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Abstract

This thesis is devoted to the mathematical modeling of infectious diseases and public health
giving particular attention to the study of the infection by the human papillomavirus (HPV).
We propose several mathematical models to understand and explain health behavior and to
guide the identification, development, and implementation of disease prevention programs.

The majority of the mathematical models constructed in this work are based on ordinary
differential equations describing the average dynamics underlying the infectious disease
under study. The mathematical tools that we have used to analyze such models include global
stability analysis of equilibria via Lyapunov’s direct method, numerical bifurcation analysis,
global sensitivity analysis using the method of Sobol, and optimal control theory. The
mathematical models proposed here cover two of the dominant sub-disciplinary fields that
address the study of infectious diseases: (i) modeling of between-host dynamics of infectious
disease transmission and (ii) modeling within-host dynamics of infectious diseases, that
is, modeling pathogen-immune interactions. Between-host models have been widely used
to aid public health officers to make optimal decisions about disease control. Within-host
models commonly study the interactions of the pathogen and the host defense mechanisms
throughout an infection.

The main goal of this work is to use mathematical modeling to better understand the
causes of a disease, the complexity in the disease transmission mechanism and to evaluate
and optimatize various detection, prevention, and vaccination programs aiming to control the
spread of the infection.





Introduction

Mathematical modeling is a tool which has been successfully used to study the mechanisms by
which diseases spread, to predict the future course of an outbreak, and to evaluate strategies
to control an epidemic. In 1662, John Graunt published his book Natural and Political
Observations made upon the Bills of Mortality which was the first study that systematically
tried to quantify the causes of death. However, the very first publication addressing the
mathematical modeling of epidemics Essai d’une nouvelle analyze de la mortalité causée par
la petite vérole by Daniel Bernoulli dates back in 1766. In this work, Bernoulli developed
a mathematical model to analyze the mortality due to smallpox in England, which at that
time was one in 14 of the total mortality. Bernoulli used his model to show that inoculation
against the virus would increase the life expectancy at birth by about three years.

In the early 20th century, Ronald Ross published his paper The prevention of malaria
which establishes modern mathematical epidemiology. In this work, Ross addressed the
mechanistic a priori modeling approach using a set of equations to approximate the discrete-
time dynamics of malaria through the mosquito-borne pathogen transmission. Ross showed
that reduction of the mosquito population below a critical level would be sufficient to control
the spread of the infection. This result is the first appearance of the concept of the basic
reproduction number which later becomes one of the most important ideas for the theory of
mathematical epidemiology.

Following up on the work of Ross, Kermack and McKendrick published a sequence of
three seminal papers which founded the deterministic compartmental epidemic modeling
(Kermack and McKendrick, 1927, 1932, 1933). In these papers, Kermack and McKendrick
addressed the mass–action incidence in disease transmission cycle, suggesting that the
probability of infection of a susceptible is analogous to the number of its contacts with
infected individuals. Kermack and McKendrick formulated for the first time a deterministic
epidemic model that includes susceptible, infected, and removed individuals, this corresponds
to the so-called compartmental SIR epidemic model. In compartmental epidemic models,
the population is divided into compartments, with the assumption that every individual in the
same compartment has the same characteristics.
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Mathematical modeling of infectious diseases gained importance in the 1980s with the
appearance of the HIV epidemics (Martcheva, 2015). Since then, epidemic models are being
increasingly used to investigate the transmission dynamics of several infectious diseases.
Although these models may be rather simple, their study is important to gain insight into the
underlying aspects of disease spread and control. As remarked by professor Brauer (Brauer,
2017), there is always a trade-off between simple or strategic models, which omit most
details and are designed only to highlight general qualitative behavior and detailed model
designed for specific situations including short-term quantitative predictions.

The fundamental goal of this thesis is to develop epidemic models and evaluate realistic
health-care interventions to prevent and control epidemics in such a way that the results
are useful for public health professionals. We give particular attention to the study of the
dynamics of the infection by the human papillomavirus but we also investigate other topics
related to the theory of mathematical epidemiology.

This dissertation is subdivided into four related but also independent chapters. In Chapter
1, we explore control strategies for multigroup epidemic models. We develop compartmental
SIRS models to study the dynamics of n host groups sharing the same source of infection
in addition to the transmission among members of the same group. In particular, we con-
sider a model for infectious diseases with free-living pathogens in the environment and a
metapopulation model with a central patch. We give the detailed derivation of the target
reproduction number under three public health interventions and provide the corresponding
biological insights. Moreover, using the next-generation approach, we calculate the basic
reproduction numbers associated with the subsystems of our models and determine algebraic
connections to the target reproduction number of the complete model. The main result of
this chapter illustrates that understanding the topological structure of the infection process
and partitioning it in simple cycles is useful to design and evaluate control strategies. The
results of this chapter were published by the Bulletin of Mathematical Biology, see (Saldaña
and Barradas, 2018).

In Chapter 2, we propose a within-host metapopulation model to study the possibility
of vaccine-induced type replacement for oncogenic HPV types. Vaccine-induced strain
replacement is a phenomenon in which vaccination leads to the emergence and dominance of
non-vaccine pathogen strains. This replacement is due to a decreased fitness of the vaccine
types after a vaccination scheme and the fact that non-vaccine types can still infect vaccinated
individuals. Given the vast diversity of HPV types, there have been speculations over whether
vaccine targeted-types will be replaced by other types not targeted by the vaccine. It is
generally believed that the theoretical possibility of type replacement strongly depends on
the existence of natural type competition mechanisms. Nevertheless, our results suggest that
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type replacement is viable at the within-host level if the degree of cross-protection induced
by the vaccine is low, even if there is no underlying competition among HPV types. The
results of this chapter were published by Mathematical Methods in the Applied Sciences, see
(Saldaña and Barradas, 2020).

In Chapter 3, we investigate what is the best combination of vaccination and screening
to minimize human papillomavirus (HPV) associated morbidity but also the cost of the
health-care interventions. Since HPV-associated morbidity and mortality are usually higher
in females than in males, in the majority of countries the primary target group of HPV
vaccination programs in adolescent girls aged 9-14. However, considering that recent HPV
vaccines have been licensed for a broader age range in both males and females, we analyze
the potential health benefits of extending vaccination to males, as well as older individuals,
versus a higher economic cost of such programs. Our main goal in this chapter is to use
optimal control theory to gain insight into the best combination of vaccination and screening
to reduce the spread of HPV infection, as well as the cost of the intervention strategies. Some
results of Chapter 3 can be found in (Saldaña et al., 2019) published by Abstract and Applied
Analysis.

Finally, in Chapter 4 we investigate the role of reproductive social behavior and prompt
disease treatment in the control of sexually transmitted infections. In mathematical terms,
we study general recovery functions and treatment in the dynamics of an SIS model for
sexually transmitted infections with nonzero partnership length. It is shown how partnership
dynamics influence the predicted prevalence at the steady-state and the basic reproduction
number. Sobol’s indices are used to evaluate the contribution of model parameters to the
overall variance of R0. The recovery functions studied here take into account that society’s
capacity to provide treatment is limited when the number of infected individuals is large.
Bifurcation analysis is used to establish a relationship between an alert level of prevalence
and the minimum recovery time that guarantees the eradication of the disease. We also show
that a backward bifurcation can occur when there are delays in the treatment of infected
individuals. The results of Chapter 4 were published by Infectious Disease Modeling, see
(Saldaña and Barradas, 2019).
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Chapter 1

Control Strategies in Multigroup Models:
The Case of the Star Network Topology

1.1 Introduction
1

An omnipresent quantity in the modeling of infectious diseases is the basic reproduction
number R0 (Heesterbeek, 2002). This quantity is usually defined as the average number
of secondary cases of an infection caused by a typical infected individual over the course
of its infectious period in a population consisting of susceptibles only. In the case of the
simplest compartmental epidemic models of the SIS (susceptible-infectious-susceptible) and
SIR (susceptible-infectious-recovered) types, and a considerable number of generalizations
(Lajmanovich and Yorke, 1976), the famous threshold property: the disease can invade if
R0 > 1, whereas it cannot if R0 < 1 is valid.

The roots of the basic reproduction concept can be traced through the work of Alfred
Lotka, Ronald Ross, and others, but its first modern application in epidemiology was by
George MacDonald in 1952, who constructed population models of the spread of malaria. In
the context of epidemic modeling, R0 is often found through the analysis of the eigenvalues
of the Jacobian matrix at the disease-free equilibrium. Nevertheless, this approach may fail
(Martcheva, 2015) in populations with various degrees of host and pathogen heterogeneity.
In these cases, the mathematical description of what is a typical infected individual is
difficult to quantify. In order to overcome this problem, Diekmann and his collaborators
(Diekmann et al., 1990) introduced the next-generation matrix K =

[
ki j
]

to derive the the
basic reproduction number. In populations with n host types, K is an n×n matrix whose

1This Chapter is based on (Saldaña and Barradas, 2018)
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entry ki j gives the expected number of new infections among susceptible individuals of type
i, generated by an infected individual of type j. In this work, R0 is defined as the spectral
radius of the next-generation matrix, that is, R0 = ρ(K).

The value of R0 not only is an indicator of the severity of an epidemic, generally, the
larger the value of R0, the harder it is to control the epidemic. R0 is also a powerful tool
to estimate the control effort needed to eradicate a disease when treating homogeneous
populations. In fact, for homogeneous populations, it is known (Keeling et al., 2013) that an
infection can be eliminated provided that a proportion of individuals greater than 1−1/R0

have been afforded lifelong protection.
However, for a large number of infectious diseases, the host population is not homoge-

neous (Roberts and Heesterbeek, 2003). Furthermore, in real situations, there are multiple
constraints (economic and geographical considerations among others) that may significantly
affect the design of control policies. Therefore, it is common that control strategies are
not aimed at all host individuals; instead, they treat a particular group of individuals or
interactions among them.

When designing control measures that target specific types of individuals in heterogeneous
populations, the concept of the target reproduction number proposed in (Shuai et al., 2013)
arises naturally to quantify the effort needed to control epidemic outbreaks. The basic idea
behind the method of (Shuai et al., 2015) is that it is possible to reduce the value of R0 by
controlling a specific set S of entries of the next-generation matrix K =

[
ki j
]
. Let KS be the

target matrix corresponding to the target set S defined by

[KS]i j =

{
ki j, if (i, j) ∈ S
0, otherwise.

The target reproduction number TS for the target set S is defined as the spectral radius of the
matrix KS · (I−K+KS)

−1, provided that ρ(K−KS)< 1, where I is the identity matrix and
ρ denotes the spectral radius. This last condition had been called the controllability condition
(Knipl, 2016), since whenever ρ(K−KS)> 1 the disease cannot be eradicated by targeting
only S (Shuai et al., 2013). However, since the term controllability evokes formal control
theory, we will not use this terminology.

Analogously to R0, the target reproduction number has the property that if a proportion
bigger than 1−1/TS of the S entries in K can be reduced, then the disease can be eradicated.
Moreover, when the next-generation matrix is irreducible, then R0 < 1 if and only if TS < 1
for a general target set S, as long as the target reproduction number is well defined.

On the other hand, for many diseases the structure of the infection process can be
subdivided as a combination of different cycles of infection (Olmos et al., 2015) and it is
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logical to speculate if there is a relationship between the topological structure of the cycles
of infection and the optimal design of public health interventions. Therefore, we propose to
examine and control the local dynamics of an infection with a heterogeneous host population
to prevent a major outbreak at the global level. In particular, our focus will be models with
multiple host types whose infection process follows the star network topology (Edwards
et al., 2010), i.e., models with a common source of infection for all the groups but not direct
transmission among them.

Using these ideas, in this chapter we establish connections among the target reproduction
number for the whole model and R0’s of submodels that facilitate the design and evaluation
of control strategies. In section 1.2, we illustrate our method with an epidemiological model
for leptospirosis in humans and animals. Different control strategies are proposed and the
target reproduction number is computed in each case. General models with n hosts types are
studied in section 1.3. In particular, we consider a compartmental model for infections with
free-living pathogens in the environment and a metapopulation model with a central patch.
In the last section, we summarize and interpret our results.

1.2 Leptospirosis as an Example of an Environmentally
Driven Disease

Leptospirosis is a widespread bacterial zoonosis with highest burden in low-income popula-
tions living in tropical and subtropical regions, both in urban and in rural environments. Ex-
cept for Antarctica, leptospirosis is present in all continents (Adler and de la Peña Moctezuma,
2010) with more than 500,000 cases per year reported globally (Ullmann and Langoni, 2011).
Although rodents have been recognized as the most important reservoirs of leptospiral infec-
tion, humans, domestic pets, cattle and almost every mammal can also contract this infection
(Evangelista and Coburn, 2010).

Environmental conditions play an important role in the transmission of leptospirosis. In
fact, leptospires can survive in moist soil and freshwater for a few weeks up to several months
(Ko et al., 1999). Moreover, both humans and animals become infected with leptospires
through close contact with water, food or soil contaminated mainly with the urine of reservoir
animals (Ganoza et al., 2006). Human to human transmission is also possible by sexual
intercourse, transplacentally from mother to fetus and via breast milk to a child. Urine from
a patient suffering from leptospirosis should be considered infectious (Terpstra, 2003).

In humans, leptospirosis first presents as an acute fever with headache and myalgia and
accounts for one of the numerous possible etiologies of acute fevers in medical settings. If
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left untreated, it can degenerate into severe forms, with kidney and/or liver damage as well as
severe pulmonary hemorrhage. Case fatality rates range from less than 5% to more than 30%
depending on the clinical presentation and the case management. In developing countries,
leptospirosis poses a number of challenges not only in the fields of public health (prevention
and education, preparedness, intervention) but also in the fields of medical and biological
diagnosis and case management.

Several mathematical models have been proposed to study the transmission of leptospiro-
sis in a population over time. In (Holt et al., 2006) the authors proposed a model to study
the spread and maintenance of leptospirosis in rodents. One of the first compartmental
models for leptospirosis that considered both human and animals was proposed in (Tri-
ampo et al., 2007). In their work, they proposed a deterministic epidemic model under the
SIRS (susceptible-infectious-recovered-susceptible) structure and considered real data of
leptospirosis in Thailand. Recently, in (Baca-Carrasco et al., 2015) an epidemiological model
that included explicitly a variable for the leptospires in the environment was proposed. This
model considers the indirect infections caused by the bacteria present in the environment;
however, it did not include possible direct transmissions between humans.

Here, we present a two-group epidemiological SIRS model for the dynamics of leptospiral
infection in humans and animals. Given the importance of the indirect infections caused
by contact with a contaminated environment, we consider an equation for the free-living
leptospira in the environment as in (Baca-Carrasco et al., 2015) but we also allow direct
transmissions among humans. To derive our model, let Si(t), Ii(t) and Ri(t) denote the
number of susceptible, infectious and recovered individuals of host type i ∈ {1,2} at time
t, with i = 1 representing humans and i = 2 representing animals. Therefore, the total
population size of host type i at time t is given by

Ni(t) = Si(t)+ Ii(t)+Ri(t) for i ∈ {1,2}.

The variable P(t) represents the amount of leptospira present in the environment.
We assume that individuals enter to the population as susceptibles at a constant rate

Λi and die at a per capita death rate µi, i = 1,2. No additional death due to the disease is
considered. Susceptible humans can be infected by direct (sexual) contact with other humans
at a rate β11 and indirectly via the external environment at a rate β1p. New infections in
animals are also due to direct contact with infected animals at a rate β22 and through indirect
exposure with a contaminated environment at a rate β2p. Infectious individuals of host type
i ∈ {1,2} recover at a constant rate γi proportional to the size of their class, and the loss of
immunity occurs at an average time of 1/νi. The presence of leptospira in the environment
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increases due to the shedding of infected humans and animals at rates c1 and c2, respectively.
The bacteria survive in the environment for a mean time of 1/µp.

Under these hypotheses, our model is given by the following system of differential
equations:

Ṡi = Λi − (βiiIi/Ni +βipP)Si −µiSi +νiRi,

İi = (βiiIi/Ni +βipP)Si − (µi + γi)Ii, i ∈ {1,2}
Ṙi = γiIi − (νi +µi)Ri,

Ṗ = c1I1 + c2I2 −µpP.

(1.1)

All the parameters are considered nonnegative. Note that we assumed mass action incidence
for the indirect (environment-to-host) transmission and standard incidence for the direct
(host-to-host) transmission.

It is easy to see that the total population size for any host type is asymptotically constant
since

Ṅi = Λi −µiNi, i ∈ {1,2}.

The unique disease-free equilibrium of system (1.1) is given by

ε0 = (N∗
1 ,0,0,N

∗
2 ,0,0,0) (1.2)

with N∗
i = Λi/µi for i ∈ {1,2}.

Disregarding the infections caused by the contaminated environment, it is easy to calculate
the basic reproduction number associated with the direct transmission of the disease for any
host type,

Ri =
βii

µi + γi
, i ∈ {1,2} (1.3)

and Ri gives the average number of secondary infectious corresponding to the direct trans-
mission cycle for the i th host-type. The dynamics of the infection process for system (1.1) is
shown in Fig. 1.1.

Fig. 1.1 Topological structure of the infection process for model (1.1). In this case, there
are two infection cycles, for both, the indirect transmission (R1p and R2p) and the direct
transmission (R1 and R2).
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As many examples in the literature show (Baca-Carrasco and Velasco-Hernández, 2016;
Chen et al., 2009; Martcheva, 2015; Olmos et al., 2015), the expressions for R0 in multigroup
models can be very complex, so it would be very useful when evaluating public health
interventions to have an expression of R0 in terms of R0’s of submodels of the whole system.
This will allow the design of local strategies such as control of specific types of individuals
or even interactions between them to control the disease at the global level. As previously
mentioned, when targeting specific types of individuals or interactions, it is easier to work
with the target reproduction number TS than with R0. Moreover, we know TS and R0 are
directly related. In fact, if the next-generation matrix K =

[
ki j
]

is irreducible then R0 < 1 if
and only if TS < 1 when the target reproduction number is well defined for the target set S
(Shuai et al., 2013, 2015).

In general terms, to compute the next-generation matrix, it is necessary to determine the
subsystem that describes the production of new infections and changes in state among infected
individuals. The Jacobian matrix J corresponding to the linearization of this subsystem at
the infection-free equilibrium is decomposed as F−V. The matrix F is the transmission
part, describing the production of new infections, and V describes changes in status, such as
recovery or death (Knipl, 2016; Martcheva, 2015; Van den Driessche and Watmough, 2002).

However, different interpretations of the disease process can lead to different decomposi-
tions into matrices F and V. Consequently, different next-generation matrices can be obtained
for a compartmental model. This problem is of particular relevance for infections that can be
caused by contact with a contaminated environment since the role of the environment can
be interpreted in multiple ways (Bani-Yaghoub et al., 2012). In this work, we assume that
the environment acts as a reservoir of the infection. Therefore, the pathogen shedding by
infectious hosts is placed in the matrix F.

These assumptions give the following matrices F and V for model (1.1), computed at the
disease-free equilibrium (1.2):

F =

 β11 0 β1pN∗
1

0 β22 β2pN∗
2

c1 c2 0

 and V =

 µ1 + γ1 0 0
0 µ2 + γ2 0
0 0 µp
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The product FV−1 gives the following next-generation matrix

K =


R1 0

β1pN∗
1

µp

0 R2
β2pN∗

2
µp

c1

µ1 + γ1

c2

µ2 + γ2
0


, (1.4)

which is clearly an irreducible matrix. Using (1.4), it is not difficult to show that the basic
reproduction numbers for the indirect transmission cycle (see figure 1.1) are given by the
following formula

Rip =

√
ciβipN∗

i
µp(µi + γi)

, i ∈ {1,2}. (1.5)

Indeed, the characteristic polynomial of the next-generation matrix (1.4) is

P(λ ) = λ
3 − (R1 +R2)λ

2 +

(
R1R2 −

2

∑
i=1

ciβipN∗
i

µp(µi + γi)

)
λ

+

(
(R1 +R2)

2

∑
i=1

ciβipN∗
i

µp(µi + γi)
−

2

∑
i=1

ciβipN∗
i Ri

µp(µi + γi)

)
.

If we set the reproduction numbers associated with the direct transmission of the disease
equal to zero, we get

P̃(λ ) = λ
3 −

(
2

∑
i=1

ciβipN∗
i

µp(µi + γi)

)
λ .

In order to obtain, for example, R1p, we only need to compute the root of maximum
modulus of P̃(λ ) when the transmission parameters between host type 2 and the contaminated
environment are zero, i.e., β2p = c2 = 0. Hence, Rip satisfies (1.5).

The expression for the R0 of the complete model is quite complicated, and we are not
going to show it here. Instead, we are going to work with the target reproduction number
since we know that reducing this quantity below 1 ensures the elimination of the disease; see
Theorem 1.3.1.

A wide variety of public health interventions can be of help to reduce the spread of
leptospirosis. We analyze some of them in the following section.
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1.2.1 Control Strategies in the Two-group Model for Leptospirosis

Leptospirosis can be considered an environmentally driven disease because of the important
role of environmental conditions in the transmission of the disease. Different control strate-
gies could be applied to reduce the prevalence of environmentally driven diseases in general
and leptospirosis in particular.

(A) Minimizing Exposures to Environmental Risk Factors. The vast majority of human
and animal infections with leptospira arise from contact with contaminated water (Terpstra,
2003). Therefore, one effective way to minimize the chances of infection is to avoid contact
with contaminated water. In humans, factors related to occupational and recreational activities
can represent an increased risk of infection. For example, farmers may be exposed to water
contaminated by the urine of rodents or other animals when irrigating fields (Terpstra, 2003).
Hence, where appropriate, protective clothing should be worn to reduce the risk of infection.

When preventive measures aim to reduce exposure to environmental risk factors, the
target set is S = {(1,3),(2,3)}. Following the notation in (Shuai et al., 2013) the target
matrix KS is defined by,

[KS]i j =

{
ki j, if (i, j) ∈ S
0, otherwise;

hence the condition ρ(K−KS)< 1 becomes

max{R1,R2}< 1. (1.6)

This condition is logical since we cannot expect to eradicate a disease by just reducing
the indirect infections caused by environmental factors when any of the basic reproduction
numbers associated with the host-to-host transmission cycle has a value above 1. Provided
that condition (1.6) is fulfilled, the target reproduction number is defined as the spectral
radius of the matrix KS · (I−K+KS)

−1 given by

R2
1p

1−R1

c2β1pN∗
1

µp(µ2 + γ2)(1−R2)

β1pN∗
1

µp

c1β2pN∗
2

µp(µ1 + γ1)(1−R1)

R2
2p

1−R2

β2pN∗
2

µp

0 0 0


.

Therefore

TS =
R2

1p

1−R1
+

R2
2p

1−R2
. (1.7)
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Hence, TS is an increasing function of each of the local basic reproduction numbers when
it is well defined.

(B) Reducing the Shedding Rate. The reduction of certain animal reservoirs such as
rodents, immunization of dogs and livestock and prompt treatment after symptoms in humans
are all valid ways to reduce the replenishing of pathogen load in the environment due to the
excretion of leptospira by infected hosts.

For control strategies that focus on the reduction of the pathogen shedding rate, the target
set is U = {(3,1),(3,2)}. Thus, the target matrix is:

KU =


0 0 0

0 0 0
c1

µ1 + γ1

c2

µ2 + γ2
0

 .

Similar to the case (A), we have

ρ(K−KU)< 1 ⇐⇒ max{R1,R2}< 1. (1.8)

Moreover, given that

(I−K+KU)
−1 =


1

1−R1
0

β1pN∗
1

µp(1−R1)

0
1

1−R2

β2pN∗
2

µp(1−R2)

0 0 1


as long as condition (1.8) is fulfilled the target reproduction number for the set U is given by

TU =
R2

1p

1−R1
+

R2
2p

1−R2
, (1.9)

which coincides with formula (1.7). This reflects the fact that there is a reciprocal feedback
between strategies (A) and (B). In other words, when the shedding rate is reduced, the risk of
getting infected through contact with a contaminated environment also decreases and vice
versa.

(C) Combination of approaches (A) and (B). In this case the target set is
W = {(1,3),(2,3),(3,1),(3,2)}. Therefore, the condition ρ(K−KW )< 1 is equivalent to
max{R1,R2}< 1.
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The characteristic polynomial of the matrix KW · (I−K+KW )−1 is

P(λ ) =−λ
3 +

(
R2

1p

1−R1
+

R2
2p

1−R2

)
λ .

Therefore, when it is well defined, the target reproduction number is given by

TW =

√
R2

1p

1−R1
+

R2
2p

1−R2
. (1.10)

From the formulas for TS, TU and TW , it is easy to note that

1 < TW < TS = TU , TS = TU < TW < 1, or TS = TU = TW = 1

which is not surprising since the intervention strategy defined by the set W is stronger than
the ones defined by S and U (Shuai et al., 2013).

1.2.2 Numerical Simulations

In this section, we explore numerically model (1.1). We retrieved some parameters from the
literature (Baca-Carrasco et al., 2015; Holt et al., 2006; Leirs et al., 1997), and we gathered
them in Table 1.1.

In compartmental epidemic models, a classical procedure to reduce disease spread is to
choose a feasible set of model parameters

θ = {θ1,θ2, . . . ,θn} .

and determine how these parameters should be changed to prevent an epidemic. In our
context, this procedure let us to define the target set S as the set of indices

S = {(i1, j1), . . . ,(im, jm)} ,

with the property that if (i, j) ∈ S then the entry ki j of K depends at least on one of the
parameters in the set θ . On the other hand, if (i, j) /∈ S then ki j is independent of the
parameters in the set θ .

If a proportion bigger than 1−1/TS of the entries S in K can be reduced, then the disease
can be eradicated. In particular, replacing the entry ki j in K by ki j/TS whenever (i, j) ∈ S, a
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Parameter Range Units

Λ1 [6.0,29.0] person day−1

β11 [1×10−3,5×10−2] day−1

β1p [3×10−3,6×10−3] leptospires−1 day−1

µ1 [1/29,200,1/14600] day−1

γ1 [1/20,1/7] day−1

ν1 [1/365,1/10] day−1

Λ2 [0.5,4.0] animal day−1

β22 [1×10−3,7×10−2] day−1

β2p [1×10−3,9×10−3] leptospires−1 day−1

µ2 [1/10,950,1/365] day−1

γ2 [1/30,1/10] day−1

ν2 [1/90,1/30] day−1

c1 [8.4×10−8,2.1×10−7] leptospires person−1 day−1

c2 [2×10−4,2×10−2] leptospires animal−1 day−1

µp [1/180,1/4] day−1

Table 1.1 Estimation of parameters for the two-group model of leptospiral infection in humans
and animals (1.1).

controlled next-generation matrix Kc is formulated

[Kc]i j =

{
ki j/TS, if (i, j) ∈ S
ki j, otherwise

and ρ(Kc) = 1 (Shuai et al., 2013). Therefore, the goal is to change the set of parameters θ

in such a way that K is transformed into Kc.
Let us now analyze the case in which the intervention targets both the shedding rates ci

and the transmission rates via the environment βip, with i = 1,2. Thus,

θ =
{

c1,c2,β1p,β2p
}

(1.11)

Model parameters (1.11) involve the set of indices W = {(1,3),(2,3),(3,1),(3,2)}. There-
fore, according to (C) above, the target reproduction number is

TW =

√
R2

1p

1−R1
+

R2
2p

1−R2
.
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Fig. 1.2 Prevalence as function of time of humans I1 (a) and animals I2 (b), without control
(solid curves) and with control (dashed curves). The parameters are as described in the
text. In the case with control, we replaced the parameters in the set (1.11), that is, c1, c2,
β1p and β2p by the controlled parameters c̃1 = c1/TW , c̃2 = c2/TW , β̃1p = β1p/TW and
β̃2p = β2p/TW , respectively.

In order to illustrate the dynamics of the model, we check numerically the prevalence on
humans and animals as functions of time. We will fix the parameters with the following
baseline values (see Table 1.1) consistent with the literature: Λ1 = 20, β11 = 0.02, β1p =

0.005, µ1 = 1/25,550, γ1 = 1/15, ν1 = 1/60, Λ2 = 3, β22 = 0.01, β2p = 0.005, µ2 = 1/3650,
γ2 = 1/20, ν2 = 1/70, c1 = 1×10−7, c2 = 1×10−4, µp = 1/100.

For the baseline parameters values, the local reproduction numbers take the values R1 =

0.2998, R2 = 0.1989, R1p = 0.6188, and R2p = 3.3001. Correspondingly, TW = 3.7610.
The target reproduction number TW is larger than 1 and thus R0 > 1 (in fact R0 = 3.4603).
Therefore, the disease-free equilibrium is unstable (see Theorem 1.3.1) and we need to apply
the intervention. The eradication of the disease is achieved replacing the entry ki j ∈ K with
(i, j) ∈W by ki j/TW . This transformation can be easily done by dividing the parameters in
(1.11) by TW .

The results of the simulations are shown in Fig. 1.2. In part (a), we plotted the prevalence
in humans I1 and in part (b) the prevalence in animals I2. For both (a) and (b), the prevalence
as function of time is represented by solid curves in the case without control and represented
by dashed curves in the case with control, i.e., when ki j ∈ K with (i, j) ∈W is replaced by
ki j/TW . As we can see in Fig. 1.2, in the case without control the disease is endemic in the
population; however, applying the intervention, the prevalence converges to zero and the
epidemic is prevented.
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1.3 General Models

In the work that follows, we further explore the ideas of the previous section in compartmental
models with n host groups sharing a common source of infection besides a possible infection
among members of the same group.

This kind of dynamics can be observed in a wide variety of scenarios. For example,
it may model a shopping center that is visited by people from different locations. It also
can be applied to sexually transmitted diseases with a core group capable of infecting all
other groups, but with no direct transmission among the rest of the groups as illustrated in
(Edwards et al., 2010).

1.3.1 A Model for Environmentally Driven Infectious Diseases with n

Host Types.

In accordance with the World Health Organization (WHO) more than 20% of the burden of
global diseases can be attributed to environmental factors (Prüss-Üstün and Corvalán, 2006).
Particularly, in developing countries, because of the lack of health-care access, environmental
conditions play an important role in the possible outbreak of a significant number of diseases.
Naturally, this is the case for infections caused by pathogens with the ability to survive in
the environment (soil, water, air, food, contact surfaces, etc). Therefore, when attacking
infections with free-living pathogens in the environment, it is vital to minimize exposure to
environmental risk factors such as unsafe drinking water, air pollution and other sanitation
problems.

In this section, we study a model for infections caused by a pathogen that can survive in
the environment for a period of time. Examples of infections of this kind are leptospirosis,
cholera, schistosomiasis, hepatitis A, toxoplasmosis, among many others. For this group of
infectious, the presence of pathogen in the environment is replenished by infectious hosts
that excrete the pathogen into the environment, see (Bani-Yaghoub et al., 2012; Garira et al.,
2014; Tien and Earn, 2010) and the references therein.

The model presented here is a classical SIRS model that generalizes system (1.1) to
include n different host types since given the broad scope of environmental factors it is usual
that these diseases affect a large range of individuals that can be subdivided according to
different criteria, for example, spatial location, high-risk and low-risk groups, age, species,
among others. We also included an equation for the pathogen dynamics.

The construction of our model rests on the following assumptions:
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(i) The total population for each host type is divided into susceptible, infectious and
recovered individuals, denoted Si, Ii and Ri, respectively. Hence, the total population
size for each type at time t is Ni(t) = Si(t)+ Ii(t)+Ri(t), i ∈ {1,2, . . . ,n} . Individuals
enter to the population as susceptible at a constant rate Λi and die at a per capita rate
µi, i ∈ {1,2, . . . ,n} .

(ii) We assume that there is direct transmission within individuals of the same host type and
indirect transmission through contact with a contaminated environment but there are
no contacts among the different host types. Host-to-host transmission is modeled with
standard incidence and has transmission rate βii, i ∈ {1,2, . . . ,n} . Environment-to-host
transmission is modeled with mass action incidence and has transmission rate βip,
i ∈ {1,2, . . . ,n} .

(iii) Infected individuals of host type i ∈ {1,2, . . . ,n} recover at a constant rate γi propor-
tional to the size of their class and the loss of immunity occurs at an average time of
1/νi.

(iv) Infected hosts excrete pathogen into the environment at a rate ci, i ∈ {1,2, . . . ,n} , and
µp is the pathogen clearance rate from the environment.

These assumptions give the following system of differential equations:

Ṡi = Λi − (βiiIi/Ni +βipP)Si −µiSi +νiRi,

İi = (βiiIi/Ni +βipP)Si − (µi + γi)Ii, i ∈ {1,2, . . . ,n}
Ṙi = γiIi − (νi +µi)Ri,

Ṗ =
n

∑
i=1

ciIi −µpP,

(1.12)

where all the parameters are assumed nonnegative.

Global Stability of the Disease-free Equilibrium

Until now, we have assumed that the disease can be eradicated when the target reproduction
number is less than 1. However, for that to be true, we need to prove that the disease-
free equilibrium is globally asymptotically stable if and only if R0 < 1. In order to prove
the global stability of the disease-free equilibrium, we will construct a suitable Lyapunov
function using the methods presented in (Arino and Portet, 2015; Vargas-De-León, 2011).
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To determine the disease-free equilibrium of model (1.12), we set the derivatives equal to
zero and solve the system

0 = Λi − (βiiIi/Ni +βipP)Si −µiSi +νiRi,

0 = (βiiIi/Ni +βipP)Si − (µi + γi)Ii, i ∈ {1,2, . . . ,n}
0 = γiIi − (νi +µi)Ri,

0 =
n

∑
i=1

ciIi −µpP,

setting Ii = 0 for i = 1,2, . . . ,n. Clearly, at the disease-free equilibrium, the number of
individuals in the recovered classes and the amount of free-living pathogen in the environment
are equal to zero. Therefore, model (1.12) has a unique disease-free equilibrium

E0 = (Λ1/µ1,0,0,Λ2/µ2,0,0, . . . ,Λn/µn,0,0,0).

Moreover, the total population size for host type i is governed by the equation

Ṅi = Λi −µiN.

Hence, the total population size may vary in time but converges to the equilibrium N∗
i =Λi/µi.

We thus study (1.12) in the following feasible region

Ω = {(S1, I1,R1, . . . ,Sn, In,Rn,P) ∈ R3n+1
+ : Si + Ii +Ri ≤ Λi/µi, i = 1, . . . ,n}

which is clearly positively invariant under the flow of system (1.12).
The results regarding the local asymptotic stability of E0 are consequence of Theorem 2

in (Van den Driessche and Watmough, 2002). For model (1.12), the matrices F and V such
that F−V corresponds to the linearization of the infectious subsystem of (1.12) are:

F =



β11 0 0 · · · 0 β1pN∗
1

0 β22 0 · · · 0 β2pN∗
2

0 0 β33 · · · 0 β3pN∗
3

...
...

... . . . ...
...

0 0 0 · · · βnn βnpN∗
n

c1 c2 c3 · · · cn 0


, (1.13)
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and

V =



µ1 + γ1 0 0 · · · 0
0 µ2 + γ2 0 · · · 0
...

... . . . ...
...

0 0 · · · µn + γn 0
0 0 · · · 0 µp


. (1.14)

The global behavior of the disease-free equilibrium is summarized in the following result.

Theorem 1.3.1. Let K = FV−1 with F and V given by (1.13) and (1.14), respectively. If the
basic reproduction number R0 = ρ(K) satisfies R0 ≤ 1, then the disease-free equilibrium
E0 of model (1.12) is globally asymptotically stable in Ω.

Proof. By construction, the matrix F has only nonnegative entries and the matrix V is an
M-matrix (Van den Driessche and Watmough, 2002). From matrix theory, we now that
the spectral radius of FV−1 and V−1F are the same; therefore, R0 = ρ(FV−1) = ρ(V−1F)
(Horn and Johnson, 2013). Moreover, (V−1F)2 is entry-wise positive; thus, V−1F is primitive
and by Perron’s theorem (Berman and Shaked-Monderer, 2012), V−1F has a positive unique
left eigenvector w = (w1,w2 . . . ,wn,wp) such that

(w1,w2 . . . ,wn,wp)V−1F = R0(w1,w2 . . . ,wn,wp).

Let P = (I1, I2, . . . , In,P)
T , ki = wi/(µi + γi) for i = 1,2, . . . ,n and kp = wp/µp. Define the

function

L =
n

∑
i=1

kiIi + kpP.

Clearly, L is a radially unbounded function whose derivative along the solutions of (1.12) in
Ω satisfies

L̇ =
n

∑
i=1

ki [(βiiIi/Ni +βipP)Si − (µi + γi)Ii]+ kp

[
n

∑
i=1

ciIi −µpP

]

≤
n

∑
i=1

ki [(βiiIi +βipPN∗
i )− (µi + γi)Ii]+ kp

[
n

∑
i=1

ciIi −µpP

]
= (k1,k2, . . . ,kn,kp)(F−V)P.

Since
(k1,k2, . . . ,kn,kp) = (w1,w2, . . . ,wn,wp)V−1
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we obtain

L̇ ≤ w(V−1F− I)P = (R0 −1)wP.

Clearly, if R0 ≤ 1 then L̇ ≤ 0. Hence, L is a Lyapunov function for model (1.12). Moreover,
since for all i the constants ki are positive, L̇ = 0 implies that P is equal to the zero vector.
Using Ii = 0 and P = 0, it is easy to see that Ri → 0 and Si → Λi/µi. Therefore, if R0 ≤ 1, it
follows from LaSalle’s invariance principle (La Salle et al., 1962), that every solution of the
equations in the model (1.12), with initial condition in Ω, approaches E0 as t → ∞.

Control Strategies

When the control strategy is based on reducing the pathogen shedding by infectious hosts
and minimizing exposure to environmental risk factors, we have the following result that
generalizes the result obtained in section 2.1 (C).

Theorem 1.3.2. Consider the epidemiological model (1.12) and define the target set as
W = {(1,n+1),(2,n+1), . . . ,(n,n+1),(n+1,1),(n+1,2), . . . ,(n+1,n)}. Provided that
the condition

max{R1,R2, . . . ,Rn}< 1

is satisfied, the target reproduction number TW is given by

TW =

√
R2

1p

1−R1
+

R2
2p

1−R2
+ · · ·+

R2
np

1−Rn
, (1.15)

where

Ri =
βii

µi + γi
and Rip =

√
ciβipN∗

i
µp(µi + γi)

.
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Proof. The (n+1)× (n+1) next-generation matrix K for model (1.12) is given by

K =



R1 0 0 · · · 0
β1pN∗

1
µp

0 R2 0 · · · 0
β2pN∗

2
µp

0 0 R3 · · · 0
β3pN∗

3
µp

...
...

... . . . ...
...

0 0 0 · · · Rn
βnpN∗

n

µp
c1

µ1 + γ1

c2

µ2 + γ2

c3

µ3 + γ3
· · · cn

µn + γn
0



, (1.16)

which is irreducible. Since the matrix (K−KW ) is the diagonal matrix
diag(R1,R2, · · · ,Rn,0) it is clear that

ρ(K −KW )< 1 ⇐⇒ max{R1,R2, · · · ,Rn}< 1.

Furthermore, using induction it can be proved that the characteristic polynomial of the matrix
KW · (I−K+KW )−1



0 0 · · · 0
β1pN∗

1
µp

0 0 · · · 0
β2pN∗

2
µp

...
... . . . 0

...

0 0 · · · 0
βnpN∗

n

µp

c1/(µ1 + γ1)

(1−R1)

c2/(µ2 + γ2)

(1−R2)
· · · cn/(µn + γn)

(1−Rn)
0


is given by

P(λ ) = (−1)n+1
λ

n+1 +(−1)n

(
R2

1p

1−R1
+ · · ·+

R2
np

1−Rn

)
λ

n−1. (1.17)

By definition, the value of the target reproduction number TW is equal to the root of largest
modulus of polynomial (1.17) which it is given by the right-hand side of (1.15).
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Several properties make the target reproduction number such a useful quantity. First,
it shares the threshold property of the basic reproduction number (TW < 1 if and only if
R0 < 1; and TW = 1 if and only if R0 = 1). Second, if the values of the entries W in the
next-generation matrix K are reduced by a proportion more than 1−1/TW , then the disease
will die out. The only requirements for this to be true are that ρ(K−KW ) < 1 and the
next-generation matrix K to be irreducible.

As a decision maker, one might be concerned about how to lower the value of the target
reproduction number below 1. In this case, it is important to know how sensitive is TW to the
values of the reproduction numbers associated with the environment-to-host and host-to-host
transmission cycles to decide on which of the two to invest. This can be done, for instance,
using the partial derivatives of TW . For example, from (1.15) it is easy to prove that,

∂TW

∂Ri
≤ ∂TW

∂Rip
⇐⇒

Rip

2(1−Ri)
≤ 1, i = 1,2, . . . ,n.

Therefore, TW is more sensitive to the reproduction number Rip than to Ri if and only if
Rip ≤ 2(1−Ri), see Fig. 1.3. If other things are equal, this simple analysis tells us if it
is more convenient to reduce Ri or Rip when controlling the i th host type. However, this
sensitivity is local since it does not take into account the simultaneous variation of input
parameters.
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Fig. 1.3 Region (blue) in which the target reproduction number TW is more sensitive to the
reproduction number associated with the environment-to-host transmission Rip than to the
reproduction number of the host-to-host transmission Ri.

The following theorem establishes the generalization of the result obtained for approach
(A) in section 2.1.
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Theorem 1.3.3. Consider the epidemiological model (1.12) and define the target set as
S = {(1,n+1),(2,n+1), . . . ,(n,n+1)}. Provided that the condition

max{R1,R2, . . . ,Rn}< 1 (1.18)

is satisfied, the target reproduction number TS is given by

TS =
R2

1p

1−R1
+

R2
2p

1−R2
+ · · ·+

R2
np

1−Rn
. (1.19)

Proof. By definition, the target matrix KS is given by

KS =



0 0 · · · 0
β1pN∗

1
µp

...
... · · · ...

...

0 0 · · · 0
βnpN∗

n

µp

0 0 · · · 0 0


. (1.20)

Consequently, the matrix K−KS is a triangular matrix with R1, . . . ,Rn and 0 in its diagonal;
hence, ρ(K−KS)< 1 is equivalent to condition (1.18). The product KS · (I−K+KS)

−1 is
given by the following matrix

R2
1p

1−R1

c2β1pN∗
1

µp(µ2 + γ2)(1−R2)
· · ·

cnβ1pN∗
1

µp(µn + γn)(1−Rn)

β1pN∗
1

µp

c1β2pN∗
2

µp(µ1 + γ1)(1−R1)

R2
2p

1−R2
· · ·

cnβ2pN∗
2

µp(µn + γn)(1−Rn)

β2pN∗
2

µp

...
... · · · ...

...

c1βnpN∗
n

µp(µ1 + γ1)(1−R1)

c2βnpN∗
n

µp(µ2 + γ2)(1−R2)
· · ·

R2
np

1−Rn

βnpN∗
n

µp

0 0 · · · 0 0


.

It is easy to see that rank
(
KS · (I−K+KS)

−1) = 1 since all the columns of KS · (I−K+

KS)
−1 are scalar multiples of its first column. Hence, KS ·(I−K+KS)

−1 only has a nonzero
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eigenvalue, which implies

ρ(KS · (I−K+KS)
−1) =

R2
1p

1−R1
+

R2
2p

1−R2
+ · · ·+

R2
np

1−Rn

because the trace of a matrix is equal to the sum of its eigenvalues.

In cases when the control strategy focuses on reducing the shedding rate of infectious
hosts, we have the following result.

Theorem 1.3.4. Consider the epidemiological model (1.12) and define the target set as
U = {(n+1,1),(n+1,2), . . . ,(n+1,n)}. Provided that the condition

max{R1,R2, . . . ,Rn}< 1 (1.21)

is satisfied, the target reproduction number TU is given by

TU =
R2

1p

1−R1
+

R2
2p

1−R2
+ · · ·+

R2
np

1−Rn
. (1.22)

Proof. It is straightforward to see that

ρ(K−KU)< 1 ⇐⇒ max{R1,R2, . . . ,Rn}< 1.

Moreover, the matrix KU · (I−K+KU)
−1 is a lower triangular matrix with 0’s in the first n

elements of its diagonal and

R2
1p

1−R1
+

R2
2p

1−R2
+ · · ·+

R2
np

1−Rn

as the last element of its diagonal.

One of the advantages of using the target reproduction number is making a big problem
smaller. Instead of struggling with the complete and probably very complex R0, one can
handle a much smaller amount of information: some of the entries of the next-generation
matrix.

Therefore, although TS and TU have the same value, in real life, one of the two strategies
may have advantages over the other one. For instance, assuming that we want to reduce
the value of the entries U of the next-generation matrix K (1.16) by a proportion more than
1−1/TU , then we have to reduce the pathogen shedding rate or increase the recovery rate in
each host class. But, if the objective is to reduce the entries S in K; increasing the pathogen
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clearance rate µp reduces all of these entries at the same time. This could be a practical
advantage of the last strategy over the first one.

How multiple transmission routes affect the spread of many environmentally-driven
diseases is not well-understood (Tien and Earn, 2010). Nevertheless, the host-to-host trans-
mission pathway has been traditionally considered as the predominant cause of disease
spread (Bani-Yaghoub et al., 2012). For model (1.12), infectious individuals can transmit
the infection both through direct contact with a susceptible person and also by pathogen
shedding into the environment. One of the basic aims of this work is to explore the role of
the host-environment-host indirect transmission pathway. Therefore, control strategies (A),
(B) and (C) essentially focus on controlling environmental factors.

1.3.2 A Metapopulation Model with a Central Patch

Metapopulation models (see (Hanski et al., 1999) and the references therein) were first
introduced in ecology, for situations where a population can be divided into a number of
geographically separated sub-populations. The term metapopulation was coined by Richard
Levins in 1969 to describe a model of population dynamics. The most common form of
metapopulation model consists of a number of sub-populations, where each sub-population
is assumed to be large. Many metapopulation models in ecology show that increasing
movement among populations reduces the chance of metapopulation extinction. However,
epidemiological models indicate that increased contact among populations enhances the
spread of disease and can trigger epidemics.

In this section, we consider a metapopulation model with n+1 patches that can be thought
of as cities, countries, or other geographically autonomous regions with the particularity that
one of them is the gravity center that connects the other ones.

We propose a compartmental SIRS model for each patch. For the central patch, we are
going to denote the total population at time t by Nc(t), whereas Sc(t), Ic(t) and Rc(t) give the
number of susceptible, infectious and recovered individuals at time t, respectively. For the
remaining n patches, the classes are denoted by Si(t), Ii(t) and Ri(t) with i ∈ {1,2, . . . ,n}. So,
the total population at time t in patch i is Ni(t) = Si(t)+ Ii(t)+Ri(t) for i ∈ {1,2, . . . ,n,c} :=
J.

Concerning movement, we assume that the members of the region i ∈ {1,2, . . . ,n} make
short-term visits to the central region and return to the home patch, while individuals in the
central patch can travel to all the remaining patches and then get back home. When infectious
individuals are visiting another region, they can infect the susceptible individuals of that
region. Likewise, the susceptible ones that travel can be infected by infectious ones of the
visited region.
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For the sake of clarity, the incidence will be governed by the mass action law and we also
assume that all individuals are born susceptibles. The metapopulation SIRS model takes the
following form

Ṡi = Λi − (βiiIi +βicIc)Si −µiSi +νiRi,

İi = (βiiIi +βicIc)Si − (µi + γi)Ii,

Ṙi = γiIi − (νi +µi)Ri,

(1.23)

for patches i ∈ {1,2, . . . ,n}, while for the central patch,

Ṡc = Λc −βccScIc −
n

∑
i=1

βciScIi −µcSc +νcRc,

İc = βccScIc +
n

∑
i=1

βciScIi − (µc + γc)Ic,

Ṙc = γcIc − (νc +µc)Rc.

(1.24)

Here, Λi are recruitment rates, βi j are the transmission rates of infectious individuals from
patch j to susceptible individuals in patch i. The mortality rates are denoted by µi, and γi

represent recovery rates. The average duration of the immune period for individuals in patch
i ∈ J is 1/νi. The graph associated with the dynamics of the infection process is shown in
Fig. 1.4.

To see that solutions of model (1.23)-(1.24) with nonnegative initial conditions remain
nonnegative consider when at least one of the phase space variables xi is equal to zero. Direct
computation gives that if xi = 0, then ẋi ≥ 0 where x ∈ {S, I,R} and i ∈ J. Thus, solutions
cannot become negative for future times. The total population size of the complete system
N = ∑i∈J Ni satisfies

Ṅ ≤ Λ−µN, with Λ = ∑
i∈J

Λi, µ = min
i∈J

{µi};

therefore,
limsup

t→∞

N(t)≤ Λ/µ.

It follows that solutions of (1.23)-(1.24) are bounded. Moreover, for all the patches, the total
population size of the patch converges to N∗

i = Λi/µi with i ∈ J. Then, the region

Γ = {(S1, I1,R1, . . . ,Sc, Ic,Rc) ∈ R3n+3
+ : Si + Ii +Ri ≤ Λi/µi, i ∈ J}

is positively invariant under the flow of (1.23)-(1.24).
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Fig. 1.4 Topological structure of the infection process for model (1.23)-(1.24). The reproduc-
tion numbers Ri correspond to the isolated dynamics of patch i ∈ J, while the reproduction
numbers Ric are associated with the commuting between the central patch and patch i,
1 ≤ i ≤ n.

The disease-free equilibrium Ẽ obtained by solving for Si and Ri after setting Ii = 0, takes
the values S∗i = N∗

i and R∗
i = 0 for i ∈ J. Thus,

Ẽ = (N∗
1 ,0,0, . . . ,N

∗
n ,0,0,N

∗
c ,0,0) (1.25)

is the unique disease-free equilibrium of model (1.23)-(1.24). Assuming that the commuting
between patches does not occur, that is, βic = βci = 0 for i = 1,2, . . . ,n, we can define the
basic reproduction number for each patch

Ri =
βiiN∗

i
µi + γi

, i ∈ J.

The familiar threshold property of the basic reproduction number is valid for each patch.
Thus, if Ri < 1 in patch i, the disease will be eradicated in patch i if it is not connected with
other patches of the metapopulation. If R0 > 1, the disease will persist in patch i if it is
isolated from the metapopulation.
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The reproduction numbers associated with the infections caused by the commuting
between the i ∈ {1,2, . . . ,n} patches and the central patch, are

Ric =

√
βicβciN∗

i N∗
c

(µi + γi)(µc + γc)
, i ∈ {1,2, . . . ,n}

As in the proof of Theorem 1.3.1, constructing a suitable Lyapunov function we can prove
the following result.

Theorem 1.3.5. Let K be the next-generation matrix for model (1.23)-(1.24) and R0 = ρ(K).
If the basic reproduction number satisfies R0 ≤ 1, then the disease-free equilibrium Ẽ of the
metapopulation model (1.23)-(1.24) is globally asymptotically stable in Γ.

Since the importance of the mobility component in the persistence of diseases in metapop-
ulation models has been proved (Arino and Van den Driessche, 2003), our control strategy
shall focus on the interactions between patches rather than the local dynamics of each patch.

Theorem 1.3.6. Provided that the condition

max{R1, . . . ,Rn,Rc}< 1 (1.26)

is fulfilled, the target reproduction number TZ for system (1.23)-(1.24) where the target set
is defined as Z = {(1,n+1),(2,n+1), . . . ,(n,n+1),(n+1,1),(n+1,2), . . . ,(n+1,n)} is
given by

TZ =

√
1

(1−Rc)

(
R2

1c
1−R1

+
R2

2c
1−R2

+ · · ·+ R2
nc

1−Rn

)
, (1.27)

where Ri and Ric are the basic reproduction numbers of the within-patch transmission and
the infectious caused by the commuting between the i ∈ {1,2, . . . ,n} patches and the central
patch, respectively (see Fig. 1.4).

The proof follows the same idea that the proof of Theorem 3.1, and it is therefore omitted.
Observe that in the calculated target reproduction number (1.27), in the denominator arise
expressions of the form 1−Ri, i ∈ J. Thus, in a limit sense, the value of TZ goes to infinity
as Ri tend to 1. This seems to contradict the fact that

TZ < 1 ⇔ R0 < 1, and TZ = 1 ⇔ R0 = 1 (1.28)

when the target reproduction number is well defined. However, this is not a discrepancy since
Ri, i ∈ J, are local reproduction numbers associated with submodels and relation (1.28) only
applies for the basic reproduction number of the complete model.
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We also want to emphasize that the conceptual idea of the design of control strategies
from the topological structure of the infection process is applicable to a broad range of models
beyond those where the heterogeneity is spatial. For example, infectious processes related
to vector-borne diseases that affect multiple host species have an analogous structure that
the one presented in Fig. 1.4, with the difference that the reproduction numbers associated
with the within-species transmission are zero. In the above case, the vector has the function
of transmitting the infection to the different species so it works as the common source of
infection.

1.4 Discussion

In recent years, the fast development of the field of mathematical epidemiology has included
a wide range of multigroup mathematical models that consider host heterogeneities. However,
much remains to be understood about how such heterogeneities and the topological structure
of the infection process affect the spread of infectious diseases and our capacity to control
them.

Even though R0 is a linear measure of the strength of the infection, under the homo-
geneous mixing assumption, it aptly determines the control effort needed to eradicate an
infection (Roberts and Heesterbeek, 2003) which is one of the fundamental tasks in the
mathematical modeling of infectious diseases. However, for a large number of diseases, there
are multiple factors such as physiological, geographical or even economic conditions that
affect the trend of the infection and therefore the homogeneous mixing assumption is no
longer valid. This might make it necessary to consider different host types where each group
guarantees homogeneous mixing. Once having several host types, the basic reproduction
number often appears as complex combinations of parameters that make any analysis difficult.
In these cases, R0 does not improve our understanding of how efforts should be focused to
eliminate the epidemic (Olmos et al., 2015).

In this work, we bring forward some techniques to reduce the value of R0 for multigroup
models even without explicitly knowing its expression. Given the original model, we studied
some subsystems and computed their basic reproduction numbers. These basic reproduction
numbers allowed us to express the target reproduction number in a more treatable way for
concrete public health interventions. In other words, our methodology focuses on preventing
outbreaks at the global level by means of controlling the local dynamics of the infection
process.

We started by applying these methods to a two-species model for leptospirosis. Three
control policies were studied, all of them focusing on the indirect transmission caused by
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the interaction between hosts and the free-living leptospira in the environment. In particular,
by comparing the strategy that minimizes exposures to environmental risk factors with the
one that reduces the pathogen shedding rate, we found that both target reproduction numbers
are equal. Biologically, this means that both processes lead to the same outcome. Therefore,
one can select the strategy that is most feasible according to the local conditions. The
combination of the above strategies brings a stronger strategy because for endemic cases
1 < TW < TS = TU and therefore 1− 1/TW < 1− 1/TS. Yet, none of these strategies is
good enough to control the infection when the direct transmission cycle is endemic.

In order to study infections caused by pathogens with the ability to survive in the
environment, we proposed a generalization of the previous model, namely the n-groups
compartmental model (1.12). The model includes two potential routes of transmission:
host-to-host and environment-to-host transmission. Traditionally, control strategies have
been focused on the host-to-host transmission pathway. Nevertheless, the relative importance
of the indirect infections caused via contact with a contaminated environment is uncertain
(Bani-Yaghoub et al., 2012; Holt et al., 2006; Tien and Earn, 2010). Therefore, we analyzed
control strategies that center on the environment-to-host and computed the target reproduction
number in each case to quantify the control effort needed to eradicate the infection.

We also studied the spread of an infection among discrete geographical regions with a
core region. Even though the connection of the regions is by way of short-term movement,
it still allows infectious individuals to transmit the pathogen to susceptible individuals of
a different region. Theorem 1.3.6 implies that if the disease can persist even in one patch
we cannot eradicate the epidemic by just controlling the movement between patches in the
metapopulation model (1.23)-(1.24). In fact, we also notice that the infection can persist in
the population even if all the basic reproduction numbers for the transmission within patches
are less than one.

Another important observation is that the topological structure of the infection process of
model (1.12) is a particular case of the infection cycle that follows the metapopulation model
(1.23)-(1.24). The difference is that the common source of infection in model (1.12) (namely
the free-living pathogen) does not have the ability to produce within-group infections. On
the other hand, the central group of the metapopulation model can produce within-group
infections with a reproduction number Rc. Also note that in qualitative terms, the strategy
that aims to reduce the pathogen shedding by infectious hosts and minimize exposure to
environmental risk factors in model (1.12), is equivalent to the strategy that focuses on
reducing the infections caused by travel between patches in the metapopulation model. This
explains the similarity in the target reproduction numbers (1.15) and (1.27) and leads us
to remark that there is a connection among the cycles of infection, the basic reproduction
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number and the target reproduction number. These results illustrate that understanding the
topological structure of the infection process and partitioning it into simple cycles is useful
to design and evaluate control strategies.



Chapter 2

Evaluating the Potential of
Vaccine-Induced Type Replacement for
High-Risk Human Papillomavirus

2.1 Introduction

Cervical cancer is the fourth most frequent cancer in women with an estimated 570,000 new
cases in 2018 representing 6.6% of all female cancers. Approximately 90% of deaths from
cervical cancer occurred in low- and middle-income countries. In Mexico, 13,900 cases of
cervical cancer are estimated annually, with an incidence of 23.3 cases per 100,000 women.
In 2013, in the specific group of women aged 25 and over, there were 3,771 deaths with a
rate of 11.3 deaths per 100,000 women, making cervical cancer one of the leading causes of
death in Mexican women (de Salud Mexico, 2016).

It is known that a persistent infection with human papillomavirus (HPV) is the primary
cause of cervical cancer and several other malignancies (Arbyn et al., 2011; Ault, 2008;
Dasbach et al., 2006; Juckett et al., 2010). HPVs are small non-enveloped double-stranded
DNA viruses that belong to the Papillomaviridae family. Over 150 HPV types or strains have
been identified to date (Burd, 2003). HPVs infect squamous epithelia, that is, mucosal and
cutaneous membranes (Kajitani et al., 2012). Based on their association with cervical cancer
and other malignant carcinomas, mucosal HPVs can be classified into two groups: high-risk
(HR) and low-risk (LR) types (Kajitani et al., 2012). HR HPV types include types 16, 18, 31,
33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 70 (Burd, 2003). HPV-16 and HPV-18 are
the most prevalent HR strains, being associated with 70% of cases of cervical cancer globally
(Grabowska and Riemer, 2012; Li et al., 2011).
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Since 2007, in many developed countries, there have been recommendations to imple-
ment vaccination programs against HPV. At present, the degree of implementation of these
programs depend on several country-specific factors including the health care system orga-
nization and the ways of funding. Currently, in Mexico there are two vaccines that protect
against HPV infection: the quadrivalent vaccine Gardasil® and the bivalent vaccine Cervarix®.
Both vaccines target the HR strains 16 and 18, but the quadrivalent vaccine also protect
against the LR strains 6 and 11 that are responsible for approximately 90% of genital warts.
The efficacy of these vaccines has been shown to be very high, being more than 90% effective
at preventing diseases associated with the vaccine-targeted types (’vaccine types’) (Stanley,
2010). Several studies that analyzed HPV transmission at the population level have found
that vaccination of pre-adolescent girls is both highly effective and highly cost-effective to
reduce diseases caused by HPV (Brisson et al., 2011; Chesson et al., 2011; Damm et al.,
2017; Muller and Bauch, 2010; Prinja et al., 2017).

Nevertheless, given the vast diversity of HPV types, there have been speculations over
whether vaccine types will be replaced by other HR non-vaccine-targeted types (’non-vaccine
types’) (Murall et al., 2014). Vaccine-induced strain replacement is a phenomenon in
which vaccination leads to emergence and dominance of non-vaccine pathogen strains. This
replacement is due to a decreased fitness of the vaccine types after a vaccination scheme and
the fact that non-vaccine types can still infect vaccinated individuals (Martcheva et al., 2008).
For the specific case of HPV, selective pressures from vaccination might cause a reduction in
the size of the ecological niches dominated by HPV-16 and HPV-18, and at the same time
an increase in the prevalence of other HR non-vaccine types (Peralta et al., 2014). Yet, in
order to predict the outcome of a vaccination program, it is necessary to understand how
HPV strains interact and what factors control strain dominance.

Coinfection with multiple HPV strains has been found in several epidemiological studies
(Trottier and Franco, 2006). However, the role of coinfections with additional HPV strains
on the duration of an episode with a given HPV strain is not clear. To date, the biological
mechanisms that define the interactions among the broad variety of HPV strains inside a
host are not well understood. For example, in (McLaughlin-Drubin and Meyers, 2004) it
was reported that there can be antagonistic interactions among different HPV strains such
as competition, but only at the within-cell level, with more complex multistrain relations
at the population-cell level. Other studies suggest that the relations among HPV strains are
synergistic in the sense that infection with one strain facilitates concurrent or subsequent
infections with other strains (Elbasha and Galvani, 2005). However, independence among
HPV types is also a common finding (Garnett and Waddell, 2000; Saccucci et al., 2018;
Schiller and Lowy, 2012; Tota et al., 2013). This controversy implies that more clinical
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and theoretical studies are needed to infer the dynamics of HR non-vaccine types after a
vaccination program.

In this work, we use a within-host metapopulation model to investigate if the selective
nature of HPV vaccine can induce pathogen strain replacement. The model is formulated as a
nonlinear, discrete time Markov chain; the details of the formulation are given in section 2.2.
We compute the basic reproduction number R0 and analyze the stability of the disease-free
and boundary equilibria in section 2.3. In section 2.4, we study the model outcome through
numerical simulations for different scenarios related to the effectiveness of the vaccine
and the degree of cross-protection. We discuss the main implications of our analysis and
simulations and mention future work in section 2.5.

2.2 Model formulation

Early mathematical modeling related to within-host HPV dynamics dates back to 2013. (Or-
lando et al., 2013) developed ecological and evolutionary models of HPV-induced epithelial
lesions using partial differential equations. Their results demonstrate the link between HPV
infection and ecological parameters governing cellular population dynamics and highlight
somatic evolution as an alternative hypothesis for the progression of HPV-induced lesion to
malignancy. Based on Levins’ metapopulation framework, (Murall et al., 2014) developed
the first patch model to investigate HPV type interactions and their immune responses. The
authors in (Smith et al., 2015) constructed a within-host compartmental model to examine
the effect of vaccination on viral eradication. The role of HPV vaccines on the evolution
of virulence is discussed in (Murall et al., 2015). Using an evolutionary ecology modeling
approach, they found that higher oncogene expression is favored in vaccinated hosts, leading
to a higher probability of transmission before clearance by the vaccine. (Asih et al., 2016)
presented a model of HPV infection allowing the progression of infected cells to cancerous
forms to explore the interactions of long-term HPV infections and the risk for the develop-
ment of cervical cancer.(Verma et al., 2017) constructed a mathematical model of HIV/HPV
coinfection to determine the role of HIV-associated immune suppression on HPV persistence
and pathogenesis. Recently, (Alizon et al., 2017) discussed the metapopulation approach as
an explanatory framework to the study of the course of HPV infections.

Here, we propose a simple metapopulation model to examine the interplay of HR vaccine
and non-vaccine types after vaccination. Our model is formulated as a nonlinear, discrete
time Markov chain. This approach has not been used to study within-host HPV dynamics,
but it has been used successfully to study the biological heterogeneity of communities on
patchy landscapes (Barradas et al., 1996; Barradas and Cohen, 1994; Barradas and Tassier,
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1999; CASWELL and COHEN, 1991). As remarked by Murall et al. (Murall et al., 2014),
HPVs need microabrasions on the skin to infect new basal epithelial cells. Therefore, HPV
infections are localized and can be conceptualized as occurring in specific areas or patches of
the squamous epithelium.

The host tissue for the infection cycle of HPV is the squamous epithelium (Chow et al.,
2010). HPVs are intracellular parasites that must deliver their genome into host cells. The
target for HPV infection are basal epithelial cells in the cervix. In the initial phase of the
infection, HPV DNA is transported into the nucleus and maintained at very low levels in
the basal cells (Bedell et al., 1991; Moody and Laimins, 2010). The productive lifecycle
of HPV requires differentiation of the host cell. When the virus initially enters the host
basal cell, it cannot replicate until the cell matures into a keratinocyte. Once the infected
keratinocytes enter the differentiating compartment in the suprabasal layers of the epithelium,
the productive lifecycle occurs, and progenitor virions are released at the surface of the
epithelium once the cell dies, thus the virus is nonlytic(Grabowska and Riemer, 2012;
Kajitani et al., 2012).

For our model formulation, we consider the epithelium as a patchy environment that can
be inhabited by HPVs. Patches, that is, localized areas of the epithelium, can be infected by
multiple HPV strains and eventually produce free virions. However, since we want to study
the possibility of strain replacement, we only distinguish infection with HR vaccine types
(strains 16 and 18) or with HR non-vaccine types (strains 31, 33, 34, 35, 39, 45, 51, 52, 56,
58, 59, 66, 68, and 70). From now on, we are also going to refer to HR vaccine types as
species S1 and to HR non-vaccine types as species S2.

Each patch can be in one of four possible states depending on the presence or absence of
the species. The states are numbered 0,1,2 or 3 and defined as follows: 0 if the patch is not
infected, 1 if it is infected by species S1, 2 if it is infected by species S2, and 3 if both species
are present in it. This is summarized in Table 2.1.

HR Vaccine-Types HR Non-vaccine Types State
absent absent 0
present absent 1
absent present 2
present present 3

Table 2.1 Patch states defined by the presence or absence of species.

The state of the metapopulation model as a whole is described by a vector y=(y0.y1,y2,y3)∈
R4, where the entry yi is the proportion of patches in state i, for i = 0,1,2,3. Note that we are
assuming that all patches are identical; therefore, we are only considering the environmental
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heterogeneity produced by the independence of the patches. This simplifying assumption
allows us to focus our analysis on the impact of vaccination and the level of cross-protection
on the prevalence of the species.

The dynamics of our model for an HPV infected epithelium is given by a nonlinear
Markov chain

y(t +1) = Ay(t)y(t), (2.1)

where the transition matrix Ay(t) is a 4×4 column stochastic matrix which depends on the
state y(t) at time t. The elements ai j(y(t)) ∈ Ay(t) give the transition probability of moving
from state j to state i.

We derive the transition matrix under the hypothesis of independence among HPV types.
In other words, we assume that the ability to infect patches and produce virions of species S1

is not affected by the presence of species S2 and vice-versa.
Since infected patches can produce new virions, we assumed that the mean number

of virions of species Si infecting a patch is directly proportional to the fraction of patches
containing Si. Further, under the assumption that the infections of patches are independent
events that occurs at random, that is, without neighborhood effects, we can assume that
infection follows a Poisson process. Therefore, the probability Ci that a healthy patch is
infected by at least one virion of species Si is given by

C1(y) = 1− exp(−(1− ε)d1 f1), (2.2)

C2(y) = 1− exp(−(1−σ)d2 f2). (2.3)

Where no confusion seems likely to result, we will omit the dependence on y of the functions
C1 and C2.

The dispersal coefficient di of species Si is a constant of proportionality that combines
the effect of the production of new virions in the infected patches and the success of dispersal
of those virions (CASWELL and COHEN, 1991). The variables f1(t) = y1(t)+ y3(t), and
f2(t) = y2(t)+ y3(t) represent the frequency of species S1 and S2 at time t, respectively.

HPV vaccines are composed of type-specific HPV L1 protein which is the major capsid
protein of HPV (Stanley, 2010). These vaccines stimulate the production of antibodies that
bind to the virus and prevent the infection of cells. We consider this in our model assuming
that the vaccine prevents the infection of patches by species S1 with an effectiveness ε , we
take 0 ≤ ε ≤ 1. The vaccine is completely effective when ε = 1 and useless when ε = 0.
Moreover, it has been reported that the vaccine may provide cross-protection to non-vaccine
types (Durham et al., 2012; Jenkins, 2008). The level of cross-protection is reflected in the
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parameter σ , where 0 ≤ σ < ε . If σ is close to 0, the degree of cross-protection is low. On
the contrary, if σ is close to ε , the degree of cross-protection is high.

In most cases, HPV infections are cleared by a cell-mediated immune response induced
by CD8+ T-cells (Stanley, 2010). In fact, there are estimations that on average 70% of
persons with a new HPV infection will clear the infection within 1 year, and approximately
90% within 2 years (Markowitz et al., 2014). However, if the viral infection is not effectively
cleared, individuals can undergo neoplastic progression to high-grade precancer in the cervix
and eventually to cervical cancer. In this work, we model the cell-mediated immune response
as a disturbance that affects the persistence of the virus in the patches. In particular, we
assume that the immune system clears species Si, with a constant probability pi per unit of
time, i = 1,2.

Finally, assuming that an empty patch can be infected by either or both species at the
same time, we obtain the following transition matrix

Ay(t) =


(1−C1)(1−C2) p1 p2 p1 p2

C1(1−C2) p̄1(1−C2) 0 p̄1 p2

(1−C1)C2 0 p̄2(1−C1) p1 p̄2

C1C2 p̄1C2 p̄2C1 p̄1 p̄2

 (2.4)

where 0 < pi < 1, and we used the convention that p̄i = 1− pi for pi with i = 1,2.

2.3 Model analysis

The fundamental question about the model (2.1) is to determine the asymptotic behavior of
the system for any well-defined initial condition. From a mathematical point of view, model
(2.1) is a nonlinear, discrete time, nonautonomous dynamical system with a considerable
spectrum of possible asymptotic behaviors.

The simplest outcome of the model (2.1) is the vector of state frequencies y∗ ∈ R4

that quantifies the densities of the species at equilibrium. This vector gives the overall
picture of the host tissue after HPV infection. In addition, the prevalence of vaccine and
non-vaccine types at equilibrium is easily obtained adding the corresponding elements of
the state frequency vector y∗. Besides these spatial averages, patch properties and temporal
averages of patch transitions can also be computed (CASWELL and COHEN, 1991). For
example, the local diversity also known as alpha diversity, measured by the expected number
of species per patch is

α = y1 + y2 +2y3,
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and the variance in alpha diversity

V (α) = y1 + y2 +4y3 −α
2

can be used to measure the spatial heterogeneity in the landscape.
Between patch or beta diversity quantifies the spatial heterogeneity in species composition.

One of the simplest methods to compute beta diversity is with the entropy of the state
frequency vector,

β =−
4

∑
i=1

yi log(yi).

Beta diversity is at the minimum when all patches contain the same density of species and
grows when all different patches types are equally abundant (CASWELL and COHEN,
1991). In this work, our main interest is to quantify quantitative differences between the
prevalence of HPV non-vaccine types in the presence and absence of vaccination. Therefore,
our analysis focuses on the equilibrium state frequencies.

Since the transition matrix (2.4) is column-stochastic, the phase space for model (2.1),
that is, the standard 3-simplex

∆
3 =

{
y ∈ R4 | y0 + y1 + y2 + y3 = 1, yi ≥ 0, i = 0,1,2,3

}
(2.5)

is invariant under system (2.1).
To investigate the existence and stability of the equilibrium points of the model (2.1),

define the functions gi : ∆3 → R for i = 1,2,3,4 as

g0(y) = (1−C1)(1−C2)y0 + p1y1 + p2y2 + p1 p2y3 − y0,

g1(y) =C1(1−C2)y0 + p̄1(1−C2)y1 + p̄1 p2y3 − y1,

g2(y) = (1−C1)C2y0 + p̄2(1−C1)y2 + p1 p̄2y3 − y2,

g3(y) =C1C2y0 + p̄1C2y1 + p̄2C1y2 + p̄1 p̄2y3 − y3.

(2.6)

Clearly, a vector y∗ ∈ ∆3 is an equilibrium point of the model (2.1) if and only if

gi(y∗) = 0, i = 0,1,2,3. (2.7)

Moreover, the variable yi increases over time if gi > 0, decreases if gi < 0, and does not
change if gi = 0. Thus, the behavior of the solution of the model (2.1) in the simplex (2.5) is
determined by the sign of the functions gi.
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If we set (2.6) equal to zero, it is easy to see that (2.1) always has a disease-free equilib-
rium

E0 = (1,0,0,0), (2.8)

that is, an equilibrium point in which none of the species is present.
In order to compute the within-host basic reproduction number R0 for the model (2.1),

we adapted the method of Van den Driessche and Watmough (2002) to compute R0 in
compartmental epidemic models using the next-generation matrix.

First, we need to write the variation in the proportions of infected patches per unit of time
in the following way:

yi(t +1)− yi(t) = Fi(y)−Vi(y), i = 1,2,3, (2.9)

where Fi is the rate of appearance of new patches in state i, and Vi incorporates the remaining
transitional terms, namely disease progression and recovery. For our model, these functions
have the following form:

F1 =C1(1−C2)y0, V1 = y1 − p̄1(1−C2)y1 − p̄1 p2y3,

F2 = (1−C1)C2y0, V2 = y2 − p̄2(1−C1)y2 − p1 p̄2y3,

F3 =C1C2y0 + p̄1C2y1 + p̄2C1y2, V3 = y3 − p̄1 p̄2y3.

Next, we define the matrix of new infections

F =

[
∂Fi(E0)

∂y j

]
=

 (1− ε)d1 0 (1− ε)d1

0 (1−σ)d2 (1−σ)d2

0 0 0

 , (2.10)

and the matrix for transitions among states

V =

[
∂Vi(E0)

∂y j

]
=

 p1 0 −p̄1 p2

0 p2 −p1 p̄2

0 0 1− p̄1 p̄2

 . (2.11)



2.3 Model analysis 37

Note that F is a non-negative matrix and V is a non-singular M-matrix. Finally, we define
R0 as the spectral radius of the next-generation matrix K = FV−1 which is given by

K =


(1− ε)d1

p1
0

(1− ε)d1

p1

0
(1−σ)d2

p2

(1−σ)d2

p2
0 0 0

 (2.12)

thus
R0 = max{R1,R2} (2.13)

where
R1 =

(1− ε)d1

p1
and R2 =

(1−σ)d2

p2
(2.14)

are the reproduction numbers of vaccine and non-vaccine types, respectively. The repro-
duction number Ri gives the average number of secondary virus particles that one virus of
species Si will produce in a completely susceptible target cell population Martcheva (2015).

The following result establishes the relationship between the within-host basic reproduc-
tion number and the stability of the disease-free equilibrium E0.

Theorem 2.3.1. The disease-free equilibrium E0 = (1,0,0,0) of the system (2.1) is locally
asymptotically stable if the within-host basic reproduction number R0 is less than 1, that is,
if

R1 < 1, and R2 < 1. (2.15)

The disease-free equilibrium is unstable if at least one of the above inequalities is reversed.

Proof. Model (2.1) is a four-dimensional discrete time dynamical system of the form

y(t +1) = f (y(t)), (2.16)

where the function f : ∆3 → ∆3 has components

fi(y) =
4

∑
j=1

ai j(y)y j−1, i = 1,2,3,4. (2.17)

However, since y ∈ ∆3 i.e. y0 + y1 + y2 + y3 = 1, defining the function f̄ = ( f̄1, f̄2, f̄3) with

f̄i−1(y1,y2,y3) = fi(1− (y1 + y2 + y3),y1,y2,y3), i = 2,3,4, (2.18)
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we can reduce (2.16) to the three-dimensional system

ȳ(t +1) = f̄ (ȳ(t)), ȳ(t) = (y1(t),y2(t),y3(t)). (2.19)

The disease-free equilibrium E0 = (1,0,0,0) of the system (2.16) is equivalent to the equi-
librium Ē0 = (0,0,0) of the system (2.19). Therefore, we can determine the stability of E0

analyzing the stability of Ē0.
For system (2.19), the derivative of f̄ evaluated at the equilibrium Ē0 is given by the

following matrix

D f̄ (Ē0) =

 (1− ε)d1 + p̄1 0 p̄1 p2 +(1− ε)d1

0 (1−σ)d2 + p̄2 p1 p̄2 +(1−σ)d2

0 0 p̄1 p̄2

 . (2.20)

The equilibrium Ē0 is locally asymptotically stable if the spectral radius of the above matrix
is less than 1, that is, ρ(D f̄ (Ē0))< 1. Since D f̄ (Ē0) is a triangular matrix and |p̄1 p̄2|< 1, it
is clear that ρ(D f (E0))< 1 if and only if R0 < 1.

Besides E0, the model (2.1) also has another boundary equilibrium points in which one
of the species is present while the other is absent. The following results state this more
precisely.

Theorem 2.3.2. In the absence of the species S2, if R1 > 1, the model (2.1) has an asymp-
totically stable boundary equilibrium of the form

E1 = (1− y∗1,y
∗
1,0,0) (2.21)

where y∗1 is the only positive solution of

(1− e−(1−ε)d1y1)(1− y1)− p1y1 = 0 (2.22)

such that y∗1 ∈ (0,1). In other words, the solution y(t) = (y0(t),y1(t),y2(t),y3(t)) of system
(2.1) with initial condition y0 = (y0(0),y1(0),0,0) ∈ ∆3, y0 ̸= E0, satisfies y(t) → E1 as
t → ∞ if and only if R1 > 1.

Proof. In the absence of the species S2, that is, when y2(t) = 0, coinfections are not possible,
thus y3(t) = 0 for all t. Under these conditions, if we set (2.6) equal to zero, we get that the
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equilibrium point satisfy the following system of equations

(e−(1−ε)d1y1)y0 + p1y1 = y0 (2.23)

(1− e−(1−ε)d1y1)y0 + p̄1y1 = y1. (2.24)

Because y0 = 1− y1, equations (2.23) and (2.24) are equivalent. Hence, we only analyze
(2.24) in the form

g1(1− y1,y1,0,0) = (1− e−(1−ε)d1y1)(1− y1)− p1y1 = 0. (2.25)

Define h(y1)≡ g1(1− y1,y1,0,0). It is not difficult to see that h is a concave function such
that h(0) = 0 and h(1) < 0. Therefore, the equation (2.25) has a unique positive solution
y∗1 ∈ (0,1), if and only if

h′(0) = (1− ε)d1 − p1 > 0. (2.26)

Clearly, the condition (2.26) is fulfilled if and only if R1 > 1. In addition, h is positive in
(0,y∗1) and negative in (y∗1,1).

The analogous result that establishes the existence and stability of the boundary equilib-
rium in which S2 is present and S1 is absent is stated in the next theorem. We omit the proof
since it follows the same argument of the previous proof.

Theorem 2.3.3. In the absence of the species S1, if R2 > 1, the model (2.1) has an asymp-
totically stable boundary equilibrium of the form

E2 = (1− y∗2,0,y
∗
2,0) (2.27)

where y∗2 is the only positive solution of

(1− e−(1−σ)d2y2)(1− y2)− p2y2 = 0 (2.28)

such that y∗2 ∈ (0,1). In other words, the solution y(t) = (y0(t),y1(t),y2(t),y3(t)) of the
system (2.1) with initial condition y0 = (y0(0),0,y2(0),0) ∈ ∆3, y0 ̸= E0, satisfies y(t)→ E2

as t → ∞ if and only if R2 > 1.

Conditions guaranteeing the existence of an interior equilibrium point are difficult to
obtain by reason of the nonlinear dependence of Ci (i = 1,2) with respect to the frequency of
the species. Nevertheless, numerical simulations indicate that if the reproduction numbers
of both species are greater than 1, namely, R1 > 1 and R2 > 1, there is a unique endemic
equilibrium in the interior of ∆3 which is locally asymptotically stable.
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2.4 Numerical results

In order to explore the dynamical behavior of the model, we performed multiple numerical
simulations. Due to the uncertainty and the considerable variability of estimates of the
parameters in the literature, for the numerical experiments, we vary our model parameters in
ranges compatible with the natural history of HPV infection of the mucosal epithelia.

Some studies have estimated the persistence of HPV infection as a function of time and
the clearance rate for some HPV types. For example, in Molano et al. (Molano et al., 2003),
it was estimated that the median duration of a new HPV infection was 14.8 months for HR
types and 11.1 months for LR types. In that study, HPV-16 had a significantly lower clearance
rate than infections with LR types. HPV types phylogenetically related to HPV 16 (types
31, 33, 35, 52, 58) showed clearance rates intermediate between those of HPV-16 and LR
HPV types. Other HR types, including HPV-18, did not show evidence of slower clearance
rates compared with LR types. Since species S1 includes types 16 and 18, we assume that the
clearance rates for S1 and S2 are roughly the same. Thus, we posit that parameters p1 and p2,
that represent the probability (per unit of time, that we choose to be one week) with which
the immune system clears patches in states 1 and 2, respectively, satisfy p1, p2 ∈ (0,0.1].

Moreover, since types 16 and 18 are the most prevalent types among women (Bruni
et al., 2010), it is rational to expect that d1 > d2 (to complement the analysis, we study the
case d1 ≤ d2 in the Appendix A). That is, HR vaccine types are better on average than HR
non-vaccine types at the production and dispersal of new virions in infected patches. From
an ecological point of view, if we consider that S1 and S2 are two species that live in the same
ecological community (squamous epithelium) and compete for resources (basal cells), we
could expect that S1 is the dominant species in the absence of vaccination. Thus, we posit
d1 ∈ (0,1.5] and d2 ∈ (0,0.5]. Finally, since HPV vaccines have been shown to be highly
effective (Stanley, 2010), under vaccine conditions, we set ε = 0.9.

To determine if HR non-vaccine HPV types can increase their niche after a vaccination
scheme, we compare the prevalence of both vaccine and non-vaccine types for different
scenarios related to vaccine conditions and the level of cross-protection σ . For each of
the scenarios, we carried out 100,000 simulations of the system (2.1) until in each of the
simulations the vector of frequencies y(t) converged to a steady state y∗. Then we quantified
the results via histograms of the resulting density of the species at the steady state. The
parameters pi and di (i = 1,2) were sampled using uniform probability distribution in their
respective range. The results of the experiments are shown in Figure 2.1. For the histograms,
we split the interval [0,1] into 30 bins of the same length. Moreover, the vertical axis (observe
that the scale is different for all the subfigures) indicates the relative frequency of occurrences
in which the value of y∗i , falls into a specific bin or interval.
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Fig. 2.1 Histograms for the state frequencies at the equilibrium of system (2.1). Columns
(from left to right): (1) density of patches infected by S1, (2) density of patches infected by
S2, (3) density of patches coinfected with S1 and S2. Rows (from top to bottom): (1) absence
of vaccination i.e ε = σ = 0, (2) vaccination with no cross-protection i.e ε = 0.9, σ = 0,
(3) vaccination with low cross-protection i.e ε = 0.9, σ = 0.2, (4) vaccination with high
cross-protection i.e ε = 0.9, σ = 0.6. For (a)-(l), the rest of the parameters were sampled
randomly in their respective intervals, pi ∈ (0,0.1] (i = 1,2), and d1 ∈ (0,1.5], d2 ∈ (0,0.5].
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In the first place, we study a scenario in which there is no vaccination, that is, the
parameters ε and σ are both equal to zero. The model outcome in these conditions is
plotted in Figure 2.1 (a), (b), (c). In these subfigures, the density of patches infected with
vaccine-types is greater than the density of patches infected with non-vaccine types. This
is an expected result since we are assuming that in the absence of vaccination S1 is a better
competitor than S2. Moreover, the fraction of patches infected by S1 is highly concentrated
in the interval [0,0.2] and the fraction infected by S2 in the interval [0,0.1]. In addition, the
first bin, that is, the interval [0,1/30] is the bin with the highest relative frequency; hence,
there is also a high probability of extinction. This seems to indicate that even in the absence
of vaccination the prevalence of the species is low, however, in the histogram for coinfections
(Figure 2.1 (c)), one can see that the fraction of patches in the state 3 could be bigger than
0.6. Therefore, the total percentage of infected patches in the absence of vaccination might
be around 90%.

In the second scenario, we analyze the effects of vaccination when there is no cross-
protection, i.e, ε = 0.9 and σ = 0 (Figure 2.1 (d), (e), (f)). Comparing Figure 2.1 (a) and (d),
it is clear that the application of the vaccine reduces significantly the infection by vaccine-
types. Indeed, the relative frequency of the first bin of the histogram in Figure 2.1 (d) is
nearby 0.5, which implies that there is a high probability of extinction for vaccine-types.
For non-vaccine types, if we compare Figure 2.1 (e) and (b), we observe that there is a
big increase in the infection with non-vaccine types. In fact, if we omit the first bin in the
histogram in Figure 2.1 (e), the rest of the bins have nearly the same relative frequency. Thus,
non-vaccine types have a strong possibility of infecting more than 50% of the healthy patches.
Furthermore, the fraction of coinfected patches y∗3 in this case (Figure 2.1 (f)) is considerably
lower than in the absence of vaccination, (Figure 2.1 (c)). In summary, for this scenario, the
application of the vaccine would increase the prevalence of non-vaccine types.

In the third place, we consider vaccination with low cross-protection, that is, ε = 0.9 and
σ = 0.2 (Figure 2.1 (g), (h), (i)). The results indicate that the outcome for this scenario is
almost the same as the case without cross-protection. Lastly, we analyze vaccination with
high cross-protection i.e ε = 0.9 and σ = 0.6 (Figure 2.1 (j), (k), (l)). Again, the application
of the vaccine cause a reduction of vaccine-types, this is observed comparing y∗1 in Figure 2.1
(j) against y∗1 in Figure 2.1 (a). Nevertheless, infection by non-vaccine types (Figure 2.1 (k))
is less in relation with the cases of low (Figure 2.1 (h)) and no cross-protection (Figure 2.1
(e)). Finally, the fraction of coinfected patches is the lowest for this case. This is deduced by
seeing that the relative frequency for the bin [0,1/30] is greater than 0.5 in the histogram in
Figure 2.1 (l).
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The above results suggest that cross-protection plays an important role to determine the
possibility of vaccine-induced strain replacement. Therefore, we analyze how the structure
of the solution depends on the parameter σ using bifurcation analysis. Consistent with the
literature, we fixed ε = 0.9, so the vaccine is 90% effective at preventing infection by vaccine
types. We fix the other parameters with the following values: p1 = 0.1, p2 = 0.1, d1 = 1.5,
d2 = 0.3; and vary σ in the interval 0 ≤ σ < ε . Then, we check numerically the fraction of
patches infected by vaccine y∗1(σ) and non-vaccine y∗2(σ) types at the equilibrium level as
functions of σ . The results are shown in Figure 2.2.
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Fig. 2.2 Fraction of patches infected by vaccine y∗1(σ) and non-vaccine y∗2(σ) types as
functions of σ at the equilibrium level under vaccine conditions i.e ε = 0.9. The straight lines
y∗1(0) and y∗2(0) represent the fraction of patches infected by vaccine types and non-vaccine
types, respectively, at the steady state when there is no vaccination i.e ε = 0 and σ = 0. The
rest of parameters are fixed with the following values: p1 = 0.1, p2 = 0.1, d1 = 1.5, d2 = 0.3.

In order to have a clear way to compare the prevalence under vaccine conditions for
different levels of cross-protection against the case without vaccination, we add two straight
lines y∗1(0) and y∗2(0) to Figure 2.2. These lines represent the fraction of patches infected
by vaccine types and non-vaccine types, respectively, at the steady state when there is no
vaccination, that is, with ε = 0 and σ = 0. Parameters pi and di for these straight lines are the
same that for y∗1(σ) and y∗2(σ). From Figure 2.2, we observe that y∗1(σ) is a non-decreasing
function of σ . Hence, from an ecological point of view, cross-protection affects positively
vaccine-types. On the other hand, y∗2(σ) is a non-increasing function of σ . In consequence,
the infection by non-vaccine types is low for high levels of cross-protection. Moreover,
y∗1(σ)< y1(0) for all the values of σ in its range. This implies that regardless of the level of
cross-protection, the fraction of patches infected by S1 under vaccine conditions is always
less than in the absence of vaccination. Whereas, y∗2(σ)> y2(0) if and only if 0 ≤ σ < 0.62.
Thus, if σ < 0.62 there is an increase in the prevalence of infection by S2 in comparison to
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the case without vaccination. Yet, if σ > 0.62, the fraction of patches infected by S2 is less
in comparison to the case without vaccination.

2.5 Discussion

Pathogen evolution is subject to natural selection at numerous levels. For instance, pathogens
compete for target cells within infected hosts but also attempt to infect more individuals at
the population level. Inside a host, the immune system imposes natural selection on pathogen
populations. However, the application of vaccines can modify this selection by attacking
specific pathogen strains. Thus, under certain conditions, strains not targeted by the vaccine
may increase in prevalence. This phenomenon has been called vaccine-induced pathogen
strain replacement (Martcheva et al., 2008). Generally speaking, strain replacement is the
phenomenon of substitution through time of one or more initially dominant strains of a
pathogen by another strain or strains.

Many countries have implemented vaccination against infection by specific HPV strains.
In Mexico, there are currently two vaccines available to prevent HPV infection: a bivalent
vaccine against HPV strains 16 and 18, and a quadrivalent that protects against strains 16,
18, 6, and 11. In other countries, there is also a nonavalent vaccine directed against the four
strains of the quadrivalent vaccine and five additional high-risk strains: 31, 33, 45, 52, and
58 (Damm et al., 2017). However, there are still some high-risk HPV strains not targeted by
the vaccines, and there is controversy over the possibility of the emergence of non-targeted
types after a vaccination program. In other words, the removal of HPVs 16 and 18 and other
vaccine-targeted types as the result of vaccination may result in a positive selection pressure
for other high-risk non-vaccine HPV types, leading to an increase in transmission of the
latter.

In this work, we propose a metapopulation model at the within-host level to evaluate
the potential of HPV strain-replacement for different levels of cross-protection. Our model
considers high-risk types and classify them into two groups: vaccine-targeted types (’vaccine
types’), and vaccine-non-targeted types (’non-vaccine types’). According to basic ecological
principles, if HPV types compete for resources such as target cells, the application of a
vaccine that prevents infections by one type may promote the emergence of the other types.
On the contrary, if the interactions among types are synergistic, a vaccination scheme may
reduce not only the prevalence of vaccine-types but also the prevalence of the non-vaccine
types. At present, it is still unclear how the broad diversity of HPV types interact inside a
host. Here, we analyzed independence among types as the main ecological interaction since
it is one of the most accepted hypotheses regarding HPVs interactions (Murall et al., 2014).
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The general argument in the literature is that the existence of natural type competition
is a necessary condition for type replacement (Tota et al., 2013). Therefore, several studies
evaluating the possibility of HPV type replacement have focussed on finding competitive
interactions among HPV types (Chaturvedi et al., 2011; Mollers et al., 2014; Tota et al.,
2016). Nevertheless, even in the absence of competition mechanisms, the results of this study
show that type replacement is viable at the within-host level if the degree of cross-protection
induced by the vaccine is not high enough. Type replacement has been observed following
vaccination in Durham et al. (Durham et al., 2012). In this study, the authors reported that
the prevalence of HPV types phylogenetically related to HPV-16 (types 39, 45, 59, and 68)
and HPV-18 (types 39, 45, 59, and 68) increased by 50% and 29% following vaccination,
respectively. However, a number of epidemiological studies have shown only occasional
increases in the prevalence of HPV types not targeted by the vaccine, suggesting a low
probability of type replacement (Kahn et al., 2012; Mesher et al., 2016; Saccucci et al., 2018).
Hence, monitoring for possible type replacement remains a very important task.

For the particular case of our model, the degree of cross-protection must be greater than
62% to avoid an increase in the prevalence of non-vaccine types in comparison to the case
in which there is no vaccination. However, although the currently available HPV vaccines
provide more than 90% of protection against infection with its targeted types, these vaccines
based on virus-like particles of the major capsid protein L1 do not generate a significant
degree of cross-protection (Tumban et al., 2011). Nevertheless, the negative impact of type
replacement in the health system is somehow mitigated due to the fact that infection with
non-vaccine types implies lower cervical cancer risk than infection with vaccine-types.

The patch dynamics model presented here is simple and only considers two spatial scales:
local within-patch interactions and the dynamics of the metapopulation as a whole. Many
natural extensions are possible to improve the realism of the model. For instance, instead
of grouping HPVs as vaccine and non-vaccine types, the phylogenetic clades based on
the L1 sequences of HPV can be used to have a finer classification. In this regard, since
high-risk strains targeted only by the nonavalent vaccine were considered non-vaccine types,
examining scenarios for the nonavalent vaccine is still needed. Moreover, we postulated that
the immune system clears infected patches with a constant probability, yet, the clearance
rates for HPV strains are not constant in time. In addition, it is also possible to link this model
with an epidemic model in order to study pathogen evolution and the reciprocal feedback
between within- and between-host dynamics. Currently, we are working on these extensions
and the study of other ecological scenarios besides the case of independence among HPV
strains.
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Appendix A

HPV types 16 and 18 are the most prevalent types in cervical cancer globally but not
necessarily the most common in early, usually asymptomatic, infections. Moreover, the
distribution of HPV types is known to vary across different geographical regions. Therefore,
it is instructive to analyze the model outcome if the d1 > d2 assumption is relaxed.

In order to determine if vaccine-induced type replacement is possible when d1 ≤ d2, we
compare the prevalence of both vaccine and non-vaccine types for two scenarios: (i) no
vaccination (ε = 0, σ = 0), and (ii) vaccination with low cross-protection (ε = 0.9, σ = 0.2).
As in the main text, for each of the scenarios, we carried out 100,000 simulations of the
system (2.1) until in each of the simulations the vector of frequencies y(t) converged to a
steady state y∗. Then, we quantify the results via histograms of the resulting density of the
species at the steady state (see Figure 2.3). Here, the parameters di (i = 1,2) were sampled
using uniform probability distribution in the interval di ∈ [0,1].
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Fig. 2.3 Histograms for the state frequencies at the equilibrium of system (2.1). Columns
(from left to right): (1) density of patches infected by S1, (2) density of patches infected by
S2, (3) density of patches coinfected with S1 and S2. Rows (from top to bottom): (1) absence
of vaccination i.e ε = σ = 0, (2) vaccination with low cross-protection i.e ε = 0.9, σ = 0.2.
For (a)-(f), the parameters were sampled randomly in the following intervals, pi ∈ (0,0.1],
and di ∈ (0,1] (i = 1,2).

If there is no vaccination, the density of patches infected by S1 (Figure 2.3 (a)) and S2

(Figure 2.3) is identical. This result is logical since the parameters d1 and d2 have the same
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range. The fraction of coinfected patches, in this case, can be very high (Figure 2.3 (c)).
Following vaccination, infection by vaccine-types decreases significantly (Figure 2.3 (d))
and there is a clear increase in the density of patches infected by non-vaccine types (Figure
2.3). Moreover, the fraction of coinfected patches are considerably lower than in the absence
of vaccination (Figure 2.3 (f)). Therefore, the result that type replacement is possible when
cross-protection is low (which is the more realistic case) does not depend on the dispersal
coefficients d1 and d2.





Chapter 3

Optimal Control Against the Human
Papillomavirus

3.1 Introduction

Human papillomavirus (HPV) is the leading etiological factor for the development of cervical
cancer. According to the World Health Organization (WHO) report, cervical cancer is the
fourth most frequent cancer in women with approximately 570,000 new cases reported in
2018. This fact makes the design, implementation, and maintenance of effective preventing
policies against cervical cancer a highly relevant public health problem. Moreover, HPV is the
most common sexually transmitted infection globally and most people are infected at some
point in their lives. This consideration motivates research on the design and development of
cost-effective vaccination and screening programs against HPV infection.

An HPV infection is caused by human papillomavirus, a DNA virus from the papillo-
mavirus family, of which over 170 types are known. More than 40 types are transmitted
through sexual contact and infect the anus and genitals. These types are typically spread
by sustained direct skin-to-skin contact, with vaginal and anal sex being the most common
methods. Other HPV types can cause common warts like hand warts and plantar warts on
the feet but these are not sexually transmitted. Most people with HPV have no symptoms
and feel totally fine, so they usually do not even know they are infected. However, although
most genital HPV infections are not harmful at all and go away on their own, some infections
persist and can cause cervical cancer. Risk factors for persistent genital HPV infections,
which increases the risk for developing cancer, include early age of first sexual intercourse,
multiple partners, smoking, and immunosuppression.
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On October 5th of 2018, the US Food and Drug Administration (FDA) approved the
nonavalent vaccine Gardasil-9 against HPV infection for use in women and men aged 27 to
45 (FDA, 2018). Earlier, the FDA approved the vaccine for persons between the ages of 9 to
26. Gardasil-9 protects against HPV types 6, 11, 16, and 18 (that are already targeted by the
quadrivalent HPV vaccine Gardasil) and against the next five most common oncogenic viral
types, namely, HPV 31, 33, 45, 52 and 58. These nine HPV types are responsible for the
majority of HPV-associated diseases (Brisson et al., 2016). In addition to the nonavalent and
quadrivalent vaccines, there is also an FDA-approved bivalent vaccine (Cervarix) that targets
HPV types 16 and 18.

The introduction of HPV vaccines is changing the epidemiology of cervical cancer and
other HPV-associated diseases each year. Since HPV-associated morbidity and mortality are
usually considerably higher in females than in males, in the majority of countries the primary
target group of HPV vaccination programs is adolescent school girls aged 9–14 (Seto et al.,
2012). However, considering that Gardasil-9 has been licensed for a broader age range in
both males and females, it is essential to analyze the potential health benefits of extending
vaccination to males, as well as older individuals, versus a higher economic cost of such
programs.

To examine the dynamics of HPV spread and control, numerous mathematical models
have been proposed (Alsaleh and Gumel, 2014; Bogaards et al., 2011; Elbasha and Dasbach,
2010; Elbasha et al., 2007; Garnett et al., 2006; Guerrero et al., 2015; Kim and Goldie,
2009; Malik et al., 2013; Newall et al., 2007; Saldaña and Barradas, 2019; Smith et al.,
2011). While these and other recent studies analyzed different strategies for HPV control and
brought important insight into the problem, the majority of them did not take into account the
optimality of these interventions. The study of optimality, however, is of particular relevance
in the allocation of limited public health resources. In this context, the application of optimal
control theory has proven to be an important tool for evaluating and optimizing various
detection, prevention, therapy, vaccination, and other intervention programs (Sharomi and
Malik, 2017).

So far, to the best of the authors’ knowledge, for the case of HPV infection only a
few studies have been done using the optimal control framework to assess the impact of
vaccination programs (Brown and White, 2011; Malik et al., 2016). Brown and White (Brown
and White, 2011) explored how to target vaccination in the UK. This study highlights the
importance of including a catch-up vaccination policy in order to control the spread of the
infection. In a recently published paper, Malik et al (Malik et al., 2016) analyzed the optimal
control strategies for a vaccination program administering the bivalent, quadrivalent and
nonavalent HPV vaccines to the female population. In particular, they explored scenarios
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where the three vaccines are used simultaneously compared with the case where the bivalent
and quadrivalent vaccines were initially used and then, during the program, one or both of
them are replaced by the nonavalent vaccine.

The purpose of this work is to assess the cost-effectiveness of the most practical in-
terventions policies used against HPV. We consider a two-sex epidemic model consisting
of ordinary differential equations based on the susceptible-infected-vaccinated-susceptible
(SIVS) compartmental structure. The model includes vaccination in both females and males
where we distinguish between vaccines given before and after sexual initiation. Moreover, we
also consider females’ screening. We prove that our model is mathematically and biologically
well-posed. Important threshold quantities, namely, the basic and the effective reproduction
numbers are used to determine the stability of the disease-free equilibrium. Then, we define a
suitable cost function and a cost-effectiveness ratio to evaluate the performance of health care
interventions against HPV. Furthermore, we apply the theory of optimal control to obtain
time-dependent health care interventions and investigate the potential public health impact of
HPV vaccination programs.

3.2 Model formulation

In this study, we propose and study a compartmental model for the transmission dynamics of
the HPV types targeted by the nonavalent vaccine Gardasil-9. The model classifies the hosts’
population at time t denoted by N(t) according to gender and infection status. We subdivide
the total female population N f (t) into four mutually exclusive compartments: unvaccinated
susceptibles S f (t), vaccinated susceptibles Vf (t), and infectious females unaware U f (t) and
aware I f (t) of their infection, thus

N f (t) = S f (t)+Vf (t)+U f (t)+ I f (t). (3.1)

The total male population Nm(t) consist of three compartments: unvaccinated susceptibles
Sm(t), vaccinated susceptibles Vm(t) and infectious males Im(t), so that

Nm = Sm(t)+Vm(t)+ Im(t). (3.2)

We assume that individuals enter the sexually active population as singles at a constant
rate Λk (k = f ,m). Females and males leave the population by death or ceasing sexual activity
at per capita rates µ f and µm, respectively. In this study, we distinguish between vaccination
prior and after sexual initiation. In particular, a fraction w1 of females and a fraction w2 of
males are vaccinated before they enter the sexually active class and thus are recruited into
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their vaccinated compartment. Moreover, the susceptible sexually active females and males
are vaccinated at rates u1 and u2 per unit of time, respectively. The vaccine reduces the force
of infection by a factor 0 ≤ ε ≤ 1; thus, the vaccine is completely effective when ε = 0 and
ineffective when ε = 1. Therefore 1− ε is the vaccine effectiveness. The vaccine-induced
immunity wanes at a rate θ . Both males and females can clear the infection naturally with
per capita rates γm and γ f , respectively. No permanent immunity is assumed after that.

Susceptible females become infected at a rate βm following effective contact with an
infectious male. After the acquisition of HPV infection, a fraction p of the infected females
may develop symptoms and become aware of their infection entering the I f (t) class. The
remaining infected females do not realize their infection and move to the unaware class
U f (t). However, the screening program may allow the unaware infected females to detect
their infection at a rate α .

Susceptible males can be infected by unaware infected females U f (t) at a rate β f and
by aware infected females I f (t) at a rate β̃ f . We assume that 0 < β̃ f < β f since a female
conscious of her infection can take precautions like condom use to reduce the possibility
of transmission. Since HPV infection is transmitted (in most cases) sexually, we model the
transmission via the standard incidence (Martcheva, 2015).

The model resulting from these assumptions is governed by the following system of
differential equations:

Ṡ f = (1−w1)Λ f −βmS f
Im

Nm
− (u1 +µ f )S f + γ f (U f + I f )+θVf ,

U̇ f =
(
S f + εVf

)
(1− p)βm

Im

Nm
− (γ f +α +µ f )U f ,

İ f =
(
S f + εVf

)
pβm

Im

Nm
+αU f − (γ f +µ f )I f ,

V̇f = w1Λ f +u1S f − εβmVf
Im

Nm
− (µ f +θ)Vf ,

Ṡm = (1−w2)Λm −
(

β f
U f

N f
+ β̃ f

I f

N f

)
Sm − (u2 +µm)Sm + γmIm +θVm,

İm =

(
β f

U f

N f
+ β̃ f

I f

N f

)
(Sm + εVm)− (γm +µm)Im,

V̇m = w2Λm −
(

β f
U f

N f
+ β̃ f

I f

N f

)
εVm +u2Sm − (µm +θ)Vm,

(3.3)

Here all the parameters are assumed to be non-negative. The intervention measures, namely,
the screening and vaccination rates will be called controls and denoted by vector c =

(w1,w2,u1,u2,α).
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Before going any further, we need to mention that our model, as any other, is limited
and simplifies reality in many respects. This simplification is achieved by making some
assumptions that can make the model feasible for mathematical analysis. First, we are
assuming that the screening tests are 100% effective. Besides, both, the HPV test and the
Pap test are valid screening methods. The HPV test looks for cervical infection by high-risk
types and the Pap test is used to find cell changes or abnormal cells which may be pre-cancer.
Yet, since both tests can be done at the same time (with the same swab), in our modeling
approach we do not make a distinction between both screening methods. Finally, the Center
for Disease Control recommends a co-test every 5 years or a Pap test every 3 years. However,
in this work, we first consider a constant screening rate α .

3.3 Mathematical analysis of the HPV model

3.3.1 Boundedness and positivity of the solutions

The following result shows that the usual boundedness, positiveness, and continuity of the
solutions of system (3.3) hold in a biologically feasible region.

Proposition 3.3.1. The feasible region Ω̃ =
{

x ∈ R7
+ : Nk ≤ Λk/µk, k = f ,m

}
where x =

(S f ,U f , I f ,Vf ,Sm, Im,Vm)
T is the vector for the states variables, is positively-invariant and

attracting with respect to the flow of system (3.3).

Proof. From system (3.3), it is easy to note that the total population size for gender k = f ,m
is governed by the equation

Ṅk = Λk −µkNk.

Direct computation gives

Nk(t) =
(

Nk(0)−
Λk

µk

)
e−µkt +

Λk

µk
. (3.4)

Therefore, the total population may vary in time, but converges asymptotically to the value
N∗

k = Λk/µk.
On account of (3.4), if Nk(0) ∈ Ω̃, then Nk(t) ∈ Ω̃ for all t > 0. Hence, Ω̃ is positively-

invariant. Furthermore, Nk(t)> Λk/µk implies Ṅk(t)< 0; hence the solution either enter Ω̃

in finite time, or approach its equilibrium value N∗
k as t → ∞. In consequence, the region Ω̃ is

attracting. Thus, system (3.3) is mathematically and epidemiologically well-posed in Ω̃.
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3.3.2 Constant population and disease-free equilibria

A standard assumption in mathematical epidemiology is that the host population remains
approximately constant over the time of an epidemic outbreak. For the majority of infectious
diseases, the transmission happens on a time scale, which is fast compared to the time scale
of demographic changes. Thus, the population could be considered as constant (Brauer and
Castillo-Chavez, 2012).

In the following, we consider a constant population. In mathematical terms, we assume
Λk = rkNk (k = f ,m), where the per capita recruitment rate, rk, is equal to the per capita rate
of ceasing sexual activity, µk. Please observe that rkNk is the total number of individuals
recruited into the sexually active population per unit of time. Moreover, without loss of
generality, we consider a rescaling of our model assuming that N f = 1 and Nm = 1. Then,
the state variables are expressed as fractions of the populations of each gender and we can
rewrite system (3.3) as follows:

Ṡ f = (1−w1)µ f −βmS f Im − (u1 +µ f )S f + γ f (U f + I f )+θVf ,

U̇ f = (S f + εVf )(1− p)βmIm − (γ f +α +µ f )U f ,

İ f = (S f + εVf )pβmIm +αU f − (γ f +µ f )I f ,

V̇f = w1µ f +u1S f − εβmVf Im − (µ f +θ)Vf ,

Ṡm = (1−w2)µm − (β fU f + β̃ f I f )Sm − (u2 +µm)Sm + γmIm +θVm,

İm = (β fU f + β̃ f I f )(Sm + εVm)− (γm +µm)Im,

V̇m = w2µm − (β fU f + β̃ f I f )εVm +u2Sm − (µm +θ)Vm.

(3.5)

The biologically feasible region for system (3.5) is

Ω =
{

x ∈ R7
+ : S f +U f + I f +Vf = 1, Sm + Im +Vm = 1

}
. (3.6)

We focus primarily on system (3.5) hereafter. Nevertheless, we have to stress that the
equality of the per capita recruitment and ceasing sexual activity rates is just a matter of
convenience and is not an assumption of importance for further analysis.

Model (3.5) always has a disease-free equilibrium state E◦(c). To compute the coordinates
of the disease-free equilibrium, we set the rates of change of all state variables equal to zero.
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Solving the system of algebraic equations, we obtain U◦
f (c) = I◦f (c) = I◦m(c) = 0, and

S◦f (c) =
(1−w1)µ f +θ

u1 +µ f +θ
, V ◦

f (c) =
w1µ f +u1

u1 +µ f +θ
,

S◦m(c) =
(1−w2)µm +θ

u2 +µm +θ
, V ◦

m(c) =
w2µm +u2

u2 +µm +θ
.

The coordinates of the equilibrium E◦(c) depend on the magnitude of the control measures,
namely, the screening and vaccination rates. Indeed, from the definition of E◦(c) it is clear
that S◦f (0) = 1 and S◦m(0) = 1. Therefore, in the absence of controls, at the disease-free
equilibrium the total population remains fully susceptible as can be expected.

3.3.3 The reproduction numbers

Several risk factors and characteristics of communicable diseases may be of interest to
public health officials in formulating responses to a possible disease outbreak. The basic
reproduction number R0 is considered as one of the central and most often used metrics in the
area of mathematical epidemiology (Heffernan et al., 2005). Historically, R0 was described
as the average number of secondary infections that an infectious individual can generate
in a totally susceptible population during his entire period of infectiousness (Diekmann
et al., 1990). The definition of R0 assumes a fully susceptible population and, hence, control
measures such as mass vaccination that reduce the number of susceptible individuals in the
population should, technically not reduce the value of R0 (Delamater et al., 2019). Therefore,
alongside to R0 we introduce the effective reproduction number, denoted here as Re, which
is defined as the actual average number of secondary cases per a primary case (Nishiura
and Chowell, 2009). Re does not assume the complete susceptibility of the population; and,
therefore, vaccination and other control measures could potentially reduce the value of Re.
Consequently, in the presence of vaccination, the effective reproduction number can be a
better metric for understanding the transmissibility of infectious diseases (Delamater et al.,
2019).

Mathematically, both reproduction numbers can be computed via the next-generation
operator introduced by Diekmann and his collaborators. Under this approach, it is necessary
to study the subsystem that describes the production of new infections and changes in the
state among the infected individuals (Saldaña and Barradas, 2018). The Jacobian matrix J
of this subsystem at the disease-free equilibrium is decomposed as J = F−V, where F is
the transmission part and V describes changes in the infection status. The next-generation
matrix is defined as K = FV−1, and R0 = ρ(K), where ρ(·) denotes the spectral radius.
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In the absence of controls, the infectious subsystem of (3.5) is

U̇ f = (1− p)βmS f Im − (γ f +µ f )U f ,

İ f = pβmS f Im − (γ f +µ f )I f ,

İm = (β fU f + β̃ f I f )Sm − (γm +µm)Im.

Consequently,

F =


0 0 (1− p)βmS◦f (0)

0 0 pβmS◦f (0)

β f S◦m(0) β̃ f S◦m(0) 0

 , V =


γ f +µ f 0 0

0 γ f +µ f 0

0 0 γm +µm

 .

The product FV−1 gives us the following next-generation matrix:

K =


0 0

(1− p)βm

γm +µm

0 0
pβm

γm +µm

β f

γ f +µ f

β̃ f

γ f +µ f
0


. (3.7)

Hence, the basic reproduction number can be calculated as

R0 =

√√√√ βm

γm +µm

(
p

β̃ f

γ f +µ f
+(1− p)

β f

γ f +µ f

)
. (3.8)

For non-zero controls, the same method allows us to compute the effective reproduction
number. Let H f (c) = S◦f (c) + εV ◦

f (c) and Hm(c) = S◦m(c) + εV ◦
m(c). Then, we get the

following next-generation matrix:

K̃(c) =


0 0 K13(c)

0 0 K23(c)

K31(c) K32(c) 0

 , (3.9)
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where

K13(c) =
(1− p)βmH f (c)

γm +µm
, K23(c) =

pβmH f (c)
γm +µm

,

K31(c) =

(
β f +

β̃ f α

γ f +µ f

)
Hm(c)

γ f +α +µ f
, K32(c) =

β̃ f Hm(c)
γ f +µ f

.

The effective reproduction number is the spectral radius of K̃, and is given by

Re(c) =

√√√√βmH f (c)
γm +µm

[
p

β̃ f Hm(c)
γ f +µ f

+
(1− p)

γ f +α +µ f

(
β f Hm(c)+α

β̃ f Hm(c)
γ f +µ f

)]
. (3.10)

The effective reproduction number, Re(c), depends directly on the interventions intended
to control the disease’s spread. Further, note that Re(0) = R0 and that R0 < 1 implies
Re(c)< 1; but the opposite implication is not true.

To interpret the biological meaning of the effective reproduction number, we need the
following components. During his infection period, (γm+µm)

−1, an infectious male produces
on average βmH f (c) infections in females. Therefore,

T f
m (c) =

βmH f (c)
γm +µm

is the infection transfer from the infectious males to females. An infectious female aware
of her infection produces on average β̃ f Hm(c) infections during her infectious period, (γ f +

µ f )
−1. As a result,

T m
I f
(c) =

β̃ f Hm(c)
γ f +µ f

is the infection transfer from the aware infectious females to males. Analogously,

T m
U f
(c) =

β f Hm(c)
γ f +α +µ f

is the infection transfer from the unaware infectious females to males. Moreover, a fraction
α/(γ f +α +µ f ) of unaware infected females becomes aware of the infection via screening.
Hence

T m
f (c) = pT m

I f
(c)+(1− p)

(
T m

U f
(c)+

α

γ f +α +µ f
T m

I f
(c)
)
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is the infection transfer from females to males. Hence, the effective reproduction number
(3.10) is the geometric mean of the terms T f

m (c) and T m
f (c), that is,

Re(c) =
√

T f
m (c) ·T m

f (c). (3.11)

As a consequence of the van den Driessche theorem (Van den Driessche and Watmough,
2002), Re(c) is a threshold value and we establish the following result regarding the local
stability of the disease-free equilibrium.

Corollary 3.3.2. The disease-free equilibrium E◦(c) of system (3.5) is locally asymptotically
stable for Re(c)< 1 and unstable for Re(c)> 1.

Corollary 3.3.2 implies that, if initial infection levels are sufficiently low, reducing and
maintaining Re(c)< 1 ensures disease’s elimination. On the contrary, if the value of Re(c)
is higher than unity, the disease can persist in the population.
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Fig. 3.1 Prevalence levels for model (3.5) with Re(c)= 0.9479< 1 (a) and Re(c)= 1.4151>
1 (b). In case (a) the values of the screening and vaccination rates are w1 = 0.1, w2 = 0.07,
u1 = 0.05, u2 = 0.03, and α = 0.1. In case (b), the screening and vaccination rates are taken
equal to zero. The rest of the parameters are as described in Table 3.1. The initial conditions
are: S f = 0.94, U f (0) = 0.04, I f (0) = 0.02, Vf (0) = 0, Sm = 0.94, Im(0) = 0.06, Vm(0) = 0.

In order to demonstrate the importance of the control interventions to reduce the value of
the effective reproduction number below 1, we firstly show the behavior of the model in the
absence of control and under health care interventions with constant control parameters. Fig.
3.1 illustrates these two possibilities. In Fig. 3.1(a), we choose screening and vaccination
rates that guarantee Re(c) < 1, so that the infection eventually decreases to zero. On the
contrary, in Fig. 3.1 (b), the screening and vaccination rates are taken equal to zero, thus
giving Re(0)> 1, so the system converges to an endemic equilibrium. Other parameters are
fixed with their baseline values in Table 3.1.
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3.3.4 Model parameters

Parameters values, units, and source of estimation are summarized in Table 3.1. In the next
sections, we use these values unless otherwise is stated. Next, we outline their selection:

Parameter Range Mean Value Units Source

1− ε [0.8,1] 0.9 adimensional (Brisson et al., 2016)
1/θ [5,15] 10 year (Huh et al., 2017)
βm [0.05,5] 4.0 year−1 (Brisson et al., 2016)
β f [0.05,5] 4.0 year−1 (Brisson et al., 2016)

β̃ f [0.025,2.5] 2.0 year−1 Estimated
1/γ f [0.83,2] 1.3 year (Muñoz et al., 2004)
1/γm [0.33,1.2] 0.6 year (Anic and Giuliano, 2011)

p [0,1] 0.2 adimensional Estimated
1/µ f [15,50] 30 year Estimated
1/µm [15,50] 30 year Estimated

Table 3.1 Estimated values, units and source of estimation for the parameters of the HPV
model (3.5).

(i) Vaccine efficacy, 1− ε . Although clinical trials are still underway, there is evidence
indicating efficacy of around 90% for the nonavalent HPV vaccine Gardasil-9 (Brisson
et al., 2016). We set 1− ε ∈ [0.8,1].

(ii) Vaccine protection, 1/θ . The exact duration of vaccine protection is unknown, but
clinical trials (Huh et al., 2017) have shown sustained efficacy for more than 5 years.
We assume that the protection is from 5 to 15 years, thus 1/θ ∈ [5,15] years.

(iii) Transmission rates, βm, β f , and β̃ f . Transmission rates are the product of the average
number of sexual contacts per unit of time and the probability of infection transfer per
contact. We assume that both genders have between 1 and 5 sexual partners per year
and per-act transmission probability range 5− 100% (Brisson et al., 2016). We set
βi ∈ [0.05,5] year−1 with i ∈ { f ,m}. We also assume that the aware infected females
take measures, such as condom use, that decrease the probability of infection transfer.
Thus β̃ f ∈ [0.025,2.5] year−1.

(iv) Females’s infectious period, 1/γ f . The mean duration of a new genital HPV infection
in women is 14.8 months for oncogenic types and 11.1 months for non-oncogenic
types (Muñoz et al., 2004). Since the majority of the types targeted by Gardasil-9 are
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oncogenic, we assume that the female infectious period is between 9 months and 2
years, thus 1/γ f ∈ [0.83,2] year.

(v) Male’s infectious period, 1/γm. For men, most of the HPV infections clear in less than
12 months. Studies (see (Anic and Giuliano, 2011) and the references therein) report
average clearance time of 5.9 to 7.5 months. We set 1/γm ∈ [0.33,1.2] year.

(vi) Fraction of females that become aware of their infection, p. Since p is a fraction,
p ∈ [0,1].

(vii) Periods of sexual activity, 1/µ f , and 1/µm. We assume that the average duration of
the sexual activity period for both, males and females, is between 15 and 50 years,
therefore µ

−1
f ,µ−1

m ∈ [15,50] years.

It is important to mention that we are assuming homogeneous mixing among individuals.
Therefore, sexual contacts are instantaneous and every contact is with another individual of
the population. One major implication of this assumption is that for the transmission rates,
βm, β f , and β̃ f , the per-act transmission probability is equal to the transmission probability
per partner. Although this assumption is very common for compartmental epidemic models
in the literature, we remark it represents a limitation in our model (see Chapter 4).

3.4 Cost-effectiveness analysis for constant controls

Human health improved dramatically during the last century, yet grave inequities in health
persist. To make further progress in health, meet new challenges, and redress inequities,
resources must be deployed effectively. This requires knowledge about which interventions
actually work, information about how much they cost, and experience with their implementa-
tion and delivery.

Cost-effectiveness analysis helps identify ways to redirect resources to achieve more.
It demonstrates not only the utility of allocating resources from ineffective to effective
interventions, but also the utility of allocating resources from less to more cost-effective
interventions. Cost-effectiveness analysis is a method for assessing the gains in health relative
to the costs of different health interventions. It is not the only criterion for deciding how
to allocate resources, but it is an important one, because it directly relates the financial and
scientific implications of different interventions.

Results of a cost-effectiveness analysis are summarized using a cost-effectiveness ratio.
In this ratio, the basic calculation involves dividing the cost of an intervention in monetary
units by the expected health gain measured in natural units such as number of lives saved.
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ID Strategy description w1 w2 u1 u2 α

S1 All Controls X X X X X
S2 Vaccination prior to sexual initiation X X
S3 Vaccination of sexually active individuals X X
S4 Females’ vaccination X X
S5 Males’ vaccination X X
S6 Vaccination prior to sexual initiation and screening X X X
S7 Vaccination of sexually active individuals and screening X X X
S8 Females’ vaccination and screening X X X

Table 3.2 Control interventions analyzed in this work.

Cost-effectiveness analysis are always comparative, as the ratios evaluate the costs and
benefits of each strategy relative to the next-most effective strategy (Goldie et al., 2006). This
means that the costs and clinical benefits associated with the intervention of interest should
be compared to all other reasonable options.

In the following, we carry out a cost-effectiveness analysis to investigate the most cost-
effective control strategy against HPV transmission. To conduct a cost-effectiveness analysis,
researchers also need to specify the health intervention in some detail. A health intervention
is a deliberate activity that aims to improve someone’s health by reducing the risk, the
duration, or the severity of a health problem. We propose realistic strategies based on the
combination of the five controls incorporated into our model. These strategies are shown
in Table 3.2. For each strategy, the controls not marked with a checkmark are regarded as
inactive.

The main objective is to compare the health outcomes of the proposed interventions with
respect to their application costs. To this end, we introduce an incremental cost-effectiveness
ratio (ICER), which is a summary measure representing the economic value of an intervention,
compared with an alternative (comparator). It is usually the main output or result of an
economic evaluation. An ICER is usually calculated by dividing the difference in total
costs (incremental cost) by the difference in the chosen measure of health outcome or effect
(incremental effect) to provide a ratio of extra cost per extra unit of health effect – for the
more expensive intervention vs the alternative.

Mathematically speaking, for two strategies S1 and S2, we define the ICER as

ICER(S1,S2) =
C(S2)−C(S1)

E(S2)−E(S1)
, (3.12)

provided that E(S1) ̸= E(S2).
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We also define the average cost-effectiveness ratio (ACER) for a strategy S alone as

ICER(S) =
C(S)
E(S)

. (3.13)

Function C(·) measures the costs. For analyses conducted from a societal perspective, costs
must reflect resource use, not only the intervention itself, but also for the downstream events
that follow. Key cost categories include: (i) direct health-care costs (e.g. screening test,
clinic visit, laboratory test, specimen transport, subsequent health-care visits for treatment,
further tests, etc. (ii) Direct non-health-care costs (e.g. patient transportation costs, child or
dependent care, time spend with family for caregiving, etc. (iii) Patient time costs (e.g. the
time spend by the patient receiving care). (iv) Programmatic costs (e.g. costs incurred at the
administrative levels rather than the point and care delivery). However, the identification,
measurement, and valuation of these resources is in practice very difficult.

The function E(·) measures the effectiveness of the intervention using some appropriate
health outcome. Health units for measuring the population impact can be disease-specific
clinical outcomes, such as the number of cases prevented. Although such clinical outcomes
are easily understood, a disadvantage is that results can only be compared to studies using
the same outcome. In order to compare ratios across different interventions and diseases, the
denominator must be expressed in a common metric, such as life expectancy, years of life
lost (calculated by subtracting the age at which death occurs from life expectancy at that age),
quality adjusted life years (a unit for measuring the health gain associated with a clinical or
public health intervention) (Okosun et al., 2011).

In this study, we measure the effectiveness of the intervention S computing its cumulative
level of infection averted using the following functional:

E(S) =
∫ T

0

(
U f (t)−Ũ f (t)

)
+
(
I f (t)− Ĩ f (t)

)
dt, (3.14)

where U f (t) are the infected unaware females for no control scenario at time t and Ũ f (t)
are the infected unaware females under intervention S (analogously for the infected aware
females I f ). The functional (3.14) focuses on the females because they are at a considerable
higher risk of developing severe disease (e.g. cervical cancer) after an HPV infection.
Nevertheless, we need to mention that in the context of HPV, cost-effectiveness analysis
usually quantify the efficacy of the control strategies in terms of the reduction in cervical
cancer associated deaths. Yet, since in our model we do not consider an explicit compartment
for women with cervical cancer, we cannot use this metric to measure the effectiveness of the
strategies. This is a major limitation of our model which will be improved in a future work.
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To compute the costs, we propose the following functional:

C(S) =
∫ T

0
M(S)+B1Ũ f (t)+B2Ĩ f (t)dt, (3.15)

where

M(S) = A1(w1µ f +w2µm)+A2(u1S̃ f (t)+u2S̃m(t))+A3α(Ũ f (t)+ S̃ f (t)). (3.16)

The parameters Ai (i = 1,2,3) are positive constants associated with the relative costs
of vaccination and screening, and parameters B j ( j = 1,2) represent the medical and social
costs associated with the illness. The terms (w1µ f +w2µm) and (u1S̃ f (t)+u2S̃m(t)) count
the number of vaccinations given prior and after sexual initiation, respectively, and α(Ũ f (t)+
S̃ f (t)) counts the number of individuals that are screened.

The costs attributable to the vaccination includes the price of the vaccine, the cost of
delivery, as well as other administration associated costs. It is logical to expect that delivering
the vaccine to school boys and girls is cheaper than vaccination of the sexually active
individuals; hence, A1 < A2. Since the costs of screening and follow up are uncertain, for
simplicity, we assume that A3 ≈ A1; that is, the costs associated with screening and juveniles
vaccination are of the same magnitude. Moreover, it is also considered that unaware infected
females are at greater risk of developing HPV-induced cervical cancer than aware infected
females; therefore, it can be expected that B1 ≥ B2. Under these considerations, as a base
case, we assume A1 = 1, A2 = 5, A3 = 1, B1 = 15, B2 = 10. Moreover, a time horizon of
T = 100 years is chosen because in this time frame the majority of the benefits and cost of
vaccination can be recognized (Elbasha and Dasbach, 2010).

3.5 Interpreting the results of the CEA

In the simple case of comparing two interventions, the current standard and an alternative, the
analysis applies the principle of strong dominance. Strong dominance favors a strategy that
is both more effective and less costly. In other words, we say a strategy is strongly dominated
by an alternative, if the alternative is more effective and less costly. However, it is very
common that the alternative intervention is more effective but also more costly. In this case,
strong dominance provides no guidance and the decision maker must decide if the greater
effectiveness justifies the cost of achieving it. This is usually done with a cost-effectiveness
threshold. There are several types of threshold. In health-related analyses, a very common
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threshold is the so-called willingness-to-pay threshold which represents an estimate of what
a consumer of health care might be prepared to pay for the health benefit.

In some studies that compare multiple interventions, an additional dominance principle
is applied. As in the case when comparing two interventions, the analyst first applies the
principle of strong dominance. Any of the competing interventions is ruled out if these
is another intervention that is both more effective and less costly. The analyst may then
apply the principle of extended dominance (sometimes called "weak dominance"). The list
of interventions, trimmed of strongly dominated alternatives, is ordered by effectiveness.
Each intervention is compared to the next most effective alternative by calculating the
incremental cost-effectiveness ratio. Extended dominance rules out any intervention that has
an incremental cost-effectiveness ratio that is greater than that of a more effective intervention.
The decision maker prefers the more effective intervention with a lower incremental cost-
effectiveness ratio. By approving the more effective interventions.

In this work, we attempt to systematize the analysis using a CEA algorithm. Our proposed
algorithm uses the extended dominance principle to compare the strategies. However, we do
not ruled out from the beginning strongly dominated strategies because we want to rank all
the strategies. Moreover, our algorithm uses the ACER as a cost-effectiveness threshold. Our
algorithm is structured as follows:
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Cost-Effectiveness Algorithm

1. The list of strategies with their corresponding costs and effectiveness is sorted
from lowest to highest costs. Let SA and SB be the first and the second elements
of the sorted list, respectively.

2. The ACER(SA) of the first element of the list SA is computed.

3. The ICER(SA,SB) between the first two elements of the list SA,SB is computed.

4. The following conditions are assessed:

• If ICER(SA,SB)≤ 0, then SA has higher effectiveness than SB; hence, we
keep SA and remove SB.

• If ICER(SA,SB) ≥ ACER(SA), then SB has higher effectiveness than SA,
but in proportion is less cost-effective than SA; hence, we keep SA and
remove SB.

• If 0 < ICER(SA,SB)< ACER(SA), then SB has higher effectiveness than
SA and is in proportion more cost-effective than SA; hence, we keep SB and
remove SA.

5. We return to STEP 2 until we find the most cost-effective strategy.

To fairly compare the proposed strategies (see Table 3.2), we set the values for the
screening and vaccination rates in such a way that the value of the effective reproduction
number Re(c) is the same for all the strategies. Then, we compute the corresponding costs
and the total infection averted over the time horizon for each intervention. These data allow
us to use the CE algorithm and rank the interventions in order of increasing cost-effectiveness
ratios. The results are summarized in Table 3.3.

The results of the cost-effectiveness analysis suggest that the strategy S4 (female’s vacci-
nation) is the most cost-effective intervention and S2 (vaccination before sexual initiation) is
the strategy with the second-best performance. These results coincide with several studies
that have analyzed HPV transmission at the population level finding that vaccination of pre-
adolescent girls is both highly effective and highly cost-effective to reduce the disease burden
caused by HPV, see Seto et al. (2012) and the references therein. However, regardless of the
independence of the cost function (3.15) from infected males, the third most cost-effective
strategy is S5 (male’s vaccination). This result is somehow unexpected; however, it could be
explained by the fact that for a heterosexual population, the eradication of the infection can
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Strategy C(Si) E(Si) Rank

S1 (w1 = 0.03, w2 = 0.03, u1 = 0.05, u2 = 0.05, α = 0.1) $ 70.33 31.77 # 7
S2 (w1 = 0.81 w2 = 0.81) $ 47.86 31.04 # 2
S3 (u1 = 0.068, u2 = 0.05) $ 69.07 31.71 # 6
S4 (w1 = 0.3, u1 = 0.127) $ 49.24 32.43 # 1
S5 (w2 = 0.3, u2 = 0.119) $ 55.07 31.86 # 3
S6 (w1 = 0.66 w2 = 0.6, α = 0.4) $ 59.50 31.99 # 5
S7 (u1 = 0.046, u2 = 0.05, α = 0.2) $ 73.30 32.01 # 8
S8 (w1 = 0.15, u1 = 0.1, α = 0.3) $ 58.03 32.65 # 4

Table 3.3 Control strategies with fixed constant controls together with their costs and cumula-
tive level of infection averted. The ranking of the strategies is according to the ICER algorithm.
For all the strategies, the value of the effective reproduction number is Re(c) = 0.9.

be achieved by vaccinating a considerable proportion of a single-sex. On the other hand, the
strategy with the worst performance is S7 (vaccination of sexually active individuals with
female’s screening), thus, even assuming a medium duration of protection for the vaccine
(20 years), it is plausible to vaccinate individuals before sexual debut avoiding the potential
of an HPV infection.

The simulations of the HPV model showing the effects of strategy S4, which is the most
cost-effective control strategy according to the ICER results in Table 3.3, are illustrated in
Fig. 3.2. The simulations show that the number of infected individuals decreases to zero after
an approximate time of 40 years. Furthermore, the fraction of vaccinated females increases
until it reaches a value of 0.62, whereas the fraction of vaccinated males is maintained at
zero.
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Fig. 3.2 Dynamics of model (3.5) state variables under intervention S4 fixed constant controls
w1 = 0.3 and u1 = 0.127
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3.6 The optimal control problem

In the previous sections, we analyzed the qualitative properties of the HPV model (3.5)
and performed a cost-effectiveness analysis for constant control policies. Constant control
analysis is helpful to understand the mean behavior of the model. However, such a constant
control scheme disregards the changing dynamics of the infection and thereby can be a fragile
strategy.

For monetary and time resources, as well as disease elimination, it is essential to find
the right time and the right amount of control administration. Therefore, it is valuable to
incorporate time-dependent screening and vaccination into our model and explore the most
cost-effective strategy via the optimal control theory.

We formulate an optimal control problem incorporating the following five time-dependent
controls:

• w1(·) and w2(·) are the controls representing the fraction of females and males, respec-
tively, that are vaccinated prior to sexual initiation.

• u1(·) and u2(·) are the controls representing the per capita vaccination rates of suscep-
tible sexually active females and males, respectively.

• α(·) is the control representing the per capita screening rate for females.

By definition, the controls are subject to the next constraints

0 ≤ w1(t),w2(t),u1(t),u2(t),α(t)≤ 1. (3.17)

With these controls and taking into consideration the constant population size assumption,
we can write model (3.5) as the following system of five equations:

U̇ f =
(
(1−U f − I f −Vf )+ εVf

)
(1− p)βmIm − (γ f +α(t)+µ f )U f ,

İ f =
(
(1−U f − I f −Vf )+ εVf

)
pβmIm +α(t)U f − (γ f +µ f )I f ,

V̇f = w1(t)µ f +u1(t)(1−U f − I f −Vf )− εβmVf Im − (µ f +θ)Vf ,

İm = (β fU f + β̃ f I f )((1− Im −Vm)+ εVm)− (γm +µm)Im,

V̇m = w2(t)µm − (β fU f + β̃ f I f )εVm +u2(t)(1− Im −Vm)− (µm +θ)Vm,

(3.18)

complemented by initial conditions

0 ≤U f (0), I f (0),Vf (0), Im(0),Vm(0)≤ 1. (3.19)
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The control model (3.18) is defined on a finite time interval [0,T ] and the set of admissible
controls, denoted D(T ), is defined as the set of all possible Lebesgue measurable functions
which for almost all t ∈ [0,T ] satisfy constraints (3.17).

For an optimal control problem, it is necessary to define a quantitative criterion to evaluate
the performance of the admissible controls. In mathematical terms, this quantitative criterion
leads to the definition of an objective functional, and an optimal control is one that minimizes
(or maximizes) this functional. For the control model (3.18) and the set of admissible controls
D(T ), we want to minimize the overall impact of the infection and the level of efforts that
would be needed to control the infection over T years. Thus, we consider system (3.18)
together with the following objective functional

J(c) =
∫ T

0
B1U f +B2I f +

1
2
(
A1(w2

1 +w2
2)+A2(u2

1 +u2
2)+A3α

2)dt. (3.20)

It is generally assumed that the quadratic terms penalize high levels of control administration
(to avoid costly interventions) because "increasing the availability of vaccines and other
resources often leads to a waste" Sharomi and Malik (2017). The origin of the sum of
weighted squares in the controls is in engineering applications, where it is clearly interpreted
as the energy spent on the control action. In the context of disease control, it is also commonly
assumed that this type of functional implies minimization of certain economic costs (Brown
and White, 2011; Buonomo et al., 2014; Camacho and Jerez, 2018; Malik et al., 2016;
Okosun et al., 2011, 2013). Nevertheless, it is important to mention that the sum of weighted
squares of the controls is probably the most common form of the objective functional in the
literature due to its mathematical convenience. In particular, for functionals of these type, it
is possible, by virtue of the Pontryagin maximum principle, to obtain the optimal controls as
explicit functions of the state and adjoint variables Grigorieva et al. (2018).

For the sake of simplicity and comparison, in this paper the objective functional (3.20)
considers the sum of weighted squares of the controls and also uses the same weight pa-
rameters of the cost function (3.15). The general optimal control problem is to find optimal
vaccination and screening rates c∗ = (w1(t)∗(t),w∗

2(t),u
∗
1(t),u

∗
2(t),α

∗(t)) such that

J(c∗) = min
c∈D(T )

J(c)

subject to the dynamics of the HPV control model (3.18).
Here, we must clarify the following: (i) Although optimal controls c∗ are expected to be

more cost-effective than constant controls, this is not known a priori because c∗ minimize
the objective functional (3.20) and the ICER measures the cost using (3.15); (ii) The cost
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function (3.15) can also be used as an objective functional for the optimal control; however,
generally speaking, an optimal control problem could have multiple goals and therefore, the
objective functional may include other factors besides costs.

3.7 The Pontryagin maximum principle

Pontryagin’s maximum principle is used in optimal control theory to find the best possible
control for taking a dynamical system from one state to another, especially in the presence of
constraints for the state or input controls. It states that it is necessary for any optimal control
along with the optimal state trajectory to solve the so-called Hamiltonian system, which is a
two-point boundary value problem, plus a maximum condition of the Hamiltonian. These
necessary conditions become sufficient under certain convexity conditions on the objective
and constraint functions.

Widely regarded as a milestone in optimal control theory, the significance of the maximum
principle lies in the fact that maximizing the Hamiltonian is much easier than the original
infinite-dimensional control problem; rather than maximizing over a function space, the
problem is converted to a pointwise optimization. The maximum principle was formulated in
1956 by the Russian mathematician Lev Pontryagin and his students, and its initial application
was to the maximization of the terminal speed of a rocket. The result was derived using ideas
from the classical calculus of variations. After a slight perturbation of the optimal control,
one considers the first-order term of a Taylor expansion with respect to the perturbation;
sending the perturbation to zero leads to a variational inequality from which the maximum
principle follows.

In this section, we prove the existence of solutions for the optimal control problem
(3.6). We also obtain the optimality system associated with the control model (3.18) and
the set of admissible controls D(T ). The optimality system correspond to complement
the control model (3.18) with a dual system for adjoint variables. This system will allow
us to characterize the optimal controls in terms of the state and adjoint variables. Let us
introduce the states x = (U f , I f ,Vf , Im,Vm)

T , the controls c = (w1,w2,u1,u2,α)T and denote
the right-hand side of the control model (3.18) as the vector function F(t,x,c). For the
objective functional (3.20), the optimal control problem of the HPV epidemic model is

min
c∈D(T )

J(c) = min
c∈D(T )

∫ T

0
L(t,x(t),c(t))

where
L(t,x,c) = B1U f +B2I f +

1
2
(A1(w2

1 +w2
2)+A2(u2

1 +u2
2)+A3α

2) (3.21)
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subject to the dynamics of the control model (3.18) with given initial conditions (3.19).
We call a pair of states and controls (x,c) satisfying both (3.18) and c ∈ D(T ) a feasible

pair. Theorem 4.1 in (Fleming and Rishel, 1975, Chapter III) ensures the existence of an
optimal control and the corresponding solution for this problem. In particular, this existence
theorem states that the following conditions are sufficient to guarantee the existence of an
optimal control for (3.18):

(H1) F is continuous, and there exist positive constants K1 and K2 such that

(a) |F(t,x,c)| ≤ K1(1+ |x|+ |c|)

(b) |F(t, x̃,c)−F(t,x,c)| ≤ K2|x̃− x|(1+ |c|)

hold for all t ∈ [0,T ]. Moreover, F can be written as F(t,x,c) = φ(t,x)+ψ(t,x)c.

(H2) The set of admissible controls D(T ) is closed and convex. Moreover, there is at least
one feasible pair (x(t),c(t)) satisfying both (3.18) and (3.17).

(H3) L(t,x, ·) is convex on D(T ), and L(t,x,c)≥ K3|c|β −K4, K3 > 0, K4 ∈ R, β > 1.

Theorem 3.7.1. Consider the optimal control problem with control model (3.18) and cost
functional (3.20). Then there exist c∗=(w∗

1,w
∗
2,u

∗
1,u

∗
2,α

∗)∈D(T ) such that minJ(c)c∈D(T )=

J(c∗).

Proof. Due to the a priori boundedness of the solutions of the control model (3.18), and the
differentiability of the function F , it follows that (a) and (b) in (H1) are ensured by suitable
bounds on the partial derivatives of F and on F(t,0,0). Moreover, the state equations are
linear with respect to the controls c, and thus F(t,x,c) = φ(t,x)+ψ(t,x)c. The existence of
a feasible pair is guaranteed by the Caratheodory theorem (Lukes, 1982, pp. 182) for initial
value problems. Moreover, for bounded controls on a finite time interval, D(T ) is clearly
closed and convex, and, hence, (H2) is satisfied as well. The integrand (3.21) of the cost
functional is positive and quadratic with respect to the controls; therefore, L(t,x, ·) is convex
on D(T ). Furthermore, defining K3 = min{A1,A2,A3}, we have L(t,x,c) ≥ (1/2)K3|c|2,
thus verifying (H3) and completing the proof.

3.7.1 Characterization of the optimal controls

Here, we obtain the optimality system that corresponds to complement the control model
(3.18) with a dual system for adjoint variables. Then, we can achieve the characterization of
the optimal controls in terms of the state and adjoint variables.
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The Pontryagin maximum principle converts the optimal control problem (3.6) into a
problem of minimizing pointwise the Hamiltonian

H =B1U f +B2I f +
1
2
[
A1(w2

1 +w2
2)+A2(u2

1 +u2
2)+A3α2

]
+ψ1U̇ f +ψ2İ f +ψ3V̇f +ψ4İm +ψ5V̇m

(3.22)

with respect to the controls. Here, ψi for i = 1, . . . ,5 are adjoint variables which satisfy the
following system of differential equations:

ψ̇1 =−B1 +[(1− p)βmIm + γ f +α
∗+µ f ]ψ1 +(pβmIm −α

∗)ψ2

+u∗1ψ3 −β f [(1− Im −Vm)+ εVm]ψ4 +β f εVmψ5,

ψ̇2 =−B2 +(1− p)βmImψ1 +(pβmIm + γ f +µ f )ψ2 +u∗1ψ3

− β̃ f [(1− Im −Vm)+ εVm]ψ4 + β̃ f εVmψ5,

ψ̇3 =[(1− p)ψ1 + pψ2](1− ε)βmIm +(εβmIm +u∗1 +µ f +θ)ψ3,

ψ̇4 =−βm((1−U f − I f −Vf )+ εVf )[(1− p)ψ1 + pψ2]+ εβmVf ψ3

+(β fU f + β̃ f I f + γm +µm)ψ4 +u∗2ψ5,

ψ̇5 =(β fU f + β̃ f I f )((1− ε)ψ4 + εψ5)+(u∗2 +θ +µm)ψ5,

(3.23)

with transversality conditions ψk(T ) = 0 for k = 1, . . . ,5. For this control problem, applying
the maximum principle from (Pontryagin, 2018), we obtain the following characterization
for the optimal controls:

w∗
1(t) = min

{
1,max

{
0,−

µ f

A1
ψ3(t)

}}
,

w∗
2(t) = min

{
1,max

{
0,−µm

A1
ψ5(t)

}}
,

u∗1(t) = min
{

umax,max
{

0,− 1
A2

(1−U f (t)− I f (t)−Vf (t))ψ3(t)
}}

,

u∗2(t) = min
{

umax,max
{

0,− 1
A2

(1− Im(t)−Vm(t))ψ5(t)
}}

,

α
∗(t) = min

{
αmax,max

{
0,

1
A3

(ψ1(t)−ψ2(t))U f (t)
}}

.

(3.24)

The control model (3.18), the system of differential equations for the adjoints (3.23) and the
control characterization above form the optimality system. The optimal control solutions
can be obtained solving the optimality system. In particular, we can obtain time-dependent
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versions of the control strategies in Table 3.2 choosing the corresponding control parameters
as active and turning off the rest of control parameters.

In order to obtain approximations of our optimality systems, we use the forward-backward
sweep method (FBSM) from (Lenhart and Workman, 2007). This iterative scheme begins
with an initial guess on the controls; then, the state equations are solved forward in time.
After that, since the transversality conditions for our problems are posed at the final time T ,
the system for the adjoint variables is solved backward in time. The controls are updated
using a convex combination of the previous controls and the new control obtained substituting
the states and adjoints into its characterization. This process is repeated until a convergence
criteria is satisfied. For solving the state and adjoint systems, we use a fourth order Runge-
Kutta scheme. The time-dependent profiles for the control strategies (denoted S∗i (t), i =
1,2, . . . ,8) are shown in Fig. 3.3.

3.7.2 Cost-effectiveness analysis for time-dependent control strategies

Next, we want to determine the most cost-effective of the time-dependent control strategies
S∗i (t) (i = 1,2, . . . ,8) illustrated in Fig. 3.3. As in the case of constant controls, we need
to compare the costs and the effectiveness of the interventions. This is done using the
cost-effectiveness ICER algorithm presented in Section 3.4. The results of this analysis can
be found in Table 3.4.

Strategy C(S∗i ) E(S∗i ) Rank

S∗1(t) $ 64.48 31.76 #8
S∗2(t) $ 48.65 30.86 #3
S∗3(t) $ 64.04 31.69 #7
S∗4(t) $ 47.92 32.39 #1
S∗5(t) $ 53.69 31.82 #4
S∗6(t) $ 59.23 31.85 #5
S∗7(t) $ 64.36 31.99 #6
S∗8(t) $ 50.80 32.61 #2

Table 3.4 Costs, cumulative level of infection averted, and rank according to the ICER
algorithm for the control strategies with time-dependent control strategies.

The results presented in Table 3.4 indicate that S∗4(t) is the most cost-effective strategy.
This result coincides with the CEA results for the constant control case (see Table 3.3).
Hence, female’s vaccination is the intervention with the best performance for control of
HPV infection. Nevertheless, for time-dependent control strategies, the second most cost-
effective intervention is female’s vaccination and screening, S∗8(t); whereas for constant
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Fig. 3.3 Time-dependent profiles of the control strategies derived by the numerical solution
of the optimality system.
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control strategies, vaccination prior to sexual initiation, S2, is the second most cost-effective
intervention. Therefore, the CEA rankings for the constant and the time-dependent control
case differ. Moreover, it is uncertain if the time-dependent control strategies outperforms
the constant control strategies as expected. Thus, we shall use the ICER and the ACER to
compare constant control strategies Si (see Table 3.3) against the time-dependent control
strategies S∗i (t) (see Fig. 3.3).

First, we compare the most cost-effective control strategies with constant and time-
dependent controls, that is, S4 versus S∗4(t). For this, we need the following computations:

ACER(S∗4(t)) =
47.92
32.39

= 1.479,

ICER(S∗4(t),S4) =
49.24−47.92
32.43−32.39

= 33.00.

These computations imply that ICER(S∗4(t),S4)> ACER(S∗4(t)). Hence, although strategy
S4 has higher effectiveness than strategy S∗4(t), in proportion, S4 is less cost-effective than
S∗4(t). In particular, the value of ICER(S∗4(t),S4) shows a cost saving of $ 33 for strategy
S∗4(t) over strategy S4. Consequently, in this case, the time-dependent control outperform the
constant control.

Next, we compare the second most cost-effective constant control strategy S2 against the
second most cost-effective time-dependent control strategy S∗8(t). The cost-effective ratios
are:

ACER(S2) =
47.86
31.04

= 1.54,

ICER(S2,S∗8(t)) =
50.80−47.86
32.61−31.04

= 1.87.

Clearly, ICER(S2,S∗8(t))> ACER(S2). Thus, the comparison shows a cost saving of $ 1.87
for strategy S2 over strategy S∗8(t). Therefore, in this case, the constant control outperform
the time-dependent control.

Finally, we compare the third most cost-effective control strategies, that is, S5 against
S∗2(t). The ICER is calculated as follows:

ACER(S∗2(t)) =
48.65
30.86

= 1.57,

ICER(S∗2(t),S5) =
55.07−48.65
31.86−30.86

= 6.42.
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The comparison between strategies S5 and S∗2(t) shows a cost saving of $ 6.42 for strategy
S∗2(t) over strategy S5. Hence, in this case, the time-dependent control outperform the
constant control.

On the whole, the intervention with the best performance is the time-dependent strategy
S∗4(t) (see Fig. 3.4 for the simulations of the HPV model showing the effects of strategy
S∗4). Nevertheless, generally speaking, time-dependent control strategies obtained by the
solution of the optimal control problem are not always more cost-effective than constant
control strategies.
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Fig. 3.4 Simulations of the HPV model showing the effects of the time-dependent control
strategy S∗4(t) with optimal controls w∗

1 and u∗1 illustrated in Fig. 3.3 (d).

3.8 Discussion and concluding remarks

Since the introduction of HPV vaccines over a decade ago, HPV vaccination programs have
been implemented in several countries. However, there are large discrepancies in coverage
and targeted groups of vaccination strategies among countries (Soe et al., 2018). The vacci-
nation program depends on country-specific factors, such as the economic and geographical
constraints as well as the health care system organization. In several countries, prophylactic
vaccination of pre-adolescent females has been introduced supported by modeled evaluations
that have found this intervention to be cost-effective. Vaccination of pre-adolescent males
may also be cost-effective if females’ coverage is below 50% (Canfell et al., 2012). Therefore,
it is important to investigate under which conditions the inclusion of males and adult females
into existing vaccination programs is cost-effective.

This work aimed to assess the cost-effectiveness of HPV health care interventions.
We considered a two-sex compartmental epidemic model of HPV infection in which we
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incorporated the control parameters representing screening, vaccination of pre-adolescent
boys and girls, and vaccination of sexually active adults. We analyzed the model with
constant control parameters and computed both, the basic and the effective reproduction
numbers to determine the stability properties of the model. Then, we proposed constant
control strategies based on combinations of the five controls incorporated in our model and
used the ICER methodology to identify which strategy delivers the best effectiveness for the
money invested.

Comparisons of the cost-effectiveness of the proposed constant control strategies con-
sistently show that females’ vaccination, including pre-adolescent girls and adult women,
is the most cost-effective strategy. Then, the next strategy with the best performance is
the vaccination of school-boys and -girls before sexual initiation. Furthermore, the third
most cost-effective strategy is males’ vaccination. This result is unexpected because the
cost function (3.15) does not depend on the presence of HPV infected males. Therefore, a
very adequate choice to balance cost and protection is increasing vaccine uptake among all
eligible females and extending coverage to high-risk males sub-groups.

Secondly, we considered the control parameters to be time-dependent and formulated
an optimal control problem. We used the Pontryagin maximum principle to derive the
necessary conditions for the optimal control and obtained numerical approximations via the
forward-backward sweep method. This allowed us to obtain time-dependent versions of the
control strategies. As in the case for constant controls, we used the ICER methodology to
identify the strategy with the best performance to control HPV infection. The results confirm
that the females’ vaccination is the most cost-effective strategy. For this intervention, the
numerical computations (see Fig. 3.3 (b)) indicate that initially, the vaccination rates should
be applied at the maximum level and after approximately half of the time interval, these rates
should gradually be reduced reaching zero at the final time.

The objective functional (3.20) of the optimal control problem considers the sum of
weighted squares in the controls. This penalizes high levels of control administration but
differs from the costs derived from function C(S). Therefore, when comparing constant
against time-dependent control policies, it is not known a priori which of the strategies is
the most cost-effective. Therefore, we used the ICER methodology to compare constant
against time-dependent control strategies that are optimal in the sense that they minimize
functional (3.20). The results indicate that time-dependent controls are not always more
cost-effective than constant controls. Therefore, one must be very careful with the election
of the objective functional for optimal control problems in epidemiology. Finally, we remark
that our model-based cost-effectiveness analyses are sensitive to the weight parameters in
the cost function and thus, the conclusions must be taken with caution. Nevertheless, model
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parameters can be calibrated to match data of HPV vaccine price and delivery cost for specific
geographical regions.





Chapter 4

The Role of Behavioral Changes and
Prompt Treatment in the Control of
Sexually Transmitted Infections

4.1 Introduction
1 Mathematical models are an important tool for understanding the spread of diseases in
populations. A better sense of the transmission characteristics of infectious diseases can lead
to an improvement of our capacity to prevent and control them. Therefore, in recent years,
there has been a growing interest in the field of mathematical epidemiology. In particular,
many models have been proposed to examine the transmission of sexually transmitted
infections (STIs), and the impact of various control policies (Chen and Ghani, 2010; Dasbach
et al., 2006; Elbasha and Galvani, 2005; Heijne et al., 2011, 2013; Muller and Bauch, 2010).

Classical epidemic models for sexually transmitted infections usually overlooked the exis-
tence of sexual partnerships. This is partly because they assume homogeneous mixing among
individuals. In other words, these models suppose that sexual contacts are instantaneous and
every contact is with another individual of the population; therefore, the entire population is
all the time at risk of contracting the infection. These assumptions may be comprehensible
when modeling a group of highly promiscuous individuals but it may not always be valid
for the average population. In fact, in real life scenarios, sexual partnerships usually have
nonzero length; and there is also a positive time gap between partnerships (Foxman et al.,
2006; Muller and Bauch, 2010).

1This Chapter is based on (Saldaña and Barradas, 2019)



80 The Role of Behavioral Changes and Treatment in the Control of STIs

To deal with such dynamic properties of sexually transmitted infections, pair formation
models were first introduced into the field of mathematical epidemiology by Dietz and
Hadeler (Dietz and Hadeler, 1988). They modified models from mathematical demography
to include transmission of infection in an age-structured two-sex population. Simplified
versions of this pair formation epidemic model were later formulated by Kretzschmar and
Dietz and compared with models, which do not take partnership duration into account. Since
then, pair formation models have been used in many variants, have been implemented into
simulation models for STIs, and have been applied to analyze the impact of public health
interventions.

The explicit inclusion of sexual partnerships is important to address the fact that trans-
mission only takes place when a susceptible individual and an infected one form a sexual
partnership. Therefore, as remarked in (Muller and Bauch, 2010), two susceptible individuals
that form a pair can be considered temporarily immune as long as they do not separate. For a
pair of two infected individuals, if the partnership lasts enough they can clear the infection
before the partnership ends and avoid transmission to future partners. These examples show
that transmission in a model that includes sexual partnerships (pair model) could be slower
than in a classical homogeneous mixing model.

Another interesting subject of research that has been shown to bring rich dynamics in
epidemiological models (Villavicencio Pulido et al., 2017; Wang et al., 2012; Wang, 2006;
Zhang and Liu, 2008) is the role played by the recovery function on the spread of infections.
Assuming a recovery rate proportional to the size of the infectious class is not satisfactory
due to the fact that the health-care system is limited when the number of infected individuals
is large. Incorporating a general recovery function is necessary to evaluate situations like
these. Moreover, a general recovery function can also describe different control policies and
behavioral changes in the population related to the number of infectious individuals.

The present work includes pair formation considering nonzero length partnerships as
an explicit variable of the model and capturing the dynamics of partnership formation and
dissolution. The pair model proposed below generalizes the work presented in (Kretzschmar
and Dietz, 1998) to an SIS (susceptible-infectious-susceptible) structure. The new model
incorporates a general recovery function that allows studying situations in which, for instance,
behavioral changes occur or medical resources are limited. We shall analyze how the recovery
function affects the equilibrium level of prevalence and other possible effects in the context
of the persistence of the disease in the population.

The structure of this chapter is as follows. In the next section, we describe the underlying
assumptions that govern our model equations. In section 4.3, we calculate the expression for
the basic reproduction number and investigate the stability of the equilibrium points. In sec-
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tion 4.4, we perform a global sensibility analysis to identify the parameters or combinations
of parameters that contribute the most to the variance of R0. In section 4.5, we propose and
study two different recovery functions. Bifurcation analysis is used as a tool to explore the
structure of the model’s solution for a plausible range of parameter values. The role of the
pair formation process is analyzed in section 4.6. Finally, the conclusions and a discussion
are presented in section 4.7.

4.2 Model Formulation

The compartmental SIS model proposed below describes the pair formation process and
the spread of an infection within partnerships. Single individuals form monogamous sexual
partnerships at a constant rate ρ per unit of time and the partnerships break up at a rate σ per
unit of time. Transmission of the infection can only occur within partnerships, with φ being
the number of sex acts per unit of time and h the transmission probability per contact.

As pointed out in Dietz and Hadeler (1988), if the pair formation process is considered
only as a social act and sexual contacts occur within a pair with a certain rate, for a high
separation rate there could be partnerships without a sexual contact during their existence.
These pairs would be irrelevant for the infection process. Hence, we shall assume that every
partnership starts with a sexual contact.

Individuals enter the sexually active phase of their lives at a constant rate ν as singles
and leave the sexually active population at a rate µ . Moreover, for simplicity, we are going
to omit the relation between the infectious disease and the pair formation process. Therefore,
being infected does not bias individual’s tendency neither to form or break partnerships, nor
to have sexual contacts Kretzschmar and Dietz (1998).

The model equations resulting from these assumptions are

dX0

dt
= ν +(σ +µ)(2P00 +P01)− (µ +ρ)X0 +Φ(I)X1,

dX1

dt
= (σ +µ)(2P11 +P01)− (µ +ρ)X1 −Φ(I)X1,

dP00

dt
=

1
2

ρ
X2

0
X

− (σ +2µ)P00 +Φ(I)P01,

dP01

dt
= ρ(1−h)

X0X1

X
− (σ +φh+2µ)P01 −Φ(I)P01 +2Φ(I)P11,

dP11

dt
=

1
2

ρ
X2

1
X

+ρh
X0X1

X
+φhP01 − (σ +2µ)P11 −2Φ(I)P11,

(4.1)
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Variable Description
X0 Single susceptible individuals
X1 Single infected individuals
P00 Pairs with two susceptible individuals
P01 Pairs with a susceptible and an infected individuals
P11 Pairs with two infected individuals
X Total number of singles
P Total number of pairs
uT Public health control: treatment of infected individuals
uC Public health control: condom promotion

Table 4.1 State variables for model (4.1).

Parameter Description Units
ν Recruitment rate individuals year−1

µ Rate of leaving the sexually active population year−1

ρ Rate of pair formation year−1

σ Separation rate year−1

φ Contact frequency within partnerships year−1

1/γ Infectious period in the absence of treatment year
h Transmission probability per contact dimensionless

Table 4.2 Interpretation and units for the parameters of model (4.1).

where I(t) = X1(t)+P01(t)+2P11(t) is the total prevalence at time t and all the parameters
are assumed to be non-negative. Tables 4.1 and 4.2 summarize the model variables and
parameters.

Before going any further it is important to emphasize the role of the function Φ(I). In
our system Φ(I) represents the impact on the population due to the efforts (decisions, plans
or actions) undertaken by the health care system to control the disease. In other words, the
function Φ(I) model public health strategies to reduce the prevalence of the infection. In
mathematical terms, the function Φ(I) is a non-negative function that increase the recovery
rate of infected individuals as a consequence of the application of public health strategies.

It is worth mentioning that when the function Φ(I) is assumed constant, then the infection
clearance rate, and consequently the mean recovery time, depends only on the biology of
the pair pathogen-human and permanent health policies. In particular, no additional control
interventions depending on the number of infected individuals are included. Allowing the
recovery function Φ(I) to change with I takes into consideration modifications in control
policies due to a perceived hazard: the level of prevalence of the infection. Therefore, Φ(0) =
γ > 0 represents the infection clearance rate under normal conditions. These conditions might
include the natural immune response and any other permanent health policy that influences
the recovery time of a single infected individual. The quotient 1/Φ(I) can be interpreted as
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the mean recovery time when the level of prevalence is I. In particular, 1/γ is the recovery
time when no additional density-dependent treatment or actions are taken by the infectious
individual or society’s health sectors.

4.3 Model Analysis

Note that the total population size N = X0 +X1 +2(P00 +P01 +P11) satisfies N′ =−µN +ν .
Therefore, by adding the equations of the pair model (4.1) we obtain

N(t)≤ N(0)e−µt +
ν

µ

(
1− e−µt) . (4.2)

If we consider the set

Ω = {(X0,X1,P00,P01,P11) ∈ R5
+ | X0 +X1 +2(P00 +P01 +P11)≤ ν/µ},

then, from (4.2), we get that if N(0) ∈ Ω then N(t) ∈ Ω for all t > 0. We say that Ω is a
positively invariant set under (4.1).

Now, let X = X0 +X1 be the total number of singles and P = P00 +P01 +P11 the total
number of pairs. From (4.1), observe that the dynamics of singles and pairs are described by
the the following system of differential equations:

X ′ = ν +2(σ +µ)P− (µ +ρ)X , (4.3)

P′ =
1
2

ρX − (σ +2µ)P. (4.4)

The partnership dynamics (4.3)–(4.4) has a unique equilibrium point (X∗,P∗):

X∗ =
ν(σ +2µ)

µ(σ +2µ +ρ)
, P∗ =

νρ

2µ(σ +2µ +ρ)
. (4.5)

Let the initial conditions of (4.3)–(4.4) be the equilibrium point (X∗,P∗) (4.5). In this case we
say that the pair formation process is at equilibrium. This assumption implies that X ′ = 0 and
P′ = 0, so the total population size is constant with N = ν/µ . Thus, assuming equilibrium of
the pair formation process we may reduce model (4.1) to the following three dimensional
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system in terms of the proportions X̄1 = X1/N, P̄01 = P01/N, Ī = I/N,

dX̄1

dt
= (σ +µ)Ī − (2µ +ρ +σ)X̄1 − Φ̄(Ī)X̄1,

dP̄01

dt
= ρ(1−h)X̄1

(
1− X̄1

X̄∗

)
− (σ +φh+2µ)P̄01 + Φ̄(Ī)(Ī − X̄1 −2P̄01),

dĪ
dt

= ρhX̄1

(
1− X̄1

X̄∗

)
+φhP̄01 −µ Ī − Φ̄(Ī)Ī,

(4.6)

where
X̄∗ =

(σ +2µ)

(σ +2µ +ρ)
, P̄∗ =

ρ

2(σ +2µ +ρ)
(4.7)

are the proportions of singles and pairs at the equilibrium level of partnership dynamics. To
avoid clumsy notation, from now on we are going to omit the bars in the variables of the
model (4.6).

4.3.1 The basic reproduction number

In this section, we compute the basic reproduction number for the reduced model (4.6). We
shall consider the special case in which the function Φ(I) takes its value at zero, that is,
Φ(0) = γ . Thus, we consider the following model:

dX̄1

dt
= (σ +µ)Ī − (2µ +ρ +σ)X̄1 − γX̄1,

dP̄01

dt
= ρ(1−h)X̄1

(
1− X̄1

X̄∗

)
− (σ +φh+2µ)P̄01 + γ(Ī − X̄1 −2P̄01),

dĪ
dt

= ρhX̄1

(
1− X̄1

X̄∗

)
+φhP̄01 −µ Ī − γ Ī,

(4.8)

The basic reproduction number R0 for pair models is defined as the expected number of
secondary infections one typical infectious individual will produce during his/her infectious
period starting in a P11 partnership in a completely susceptible population (Heijne et al.,
2013). A point to consider when computing R0 for pair models with nonzero recovery rate
is that infected individuals can clear their infection before the partnership ends, but they can
get reinfected if their partner is still infectious. These reinfections should be included in the
computation of R0.

For the computation of the basic reproduction number we need the following components:

(i) The probability that the initial infectious individual (initial case) is still infectious when
separating from a partner.
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(ii) The probability that the initial case is still infectious when he/she forms a new partner-
ship.

(iii) The transmission probability per partnership.

(iv) The number of new partners during the infectious period and the number of reinfections
for each partner.

First, we compute the probability that the initial case is still infected when separating from a
P11 partnership. The initial case can reach the state X1 by direct separation from the P11 with
a probability

P(P11 → X1) =
σ +µ

σ +2µ +2γ
(4.9)

or by first passing through P01 with a probability

P(P11 → P01)P(P01 → X1) =

(
γ

σ +2µ +2γ

)(
σ +µ

σ +φh+2µ + γ

)
(4.10)

The probability pt of the initial case still being infected after separation when there are no
reinfections is the sum of equations (4.9) and (4.10),

pt =
(σ +µ)(σ +φh+2µ +2γ)

(σ +2µ +2γ)(σ +φh+2µ + γ)
(4.11)

In addition, the initial case can reach the state X1 after m loops of clearance-reinfection of
his/her partner. For that reason, we need to examine the case that one or more reinfections
take place before separation. A reinfection occurs with a probability

pr =

(
γ

σ +2µ +2γ

)(
φh

σ +φh+2µ + γ

)
. (4.12)

Thus, the probability that clearance and reinfection happen exactly m times before separation
of the partnership is pm

r , m ∈N. Therefore, the probability that at least one reinfection occurs
is

∞

∑
m=1

pm
r =

pr

1− pr
=

γφh
(σ +2µ + γ)(σ +φh+2µ +2γ)

(4.13)

As a consequence, the probability ps that an individual who started in a P11 partnership is
still infectious after separation is given by

ps = pt

(
1+

pr

1− pr

)
=

σ +µ

σ +2µ + γ
. (4.14)
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Seeing that
pd = ρ/(ρ + γ +µ) (4.15)

is the probability that the initial case is still infectious and sexually active when he/she forms
a new partnership, and

hp = h(σ +φ +2µ + γ)/(σ +φh+2µ + γ) (4.16)

is the transmission probability per partnership, we conclude that

Rc = hp

∞

∑
i=1

(pd ps)
i =

hρ(σ +µ)(σ +φ + γ +2µ)

(γ +µ)(σ + γ +2µ +ρ)(σ +φh+ γ +2µ)
(4.17)

is the average number of individuals that the initial case will infect during his/her infectious
period in a completely susceptible population. Rc is known as the case reproduction number
(Heijne et al., 2013). If we add the expected number of reinfections in the starting and the
subsequent partnerships of the initial case (pr/(1− pr))(Rc +1) to the case reproduction
number Rc, we obtain the following expression for the basic reproduction number

R0 =
h[ρ(σ +µ)(σ +φ +2γ +2µ)+ γφ(γ +µ +ρ)]

(γ +µ)(σ + γ +2µ +ρ)(σ +φh+2γ +2µ)
(4.18)

4.3.2 Equilibrium points and stability analysis

A triplet (X∗
1 ,P

∗
01, I

∗) is called an endemic equilibrium point of model (4.8) if I∗ > 0 and if
the triplet satisfies the following non-linear system:

X∗
1 =

(σ +µ)I∗

2µ +ρ +σ + γ
, (4.19)

P∗
01 =

ρ(1−h)X∗
1

σ +φh+2µ +2γ

(
1−

X∗
1

X∗

)
+

γ(I∗−X∗
1 )

σ +φh+2µ +2γ
, (4.20)

I∗ =
ρhX∗

1
µ + γ

(
1−

X∗
1

X∗

)
+

φhP∗
01

µ + γ
. (4.21)

System (4.19)–(4.21) comes from setting the left-hand side of (4.8) equal to zero. Assume
that (X∗

1 ,P
∗
01, I

∗) is an endemic equilibrium point. From (4.19) we can see that I∗ > X∗
1 > 0.

In addition, given that X∗
1 ≤ X∗, from equation (4.20) we deduce that I∗ > P∗

01 > 0. In
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summary, if (X∗
1 ,P

∗
01, I

∗) is an endemic equilibrium point then

I∗ > 0, I∗ > X∗
1 > 0, I∗ > P∗

01 > 0.

Substituting the values of X∗
1 and P∗

01 in equation (4.21) and solving for I∗, we get:

I∗ = (R0 −1)
(µ + γ)(σ +φh+2µ +2γ)(2µ +ρ +σ + γ)2X∗

ρh(σ +2γ +2µ +φ)(σ +µ)2 . (4.22)

This, in turn, can be used to explicitly determine the values of X1 and P01 at the endemic
equilibrium. Moreover, when R0 > 1 all the factors on the right-hand side of expression
(4.22) are positive. Therefore, I∗ > 0 exists if and only if R0 > 1. The following result
summarizes the role of the basic reproduction number in the dynamics of the disease.

Theorem 4.3.1. For the reduced model (4.8), the disease-free equilibrium E0 = (0,0,0)
always exists and it is locally asymptotically stable if and only if R0 < 1. For R0 > 1, the
vector E1 =

(
X∗

1 ,P
∗
01, I

∗), where X∗
1 , P∗

01 and I∗ are given by the solution of system (4.19)–
(4.21), is the only endemic equilibrium point of model (4.8) and it is locally asymptotically
stable.

Proof. It is straightforward to see that E0 = (0,0,0) is the disease-free equilibrium for model
(4.8). To investigate the local stability of the equilibrium points, we compute the Jacobian
matrix of the model (4.8):

J(X1,P01, I) =

 J11 0 σ +µ

J21 J22 γ

J31 φh −(µ + γ)

 ,

where:

J11 = 2µ +ρ +σ − γ, J21 = ρ(1−h)
(

1− 2X1

X∗

)
− γ,

J22 =−(σ +φh+2µ +2γ), J31 = ρh
(

1− 2X1

X∗

)
.
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The characteristic polynomial for the Jacobian matrix evaluated at the disease-free equilib-
rium J(E0) is P1(λ ) = λ 3 +a2λ 2 +a1λ +a0(1−R0) where:

a2 = 2σ +4γ +5µ +ρ +hφ ,

a1 = (σ +2γ +2µ +hφ)(σ + γ +2µ +ρ)

+(γ +µ)(2σ +3γ +4µ +ρ +hφ),

−h(ρ(σ +µ)+ γφ),

a0 = (σ +2γ +2µ +hφ)(γ +µ)(σ + γ +2µ +ρ).

Note that coefficients ai are positive for i = 0,1,2. Thus, P1(λ ) is an strictly increasing
function for λ ∈ R+. Furthermore, P1(0) > 0 if and only if R0 < 1. In consequence, if
R0 < 1, then the roots of the polynomial P1(λ ) have negative real part. However, P1(λ )

has a unique positive real root if R0 > 1. Therefore, the disease-free equilibrium is locally
asymptotically stable if R0 < 1, and it is unstable if R0 > 1.

We have already established that for R0 > 1 the point E1 =
(
X∗

1 ,P
∗
01, I

∗) is the only
endemic equilibrium for model (4.8). The characteristic polynomial for the Jacobian matrix
evaluated at the endemic equilibrium J(E1) is P2(λ ) = λ 3+b2λ 2+b1λ +b0(R0−1) where

b2 = a2 > 0, b1 = a1 +hρ(σ +µ)

(
2X∗

1
X∗

)
> 0, b0 = a0 > 0.

Seeing that P2(0)> 0 if R0 > 1, and that P2(λ ) is an increasing function of λ when λ > 0,
we obtain the local asymptotic stability of E1.

4.4 Sobol’s indices for R0

In this section, we will perform a Sobol sensibility analysis Saltelli et al. (2004, 1999) to
evaluate the relative contribution of each individual parameter, as well as the interactions
among parameters to the overall variance of the basic reproduction number (4.18). This will
allow us to identify the parameters or combinations of parameters that influence the most the
value of the basic reproduction number. This is important in order to plan appropriate control
policies.

Due to the uncertainty in parameters’ values that appear in the definition of R0, we are
going to explore plausible ranges for them. The assumptions made for the sensitivity analysis
and the corresponding ranges for the parameters are listed below:

• The number of new partners varies from 1 up to 4 per year.
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• The percentage of people in a partnership at the equilibrium level ranges from 50% to
a maximum of 80%.

• The pair formation rate is between 2/year and 20/year. The separation rate, σ , lies
between 1.027/year and 7.77/year. (Equation (4.7) i.e the fraction of singles and
pairs at the steady state was used to estimate the ranges for ρ and σ ).

• The duration of the infectious period under normal conditions is between 0.5 and 2
years Juckett et al. (2010), therefore γ ∈ [0.5,2] year−1.

• The transmission probability per contact, h, lies in the interval [0.01,0.3].

• The contact frequency within partnerships, φ , varies from 26 contacts up to 156
contacts per year.
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Fig. 4.1 Sobol’s indices for R0 (first and total order). The ranges explored for the parameters
are ρ ∈ [1.25,8], σ ∈ [1.777,19.77], γ ∈ [0.5,2], h ∈ [0.01,0.3] and φ ∈ [26,156]. The
vertical black lines in the indices represent confidence and can be interpreted as error bars.

The results shown in figure 4.1 indicate that the dominant parameter contributing with
about 35% of the variability of R0 is γ , the recovery rate under normal conditions. The
transmission probability per contact, h, is also a very influential parameter with a first-order
index of 0.2449. The influence of the behavioral parameters ρ and σ on R0 is smaller but
not negligible. This is because although their first-order indices are not very high, the sum
of their total-order sensibility indices is above 0.30. This suggests that both ρ , and σ have
strong compound interactions with the remaining parameters. On the other hand, the contact
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(a) R0 as function of γ and h.
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(b) Contour plot of R0 as function of γ and h.

Fig. 4.2 R0 and its dependency on the parameters γ and h.

frequency within partnerships, φ , has only a weak influence on R0. The dark marks on top
of the bars in figure 4.1 represent 95% confidence intervals for the sensibility indices. Notice
that they are very small.

We also computed the second-order sensibility indices to measure the contribution to the
variance of R0 caused by the interaction of two model inputs. Within the ranges explored,
the combination of γ and σ influences the variance of R0 more than any other combination
of two parameters. Our sensibility analysis also indicates that there is a significant interaction
between the parameters γ and h, and also between ρ and σ .

Given the relevance of γ and h, we plotted the basic reproduction number (4.18) as a
function of them. As expected, R0 is a non-increasing function of the recovery rate γ . The
opposite pattern is seen for R0 as a function of the transmission probability per contact, i.e.
R0 is a non-decreasing function of h (see figure 4.2).

These results suggest that public health efforts should focus primarily on increasing γ ,
the recovery rate under normal conditions. This can be achieved, for example, through a
permanent program of screening, diagnosis, and treatment of cases. An improvement of
clinical services and training of health personnel can also help to increase γ . In addition, a
reduction of h, the transmission probability per contact, is likewise essential to eradicate the
disease. Among the different ways of doing that, barrier methods stand out because they are
relatively low-cost, accessible and effective in reducing h.

Finally, the control of the parameters ρ and σ can also be significant to reduce the
transmission of the infection. For this reason, efforts to maintain public awareness of
STIs and health education are an essential component to control them. These behavioral
interventions are useful for reducing individuals’ risk of contracting and transmitting STIs.
Although in real life situations these strategies are often difficult to implement, their benefits
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can be considerable. Among the expected effects are a reduced number of sexual partners,
delayed sexual debut and mutual monogamy.

4.5 Equilibrium prevalence versus recovery function

In this section, we study through numerical examples the relationship between the prevalence
at the equilibrium level and the form of the function Φ(I). For this, we perform numerical
bifurcation analysis using the software AUTO-07p developed by Eusebius Doedel. Different
forms for Φ(I) have been proposed in the literature to model different scenarios. For
example, in (Villavicencio Pulido et al., 2017) Villavicencio-Pulido et al. studied a model
where the recovery function is a Michaelis-Menten equation which corresponds to a non-
convex saturation function. They also considered an exponential recovery function whose
effect caused the appearance of a backward bifurcation.

Researchers have also explored treatment functions in epidemiological models (Eckalbar
and Eckalbar, 2011; Wang et al., 2012; Wang, 2006; Zhang and Liu, 2008). The idea is that
public health authorities will mobilize their resources to fight perceived infections depending
on the level of prevalence. For instance, in (He et al., 2013) a quadratic treatment function
was proposed to model the fact that society’s capacity for providing treatment is limited and
can decline after critical equipment and supplies are exhausted or health-care workers fall
victim to the disease. In this work, we analyze two different forms for the recovery function
related to particular control policies to understand how recovery influences the equilibrium
level of prevalence.

4.5.1 A sigmoid recovery function

Here, the treatment function Φ(I) takes the form of a sigmoid curve,

Φ(I) =
M

1+ exp [−k(I − I0)]
, 0 < I0 < 1, 0 < M. (4.23)

The quotient 1/M is the minimum time needed to recover from the disease when undergoing
treatment. Therefore, the parameter M satisfies M > γ . The parameter I0 represents an alert
level of prevalence after which the response of the public health authorities begins to grow
faster until saturation begins. The parameter k models the speed of resource allocation per
new infected case. In particular, when k is big, the reaction of the system is almost negligible
for I < I0 and, nearest to the maximum capacity for I > I0. On the other hand, when k is
small, the system takes more into account the gradual increase or decrease in the prevalence.
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Fig. 4.3 Part (a) shows how the prevalence at the steady state depends on the alert level of
prevalence. Part (b) shows a relationship between I0 and M that guarantees R0 = 1.

Note that despite the fact that there are no estimates of k, given that Φ(0) = γ , the parameter
k can be used to calibrate the value of R0.

From the definition of Φ(I), it is not difficult to understand the effects of the parameter
I0. For low values of I0, the system tries to control the epidemic since the first cases with a
strong response whose growth is weakened over time by the consumption of resources. In
contrast, for high values of I0, the initial stage of the response is slow but becomes faster
when the alert level of prevalence is reached and grows to the carrying capacity of the system.

We are interested in finding conditions on the parameters I0 and M that guarantee the
eradication of the disease. This is essential because it will allow us to know how fast we
should act to control an outbreak, given the recovery time from the infection. To find these
conditions, we explore by means of a bifurcation diagram how the structure of the solution of
model (4.6) depends on the alert level of prevalence, I0, for a fixed value of M. The parameter
I0 will vary between 0 and 1, while the other parameters are fixed and k = 6.74. In particular,
the value of M will be 52 so that the minimum recovery time is close to one week.

The resulting bifurcation diagram is plotted in figure 4.3 (a). The bifurcation parameter
I0 is shown on the horizontal axis of the plot and the vertical axis shows the prevalence of
system (4.6) at the steady state. As usual, stable solutions are represented by a solid line
and unstable ones with a dotted line. White squares symbolize static bifurcation points. The
results indicate that the disease-free equilibrium point begins being stable for small values
of I0, but loses its stability when I0 reaches the value 0.6006. At this value, the system
has a transcritical bifurcation with bifurcation point 2 and consequently a stable endemic
equilibrium appears. This indicates that the alert level of prevalence should be less than 60%
of the population to successfully control the disease when the minimum time to recover is
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roughly one week. Note that in these conditions, the maximum percentage of the population
that is infected at the steady state is 35.051%.

The bifurcation point 2 is of paramount importance because it gives the exact relationship
between I0 and M for which the value of the basic reproduction number R0 is equal to
1. The bifurcation diagram in figure 4.3 (a) shows this relationship for M = 52. But, this
can be obtained for any value of M. We proceed to show that, through the continuation in
two parameters of the bifurcation point 2. The result is plotted in figure 4.3 (b), where the
horizontal axis corresponds to M and the vertical axis to I0. From this figure, we can deduce
the alert level of prevalence needed to control the disease according to the minimum recovery
time. For example, when the minimum time needed to recover is nearly one month, that is,
when M = 12, the alert level of prevalence should be less than 38% to successfully control
the disease. This can be found drawing a vertical line at M = 12 in figure 4.3 (b).

4.5.2 A saturated treatment function

Treatment is one of the most efficient ways to control the spread of a variety of infectious
diseases, see Wang (2006) and the references therein. Nevertheless, due to logistic and
economic constraints, any community or city has a maximum capacity for treatment of a
disease. We are going to considered this phenomenon in our model introducing the saturated
treatment function

T (I) = γI/(1+aI) (4.24)

proposed in (Zhang and Liu, 2008). The treatment function can be interpreted as the product
of a recovery function and the prevalence, that is, T (I) = Φ(I)I. Thus, to include (4.24) in
our model it is enough to assume that Φ(I) = γ/(1+aI).

The function T (I) describes the effect of delayed treatment when the population of
infected individuals is large, and medical resources are limited. This is reflected through the
parameter a ≥ 0, which measure the extent of the effect of there being a delay in the treatment
of infected individuals (Wang et al., 2012; Zhang and Liu, 2008). Note that T (I)∼ γI for
small I; therefore, the treatment rate is proportional to the number of infected individuals
when the prevalence is low. But, when the fraction of infected individuals is close to 1, it
tends to a saturation level, since T (I)∼ γ/(1+a). This appears to be more acceptable than
the conventional constant rate.

In order to get a better understanding of how delayed treatment can affect the dynamics
of our model, we will perform numerical bifurcation analysis with respect to the parameter
γ and two different values of a. The first value proposed is a = 0.1; hence, in this case,
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Fig. 4.4 Bifurcation diagrams corresponding to a = 0.1 (a) and a = 2 (b).

treatment delays are negligible. For the second value, a = 2, the effect of delays in treatment
is more pronounced.

The results can be observed in figure 4.4. In figure 4.4 (a), that is, when there are no
treatment delays, the system has a transcritical bifurcation at γ = 0.8917 designated by the
bifurcation point 2. Hence, in this case, the model presents classical behavior in the sense
that the basic reproduction number aptly determines the threshold for disease’s eradication.
However, the model exhibits a backward bifurcation in the presence of treatment delays,
see figure 4.4 (b). Therefore, public health authorities should guarantee a minimum level
of efficiency for the treatment of infected individuals to avoid the danger that a backward
bifurcation represents.

4.6 The role of the pair formation process

The explicit inclusion of sexual partnerships in epidemiological models for STIs is necessary
because most of these infections are transmitted within a partnership of two individuals who
engage in sexual intercourse and have repeated sexual contacts with each other (Heijne et al.,
2013). The pair formation process can impact the transmission dynamics in different ways.
For example, if the mean time of partnership duration is short, the number of sexual acts
within the partnership could not be enough to transmit the infection. On the other hand,
if the partnership duration is long, infected individuals can clear the infection before the
partnership ends, and the number of partners during the infectious period is low.

In this section, we shall study how partnership duration affects the spread of the disease.
In order to do that, we shall analyze the dynamics of the system (4.6) for different values of
the separation rate σ . Clearly, the duration of partnerships is inversely related to the value of
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the separation rate. Consequently, we can explore the formulation of pairs in comparison to
what would occur in a non-pair model taking a large value for σ .

It should be noted that changes in the separation rate when the rest of the parameters are
fixed, not only change the duration of partnerships. It also modifies the expected number
of partners per unit of time and the total number of pairs. Hence, the rate of pair formation
should also be changing to ensure that the percentage of people in a partnership remains
constant. If ρ is fixed, it can be difficult to know if dynamical changes when σ increases
are due to the duration of partnerships or solely to the decline in the total number of pairs
(Heijne et al., 2011; Muller and Bauch, 2010).

Let us now analyze how the structure of the solution depends on the separation rate. We
check numerically the stability of the equilibria and the dependence of the basic reproduction
number on the parameter σ , see figure 4.5. The recovery function used was Φ(I) = γ/(1+aI)
with γ = 1, a = 0.1. In the bifurcation diagram shown in figure 4.5 (a), we varied the
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Fig. 4.5 (a) Bifurcation diagram of model (4.6) with respect to σ . (b) Dependence of R0
with respect to σ through partnership duration.

parameter σ in the interval [0,5]. In this diagram the value of ρ changes with σ in such a
way that the percentage of people in a partnership is constant consistent with published data
Johnson et al. (2001). In figure 4.5 (b), the basic reproduction number is plotted as a function
of the mean duration of partnerships which in turn depends on σ . In fact, partnership’s
duration is long for small values of σ and short when σ is big.

In figure 4.5 (b) it can be observed that R0 is a non-increasing function of partnership
duration, this implies that non-pair models overestimate the value of the basic reproduction
number which is logical since they implicitly assume a highly promiscuous behavior in the
population. The bifurcation diagram in figure 4.5 (a) confirms that something similar happens
for the equilibrium prevalence. Since for small values of σ (i.e. large partnership duration)
the disease-free equilibrium is stable because, among other things, the number of partners in
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the infectious period is not enough to maintain the infection. However, as σ increases and
reaches the value of 2.3836 a forward bifurcation occurs causing the loss of stability of the
disease-free equilibrium and giving rise to an endemic equilibrium whose value increases
with σ .

4.7 Discussion

In this work, we have analyzed the relationship between the recovery function and the
prevalence in an epidemic SIS model with nonzero partnership length. The main purpose of
incorporating general recovery functions was to study the different scenarios that can occur
when treating infected individuals. This contemplates, for instance, logistic limitations to
treat infected individuals when their number is large or behavioral changes related to the
prevalence of the infection.

Due to the uncertainty in parameters’ values and the complexity of the expression for
the basic reproduction number R0, we have performed a sensibility analysis in order to get
a better insight of how input parameters influence the variance of R0. The results of this
analysis suggest that control strategies should center principally on increasing the recovery
rate under normal conditions, γ , which is natural. However, a non-obvious conclusion of
the sensibility analysis is that the parameters ρ and σ have a significant influence on the
basic reproduction number, R0. Therefore, behavioral interventions that aim to reduce
individuals’ risk to transmit and contract the infection are relevant to control STIs. Moreover,
in section 4.6, we showed that R0 is a non-increasing function of partnership duration and
that the endemic equilibrium is stable when σ is large. This coincides with previous studies
that showed that non-pair models overestimate the value of R0 compared to models where
partnerships are explicitly included (Chen et al., 2009; Heijne et al., 2011; Muller and Bauch,
2010).

The inclusion of a general recovery function provided interesting insight into how satu-
ration and delays in treatment affect the dynamics of epidemiological models. First, from
the sigmoid recovery function (4.23), we established a relationship between the inverse
of the minimum recovery time, M, and the alert level of prevalence, I0, that guarantees
R0 = 1. In practical terms, this relationship determines when public health authorities should
act to successfully control disease’s transmission given the minimum recovery time 1/M.
Second, when the saturated treatment function T (I) = γI/(1+aI) is used to describe delays
in treatment, we showed numerically that a backward bifurcation can occur when such delays
are considerable. This is undesirable in terms of control strategies because driving R0 below
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1 is no longer enough to eradicate the disease. Therefore, timely treatment is of paramount
importance to avoid the risk that represents a backward bifurcation.

Our model focuses on capturing the pair formation process and the effects of the recovery
function. Thus, many natural extensions are possible to improve the realism of the model.
For example, we did not take into consideration that sometimes individuals have contacts
outside their partnerships. The existence of sexual risk group is another important aspect that
should be addressed when modeling STIs. In addition, omitting the relationship between the
infectious disease and the pair formation process is not realistic and deserves further studies.
Currently, we are working on these extensions and the inclusion of optimal control theory to
study the balance between cost and effectiveness of public health interventions.
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