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Abstract

It is known that mathematical models of biological systems often have many

parameters, and choosing values for those parameters may be a limitation

in practical applications. Indeed, experimental measurement of the model

parameters is difficult, and naive parameter estimation leads to parameter

identifiability issues. In this thesis we introduce a method for parameter

selection informed by global sensitivity analysis and data. We apply

these techniques to a model of prostate cancer under intermittent androgen

suppression therapy. First, we rank the model parameters according to their

contribution to the likelihood variance. We rank one parameter at a time to deal

with the likelihood multiple scaling. Second, we use Bayesian model selection

to compare the proposed model parametrization with a reference from the

literature. We use synthetic data to present our findings and offer a discussion

on further applications of our method.
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Chapter 1

Introduction

When putting together mathematical models, we would like to explain and

predict a system’s behavior. A model has a set of parameters, and often we do

not have the tools to know all of them, so we have to estimate some parameters

from observations of the system. Mathematical models of biological systems

frequently have multiple scales as mentioned in Gutenkunst et al. [2], “...The

collected models encompass a diverse range of biological systems, including

circadian rhythm, metabolism, and signaling. All the models are formulated

as systems of ordinary differential equations, and they range from having about

ten to more than 200 parameters...” and “...every model we examine exhibits a

sloppy parameter sensitivity spectrum...”, so, in general, it is difficult to estimate

all the parameters within a system; thus, we have the task of choosing a certain

subset of parameters to infer and other subset of parameters to postulate.

The goal of this work is to study the parametrization of mathematical models

describing the dynamics of Prostate Specific Antigen (PSA) under Intermittent

Androgen Suppression (IAS). We regard model T-5 in [3], henceforth referred

to as M2, as a reference model. M2 is a simplification of the state-of-the-art

model by Baez and Kuang [4]. Our contribution consists in proposing an

alternate parametrization of the M2 model based on global sensitivity analysis,

henceforth referred to as model M1, and comparing these models using formal

inference and statistical model selection.
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We apply the Sobol sensitivity analysis on the model T (mentioned in [3])

parameters, and then compute Markov Chain Monte Carlo (MCMC) for both

M1 and M2 models, making assumptions for prior distributions and likelihood

in order to get samples to be used to estimate the Bayes Factor between these

two models. Notice that, our strategy could be used in other models to do data

driven model development.

The theory behind Sobol’s sensitivity analysis can be found in [5]. The

results of the Sobol’s sensitivity analysis can be found in Section 3.2. The

theory behind MCMC and the Bayes Factor can be found in [6]. The theory

behind assuming a Gaussian for the posterior distribution can be found in the

notes [7]. In 3.6, some graphics are presented to visualize some projections

of the parameters distributions, and PSA predictions using the corresponding

posterior distribution for each model.

1.1 Motivation

Worldwide, the second most frequent type of Cancer among men is Prostate

Cancer (PCa).

Figure 1.1: Worldwide Cancer Incidence Rates [1]

Since Swanson et al. (2001) [8], multiple mathematical models arose
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describing different types of PCa.

In 1941, Huggins and Hodges [9] showed that PCa is influenced by androgen

–which are male hormones. In addition, they showed that metastatic PCa can be

inhibited as androgen is eliminated –either by a surgical method like a bilateral

orchiectomy or by estrogen injections. On the other hand, androgen injections

contribute to PCa development.

At this point one may think we can control the proliferation of

prostate cancer cells by suppressing androgen, but these cells might become

androgen-resistant after some time, that is, in spite of the androgen suppression,

these cells can proliferate again.

Androgen suppression has been implemented mainly as a treatment for

localized or locally advanced PCa. Generally, the androgen is continuously

suppressed through time via hormone injections until the malignant cells become

hormone-resistant. Some drawbacks of the Continuous Androgen Suppression

(CAS) therapy are its side effects like osteoporosis and erectile dysfunction. In

the aim of coping with those side effects, there is the Intermittent Androgen

Suppression (IAS) therapy. To explain what IAS therapy consist of, let us

introduce what is the Prostate Specific Antigen (PSA).

PSA is a biomarker for PCa which is measured in serum. It is worth noting

that, formally speaking, the PSA is not an antigen but a protein synthesized

by prostate cells, i.e., a proteolytic enzyme. High PSA levels indicate a high

probability of PCa whereas low PSA levels indicate a low probability of PCa.

IAS therapy goal is to suppress the patient androgen until the PSA reaches a

certain inferior threshold where the treatment is suspend, so the patient can take

a break from the side-effects; then the PSA starts rising again and when the PSA

reaches a superior threshold, the treatment begins again and so on (that is, IAS

therapy has a cyclic behaviour) until cancer cells become androgen resistant.

As PSA is almost the only observable variable (except maybe the androgen),

we use PSA time series for parameter estimation.
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1.2 Related work

For PCa, there are several mathematical models that describe the volume or

shape of the prostate or the tumor, but we only present models that explicitly

describe PSA dynamics.

• In 2001, Swanson et al. [8] described the serum PSA dynamics as:

dP

dt
= βhVh + βcVc − γP,

where Vh is the volume of prostate benign cells and Vc is the volume of

prostate cancer cells.

• In 2002, Vollmer et al. [10] used a log-linear regression to fit PSA data.

The equation is:

log(y) = a+ bt,

where “...a is the intercept and reflects the overall amplitude of PSA...”

and b is the relative velocity of PSA with respect to the PSA level, that

is, b = dy/dt
y

.

• In 2003, Vollmer and Humphrey [11] made the distinction between PSA

in the prostate tissue milieu, f , and serum PSA, y:

df

dy
= α− βf,

dy

dt
= βf

Vp

Vs

− ky,

where Vp is the prostate volume and Vs is the serum volume.

• In 2008, Ideta et al. [12] proposed a deterministic model where they

considered the dynamics of PSA taking into account that prostate cancer

cells can be androgen-dependent (AD), x1, or androgen-independent (AI),

x2:

P (t) = c1x1(t) + c2x2(t).
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• In 2010, Tanaka et al. [13] considered the model by Ideta et al. [12] but

modified it as a stochastic model:

P (t) = x1(t) + x2(t) + ξP ,

where ξP is Gaussian white noise.

• In 2010, Hirata et al. [14] proposed a piecewise linear model

considering three types of prostate cancer cells: androgen-dependent

(x1), androgen-independent, that can become androgen-dependent

at some point (x2), and androgen-independent, which can not be

androgen-dependent ever again (x3). Thus the PSA equation is:

P (t) = c1x1(t) + c2x2(t) + c3x3(t).

• In 2011, Jain et al. [15] made a distinction between PSA in tissue and PSA

in serum which are represented by a system of coupled ordinary differential

equations (ODEs).

PSA production in tissue:

dP

dt
= −αPPEfrac − γPP

(N +M)2

KP +N +M
− λPP + prodP ,

where E stands for the number of prostatic epithelial cells, N is

the number of androgen-dependent prostate cancer cells, and M the

androgen-independent prostate cancer cells.

The rate of change of serum PSA concentration is given by:

dPS

dt
= αPPEfrac + γPP

(N +M)2

KP +N +M
− λPsPS.

• In 2012, Portz et al. [16] took up Ideta et al. [12] model but added a cell

quota for androgen –for AD cells and AI cells.

dP

dt
= σ0 (X1 +X2) + σ1X1

Qm
1

Qm
1 + ρm1

+ σ2X2
Qm

2

Qm
2 + ρm2

− δP.
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• In 2016, Baez and Kuang [4] compared two models: one with the

assumption that there exist only AD cells and another one assuming there

are both AD and AI cells.

A single type of cell population model:

dP

dt
= bQ+ σxQ− ϵP.

A two type of cells population model:

dP

dt
= bQ+ σ(Qx1 +Qx2)− ϵP.

• In 2019, Draghi et al. [17] developed a coupled system of equations which

makes the distinction between PSA produced by AD cells, td, and PSA

produced by AI cells, ti.
ṗ = ρpp(1− p)− αpa(1− a)p− δpBpB(t)

ȧ = ρaa(1− a)− δaL a L(t)

ṫd = ρdtd − [δda(a) + δdBB(t)] t
2
d − αdptdp− ϵ(1− a)td

ti = ρiti − αiptip+ ϵ(1− a)td

• In 2019, Phan et al. [18] considered the two population model from Baez

and Kuang [4] but added an equation for serum androgen.

• In 2019, Phan et al. [19] considered the three population model proposed

by Hirata et al. [14].

dP

dt
= bQ+ σ(Qx1 +Qx2 +Qx3)− ϵP.

• In 2019, Nakanishi and Hirata [20] considered the model by Hirata et

al. [14].

• Finally, in 2019, Wu et al. [3] considered the two population model by
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Baez and Kuang [4]. This thesis is based on this model.

dP

dt
= bQ+ σ(Qx1 +Qx2)− ϵP.

1.3 Contributions

Given a model defined by an initial value problem for a system of ordinary

differential equations, and a set of observations depending on the state variables,

our method ranks the model parameters, one at a time, according to its

contribution to the likelihood variance. Next we parametrize the corresponding

statistical model using a prescribed number of leading parameters. We use the

model T from Wu et al. [3] as a reference to show that our strategy renders

a better statistical model. Actually, we argue that there is a relation between

global sensitivity and practical identifiability depending on the data at hand.

1.4 Limitations and future work

• In this thesis we use synthetic data. We plan to use clinical data in future

work.

• The models we compare have the same number of parameters. In the

future, we may apply our findings to decide what is the optimal number

of parameters to be inferred given a model and a set of observations.

• Also, we would like to postulate a new system of ODEs or PDEs that

models PSA dynamics taking into account not only the total PSA, but

making the distinction between free PSA and intact PSA, and other

quantities of interest like the Gleason score, age, TNM classification, and

prostate volume.

7



8



Chapter 2

Theoretical Framework

In this chapter we include a summary of theoretical results used for making

our work more self-contained. First, we present the mechanistic model used

to carry out our numerical experiments. Next we include a brief summary of

global first order Sobol sensitivities. We pose the inverse problem as an inference

problem and use the Bayesian paradigm to model the conditional probability of

the kinetic parameters with given records of PSA under intermittent androgen

suppression therapy. Finally we make a brief summary of Bayesian model

selection.

2.1 Model

We are taking into consideration a refined version of the model by Baez and

Kuang [4], presented in [3] as model T.

This is a mechanistic model based on Droop’s nutrient-limiting theory [21]

in the sense that cancer cells need androgen to be able to proliferate. As we

mentioned in Section 1.2, this model considers two different types of cancer

cells: Those androgen-dependent and those less sensitive to androgen, which

are called androgen-independent. However, for both types of cells there is a

minimal level of intracellular androgen for them to proliferate, which is called

the cell quota (qi). The equations governing the densities for cancer cells (xi),
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intracellular androgen (Q), serum androgen (A), and PSA (P ) are:

dx1

dt
= µ1

(
1− q1

Q

)
x1 − (D1(Q) + δ1x1)x1 − λ(Q)x1

dx2

dt
= µ2

(
1− q2

Q

)
x2 − (D2(Q) + δ2x2)x2 + λ(Q)x1

dQ

dt
= m(A−Q)− µ1(Q− q1)x1 + µ2(Q− q2)x2

x1 + x2

dA

dt
= γ2 + γ1(A0 − A)− A0γ1u(t)

dP

dt
= bQ+ σ(Qx1 +Qx2)− ϵP.

(2.1)

Units of xi, Q, A, and P are, respectively, L, nmol/L, nmol/L, and µg/L.

The androgen-dependent death and mutation rates are given by Dj(Q) =

djRj/(Q + Rj), j = 1, 2 and λ(Q) = cK/(Q + K), respectively, and u(t) is

a unit step function, where u = 1 indicates that the treatment is on, that is,

the androgen is being suppressed (maybe by hormone injections), and u = 0

indicates that the treatment is off.

In the article [3], the following values for parameters c = 0.00015, K = 1,

δ1 = 5, δ2 = 5, and γ2 = 0.005 are fixed, because of the little effect on the model

output observed in [18]. For simplicity, the authors also fixed µ1 = µ2 = µm.

Considering the sensitivity analysis carried out on [18], a 5 parameter model

(µm, q2, d1, γ1, and A0) is considered called T-5 –henceforth referred as model

M2.

For details on biological realistic ranges see [18]. However, for simulations

we used ranges plus-minus five percent from some reference values –which are

the mean parameters estimated in [3] on a set of 28 patients from the Vancouver

Prostate Center [22] and some fixed values in [3].

For the forward mapping, we took u = 1 when 0 ≤ t ≤ 300 or 600 ≤ t ≤ 900

or 1200 ≤ 1500.
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Parameter Description Mean Unit

µ1 maximum proliferation rate (AD cells) 0.071 [day]−1

µ2 maximum proliferation rate (AI cells) 0.071 [day]−1

q1 minimum AD cell quota 0.613 [nmol][day]−1

q2 minimum AI quota 0.1971 [nmol][day]−1

b baseline PSA production rate 0.0379 [µg][nmol]−1[day]−1

σ tumor PSA production rate 0.8667 [µg][nmol]−1[L]−1[day]−1

ϵ PSA clearance rate 0.0565 [day]−1

d1 maximum AD cell death rate 0.0687 [day]−1

d2 maximum AI cell death rate 0.0633 [day]−1

δ1 density death rate for AD cells 5 [L]−1[day]−1

δ2 density death rate for AI cells 5 [L]−1[day]−1

R1 AD death rate half-saturation 1.2499 [nmol][L]−1

R2 AI death rate half-saturation 2.7351 [nmol][L]−1

c maximum mutation rate 0.00015 [day]−1

K mutation rate half-saturation level 1 [nmol][day]−1

γ1 primary androgen production rate 0.3742 [day]−1

γ2 secondary androgen production rate 0.005 [day]−1

m diffusion rate from A to Q 0.7188 [day]−1

A0 maximum serum androgen level 11.63 [nmol][day]−1

x1(0) initial population of AD cells 0.01 [L]
x2(0) initial population of AI cells 0.0001 [L]

Table 2.1: Parameters description

2.2 Sensitivity Analysis

We applied Sobol’s sensitivity analysis using the saltelli and sobol modules

from the Python library SALib (Sensitivity Analysis Library) [23]. For

theoretical details see [5].

According to Saltelli et al. [5], first order Sobol sensitivities are defined as

follows

“...Given a model of the form Y = f (X1, X2, . . . Xk), with Y a scalar, a

variance based first order effect for a generic factor Xi can be written as:

VXi
(EX∼i

(Y | Xi)) ,
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where Xi is the i -th factor and X∼i denotes the matrix of all factors but Xi.

The meaning of the inner expectation operator is that the mean of Y is taken

over all possible values of X∼i while keeping Xi fixed. The outer variance is

taken over all possible values of Xi. The associated sensitivity measure (first

order sensitivity coefficient) is written as:

Si =
VXi

(EX∼i
(Y | Xi))

V (Y )
.

Then, VXi
(EX∼i

(Y | Xi)) + EXi
(VX∼i

(Y | Xi)) = V (Y ).

Si is a normalized index, as VXi
(EX∼i

(Y | Xi)) varies between zero and

V (Y ).VXi
(EX∼i

(Y | Xi)) measures the first order (e.g. additive) effect of Xi on

the model output, while EXi
(VX∼i

(Y | Xi)) is customarily called the residual.

Another popular variance based measure is the total effect index:

ST i =
EX∼i

(VXi
(Y | X∼i))

V (Y )
= 1− VX∼i

(EXi
(Y | X∼i))

V (Y )
.

ST i measures the total effect, i.e. first and higher order effects (interactions) of

factor Xi. One way to visualize this is by considering that VX∼i
(EXi

(Y | X∼i))

is the first order effect of X∼i, so that V (Y ) minus VX∼i
(EXi

(Y | X∼i)) must

give the contribution of all terms in the variance decomposition which do include

Xi...”

2.3 Inverse problems theory

We follow the statistical inversion approach where all variables are considered

random variables that can be modeled with a probability distribution, so the

posterior probability distribution gives us a parameter estimation [6].

2.3.1 Bayes’ Theorem

The Bayes’ theorem of inverse problems (as presented in [6]) relates two different

probabilities densities for observable and non-observable random variables.

12



Theorem 1 (Bayes’ theorem of inverse problems) Assume that the

random variable X ∈ Rn has a known prior probability density πpr(x) and the

data consist of the observed value yobserved of an observable random variable

Y ∈ Rk such that π (yobserved) > 0. Then the posterior probability distribution of

X, given the data yobserved is

πpost(x) = π (x | yobserved) =
πpr(x)π (yobserved | x)

π (yobserved)
.

2.3.2 Bayes Factor

The Bayes factor is a likelihood ratio of the marginal likelihood for two

competing hypotheses, see [24].

From Theorem 1 we have that the likelihood of a model, M, is:

π(y | M) =
π(M | y)π(y)

π(M)

Thus, the Bayes factor for M1 and M2 is:

B :=
π(y | M1)

π(y | M2)
=

π(M1|y)π(y)
π(M1)

π(M2|y)π(y)
π(M2)

=
π(M1 | y)π(y)π(M2)

π(M2 | y)π(y)π(M1)
=

π(M1 | y)π(M2)

π(M2 | y)π(M1)

Assuming that π(M1) = π(M2), then

B =
π(M1 | y)
π(M2 | y)

=

∫
π(y | ϕ1)π(ϕ1) dϕ1∫
π(y | ϕ2)π(ϕ2), dϕ2

=
Z1

Z2

,

where Z1 and Z2 are the normalizing constants for models M1 and M2,

respectively.

A value of B > 1 means that M1 is more strongly supported by the data

than M2 [25].

13



2.3.3 Statistical Models

As stated previously, we will not use real clinical data, but synthetic ones. The

generations of these are as follows:

yobserved = y + σϵ,

where y is the solution of the model with the reference values, ϵ ∼ N (0, 1) and

σ = max y
100

.

We have synthetic PSA data yiobserved at times t1, t22, . . . , t1500.

Also assume that the data has a normal distribution and x0 known

ykobserved ∼ N (P (ti, θ), σ),

where θ = (θ1, . . . , θ5) is the parameter vector of the model and yobserved =

(y1observed, . . . , y
1500
observed).

Assuming that the observations are independent from each other, the joint

distribution of the observed PSA is a good approximation to the conditional

probability (likelihood) π(yobserved|θ), which would simply be defined by the

product of the individual probability density functions of the observations:

π(yobserved|θ) =
1500∏
k=1

1

σ
√
2π

e
− 1

2

(
yobserved−P (tk,θ)

σ

)2

,

where σ is the one calculated for the creation of the synthetic data.

Now we need an a priori probability density function πprior(θ).

Since all parameters have positive ranges, we can normalize them to [0, 1], so

we can model them as Beta distributions. Suppose that θi ∼ Beta(αi, βi), i =

1, . . . , 5, are independent, i.e., πprior(θ) = πprior(θ1) × · · · × πprior(θ5). Bayes

14



Theorem implies the equality:

π(θ|yobserved) ∝ π(yobserved|θ)× πprior(θ)

=
1500∏
k=1

1

σ
√
2π

e
− 1

2

(
yobserved−P (tk,θ)

σ

)2

× Beta(α1, β1)× · · · × Beta(α5, β5),

The prior distribution for each parameter, θi is a Beta distribution:

πprior(θi) =
Γ(α + β)θα−1

i (1− θi)
β−1

Γ(α)Γ(β)
, (2.2)

where α and β are the shape parameters for the Beta distribution, θi ∈ [0, 1],

for i = 1, . . . , 5, and Γ is the Gamma function (Γ(n) = (n− 1)! for n in Z+).

We choose α and β to be equal to 1.1 for every parameter.

Our last step is to carry out Markov Chain Monte Carlo (MCMC)

to construct a statistically meaningful sample of the posterior conditional

distribution π(θ|yobserved).

2.3.4 Markov Chain Monte Carlo

There are no analytical methods to explore the posterior distribution (2.2)

provided the non-linearity of the inference problem. We resort to Markov Chain

Monte Carlo (MCMC) to explore the posterior distribution. We use the twalk

method of Christen and Fox [26].

MCMC is a stochastic collocation method used for approximating the

support of a target distribution like (2.2), that consists of letting the posterior

distribution determine a set of points, a sample, that supports well the

distribution. These sample points can then be used for approximate integration

[6].

In the next Subsection 2.3.4, we will show why it is plausible to propose a

Gaussian (Normal) approximation for the posterior distribution.
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Posterior Approximation by a Normal distribution

For any probability density function (pdf) that is smooth and well peaked around

its point of maxima, Laplace proposed to approximate it by a normal pdf. It is

a simple 2-term Taylor expansion trick on the log pdf. If θ̂ denotes the point

of maxima of a pdf h(θ), then it is also the point of maxima of the log-pdf

q(θ) = log h(θ) and we can write:

q(θ) ≈ q(θ̂) + (θ − θ̂)q̇(θ̂) +
1

2
(θ − θ̂)2q̈(θ̂)

= q(θ̂) + 0 +
1

2
(θ − θ̂)2q̈(θ̂) [ because q̇(θ̂) = 0]

= const − 1

2
(θ − θ̂)2q̈(θ̂)

= const − (θ − ā)2

2b2

with ā = θ̂ and b2 = {−q̈(θ̂)}−1 (notice q̈(θ̂) < 0 because θ̂ is a maxima). But

the right hand side of the last display matches the log-pdf of Normal
(
ã, b̄2

)
.

Hence the pdf h(θ) is approximately the Normal
(
ā, b̃2

)
pdf with ā = θ̂ and

b̃2 = {−q̈(θ̂)}−1.

All one needs is that the log-pdf is smooth at the maximum and peaks well at

it so that the quadratic approximation is good. We only need to know the point

of maximum θ̂ and the curvature −q̈(θ) at this point.

The same technique could be applied to a posterior pdf ξ(θ | x) = const ×
Lx(θ)ξ(θ). The log-pdf in this case is q(θ) = const + ℓx(θ) + log ξ(θ). Typically

we will not know the value of the constant term at the front. But it does not

affect when computing the point of maximum θ̂ and the curvature −q̈(θ) at

θ = θ̂.

Now we need the following:

Theorem 2 (Bernstein-von Mises) Consider the model Y1, · · ·Yn
IID∼

g(yi|x), x ∈ X. Under some regularity conditions on the pdfs/pmfs g(·|x),
including that all of them have the same support, and that for each yi, x 7→
log g(yi|x) is twice continuously differentiable, we have that for any prior πpr(x)
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which is positive, bounded and twice differentiable over X,

sup
z

∣∣∣P (x ≤ z|Y = y)− Φ
(
{−q̈(x̂)}1/2(z − x̂)

)∣∣∣ ≈ 0

for all large n.

Bernstein-von Mises applies to most of the standard models for which a

conjugate prior family exists. Therefore for large n, the conjugate posterior

should look like a bell curve too.

In Section 3.4, the required hypotheses on the posterior probability, for both

modelM1 and modelM2, are verified in order to use Theorem 2 (Bernstein-von

Mises) and thus be able to approximate it by a Gaussian.
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Chapter 3

Results

In this Chapter we present our findings regarding the model sensibility analysis,

formal inference and model selection. The sensibility analysis is aimed at

choosing a set of parameters to make the inference, and to compare the

corresponding inference results with those of a reference model parametrization.

The rationale of our approach is based on the following empirical argument:

under mild regularity assumptions in Bayesian linear regression, the posterior

distribution variance should shrink with respect to the prior distributions along

the direction of those parameters that are informed by the data. Likewise,

if a parameter is not informed by the data, then its marginal posterior

distribution should resemble the prior model. Numerical evidence in the

prostate cancer model studied in this thesis indicates that the posterior

distribution is unimodal. Consequently, given a fixed set of synthetic data,

we use the Sobol sensitivity analysis to rank the model parameters in terms

of how much does each parameter variance contribute to the variance of the

likelihood on a given support, and we keep the five top ranked parameters as

our model parametrization. The results are shown in Section 3.2. Due to the

multiple scales present in the model according to Gutenkunst et al. [2], we rank

one parameter at a time by sequentially stripping the model from the leading

parameter and fixing it to some reference value.

Afterwards, we use Bayes factors to carry out formal model selection and we
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show that the proposed method gives the better model. To accomplish this task,

we use Markov Chain Monte Carlo to sample the reference posterior distribution

and the one proposed in this thesis. Later, we make a Gaussian approximation

of each posterior distribution based on the MCMC samples. We compute the

Bayes factors using the normalizing constant of the Gaussian approximations.

One very important feature of the dynamical system being investigated

in this thesis is numerical stiffness. To address this problem we use a suite

of numerical integration methods for ordinary differential equations given by

odeint from Python’s library Scipy. The numerical integration method odeint

receives the Jacobian of the dynamical system right hand side as an argument

and approximates the Jacobian eigenvalues to decide automatically whether

to use an Adams-Bashforth method (non-stiff) or a backward differentiation

formula (stiff).

We believe that our findings on model parametrization may be generalized

to other cancer dynamics models, as well as to models of other more general

biological systems. Furthermore, expert insight, i.e. from medical doctors, on

the scale of model parameters would be very useful to carry out more deep

analysis.
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3.1 Model Stiffness

When numerically solving model M2, we see that the ODE system is stiff. See

Figure 3.1. Given the numerical nature of our research, we require some form

of unsupervised robustness in the numerical integration of the model.

Figure 3.1: M2 solution for PSA without passing the model jacobian as an
argument to odeint.

Thus, we use the odeint method from Python’s library scipy with the

Jacobian of the dynamical system right hand side as an argument [27]. Of note,

odeint approximates the eigenvalues of the dynamical system Jacobian as it

marches on time, and automatically decides whether to use an Adams-Bashforth

multistep method in case the ODE is non-stiff, or a backward differentiation

formula in case the ODE system is stiff. Using this robust suite of numerical

integration circumvents the verification task as suggested by Oden et al. [28].

Although the topic of numerical analysis is not the goal of this work, we remark

that the verification of the numerical model used in this thesis is of paramount

importance.
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3.2 Sensitivity Analysis

Below we present the first 5 iterations of parameter ranking based on the Sobol

sensitivity analysis and parameter stripping (Tables 3.1, 3.2, 3.3, 3.4, 3.5).

Namely, selected parameters are fixed to a reference value after being selected.

Parameter S1 S1 conf ST ST conf

µ1 0.001765 0.002340 0.001469 0.001967
µ2 0.008909 0.023479 0.103712 0.153503
q1 -0.007577 0.016155 0.088806 0.178843
q2 0.000418 0.000963 0.000427 0.000587
b 0.069536 0.064823 0.626695 0.087236
σ 0.005903 0.030135 0.117871 0.207771
ϵ 0.059577 0.076895 0.592916 0.076401
d1 -0.002053 0.004958 0.014018 0.025704
d2 0.000698 0.001000 0.000446 0.000629
δ1 0.001453 0.002137 0.000532 0.000698
δ2 0.001386 0.001630 0.001747 0.002363
R1 0.000328 0.000870 0.000429 0.000710
R2 0.000451 0.000909 0.000282 0.000556
c 0.000457 0.000909 0.000282 0.000556
K 0.000456 0.000909 0.000282 0.000556
γ1 0.000552 0.001037 0.000420 0.000581
γ2 0.000432 0.000912 0.000378 0.000613
m 0.004968 0.006191 0.006480 0.001093
A0 0.056413 0.060459 0.611050 0.078197

x1(0) 0.000000 0.000000 0.000000 0.000000
x2(0) 0.000000 0.000000 0.000000 0.000000

Table 3.1: Sobol’s sensitivity analysis first iteration
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Parameter S1 S1 conf ST ST conf

µ1 0.001834 0.002779 0.000877 0.001193
µ2 0.001425 0.009563 0.011471 0.001634
q1 0.000483 0.001182 0.000373 0.000711
q2 -0.009320 0.011554 0.086095 0.121678
σ 0.000481 0.001167 0.000383 0.000713
ϵ 0.167161 0.090656 0.840193 0.088059
d1 -0.000103 0.000206 0.000007 0.000015
d2 0.000695 0.001260 0.000599 0.000846
δ1 0.002290 0.005248 0.002100 0.003267
δ2 0.000980 0.001753 0.003686 0.006965
R1 0.000615 0.001171 0.000375 0.000711
R2 0.000792 0.001441 0.000445 0.000739
c 0.000453 0.001197 0.000374 0.000711
K 0.001787 0.002528 0.001588 0.002235
γ1 0.002532 0.002912 0.000948 0.001038
γ2 0.000680 0.001171 0.000381 0.000711
m -0.004912 0.022978 0.341728 0.584830
A0 0.128800 0.095533 1.573242 1.494242

x1(0) 0.000000 0.000000 0.000000 0.000000
x2(0) 0.000000 0.000000 0.000000 0.000000

Table 3.2: Sobol’s sensitivity analysis second iteration
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Parameter S1 S1 conf ST ST conf

µ1 -0.039606 0.041518 0.688884 0.714722
µ2 -0.040813 0.043622 0.727035 0.721380
q1 -0.040344 0.042354 0.715501 0.742359
q2 -0.040522 0.041981 0.715743 0.741829
σ -0.042626 0.037561 1.068618 1.610828
d1 0.051334 0.333238 11.480921 40.277976
d2 -0.040342 0.042372 0.715498 0.742362
δ1 -0.040709 0.041591 0.715677 0.741981
δ2 -0.032981 0.135129 1.174270 1.512754
R1 -0.053605 0.068618 1.102131 1.956318
R2 -0.042633 0.038469 0.836839 0.661484
c -0.040310 0.042444 0.715501 0.742362
K -0.061227 0.078264 1.301971 2.271343
γ1 -0.040289 0.042534 0.715620 0.741809
γ2 -0.039670 0.044176 0.715824 0.741628
m -0.039765 0.046627 0.725013 0.712885
A0 0.244901 0.712170 0.960341 0.054252

x1(0) 0.000302 0.001387 0.000134 0.000616
x2(0) 0.000307 0.001409 0.000138 0.000636

Table 3.3: Sobol’s sensitivity analysis third iteration
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Parameter S1 S1 conf ST ST conf

µ1 -0.000560 7.103237 0.278018 3526.185610
µ2 0.000229 3 .026604 0.038075 686.712488
q1 -0.000001 0.015700 0.000001 0.008295
q2 -0.000002 0.031764 0.000003 0.053873
σ -0.001305 20.450230 1.637895 25661.060112
d1 -0.000000 0.002778 0.000000 0.000529
d2 -0.000330 4.015757 0.080535 981.269114
δ1 -0.000423 7.045382 0.297338 5242.698437
δ2 -0.000126 2.089244 0.329717 5649.855534
R1 -0.000331 6.683270 0.085493 1741.953153
R2 -0.000110 1.559100 0.236599 3343.092075
c -0.000241 4.558030 0.058654 1112.079940
K -0.000573 9.871518 0.610213 10513.702803
γ1 -0.000203 4.432037 0.085847 1337.942492
γ2 -0.001586 2 2.413685 2.316874 39645.296903
m 0.000281 0.096618 0.000046 0.533588

x1(0) 0.000000 0.000000 0.000000 0.000000
x2(0) 0.000000 0.000000 0.000000 0.000000

Table 3.4: Sobol’s sensitivity analysis fourth iteration
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Parameter S1 S1 conf ST ST conf

µ1 -0.588844 1.047543 9.296985 17.495542
µ2 -4.877749 10.495671 3776.069264 6825.979154
q1 -87.130723 146.736350 85340.839095 144079.889107
q2 -0.062627 0.082180 0.027882 0.034970
σ -0.020792 0.038218 0.015175 0.024385
d1 -87.512239 163.997137 190661.015896 357302.568189
d2 -0.041333 0.043291 0.011357 0.014925
δ1 -74.368736 148.821202 145298.391234 290887.254693
δ2 -0.013875 0.025933 0.003721 0.006895
R1 -41.165961 91.668827 32881.089294 74020.444562
R2 -0.002366 0.003824 0.000108 0.000069
c 0.000965 0.003397 0.000077 0.000053
K -34.282095 51.256507 33162.603239 48156.641390
γ1 -26.693361 56.792984 11906.694737 25312.941983
γ2 -0.050788 0.059807 0.023560 0.028995

x1(0) -0.000633 0.001210 0.000007 0.000013
x2(0) 0.000257 0.000492 0.000001 0.000002

Table 3.5: Sobol’s sensitivity analysis fifth iteration

In view of the results shown above, we propose a model (henceforth referred

to as M1) with 5 parameters: b, ϵ, c, m, and A0.
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3.3 MCMC convergence analysis

In this section we offer numerical evidence of the Markov Chain Monte Carlo.

The next plots show the convergence of the MCMC samples for each model

(Figures 3.2 and 3.3).

Figure 3.2: M1 trace plot

For model M1, the Integrated Autocorrelation Time (IAT) is 96.4, so the

IAT divided by the number of parameters is 19.3.

Figure 3.3: M2 trace plot

For model M2, the Integrated Autocorrelation Time (IAT) is 109.1, so the

IAT divided by the number of parameters is 21.8.
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3.4 Normalizing Constants

As seen on Subsection 2.3.4, we can elicit the posterior probability density

function, π(x | yobserved), as a Gaussian if it meets certain conditions. For

simplicity, we will just write y instead of yobserved.

(i) log π(x | y) is twice continuously differentiable.

(ii) πpr(x) is positive, bounded and twice differentiable over the parameter

space.

The hypotheses in MCMC are a Gaussian likelihood and a priori Beta

distribution for the parameters. But since they all have bounded positive ranges,

condition (ii) is partially met. For condition (ii), we do the following:

By Bayes’ Theorem 1 we know that:

log(π(x|y)) = c1 + ℓx(y) + log(πpr(x)).

Assuming x = (b, ϵ, c,m,A0) is a vector of parameters, y is the data, and ℓx(y)

is the log-likelihood of the data, y, that depends on the parameters, x, then we

have

ℓx(y) =
n∑

i=1

[
log

(
1

σx

√
2π

)
− (yi − µx)

2

2σ2
x

]
,

and

log(πpr(x)) = −5 log(Γ2(1.1)) + 5 log(Γ(2.2)) + log(b0.1) + log((1− b)0.1)

+ log(ϵ0.1) + log((1− ϵ)0.1) + log(c0.1) + log((1− c)0.1)

+ log(m0.1) log((1−m)0.1) + log(A0.1
0 ) + log((1− A0)

0.1)).
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Thus,

q(x) = log(π(x|y)) = c3 + n log

(
1

σx

√
2π

)
−

n∑
i=1

(yi − µx)
2

2σ2
x

+ log(b0.1) + log((1− b)0.1) + log(ϵ0.1) + log((1− ϵ)0.1)

+ log(c0.1) + log((1− c)0.1) + log(m0.1) log((1−m)0.1)

+ log(A0.1
0 ) + log((1− A0)

0.1)).

By the Bernstein von-Mises Theorem 2, we can say that the posterior

distributions for each model is a Gaussian whose mean and variance can be

estimated by the mean and variance from a MCMC sample of the parameters.

In Table 3.6 we present the estimations of the normalizing constants for each

model.

Model Normalizing Constant

M1 3.3797029802338296× 1012

M2 9.38764868.8826965× 108

Table 3.6: Normalizing constants estimations

3.5 Bayes Factor

The core of this work is presented in this Section. As seen in Subsection

2.3.2, B = Z1

Z2
, thus:

B̂M1,M2 =
ẐM1

ẐM2

=
3.3797029802338296× 1012

9.38764868.8826965× 108
= 3.6001592009469846× 103

which is greater than 1 therefore, M1 is more supported by the data than

M2.
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3.6 Distributions and Predictions

The next plots (Figures 3.4 and 3.5) are generated using a Python library called

corner [29] which helps to visualize the distributions for each parameter and a

two-dimensional projection for the covariance across parameters.

Figure 3.4: Corner M1
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Figure 3.5: Corner M2
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Now that we have an approximation for the posterior distribution, we

can estimate PSA values with the Maximum A Posteriori (MAP) and the

Conditional Mean (CM). See Figures 3.6 and 3.7.

Figure 3.6: Prediction M1

Figure 3.7: Prediction M2
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Chapter 4

Discussion

In this thesis, we introduce a general method for sensitivity informed parameter

selection in models for biological systems. First, we perform a Sobol sensitivity

analysis, taking the likelihood (conditional probability) as a quantity of interest.

We address the “sloopy parameters” problem, mentioned in [2], of multiple

scales in the parameters, by sequentially stripping the model out from the

leading parameter and fixing it to a reference value in order to rank the model

parameters in terms of how much does each parameter variance contribute to

the variance of the likelihood, and maintain the desired number of parameters

which contribute the most. If a parameter does not contribute or contributes

a little to the likelihood variance, then that parameter is non identifiable. On

the other hand, the parameters contributing the most to the likelihood variance

shrink their posterior distribution variance when conditioned to observed data,

which makes our inference easier. It is noteworthy that some parameters can

be fixed by a specialist in the field of the model we are dealing with.

In this work, we design synthetic data by simulating from the reference

model, adding Gaussian noise with a signal to noise ratio of 100. We generate

synthetic data fixing a seed with Python’s library random to random.seed(10).

We make our model selection from a Bayesian viewpoint, that is, we are using

the Bayes factor for model comparison. For that purpose, we elicit informative

prior distributions for the model parameters, using a likelihood model which is
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known by construction, and Markov Chain Monte Carlo (MCMC) to sample

the posterior distributions for each model. Afterwards, we fit a Gaussian

distribution to the samples obtained through MCMC to exploit the fact that

we can compute the normalization constant of each distribution in closed form.

The validity of our findings relies on the fact that the arising posterior

distribution for the problem at hand is unimodal. This supports that we can

approximate the posterior distribution in a neighborhood of the Maximum A

Posteriori (MAP) by a Gaussian distribution invoking the Bernstein-von Misses

theorem.

Regarding future work, we believe that more general sensitivity informed

parameter selection problems in biological systems may be derived from the

method proposed in this thesis. Indeed, we want to explore whether a

bimodal posterior distribution may be approximated by a mixture of Gaussian

distributions to select the model parameters. The motivation is given by

biological system where bistability plays an important role; to name one, glucose

metabolism.

34



Chapter 5

Conclusions

We proposed a general method for global sensitivity informed parameter

selection in models of biological systems. We applied our method to a model of

prostate cancer under intermittent androgen suppression. The validity of our

methods relies on the fact that the posterior distribution for the problem at

hand can be approximated by a Gaussian distribution in a neighborhood of the

maximum a posteriori.

Model parameters are ranked according to how much does the variance of

each parameter contribute to the variance of the likelihood. Parameters are

ranked one at a time stripping the model out from the leading parameter and

fixing it to a reference value.

Our findings can be extended in several directions. We may explore what

is the optimal number of parameters that can be inferred with a specific model

and given a set of data. We may generalize our findings to explore models

whose posterior distribution exhibits bistability. Notice that, bistability is a very

important problem arising in biological systems such as glucose metabolism. We

may explore other approaches to carry out model selection such as importance

sampling.
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Acronyms

AD Androgen-dependent.

AI Androgen-independent.

CAS Continuous Androgen Suppression.

CM Conditional Mean.

IAS Intermittent Androgen Suppression.

IAT Integrated Autocorrelation Time.

MAP Maximum a posteriori.

MCMC Markov Chain Monte Carlo.

ODE Ordinary Differential Equation.

PCa Prostate Cancer.

PDE Partial Differential Equation.

PSA Prostate-Specific Antigen.

TNM Tumor, Nodes, and Metastases.
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