simulate only from the conditional distribution of D, conditioned on the value of σ2

β

that maximizes the marginal posterior distribution of this parameter, as follows.

Akaike’s Bayesian Information Criterion (ABIC), proposed by Akaike (1980), has been
widely applied in geophysical inversion to determine the regularization parameters. Follow-
ing ABIC, we propose a criterion by maximizing the marginal posterior distribution of this
parameter, that is,

max : f
(
σ2
β|Y

)
=

∫
f
(
D, σ2

β|Y
)
dD =

1

f (Y)

∫
f
(
Y,D, σ2

β

)
dD. (B.1)

For this, we consider the follow hierarchical model

Y|D ∼ N (XD,A) , (B.2)

D|σ2
β ∼ Nd

(
0,

1

σ2
β

A0

)
; A0 = βWC−1Wβ,

σ2
β ∼ Inv-Gamma (aβ, bβ) ,

where A = Σ−1 is the precision matrix, and Inv-Gamma (α, β) denote a inverse Gamma distri-
bution with shape parameter α and scale parameter β.
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Note that, ∫
f
(
Y,D, σ2

β

)
dD =

∫
f
(
Y,D|σ2

β

)
π
(
σ2
β

)
dD

= π
(
σ2
β

) ∫
f
(
Y,D|σ2

β

)
dD

= π
(
σ2
β

)
m
(
Y|σ2

β

)
,

where π
(
σ2
β

)
is the prior distribution for σ2

β , and

m
(
Y|σ2

β

)
:=

∫
f
(
Y,D|σ2

β

)
dD. (B.3)

So, maximizing (B.1) is equivalent to minimizing

min : ℓ
(
σ2
β

)
= − log

(
m
(
Y|σ2

β

))
− log

(
π
(
σ2
β

))
.

Now, with the hierarchical model (B.2) and using the derivation of (B.3) given in Xu (2019),
that is,

m
(
Y|σ2

β

)
=

1

(2π)n/2
√
|Σpy|

exp

{
−1

2
(Y −Xµ0)

T Σ−1
py (Y −Xµ0)

}
,

where µ0 = 0 is the prior mean of D, and Σpy = A−1+XA−1
0 XTσ2

β , it follows that, the optimal
prior variance is obtained by minimizing

min : ℓ
(
σ2
β

)
= ln {det (Σpy)}+YTΣ−1

py Y + (aβ + 1) log
(
σ2
β

)
+

bβ
σ2
β

. (B.4)

Minimizing the above expressions is straightforward since is a function defined in R1.
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