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Abstract

Inverse problems arise in an enormous variety of science and engineering

applications where model parameters must be estimated from noisy and indirect

observational data. These problems are characterized by observational errors,

model errors, and issues of ill-posedness which yield uncertainties in model

parameters. Bayesian statistical approaches to inverse problems allow us to

make simulations and predictions with quantified uncertainties. These tasks

become essential in model-based decision-making. Using a dynamical system

based on physical principles to predict the observations is known as the

forward problem. Traditional Bayesian methods as inference of the parameters,

sampling from a distribution, quadrature approximations, experimental design,

and model selection are affected by the introduction of a numerical solution

of an ODE/PDE system. Therefore, ensuring the regularity of the direct

problem, the consistency in the discretization, and the consequent stability of

the posterior is of great importance to building reliable predictions. In this

work, our specific interest relies on the challenges for the statistical approach for

inverse problems defined by initial and boundary value problems for differential

equations. We present several examples of inverse problems with applications in

mesh refinement, elastography, epidemics, and biology. To face these problems,

vii



we consider model selection criteria, experimental design strategies, posterior

sampling schemes, among others in which we apply dimension reduction,

optimization, and numerical analysis tools. The main goal illustrated by these

examples is the systematic treatment of model, data, and computational errors

to produce predictions with quantified uncertainty.

Keywords : Uncertainty Quantification, Bayesian Inverse Problems,

ODEs/PDEs
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Chapter 1

Introduction

Theoretically, mathematical models may be used to describe physical processes.

The validation of these models from observations is fundamental in a predictive

science process. Specify quantities of interest to predict will allow us to

determine the important aspects of the physical process in which we must

focus. In practice, we use computational models to implement this description

and perform the computations. A verification process is designed to control

possible errors in the discretization step of the theoretical mathematical model

described. Inside these models, we found parameters of different classes which in

the process may be taken from literature, may be proposed or may be inferred.

The calibration step involves the tuning of parameters, which are commonly

not known with great precision. After calibration, we obtain predictions of the

model for our quantities of interest that may lead us to make decisions. But,

how good are these predictions? The validation process is designed to built

confidence in the predictions obtained from the model. Together these steps

describe a systematic treatment of model, data, and computational errors to

produce predictions with quantified uncertainty.

The inference of parameters based on observations is a very old problem with

applications nowadays in medical imaging [1, 2, 3], geophysics [4, 5], epidemics

[6], and others [7, 8, 9, 10]. Using a dynamical system based on physical

principles to predict the observations is known as the forward problem. The
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inverse problem corresponds to infer possible values for the parameter based

on observations of this physical phenomenon. The solution of inverse problems

can be viewed as the interpretation of data through a forward modeling that

capture relationships between measured quantities and quantities of interest.

Let us consider the problem of recovery θ from observations y given by

y = G(θ) (1.1)

Assume that G(θ) is given by the solution of a PDE/ODE system. From a

traditional point of view, this problem is usually ill-posed. That means, a

solution does not exist or multiple solutions may exist or solutions may not

depend continuously on the data. To circumvent the ill-posedness, traditional

methods formulate an optimization problem including a regularization term.

A probabilistic approach considers θ as a random variable and the noise in

the data. Under this approach, solving the inverse problem means to find a

probability distribution for the parameter θ. Under the Bayesian paradigm,

a probability distribution for the parameters is imputed as prior knowledge.

By correcting this prior information with the data we obtain the posterior

distribution. This approach introduces a regularization effect through the prior.

By introducing probabilistic elements, equation (1.1) is replaced by

y = G(θ) + η (1.2)

where an additive Gaussian noise η is assumed on the observations. Other

structure for the noise may be considered.

A statistical approach for inverse problems introduces new components

to propose solutions with quantified uncertainty and produce predictions.

Implementation of computational models on the treatment of data uncertainties

has become more usual and provides several challenges. Since G(θ) corresponds

to the solution of an ODE/PDE system, a numerical solver is required

in practice. This requirement leads to a numerical version Gh(θ) of

G(θ). In practice, all the simulations and analyses are performed with the

numerical posterior πh(θ|y) determined by Gh(θ). Traditional Bayesian methods
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as inference of the parameters, sampling from a distribution, quadrature

approximations, and model selection are affected by the computational cost

introduced by the numerical solution of an ODE/PDE system. Also, regularity

conditions are needed to ensure that the numerical posterior πh(θ|y) is a good

approximation of the theoretical posterior π(θ|y). The study of linear problems

allows to improve and implement new notions as MCMC sampling methods,

experimental design, and goal-oriented inference using low-rank approximations,

surrogates models, and optimization tools, [11, 12, 13].

In the specific case of recovering functions, the modeling on the

representation of the function is directly related to the addressed strategies.

Specifically, the well-posedness of the posterior in an infinite-dimensional setting

is of paramount importance and is of current interest [14, 15, 16]. In [17], the

well-posedness is addressed for inverse problems in machine learning where the

regressor doesn’t come from a dynamical system. The proper discretization

of the infinite-dimensional problem is fundamental to ensure consistency and

convergence,[18, 19]. Straightforward discretizations may lead to convergence

problems due to not discretization-invariant schemes, as explained in [19, 20].

The Bayesian approach for recovering functions is significantly challenging

since usually high dimensionality methods are required. MCMC methods are

intractable under these conditions. Dimension reduction to implement MCMC

methods for high dimensional problems is of current interest, [21] [22] [19]. A

very popular tool to simplify the problem of high dimensionality is to compute a

Gaussian approximation of the posterior distribution, [23]. This approach may

be justified by the Berstein-Von-Misses theorem for the case of high dimensional

data, see [24], [25], [26]. The Gaussian approximation of the posterior allows

incorporating tools from the linear case studies as low-rank approximations,

model selection, and goal-oriented inference. This approximation may be

performed by linearizing the forward map around the MAP estimate, [23].

This approach proposes the posterior precision as a low-rank update of the

prior precision where the spectra of the prior preconditioned Hessian misfit at

the MAP reaches an invariance property under discretization. In this work,

we analyze several uncertainty quantification strategies in different problems.

The main contribution is for Bayesian model selection in the discretization of
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parameter fields.

1.1 Previous work

Stuart introduced in [15] the Bayesian formulation for inverse problems in

function spaces for Gaussian priors. The well-posedness of the posterior may

be ensured for other priors too, see [14, 27, 28, 29]. The discretization of

such formulation usually causes an inverse problem in high dimensions for the

parameter, where conventional UQ methods fail. Dimension reduction has

become an essential tool in tasks as the implementation of MCMC schemes

[30], covariance matrices approximations [11, 23], and goal-oriented inferences

[12, 31]. These dimension reductions may be formulated from the prior or

the likelihood and may be implemented for both, the parameter and the

state. As to the evaluation of the forward map, surrogate models have

been applied to address the computational cost. Some approaches consider

using polynomial chaos [32, 33], determine active subspaces [34, 35], or

projection-based approaches [31]. Adaptative versions of the latter consider

a data-driven implementation.

Authors in [23] address the large-scale problem for Bayesian inverse problems

by approximating the posterior distribution by a Gaussian distribution. They

propose the linearization of the forward map around the MAP estimate and

apply this idea in the update of the posterior covariance. Also, they introduce

a low-rank update of the posterior covariance based on the fact that data

are informative in a low dimensional subspace of the parameter. Spantini

et al in [11] introduce a class of loss functions to prove the optimality of

the low-rank approximation of the posterior covariance based on the leading

eigendirections of the prior preconditioned Hessian misfit. Authors in [18]

propose a computational framework to discretize pde-constrained linearized

problems in the finite element context. Similar approaches for MCMC are

proposed in [7, 19].

The approximation of the posterior by the numerical/surrogate posterior

is discussed for several cases [14, 31, 36, 37]. Authors in [14, 36, 38]

focus on bayesian model selection based on Bayes Factors to analyze these
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approximations. Some applications include determining the number of terms

in a Fourier series or the resolution of an ODE solver. Another application

that considers the resolution of the solver is mesh refinement/adaptivity. The

refinement/adaptivity may be performed in the state and/or the parameter.

Classical inversion approaches look for computational savings in the inference

process. It has been demonstrated that parameter mesh refinement allows better

reconstruction in regions of interest specifically in elastography applications

[39, 40, 41]. Some approaches consider a posteriori error indicators to determine

regions to refine/adapt the mesh [42, 43, 44]. Other strategies include variational

mesh adaptation with a clustering technique [40], iteratively optimizing mesh

connectivity and node positions [39], and high variance indicators of the

strain (displacement/state) [41]. The Bayesian approach in this context is

very challenging. The refinement/adaptivity in the state determines again

a surrogate posterior that changes for each mesh. When performed in the

parameter, the problem becomes more difficult since the refinement produces

posterior distributions with different dimensions. How to compare these models

take us back to Bayesian model selection, where some criteria as BIC, KL

divergence, or Bayes Factors are the most popular strategies.

1.2 Contributions

The main contributions of this work are (1) The computation of the

normalization constants for linear inverse problems for two problem types.

The first problem considers the number of terms in a Fourier series. The

second considers the low-rank approximation of the posterior on the big scale

setting. Formulas for linearized models are proposed and apply to a nonlinear

inverse problem governed by an elliptic pde. The ultimate goal of these

calculations is to apply them in a model selection approach. In this case,

a local refinement is performed and the computation of the normalization

constants allows us to determine the best mesh. Also, we can compare

several refinement criteria again by the computation of these normalization

constants. (2) The comparison of two members of different families of transition

kernels to perform the posterior distribution exploration in an inference problem
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in 1D. HAMCMC is a Quasi-Newton method where proposals come from a

continuous dynamic. T-walk is a sampler with the affine invariance property

and free-derivate information. With an example that recovers four parameters,

t-walk outperform HAMCMC. (3) The incorporation of elements of optimal

experimental design in Multifrequency Algebraic Inversion with application to

Magnetic Resonance Elastography. The aim is to decrease the uncertainty of the

estimates in the AIDE inversion. This approach allows decreasing the variance

out of the inclusion area. (4) A Bayesian approach to analyze Oral Glucose

Tolerance Test data. The forward modeling considers Erlang distributions

to reproduce the hormonal reaction to a sugary drink. From estimates of

two parameters related to insulin production, we classify around 85% of 80

patients. These insulin indicators allow us to recognize possible alterations in

healthy patients. (5) The inference for an ODE model that describes the early

dynamics of the covid-19 in México. This approach considers possible infections

through the environment and the estimation of its transmission rate. (6) The

discretization of an accelerated scheme that preserves theoretical convergence

rates with possible applications in optimization and machine learning.

1.3 Limitations and future work

The limitations of this work represent possibilities of future work: (1) The

multimesh approach performs well for problems with a high signal-to-noise ratio

(small noise). The modeling of the interpolation operators is of paramount

importance to give consistency in the discretization and is part of future work.

(2) The mesh refinement proposed allows us to obtain models with higher

evidence and higher L2 error with respect to the truth parameter. Explore

other criteria with error indicators and uncertainty information is part of

the future work. (3) To propose a fairer comparison between kernels, other

examples should be included as one with high dimensional data or/and high

dimensional parameter. (4) A more realistic solver that models the attenuation

must be implemented to ensure the results on the optimal design of frequencies

for the multifrequency AIDE inversion. (5) The forward modeling for the

OGTT does not take account of possible insulin and glucagon measurement

6



data. This modification may improve the classification of patients. Future

work contemplates how to adapt the model to incorporate insulin data. It

is well known that the human body has a basal level of insulin and that

insulin secretion follows pulsating patterns which represent new challenges in

our modeling and the respective uncertainty quantification. (6) The modeling

of the possible infections through the environment has no consequences on

non-pharmaceutical interventions. Simpler models may be proposed to explore

real scenarios. (7) The discretization that preserves theoretical convergence

rates becomes computationally demanding as the order increases. This issue

limits its application to machine learning tasks.
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Chapter 2

Theoretical Framework

2.1 Well posedness of Bayesian inverse

problem

According to [45], the objective of statistical inversion theory is to extract

information and assess the uncertainty about the variables based on all available

knowledge of the measurement process. In principle, under this approach,

randomness describes our degree of information. All this information is coded

in probability distributions. Finally, we obtain a (posterior) distribution as a

solution to the inverse problem. In this section, we discuss the main elements

of the formulation of the Bayesian inverse problem. First, we describe the

formulation of the finite-dimensional setting using Bayes theorem. Then,

we introduce some analysis elements to discuss the well-posedness in the

infinite-dimensional setting. In the second case, Bayes formula makes sense

from a Radon-Nikodym derivative.

2.1.1 Bayes’ Theorem in Rn

In the following and according to [45], we call the observable random variable

Y the measurement and its realization, the data. The primary interest random

variable X will be called the unknown or the parameter. Assume that before

making the measurements of Y , we have some information about X. The
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Bayesian framework assumes that this information can be codified under a

probability density, x → πpr(x) called the prior density. Now suppose that

there exists a joint probability distribution for X and Y , denote by π(x, y).

Then, the marginal density for the unknown X is given by the formula∫
Rm

π(x, y)dy = πpr(x)

On the other hand, if we want the value of the unknown, then the conditional

probability density of Y given X will be given by

π(y|x) =
π(x, y)

πpr(x)
, if πpr(x) 6= 0

We call the conditional probability of Y the likelihood function because it

expresses the likelihood of different posible measurements given that X = x.

Finally assuming that the observations Y = y are given, the conditional

probability distribution

π(x|y) =
π(x, y)

π(y)
, if π(y) =

∫
Rn
π(x, y)dx 6= 0

will be called the posterior distribution of X. This distribution expresses what

we know about X after the realization of observation Y = y.

Under the Bayesian approach, the inverse problem is expressed in the following

way: Given the data Y = y, find the conditional probability distribution π(x|y)

of the variable X. The following result represents the main result of the theory

Theorem 2.1.1 (Bayes’ Theorem) Assume that the random variable X ∈
Rn has a known prior probability density πpr(x) and the data consist of the

observed value y of an observable random variable Y ∈ Rk such that π(y) > 0.

Then the posterior probability distribution of X, given the data y is

πpost(x) = π(x|y) =
πpr(x)π(y|x)

π(y)
(2.1)

Now that we know of the existence of the solution of the inverse problem from

the Bayesian approach, we would like to obtain some information about it. In
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this work, we are considering models to fit the data that comes from the solution

of a dynamical system (ODE/PDE). That means, to evaluate the likelihood, we

need to solve the forward problem F(x). In this context, F typically is given by

the numerical solution of a dynamical system. Just in a few cases, the posterior

distribution has a close form. For example, it is well known in the literature the

case that a Gaussian prior and a linear model produces a Gaussian posterior.

Let π0(x) = N (m0, C0) and assume that the data y are given by

y = F(x) + η = Ax+ η, η ∼ N (0,Γnoise)

The conditional distribution of x given y is Gaussian π(x|y) = N (m, C) with

C = ATΓ−1
noiseA+ C−1

0 (2.2)

and

m = C(ATΓ−1
noisey + C−1

0 m0) (2.3)

In this case, even if we have a close form, matrix A comes from the numerical

solution of an ODE/PDE system. To get information from the posterior

distribution, the more popular approach is by generating samples by a Monte

Carlo method. This topic will be discussed in the next section. Regarding the

existence of the posterior, the advantage of the finite-dimensional case lies in the

existence of the Lebesgue measure and that the prior and posterior measures

possess a density with respect to this Lebesgue measure. In infinite dimensions,

there is not an equivalent measure as Lebesgue. In the next subsection, we

discuss the main approach for the infinite-dimensional setting using Gaussian

priors.

2.1.2 The infinite dimensional setting

An infinite-dimensional framework for Bayesian inverse problems is of current

interest, specifically on a PDE-constrained formulation. In a finite-dimensional
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setting for inverse problems, Bayes’ rule is given by

πpost(m|y) =
1

Z
πlike(y|m)πprior(m), (2.4)

where πpost(m|y) is the posterior distribution of the parameter m given the

data y, πlike(y|m) is the likelihood and πprior(m) is the prior distribution of m.

Since in this case, all the quantities are in spaces of finite dimensions, all these

distributions have a density with respect to the Lebesgue measure. This is the

major drawback in the infinite-dimensional setting. From equation (2.4) we can

deduce a more general relation between the measures µy and µ0 defined by πpost

and πprior
dµy

dµ0

(m) =
1

Z(y)
exp (−Φ(m; y)) . (2.5)

This form, using the Radon-Nikodym derivative, generalizes readily Bayes’ rule

on a function space setting. Stuart in [15] highlights some properties of the map

Φ, which are typically determined by the forward PDE problem, that is, the

probability theory does not play a role in these properties. In the specific case

where we consider

Φ(m, y) =
1

2
|Γ1/2
noise (y − G(m)) |2 =

1

2
| (y − G(m)) |2

Γ−1
noise

, (2.6)

it is natural to derive the properties of Φ from the properties of G. The typical

assumption for G ( [15, 29, 16, 17, 14]) is the Lipschitz continuity with respect

to the parameter of interest.

Assumptions 1 The function G : X → Rq satisfies that for every r > 0 there

is a K = K(r) > 0 such that, for all m1,m2 ∈ X with max{||m1||X , ||m2||X} <
r,

|G(m1)− G(m2)|Γ ≤ K||m1 −m2||X

After ensure or assume this property, the link to Bayesian inverse problems

comes through the choice of the prior measure µ0. Authors in [46] describe

the construction of priors on separable Banach spaces using random series.

This approach includes Gaussian, uniform, and Besov priors. A disintegration
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approach to justify the well-posedness of the posterior distribution in function

spaces can be found in [14, 47, 48]. In the following, we describe Stuart

formulation [15] to the inverse problem using a Gaussian prior. The main

properties of Gaussian distributions in a Hilbert/Banach space can be found

in [49]. We start by recalling some properties that we use in this formulation.

Proposition 2.1.1 If N (0, C) is a Gaussian measure on a Hilbert space

H, then C is self-adjoint, positive semi-definite trace-class operator on H.

Conversely, if C is a self-adjoint, positive semi-definite, trace-class linear

operator on a Hilbert space H, then there µ = N (0, C) is a Gaussian measure

on H.

From this proposition, it is important to note sufficient conditions to define

a covariance operator. This operator is proposed in [15] through the idea

of a negative power of a Laplacian-like operator. For example, consider a

second-order differential operator A on a bounded open set D ⊂ Rd, with

domain chosen so that A is positive definite and invertible. For a detailed

description of conditions on A see [15]. In this work, we focus on the property

that the eigenfunctions/eigenvalues {φk, λk}k∈K of A, with K ⊂ Zd \ {0}, form

an orthonormal basis of H and λk ≥ 0 and satisfies a summability condition.

With these assumptions, we can generate samples from a distribution N (0, C)
by the KL expansion

Theorem 2.1.2 Let C be a self-adjoint, positive semi-definite, nuclear operator

in a Hilbert space H and let m ∈ H. Let {φk, γk}∞k=1 be an orthonormal set of

eigenvectors/eigenvalues for C ordered so that

γ1 ≥ γ2 ≥ · · ·

Take {ξk}∞k=1 to be an i.i.d. sequence with ξ1 ∼ N (0, 1). Then the random

variable x ∈ H given by the Karhunen-Loeve expansion

x = m+
∞∑
k=1

√
γkξkφk (2.7)

is distributed according to µ = N (m, C).
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Given conditions under the forward problem and the prior measure, let m

be a random variable distributed according to the measure µ0 on a separable

Banach space X. Assume that the data y ∈ Rp are given in terms of an

observation operator G by the formula

y = G(m) + η (2.8)

where η is independent of m and has density ρ. Then m|y is distributed

according to the probability measure for m given y, denoted by µy(dm), which

is absolutely continuous with respect to µ0(dm) and satisfies

dµy

dµ0

(m) ∝ ρ(y − G(m))

ρ(y)
(2.9)

Finally, one of the properties desired of the measure is to ensure some continuity

of the samples. According to [15] using the Kolmogorov Continuity Theorem it

can be prove the next lemma.

Lemma 2.1.1 Let A satisfy laplacian-like assumptions in [15]. Consider a

Gaussian measure µ = N (0, C) with C = A−α with α > d/2. Then u ∼ µ is

almost surely s-Holder-continuous for any exponent s < min{1, α− d/2}.

From this lemma, we can deduce that α = 1 ensures the Holder continuity in a

1D problem, which is not the case for 2D or 3D. Considering A as the negative

laplacian (−∆ ) is a popular choice. A slight modification based on results in

[15] was proposed by authors in [18] where

A = δI − γ∆. (2.10)

This operator belongs to a two-parameter family. As we mentioned before,

from the connection to a common spatial statistics covariance matrix, we can

propose the values of these parameters depending on the specific application.

The link between Matérn prior covariance and the inverse power of a differential

operator was established in [50]. Its authors define a Gaussian field with Matérn

covariance under a stochastic partial differential equation. Since then, the use of

a Matérn prior covariance becomes very common on Bayesian inverse problems,
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[3, 51, 52, 53]. Following [50], the Matérn covariance function between locations

u and v ∈ Rd is defined as

r(u,v) =
σ2

Γ(ν)2ν−1
(κ||v− u||)ν Kν (κ||v− u||) (2.11)

where Kν is the modified Bessel function of second kind and order ν > 0, κ > 0

is a scaling parameter and σ2 is the marginal variance. The integer value of

ν determines the mean square differentiability of the underlying process. A

natural interpretation of the scaling parameter κ is as a range parameter ρ; the

Euclidean distance where x(u) and x(v) is almost independent. An empirical

derived definition is ρ =
√

8ν/κ and corresponds to correlations near 0.1 at the

distance ρ. A Gaussian field x(u) with the Matérn covariance is a solution to

the linear fractional stochastic partial differential equation

(
κ2 −∆

)α/2
x(u) =W(u), α = ν + d/2, κ > 0, ν > 0 (2.12)

The innovation process W is spatial Gaussian white noise with unit variance,

and the marginal variance is

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν
(2.13)

Any solution of equation (2.12) is called a Matérn field. Authors in [3] propose

a numerical approximation of the Whittle-Matérn prior using finite differences

or finite elements. Given a Matérn prior as a stochastic partial differential

equation, the finite element approach gives a discretization where the boundary

conditions produce effects that break some properties of the Matérn. Some

possible options to mitigate these effects are proposed in [3, 54]. The common

approach is to impose Robin boundary conditions. Even if authors in [3]

propose a fixed value for the robin coefficient based on numerical simulations, an

optimization problem is solved in [54] to determine it. A domain extension or a

normalization of the pointwise variance by rescaling the covariance operator are

other possible solutions. It is important to note that the approach in [54] aims to

build scalable solutions focus on large scale problems. We can see in figure (2.1)
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two cases for the prior pointwise variance with different boundary conditions.

Since a Matérn covariance satisfies that the marginal variance σ2 is constant, it

is clear that the case with Robin boundary conditions (figure (2.1)(b)) is more

similar. Both articles pointed out that Neumann boundary conditions produce

higher variance close to the boundary domain (figure (2.1)(a)) and the Dirichlet

boundary produces lower variance close to the boundary domain. Since our

work does not take into account the modeling on the boundary conditions, we

try to mimic a Matérn covariance field, that is, a constant marginal variance.

(a) (b)

Figure 2.1: Prior pointwise variance for γ = 0.1, δ = 2.0 (a) Neumann boundary
conditions. (b) Robin boundary conditions

Now, from the operator

A = δI − γ∆ (2.14)

we propose the covariance operator C of a Gaussian measure as C = A−2 guided

by Lemma 2.1.1 for examples 2 and 3 in section 3. Since we work in dimension 2,

we want to choose α satisfying α > d/2 = 1. The choice of α = 2 is convenient

since this value makes easier the computations to generate samples. This case is

implemented in the hIPPYlib library as the BiLaplacian prior, [55]. To propose

the values for δ and γ in equation (2.14), we note the connection between these

two parameters and the parameters from the Matérn approach:

κ2 =
δ

γ
, α/2 = 2 (2.15)
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Since d = 2, we deduce that ν = 3. Also,

δ

γ
=

8ν

ρ2
(2.16)

According to [54], some computations leads to

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2νγν+d/2
(2.17)

and by choosing a value for σ2 and ρ, we can compute the value for γ and δ.

A rectangular grid with possible values for ρ and σ2 and its corresponding γ

and δ values are shown in Figure (2.2) After make clear this connection, both

(a) (b)

Figure 2.2: Rectangular grid for possible values of ρ and σ2 at left.
Corresponding values of γ and δ at right.

values of ρ and σ2 will depends on the specific application. To exemplify this

statement, let us consider the case of liver MRE. To propose the value of ρ,

we consider that the larger dimension of the liver is around 16 cm. To propose

the value of σ2 we consider that the specific application classifies all the fibrosis

stages (4 stages) between a healthy liver (≈ 2.0 KPa of stiffness) and a cirrhotic

liver (≈ 8.0 KPa of stiffness), see [56] for more details. That means, the choice

of σ2 must be proposed considering the range between stages, which is around

1.5 KPa.

Once we have ensured the posterior well-posedness, we need to perform

computations with a numerical version of this posterior. Strategies to generate
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samples from the posterior distribution can vary depending on the dimension of

the parameter. Another advantage of a prior covariance given by equation (2.10)

is the possibility of making profit of PDE solvers for elliptic equation. This tool

allows us to generate samples from the prior in a very efficient way, see [18] for

more details. It is well known that as the dimension increase, the performance

of Monte Carlo becomes poor. In the next section, we describe two different

approaches to perform this task. An affine invariant perspective may be very

effective to get samples from the posterior in low dimensions. A dynamical

proposal including derivative information may improve the performance of the

Monte Carlo for high dimensions despite the possible limitation of sampling from

multimodal distributions. Before that, in the next subsection, we discuss some

results about the approximation of the theoretical posterior by its numerical

version.

2.1.3 Posterior consistency

Having ensured the well-posedness of the posterior distribution for the Bayesian

inverse problems, we are concerned with the numerical version of the posterior

used to perform the computations. The posterior consistency may include (i)

the analysis of the small noise limit [15, 57, 58], (ii) the stability of the posterior

under data and likelihood perturbations [59, 60], (iii) the convergence rates

of the finite- dimensional approximation of the posterior [37], (iv) the error

bounds for approximate posteriors [61, 62]. As we mention before, we are

interested in problems where the forward modeling comes from a dynamical

system, that is, an ODE/PDE system. Numerical solvers are required since

these systems usually do not have an explicit solution. Given a theoretical

map G(m), we have a numerical version Gh(m) produced by the solver where h

denotes some discretization level. This numerical regressor defines a numerical

posterior πh(m|y). The posterior consistency allows us to analyze how and

in what sense πh(m|y) approximates π(m|y) [14]. To perform this analysis, a

suitable notion of distance must be chosen. The Total Variation and Hellinger

distances are the more popular choices. Hellinger’s provides a bound for TV and

the error in expected values [37, 62]. Authors in [63] illustrate how the choice of
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a metric can affect rates of convergence. Authors in [36] propose Bayes factors

as a measure to compare a theoretical model and its numerical approximate

model in the context of ODEs governing equations. The main result lies in

the error truncation of the numerical solver to evaluate the likelihood. The

order of the solver determines the behavior of the Bayes factors. These results

allow illustrating how the step size to solve the ODE system may be chosen.

Specifically, the step size must be chosen such that the global error is small

with respect to the noise level. Authors in [14] make use of weak convergence

for the consistency of the numerical approximated posterior and the TV norm

for the rates of convergence. In this case, the posterior well-posedness in infinite

dimensions is ensured under a disintegration approach. Again, the consistency

of the numerical approximation of the posterior is related to the order of the

numerical solver for the ODE/PDE as was explained in [36]. Some rates of

convergence consider the prior truncation too.
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2.2 Sampling from the posterior

After being guaranteed the existence of the posterior density, we need to explore

it. For that, we will use a Markov Chain Monte Carlo (MCMC) method. Markov

Chain Monte Carlo (MCMC) methods provide systematic ways of generating

samples from a target distribution π(θ). The main advantage of Monte Carlo

methods is that we can sample from a probability measure only known up to a

normalizing constant. The main limitation of this approach is that Monte Carlo

methods deteriorate with the increase of the dimension of the parameter. In

this subsection, we describe the main properties of Monte Carlo methods. Also,

we will mention specific strategies for the sampling of a posterior corresponding

to a discretized infinite-dimensional problem.

The basic idea is to design a Markov chain with the property that a single

sequence of output for the chain {xn}∞n=0 is distributed according to the posterior

measure µ associated with π(x|y). We will say that this Markov Chain, with

x ∈ E, is aperiodic and irreducible and has stationary distribution π(x|y). E

is called the support of x and is directly related to the support of our prior.

Nevertheless, if E ⊂ Rn, we need to determine representative points since,

in practice, we can not sample all the domain. That selection will be made

by the density itself. As [45] explains, to generate a chain with stationary

distribution π, we need to find a transition kernel that verifies ergodicity

conditions: aperiodicity, irreducibility, and the measure µ associated to π should

be invariant under P .

The way that the chain jump from a state xi to the next state xi+1 is

determined by a transition kernel. Following [45], let P be a probability

transition kernel. P is a map from Rn × B → [0, 1], where B denotes the

Borel sets of Rn. Then P (xi, Ai+1) is the probability that the chain X ∈ Ai+1

conditioned that the state of X is xi. P is related to the measure µ by

µXj+1
(Aj+1|x1, . . . , xj) = µXj+1

(Aj+1|xj) = P (xj, Aj+1) (2.18)

If P (k)(xj, Bj+k) denotes the transition kernel that propagates k steps forward

in time, we will say that P is irreducible if for each x ∈ Rn and A ∈ B, with
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µ(A) > 0, then there exist k > 0 such that P (k)(x,A) > 0.

On the other hand, for stating the property of aperiodicity, we will define what

a periodic kernel is. P is periodic if for some integer m ≥ 2, there is a set of

disjoint nonempty sets {E1, . . . , Em} ⊂ Rn such that for all j = 1, . . . ,m and

all x ∈ Ej, P (x,Ej+1(mod m)) = 1. A kernel P is aperiodic if it is not periodic.

The probability transition kernel can be defined through a dynamical system

as Ma et al. [64] explained. According to Ma et al., the idea of sampling from

the posterior then becomes simulating from continuous dynamics. However,

as indicated above, there are infinitely many ways to define a probability

transition kernel P . The construction of this transition kernel can vary relating

to the observation operator, prior, and noise distributions. In the following

subsections, we focus on two specific types of transition kernels: affine invariant

and dynamical gradient informed.

2.2.1 Affine invariant samplers

Highly anisotropic distributions are targets hard to sample with MCMC. For

this kind of distribution, having a kernel invariant to affine transformations can

alleviate the difficulties. This notion was introduced for Monte Carlo methods in

[65, 66, 67]. This property implies that the performance of the MCMC remains

independent of the aspect ratio of the target distribution. To design an affine

invariant kernel may be natural in specific applications as inverse scattering,

see [68, 69]. According to [66], consider a sampler of the form X(t + 1) =

R(X(t), ξ(t), π), where X(t) is the sample after t iterations, ξ(t) is a sequence

of iid random variables and π a probability density. The algorithm is affine

invariant if

R(Ax+ b, ξ(t), πA,b) = AR(x, ξ(t), π) + b (2.19)

where πA,b(z) = πA,b(Ax+ b) ∝ π(x). For example, if

π(x) ∝ exp

(
−(x1 − x2)2

2ε
− (x1 + x2)2

2

)
(2.20)
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then

πA(y) ∝ exp

(
−y

2
1 + y2

2

2

)
(2.21)

with

A =

(
1√
ε
− 1√

ε

1 1

)
(2.22)

An affine invariant sampler recognizes densities in 2.20 and 2.21 equally difficult.

In this work, we will use twalk several times. T-walk is an MCMC sampler for

arbitrary continuous distributions presented in [65]. The t-walk maintains two

independent points in the sample space where all moves are based on proposals

that are then accepted with a standard M-H acceptance probability on the

product space. For an objective function π(θ), θ ∈ X , the sampler forms the

new objective function f(θ, θ′) = π(θ)π(θ′) on the corresponding product space

X ×X . The rationale of this approach is to introduce a notion of scale with the

product space. This property is justified by the following theorem

Theorem 2.2.1 Let V ∈ X ×X and A ⊂ X ×X . Let φ(z) = ax+b, a ∈ R, a 6=
0, b ∈ Rn. The t-walk transition kernel using objective λ(z) = |a−n|π(φ−1(z)),

Kλ, and the t-walk kernel using objective π, Kπ, have the invariance property

Kλ(φ(V ), φ(A)) = Kπ(V,A) (2.23)

The proof can be found in [65].

2.2.2 Dynamical gradient informed samplers

In high dimensions, methods as random walk become inefficient, with low

acceptance rates, poor mixing (slow rate exploration), and highly correlated

samples, see [70]. Design a good general-purpose proposal mechanism remains

of active research. An approach that may circumvent these issues is when

the proposal is derived from a discretized Langevin equation. Specifically, in

[70], the authors suggested a proposal from a discretized Langevin diffusion

with a drift term based on gradient information from the target. This method

was named Metropolis Adjusted Langevin Algorithm (MALA). Another similar

method was born in the field of molecular dynamics. This method suggested
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a proposal in the setting of Hamiltonian dynamics. Initially named by Hybrid

Monte Carlo (HMC), it would later become popular as Hamiltonian Monte

Carlo. Despite the issues that these methods try to solve, they still have majors

problems related to the tuning parameters.

For the case of MALA and a target density p(θ), the proposal is build by a

first order Euler discretization of the SDE

dθ(t) = ∇θL(θ(t))dt/2 + db(t) (2.24)

which become

θ∗ = θn + ε2M∇θL(θn)2 + ε
√

Mzn (2.25)

where L(θ) ≡ log p(θ), M is used as a preconditioning matrix, ε is the integration

step size and z ∼ N (0, I). This discretization doesn’t satisfy the invariance of

the distribution. Typically, a Metropolis acceptance criterion may be included

to correct this situation. We can find different approaches using equation (2.25),

specifically, the proposal of the preconditioning matrix M typically is related to

well-known optimization and numerical linear algebra literature, see for example

[71, 72, 73, 7].

In the Hamiltonian approach, a way to tackle the problem of the invariance

of the distribution is to add an extra term to the dynamics. This approach

was introduced in [64] in a stochastic gradient approach. This extra term is

a correcting term to ensure that the posterior distribution is the stationary

distribution. From equation

dz = f(z)dt+
√

2D(z)dW (t) (2.26)

consider f(z) as

f(z) = − [D(z) +Q(z)]∇H(z) + Γ(z), Γi(z) =
d∑
j=1

∂

∂zj
(Dij(Z) +Qij(z))

(2.27)

where matrices D(z) and Q(z) can be adjusted to improve convergence (D(z)

positive semidefinite and Q(z) skew-symmetric). In the following we will
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describe HAMCMC, a sampler based in this rationale.

HAMCMC

Let U(x) = − log π(θ), where π(θ) represents the target distribution as before.

HAMCMC is introduced in [74] as follows. HAMCMC applies the following

update rule for generating samples from the posterior distribution:

θt = θt−M − εtHt

(
θ
¬(t−M)
t−2M+1:t−1

)
∇U(θt−M) + ηt (2.28)

where θ¬ca:b ≡ {θa, θa+1, ..., θb−1, θb} \ {θc}, ηt ∼ N (0, 2εtHt(·)), based on

the L-BFGS optimization algorithm with some modifications. Ht is an

approximation of the inverse Hessian. Usually, the L-BFGS algorithm computes

Ht by using the M most recent values of the past iterates. In this case,

HAMCMC uses history samples for this approximation:

θ
¬(t−M)
t−2M+1:t−1 = {θt−2M+1, . . . , θt−M−1, θt−M+1, . . . , θt−1}.

Since the inverse Hessian is approximated without including θt−M in the

computations, the correction term Γ(θ) in equation (2.27), presented in [64]

to ensure the convergence to the posterior, vanishes.
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2.3 Gaussian approximation of the posterior

A Laplace approximation of the posterior is a Gaussian approximation of the

distribution. It is well known that a Gaussian prior and a linear forward map

produce a Gaussian posterior, see [15]. If the forward map is not linear, a way to

obtain a Gaussian approximation of the posterior is by linearizing the forward

problem. To follow this approach, an estimator of the posterior, typically the

MAP estimate, is needed. After that, we apply explicit formulas to compute the

posterior precision as an update of the prior precision. Authors in [23] propose

this idea for high dimension uncertainty quantification problems. Consider the

case with a model observation given by

y = f(m) + e (2.29)

with y the data and m the parameter to recover. The map of

parameter-to-observable f is defined implicitly by the solution of a PDE

problem. To linearize this map, we compute the MAP (maximum a posteriori)

estimate. Recall that

mMAP = arg minV (m) (2.30)

where V (m) typically corresponds to the minus log posterior. Again, it is

important to note that to evaluate V (m) we need to evaluate the minus

likelihood, that is, we need to solve the forward problem f in equation (2.29). In

the next subsection, we will explain in detail the PDE-constrained optimization

approach used to approximate mMAP. The next step is to approximate f around

mMAP by a first-order Taylor expansion

f(m) ≈ f̃(m) = f(mMAP) + F (m−mMAP) (2.31)

where F is the Jacobian of f evaluated at mMAP . All the computations for this

Gaussian approximation may be performed in hIPPYlib, see [55].

Before presenting the details of this approach, we should discuss some

aspects of why it is required this approximation instead of considering

the true posterior. For high dimensional problems, typical uncertainty
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quantification strategies are prohibitive, inefficient, or inaccurate. The Gaussian

approximation of the posterior may provide information for high dimensional

parameter with an efficient approach and a well understanding of the accuracy.

The Bernstein-von Misses theorem is a result giving conditions under which

the posterior distribution is asymptotically normal, centered at the maximum

likelihood estimator (MLE) of the model used [75]. For instance, Bernstein-von

Misses theorems are difficult to derive in complex models and other centering can

be used. We can subdivide these theorems into three categories. The parametric

models, for which the results are well-known, see [76], the nonparametric

models where the parameter space is infinite-dimensional or growing, and the

semiparametric models when the parameter of interest is a finite-dimensional

functional of the complete infinite-dimensional parameter. In the context of

Bayesian inverse problems several works approach this topic under the small

noise limit, increasing data size, and numerical robustness for concentrated

posterior where the efficiency of prior based approaches is compromised

[26, 24, 25].

2.3.1 Approximation of the MAP estimate

To compute the MAP estimate, we solve an optimization problem. We follow

the well known pde constrained optimization approach [4, 77]. In this case,

we want to implemented a Newton method. To achieve this goal, we need

expressions for the gradient and the Hessian of the function to be optimize.

Consider the problem of minimizing the functional

J (m) =
1

2
||y − f(m)||2

Γ−1
obs

+
1

2
||A(m−m0)||2L2 (2.32)

where f(m) is the solution of a pde system. From the pde-constrained approach,

we can construct a funtional to compute mMAP that consider the condition of

satisfying the pde solution. Now, we propose a Lagrangian formulation given

by the problem of minimizing

L(u, p,m) =
1

2

∫
X (y − u)T Γ−1

obs (y − u) dx+
1

2
||A (m−m0) ||2L2 + a(u, p)− L(p)

(2.33)
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where a(u, p) and L(p) are given by the weak formulation of the pde system.

We follow the approach of optimize then discretize. This is, we consider the

first order optimality conditions computed from equation (2.33) and then we

discretize these quantities. To determine the first order optimality conditions,

consider the first variations of L with respect each of its variables

δpL(u, p,m)(p̃) = 0 (2.34)

δuL(u, p,m)(ũ) = 0 (2.35)

δmL(u, p,m)(m̃) = 0 (2.36)

Let us recall the definition of first variation. Set

π(u) = L(u, p,m) (2.37)

The first variation of π with respect to u in the direction of ũ is given by

δuπ(u)(ũ) = lim
ε→0

π(u+ εũ)− π(u)

ε
=

d

dε
[π(u+ εũ)]ε=0 (2.38)

This first variation is also known as the Gateaux derivative, which in fact is a

generalization of the concept of directional derivative. It is important to note

that u + εũ must belong to the same space than u. In this case, u and u + εũ

must satisfy the same boundary conditions from the forward problem. Under

this approach, we define the gradient as

G = δmL(u, p,m)(m̃) (2.39)

Far from trying to solve all three conditions simultaneously, we focus in solve

equation (2.36) using solutions from equations (2.34) and (2.35). Equation

(2.34) determines the forward problem, equation (2.35) determines the adjoint

problem. Finally, to evaluate the gradient action we need to solve the forward

and adjoint problems.

To evaluate the action of the Hessian H, we consider the meta-Lagrangian

LH(u,m, p; û, m̂, p̂) := G + forward + adjoint (2.40)
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Considering the first variations of LH we can determine the Hessian H in a weak

form.

δpLH(u,m, p; û, m̂, p̂)(p̃) = 0 (2.41)

δuLH(u,m, p; û, m̂, p̂)(ũ) = 0 (2.42)

δmLH(u,m, p; û, m̂, p̂)(m̃) = H (2.43)

Equation (2.41) determines the incremental forward problem, equation (2.42)

determines the incremental adjoint problem and the hessian is given by H.

Numerically, to evaluate the hessian action is needed to solve the forward and

adjoint problems, the incremental forward and adjoint problems. The Newton

method computes an update direction m̂k by solving the linear system

(m̃,H(mk)(m̂k)) = −G(mk)(m̃) (2.44)

The Newton system is solved inexactly by early termination of CG

iterations via Eisenstat-Walker(to prevent oversolving) and Steihaug (to avoid

negative curvature) criteria. We choose Armijo backtracking line search as

the globalization technique. All our computations are in hIPPYlib [55] which

provides a robust implementation of the inexact Newton-conjugate gradient

algorithm to compute the maximum a posterior (MAP) point. The gradient

and Hessian actions are computed via their weak form specification in FEniCS.

Discretization of the equation (2.44) is given by the linear system

Hkm̂k = −gk (2.45)

WhereHk corresponds to the discretization of the Hessian and gk of the gradient.

To evaluate gk, we need to solve the forward problem

Akuk = f (2.46)

and the adjoint problem

ATk pk = −Wuu(uk − ud) (2.47)
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where uk is the solution of the forward problem, Wuu is the mass matrix

corresponding to the L2 inner product and ud are the data. Then the gradient

expression is given by

gk = Rmk + CT
k pk (2.48)

where R is the matrix from the discretization of the first variation on the prior

distribution and Ck corresponds to the discretization of the first variation of the

pde constraint with respect to the parameter m. The Hessian action is defined

by

Hkm̂ = (R +Wmm)m̂+(
CT
k A
−T
k

(
WuuA

−1
k Ck −Wum

)
−WmuA

−1
k Ck

)
m̂ (2.49)

which can be divided in the Hessian of the regularization

R +Wmm (2.50)

and in the Hessian of the data misfit

CT
k A
−T
k

(
WuuA

−1
k Ck −Wum

)
−WmuA

−1
k Ck (2.51)

where the terms Wmm,Wum and Wmu corresponds to second variations of

the forward problem. Since the convergence of the Newton step can be

ensured just in a neighborhood of the minimum, sometimes it is better to

use a less informative proposal to start the optimization. In this case, we

use a Gauss-Newton approximation for the Hessian obtained by dropping the

operators Wum,Wmm and Wmu. In this case, the Gauss-Newton hessian actions

is

HGN
k m̂ = Rm̂+ CT

k p̂ (2.52)

A discussion around the limitations and benefits of using GN approximation of

the Hessian matrix can be found in [78].
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2.3.2 Gaussian approximation of the posterior

covariance

A Gaussian prior distribution and a linear model to fit the data, as in equation

(2.31), results in a Gaussian posterior distribution. It is well known that the

posterior precision matrix can be computed as an update of the prior precision

matrix. Using this formula, authors in [23] introduces the prior-preconditioned

Hessian of the data misfit in a factorization for the posterior covariance

Γpost =
(
F TΓ−1

obsF + Γ−1
prior

)−1
(2.53)

= Γ
1/2
prior

(
Γ

1/2
priorF

TΓ−1
obsFΓ

1/2
prior + I

)−1

Γ
1/2
prior (2.54)

= Γ
1/2
prior

(
H̃misfit + I

)−1

Γ
1/2
prior. (2.55)

From the properties of the prior covariance operator, inherit in the prior

covariance matrix, and the fact F typically behaves as the discretization of

a compact operator, authors in [23] propose a low rank approximation of this

matrix

Γ
1/2
priorF

TΓ−1
obsFΓ

1/2
prior ≈ VrΛrV

T
r (2.56)

where Vr constains only the r eigenvectors of H̃misfit corresponding to the r

largest eigenvalues λi, and Λ = diag(λi). In our work, it is important to note

that the value of r should not depend on the resolution of the mesh which is

very important when establishing the initial resolution. Also F , the Jacobian

of f , is formally a dense matrix. This update take advantage that the action

of F and F T on a vector can be formed by solving a linearized forward and a

linearized adjoint PDE, which is very convenient on high dimension problems.

More recent work [11] introduce the notion of optimal approximation based

on a low-rank update of the prior covariance matrix and an update based on

the leading eigendirections of the pencil (Hmisfit,Γ
−1
prior).

In hIPPYlib [55], the posterior covariance is approximated by the inverse of

the Hessian of the negative log posterior evaluated at the MAP point. This

Gaussian approximation is exact when the parameter-to-observable map is

linear as we mentioned before. In the nonlinear case, the posterior precision
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agrees to two derivatives with the minus log posterior at the MAP point, and

thus it can serve as a proposal for Hessian-based Markov chain Monte Carlo

(MCMC) methods, as in [71], [72], [7] and [73].

hIPPYlib makes the construction of the posterior covariance tractable by

invoking a low-rank approximation of the Hessian of the log-likelihood. To

compute this low rank decomposition of the prior preconditioned hessian,

hIPPYlib implements algorithms from results in [79] and [80] to approximate the

solution for Hermitian Eigenvalues Problems (HEP) and Generalized Hermitian

Eigenvalues Problems (GHEP). As explained in [23], to approximate the spectral

decomposition of a matrix A ∈ Rn×n, first we generate a random matrix

R ∈ Rn×r, where r � n with i.i.d. Gaussian entries. Set Y = AR. If Q

is an orthogonal basis for Y, the single-pass algorithm in [79] compute B, an

approximation of A in the base Q:

B :=
(
QTY

) (
QTR

)−1 ≈ QTAQ (2.57)

Note that B,QTY and QTR are in Rr×r, Then B can be decomposed as ZΛZT

using dense linear algebra. Finally,

A ≈ VΛVT (2.58)

with V = QZ. The double-pass algorithm describe in [79], compute the product

B = QTAQ instead of the approximation in equation 2.57. Note that the

matrix Q comes from a QR decomposition of Y. According to [79], the aim is

to compute the matrix Q to contain as few columns as possible but with high

accuracy in the approximation

A ≈ QQTA (2.59)

This task can be executed very efficiently with random sampling methods.

Authors in [79] proposed some algorithm (see Section 4, Stage A) that given

some tolerance ε, a matrix Q is compute satisfying

||A−QQTA|| < ε (2.60)

31



with some probability. Deterministic methods as Givens rotations and

Householder reflectors can be applied too regarding the dimension n. Once

we have the matrix Q, the approximation in equation 2.57 may be completed

with deterministic methods for the single or double pass algorithm. In our case

study, the matrix A corresponds to the prior preconditioned Hessian given in

2.56. Each matrix vector product requires the solution of a pair of linearized

forward/adjoint problems (to compute the action of F and F T ) and a pair of

elliptic operator solves (to compute the action of Γ
1/2
prior).

2.3.3 Discretization of the inverse problem using the

Finite Element Method (FEM)

An infinite dimensional inverse problem is characterized by dificulties under

discretization. It is important to ensure convergence to solutions of

the infinite-dimensional problem and to built scalable algorithms for the

manipulation of very large parameter dimension problems. Of course, as

we mentioned two subsections before, the beginning is to establish the

well-posedness of the infinite dimensional bayesian inverse problem through

a prior measure and regularity properties of the forward problem. Once

we have establish the infinite dimensional problem, the discretized parameter

space is high dimensional. Following [18], we will describe a computational

framework for infinite dimensional Bayesian inverse problems. In the context of

a finite element discretization, the finite dimensional space that approximates

the function space is built from continuous Lagrange basis functions. Consider

the finite-dimensional subspace Vh ⊂ L2(Ω) originate from a finite element

discretization with continuous Lagrange basis functions {φj}nj=1. To a function

m ∈ L2(Ω) corresponds an approximation mh =

j=n∑
j=1

mjφj ∈ Vh. We denote

by m = (m1,m2, · · · ,mn)T the nodal vector of mh. The next step is to give

sense to the inner product that approximate L2(Ω) inner product. Note that

for m1,m2 ∈ L2(Ω),

(m1,m2)L2 ≈ (m1h,m2h)L2 = (m1,m2)M = mT
1 Mm2 (2.61)

32



with M the finite element mass matrix defined by

M ij =

∫
Ω

φiφjdx, i, j ∈ {1, . . . , n} (2.62)

The inner product (·, ·)M corresponds to a M−weighted inner product in

the usual euclidean space Rn denote by Rn
M . With this distinction between

euclidean spaces, another specification needed is the differences between adjoint

matrix and transpose matrix. Consider an operator B : Rn
M → Rn

M . The

transpose matrix denote by BT is given by BT
ij = Bij. On the other hand, the

adjoint B∗ must satisfy

(B∗m1,m2)M = (m1,Bm2)M , ∀m1,m2 ∈ Rn
M (2.63)

This implies that

B∗ = M−1BTM (2.64)

Other adjoint actions that we must consider are the adjoint F? of F : Rn
M → Rq

and V� of V : Rr → Rn
M. Let us justify the results. Since

(F?m1,m2)M = (m1,Fm2), ∀m1 ∈ Rq,∀m2 ∈ Rn
M

then

(F?m1)T Mm2 = mT
1 Fm2

Finally, we obtain the expressions

F? = M−1FT (2.65)

and

V� = VTM (2.66)

Now, we analyze the matrix representation B : Rn
M → Rn

M of an operator

B : L2(Ω)→ L2(Ω). First, note that the nodal vector corresponding to φi ∈ Vh
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is ei. From equation (2.61), we can deduce that∫
Ω

φiBφjdx = (φi,Bφj)L2 = (ei,Bej)M = eTi MBej (2.67)

so the matrix representation of the operator B can be write explicitly as B =

M−1N , with

N ij =

∫
Ω

φiBφjdx, i, j ∈ {1, . . . , n} (2.68)

With all these elements, we can derive now the finite-dimensional representation

of the prior. We start by the matrix representation of the operator A defined in

equation (2.10). From the weak form of this operator, its matrix representation

is given by

Kij =

∫
Ω

γ∇φi · ∇φj + δφiφjdx, i, j ∈ {1, . . . , n} (2.69)

Note that this matrix representation can be modified to include the effects of

Robin boundary conditions as explained in [54] and [3]. We consider A =

M−1K. Note that A∗ = A, that is A is self adjoint (A−1 too). Now, the

finite-dimensional Gaussian prior measure is specified by the density

πprior(m) ∝ exp

(
−1

2
||A(m−m0)||2M

)
(2.70)

Finally, the finite-dimensional posterior measure is specified by the density

πpost(m) ∝ exp

(
−1

2
||f(mh)− y||2Γ−1

noise
− 1

2
||A(m−m0)||2M

)
(2.71)
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2.4 Model Selection

Model selection is the task of using data to pick one model from a list of

candidate models M1,M2, . . . ,Mp. In Bayesian statistics, Bayes Factors [81]

can be used as a measure of the evidence for model Mi over model Mj. In

Bayesian inverse problems, candidate models might be viewed as alternative

hypotheses corresponding to (i) different representations of the parameter or

(ii) different forward models to fit the data (see, e.g., [36, 38] and the references

therein). In the following sections, we present the formulas to compute the

normalization constants for two cases. In the first case, we consider a Gaussian

linear problem. In the second case, we consider a linearized model.

2.4.1 The normalization constants: the Gaussian case

Consider the case where the data are fit by a linear model denote by X and we

want to recover the parameter of interest β. Since we want to compare models,

we include an index in the notation and consider

y = Xiβi + ε. (2.72)

We want to determine for which i, Xiβi is the best model for the data y. Let I

the r.v. model indicator. I take values 1, 2, . . . ,m.

The joint distribution for β and i can be expressed as

fβi,I(b, i) = fβi|I(b|i)fI(i) (2.73)

where the support of fI is {1, 2, . . . , n}. We propose fβi|I as a normal

distribution, that is

fβi|I ∼ N
(
µi0, σ

2(Ai0)−1
)

(2.74)

The posterior distribution for the problem is

fβi,I|Y (bi, i|y) =
fY |βi,I(y|bi, i)fβi,I(bi, i)

fY (y)
(2.75)
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Using (2.73), we have

fβi,I|Y (bi, i|y) =
fY |βi,I(y|bi, i)fβi|I(b|i)fI(i)

fY (y)
(2.76)

where

fβi,I|Y (bi, i|y) ∼ N
(
(XT

i Xi + Ai0)−1(Ai0µ
i
0 +XT

i y), σ2(XT
i Xi + Ai0)−1

)
On the other hand,

fI|Y =

∫
fβi,I|Y (bi, i|y)dbi

=

∫
fY |βi,I(y|bi, i)fβi,I(bi, i)

fY (y)
dbi

=
fI(i)

fY (y)

∫
fY |βi,I(y|bi, i)fβi|I(bi|i)dbi

Once the model is fixed, we obtain

fβi|Y,I(bi|y, i) =
fY |βi,I(y|bi, i)fβi|I(bi|i)∫
fY |βi,I(y|bi, i)fβi|I(bi|i)dbi

(2.77)

where

∫
fY |βi,I(y|bi, i)fβi|I(bi|i)dbi is the normalization constant for the model

i, that is

fY |I(y, i) =

∫
fY |βi,I(y|bi, i)fβi|I(bi|i)dbi

Finally, from (2.77), we obtain that

fY |I(y|i) =
fY |βi,I(y|bi, i)fβi,I(bi|i)

fβi|Y,I(bi|y, i)
(2.78)

Now, recall that we assume that fβi,I(bi|i) ∼ N (µi0, σ
2(Ai0)−1). In our case, bi

are the coefficients of a sine series and i is the number of terms in such series,
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so we assume µi0 = 0 for all i and

σ2(Ai0)−1 =



1

12
0 · · · 0

0
1

22
· · · 0

...
...

0 · · · 0
1

i2


(2.79)

that is

Ai0 =


σ2 0 · · · 0

0 (2σ)2 · · · 0
...

...

0 · · · 0 (iσ)2

 (2.80)

We conclude that

fβi|I(bi|i) =

exp

(
− 1

2σ2
bTi A

i
0bi

)
√

(2πσ2)i|(Ai0)−1|
(2.81)

Also, from the observation model, we have that

fY |βi,I(y|bi, i) =

exp

(
− 1

2σ2
(y −Xibi)

T (y −Xibi)

)
√

(2πσ2)n
(2.82)

where n is the dimension of y.

Finally, we have

fY |I(y|i) =

exp

(
− 1

2σ2
(Q1 +Q2 −Q3)

)
|Ai0|1/2√

(2πσ2)n|Ain|1/2
(2.83)

where

Q1 +Q2 −Q3 = yT
(
I −Xi

(
XT
i Xi + Ai0

)−1
XT
i

)
y
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To avoid numerical issues, we will consider log fY |I(y|i). We want to compute

log fY |I(y|i) = log

exp

(
− 1

2σ2
(Q1 +Q2 −Q3)

)
|Ai0|1/2√

(2πσ2)n|Ain|1/2

=

(
− 1

2σ2
(Q1 +Q2 −Q3)

)
+

1

2
log
|Ai0|
|Ain|

− n

2
log(2πσ2)

= C − 1

2σ2
Q+

1

2
log
|Ai0|
|Ain|

where C does not depend on i and Q = −yTXi

(
XT
i Xi + Ai0

)−1
XT
i y.

Now, if i = 1, 2, · · · ,M , then

fI|Y (i0|y) =
fY |I(y|i0)fI(i0)
M∑
j=1

fY |I(y|j)fI(j)

Note that
fI|Y (i0|y)

fI|Y (j0|y)
=
fY |I(y|i0)fI(i0)

fY |I(y|j0)fI(j0)
(2.84)

In our case, for an uniform distribution for I, then the Bayes factor decides for

the higher normalization constant.

2.4.2 The normalization constants: the linearized case

Computing the Bayes factor is a challenging problem that has received

considerable attention [81, 82, 83]. To approximate the Bayes factors in this

work we shall assume both models have the same probability a priori, i.e.

πI(M1) = πI(M2), and use the Laplace approximation of the posterior to

obtain a Gaussian distribution. Recall the linearization of the forward map

f(µ) around the MAP estimate is used to approximate the data by

y = f(µMAP ) + F (µ− µMAP ) + η (2.85)
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where F =
∂f

∂µ
(µMAP ). Let Mi be the model defined by a parameter mesh

indexed by i. For a fixed mesh it corresponds a discretization of the inverse

problem, i.e., a prior distribution N (µi0,Γ
i
prior).

Numerical details: Now, we can focus on the computation of πY |i(y). In the

following, we avoid the i superindex. Consider the quantity

log πY |i(y) = −1

2
Q+

1

2
log
|Γpost|
|Γprior|

(2.86)

where

Q = ỹTΓ−1
obsỹ + µTpriorΓ

−1
priorµprior − µTMAP

(
F TΓ−1

obsF + Γ−1
prior

)
µMAP

and ỹ is

ỹ = y − f(µMAP ) + FµMAP (2.87)

Simplifying the last expression, it can be noticed that

Q = (y − f(µMAP ))T Γ−1
obs (y − f(µMAP )) + 2 (y − f(µMAP ))T Γ−1

obsFµMAP

+µTpriorΓ
−1
priorµprior − µTMAPΓ−1

priorµMAP

(2.88)

These computations allow us to approximate the normalization constant of each

model. To determine each normalization constant, we need to compute four

quantities of which three are straightforward:

1. Misfit at µMAP :

(y − f(µMAP ))T Γ−1
obs (y − f(µMAP ))

2. Prior evaluations:

µTpriorΓ
−1
priorµprior − µTMAPΓ−1

priorµMAP
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3. Sensitivity at µMAP :

2 (y − f(µMAP ))T Γ−1
obsFµMAP

4. Log quotient covariance determinant: To approximate the quantity
1

2
log
|Γpost|
|Γprior|

, we use the low rank approximation of the posterior

covariance. Note that, since Γpost ≈ Γprior − VrDrV
T
r then

|Γpost|
|Γprior|

= |ΓpostΓ−1
prior| ≈ |I − VrDrV

T
r Γ−1

prior| (2.89)

and applying Sylvester formula, we obtain that

|I − VrDrV
T
r Γ−1

pr | = |I − V T
r Γ−1

priorVrDr| = |I −Dr| (2.90)

since V TΓ−1
priorV = I.

Remarks:

• Sylvester formula allows to change the dimension of the problem

and compute the quotient between covariance matrices using just r

eigenvalues.

• To compute each normalization constant, we use the low rank

approximation of the posterior covariance. To compare two models, this

rank need to be specified. That is, all models have the same numerical

rank r0. We choose the rank as the number for the first eigenvalue less

than 1 in the coarse mesh.

• To evaluate the sensitivity can be unstable because of the data term and

the backtracking stopping of the optimization step. To avoid this, we use

the fact that the gradient is zero in the stationary point.

• We compute the Bayes’ factor between two consecutive models and stop

the refinement when this quotient is close or lower than 1 or when the
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resolution is very high (we can not differentiate between one mesh and

other).

2.4.3 More on model selection criteria

Well known criteria as Akaike Information Criteria (AIC) and Bayesian

Information Criteria (BIC) are used as approximation of quantities to perform

model selection. AIC is based on a approximation of Akaike for the KL

information given by

AIC = −2 lnL+ 2d (2.91)

where L is the maximum of the likelihood function and d is the number of model

parameters. Very similar to AIC is BIC, which is based on an approximation

of the evidence, and is given by

BIC = −2 lnL+ 2d lnN (2.92)

with N the number of data points. Note that for the case of BIC, the extra

number of degrees of freedom in the model is penalized by lnN , which for sparse

observations may choose for models as AIC does.

The KL-divergence between two Gaussians has closed form [84, 85]:

KL(N (µ1,Σ1)||N (µ2,Σ2)) =

1

2

(
tr
(
Σ−1

1 Σ2 − I
)

+ (µ1 − µ2)TΣ−1
1 (µ1 − µ2)− log det

(
Σ2Σ−1

1

))
(2.93)

For our porpuses, we would like to compute the KL divergence between the

gaussian prior and the gaussian posterior

KL(N (µpr,Σpr)||N (µpost,Σpost))

To compute this quantity, we will use the low rank approximation of the

posterior covariance. From previous computations in equation (2.90), we know

that

log det
(
ΣpostΣ

−1
pr

)
= −

∑
log(λi + 1) (2.94)
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and using the cyclic property of the trace, we have

tr
(
Σ−1
pr Σpost − I

)
= −tr

(
Σ−1
pr VrDrV

T
r

)
= −tr

(
VrDrV

T
r Σ−1

pr

)
= −tr (Dr)

(2.95)

with Dr = diag

(
λi

λi + 1

)
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2.5 Multimesh Approach

In this section, we describe the multimesh approach for inverse problems. This

approach may be implemented for the cases with high dimensional data as

the MRE problem, see [86]. We assume that the pde system is solved by the

Finite Element Method. It is important to note that this discretization of the

forward problem must be considered at the time of properly discretize the inverse

problem, see [18], [19]. Recall the optimization problem in function spaces was

formulated in equation (2.33)

L(u, p,m) =
1

2

∫
X (y − u)T Γ−1

obs (y − u) dx+
1

2
||A (m−m0) ||2L2 + a(u,m, p)− L(p)

(2.96)

Once we discretize this problem, we know that the data y ∈ Rn and our

discretization defines the dimension for u, p and m. The traditional approach

assumes that u,m ∈ Rp and needs to introduce an observation operator

F : Rp → Rn to compute the misfit. The misfit term becomes

1

2σ2
||y −F(uh)||2M (2.97)

where uh is the discretization of u and M is the finite element mass matrix

as in [18]. The idea of the multimesh is to avoid the previously mentioned

observation operator. Let us consider two discretization levels with uh ∈ Eh1
and mh ∈ Eh2 . Also, we assume that the discretized state space Eh1 corresponds

to a fine mesh. To generate uh, we need to solve the forward problem. Recall

that the forward problem is obtained from the computation of the first variation

of L with respect to p. So, the week form of the pde is given by

δpL(u,m, p)(p̃) = a(u,m, p̃)− L(p̃) = 0 (2.98)

To solve this pde, we need that u,m, p̃ belong to the same discretized space.

Since we are proposing that mh ∈ Eh2 , we need to introduce an interpolation

operator Ip : Eh2 → Eh1 and finally solve

a(uh, Ip(mh), ph)− L(ph) = 0 (2.99)
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to obtain uh. To implement this notion in an hIPPYlib script, we describe in

the following lines the changes on the code:

def solveFwd ( s e l f , s ta te , x , t o l ) :

i f s e l f . s o l v e r i s None :

s e l f . s o l v e r = s e l f . c reateLUSolver ( )

u = dl . Tr ia lFunct ion ( s e l f .Vh [STATE] )

m = vector2Funct ion ( x [PARAMETER] , s e l f .Vh [PARAMETER] )

p hat = dl . TestFunction ( s e l f .Vh [ADJOINT] )

m. s e t a l l o w e x t r a p o l a t i o n ( True )

m interp = dl . i n t e r p o l a t e (m, s e l f . Vh interp [PARAMETER] )

r e s f o rm = s e l f . v a r f h a n d l e r s t a t e (u , m interp , p hat )

A form = dl . l h s ( r e s f o rm )

b form = dl . rhs ( r e s f o rm )

A, b = dl . assemble system ( A form , b form )

s e l f . s o l v e r . s e t o p e r a t o r (A)

s e l f . s o l v e r . s o l v e ( s ta te , b )

Analogously, we consider the adjoint problem. The equation for the adjoint

problem is given by

δuL(u,m, p)(ũ) =

∫
X
ũTΓ−1

obs (y − u) dx+ δua(u,m, p)(ũ) = 0 (2.100)

Finally we solve

1

σ2
〈ũ, y − uh〉M + ã(uh, Ip(mh), ph)(ũ) = 0 (2.101)

where ã corresponds to δua and uh is the solution of the forward problem given

in equation (2.99). Note that the final form for ã depends on the original pde.

Following the pde constrained optimization approach, we need to adapt the
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quantities in the evaluation of the gradient and hessian actions to perform the

optimization in the parameter space. In this case, we need an interpolation

operator Is to change the resolution of the solutions of the forward and adjoint

problems uh and ph. In this case, the week form for the gradient is obtained by

δmL(u,m, p)(m̃) =

∫
Ω

m̃A2(m−m0)dx+ δma(u,m, p)(m̃) (2.102)

The expression that we compute is given by

G = m̃A2(mh −m0)dx+ ā(Is(uh),mh, Is(ph))(m̃) (2.103)

where A2 correspond to the discretized action of A2 inside the inner product

and ā corresponds to δma. In an analogous way, the quantities for the

linearized forward, linearized adjoint, and the Hessian are determined. These

interpolations between meshes produces that the Hessian is not symmetric any

more. We will show in examples the weak form for the optimization and use

an inexact Newton GMRES in hIPPYlib, see the Appendix A for a GMRES

reminder. We use GMRES implementation in scipy library for python [87].
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2.6 Algebraic Inversion for Magnetic

Resonance Elastography

Magnetic Resonance Elastography (MRE) is a diagnostic technique for the

detection and characterization of a wide range of disease processes. MRE

may be incorporated into a standard MRI examination to provide a rapid,

reliable and comprehensive imaging assessment at a single patient appointment,

[86]. This technique can visualize and quantitatively measure propogating

acoustic strain waves in tissue-like materials subjected to harmonic mechanical

excitation. Shear waves at frequencies in the 10-1000 Hz range are used as a

probe because they are much less attenuated than at higher frequencies and

because shear modulus varies widely in bodily tissues, [88, 89, 90]. MRE allows

to infer mechanical properties of many tissues including liver, muscle, brain,

lung, spleen, pancreas, kidneys among others [56, 91]. Most soft tissues have

mechanical properties that are intermediate between those of fluids and solids.

Authors in [92] introduced a Complex-Valued Stiffness Reconstruction for MRE

by Algebraic Inversion of Differential Esquations (AIDE) in which they find

the shear modulus locally by estimating the local spatial derivatives of the

displacement. Since the derivatives of the displacement must be estimated

from the noisy displacement data, authors propose to estimate derivatives

using a least-square fitting procedure made popular by Savitsky and Golay, see

[93]. Specifically, the data are fit to a separable polynomial using information

from a certain number of neighbors in a set named window. For a fixed

window, derivatives of the best-fit polynomial are used as estimates of the data

derivatives. Other approaches to approximate the derivatives proposed wavelets

transforms, see [94].

To apply a Savistky Golay filter in 2D, we need three steps: to fit a

polynomial around a point to smooth just the value of this point, To choose

a window that contains other points data (the order of the polynomial define

the minimum window size) and To apply a least squares estimation to fit the

polynomial values. The variance of the estimation decreases if the window size

increases, nevertheless, the bias of the estimate increases too, see [95].

This local estimate corresponds to assume that the shear modulus is constant
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by element. According to [96], this assumption limits the local variability of the

parameters in the estimate. Futhermore, whenever the true parameters do vary

significantly, the estimate is invalid. From a clinician’s point-of-view, regions

where the true stiffness changes rapidly are perhaps the most important, for they

indicate the boundaries of any patology. According to [97], it should be noted

that filters, like those for suppressing noise, change the effective wavelengths in

the image. Thus a careful match of filter threshold may be able to compensate

for dispersive effects.

The governing equation for solids under time-harmonic motion [98], together

with the boundary conditions is given by

∇ · σ = −ω2ρu, in Ω (2.104)

u = 0, on ΓD

n · σ = f0, on ΓN

n · σ = 0, on Γ0

where ω denotes the actuation frequency, ρ is the density of the solid; u is the

complex-valued time-harmonic displacement field, σ is the Cauchy stress tensor

defined over the body Ω and n the unit outward surface normal. In this work,

we mimic an abdomen slice as our domain Ω. ΓD is the region of the domain

corresponding to the lumbar region. We assume no displacement in this area so

we impose homogeneous Dirichlet conditions on ΓD. f0 is the traction condition

corresponding to the passive actuator acting on an abdomen area denoted by

ΓN and finally, Γ0 is the complement of ΓD
⋃

ΓN . For linear elastic isotropic

materials, the Cauchy stress tensor can be expressed as

σ = λtr(ε)I + 2µε (2.105)

with

ε =
1

2

(
∇u+∇uT

)
(2.106)

where ε represents an infinitesimal strain tensor; λ and µ are the Lamé’s material

parameters (µ is the shear modulus), which are the material parameters to be

reconstructed in the elastography problem.
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To generate data, we use a 2nd order Continuous Galerkin scheme in

FEniCS, [99]. Continuous Galerkin (CG) methods may have a bad performance

for cases where materials are highly incompressible. In these cases, CG provides

a smaller displacement solution, called volume locking. Mixed formulations

and Discontinuous Galerkin (DG) methods are possible solution for counteract

the locking phenomenon, among others [100, 101, 102, 103]. According to [100],

the p-version of the finite element does not suffer of this phenomenon and

optimal rate error estimates may be show independent of the Poisson ratio.

From our simulations, a 2nd order CG is enough to generate data for the

examples we’ll show.

The estimation of a local value for the stiffness is as follows: 2D displacement

values are generated with the model in equation (2.104), a Savistky Golay

filter is applied to eliminate high frequency effects, second derivatives of the

displacement are estimated using the same filter, on each element we compute

an estimate of µ by a least-squares approach using the equations

−∆uai µ = ρω2uai , i = 1, 2, 3, a = x, y (2.107)

where uxi is the x displacement obtained from the filter application on the i-th

node of the element. In the simplest under homogeneity and incompressibility

assumptions, it can be seen that poorly-interrogated regions correspondend to

regions where ∆u ≈ 0 or u ≈ 0 (see equation (2.107)).

According to [101], the simplifying assumptions are local homogeneity

and incompressibility. Since the divergence of the displacement for nearly

incompressible material is almost zero, this assumption simplify the expression

in equation (2.105) by

tr(ε) = ∇ · u ≈ 0. (2.108)

After this, local homogeneity and some computations allow us to arrive to

equation (2.107).

Figure (2.3) shows the parameter to recover and the AIDE estimate for

frequency 20 Hz. Frequency wave effects and artifacts can be nottice in the

recovered estimate. According to [104], finite tissue boundaries and waveguide

effects give rise to wave interferences which are not accounted for the standard
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(a) (b)

Figure 2.3: Algebraic Inversion: (a) True parameter. (b) Parameter recovered
at freq 20 Hz.

elasticity reconstruction methods. Also, a multifrequency inversion produces

fewer artifacts in the viscoelastic parameter map than standard single-frequency

parameter recover. According to [105], acquisitions at different frequencies can

be used to circumvent the conditioning and uniqueness concerns in the inversion

process.

(a) (b)

Figure 2.4: Algebraic Inversion: (a) Parameter recovered at freq 20 Hz. (b)
Parameter recovered at multiple frequencies: 15, 18, 20, 22 and 25 Hz

Figure (2.4) shows the parameter to recover and the AIDE estimate using

data at frequencies 15, 18, 20, 22 and 25 Hz. Figure (2.5) shows relative errors

with respect the parameter to recover of estimates in figures (2.3) and (2.4).
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(a) (b)

Figure 2.5: Relative Error at Algebraic Inversion: (a) Parameter recovered at
freq 20 Hz. (b) Parameter recovered at multiple frequencies: 15, 18, 20, 22 and
25 Hz

2.7 Optimization algorithms from a contact

geometry perspective

Consider the problem of

min f(x) (2.109)

where f is a convex function with x ∈ Rn. In the differentible case, Newton

method may have a high computational cost in problems with increased size.

That is why first order methods had become very popular in the machine

learning community. The phenomenon named as acceleration has been topic

of theoretical and computational research. Among the best known methods,

we can find Nesterov accelerated gradient method. Recently in [106], authors

derived a second-order ODE which is the exact limit of Nesterov’s scheme.

Relating optimization to ordinary differential equations is not new, see [107],

[108], [109]. The idea behind is to consider small step sizes such that the solution

of the optimization converges to a curve from the ODE solution. In the opposite

direction we can obtain several discretizations from the same second-order ODE.

Of course, the aim is to find a discretization that preserves theoretical properties

as the convergence rates. The analysis of the ODE can provide insights for the

optimization, see [110], [111]. In this section, we describe the main elements of
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this approach to explain latter the results in [112].

2.7.1 Bregman Hamiltonian and contact systems

Authors in [113] introduced the Bregman Lagrangian as

L(X, V, t) = eαt+γt
(
Dh

(
X + e−αtV,X

)
− eβtf(X)

)
(2.110)

for α, γ and β continuous and differentiable functions. h is a distance-generating

function that satisfies convexity and smoothness. They defined ideal scaling

conditions by

β̇t ≤ eαt (2.111)

γ̇t = eαt (2.112)

For the case of h(X) =
1

2
‖X‖2, the resulting Euler-Lagrange equations are

Ẍ + (eα − α̇) Ẋ + e2α+β∇f(X) = 0. (2.113)

Also, they introduced specific functions for α, γ and β that satisfy a convergence

rate of O(1/tp), that is

f(X)− f(X∗) ≤ O(1/tp) (2.114)

with X∗ the unique minimizer. The discretization of the equation does not

always preserve this continuous convergence rate. Finally they mentioned that

another option to explore the Bregman Lagrangian is to study its Hamiltonian.

This approach was considered in [114]. The Bregman Hamiltonian is the

result of apply the Legendre transform to the Bregman Lagrangian. In this

case, the second-order Euler-Lagrange equation is transformed into a pair of

first-order equations. Authors in [114] advocate for symplectic integrators to

obtain reliable and rate-matching discretizations. In this case, the Bregman
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Hamiltonian becomes

H(X,P, t) =
1

2
eαt−γt ‖P‖2 + eαt+βt+γtf(X). (2.115)

In the next subsection, we introduce some basic notions for the contact

geometry. A more general expression can be deduced under this approach.

Bregman Hamiltonians as in equation (2.115) are specific cases under the

contact formulation, see [112].

Authors in [112] propose a geometric approach to optimization using contact

geometry. In the Euclidean context a contact state space is odd–dimensional,

R2n+1, and coordinated by the variables (X,P, S), where the X ∈ Rn play the

role of generalized coordinates, the P ∈ Rn the corresponding momenta and

S ∈ R the action of the system. In this subsection, we recall a result around

the dynamical system that allows to connect with the problem in equation 2.109.

Lemma 2.7.1 (Contact Hamiltonian systems) Given a (possibly

time–dependent) differentiable function H(X,P, S, t) on the contact state

space (R2n+1, ηstd1), the associated contact Hamiltonian system is the following

dynamical system

Ẋ = ∇PH (2.116)

Ṗ = −∇XH− P
∂H
∂S

(2.117)

Ṡ = ∇PHP −H . (2.118)

To solve numerically this system, a geometric integrator is proposed based on

results in [115].

2.7.2 Splitting methods for ODEs

In order to solve the system (2.116)-(2.118) we appeal to splitting methods.

According to [116], a splitting method is a class of time integration of ODEs

and PDEs. For the differential equation

ẋ = X(x) (2.119)
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an splitting method involves

• choosing a set of vector fields Xi such that X =
∑
Xi

• integrating either exactly or approximately each Xi

• combining these solutions to yield an integrator for X.

It is assume that the pieces Xi are simpler to treat than X, that is:

1. Xi is of a simpler type than X

2. Xi is of the same type than X but easier to treat numerically.

The main objective of construct a geometric integrator is to preserve structural

features of the flow of X as symplecticity, volume preservation, integrals and/or

symmetries. We have

Proposition 2.7.1 If a vector field X(x) can be split as a sum

X(x) =
i=n∑
i=1

Xi(x) (2.120)

where each vector field Xi is exactly integrable, then

S2(τ) = e
τ
2
X1e

τ
2
X2 · · · eτXn · · · e

τ
2
X2e

τ
2
X1 (2.121)

is a second order integrator for the differential equation (2.119).
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Chapter 3

Results

In this chapter, we solve several problems based on the results of the previous

section. As we mentioned before, a statistical approach for inverse problems

introduce new components to propose solutions with quantified uncertainty and

produce predictions. Implementation of computational models on the treatment

of data uncertainties demands regularity on the forward modeling, consistency

on the discretization and stability on the numerical posterior distribution which

allows to encode the uncertainty of the solutions. In this section we will present

examples on (1) The computation of the normalization constants for linear

inverse problems for two problem types. The first problem considers the number

of terms in a Fourier series. The second considers the low-rank approximation

of the posterior on the big scale setting. Formulas for linearized models are

proposed and apply to a nonlinear inverse problem governed by an elliptic pde.

The final aim of these computations is under a model selection approach. In this

case, a local refinement is performed and the computation of the normalization

constants allows us to determine the best mesh. Also, we can compare several

refinement criteria again by the computation of these normalization constants.

(2) The comparison of two members of different families of transition kernels

to perform the posterior distribution exploration in an inference problem in

1D. HAMCMC is a Quasi-Newton method where proposals come from a

continuous dynamic. T-walk is a sampler with the affine invariance property

and free-derivate information. With an example that recovers four parameters,

t-walk outperform HAMCMC. (3) The incorporation of elements of optimal
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experimental design in Multifrequency Algebraic Inversion with application to

Magnetic Resonance Elastography. The aim is to decrease the uncertainty of the

estimates in the AIDE inversion. This approach allows decreasing the variance

out of the inclusion area. (4) A Bayesian approach to analyze Oral Glucose

Tolerance Test data. The forward modeling considers Erlang distributions to

reproduce the delays in the body reaction to a sugary drink. From estimates

of two parameters related to digestive absorption and insulin production, we

classify around 85 % of 80 patients. (5) The inference for an ODE model

that describes the early dynamics of the covid-19 in México. This approach

considers possible infections through the environment and the estimation of its

transmission rate. (6) The discretization of an accelerated scheme that preserves

theoretical convergence rates with possible applications in optimization and

machine learning. The main goal illustrated by these examples is the systematic

treatment of model, data, and computational errors to produce predictions with

quantied uncertainty.

3.1 Inference on the Initial Condition of the

Wave Equation

In this section, we use Bayesian model selection to determine the number of

coefficients in the representation of a function as a Fourier series. Specifically, we

apply formulas explained in subsection 2.4.1 to compute Bayes factors. We show

this technique in the linear inverse problem of recovering the initial condition

of the wave equation. We present three cases to exemplify our results.

3.1.1 Forward map and Observation Model

Consider the homogeneous Dirichlet conditions for the wave equation:

utt = uxx, x ∈ (0, 1)

u(0, t) = 0 = u(1, t)

(3.1)
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with initial conditions

u(x, 0) = φ(x) ut(x, 0) = ψ(x) (3.2)

Under a separation of variables technique, a solution of the problem (3.1)-(3.2)

can be found substitying u(x, t) = X(x)T (t) in the PDE. This problem becomes

a pair of separate ordinary differential equations for X(x) and T (t) given by

X ′′ + β2X = 0 and T ′′ + β2T = 0 (3.3)

Finally, using Dirichlet and initial conditions, we obtain

u(x, t) =
∑
n

(An cos (nπt) +Bn sin (nπt)) sin (nπx) (3.4)

Note that
φ(x) =

∑
nAn sin (nπx)

ψ(x) =
∑

n nπBn sin (nπx)

(3.5)

Now, assume that ψ(x) = 0, then Bn = 0 for all n. Then we have

u(x, t) =
∑
n

An cos (nπt) sin (nπx) (3.6)

where

An = 2

∫ 1

0

φ(x) sin(nπx)dx (3.7)

Now, suppose that we can obtain measurements at t = 1. Then from equation

(3.6) we have that

G(φ) = u (x, 1) =
∞∑
n=0

An (−1)n sin (nπx) (3.8)

Suppose that φ1 =
∑

nA
1
n sin (nπx) , φ2 =

∑
k A

2
k sin (kπx) and λ ∈ R. Note

that

G(φ1 + λφ2) = G(φ1) + λG(φ2) (3.9)
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that is, G is linear. From Riesz theorem, there is g such that

G(φ) = 〈g, φ〉

Finally, by Schwarz inequality we have the Lipschitz continuity of the forward

map with respect to φ

|G(φ1)− G(φ2)| = |〈g, φ1 − φ2〉| ≤ C||φ1 − φ2||

For the inverse problem, let us assume that we have observations given by

yj = u(zj, 1) + εj, j = 1, 2, ..., p (3.10)

where εj ∼ N (0, σ2). Note that under these conditions, Assumptions 1 are

satisfied. Since u has the form (3.8), to generate data, we must consider a

truncated sum. Since we do not have prior knowledge about this number,

our results will depend strongly on the number of terms of the series in the

finite-dimensional approximation of the prior and p, the number of observations.

Let us assume that the data was generated for a K = KTruth. In the numerical

examples, we compute the normalization constants using formulas given in

equation 2.83 to determine the optimal number of coefficients to recover the

desired φTruth.

3.1.2 Bayesian formulation

Let us consider a Gaussian prior for φ following the ideas in [15] and [37]. Let

A = − d2

dx2
with domain

D(A) = {v ∈ H2[0, 1] : v(0) = v(1) = 0} (3.11)

Note that for λ > 0, the general solution of the problem

− d2

dx2
v − λv = 0 (3.12)
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is

v(x) = A cos(
√
λx) +B sin(

√
λx) (3.13)

Since v(0) = A cos(
√
λ0) + B sin(

√
λ0) = A, then A = 0. From v(1) = 0, we

obtain the eigenvalues

λk = k2π2, k = 1, 2, 3, ... (3.14)

We propose a Gaussian prior µ0 for φ(x) in H ⊂ L2[0, 1] such that

φ(x) ∼ N (0, C) (3.15)

with C = A−1. Note that the set

{√
2 sin(kπx),

1

(kπ)2

}
k=1,2,3...

(3.16)

is an orthonormal set of eigenvectors/eigenvalues for C. Recall from equation

(2.7) that the random variable q(x) given by its Karhunen-Loeve expansion

q(x) =
∞∑
k=1

√
2

kπ
ξk sin(kπx) (3.17)

with ξk ∼ N (0, 1), is distributed according to µ0 = N (0, C). Also, note that

from lemma 2.1.1, we have that φ ∈ C0,α[0, 1] almost surely for 0 < α < 1/2.

From representation in equation (3.17), we can identify µ0 with

µ0 = N (0, π−2)⊗N (0, (2π)−2)⊗N (0, (3π)−2)⊗N (0, (4π)−2)⊗ · · · (3.18)

as in [37]. Finally, since we propose a Gaussian prior and the forward map is

linear, it is well known that the posterior distribution µy is well posed and is

Gaussian too, see [15]. Also, we know that

dµy

dµ0

=
1

Z
exp

(
−1

2
|y − G(φ)|2Γ

)
(3.19)

Now, we need to consider finite dimensional spaces to perform our
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computations. Let us introduce the operator Qm such that for q ∈ H given

by its representation in equation (3.17),

Qm(q) = qm(x) =
m∑
k=1

βk
√

2 sin(kπx) (3.20)

with βk ∼ N (0, (kπ)−2). This truncated sum allow us to introduced a

finite dimensional approximation of the prior µ0m in the subspace Vm =

span{
√

2 sin(kπx)}k=m
k=1 . As in [37], we can write µ0 = µ0m ⊗ µ⊥0m.

Since the forward map introduced in the previous subsection has a closed

form, we may rewrite equation (3.19) as

dµym
dµ0

=
1

Zm
exp

(
−1

2
|y − G(φm)|2Γ

)
(3.21)

where µym is an approximation of the posterior µy obtained by approximating

the likelihood. Since in this approximation, the right hand side is a function of

φm ∈ Vm, we may express µym as

µym = ρm ⊗ µ⊥0m (3.22)

where
dρm
dµ0m

=
1

Zm
exp

(
−1

2
|y − G(φm)|2Γ

)
(3.23)

Note that µym is a measure in infinite dimensions while ρm is a measure in finite

dimensions. Also ρm is part of µym where we take account of the approximation

of the likelihood and the prior.

3.1.3 Numerical Results

In this subsection, we show our numerical results. From the last subsection,

in each case, we propose a Gaussian prior µ0m for m coefficients in the

representation of the initial condition φ of the wave equation described in

equation (3.1). Note that we don’t know the number mT of terms used to

generate the data a priori. Our aim is to exemplify how the computation of Zm

in equation (3.23) allows us to determine the optimal m to perform the inference.
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To compute Zm, we use formulas in subsection 2.4.1. For each example, we

generate more observations than the number of terms that we want to recover.

In the following, we consider 15 observations on interior points in a regular grid

in (0, 1) for examples 1 and 2, and 25 observations for example 3.

1. Example with 4 terms series. We consider the function φ(x) =

1.5 sin(πx) + 0.8 sin(2πx) + 0.7 sin(3πx) + 0.3 sin(4πx) as initial condition.

In Figure (3.1) we show the normalization constants. Note that Z4 is

the highest normalization constant for m = 1, 2, ..., 7. Actually, the

normalization constant increase until its maximum at m = 4 and then

decrease.

(a) (b)

Figure 3.1: (a) Normalization constants Zm for each model. (b) Zoom of (a).
The highest normalization constant is achieved with four terms.

2. Example with 6 terms series: We consider the function φ(x) =

0.9 sin(πx) + 0.2 sin(6πx) as initial condition. We present the

normalization constants in Figure (3.2) (a). Note that adding extra terms

at the beginning produces lower normalization constants, see Figure (3.2)

(b). In principle, if we propose a model with the number of terms lower

than 6, the highest normalization constant is for the model with just 1

term. That may be justified by noting that the coefficients for n = 2, 3, 4, 5

are null. This phenomenon may lead us to a wrong answer in the model

selection if we compute just the first models. The highest normalization

constant is achieved for 6 terms, see Figure (3.2) (c).
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(a)
(b)

(c)

Figure 3.2: (a) Normalization constants for each model. (b) Normalization
constants for the first models from 2 terms to 5 terms. (c) Normalization
constants for the last models from 6 terms to 11 terms. The highest
normalization constant is achieved with 6 terms. Note that model with 2 terms
have more evidence than models with 3, 4 or 5 terms.

3. Example with 20 terms series: We consider the function φ(x) =
20∑
n=1

bn sin(nπx) where

bn =
(−1)n+1 · 2n
π (n2 − 1/4)

(3.24)

Again, the model selection strategy supports the model with 20 terms in

the Fourier series, see Figure 3.3.
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(a) (b)

Figure 3.3: (a) Normalization constants for each model. (b) Zoom of (a). The
highest normalization constant is achieved with twenty terms.

3.2 Inference on the source on an elliptic

equation

In this section, we propose a local mesh refinement to recover a hard inclusion for

a linear problem. We compare several model selection criteria for the multimesh

approach in section 2.5. To establish the initial resolution, we consider the

spectrum of the prior preconditioned at the MAP estimate for uniform meshes.

We consider a prior of the form in equation (2.10). Since we consider an example

in dimension 2, our covariance operator is given by C = A−2 to ensure the

Holder-continuity in possible samples.

3.2.1 Forward map

Consider the Poisson’s equation

−∆u = f, (x, y) ∈ Ω = (0, 1)× (0, 1) (3.25)

with boundary conditions

u = 0, (x, y) ∈ ∂Ω (3.26)
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According to [117], under these conditions, classical PDE theory guarantees

that for f ∈ C(Ω) there exists at most one solution u ∈ C2(Ω) ∩ C(Ω̄) of the

boundary-value problem given by equations (3.25)-(3.26).

Let us assume that we have observations of u in all the mesh points of a

fine mesh and we want to recover for f . We consider the multimesh case as in

section 2.5 where

y = uh + η (3.27)

that is, we solve the forward problem at the high resolution of the data. Note

that the parameter to observables G(f) is linear. For linear forward maps,

Assumptions 1 in subsection 2.1.2 are satisfied. Typically, partial differential

equations need numerical methods to be discretized and solved numerically. The

Finite Element Method (FEM) is the more popular method for elliptic problems.

This method requires the weak formulation of the equation (3.25). Let us

consider the test function p ∈ H1
0 (Ω) and f ∈ L2(Ω). The weak formulation for

Poisson’s problem is ∫
Ω

∇u · ∇pdx =

∫
Ω

fpdx (3.28)

where the integral part over the boundary disappears due to boundary

conditions. u ∈ H1
0 (Ω) is a weak solution for the problem (3.25)-(3.26) if it

satisfies equation (3.28) for all p ∈ H1
0 (Ω). Lax Milgram Theorem ensures the

existence of the solution of this problem, see [117]. We will use this weak form

to formulate the PDE-constrained optimization problem to compute the MAP

estimate as explained in section 2.3. The MAP estimate will match the posterior

mean since the forward model is linear and the prior is Gaussian.

3.2.2 Bayesian Formulation

We propose a Gaussian prior µ0 = N (f0, C0), with C0 = A−2 and A = δI − γ∆.

Since the forward problem is linear, we know that the posterior measure will

be Gaussian too. Let µpost = N (fpost, C). fpost must match the MAP estimate

of the posterior measure. In this subsection, we present the formulation of the

pde-constrained optimization problem as in subsection 2.3.1 to determine fpost.

To compute the MAP, let us consider de minus log of the posterior measure
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given by

J (u, f) =
1

2

∫
Ω

(y − u) Γ−1
obs (y − u) dx+

1

2
||A (f − f0) ||2L2 (3.29)

where u is the solution of the pde problem describe in the last subsection. The

lagrangian propose to solve the previous pde constrained optimization problem

is given by

L(u, p, f) = J (u, f) + a(u, p)− L(p) (3.30)

where

a(u, p)− L(p) =

∫
Ω

∇u · ∇pdx−
∫

Ω

fpdx

Recall that the forward problem is obtained by computing δpL(u, p, f)(p̃) =

0, ∀p̃ ∈ H1
0 . The adjoint problem is obtained by computing δuL(u, p, f)(ũ)

and is given by

−
∫

Ω

ũΓ−1
obs (y − u) dx+

∫
Ω

∇ũ · ∇pdx = 0, ∀ũ ∈ H1
0 (3.31)

The weak form of the gradient is given by

G =

∫
Ω

f̃A2(f − f0)dx−
∫

Ω

f̃pdx, ∀f ∈ L2 (3.32)

where p is the solution of the adjoint problem in equation (3.31). The

meta-lagrangian to compute the hessian action is given by

LH(u, p, f ; û, p̂, f̂) =
∫

Ω
f̂A2(f − f0)dx−

∫
Ω
f̂pdx+

+
∫

Ω
∇u · ∇p̂dx−

∫
Ω
fp̂dx+

−
∫

Ω
ûΓ−1

obs (y − u) dx+
∫

Ω
∇û · ∇pdx

(3.33)

Note that the terms Wmm,Wum and Wmu described in subsection 2.3.1 are null

for this example. The Hessian for this case matches the Gauss-Newton Hessian
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approximation. The incremental forward is given by δpLH(u, p, f ; û, p̂, f̂)(p̃)∫
Ω

∇û · ∇p̃dx−
∫

Ω

f̂ p̃dx = 0, ∀p̃ ∈ H1
0 (3.34)

the incremental adjoint is given by δuLH(u, p, f ; û, p̂, f̂)(ũ)∫
Ω

∇ũ · ∇p̂dx+

∫
Ω

ûΓ−1
obsũdx = 0, ∀ũ ∈ H1

0 (3.35)

and finally, the Hessian action on f̂ is given by δfLH(u, p, f ; û, p̂, f̂)(f̃)

H =

∫
Ω

f̂A2f̃dx−
∫

Ω

f̃ p̂dx, ∀f̃ ∈ L2 (3.36)

where p̂ is the solution of the incremental adjoint. All this weak forms are

computed in hIPPYlib. The optimization problem is solved by an Inexact

GMRES in hIPPYlib too. We show the results of the mesh refinement in the

next subsection. We compute the normalization for each mesh to determine the

best model.

3.2.3 Numerical Results

In this subsection, we apply the computations of the previous section to

determine the Gaussian posterior for the inverse problem described. Since the

posterior is Gaussian, we can compute explicitly the normalization constant. We

propose a model selection strategy to perform a local mesh refinement to recover

a source with a hard inclusion. The refined meshes define a sequence of meshes.

For each mesh, we can compute the evidence. By comparing the evidence of

each mesh we can determine the better model. To start, we must determine an

initial resolution for the problem. In figure 3.4 we show the spectrum of the prior

preconditioned Hessian misfit at the MAP for several uniform discretizations.

To perform a fair comparison, we need this spectrum to be invariant as in Figure

3.4 (b). This feature determines our initial resolution and causes it to not be

very coarse.

To refine the mesh, we first perform the inference in the first mesh. We
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(a) (b)

Figure 3.4: Spectrum of the prior preconditioned Hessian misfit in uniform
meshes: (a) Change for discretization with few degrees of freedom (b) Is
invariant for discretizations with more than 441 degrees of freedom.

compare the parameter values from the posterior to the prior by computing this

quantity in each node of the mesh

MS =
fpost
f0

(3.37)

We decide to refine regions with higher MS. That is, we define a threshold by

a quantile and we refine elements where the barycenter value is higher than this

threshold. This value stays fix in the following refinements. Now, we analyze

the changes in quantities as normalization constants, KL divergence from the

prior, L2 errors in the parameter, and BIC with respect to the number of degrees

of freedom for the mesh refinement. To perform this comparison, we generate

data with a SNR of 1000. Recall that the Bayesian Information Criteria (BIC)

penalized the extra number of degrees of freedom by a factor depending on the

dimension of the data, see equation (2.92). For this problem, BIC does not

show a typical convexity that determines an optimum, see Figure 3.5 (a). The

minimum is obtained for the lower resolution considered, that is, the initial

mesh. This phenomenon may be due to the strategy to obtain uh. Recall that

in the multimesh approach, the parameter is interpolated in the fine mesh to

solve the forward map and obtain uh. This strategy causes no big changes in

the misfit. Nevertheless, the misfit term decreases as the number of degrees
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of freedom increases. In figure 3.5 (b), we show again the logarithm of the

normalization constants and the KL divergence from the prior. Note that the

change between the third and fourth model is small compared to the previous

ones for both quantities. In figure 3.5 (c), we can see that the L2 error in the

parameter with respect to the truth parameter increases as we refine the mesh.

That means that a better model from the point of view of the evidence may not

help to decrease this error.

(a) (b)

(c) (d)

Figure 3.5: (a) The Bayesian Information Criteria (BIC) reaches its optimum
value in the initial mesh. The normalization constant increases until the fourth
mesh, (b) The KL divergence from the prior decreases and stabilize around the
fourth mesh, similar behavior has the normalization constants, (c) The misfit
decreases and the L2 error with respect to the true parameter increases for each
new refined mesh, (d) The spectrum of the prior preconditioned Hessian at the
posterior mean for each mesh.
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Other quantities may be included in the criteria to refine. In this case, since

we work for Gaussian prior and posterior, it is natural to think about including

variance information. Figure 3.8 (b) shows the posterior pointwise variance for

the first mesh. It can be noticed that high variance regions are outside the

inclusion area. Including this information in the criteria may lead to refining

other regions besides that of inclusion, see Figure 3.9 (a). Again the evidence

may allow us to compare meshes generated by different criteria, see Figure 3.9

(b). Finally, as may be expected, the big trouble in this inference process is

that we can not recover the boundary of the inclusion, see 3.8 (a).

In the next section, we show results in a linearized problem that mixes

information about the mean and the variance to obtain better refinement

strategies.

(a) (b) (c) (d)

Figure 3.6: Succesive meshes obtained by the mesh refinement. We compute
the quotient between the posterior mean and the prior mean on the parameter.
We refine refine areas with higher values of this quotient.

Figure 3.7: True param at left and parameter recovered at right using mesh4
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(a)
(b)

Figure 3.8: (a) Relative error at mesh 4, (b) Pointwise posterior variance in the
initial mesh.

(a) (b)

Figure 3.9: (a) Mesh 4 using a criteria with the mean and the variance, (b)
Comparison of normalization constant of each model(mesh).

3.3 Mesh Refinement in the Inference of a

coefficient on an elliptic equation

In this subsection, we perform the local mesh refinement in a nonlinear example

governed by an elliptic PDE. To approximate the evidence of each model we

linearized the forward map around the MAP estimate. As we mentioned in the

previous example, we can add information from the Gaussian approximation of

the posterior distribution to the refinement criterion.
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3.3.1 Forward map

Consider the elliptic equation

−∇ · (k∇u) = f, (x, y) ∈ Ω = (0, 1)× (0, 1) (3.38)

with boundary conditions

u = 0, (x, y) ∈ ∂Ω (3.39)

Consider the function f given by

f(x, y) = 1 (3.40)

Let us assume that we have observations of u in all the mesh points of a fine

mesh and we want to recover the coefficient k = k(x, y). For this case, we need

k(x, y) ≥ kmin > 0 (3.41)

Lax-Milgram theory yields that if k satisfies condition (3.41) then problem (3.38)

with bondary conditions (3.39) has a weak solution. Since kmin > 0, we will

consider

k(x, y) = exp(m(x, y)) (3.42)

to avoid the numerical problems caused by trying to force positivity. We perform

the inference for the field m(x, y). We consider the multimesh case as in section

2.5 where we assume the data y satisfies

y = uh(m) + η (3.43)

with η is a random gaussian noise. In this case, the parameter to observables

G(m) = uh(m) is nonlinear. As we mentioned before, partial differential

equations needs numerical methods to be discretized and solved numerically.

We show the weak formulation of the equation in (3.38) used to implemented

the Finite Element Method (FEM) in FEniCS. Let us consider the test function
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p ∈ H1
0 (Ω) and f ∈ L2(Ω). The weak formulation for this elliptic problem is∫

Ω

em∇u · ∇pdx =

∫
Ω

fpdx (3.44)

where the integral part over the boundary disappear due to boundary conditions.

u ∈ H1
0 (Ω) is a weak solution for the problem (3.38)-(3.39) if it satisfies

equation (3.44) for all p ∈ H1
0 (Ω). We will use this weak form to formulate

the pde-constrained optimization problem to compute the MAP estimate as

explained in section 2.3.

3.3.2 Bayesian Formulation

We propose a Gaussian prior µ0 = N (m0, C0), with C0 = A−2 and A = δI−γ∆.

In this case, we want to approximate the posterior measure by a Gaussian

measure centered at the MAP estimate. Let µGpost = N (mMAP , C). mpost is the

MAP estimate of the posterior measure µpost. In this subsection, we present the

formulation of the pde-constrained optimization problem as in subsection 2.3.1

to determine mMAP . To compute the MAP, let us consider de minus log of the

posterior measure given by

J (u,m) =
1

2

∫
Ω

(y − u) Γ−1
obs (y − u) dx+

1

2
||A (m−m0) ||2L2 (3.45)

where u is the solution of the pde problem described in the last subsection. The

lagrangian proposed to solve the previous pde constrained optimization problem

is given by

L(u, p,m) = J (u,m) + a(u, p,m)− L(p) (3.46)

where

a(u, p,m)− L(p) =

∫
Ω

em∇u · ∇pdx−
∫

Ω

fpdx

Recall that the forward problem is obtained by computing δpL(u, p,m)(p̃) =

0, ∀p̃ ∈ H1
0 . The adjoint problem is obtained by computing δuL(u, p,m)(ũ)
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and is given by

−
∫

Ω

ũΓ−1
obs (y − u) dx+

∫
Ω

em∇ũ · ∇pdx = 0, ∀ũ ∈ H1
0 (3.47)

The weak form of the gradient is given by

G =

∫
Ω

m̃A2(m−m0)dx+

∫
Ω

m̃em∇u · ∇pdx, ∀m̃ (3.48)

where p is the solution of the adjoint problem in equation (3.47). The

meta-lagrangian to compute the hessian action is given by

LH(u, p,m; û, p̂, m̂) =
∫

Ω
m̂A2(m−m0)dx+

∫
Ω
m̂em∇u · ∇pdx+

+
∫

Ω
em∇u · ∇p̂dx−

∫
Ω
fp̂dx+ (3.49)

−
∫

Ω
ûΓ−1

obs (y − u) dx+
∫

Ω
em∇û · ∇pdx

The incremental forward is given by δpLH(u, p,m; û, p̂, m̂)(p̃)∫
Ω

m̂em∇u · ∇p̃dx+

∫
Ω

em∇û · ∇p̃dx = 0, ∀p̃ ∈ H1
0 (3.50)

the incremental adjoint is given by δuLH(u, p,m; û, p̂, m̂)(ũ)∫
Ω

m̂em∇ũ · ∇pdx+

∫
Ω

em∇ũ · ∇p̂dx+

∫
Ω

ûΓ−1
obsũdx = 0, ∀ũ ∈ H1

0 (3.51)

and finally, the Hessian action on m̂ is given by δmLH(u, p,m; û, p̂, m̂)(m̃)

H =
∫

Ω
m̂A2m̃dx+

∫
Ω
m̂m̃em∇u · ∇pdx+

+
∫

Ω
m̃em∇u · ∇p̂dx+

∫
Ω
m̃em∇û · ∇pdx, ∀m̃ ∈ (3.52)

where û is the solution of the incremental forward and p̂ is the solution of

the incremental adjoint. All this weak forms are computed in hIPPYlib. The

optimization problem is solved by an Inexact Newton GMRES in hIPPYlib too.
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We show the results of this problem in the next subsection and we compare these

results for different resolutions in the parameter.

3.3.3 Score Oriented Mesh Refinement

To decide which elements must be refined to improve the inference, we must

define a criterion. From the point of view of Bayesian statistical decision theory

[118], the criterion may be understood as the optimum value of the expectation

of a weighted loss function. In this case, the criterion proposed includes

information about the mean and the variance of the parameter of interest.

Note that this information is obtained straightforwardly from the Gaussian

approximation of the posterior. Also, the criterion includes the comparison

with respect to the corresponding values imputed from the prior.

Let us consider the loss function

L(µ, a) = w(µ)(µ− a)2 (3.53)

with w(µ) = w =
µpost

µpriorσ2
prior

, where µ is our parameter of interest and a an

estimator. Then, the expected loss function under the posterior distribution of

µ is

L∗(a) = w
(
σ2
post + (µpost − a)2

)
(3.54)

The global minimum of L∗(a) defined by (3.54) is reached at a = µpost. The

value at this local minimum is precisely

ADS =
µpost
µprior

·
σ2
post

σ2
prior

(3.55)

Since ADS is a pointwise criterion, we refine regions with higher ADS when

the application expected higher values of the mean for the anomalies. The

rationale of ADS (3.55) is that anomalous values of the parameter are to be

decided upon the reference parameter values. By introducing the ADS, we aim

at addressing several issues: (i) to refine a region with inclusion with higher of

lower stiffness with respect to the prior, (ii) to refine more than one region, if

it is the case of two or more stiff inclusions and (iii) not to refine regions with
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accurate prior knowledge. Since ADS is dimensionless by construction, we will

define a refinement threshold in terms of a quantile. As in the previous examples,

we compute the evidence for each mesh to decide which mesh is better. Also,

we consider other refinement criteria and compare meshes for different criteria

by computing its normalization constants. The refinement is performed directly

by FEniCS [99] tools.

3.3.4 Numerical Results

In this subsection, we present the results of the model selection. We compare

four types of refinement:

1. Comparing the changes on the posterior mean with respect to the prior

mean.

2. Comparing the changes on the posterior mean and variance with respect

to the prior mean and variance (ADS introduced the previous subsection).

3. Refining the region of the boundary of the inclusion.

4. Refining the element with a higher gradient.

In figure 3.10 we show the successive meshes for criterion 1. We show the

successive meshes for other criteria in Appendix B. For each criterion, we

compute the evidence for each mesh 5 times. Finally, we compare the log of the

normalization constants against the degrees of freedom in figure 3.11 (d). Note

the criteria based on ADS reaches high evidence with fewer degrees of freedom

than other criteria. If we compare the fifth mesh for each criterion, the criteria

that focus in recover the boundary reaches the highest evidence with the price of

a high number of degrees of freedom. Other examples can be seen in Appendix

B including examples with two inclusions and with prior knowledge included to

not refine a known region.
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(a) (b) (c) (d)

Figure 3.10: Local refinement based on the change of the posterior mean with
respect to the prior mean (a) mesh 2, (b) mesh3, (c) mesh4, (d) mesh5.

(a) (b)

(c) (d)

Figure 3.11: Last mesh of the refinement for several criteria (a) for the boundary,
(b) using variance and mean, (c) using the gradient. In (d) we show the
normalization constants for each mesh and each criteria. Note that the criterion
with mean and variance achieves a high normalization constant with less degrees
of freedom.
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3.4 A comparison of sampling methods applied

to the Bayesian inference of a diffusion

coefficient in 1D

In this section, we compare two different approaches to sampling the posterior

probability distribution that arises in the Bayesian solution of an inverse

problem. The idea is to compare the performance of two methods representing

different families of probability transition kernels: Hessian approximated Monte

Carlo (HAMCMC) [74], which is a quasi-Newton method, and affine invariant

Monte Carlo (t-walk) [65], which is a derivative-free method. To achieve

our goal, we have considered the problem of estimating a diffusion coefficient

in 1D as a case study. To carry out our analysis we have chosen an

intrinsically finite-dimensional problem arising from estimating a piece-wise

constant diffusion coefficient in a two-point boundary value problem.

3.4.1 Forward map

Let us consider the two-point boundary value problem

− (k(x, θ)px)x = 0, x ∈ (0, 1) (3.56)

p(0) = p−, p(1) = p+. (3.57)

where p+ > p−, k(x, θ) > 0 is the diffusion coefficient, and θ ∈ Rm is a vector of

input parameters. Then, the solution of problem (3.56)-(3.57) can be explicitly

written as follows

−(k(x, θ)px)x = 0 ⇒ k(x, θ)px = C, C ∈ R

⇒ px =
C

k(x, θ)
⇒

∫ x

0

pxdt =

∫ x

0

C

k(t, θ)
dt

⇒ p(x)− p(0) =

∫ x

0

C

k(t, θ)
dt+D ⇒ p(x) = p− +

∫ x

0

C

k(t, θ)
dt
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Since p(1) = p− +

∫ 1

0

C

k(t, θ)
dt = p+, then

C

∫ 1

0

1

k(t, θ)
dt = p+ − p−

Recall that k(x, θ) > 0, so consider u(x, θ) such that k(x, θ) = exp(u(x, θ)). So

C

∫ 1

0

exp(−u(t))dt = p+ − p−

Finally, the solution for the problem (3.56)–(3.57) is

p(x) = p− +
p+ − p−∫ 1

0
exp(−u(t, θ))dt

∫ x

0

exp(−u(t, θ))dt (3.58)

In [15], the author consider the observation operator

G(u) = (p(x1), . . . , p(xq))
T (3.59)

and state in Lemma 3.3 that G : C[0, 1] → Rq is Lipschitz and satisfies the

bound

|G(u)| ≤ √qp+ (3.60)

This bound allows to proof the Lipschitz continuity of the forward map with

respect to the parameter given by

|G(u)− G(v)| ≤ 3

2
(p+ − p−) exp(||v||∞ + max{||u||∞, ||u||∞})||u− v||∞ (3.61)

This condition establish the well-posedness of the posterior measure using a

Gaussian prior on u, see details in Section 3.3 of [15].

In this subsection, we consider that equation (3.58) defines a direct problem

or forward mapping M from input parameters θ in k = k(x, θ) to a quantity of

interest p = p(x) evaluated at points 0 < x1 < . . . < xq < 1

M : k −→ {p(xi)}qi=1 (3.62)
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From equation (3.62) we define the inverse problem of estimating a

piece-wise constant diffusion coefficient k = k(x, θ), given measurements

{p(xi)}qi=1.

We shall consider a piece-wise constant diffusion coefficient k = k(x, θ)

k(x) =


k1, 0 ≤ x ≤ a,

k2, a < x ≤ b,

k1, b < x ≤ 1,

(3.63)

for some 0 ≤ a ≤ b ≤ 1. Here, the vector of input parameters is θ = (a, u1, b, u2),

where u1 = log k1 and u2 = log k2.

3.4.2 Observational Model and Bayesian Formulation

Let us consider noisy observations of p(xi) for k defined by equation (3.63)

yk = p(xi) + εi, i = 1, 2, . . . q

where 0 < x1 < . . . < xq < 1, and εi ∼ N (0, σ2) with σ = 0.01.

To generate synthetic data, we have solved the problem (3.56)-(3.57) using

100 quadrature points in the interval [0, 1] and the trapezoidal rule. Then,

we introduce noise on q evenly spaced points. To simulate the direct problem

during the MCMC sampling, we solve the problem (3.56)-(3.57) using 60 points

on the interval [0, 1]. The choice of the standard deviation σ is based on the

signal to noise ratio:

SNR
def
=

min yi
σ

= 100.

Assuming that input parameters and noise in the data are independent, and

θ denotes the vector of input parameter, then for each i = 1, 2, . . . q we have

πYi|Θ(yi|θ) =
1√

2πσ2
exp

(
− 1

2σ2
|yi − p(xi)|2

)
. (3.64)
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Consequently,

πY |Θ(y|θ) =
1

(2πσ2)q/2

q∏
i=1

exp

(
− 1

2σ2
|yi − p(xi)|2

)

=
1

(2πσ2)q/2
exp

(
− 1

2σ2

q∑
i=1

|yi − p(xi)|2
) (3.65)

Figure 3.12: Synthetic data. For the numerical experiment we consider q = 19
synthetic data points.

In the present case, we propose Gaussian prior distributions for all the

parameters. Recall that a Gaussian distribution can be described just with

two instrumental parameters µ and η. That is, π(x) ∼ N (µ, η2) means that x

follows a Gaussian distribution with mean µ and variance η2. The proposals for

each parameter on θ are

a ∼ N (0.2, 0.22), b ∼ N (0.5, 0.22),

u1 ∼ N (0.2, 1.0), u2 ∼ N (0.5, 1.0).
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We may use the definitions above to write the prior distribution as follows

πΘ(θ) =
4∏
j=1

1√
2πη2

j

exp

(
− 1

2η2
j

|θj − µj|2
)

(3.66)

3.4.3 Numerical Results

In Figures 3.13 and 3.14, we compare the sampling between HAMCMC,

HAMCMC-MH and t-walk. Our results show a meaningful difference when

a Metropolis-Hastings criterion is introduced in HAMCMC algorithm. For

HAMCMC-MH, the sampling shows posterior distributions more concentrated.

(a) Posterior distributions for a (b) Posterior distributions for u1

Figure 3.13: Sampling of the three algorithms HAMCMC fails to recover
the variance of parameter a.

The above results were obtained through three chains. For t-walk: a chain

with 200000 points in yellow; for HAMCMC: a chain with 30000 points in

magenta; for HAMCMC-MH: a chain with 10000 points in blue. Table 3.1

shows conditional means (CM) of a, u1, b, u2 for each algorithm. Table 3.2 shows

the values of the maximum a posteriori (MAP) estimators, which can produce

a better fit to the data (see Figure 3.15). The estimated variance for each

parameter is shown in Table 3.3.
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(a) Posterior distributions for b (b) Posterior distributions for u2

Figure 3.14: Sampling of the three algorithms HAMCMC fails to recover
the variance of parameter a.

a u1 b u2

HAMCMC 0.19 0.03 0.51 1.0
HAMCMC-MH 0.097 -0.06 0.45 0.9

Twalk 0.13 -0.24 0.44 1.04
Truth 0.1 0.0 0.4 1.09

Table 3.1: CM Estimators

a u1 b u2

HAMCMC 0.10 -0.39 0.41 0.75
HAMCMC-MH 0.11 -0.02 0.44 0.88

Twalk 0.11 -0.18 0.44 0.8
Truth 0.1 0.0 0.4 1.09

Table 3.2: MAP Estimators

a u1 b u2

HAMCMC 0.024 1.39 0.025 1.59
HAMCMC-MH 0.0018 0.34 0.0041 0.36

Twalk 0.003 0.647 0.005 0.62

Table 3.3: Estimated value of the variance
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(a) CM estimators (b) MAP estimators

Figure 3.15: Fit to the data and solution of estimators

(a) HAMCMC (b) HAMCMC-MH (c) Twalk

Figure 3.16: Trace plots: Note that the number of points in the chain may
vary according to the sampling scheme. HAMCMC-MH spend less than half of
iterations than the non-metropolized version. Even if t-walk needs considerable
more iterations, since is free derivative information, it spend less time.

3.5 Frequency design on the Algebraic

Inversion for MRE

In this subsection, the aim is to apply an optimal design approach to decide

about the number and which frequencies to incorporate in the multifrequency

algebraic inversion in MRE described in subsection 2.6.
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3.5.1 Experimental Design

Experimental design dictates how data should be collected. According to [119],

an optimal experimental design (OED) should provide the maximum amount

of information with the minimum cost. OED is very challenging in this context

due to the high cost in the evaluation of the model, which is governed by a

partial differential equation. Assumptions in the Algebraic Inversion allow us

to propose and apply some methods of OED well established in statistics.

Let us consider the following equation:

yj = u(wj, µ) + εj, j = 1, · · · , N (3.67)

where yj is a generated data for each j, u(wj, µ) is the solution of the PDE

given by equation (2.104), µ is the unknown parameter and wj are experimental

conditions, in this case, the frequencies at which the data is generated. Let us

denote by W the design region. The idea is to determine a design to decrease

model uncertainty. According to [119], two parts must be considered in this

process. First, an excitation part, related to the conditions in the model, for

example, the frequencies. Second, the response part, related to how and where

to measure the system response. In this work, we will consider just the first

part.

To compare different designs and find an optimal, we need objectives and

criteria. As we mentioned before, the objective in this section is to propose a

design in the frequencies to decrease the uncertainty of the AIDE estimate. A

design in the frequencies includes which and how many frequencies are needed.

Recall that assumptions in the algebraic inversion can produce artifacts in the

estimates, see Figure 3.17 (a). In this case, from equation (2.107), we can

approximate the variance of the estimator in a specific element Ki by

V ar(µi) =
σ2

XT
i Xi

(3.68)

where Xi corresponds to the vector values of the laplacian in the element and σ2

the noise in the data. We show the variance associated with the AIDE estimate

in Figure 3.17 (b).
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(a)
(b)

Figure 3.17: (a) Parameter recover with Algebraic Inversion at frequency 20 Hz.
(b) Variances of the least-square estimates in (a).

Recall that acquisitions at different frequencies can be used to circumvent the

conditioning and uniqueness concerns in the inversion process and to produce

fewer artifacts. To exemplify this, we compute the AIDE estimate using data

at two frequencies, one corresponds to the 20 Hz estimate shown previously.

We show the variances of our results in Figure 3.18. Note that the maximum

decrease one order of magnitude by adding data at a second frequency.

(a) (b)

Figure 3.18: Adding data at a second frequency (a) Variances of the least-square
estimates with data at frequencies 20 and 25 Hz, (b) Variances of the
least-square estimates with data at frequencies 20 and 30 Hz.

According to [120], the aim in the MV-Criterion is to minimize the sum of

the variances of the-least squares estimator. This criterion is also known as
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the A-optimal approach. In this work, we compute the trace of the variance

matrix of the multifrequency AIDE estimate. The optimal design will choose

the frequency which minimizes this trace. Figure 3.19 shows the traces using

data at a single frequency in (a) and adding a second frequency in (b). The

comparison between the values of the traces for one and two frequencies or two

and three are shown in Figure 3.20.

(a) (b)

Figure 3.19: Trace of the variances matrix (a) for estimates at one single
frequency, (b) Adding data at a second frequency to data at 20 Hz.

(a) (b)

Figure 3.20: Trace of the variances matrix (a) values for one and two frequencies,
(b) values for two and three frequencies.
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3.5.2 Numerical Results

Following the idea introduced in the last subsection, we determine a design for

the frequencies. Since we work with generated data, we can compute the L2

error between the estimated parameter and the true parameter. Note that after

8 frequencies, the trace value continues to decrease, while the L2 error reaches

a minimum at the sixth frequency, see Figure 3.21.

(a) (b)

(c) (d)

Figure 3.21: Optimal design with frequencies 20, 35, 34, 32 and 33 Hz (a) The
trace of the variances matrix decrease by adding frequencies, (b) The trace
remains almost constant from fourth to fifth frequency (c) The L2 error between
the estimate and the true parameter decrease by adding frequencies until the
sixth frequency, (d) The L2 error reach a minimum in the sixth frequency.

The idea of minimizing the trace allows us to choose the next frequency to

add to the design. Now, to determine the last frequency, we will compute the
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absolute decrease by adding an extra frequency. Consider the next quantity

Gi = Tri − Tri+1 (3.69)

where Tri denotes the Trace in the design with i frequencies. For the optimal

design, we show the values of Gi in Figure 3.22. Note that the minimum is

achieved when we add the fifth frequency.

Figure 3.22: Absolute reduction in the Trace of the optimal design

We compare the results of the optimal design against the results displayed in

Figure 2.4 (b) in Figure 3.24. We show the true parameter to recover in Figure

3.23. Also, we show the relative errors for each design in Figure 3.25 and the

variance of the estimates in Figure 3.26. Note that the optimal design allows

the bigger variance of the estimates to correspond to the inclusion area. Also,

the maximum of the variances is a decrease three times for the optimal design.

The relative error decrease in the inclusion area and in the zone corresponding

to the back of the patient. Recall that the forward problem has homogeneous

Dirichlet boundary conditions in this area what produces a big uncertainty in

the AIDE estimate.
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Figure 3.23: True paramater to recover

(a) (b)

Figure 3.24: AIDE estimates using 5 frequencies (a) frequencies around 20 Hz,
(b) optimal design.

3.6 Modeling the Glucose-Insulin dynamics

during OGTT

Carbohydrates are one of the main nutrients of humans. The body breaks down

carbohydrates into glucose. Most tissues and organs need glucose constantly as

an important source of energy. The process of maintaining blood glucose at a

steady-state level is called glucose homeostasis [121]. This state is constantly

perturbed throughout the day by food ingestion, fasting, physical activity,

or exercise. A low blood concentration of glucose can causes seizures, loss of
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(a) (b)

Figure 3.25: Relative error of the AIDE estimates using 5 frequencies (a)
frequencies around 20 Hz (L2 error = 208.04), (b) optimal design (L2 error =
170.92).

(a) (b)

Figure 3.26: Variances of the AIDE estimates using 5 frequencies (a) frequencies
around 20 Hz (Trace = 0.60), (b) optimal design (Trace = 0.11).

consciousness, or even death. On the other hand, the long-lasting elevation

of blood glucose concentrations can result in blindness, renal failure, vascular

disease, and neuropathy. Therefore, blood glucose concentration needs to be

maintained within narrow limits. Blood glucose level is regulated by two main

hormones secreted by the pancreas: insulin and glucagon. The World Health

Organization (WHO) refers to diabetes as a chronic and metabolic disease

characterized by elevated levels of blood glucose. The most common is type

2 diabetes, usually in adults, which occurs when the body becomes resistant

to insulin or does not make enough insulin. One common test for diabetes
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diagnosis is the Oral Glucose Tolerance Test (OGTT). In this procedure, the

patient must arrive with eight-hour fasting and take a sugary drink. Several

blood samples are taken over the process, the first before consuming the drink,

the others to observe the body’s reaction to the oral stimulus. A prediabetic

state is characterized by an impaired fasting glucose level (IFG), an impaired

blood glucose level at two hours after consuming the drink, named by impaired

glucose tolerance (IGT), or both. This diagnostic process is characterized

by uncertainties along the test [122] as the amount of glucose absorbed and

its absorption rate. A popular approach to describe glucose dynamics is by

compartmental models, [123, 124]. The inference of model parameters from

glucose observations may be described as an inverse problem. Predictions

obtained from inferences processes must be reliable due to several error

sources as a simplification of biological process in the modeling, numerical

implementation, and measurement errors. The Bayesian paradigm allows

producing predictions with quantified uncertainties. Under this approach, the

solution of the inverse problem is a probability distribution for the parameter

of interest [45] which describes multiple consistent scenarios to fit the data. In

this work, we follow this statistical approach to model the inference process on

OGTT data, where the regressor comes from an ODE system that describes

the glucose dynamics. We model insulin and glucagon secretion originated from

blood glucose concentration. Also, we consider delays and hormonal effects

from the gastrointestinal tract. We model reactions of the body to the sugary

drink by a gamma distribution.

Related Work Describing the glucose dynamics by compartmental models

is very common, see [123, 124] for reviews. Usually, the level of description is

related to the important features of the dynamic involved in the diagnostic test

implemented. For the Oral Glucose Tolerance Test, one of the main effects to be

modeled is the process in the gastrointestinal tract [125, 121, 122]. Most of the

models include the insulin effect on the glucose homeostasis process. Glucagon

action is less popular to include. The process in the gastrointestinal tract has

become important in the last years. Incretins are hormones secreted by the

gut which stimulate insulin secretion before blood glucose level increases. This
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effect is reduced or even vanished for type 2 diabetes patients, see [126, 127].

Reactions of the body to the rise of the glucose level comes with a delay which

may be model by explicit delays in time [128, 129], or by extra compartments

in the dynamical system [122, 130, 131]. In epidemiology, usually latency and

infections periods are describe by an exponential distribution. Authors in [132]

argued the inadequacy of this distribution since this proposal overestimates

shorter and longer durations of the phenomenon in the period. More realistic

distributions may be described by a gamma distribution. This can be obtained

by subdivide the compartment into n stages. Specifically, the distribution

obtained is an Erlang distribution, which is a gamma distribution with a

shape integer parameter [133]. Bayesian approaches for estimate parameters

of compartmental models were proposed in [131, 134, 135]. Authors in [135]

proposed a minimal model for glucose-insulin dynamics. Their classification

parameters have not biological meaning. Authors in [134] proposed a Bayesian

experimental design for the time at which samples are collected.

Contributions The main contributions of this work are: (i) Insulin secretion

is modeled with two possible sources of stimulation: direct glucose rise and

incretin hormones. Incretin effect has a major role in insulin secretion when the

body suffers an oral stimulus. Separately, these two sources allows us to propose

a classification between patients. These parameters may suggested possible

alterations in healthy patients. (ii) Delays of the body in the gastrointestinal

tract and the endocrine system are model by a gamma distribution. We

introduce Erlang distributed periods in the hormonal dynamics for incretin,

insulin and glucagon.

Limitations We remark some limitations for this approach: (i) Since the

glucagon dynamics turns on when the glucose level is lower than the basal

level, for patients with measurements greater than this basal level we do not

have information about the parameter corresponding to this reaction. The

consequence is that the posterior marginal for θ2 matches the prior marginal.

This situation may be circumvent by monitoring the glucose level during more

than two hours. (ii) The classification proposed is based on two parameters.
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Each is the product of two quantities with biological meaning. Nevertheless,

we can not recover each action separately. Adding insulin data in the inference

may allow recover each action parameter.

The rest of this report is organized as follows. In Section 3.6.1 we present the

ODE system that describes the biological situation for the glucose dynamics

during OGTT. This section is followed by the description of the Bayesian

inference problem in Section 3.6.2. Our numerical results are present in Section

3.6.3. Finally we discuss our results and findings in Section 3.6.4.

3.6.1 Forward Modeling

In this section we describe the biological situation in detail to justify our

approach. The biological modeling on which we rely is given by the following

ODE system

Ġ = λ1L− λ2I + λ3V (3.70)

İ = λ4(G−Gb)
+ + λ8V − λ5I (3.71)

L̇ = λ6(Gb −G)+ − λ7L (3.72)

V̇ = −λ3V (3.73)

where G denotes the glucose blood level, I the insulin level, L the glucagon

level, and V the glucose from the sugary drink in the gastrointestinal tract.

Equation 3.70 models the dynamics of the glucose which decreases proportional

to the insulin level and increases according to two sources, first by the glucose

of the sugary drink from the intestinal tract, second by the glucagon action.

λ1 and λ2 are efficacy rates for the glucagon and the insulin. The dynamics of

insulin and glucagon are very similar and depends on the basal glucose level of

the body. The pancreas secretes insulin when the blood glucose level is higher

than the basal glucose level on the body. Conversely, secretes glucagon when

the blood glucose level is lower than the basal glucose level on the body. We

model this secretion action by a switch on the quantity G−Gb. Mathematically

speaking, we use the positive part of G−Gb, denoted by (G−Gb)
+, to model
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the secretion of insulin, conversely (Gb − G)+ to the secretion of glucagon. λ4

and λ6 are secretion rates for the insulin and the glucagon and λ5 and λ7 are its

disintegration rates. In addition to the insulin dynamics, hormones from the gut

play a main role in the insulin secretion on the oral glucose consumption. The

second term on equation (3.71) mimics the secretion due to these hormones, the

incretin effect. Incretin effect is reduced or even vanished in diabetic patiens,

[127, 126]. Therefore, insulin secretion may be due by the glucose stimulation

and/or the incretin effect. Model defined by equations (3.70)- (3.73) has 8

parameters. Parameters λ5 and λ7 will be taken from the literature. For the

other 6 parameters, we will face an identifiability problem, that is, the structure

of the model may lead to inference problems related to the uniquely estimation

of parameters. To face this problem, we introduce scaled version of insulin and

glucagon. Note that by multiplying equation 3.71 by a constant, we obtain a

scaled insulin

λI İ = λIλ4(G−Gb)
+ + λIλ8V − λIλ5I (3.74)

If we name Is = λII, we have İs = ˙(λII) = λI İ. By substituying in equation

3.74, we obtain

İs = θ(G−Gb)
+ + γV − λ5Is (3.75)

We will apply this idea to obtain a scaled insulin and glucagon by multiplying

equation 3.71 by λ2 and equation 3.72 by λ1. Finally we obtain the system

Ġ = L1 − I1 + λ3V (3.76)

İ1 = θ1(G−Gb)
+ + θ3V − λ5I1 (3.77)

L̇1 = θ2(Gb −G)+ − λ7L1 (3.78)

V̇ = −λ3V (3.79)

where L1 = λ1L, I1 = λ2I, θ1 = λ2λ4, θ3 = λ2λ8 and θ2 = λ1λ6. Note that these

substitutions allow us to decrease the number of parameters in the system which

will be useful in the inference to fight the identifiability problem. Finally, note

that this model is centered around the value Gb, which tipically take values in

the range [75, 100].

In addition, we would like to address the possible delays of the body
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reaction. To introduce explicit delays in time in the ODE system is very common

[128, 129]. The same effect may be obtained by introducing extra compartments.

In epidemiology, these extra compartments model aspects as latency and

infection periods with a more realistic distribution. This technique is known as

an Erlang model, [133, 136, 137, 132]. Typically, the exponential distribution

is used. Nevertheless, the exponential distribution overestimates the number

of individuals whose duration of infection is shorter or longer than the mean

[132]. In a classical SEIR compartment model, this approach subdivides stage

I (and/or E ) into identical substages. This modeling matches the renewal

approach [133], which considers the cohorts of infectious(exposed) individuals

while the ODE approach considers each infectious(exposed) individual. In this

work we consider the same idea to model hormonal behavior during the OGTT

test. We propose a modification of the model in [36], deduced before in equations

(3.76)-(3.79). This modification is given by

Ġ = Lm − In + θ0Vs (3.80)

İ1 = θ1(G−Gb)
+ + θ3Vs − nσII1 (3.81)

İi = nσIIi−1 − nσIIi, i = 2, . . . , n (3.82)

L̇1 = θ2(Gb −G)+ −mσLL1 (3.83)

L̇j = mσLLj−1 −mσLLj, j = 2, . . . ,m (3.84)

V̇1 = −sθ0V1 (3.85)

V̇k = sθ0Vk−1 − sθ0Vk, k = 2, . . . s (3.86)

We propose n = m = s = 2. After ingestion, glucose is absorbed in the

upper gastrointestinal tract, transported to the liver, and finally reaches the

peripheral circulation [138]. Introducing a second compartment for V allows

us to model this behavior of glucose due to the sugary drink in the digestive

system as in [131, 139]. Second compartments for I and L allow us to model the

delays due to the pancreas reaction as in [128]. These delays are a consequence

of recurrent inhibitory dynamics [140, 141]. In recurrent inhibition, we can see

how the activation of a quantity produces excitation in a second quantity that

inhibits the activity of the first. This phenomenon is present in the dynamics
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of glucose-insulin-glucagon. The specific case for glucose-insulin dynamics is

known as a negative feedback loop [142]. In the next subsection, we propose a

regressor from the dynamical system in equations (3.80)-(3.86) to fit the glucose

data provided by the application of the OGTT. The inference process follows a

Bayesian approach.

3.6.2 Bayesian Formulation for the Inference Problem

In this section, we consider the inverse problem of determining the posterior

distribution for the parameter Θ = (θ0, θ1, θ2, Gb, θ3). Under the Bayesian

approach, the solution of the inverse problem is a probability distribution

conditioned on the information of the data. We have glucose measurements

at five times ti = 0.0, 0.5, 1.0, 1.5 and 2.0 hours. We assume that the data y

follow the noise model

yi = G(Θ)i + ηi (3.87)

where G(Θ)i = G(ti,Θ) and G is the solution for the glucose on the ODE system

given in equation (3.80) and ηi ∼ N (0, σ2). The parameters σI , σL and σ are

determined from previous works [131, 139].

Our prior knowledge about the parameters are that θi > 0 and the basal level

of glucose is in the range of 75 and 100. We assumed independence on the prior

parameters, that is

π0(Θ) = π0
0(θ0)π1

0(θ1)π2
0(θ2)π3

0(Gb)π
4
0(θ3) (3.88)

We propose gamma distribution for each parameter. Le us recall that if Z ∼
Γ(α, β) then E[Z] = α/β and Var[Z] = α/β2. Our priors proposal are given

by:

θ0 ∼ Γ(2, 1)

θ1 ∼ Γ(10, 1)

θ2 ∼ Γ(10, 1)

θ3 ∼ Γ(10, 1)

Gb ∼ Γ(902/20, 90/20). (3.89)
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The prior distribution for the parameter θ0 corresponding to the gastrointestinal

dynamic is truncated. From simulations, we propose values greater than 0.5 to

avoid almost constant trajectories for the glucose. Having the likelihood and

the prior, and since we are working in finite dimensions, Bayes theorem ensures

the posterior distribution existence π(Θ|y). To generate samples, we used the

t-walk [65]. We perform 10000 iterations for each patient with a burnin of 1000.

We show our results in the next subsection.

3.6.3 Numerical Results

In this subsection, we show the results of the inference. We perform a MCMC

using t-walk for 80 patients classified at follows:

1. 51 healthy patients (H).

2. 4 patients with Impaired Fasting Glucose (IFG): Fasting blood glucose

level ≥ 100.

3. 15 patients with Impaired Glucose Tolerance (IGT): Blood glucose level

≥ 140 at t = 2.

4. 7 patients with IFG and IGT (BA: both alterations).

5. 3 patients with Diabetes Mellitus 2 (DM2): Fasting blood glucose level

≥ 126 and blood glucose level ≥ 200 at t = 2.

In Figure 3.27 (a) we show the fitting to the data for several estimators as the

posterior mean, the posterior median, and the maximum a posteriori (MAP) for

a patient with oscillatory data. We show the corresponding trajectories for the

digestive compartment V2 in Figure 3.27 (b), scaled insulin compartment I2 in

(c), and scaled glucagon compartment L2 in (d). In Figures 3.28-3.29 we show

the fitting to the glucose data and the uncertainty associated with healthy and

non-healthy patient respectively.

From the information of the inference, we would like to explore the values of

the parameters that describe different situations on patients. In Figure 3.30 (a)

we show chain values for five different scenarios. The corresponding glucose
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(a) (b) (c) (d)

Figure 3.27: (a) Glucose level and fit to data for some estimators, (b) digestive
compartment V2, (c) scaled insulin compartment I2, (d) scaled glucagon
compartmentL2.

(a) (b) (c)

Figure 3.28: Fit to data and uncertainty in healthy patients.

(a) (b) (c) (d)

Figure 3.29: Fit to data and uncertainty in unhealthy patients. (a) Patient with
IFG, (b) Patient with IGT, (c) Patient with IGT, (d) Diabetic patient.

measurements are shown in Figure 3.30 (b). Note that parameters θ1 and

θ3 allow us to recognize low secretion insulin levels. The gastric emptying

parameter θ0 allows us to recognize the initial slope during the test. Two

patients with low gastrointestinal emptying labeled as impaired2 and diabetic2

present higher values close to two hours instead of at the beginning.

In Figure 3.31 (a), we show the values of the MAP estimate for parameters

θ1 and θ3 inferred. We plotted 1/θ3 against 1/θ1. A high value for 1/θ1 may
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(a)

(b)

Figure 3.30: (a) Chain values for parameters θ0, θ1, and θ3 for two diabetic
patients, two patients with impaired Glucose Tolerance and a Healthy patient.
Gastric emptying parameter θ0 allow us to recognize initial slope during the
test. (b) Glucose level measurements from patients in (a).

be produced by a high glucose level at time 30 minutes whilst a high value for

1/θ3 may be produced by a high glucose level at time 1 hour and 30 minutes.

Patients diagnosed with IFG are considered healthy in the classification based

on insulin secretion indicators. In Figure 3.31 (b)-(c), we show the results from

a k-means performed using the package scikit-learn in python [?]. The idea

behind this method is to identify possible clusters of data in a database. We

are interested in determine three centroids see Figure 3.31 (b). The labeling

proposed by the algorithm classifies into three groups shown in Figure 3.31 (c).

Note that the results match a possible classification based on θ3 values.

3.6.4 Discussion and conclusions

In this work, we propose a Bayesian approach to analyze OGTT data. The

modeling includes two insulin indicators, one related to blood level glucose,
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(a) (b) (c)

Figure 3.31: (a) Plot 1/θ3 against 1/θ1 for the MAP estimate values. (b)
Centroids computed by the clustering method of kmeans, (c) Labeling generate
from the clustering process.

(a) (b)

Figure 3.32: Discussion: (a) Data from three patients, (b) Classification
according to insulin indicator θ1 and θ3 values at the MAP. Patient diagnose
with IGT has an impaired value of the glucose at t = 2 because of its glucagon
secretion effect. Indicators of insulin secretion take values inside the healthy
zone. Two patients diagnose as healthy are close of the transition limit due to
a small value of one of the insulin indicators.

the other with the glucose level in the gastrointestinal tract. These indicators

describe insulin dynamics due to oral stimulus. A possible classification for

patients is described in Figure 3.31 (a). Now, we discuss its scope and

limitations. Patients diagnosed with IFG have an impaired value at fasting

state and unimpaired values at two hours. Their insulin indicators classify

these patients as healthy because their situation is not a consequence of the

oral stimulus. A patient with IGT may have normal values for its insulin
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(a) (b)

Figure 3.33: Data from a healthy patient and fit glucose trajectories (a)
during two hours, (b) during five hours. In the inference performed in (a),
glucagon indicator is hardly recognize due to his action starts close of the two
hours. Having more time monitoring glucose levels may allow to have a reliable
inference about its value.

indicators as shown in Figure 3.32. From its glucose values, we can deduce that

its situation is a consequence of impaired glucagon secretion. This anomaly

will not be detected by the insulin indicators. To recognize this situation, the

parameter θ2 may provide information. As we discussed before, this parameter

is not identifiable for all patients with their glucose values greater than the

basal glucose level. Have measurements for more than two hours could solve the

identifiability situation as we exemplify in Figure 3.33. Finally, the classification

places some healthy patients close to the transition zone. This situation may

be a consequence of a high glucose level at 30 minutes, for θ1, or at 1 hour

and 30 minutes for θ3, see Figure 3.32 (a). This may be the beginning of

an anomaly which may be confirmed if patients stay under control and follow

up for several months or years. From our results, it seems to us that the

classification in healthy, IFG, IGT, IFG-IGT, and T2D could be modified to

recognize more specific details about the cause of an impaired condition. Future

work contemplates how to adapt the model to incorporate insulin data. It is well

known that the human body has a basal level of insulin and that insulin secretion

follows pulsating patterns which represent new challenges in our modeling and

the respective uncertainty quantification.
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3.7 Modeling the transmission dynamics for

the COVID-19 epidemic outbreak

In this subsection, we show the results on the inference of the transmission

rates in a dynamical system that models the dynamics of COVID-19 in México.

This model was presented in [143]. Under some assumptions, we formulate

the Bayesian inverse problem for two parameters: the transmission rate from

infected individuals and the transmission from the environment.

3.7.1 Forward Model

Based on the clinical progression of the disease, we propose a deterministic

compartmental epidemic model under the SEIR structure as in [144, 145, 146].

One important aspect of our model is that, in addition to human-to-human

transmission, we consider the indirect infections caused by contact with a

contaminated environment.

For our model formulation, we divide the total human population (denoted

N) into five compartments: susceptible individuals (denoted S), exposed/latent

individuals (denoted E), infectious asymptomatic individuals (denoted A),

infectious with symptoms (denoted I), and recovered (denoted R). Finally,

we consider a compartment for the free-living COVID-19 in the environment

(denoted V ).

For our model formulation, we consider a short time horizon in which the

total human population is relatively fixed. Therefore, demographic dynamics

are not considered in the model. The susceptible population S can acquire the

infection when they come in contact with asymptomatic A and symptomatic

I infectious individuals at rates βA and βI , respectively. They also can be

infected by contact with contaminated surfaces with coronavirus at a rate βV .

A proportion p of the exposed individuals E will transition to the symptomatic

infectious class I at a rate σ, while the other proportion 1 − p will enter the

asymptomatic infectious class A. The recovery rates for individuals in classes A,

I are γA, γI , respectively. These individuals gain permanent immunity and move

to the recovered class R. However, individuals in the symptomatic infectious
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class I can die due to the disease at a rate µ. Asymptomatic and symptomatic

infected individuals release the virus into the environment with shedding rates

c1 and c2, respectively as presented in [147]. Hence, the free-living virus in the

environment grows with a factor c1A + c2I. The parameter µV represents the

mortality rate of the free-living virus in the environment.

These assumptions lead to the following system of differential equations:

Ṡ = −λS,

Ė = λS − σE,

Ȧ = (1− p)σE − γAA,

İ = pσE − γII − µI,

Ṙ = γAA+ γII,

V̇ = c1A+ c2I − µV V,

(3.90)

where λ = βAA+ βII + βV V is the force of the infection.

According to the WHO, the SARS-CoV-2 is primarily transmitted between

people through respiratory droplets and contact routes. Droplet transmission

occurs when a person is in close contact (within 1 m) with an infectious

individual and is therefore at risk of having his mouth, nose, or eyes exposed to

potentially infectious respiratory droplets [148]. The parameters βk (k = A, I)

model this direct person-to-person transmission and are of the form βk = bkφk,

where bk is the average number of contacts per person per unit of time and

φk is the probability of successful infection given a contact. For example,

βA = bAφA, where bA is the average number of close contacts in which a

susceptible is exposed to respiratory droplets produced when an asymptomatic

infected person coughs, sneezes or talks, and φA is the probability of successful

infection given this contact. Since the virus can survive on inanimate surfaces

[149], the transmission may also occur through contaminated fomites. The

parameter βV models these indirect infections caused by touching an object or

surface contaminated (due to an infected person) with the virus. Therefore,

βV = bV φV , where bV is the average number of times a susceptible person

touches a surface contaminated with SARS-CoV-2, and φV is the probability

of infection given this contact. The parameters ci ≥ 0 (i = 1, 2) measure the
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number of virus particles released through respiratory droplets produced per

infected individual (during coughs or sneezes) that remain alive and infectious

on surfaces or objects per unit of time.

From results in [143], we know that the basic reproduction number is given

by

R0 =

[(
βA
γA

+
c1βV
µV γA

)
(1− p) +

(
βI

γI + µ
+

c2βV
µV (µ+ γI)

)
p

]
S0. (3.91)

which can be divide in two main contribution channels from the symptomatic

and the asymtomatic infected. The basic reproduction number (3.91) is the

weighted sum of the terms TA and TI , that is,

R0 = (1− p)TA + pTI (3.92)

where

TA =

(
βA + c1

βV
µV

)
S0

γA
(3.93)

measure the contribution of asymptomatic infectious individuals to the

production of new infections, and

TI =

(
βI + c2

βV
µV

)
S0

γI + µ
(3.94)

is the contribution of symptomatic infectious individuals to the production of

new infections. Note that both terms take account the environment-to-human

transmission route for virus.

3.7.2 Parameter Estimates and Bayesian Inference

The compartmental epidemic model (3.90) for the transmission dynamics of

SARS-CoV-2 has 11 parameters. First, we gather some parameter values from

the literature. Next, we estimate those parameters that are not found in the

literature or that depend on the population under study. We assume the time

unit is days and estimate the parameters as follows.

(i) Recovery rates. The estimated mean value for the recovery rates γA, γI ,
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for asymptomatic and symptomatic infectious individuals, respectively,

have been estimated to be γA = 0.13978 and γI = 0.33029 [150].

(ii) Mean incubation period. The mean incubation period (1/σ) for

coronavirus infection has been estimated to be 6.4 days, ranging from

2.1 to 11.1 days [151]. Therefore, we assume σ = 1/6.4.

(iii) Fraction of individuals which develop symptoms. The probability of having

symptoms after the infection has been estimated to be p = 0.868343 [150].

(iv) Mortality rate of coronavirus in the environment. Some studies have

estimated that coronaviruses can remain infectious on inanimate surfaces

at room temperature from a few hours up to 9 days [149]. Here, we assume

an average survival rate of 1 day which implies µV = 1.

(v) Disease induced death rate. The estimated mean value for the disease

induced death rate is µ = 1.7826× 10−5 [150].

The rest of the parameters, that is, the transmission rates βA, βI , and βV ,

in addition to the shedding rates c1 and c2, were estimated using Bayesian

inference in [143]. From a Sobol sensitivity analysis, performed in Salib [152],

we can see in Figure (3.34) that indices corresponding to ci are null. Here, we

assume c1 =
c2

2
as in [153] and consider a fix value for c1. Finally, since the β′s

rates depend highly on population-level characteristics, we make inference in βI

and βV , assuming that βA = 2βI based on results in [143]. We consider data

corresponding to the daily cumulative cases of infected individuals in Mexico.

The data were obtained from the daily report of the Mexican Secretaria of

Health from March 11, 2020, to March 25, 2020 [154]. It is important to

remark that this data corresponds to the confirmed cases; therefore, it is highly

possible that the real epidemic curve is higher than the total infected cases

presented in the data. In other words, since in México there is not massive

testing, the initial data on the confirmed cases from the pandemic corresponds

to symptomatic infections. Therefore, as an attempt to avoid estimates biased

down, we fit the data using only the individuals in the symptomatic infectious

class, I, without considering the asymptomatic infectious class A. We assume
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Figure 3.34: First (S1) and total order (ST ) Sobol indices of the cumulative
cases C(ti; x) built from the solution I of model (3.90) with respect to the
parameters x = (βA, βI , βV , c1, c2). We perform this analysis for several time
values ti and found that the results do not depend on ti. The indices for the
variables ci (i = 1, 2) are null.

the following model for the data yi

yi ∼ Poisson (Ij(x)) , i = 0, . . . , 14 (3.95)

where Ij(x) denote the predicted number of new cases between times j− 1 and

j, see [155]. For the case of our model,

Ij(x) =

∫ tj

tj−1

pσE(x)dt (3.96)

with E the exposed individuals given by the ODE’s system at time ti and

x = (βI , βV ) the vector of parameters to estimate. By assuming independence

on the observations, the likelihood function L(x) satisfies:

L(x) ∝
j=14∏
j=1

e−Ij(x)(Ij(x))yj

yj!
. (3.97)

The following values were taken as initial conditions: the initial total population

was taken as the approximate Mexican population at the year 2020, i.e., N(0) =

128, 000, 000; the initially symptomatic infectious individuals as I(0) = 4, which

is equal to the initial number of confirmed cases in the data. No recovered

individuals are considered at the initial time, thus R(0) = 0. Finally, we
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Figure 3.35: (a) Data per date and fitted curves for the cumulative infected
individuals for the MAP estimate and posterior mean. (b) Estimation of R0

for the samples of the MCMC. The value of R0 for the MAP estimate is 2.5
and for the posterior mean estimate is 2.7.

assumed E(0) = 4, A(0) = 1, V (0) = 10, and S(0) = N(0)−E(0)−A(0)−I(0).

Moreover, we define by π0(x) the prior distribution for x. We assume

independence of the parameters, hence

π0(x) = π1(βI)π2(βV ). (3.98)

Since we are using mass action incidence, we can expect to have values of βj (j =

I, V ) around the negative order of the initial susceptible population. Hence, we

propose a Gamma distribution for βA with mean 10−8. Recall that the gamma

distribution is denoted by Γ(α, β) with α the shape parameter and β the inverse

scale parameter. If Z ∼ Γ(α, β) then E[Z] = α/β and Var[Z] = α/β2. We

propose

βI ∼ Γ(10−8, 1)

βV ∼ Γ(10−8, 1). (3.99)

To sampling from the posterior, we run a Markov Chain Monte Carlo

(MCMC) using twalk, introduced in [65]. We consider the time in days and

t0 = 0 for the first data on March 11. We run a MCMC for 100000 samples

with 10000 of burnin. The posterior distribution for each parameter are shown

in Fig. (3.36).
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Figure 3.36: Marginal posteriors for the parameters (a) βI and (b) βV . (c)
Frequency distribution for R0 from the Monte Carlo samples.

Parameter MAP estimate Posterior mean

βI 6.69× 10−9 4.52× 10−9

βV 4.73× 10−8 4.88× 10−8

Table 3.4: Bayesian estimators
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Figure 3.37: (a) Infectious symptomatic individuals I(t) corresponding to the
MAP (red) and the posterior mean estimates (blue). (b) Red dots show the
data of cumulative confirmed cases of COVID-19 in Mexico from March 11,
2020, to March 25, 2020. The gray area shows the uncertainty with the last
25000 samples of the chain. The green dots represent data from march 26 to
march 31 that were not used in the inference.

The posterior distribution obtained allow us to compute posterior predictive

marginals for future data (after March 25). The probability of a future

observation z given the data y is p(z|y) and can be computed as follows

p(z|y) =

∫
X
p(z|x)p(x|y)dx (3.100)
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Figure 3.38: (a) Posterior predictive marginal for the total cumulative infections
on March 31. (b) Red dots show the data of cumulative confirmed cases of
COVID-19 in Mexico from March 11, 2020, to March 25, 2020, used for the
inference. In black we present our predicted values, in green the data from
March 26 to April 9 not used in the inference, and the dashed lines show the
interval with 98 percent of the mass for the predictive marginal.

where x denotes our vector of parameters. Figure 3.38 (a) shows the predictive

posterior marginal for the total cumulative infections on March 31. Figure 3.38

(b) shows a comparison between the predicted values for the cumulative number

of infections and the officially published data from March 26 to April 9. The

dashed lines represent the interval with 98 percent of the mass for the predictive

marginal.

Figure 3.39: (a) Incidence data fit from Monte Carlo samples (b) Cumulative
data fit from Monte Carlo samples.
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3.8 Achieving convergence rates with

accelerated methods

Consider the problem of

min f(x) (3.101)

where f is a convex function with x ∈ Rn. First-order methods had become

very popular in the machine learning community. The phenomenon named

acceleration has been a topic of theoretical and computational research. As we

mentioned before, authors in [106] derived a second-order ODE which is the

exact limit of Nesterov’s scheme. From a variational perspective, we can start

with a continuous-time equation and propose a discretization. We can obtain

several discretizations from the same second-order ODE. Of course, the aim is

to find a discretization that preserves theoretical properties as the convergence

rates. The aim of this section is to show numerical results about discretizations

that preserve continuous convergence rates.

3.8.1 Discretization from the continuous time equation

In this subsection, we show a discretization from a continuous time equation.

Consider the Hamiltonian

H(P,X, S, t) =
e2α

2
‖P‖2 + eβf(X) + (eα + α̇)S (3.102)

where α, β and γ satisfies

α = log p− log t (3.103)

β = p log t+ logC (3.104)

γ = p log t (3.105)

are functions proposed in [113] to achieve convergence rate of O(t−p). Note that

the optimal scaling conditions in equations (2.111) are satisfied. From lemma
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2.7.1, we deduce the following contact system

Ẋ = e2αP (3.106)

Ṗ = −eβ∇Xf(X)− P (eα + α̇) (3.107)

Ṡ =
e2α

2
‖P‖2 − eβf(X)− (eα + α̇)S . (3.108)

In [112], authors propose a splitting method applied to this Hamiltonian. This

ODE system is directly related with the solution of the optimization problem

in equation (3.101). This splitting is proposed based on the ideas showed in

subsection 2.7.1 and is given by

Proposition 3.8.1 (Second–order contact optimization algorithm)

Splitting a contact Hamiltonian into the terms

Hφ1 = e2α

2
‖P‖2 (3.109)

Hφ2 = eβf(X) (3.110)

Hφ3 = (eα + α̇)S , (3.111)

gives the following second–order contact integrator, which in turn derives an

explicit optimization algorithm,

S2(τ) = e
τ
2
∂te

τ
2
Xφ1e

τ
2
Xφ2eτXφ3e

τ
2
Xφ2e

τ
2
Xφ1e

τ
2
∂t , (3.112)
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where each map is given by

e
τ
2
∂t


X

P

S

t

 =


X

P

S

t+ τ
2

 (3.113)

e
τ
2
Xφ1


X

P

S

t

 =


X + τ

2
e2αP

P

S + τ
4
e2α ‖P‖2

t

 (3.114)

e
τ
2
Xφ2


X

P

S

t

 =


X

P − τ
2
eβ∇f(X)

S − τ
2
eβf(X)

t

 (3.115)

eτXφ3


X

P

S

t

 =


X

P e−τ(eα+α̇)

S e−τ(eα+α̇)

t

 . (3.116)

3.8.2 Numerical Results

To exemplify the results let us consider the correlated quadratic function

f(X) =
1

2
XTAX, Aij =

√
ij

2|i−j|
for i, j = 1, . . . , 50 . (3.117)

with initial condition random in the range −1 ≤ X0,i ≤ 1 to test the robustness

of each method to the initialization. Our results exemplify the convergence rate

in equation (2.114) for orders p = 2, 4, 5, 6, 8, 12. We choose a final time to

show the results. To stabilize the algorithm, for higher-order a lower step size

is needed. That means that to reach the final time for small step sizes, more

iterations are needed. That produces big computational costs to obtain good

results in the high order regime.
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(a) (b) (c)

Figure 3.40: We exemplify how the discretization preserves the theoretical order
for p = 2, 4, 5. Note that we decrease the step size dt as we increase the order
p.

(a) (b) (c)

Figure 3.41: We exemplify how the discretization preserves the theoretical order
for p = 6, 8, 12. For high order, the discretization may be unstable for high dt
values.
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Chapter 4

Discussion

Typical uncertainty quantification (UQ) problems include prediction,

verification, validation (models and software), parameter estimation, and data

assimilation. All possible sources of errors are considered in the UQ analysis as

the forward modeling, observation, and discretization processes. Our specific

interest relies on the challenges for the statistical approach for inverse problems

produced by the presence of a dynamical system in the forward modeling. In

this work, we analyze several uncertainty quantification strategies in different

problems. The main contribution is for Bayesian model selection. First,

we compute the normalization constants in a 1D example where the aim is

to determine the number of coefficients in a Fourier series to represent the

initial condition on the wave equation. Second, we compute the normalization

constants using the low-rank approximation of the posterior covariance for linear

Gaussian inverse problems. The same idea was applied in a linearized problem

governed by an elliptic PDE. Both examples in 2D focus a in mesh refinement

strategy and the model selection allows us to stop the refinement and compare

between different criteria. Other results included (i) the comparison of two

members of different families of transition kernels to perform the MCMC in an

inference problem in 1D, (ii) the incorporation of optimal experimental design

elements in the Multifrequency Algebraic Inversion with application to Magnetic

Resonance Elastography, (iii) the inference for Oral Glucose Tolerance Test

data by proposing modeling by an Erlang ODE system and a renewal equation

perspective to model de delays in the body and (iv) the inference for an ODE
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model that describes the early dynamics of the covid-19 in México. Finally,

we also present a discretization that preserves theoretical convergence rates for

an accelerated scheme with applications in optimization and machine learning.

Now, we discuss our results.

We found that computing the normalization constants to compare several

models allow determining optimal resolution or dimension for the inference.

For the 1D example, this computation allows to considerably reduce the

computational cost against a demanding MCMC as the reversible jump. For

both 2D examples related to mesh refinement, for linear and linearized models,

the normalization constant allows us to stop the refinement and to compare

several refinement criteria with different information. Its application for

nonlinear problems depends on each problem. Let us recall that having a locally

refined mesh to perform the inference allows us to improve the results. Also, the

refined mesh represents a tool when combining elements of different approaches.

Traditional mesh refinement approaches include an error indicator to determine

the region to refine. The criteria proposed in this work does not include this

information. Consequently, the refinement does not allow us to reduce the L2

error in the parameter. To combine uncertainty information and error indicators

to perform the refinement is part of our future work.

We have found that t-walk slightly outperforms HAMCMC in the example

at hand, e.g., HAMCMC fails to recover the variance of the points where

the piecewise constant diffusion coefficient changes value. Our numerical

experiments support the claim that for HAMCMC, the CM estimator does

not fit the data well. Even though HAMCMC is asymptotically unbiased, an

MH acceptance function contradicts this claim. In this case, the inverse Hessian

approximation is not always definite positive. Of note, a constant regularization

parameter λ can handicap the sampling. An eigendecomposition of Ht allows

us to determine the value for λ at each t. This strategy is achievable in our case

study but is prohibitive as the dimension increase. Even when t-walk needs a

bigger chain, the sampling is faster due to the absence of derivative information.

Densities with strong correlations and varying scales present several challenges

at the sampling step. Despite its extensive computational effort and cost,

local geometric information is introduced to obtain better samplings results.
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The affine invariant property is a tool that allows us to face these challenges.

As for optimization, a proposal guided only by the derivative information of

the target density might not be enough when computational efficiency and

high performance needs to be achieved. It is the case for a Quasi-Newton

proposal (L-BFGS), specifically for HAMCMC. The Metropolized version of

the complete Newton scheme satisfies the affine invariance property provided

that the Hessian is positive definite. Bayesian inference (MCMC) demands

approximations cheaper and faster but sufficiently informed.

We have found that introducing elements of optimal experimental design

to the multifrequency algebraic inversion allow us to obtain an estimate with

lower uncertainty and focalize in the region of interest. The way that we choose

to decrease the uncertainty of the estimate was by computing the trace of the

covariance matrix. For our simulations with synthetic data, we can compute

the L2 error between the estimate and the true parameter. The optimal design

reduces this error. Other criteria to define the optimality may be implemented

to compare these results.

We have found that modeling the glucose-insulin-glucagon dynamics by an

Erlang ODE system allows obtaining good results in the inference of parameters

on the Bayesian approach for the OGTT data. The modeling includes two

insulin indicators, one related to blood level glucose, the other with the glucose

level in the gastrointestinal tract. These indicators describe insulin dynamics

due to oral stimulus. A possible classification for patients is described in Figure

3.31 (a). Patients diagnosed with IFG have an impaired value at fasting state

and unimpaired values at two hours. Their insulin indicators classify these

patients as healthy because their situation is not a consequence of the oral

stimulus. A patient with IGT may have normal values for its insulin indicators

as shown in Figure 3.32. From its glucose values, we can deduce that its situation

is a consequence of impaired glucagon secretion. This anomaly will not be

detected by the insulin indicators. To recognize this situation, the parameter

θ2 may provide information. As we discussed before, this parameter is not

identifiable for all patients with their glucose values greater than the basal

glucose level. Have measurements for more than two hours could solve the

identifiability situation as we exemplify in Figure 3.33. Finally, the classification
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places some healthy patients close to the transition zone. This situation may

be a consequence of a high glucose level at 30 minutes, for θ1, or at 1 hour

and 30 minutes for θ3, see Figure 3.32 (a). This may be the beginning of an

anomaly which may be confirmed if patients stay under control and follow up for

several months or years. From our results, it seems to us that the classification

in healthy, IFG, IGT, IFG-IGT, and T2D could be modified to recognize more

specific details about the cause of an impaired condition.

We have found in other works a discretization matching the theoretical rate

of convergence in the context of acceleration methods for optimization and the

inference on modeling the transmission human-environment for covid-19 for

mexican data.
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Chapter 5

Conclusions

Inverse problems arise in an enormous variety of science and engineering

applications where model parameters must be estimated from noisy and indirect

observational data. These problems are characterized by observational errors,

model errors, and issues of ill-posedness which yield uncertainties in model

parameters. Bayesian statistical approaches to inverse problems allow to

make simulations and predictions with quantified uncertainties. These tasks

become essential in model-based decision making. Verification and validation

processes must be built focus in specific quantities of interest which allow to

give answers to questions coming from the specific knowledge area. Diverse

mathematical and computational branches as statistics, optimization, numerical

analysis of ODEs/PDEs, and machine learning may meet to carry out this

work. In this work, we have seen how theoretical conditions allow us to

ensure a correct approach to numerics. These conditions give consistency on

the discretization and produce stability in the numerical surrogate posterior.

Possible applications like the ones we show in medical imaging, epidemiology,

and biology illustrate how a probabilistic approach to encode errors in the

modeling process may lead to predictive simulations with reliable uncertainty

measures in real-world problems. However, more demanding applications bring

with them more challenges related to power computing, high-dimensionality

in data and parameters, prediction, multifidelity, and others that we do not

address in this work.
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Appendix A

A note on optimization

A.1 Inexact Newton methods

The cost of factoring the Hessian is prohibitive, and it is preferable to compute

approximations to the Newton step using iterative linear algebra techniques.

The inexact Newton method use these technique. Recall that the Newton step

is given by

Hkpk = −gk (A.1)

The aim of these methods is to obtain inexpensive approximations of pk for large

dimensions. The idea is to solve A.1 by the conjugate gradient method. Lanczos

method can be used too instead. Some modifications are needed to handle with

negative curvature in the Hessian Hk. Note that we look for implement methods

Hessian free, that is, where Hk not need to be calculated or stored explicitly.

To terminate an iterative solver for A.1, we consider the residual

rk = Hkpk + gk (A.2)

Usually, we terminate the CG iterations when

||rk|| ≤ ηk||∇fk|| (A.3)

The sequence {ηk} is called the forcing sequence. If the starting point is

sufficiently near of the optimum, the convergence is obtained by ensuring that
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ηk ≤ η < 1, see [156]. Since the Hessian Hk may have negative eigenvalues when

xk is not close to a solution, the CG is adapted to terminate as soon a direction

of negative curvature is generated. hIPPYlib uses Eisenstat-Walker [157] to

choose the forcing sequence and Steihaug [158] to avoid negative curvature.

A.2 The Gauss Newton approximation of the

Hessian

Consider the problem of minimizing the function S given by

S(x) =
k∑
i=0

s2
i (x) (A.4)

where si : Rn → R. The Gauss Newton approximation of the Hessian is a

modification of the Newton method that drop off the second derivatives, which

may be hard and expensive to compute. If we denote by g the gradient of the

function in equation (A.4), then

gj = 2
k∑
i=0

si
∂si(x)

∂xj
, j = 1, . . . , n (A.5)

where xj = xj. The Hessian matrix is computed by differentiating g and is

given by

Hjp = 2

(
k∑
i=0

∂si(x)

∂xj

∂si(x)

∂xp
+ si

∂2si(x)

∂xj∂xp

)
, j, p = 1, . . . , n (A.6)

The Gauss-Newton approximation HGN of H is

HGN
jp = 2

(
k∑
i=0

∂si(x)

∂xj

∂si(x)

∂xp

)
, j, p = 1, . . . , n (A.7)

Motivated by this approximation, second derivatives in equations 2.50 and 2.51

of the forward problem are drop to compute the Gauss Newton approximation
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of the Hessian for the pde constrained optimization.

A.3 GMRES

One of the most effective iterative methods for solving large sparse symmetric

positive definite linear systems of equations is a combination of the conjugate

gradient method with some preconditioning technique. Authors in [159]

introduce a generalized minimal residual algorithm for solving nonsymmetric

linear systems, the GMRES. The method is based on the Arnoldi process, which

is the analogue of the Lanczos algorithm for nonsymmetric matrices. Arnoldi’s

method uses the Gram-Schmidt method for computing an l2−orthonormal basis

{v1, v2, . . . , vk} of the Krylov subspace Kk ≡ span{v1, Av1, · · · , Ak−1v1}. In

order to solve the linear system

Ax = f (A.8)

we seek an approximate solution xk of the form xk = x0 + zk, where x0 is

some initial guess to the solution x and zk is a member of the Krylov subspace

Kk ≡ span{r0, Ar0, · · · , Ak−1r0} with r0 = f −Ax0. Several methods to obtain

this zk are known which can break down of have stability problems for indefinite

matrix cases. The GMRES method introduced in [159] uses the basis generated

by Arnoldi’s method to circumvent this limitation. The idea is to solve the least

squares problem:

min
z∈Kk
||f − A(x0 + z)|| = min

z∈Kk
||r0 − Az|| (A.9)

Since Arnoldi’s method give us a basis for Kk, we can set z = Vky where Vk is

the matrix formed by the elements basis {v1, v2, · · · , vk}. The solution is given

by xk = x0 + Vkyk where yk minimizes a constraint function with y ∈ Rk. In

practice, when k increases, the number of vectors in storage increases like k.

Same authors proposed a restarted version of GMRES denoted by GMRES(m).

Over the years implementation modifications have been proposed to improve

efficiency [160, 161, 162].
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Appendix B

Mesh refinement for a coefficient

in an elliptic equation

Let us recall the refinement criteria mentioned in subsection 3.3.4:

1. Comparing the changes on the posterior mean with respect to the prior

mean.

2. Comparing the changes on the posterior mean and variance with respect

to the prior mean and variance (ADS introduced previous subsection).

3. Refining the region of the boundary of the inclusion.

4. Refining the element with higher gradient.

We show the successive meshes generated by criterium 2 in Figure B.1, criterium

3 in figure B.2 and criterium 4 in figure B.3. Also, we implemented these four

criteria for an example with two hard inclusions, see Figures B.4 - B.7.
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(a) (b) (c) (d)

Figure B.1: Local refinement based on the change of the posterior mean and
variance with respect to the prior mean and variance (a) mesh 2, (b) mesh3, (c)
mesh4, (d) mesh5.

(a) (b) (c) (d)

Figure B.2: Local refinement based on the change of the posterior mean with
respect to the prior mean to refine the boundary area (a) mesh 2, (b) mesh3,
(c) mesh4, (d) mesh5.

(a) (b) (c) (d)

Figure B.3: Local refinement based on the change of the gradient (a) mesh 2,
(b) mesh3, (c) mesh4, (d) mesh5.
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(a) (b) (c) (d)

Figure B.4: Local refinement based on the change of the posterior mean with
respect to the prior mean for two inclusions (a) mesh 2, (b) mesh3, (c) mesh4,
(d) mesh5.

(a) (b) (c) (d)

Figure B.5: Local refinement based on the change of the posterior mean with
respect to the prior mean to refine the boundary area for two inclusions (a)
mesh 2, (b) mesh3, (c) mesh4, (d) mesh5.

(a) (b) (c) (d)

Figure B.6: Local refinement based on the change of the gradient of the posterior
mean for two inclusions (a) mesh 2, (b) mesh3, (c) mesh4, (d) mesh5.
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(a) (b) (c) (d)

Figure B.7: Local refinement based on the change of the posterior mean and
variance with respect to the prior mean and variance for two inclusions(a) mesh
2, (b) mesh3, (c) mesh4, (d) mesh5.
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Appendix C

Some models for glucose-insulin

dynamics

In the last decades, diabetes has become the main health problem in Mexico. It

is the principal cause of death in women since the year 2000. It is the primary

cause of premature retirement, blindness, and kidney failure. By the year 2025,

close to 11.7 million Mexicans are expected to be diagnosed with diabetes. Many

mathematical models have been developed to better understand the dynamics

of the glucose-insulin system. A review of some mathematical models can be

found in [124]. In this section, we describe two models for better understand the

ideas in the modeling proposed in section 3.6. The next model was presented

in [36]

Ġ = (L− I)G+
D

θ2

İ = θ0

(
G

G0

− 1

)+

− I

a

L̇ = θ1

(
1− G

G0

)+

− L

b

Ḋ = −D
θ2

(C.1)
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where G(t) is the blood glucose level at time t, I(t) is the blood insulin level at

time t and L(t) the glucagon levels. Also, D(t) is the digestive system ’glucose

level’. This model shows, again, that when G(t) is over a threshold value, Gb,

insulin is produced. For the contrary, when G(t) is under that value, glucagon

is produced.

A model with time delay: Authors in [128] proposed the following model

ẋ = −a1x(t)− a2x(t− τ)y(t− τ) + a3, (C.2)

ẏ = b1x(t)− b2y(t) (C.3)

where x(t) represents glucose concentration and y(t) insulin concentration, a1

and a2 are desappearance rates, a3 is the glucose infusion rate, b1 is the insulin

production rate and b2 is the insulin degradation rate. The time delay τ

represents the time taken by the pancreas to respond.

In section 3.6, we model this delay by an Erlang distribution by introducing

substages for compartments in insulin, glucagon and digestive system. Also, as

the model in the system (C.1), we model the insulin (glucagon) secretion by a

positive part of the quantity G−Gb (Gb −G).
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Appendix D

Sensitivity Analysis

The sensitivity analysis is the study of how the uncertainty in the output of

a mathematical model can be apportioned to different sources of uncertainty

in its inputs. This study can be made determining sensitivity indices, which

according to [163], are used for estimating the influence of individual variables

or groups of variables on the model output. Given a model of the form

Y = f(X1, X2, ..., Xk) (D.1)

with Y a scalar, a variance based first order effect for a generic factor Xi can

be written as

VXi (EX∼i(Y |Xi))

where EX∼i(·) is the mean of argument (·) taken over all factors but Xi and

VXi(·) is the variance of argument (·) taken over Xi. The meaning of the inner

expectation operator is that the mean of Y is taken over all possible values of

X ∼ i while keeping Xi fixed. The outer variance is taken over all possible values

of Xi. The associated sensitivity measure (first order sensitivity coefficient) is

written as:

Si =
VXi (EX∼i(Y |Xi))

V (Y )
(D.2)
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Stochastic quasi-newton langevin monte carlo. 2016.

[75] Dominique Bontemps et al. Bernstein–von mises theorems for gaussian

regression with increasing number of regressors. The Annals of Statistics,

39(5):2557–2584, 2011.

[76] Lucien Le Cam and Grace Lo Yang. Asymptotics in statistics: some basic

concepts. Springer Science & Business Media, 2012.

[77] George Biros and Omar Ghattas. Parallel lagrange–newton–krylov–schur

methods for pde-constrained optimization. part i: The krylov–schur

solver. SIAM Journal on Scientific Computing, 27(2):687–713, 2005.

[78] Pei Chen. Hessian matrix vs. gauss–newton hessian matrix. SIAM Journal

on Numerical Analysis, 49(4):1417–1435, 2011.

[79] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding

structure with randomness: Probabilistic algorithms for constructing

approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

[80] Arvind K Saibaba, Jonghyun Lee, and Peter K Kitanidis. Randomized

algorithms for generalized hermitian eigenvalue problems with application
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