

Para Andrea y Cow,
las mejores compañeras de cuarentena.

Agradecimientos

A mi asesor, el Dr. Adrián Pastor López Monroy, quien además de su
conocimiento y experiencia, me ofreció su apoyo y confianza, fundamentales
para la realización de este trabajo.

Al Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT) por el apoyo
económico necesario para la realización de mis estudios de maestŕıa.

Al Centro de Investigación en Matemáticas (CIMAT), por el conocimiento
y apoyo brindados por los profesores, aśı como los recursos facilitados para
llevar a cabo este proyecto.

A mi amigo Mario Guzmán Silverio, que siempre estuvo disponible para
escuchar mis ideas y compartir su conocimiento, particularmente de NLP.

A mi esposa, Andrea, quien me muestra la luz incluso en los d́ıas más
dificiles.

A mis padres, Leopoldo y Carmen, que están siempre cerca y de los que
sigo aprendiendo d́ıa a d́ıa.

A mi hermano, Miguel, a quien siempre puedo acudir en busca de un
consejo, un amigo o un cómplice

A todos aquellos amigos con los que he aprendido que los mejores resul-
tados, en la academia y en la vida, se obtienen a partir del intercambio de
ideas.

Abstract

The Motion Picture Association of America (MPAA) issues, through
CARA1, a rating to motion pictures that intends to provide a guide for
parents to decide if a movie is suitable for their children. Currently there
are 5 possible categories: G, PG, PG-13, R, and NC-17, where G is for
the general public and NC-17 is adult only. These ratings also work as an
insight for the general public about the target audience of a movie, and for
movie theaters to determine who is admitted in movie screenings. Hence, it
is important for movie makers to know the rating of a movie as earlier in
the production process as possible. However, the rating is usually assigned
in post production, when changes in the movie can be very expensive. Pre-
dicting the rating from the movie script would allow these changes to be
done even before the filming starts. Furthermore, advances in this direction
would also favor cheaper large scale video classification from other sources,
for example, social media and Youtube.

The MPAA rating prediction can be stated as a classification problem.
The research so far has been focused on directly applying deep learning
models (e.g., LSTM) that are agnostic to different particularities of the
problem. For example, very long text sequences (movie scripts), as well as
content and style words with semantic and syntactic dependencies among
them. This thesis proposed novel and effective strategies for MPAA rating
prediction. For this, our first proposal adapts hierarchical networks, which
are useful to model large sequences and exploit the natural structure of the
documents: words, sentences, and scenes (i.e. chunks of sentences). Further-
more, we combine state-of-the-art transformers and RNN based attention
models into our hierarchical framework, allowing us to exploit the benefits
of transfer learning, and exploit longer dependencies among words by means
of self-attention. The proposed approaches have multiple benefits. On the
one hand, the RNN hierarchical models have a lower computational cost,

1Classification and Rating Administration

proved discriminative power, and can be used to analyze the movie at a
scene level. On the other hand, the transformer based models have a better
performance but are more difficult to interpret. To address this problem
we devise a simple but effective visualization technique to extract the most
important words and sequences from the attention layers in the transformer;
this is our third contribution.

Results include empirical evidence on the usefulness of the proposed
hierarchical strategies to model long movie scripts, which make them suit-
able for the addressed problem. The evaluation reveals that both of our
proposals achieve state-of-the-art performance. Particularly,the RNN based
models improve the F1 score in around 2 points from the previous work on
MPAA rating prediction. The proposed transformer based models achieve
an improvement of up to 5 points over the SOTA RNN based models and
up to 9 points compared to traditional ML and NLP techniques. We foresee
this work will pave the way for the development of novel methodologies on
Explainable Artificial Intelligence, and will motivate further research from
the text mining communities on more intuitive, effective, and interpretable
neural networks models.

Keywords: hierarchical transformer, movie rating prediction, text clas-
sification, hierarchical models, transformer visualization, long sequence clas-
sification.

Contents

1 Introduction 3

1.1 Objectives and Research Questions 5

1.2 Thesis outline . 6

2 Theoretical Framework 9

2.1 Traditional Methods . 9

2.1.1 Bag of Words . 10

2.1.2 Term Weighting Schemes 11

2.1.3 N-grams . 12

2.2 Recurrent Neural Networks and Attention 12

2.2.1 Word embeddings . 12

2.2.2 RNN Architectures . 14

2.2.3 Attention mechanisms 17

2.3 Transformers . 18

2.3.1 Multi-Head Attention 18

2.3.2 Input Embeddings . 22

2.3.3 BERT . 23

3 Related Work 29

3.1 Related Tasks . 29

3.2 Related Work . 30

4 Proposals 33

4.1 LSTM Hierarchical Models 33

4.2 Hierarchical transformers . 37

4.2.1 Concatenating extra features 40

4.2.2 GenreDistilBERT . 41

4.3 Visualizing the Hierarchical Transformer 42

CONTENTS 1

5 Dataset and SOTA 49
5.1 Dataset . 49
5.2 Metrics . 53
5.3 Reference Methods . 54

6 Experiments and Results 57
6.1 Experimental setup . 57
6.2 Evaluation of the proposed RNN models 59
6.3 Evaluation of the proposed Transformer models 60

6.3.1 Evaluating Loss Function 61
6.3.2 SentenceBERT (Reference Method) 62
6.3.3 Poolers in the Proposed Method 62
6.3.4 Head in the Proposed Method 63
6.3.5 Extra Features in the Proposed Method 63

6.4 Visualizing the Hierarchical Transformer 67
6.5 Visualizing the embedding space 72

6.5.1 Hierarchical transformers 72
6.5.2 GenreDistilBERT . 75
6.5.3 Visualizing keywords 76

7 Conclusions 79
7.1 Future work . 80

1

2 CONTENTS

2

Chapter 1

Introduction

The Motion Picture Association of America established its rating system
in 1968 to provide parents with information about movies to determine if
they they are appropriate for their children. Currently there are 5 possible
categories: G, PG, PG-13, R, and NC-17, where G is for the general public
and NC-17 is adult only. This ratings affect not only the parents’ decision,
but also the restrictions imposed on the displaying on movies, and the appeal
of a movie for each audience group. Hence it is important for movie makers
to get the desired rating.

The MPAA rating is assigned by a group of reviewers that have to watch
the whole movie to rate it, therefore the classification is done in post pro-
duction. Even though the MPAA rating is a multimodal score that depends
on the visual, aural, and linguistic component, the latter allows for an early
analysis (through scripts) and the cheapest corrections (avoid reshootings).
Because of this, we focus on models that predict the MPAA rating from text
features. The importance of this task extends beyond the movie industry;
for example, platforms like Youtube and Netflix offer kid oriented services
that filter the content available, or let the parents customize the content
their children can watch. Unfortunately, not all the movies have an avail-
able MPAA rating and because of the high amount of videos in Youtube
there is no feasible way to manually classify each of them. There is a similar
issue with Facebook, where the minimum age allowed is 13 years old, but
there is a huge amount of user generated content that must comply to the
community guidelines.

To understand the complexity of our problem lets take a look at the
space generated by the Bag of Words1 vectors of movie scripts, visualized

1BoW us a vectiorial representation of the frequence histogram of the words in the

3

4 CHAPTER 1. INTRODUCTION

Figure 1.1: tSNE visualization of the Bag of Words vectors for a sample of
movie scripts in our dataset. This visualization shows that there is no clear
patter in the embedding space, meaning a harder classification.

with tSNE (Figure 1.1). There seems to be areas with only movies from one
or two MPAA ratings, but there is no clear division division of the space
into the desired categories. Besides illustrating the complications of this
problem, the visualization showcases the limits of traditional Natural Lan-
guage Processing (NLP) techniques; this is further studied by the authors
in [Shafaei et al., (2020)] who presented the benchmark for this problem,
including traditional NLP baselines and Recurrent Neural Network based
models which are the state-of-the-art for this problem.

It was shown in [Shafaei et al., (2020)] that the performance of the models
increase with the inclusion of the external features: genre vectors, emotion
vectors or ratings of similar movies. These features are often noisy or not
available, we are specially interested in models with a high performance
when trained with the script information only. The best model presented
in [Shafaei et al., (2020)] is a RNN architecture working at a word level.
we propose the use of hierarchical models that, in contrast to the work in
[Shafaei et al., (2020)], take advantage of the natural structure of scripts
(words, sentences, and scenes). We achieved an improvement of around 2
points in the F1 score with our proposed RNN based hierarchical archi-
tectures. Furthermore, we also designed a transformer based hierarchical

document.

4

1.1. OBJECTIVES AND RESEARCH QUESTIONS 5

model that takes advantage of the transfer learning properties of pretrained
transformers and makes the training feasible in terms of time and memory.
Our model achieves an improvement of up to 5 points in the F1 score over
the RNN based models, and up to 9 points compared to traditiona Ma-
chine Learning and NLP techniques. To ensure that we did not lose the
interpretability advantage of hierarchical models, we designed a visualiza-
tion strategy which allows us to understand the inner decision process of the
model.

1.1 Objectives and Research Questions

The main objective for this work is to design a model, based on modern
neural network architectures, capable of exploiting the whole information
in a movie script to outperform the state-of-the-art for the MPAA rating
classification task; and design a visualization framework to understand the
inner decision process of the proposed models.

We split our main objective into the following specific objectives.

1. To evaluate the performance of RNN based hierarchical models at two
and three hierarchical levels: words, sentences, and scenes.

2. To analyze the feasibility of applying transformer based hierarchical
models to the MPAA rating prection problem, their comparison to
RNN based models, and the influence of different loss functions in
their performance.

3. To design a visualization strategy that allows us to understand the
inner decision making process of the proposed models by identifying
the most relevant words and their context.

4. To analyze the effect of the inclusion of current and new external vari-
ables (emotion, genre, similar movies, and keywords) in the proposed
model, and visualize the impact they have in the resultant script em-
bedding space.

We guide our work with the following research questions:

1. The baseline models work at either word level or dialogue level, archi-
tectures like hierarchical RNN models make use of the natural struc-
ture of the document by also easing the visualization of the model.
Can they be used to improve the performance in the MPAA rating
classification task?

5

6 CHAPTER 1. INTRODUCTION

2. It is known that transformer architectures have difficulties when deal-
ing with large sequences. Can we combine them with a hierarchical
approach to ease the computational charge and be able to exploit their
transfer learning capabilities?

3. RNN based hierarchical models are known to have rich interpretability
properties, while transformer models are often hard to visualize. Can
we design a visualization strategy that helps us understand the inner
work of a hierarchical transformer?

4. The hierarchical transformer models naturally provides a script em-
bedding space by removing the classifier layer. Does this space reflect
the difference between movies with different ratings? How does the
presence of external features is reflected in such space?

1.2 Thesis outline

This work is structured as follows. In Chapter 2 we study the Natural
Language Processing techniques relevant to our research. In Section 2.1 we
review traditional methods such as Bag of Words, Term Weighting Schemes
and N-grams. In section 2.2 we introduce the traditional deep learning ap-
proaches, going from Word Embeddings to Recurrent Neural Networks and
Attention. In section 2.3 we review the idea of self attention and trans-
former, particularly the BERT architecture and two of its derived models:
DistilBERT and SentenceBERT.

In Chapter 3 we describe those works related to our research. Because
the MPAA rating classification problem was recently proposed there is no
much work done on it; hence, we present some NLP tasks related to the
movie industry and related work done on the analysis of entire movie scripts
from a NLP standpoint.

In Chapter 4 we present our proposals. In section 4.1 we describe our
proposed LSTM based hierarchical model and how we adapt it to the movie
scripts domain. In section 4.2 explain our hierarchical transformer design
and how we preprocess the script to make the training feasible. In section 6.5
we present the visualization strategy designed to visualize the hierarchical
transformer, the words, and sequences most important for classifying each
movie.

In Chapter 5 we present the Dataset used for this work and establish the
proposed Baselines. In Section 5.1 we detail the dataset used for this work
and present some statistics about the data in the corpus. In Section 5.2 we

6

1.2. THESIS OUTLINE 7

define the Weighted F1 score and why it is preferred over the traditional
accuracy. In Section 5.3 we present the chosen reference model and the
SOTA. We include two RNN based models taken from [Shafaei et al., (2020)]
and propose a new baseline that includes a frozen transformer module.

In Chapter 6 we present our experiments and results. In Section 6.1
we establish the experimental setup we followed to evaluate our models. In
Section 6.2 and 6.3 we present the training details and results of our RNN
and transformer based models, respectively. In section 6.4 we showcase our
design visualization tools by analyzing the most important sequence for the
correct classification of a movie of each rating, as well as those sequences in a
couple of misclassified examples. In Section 6.5 we visualize the embedding
space generated by our hierarchical transformer model and how it is affected
by the inclusion of external variables.

In Chapter 7 we present our Conclusions and the proposed lines of study
for further research on this problem.

7

8 CHAPTER 1. INTRODUCTION

8

Chapter 2

Theoretical Framework

In this chapter we present the theoretical framework on which our work
is based; we review machine learning and deep learning techniques relevant
to our work inside the NLP area. In Section 2.1 we explain the traditional
approaches to machine learning from NLP, such as Bag of Words, Term
Weighting Schemes and N-grams. In Section 2.2 we review the idea of word
embeddings, the most common Recurrent Neural Networks architectures,
and how their performance and interpretability can be enhanced with at-
tention mechanisms. In Section 2.3 we do an overview of transformers and
how the multi-head attention architecture led to the design of state of the
art models like BERT. We finish the section reviewing two models derived
from BERT: DistilBERT and SentenceBERT.

2.1 Traditional Methods

As with image processing, the deep learning boom revolutionized the
way we approach to NLP problems, but on contrary to its image counter-
part, deep learning methods as standalone models did not outperform the
traditional methods in most tasks and in others the performance could be
close. Because of this, some deep learning approaches to text related tasks
include or combine the traditional pre-computed features with the raw data
fed to the models. In this section we highlight some widely known NLP
techniques, such as Bag of Words, Term Weighting Schemes and N-grams.

9

10 CHAPTER 2. THEORETICAL FRAMEWORK

2.1.1 Bag of Words

Because of their mathematical nature, many machine learning models
rely on numerical input to perform their job, hence we need to produce a
numerical representation of text documents, a simple approach is to count
the occurrences of each word in a fixed vocabulary. For example, consider
the following three sentences:

1. It is nice to see you, you look amazing.

2. This is amazing, it is such a nice home.

3. We are going to see you tonight, but we are going home first.

We can define a vocabulary of size 18 as the set of distinct words that
appear on these sentences. Then we can encode each sentence on an 18-th
dimensional feature vector, where the i-th position is the number of times
the i-th word appears in the sentence; in other words, the histogram of word
occurrences over the vocabulary.

This technique can be refined by performing a pre-processing to the
words before building the vocabulary. Some common pre-processing tech-
niques are stop words removal and stemming. The term stop words is used
to refer as to the most common words in a language, for example articles.
Since these words are present in most documents in a high frequency, they
usually have low discriminative power, hence they can be removed to avoid
noisy representations. Stemming is the practice of replacing each word with
its stem or root before building the vocabulary, this allows a natural group-
ing of similar words under a single class; for example, the words computer,
computers, computing can be grouped under the label ”compute”. Note that
none of this pre-processing steps are a rule and they can negatively affect
the performance on some tasks.

Once the feature vector of each document is built, it can be fed to a
classifier. Because of the sparsity and high dimensionality of these repre-
sentations, linear Support Vector Machines are widely used to exploit the
capabilities of this representations. The importance that SVM’s had on
text classification led to improvements in the base method in both classi-
fication performance and computing efficiency, some examples of this are
transductive SVM in [Joachims, (2002)] and the liblinear library in [Fan et
al., (2008)].

It is important to keep in mind that the bag representation can be apply
to other features depending on the task, like a bag of actors, genres or even
visual features.

10

2.1. TRADITIONAL METHODS 11

2.1.2 Term Weighting Schemes

A raw count vector like those built with the Bag of Words, can cause
numerical instability. To avoid this it is common to apply the L2 normal-
ization:

fkd√∑
i f

2
id

,

where fid is the i-th term of the BoW vector corresponding to the d-th doc-
ument. A slightly different approach would be to replace the denominator
with fmd, where m is the term with more occurrences in the d-th document.
The difference between these two choices is that the former is affected by
the amount of terms in the document, while the later depends only on the
frequency of the most common term. These three techniques are part of a
set of methods called Term Frequency schemes, whose main purpose if to
assign each term a frequency score that will be denoted as TFid for the i-th
score in the d-th document.

Intuitively, the appearance of the same term across all the elements of
a corpus could not useful to discern between two different documents. To
address this issue, we can multiply the Term Frequency score by a Inverse
Document Frequency factor IDFi that decreases the more documents con-
tain the i-th term. This joint scheme, known as TFIDF, computes the
tf − idf score for the i-th term in the d-th document is given by

TFIDFid = TFid ∗ IDFi.

The scheme used in the sklearn library (one of the most used machine
learning packages on python) takes the scores TFid as the raw of occurrences
and the inverse document frequency score as

IDFi =
1 + n

1 + df(t)
+ 1,

where n is the total number of documents and df(t) is the number of doc-
uments that contain the t-th term. The TFIDF vector is normalize by its
euclidean norm.

There are variations of this scheme that apply logarithmic transforms to
the TF or IDF factor, others combine the TF factor with selection metrics
such as χ2. A comparison of these and other approaches are available on
[Lan et al., (2005)] and [Salton and Buckley, (1988)].

11

12 CHAPTER 2. THEORETICAL FRAMEWORK

2.1.3 N-grams

Sometimes the meaning of a sentence can not be captured by the BoW
vector. Take a look at the following two sentences:

I am happy, I am not sad.
I am sad, I am not happy.

Both of them have exactly the same representation as a BoW vector but
they have opposite emotional charge, hence no classifier would be able to
correctly label the first one as joyful and the second one as depressive. The
issue in the last example is that the meaning of the sentence has to be
inferred from pairs of words because single words does not provide enough
context. An alternative is to build the vocabulary with all the pairs of
consecutive words in the sentences, then the first sentence will correspond
to the terms am happy and not sad ; while the second one will correspond to
am sad and not happy. Intuitively, this information is better to differentiate
the emotion present in each sentence.

The terms built by taking the pairs of contiguous words in the sentence
are called bigrams, and we can use then to construct our vocabulary and
the apply the BoW or any other weighting scheme to build a feature vector
for the sentence or document. Even if our toy example could be solved
using bigrams, more complex problems could require a little more context,
i.e. longer sequences of contiguous words. The terms built with sequences of
length N are called N -grams and can be included in the previously presented
schemes. There is no guide or golden N to chose when working with N -
grams; a common practice is to build feature vectors using different lengths,
and use their concatenation to train the classifier.

2.2 Recurrent Neural Networks and Attention

In this section we review the use of Recurrent Neural Networks to NLP
tasks. We start with the idea of word embeddings, which are used as input
to the RNN models, we explain the most common RNN architectures and
how attention mechanisms can be used to improve their performance and
interpretability.

2.2.1 Word embeddings

The word representations we have presented so far are either an index
of a vocabulary or a weight related to the occurrences in a document or a

12

2.2. RECURRENT NEURAL NETWORKS AND ATTENTION 13

corpus, however, none of these representations reflect the semantic meaning
of the word. The embedding standpoint adopts the idea of representing
words with continuous vectors in a space with a geometry such that words
with similar meaning are close, even if they do not have the same root.

There were various approaches to the generation of word embeddings,
but one that caught the attention of the NLP community was word2Vec
([Mikolov et al., (2013)]). There is strong evidence to say that the embedding
space generated by this representation fulfills the requirement of similar
words having close embeddings. Moreover, the word2vec representations
keep their semantic properties under some algebraic operations, for example
the vector vec(king)-vec(men)+vec(women) will generate a vector close to
the vec(queen). There were no explicit training to encourage this behaviour
between the resulting embedding, nevertheless it is a good example of how
rich is the geometry on the embeddings’ space.

Word2Vec is an extension of the skip-gram model ([Mikolov et al., (2013)]),
which is depicted on Figure 2.1, the objective of the skip-gram model is to
predict nearby words in a sentence based on the embedding of a single word.
The Word2Vec model changes the skip-gram loss function for the Negative
Sampling Estimation defined as

log(v′wO

T vwI) +
k∑
i=1

Ewi∼P (w)[log(−v′wi

T vwI)],

where v′wo
is the output projection of a positive sample, vwI is the input

projection of the fixed word and each v′wi
are output projections of the

negative samples. The idea behind Negative Sampling Estimation is to
compare the fixed word with a positive related sample and k noisy vectors.

There are other succesful word embedding such as fasttext, proposed by
facebook on [Bojanowski et al., (2017)] and GloVe, proposed by stanford nlp
on [Pennington et al., (2014)]. While these representations already include
semantic information, we would like to build specific word representation
for each task that depend on the surrounding context; this can be addressed
with Neural Networks such as Recurrent Neural Networks and Tansformers.

13

14 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: Skip-gram architecture, the objective is to predict the context
from the word representation. Taken from [Mikolov et al., (2013)].

2.2.2 RNN Architectures

As many other neural networks architectures, Recurrent Neural Networks
(RNN) have been around for a very long time ([Rumerhart et al., (1985)])
and raised with the deep learning boom as the answer for processing sequen-
tial information such as text or time series. Intuitively, a RNN is a neural
network that produces an output for each element in the input sequence
based on the current input and the output of the previous step.

Formally, a RNN cell is a parametrized function fθ : Rd → Rd such that
for a d-dimensional sequence x,

ht = fθ(xt, ht−1), for each t < n.

Each vector ht is known as the t-th hidden state. The usage we give for
each hidden state depends of the application we are working on; for a se-
quence classification task it may be enough to feed the last hidden state to a
classification layer, however fine grained tasks such as Name Entity Recogni-
tion1 require the prediction of a label for each word, hence the classification
of each hidden state.

On text applications the input xt has to be a representation of the t-th
word in the sequence this can be either a one-hot vector of the index of

1Determining if a word corresponds to a named entity like the name of a person,
company or country.

14

2.2. RECURRENT NEURAL NETWORKS AND ATTENTION 15

a vocabulary, an pre-computed embedding such as those from GloVe, or a
trainable embedding matrix, i.e. one high dimensional vector for each word
in the vocabulary.

One of the main inquires from the deep learning standpoint is which kind
of architecture if the best to model the previous mathematical formulation.
A naive approach would be to take such function as a MLP, but this kind of
representation faces problems like exploding gradients, vanishing gradients
and memory loss.

The current RNN models are usually based of one of two types of archi-
tectures to model the function fθ called Long Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU). Both are based on the idea of updating
and removing information from a memory vector gotten from the previous
step.

For GRU, the following operations, illustrated on Figure 2.2, are com-
puted at each step:

rt = σ(Wirxt + bir +Whrht−1 + bhr)

zt = σ(Wizxt + biz +Whzht−1 + bhz)

nt = tanh(Winxt + bin + rt ∗ (Whnht−1 + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

The vectors rt, zt and nt are called the reset, update and new gates, re-
spectively. The intuition behind these names is that the reset gate computes
the amount of information from the previous step that goes into the new
information computation, and zt intends to control how the new information
and the old information will be mixed.

Figure 2.2: GRU architecture

The LSTM not only receives the input xt and the previous hidden state

15

16 CHAPTER 2. THEORETICAL FRAMEWORK

ht but also a long term memory vector ct. The following operations are
computed at each step t and are illustrated on Figure 2.3.

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

Figure 2.3: LSTM architecture

Note that the weights W and b on both architectures are shared among
all the time steps t, hence the optimization algorithm for these kind of neural
networks is called back propagation through time.

For tasks like time series forecasting or next word prediction each hidden
state ht should be affected only by previous steps. However, if we want to
compute a vector representation for a word it might be a good idea to
consider the words that came after it in the sentence. The sequential nature
of RNN does not encourage the use of information from further steps in
the sequence, but we can get this information by reversing the order of the
sequence before it goes trough the network. The bidirectional RNNs take
this idea and, for sequence of length n, computes the hidden states ht and
ĥ(n − t) for a forward pass and a reversed pass, respectively. Both hidden
sates are concatenated into a single representation for the time step t.

16

2.2. RECURRENT NEURAL NETWORKS AND ATTENTION 17

2.2.3 Attention mechanisms

As we mentioned before, when we want to compute a vector represen-
tation for a sequence, the traditional approach is to simply take the last
hidden state. It is clear that it is the only hidden state which comprises
the information of the whole series, but, is it the best representation? we
could take the average or a weighted sum of all the hidden states. This is
were the attention idea comes into play. Suppose that we decided to take
the sentence representation as the weighted sum of the hidden states of a
RNN, i.e.

s =
∑
t

αtht.

With attention mechanism (Bahdanau et al. [Bahdanau et al., (2014)]) we
can train the weights αt along with the network, so we don’t have to tune
them ourselves. The following operations showcase one way to compute the
weights

ut = tanh(Wht + b),

αt =
exp(uTt u)∑
i exp(uTi u)

,

with W , b and u trainable parameters, the dot product with the word u can
be interpreted as an answer to the question “Is this word important?”. The
joint LSTM plus Attention mode is depicted on Figure 2.4.

Figure 2.4: LSTM with attention layer on top. The attention layer computes
a weighted sum over the hidden states hi.

17

18 CHAPTER 2. THEORETICAL FRAMEWORK

2.3 Transformers

One of the biggest downsides of recurrent neural networks is their com-
putational inefficiency. Even with the optimizations that have been built
into frameworks like tensorflow and pytorch, the sequential nature of RNNs
remains a bottleneck for any paralellization based techniques. On [Vaswani
et al., (2017)] a group from google proposed a new attention based model,
the transformer, which not only ease the parallelization of the models, but
enhanced the application of transfer learning to a wide range of NLP tasks.
We present a brief summary of the transformers idea, nevertheless we rec-
ommend to the reader to take a look to the original paper as well as Alex
Rush’s annotated version2 and Jay Alammar’s illustrated version3; most of
the illustrations on this section come from these sources.

The model architecture proposed in [Vaswani et al., (2017)] has an
encoder-decoder structure, but we will focus only on on the encoder since
many improved models, such as those used in these thesis, depend only on it.
The model architecture is summarized on Figure 2.5 and will be explained
in the remaining of this subsection.

Figure 2.5: Transformer encoder model architecture, taken from [Vaswani
et al., (2017)].

2.3.1 Multi-Head Attention

Note that the attention mechanism we explained in previous sections
never performs direct comparisons between different hidden states, instead,
the attention scores are assigned independently by trainable layers. The

2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3http://jalammar.github.io/illustrated-transformer

18

2.3. TRANSFORMERS 19

attention mechanism core to the transformer model is called self-attention,
its name denotes the core idea of the module: for each token there are
multiple attention computed, each with respect to every other token in the
sequence. Note that this makes the number of comparisons quadratic on the
length of each sequence, which can increase the time and memory necessary
for the computations, this is not relevant for most NLP task that work with
short sequences, however it may be important to take into account when
working with large inputs such as movie scripts.

The multi-head attention mechanism is composed by one or more self-
attention layer. Note that the attention mechanism explained on previous
sections never performs any kind of direct comparison between different
words, conversely, this is a core feature on self-attention.

Lets take a look at the inside of the self attention module. Let X ∈
Rn×hdim be the input matrix (one row for each token), and let Wk,Wq,Wv ∈
Rhdim×attdim be the key, query and value weights. We compute the key, query
and value matrices as

K = WkX Q = WqX V = WvX

Let dk be the dimension of the rows in K, then we compute the self-
attention matrix Z as

Z = Softmax

(
QKT

√
dk

)
V.

To understand the intuition behind the key, query and value matrices
lets focus on the computing of a single representation zi we can rewrite it as

zi =

n∑
j=0

Softmax(
qiK

T

√
dk

)Vj .

The term qiK
T computes the dot product similarity between the query

vector for the i-th token and the key vectors for each one of the other
tokens. This term in normalized with a softmax and interpreted as an
attention vector, where the j-th entry denotes the importance of the j-th
token to the i-th token. Finally, zi is a weighted sum of the value vectors
for each token.

Once trained, the attention model is able to capture relations between
the tokens of a sequence, however there is no guarantee that a single one
of these attention layers is enough to catch the most important of those
existing relations; because of this the transformer architecture uses multi-
ple heads, each one with a self attention mechanism. The generalization to

19

20 CHAPTER 2. THEORETICAL FRAMEWORK

multiple heads is straight forward. For 8 heads (as with transformers) we
would consider eight different key, query and value matrices and compute 8
matrices Z0, . . . , Z7; these matrices are concatenated along their last dimen-
sion to build a single z representation for each token in the sequence. The
multihead attention proces is summarized on Figure 2.3.1.

20

2.3. TRANSFORMERS 21

Figure 2.6: Illustration of the multi-head attention mechanism. Taken from
[Alammar, (2018)].

21

22 CHAPTER 2. THEORETICAL FRAMEWORK

2.3.2 Input Embeddings

Because Transformers are not recurrent models, it is necessary to inject
some information into it to make use of the sequential information of text
data. Hence the input embeddings for the model are computed via a tradi-
tional embedding layer and a positional encoding module. The embedding
layer is a trainable matrix that assigns a dmodel-dimensional vector to each
token. The positional embedding can be any function that receives the po-
sition of the token in the sequence and outputs a dmodel-dimensional vector
that will be summed to the initial embedding.

There are two preferred positional embedding modules. The first ap-
proach assigns a sinusoidal function PEd to each dimension d < dmodel and
computes the vector according to the position (Figure 2.7. Formally:

PE2i(pos) = sin
(pos

100002i/dmodel

)
PE2i+1(pos) = cos

(pos

100002i/dmodel

)
.

Figure 2.7: Positional embedding, taken from the annotated transformer

Note that even if these sinusoidal functions are periodic, its value gives
us an idea of how far a token is located into the sequence.

The second approach for the positional embedding module is a trainable
matrix that assigns a dmodel dimensional vector to each position, just like a
traditional embedding matrix. Since this last technique enforces a constrain
on the maximum sequence length, the first method can be used when we
expect larger sequences than those used on pre-trained models. As we said
before, the time and memory requirement to train these models hugely in-
crease with the sequence length, hence most models stick with the maximum
length of pre-trained architectures, which is enough for many tasks.

22

2.3. TRANSFORMERS 23

2.3.3 BERT

BERT, short for Bidirectional Encoder Representations from Transform-
ers is a model introduced by the Google AI Language team on [Devlin et al.,
(2019)]. It builds on top of the transformers idea by making major changes
on the training pre-training process instead of modifying the architecture
itself. BERT’s architecture is basically that of the encoder explained in the
previous section. The model is pre-trained on labeled data over different
tasks, and then its parameters can be fine-tuned different tasks by adding a
different head for each new task.

The input for BERT is tokenized using Sentencepiece 4, each sequence
starts with a special token [CLS], the hidden representation of this token if
often used as a representation for the whole sequence, but other aggregation
methods like the mean of the hidden states for each word can be used too.
Unlike other tokenization approaches, like those applied to Word Embedding
models, if a word does not belong to the vocabulary, it is splitted into smaller
subwords that belong to the vocabulary and prefixed with the characters ##
to denote that they are originally part of a bigger word. If the task requires
that the input is composed by two sentences (Question Answering), then
the tokens of each sentence are separated by a [SEP] token.

BERT pre-training and fine-tuning

The first task used for BERT’s pre-training is Language Modeling (LM).
The main goal of LM is to compute meaningful word vectorial embeddings,
therefore many approaches to this task focus on the prediction of missing
words based on context. The classical approach is to predict the t + 1-
th token at the t-step; sequential models like RNN rely on the conditional
dependence between a token and its predecessors, hence the prediction of
a token can not involve information from further in the sequence. BERT’s
pre-training tackles the dependency issue by masking 15% of the tokens in
the sequence, these tokens are then predicted with the final hidden outputs.

Remember that the final goal of BERT is to be fine-tuned, and it can be
harmful to replace all the masked inputs with a new [MASK] token because
it will not appear in the downstream task. To solve this, only 80% of the
input is replace by the [MASK] token, half of the other 20% is replaced by
random tokens, and the last 10% is not modified.

In order for BERT to have a good fine-tuning performance in tasks that

4Sentencepiece is a open source version of the Wordpiece tokenizer used for the original
training of BERT.

23

24 CHAPTER 2. THEORETICAL FRAMEWORK

involve two sentences, like question answering, the model is pre-trained on
the Next Sentence Prediction task. The task is simple: the model receives a
pair of tokenized sentences separated by the special token [SEP]; 50% of the
time the second sentence follows the first sentence in the original text and
50 percent of the time it doesn’t. Then the problem is transformed into a
traditional binary classification task whose objective is to determine if the
second sentence follows the first one in the original source.

BERT embedding layer architecture (Figure 2.8) includes a third seg-
ment component besides the encoder layer and the positional embeddings.
The segment component adds a new vector depending on the sentence that
the token belongs to (first or sencond sentence).

Figure 2.8: BERT embedding layer architecture, taken from [Devlin et al.,
(2019)].

BERT fine-tuning is straight forward, we only have to add the corre-
sponding head on top of the BERT model, like a MLP for sequence classifi-
cation.

Figure 2.9: BERT pre-training and finetunning. Taken from [Devlin et al.,
(2019)].

24

2.3. TRANSFORMERS 25

It is important to keep in mind that BERT’s pretraining impose a maxi-
mum sequence length for its input (typically 512), and the sequences used for
fine-tuning must stay under this limit. BERT and the most popular trans-
former based models are already implemented in the transformers library
developed by hugging face.

DistilBERT

As transformer based architectures get more and more complicated, the
number of parameters also scale. Figure 2.10 shows a comparison of some
of the number of trainable parameters in some state of the art models.

Figure 2.10: Comparison of the number of parameters in different trans-
former based models. Taken from [Corby, (2020)]

The increase on the number of parameters also increase the capabilities
of the model. However, there are downsides that go from the computational
difficulties to the environmental impact of training them. It is easy to come
up with two general paths to solve this problems, get better hardware and
software, or achieve similar results with smaller models. Work in the former
one is done with each release of gpu, tpu, and the development of libraries
with mixed precision capabilities, as well as libraries for efficient and dis-
tributed computing like Microsoft’s deepspeed. One proposal for the latter
path is to train distilled models, which are small models that are trained to

25

26 CHAPTER 2. THEORETICAL FRAMEWORK

behave like their bigger counterparts. Here we briefly explain the applica-
tion of distillation to BERT, for more detailed information we refer you to
the original distilBERT paper ([Sang et al., (2019)]).

The distillation process involves the participation of two entities, the
trained model, i.e. the teacher, and the target model, i.e. the student. The
information of the teacher is fed to the student through the distillation loss:

Lce =
∑
i

ti ∗ log(si),

where ti is the probability estimated by the teacher and si is the probability
estimated by the student. Recall that the LM pre-training task can be seen
as a classification problem, hence the output of the teacher model can be
understand as probabilities.

The final loss is composed as the sum of the distillation loss plus the orig-
inal supervised Loss plus the cosine loss between the embeddings produced
by the student and the teacher.

Based on insights they developed, the authors decided to reduce the
number of layers and not the final hidden size dimension. The final dis-
tilBERT model ended up with the same general architecture, but half the
layers of the original BERT.

SentenceBERT

The embedding that BERT computes for the [CLS] token is often used as
a sequence representation for classification task, but there is no gaurantee
that it will be a good representation from the semantic standpoint. The
Sentence-BERT model, introduced in [Reimers and Gurevyh, (2019)], was
developed to compute meaningful representations of sentences. The model
applies the triplet networks paradigm ([Schroff et al., (2015)]) which consists
on the following:

1. Each sample is a triplet composed by an anchor example, a positive
example, and a negative example. The anchor has to be related to the
positive example and not related to the negative example.

2. Compute representations sa, sp and sn for the anchor, positive, and
negative examples, respectively.

3. Back-propagate the the triplet loss:

max(‖sa − sp‖ − ‖sa − sn‖, 0).

26

2.3. TRANSFORMERS 27

The main idea behind the triplet loss is to ensure that similar sentences are
close in the embeddings space and are far from unrelated sentences. The
sentenceBERT model is illustrated on Figure 2.11.

27

28 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.11: SentenceBERT model. A sample the model is composed by an
anchor example, a positive example, and a negative example to compute.
The triplet loss pull the positive example to the anchor and pushes the
negative example from the anchor.

28

Chapter 3

Related Work

The main task focused in this work was first proposed in [Shafaei et al.,
(2020)]. Nevertheless, there is work done on solving film industry related
problems using Natural Language Processing techniques by analyzing the
reviews, summaries, or the whole movie script. We dedicate this chapter to
some of this work that may be relevant for our research. In Section 3.1 we
review some publications that aim to solve general movie related problems
from a NLP point of view. In the Section 3.2 we present research related
to the MPAA rating classification task including some work on hate speech
and violence prediction.

3.1 Related Tasks

To the best of our knowledge there was no previous work on the precise
task of MPAA rating prediction before [Shafaei et al., (2020)]. However, the
movie industry has been an active topic on Natural Language Processing for
many years. For example the work presented in [Joshi et al., (2010)] explores
regression to predict movie revenue. They take text features extracted from
reviews and metadata from the movie as regressors for their model. In this
work the MPAA rating was taken as a feature rather than as a target, which
increases the interest on our chosen task.

More recently, the work in [Battu el al., (2018)] addresses the genre
and user rating prediction problem from a neural networks standpoint and
compare their approach to traditional NLP techniques. Their model is a
combination of three modules working at a character, word and sentence
level, respectively; the word and char embedding are LSTM based models,
while the sentence embedding is a pre-computed representation.

29

30 CHAPTER 3. RELATED WORK

There is fewer work that use the whole script or dialogue information.
The authors of [Azab et al., (2019)] do not use the whole script but take
dialogue level information to compute embedding for the main characters of
the movie.

In [Shafaei et al., (2019)], the authors use the subtitles and metadata
of the movie to predict Likeability of Movies using a more traditional NLP
approach. They extract a variety of features from the text like lexical in-
formation, emotional scores, sentiment concepts, positive and negative sen-
timents, writing density and average word embedding; they combine this
information from visual features from the poster and train a linear SVM.

The focus in [Gorinski et al., (2018)] is to build a summary of the movie
by generating sentences that describe Mood, Plot, Genre, Attitude, Place
and Warnings. Their model follows the encoder-decoder structure, they
choose a LSTM for the decoder but deliberately avoid using a RNN based
encoder claiming that it is doubtful that a fixed length vector could encode
the content of the movie and that the attention may not isolate the parts
relevant to their generation task; the work done in [Shafaei et al., (2020)],
that we will see later, provide evidence that this claim does not hold for the
MPAA rating prediction task.

3.2 Related Work

On this section we present the related work that we consider closest to
the MPAA rating classification task. The usage of offensive language in a
movie is related to its MPAA rating, based on [Schmidt et al., (2017)], a
survey on hate speech and NLP, we talk about relevant research in the area.
Because the violent content can lead to a severe MPAA rating, we review
some work done on the violence detection task.

Researchers in [Nobata et al., (2016)] worked on the prediction of hate
speech in online content by training traditional classifiers using syntactical,
sentimental, and semantic features; they spotted the difficulties on differ-
entiating hate speech from offensive language. This issue is addressed in
[Davidson et al., (2017)] using crowdsourcing to label data into three cate-
gories: hate speech, offensive, or neither. They conclude that their models
are biased to downplay the sexist comments, while the homophobic and
racist content is easier to classify as hate speech.

The authors of [Park and Fung, (2017)] and [Zhang et al., (2018)],
adapted Convolutional and Recurrent Neural Networks to predict hate speech
and abusive language on Twitter data in monolingual and multilingual set-

30

3.2. RELATED WORK 31

tings. Researchers in [Singh et al., (2018)] and [Mathur et al., (2018)] follow
similar approaches to these problems in a multilingual setting. These mod-
els outperformed the state-of-the-art traditional approaches and showcased
that Neural Networks are a good approach to these problems.

Authors in [Gninkoun and Soleymani, (2011)] added text features in the
form of swear word ratio to the work in [Giannakopoulos et al., (2010)]
which previously relied only in visual and aural features to detect violence
in movie scenes. The authors in [Shafaei et al., (2020)] took inspiration on
the latter work to proposed a threshold model over the ratio of swear words
present in the movie as a baseline to the MPAA rating prediction task.

The work in [Martinez et al., (2019)] took inspiration of the misclassifi-
cation of movies into the NC-17 rating and built a RNN based model to pre-
dict violence ratings, which measure the amount of violence in a movie, the
model uses a RNN with attention to compute a script representation from
pre-computed sentence embeddings. Note that MPAA rating prediction is
a more general task because violence is only one of the factors considered
when assigning the rating to a movie.

The authors of [Shafaei et al., (2020)] proposed the MPAA rating pre-
diction task and provided a corpus with scripts (subtitles only), the corre-
sponding metadata and the splitting they used for their experiments. They
also published a set of traditional NLP baselines, a comparison with the
model presented in [Martinez et al., (2019)] and their own model: a LSTM
with an attention layer on top.

Our proposed models embrace the idea of computing a sentence repre-
sentation, however we use a word level neural network in order to enhance
the model’s flexibility; this also aids with the problem of feeding large se-
quences to Neural Network models, which can harm the model’s performance
and computational cost. As shown in Chapter 6, our proposed models, ei-
ther RNN or transformer based, are successful approaches to the problem in
both performance in the metrics, and interpretability through our proposed
visualization strategy.

31

32 CHAPTER 3. RELATED WORK

32

Chapter 4

Proposals

In this chapter we describe our approach to the MPAA rating classifica-
tion problem. In Section 4.1 we present our hierarchical RNN approach to
the problem, we propose a LSTM based model with three hierarchical levels:
words, sentences, and scenes; our model is based on the work presented in
[Yang et al., (2016)] about hierarchical models, these architectures exploit
the natural structure of documents allowing us to split it into smaller chunks
of information while also providing natural high level visualizations of the
model’s inner decision process. In Section 4.2 we present the Hierarchical
Transformer, our approach to combine transformers into the hierarchical
framework, this allows us to apply the advantages of transformers to the
analysis of long documents in an end-to-end fashion. In Section 4.3 we
present the hierarchical transformer visualization strategy we designed to
address the interpretability issue that hierarchical transformers inherit from
the transformer models, which is specially problematic when dealing with
large sequences.

4.1 LSTM Hierarchical Models

The Hierarchical Attention Model was introduced in [Yang et al., (2016)].
The model aims to exploit the natural structure of a document by stacking
two Recurrent Neural Networks with Attention modules with independent
weights, one that works at a word level and one that works at a sentence
level. The word module is in charge of building a sentence representation
from a sequence of word embeddings, then the sentence module takes the
sentence embeddings for the whole document and computes a single repre-
sentation that can be used for classification. It is known that the perfor-

33

34 CHAPTER 4. PROPOSALS

mance of Recurrent Neural Networks can be negatively affected by the length
of the input sequences. The latter is addressed by hierarchical models, which
require the document to be divided into shorter sequences, this also allows
faster computation and easier parallelization. The attention scores on each
level provide insights on which sentences and words are important for the
model’s decision process, addressing the common issue of interpretability in
deep learning.

We propose the use of a model with the two usual levels, words and
sentences; and a model with a third hierarchical level: scenes1. This third
level exploits the natural division of the movie into scenes and can provide
helpful insights to movie makers by highlighting the scenes that have the
most impact on the assigned rating; an example of this can be visualize on
Figure 4.1. The architecture is depicted on Figure 4.2 with a bidirectional
LSTM with attention in each level of the hierarchy.

Figure 4.1: Top 5 sentences with highest attention score within the scene
with highest attention score, the color indicates the attention score at word
level.

Formally, let xijk be the vectorial representation o the k-th word in the
j-th sentence of the i-th scene. Set biLSTMword to be the bidirectional word
level LSTM, and denote

h~

~

ijk = biLSTMword(xijk),

the we can compute the representation of the j-th sentence with an attention

1Sequences of sentences

34

4.1. LSTM HIERARCHICAL MODELS 35

Figure 4.2: LSTM hierarchical attention model with three levels: word,
sentence, and scene. The movie is divided into k scenes with m sentences
on the first scene and n words in the first sentences of the first scene. The
scene level can be removed when working with two levels only.

35

36 CHAPTER 4. PROPOSALS

mechanism similar to the one reviewed in subsection 2.2.3:

uijk = tanh(Wwordhijk + bword)

αijk =
exp(uTijkuword)∑

t(u
T
ijtuword)

vij =
∑
t

αijth~

~

ijt,

where Wword, bword, and uword are the word level trainable parameters.
Recall that the vector uword encodes the question of a word been important
to the representation of the sentence.

Set biLSTMsent to be the bidirectional sentence level RNN and denote

h~

~

ij = biLSTMsent(sij),

then we can apply another instance of the same attention mechanism to
compute a scene representation vr:

urs = tanh(Wsenth~

~

ij + bsent)

αij =
exp(uTijusent)∑

t(u
T
itusent)

vi =
∑
t

αith~

~

it,

where Wsent, bsent, and usent are the sentence level trainable parameters.
The vector usent helps to determine which is the most important sentence
in the current scene.

Finally, set biLSTMsc to be the bidirectional scene level RNN and denote

h~

~

i = biLSTMscene(vi),

a last intance of the attetion mechanis is used to comput the representation
m of the whole script of the movie using the scene vectors:

ui = tanh(Wsceneh~

~

i + bscene)

αi =
exp(uTi uscene)∑

t(u
T
t uscene)

m =
∑
t

αth~

~

t,

36

4.2. HIERARCHICAL TRANSFORMERS 37

where Wscene, bscene, and uscene are the sentence level trainable parameters.
And uscene helps to identify the scene in the movie with the most influence
over the assigned MPAA rating. The representation m is then used for
classification.

The scripts can be divided into sentences using NLTK sentence tokenizer,
this tool relies on the correct syntactic structure of the text, hence some
scripts that lack of correct punctuation are tokenized into longer sequences.
Each sentence is further tokenized with NLTK word tokenizer, each word is
fed to the model as a Glove embedding vector. Splitting scripts into scenes
is not as straight forward as doing it into sentences because there is no easy
way to automatically identify the end of a scene and the beginning of the
next one. On 2019 Stephen Follows (film researcher, writer, and producer)
published his work analyzing 12,309 film reports2. As a byproduct of this
work, he published a blog entry 3 defining the average screenplay. Accord-
ing to his data, the average screenplay consists of 110 scenes; following his
study, we decided to divide the script into 110 chunks of sentences, each one
representing a different scene.

4.2 Hierarchical transformers

We will see in Chapter 5 that the inclusion of external features, like genre
and the MPAA rating of similar movies, improves the predicting capabilities
of text based models. Nevertheless, this information is not always available
nor reliable. Hence, we are interested in designing models with high perfor-
mance when training only with the movie script. As we have already stated,
the application of transformers outperformed the state of the art of most
NLP tasks, while also easing the parallelization of neural network text mod-
els. To naively compute a representation of the script with a transformer
we have to first, tokenize the script and second, feed the sequence of tokens
to the model.

For BERT and its derived models, the tokenization is handled by the
Sentencepiece4 tokenizer. The output of the tokenizer is a sequence of ele-
ments of a fixed vocabulary with the special tokens [CLS] and [SEP] at the
beginning and the end, respectively. The embedding of the [CLS] token is
often used as a representation for the whole sequence.

2https://stephenfollows.com/analysis-of-12309-feature-film-script-reports/
3https://stephenfollows.com/what-the-average-screenplay-contains/
4Sentencepiece is a open source alternative for the Wordpiece tokenizer used for the

original training of BERT.

37

38 CHAPTER 4. PROPOSALS

Unfortunately, it is not straight forward to feed the tokenized script into
the model. Most pre-trained transformers work with a positional embedding
layer with a fixed size usually lower than the tokenized script (512 tokens
for base BERT); and while we could use sinusoidal positional embeddings, a
large sequence of tokens easily leads to out of memory errors. Our proposed
solution follows a hierarchical paradigm based on the division of the split
into sequences of a fixed length, the transformer computes an embedding
for each sequence and a biLSTM with attention uses them to compute a
single representation for the script. Our approach is similar to the work in
[Pappagari et al., (2019)]. However, their model lack of an attention mecha-
nism on top of the recurrent module, which we consider a key component on
the interpretability of our model. Attention also enhances the performance
in longer documents, like movie scripts, that have 10,000 words in average,
while their experiments are performed on documents 10 times shorter. The
feed forward of our proposed model are detailed below and the architecture
is illustrated on Figure 4.3.

1. Convert the script to a tokens list with the Sentencepiece Tokenizer.

2. Split the tokens list into N sequences of a fixed length L, each one
with its corresponding [CLS] and [SEP] token at the beginning and
end of the sequence, respectively. On practice, we set L = 80.

3. Feed the whole script to the transformer as a batch of size N × L.

4. Compute a representation for each sequence using the BERT Pooler
module, i.e. apply tanh after a linear layer to the embedding of the
token [CLS].

5. Feed the sequence of N representations to a biLSTM with attention
to compute the script representation that will be fed to the classifier.

The model is designed to adopt different architectures to replace the
BERT pooler module and the biLSTM with attention (head). The pooler
output can be replaced by the average of all the token embeddings in a
sequence or a weights sum computed with an attention module; and the
head module can be replaced by a transformer or the average of all sequence
embeddings. It is important to say that the original configuration (BERT
Pooler and biLSTM head) provides a natural interpretation of the attention
weights across the model that we will study on Section 6.5.

38

4.2. HIERARCHICAL TRANSFORMERS 39

Figure 4.3: Hierarchical transformer, N denotes the number of chunks for
a single script, L is the fixed length for each choke and dt is the hidden
dimension of the transformer. Thi and hi are the hidden states of the
transformer and the biLSTM, respectively.

39

40 CHAPTER 4. PROPOSALS

4.2.1 Concatenating extra features

We take inspiration from the work in [Shafaei et al., (2020)] to test how
far we can push our model beyond the limitations of working with text only.
We can add external features to the model (similarity, emotion, genre) by
concatenating their feature vectors with the representation computed by
the proposed hierarchical transformer before the classification layer; this is
shown on Figure 4.4.

Figure 4.4: To add external features we concatenate the vectors to the hier-
archical transformer output and mix them with an MLP before the classifier
layer.

As an addition to the dataset, we propose the inclusion of a new extra
feature: the Bag of Keywords. Users on the IMDB website can propose
keywords for each movie, keywords can be single words or groups of words
separated by a hyphen, such keywords will be shown on the portal once
they are approved. This information often include keywords related to vi-
sual features, like nudity, that would be hard or impossible to extract from
dialogues only. Because of the high sparsity of the bag of keywords vectors,
we propose a post-training scheme for their inclusion in the model. For each
script we take the representation generated by a pre-trained hierarchical
transformer model (with or without extra features) before the classification

40

4.2. HIERARCHICAL TRANSFORMERS 41

layer, this representation is concatenated with the Bag of Keywords vector
and used to train a linear SVM5. This approach is depicted on Figure 4.5.

Figure 4.5: To include the bag of keywords vector we concatenate it to a
script representation computed with a pre-trained hierarchical model (with
or without extra features).

4.2.2 GenreDistilBERT

According to the authors of [Martinez et al., (2019)], some sentences
can be violent according to a particular genre, but not violent for another
genre. The idea of sentences having different interpretation based on the
genre motivated the previous inclusion of the genre vector into our model,
however, there was not an explicit interaction between how the sequence
embeddings were computed and the genre of the movie. We propose the
GenreDistilBERT model that incorporates the genres into the transformer
architecture. The genres are added as extra tokens appended to the end of
each sequence, similar to the work in [Li et al., (2019)] to insert visual data
into BERT (visualBERT).

The distilBERT token vocabulary from the huggingface transformer li-
brary starts with a variety of unused tokens that were not employed on the
model’s pre-training, we can represent the presence of the genres with the
first 24 unused tokens. Recall that each token embedding has a positional

5Traditionally used in NLP to classify sparse Bag of Words feature vectors.

41

42 CHAPTER 4. PROPOSALS

component, therefore, we have to add the token embeddings in exactly the
same position to each sentence for them to have a consistent representation,
hence we add the 24 tokens to the end of each sequence and mask those
genres not related to the movie, as depicted on Figure 4.6.

Figure 4.6: We concatenate extra tokens to each sequence to encode the
genre feature at a transformer level, we mask out the genres not related to
the movie. The genres are encoded as the [UNUSED] tokens from distil-
BERT token vocabulary.

4.3 Visualizing the Hierarchical Transformer

By design, the attention mechanisms applied on top of recurrent neu-
ral networks provide insights on the decision making process of the model,
and, while attention is the key feature of transformers, the multiple heads
and layers make them harder to visualize and disentangle. The BERTviz
visualization tool6 proposed on [Vig, (2019)] provides a head view of the
transformer, it is an interactive visualization of the attention inside each
head in the encoder layers (Figure 4.7). We attempted to visualize our
model by applying this tool to those sequences in the scripts with the highest
score, unfortunately our sequences are too long (80 tokens) to get interest-
ing insights. To overcome this limitation we designed our own visualization
strategy that reconstruct the most important words for classification from
the last layer of the transformer to the first one.

6https://github.com/jessevig/bertviz

42

4.3. VISUALIZING THE HIERARCHICAL TRANSFORMER 43

Figure 4.7: BERTviz attention head view, the attention scores inside the
bluehead are displayed as the intensity of the lines connecting each pair of
words. Taken from Jesse Vig’s github.

The visualization is designed for our base model architecture (BERT
Pooler and biLSTM with attention as head). It follows a top-down strategy
on the transformer layers: we know that the most important embedding on
the last layer was the [CLS] token, because it is the one used for classification,
then we can search for the tokens in the previous layer that are important
(highest attention) for the [CLS] token, and use those tokens to look for
the most important tokens in the previous layer. Intuitively, an important
token in the lower layers is important because of the meaning of the word
itself, while an important token in the upper layers is important because of
the context it summarizes.

The proposed scheme is detailed here referring to the lines in Algorithm
1. Because the scripts have many sequences, it is easier to visualize if we
have a single attention matrix Ai for the i-th layer, we compute it (line 1) by
adding the attention matrices over all heads, as depicted in Figure 4.8, the
value Ai,jk denotes the importance of the k-th token for the j-th token on
layer i. We recursively compute the important tokens on each layer based on
the important tokens of the layer above (line 6). We represent the important
tokens as nodes in different levels and connect each token with its important
tokens of the layer below (lines 8,9); this is depicted on Figure 4.9.

43

44 CHAPTER 4. PROPOSALS

Algorithm 1: Proposed hierarchical transformer visualization.

Data:
nlayers: number of transformer layers.
k: number of important tokens.
topk(v, k): return the list of indices with the top k values in vector
v.
draw node(j, i): Draw a node for the j-th token in the i-th level, if
not drawn yet.
draw edge(j0, j1, i): Draw an edge between j0-th node to the j1-th
node from level i− 1 to level i.
expand(s, l): Expand set s with elements in list l.

1 Compute the attention matrices Ai for each layer.
2 Set top tokensnlayers = set([0]). ; // 0 corresponds to [CLS].

3 draw node(0, 0).
4 for i in range(nlayers− 1,−1,−1) do
5 Set top tokensi = set([]).
6 for j in top tokensi+1 do
7 topk list = top k(Ai,j , k).
8 for k in topk list do
9 draw node(k, i).

10 draw edge(j, k, i).

11 end
12 expand(top tokensi, topk list).

13 end

14 end

44

4.3. VISUALIZING THE HIERARCHICAL TRANSFORMER 45

Figure 4.8: We compute a single Attention matrix for each layer by adding
the attention matrices inside each head. The value Ai,jk denotes the impor-
tance of the k-th token for the j-th token of the secuence in the i-th layer.
The figure depicts a model with 6 encoder layers, 6 attention heads and
sequence length 5.

45

46 CHAPTER 4. PROPOSALS

Figure 4.9: Graph building for a model with 6 layers. We start with the
[CLS] token (number 0) and use A5 to get the two indices (1, 3) with the
most value in row 0. We repeat this process with A4 and rows 1 and 3, on
each level we draw an edge between a node and its most important tokens.
The algorithm stops when we reach A0.

The final interactive visualization displays the tokens as a graph and al-
lows the user to hover over each node to get the context of the selected token
(Figure 4.10). It provides insights not only on which words are important,
but also the context surrounding these words. The interactive visualizations
depicted in this work are available in https://bit.ly/3muyV6K.

46

https://bit.ly/3muyV6K

4.3. VISUALIZING THE HIERARCHICAL TRANSFORMER 47

Figure 4.10: Important tokens visualization example, hovering over a token
displays its context. The token related to more tokens in the level above has
a darker color. The number of nodes per child can be chosen by the user.

47

48 CHAPTER 4. PROPOSALS

48

Chapter 5

Dataset and SOTA

In this chapter we describe the dataset used for this work, as well as
the refernece models and the state-of-the-art that we are comparing to.
In Section 5.1 we talk about the information available in the dataset and
present some statistics about the data in the corpus. In Section 5.2 we
explain the Weighted F1 score used to evaluate the performance on this
task and its difference with other common metrics. In Section 5.3 we briefly
describe the models that we are taking as reference. The first model comes
from the work in [Martinez et al., (2019)] on violent rating prediction, while
their model was initially thought for another task, Shafaei M. et al. took the
open sourced code and trained it for MPAA rating classification. The second
mode, which is also the SOTA for this problem is the LSTM with attention
model presented in [Shafaei et al., (2020)] together with the introduction of
the task and the dataset. We propose a third reference model, a non end-to-
end transformer based architecture that generates fixed sentence embedding
using sentenceBERT ([Reimers and Gurevyh, (2019)]) that are fed to a
biLSTM with attention to compute script embeddings.

5.1 Dataset

The dataset used for this work was initially collected in [Shafaei et al.,
(2019)] and refactored later to include MPAA ratings (when available) in
[Shafaei et al., (2020)]; movies rated before 1996 were removed because of
changes that the rating system went through on that year, finally they added
50 new G rated movies because such class was underrepresented. The final
corpus has a total of 5562 movies, for each one we are provided with the
movie script (only dialogues not scenery description), a promotional poster,

49

50 CHAPTER 5. DATASET AND SOTA

genres, actors names, directors names, and a dictionary of similar movies
with their corresponding MPAA rating.

The MPAA website provides information about all the reviewed movies
and their assigned rating, we summarize this information on Table 5.1. A
quick look to those numbers reveal that the distribution of the movies is not
balanced, such issue inherits to the the new corpus (Table 5.2), which has
only 9 movies of the NC-17 category, because of this, the authors in [Shafaei
et al., (2020)] decided to remove this class and perform the classification task
into the four remaining categories only. We adopt this approach and consider
the MPAA rating classification task as a 4 class classification problem: G,
PG, PG-13, and R.

Rating G PG PG-13 R NC-17 Total

#Movies Reviewed 1574 5578 4913 17202 524 29791

%Movies Reviewed 5.28% 18.73% 16.49% 57.74% 1.75% 100%

Table 5.1: Distribution of assigned rating for all the movies reviewed by the
MPAA.

Rating G PG PG-13 R NC-17 Total

#Movies Corpus 162 639 1559 3193 9 5562

%Movies Corpus 2.91% 11.48% 28.02% 57.40% 0.16% 100%

Table 5.2: Distribution of assigned rating to the movies in the corpus.

A movie can be assigned to up to 24 possible genres, as expected, movies
are not evenly distributed among them, this is shown on Figure 5.1. The
genres also have a different distribution depending on the movie rating (Fig-
ure 5.2), this hints the possibility that including the genre as features for
our models may improve the classification performance. The genre feature
is added as a 24 dimensional vector v such that vi = 1 if the movie belong
to the i-th genre and 0 otherwise.

50

5.1. DATASET 51

Figure 5.1: Count of movies per genre. The movies are not evenly distributed
among the genres.

Figure 5.2: Distribution of movies over ratings, taken from [Shafaei et al.,
(2020)]. There is a difference on how the rating distribute among the genres,
hence it may be helpful to include the genre as extra features.

For each movie, the dataset includes a dictionary of similar movies and
their corresponding IMDB rating; these similar movies are computed by
IMDB using information like genre, country of origins and actors. The sim-
ilarity information includes IMDB Ids of movies that are not in the corpus,

51

52 CHAPTER 5. DATASET AND SOTA

hence we can not use their scripts as part of the model. Instead, we encode
the similarity information as a 4-dimensional frequency vector of the occur-
rences of each of the four ratings in the similarity dictionary, for example, a
movie with 2 similar movies with rating PG-13 and 3 similar movies with
rating R will have a similarity vector

(0, 0, 0.4, 0.6).

The usage of similarity information is based on the idea that similar movies
should have close MPAA ratings, Figure 5.3 shows that there is strong evi-
dence for this assumption.

Figure 5.3: Average rating frequency for similar movies per class. Similarity
prob denotes the probability of a movie to be similar to a movie on each
rating. Movies rated G and PG-13 are more likely to be similar to movies
on other genres, the opposite for movies rated PG and R.

It is important to note that both keyword information1 and similar-
ity vectors are not available until the movie is released, hence the results
obtained with their addition have different implications for real life appli-
cations. Nevertheless, our proposal allows movie makers to provide a set of
keywords about what they want to see in the movie even before the shooting
starts.

Emotional information can be added to the dataset using the NRC2

affect lexicon ([Mohammad, (2011)]), which measures the affect of 2 sen-
timents: positive, and negative, and 8 emotions: fear, anger, anticipation,

1Available in the IMDB website and proposed on the previous chapter as an additional
extra feature.

2National Research Council Canada

52

5.2. METRICS 53

trust, surprise, sadness, disgust, joy. The emotional vector is formed by
averaging the percentage of words related to each emotion in each sentence
of the script.

5.2 Metrics

The metric used for this task is the weighted F1 score, on this section
we define it and explain the differences between commonly used metrics like
accuracy, macro and micro F1 score.

While accuracy, i.e. the percentage of correctly classified samples, is one
of the most used metrics in machine learning, it has the downside that it
does not take into account the skewness of the data, in extreme cases this
can cause a high accuracy score even when the model predicts a fixed class
always.

Metrics like Precision (equation 5.1) and Recall (equation 5.2) address
the problem by focusing of the classification errors in each class. Precision
decreases with each misclassified sample of the negative class. Meanwhile,
Recall decreases with each misclassified sample of the positive class

Precision =
True Positives

True Postives+ False Positives
(5.1)

Recall =
True Postivies

True Positives+ False Negatives
(5.2)

The F1 score gathers both metrics into a single score:

F1 =
2 ∗ (Precision ∗Recall)
Precision+Recall

The value of the F1 score is always between 0 and 1, where 1 is the best
possible value and 0 is the worst. So far we have explained how to compute
the F1 score for binary classification problem, lets see how we can compute
the score for a multi-class classification problem of n classes. We can consider
the multi-class problem as a series of n binary classification tasks, were in
the i-th task, the i-th category is interpreted as the positive class and the
rest of categories together are interpreted as the negative class. We can
compute a global F1 score according to the following approaches.

• Micro: Sum the true positives, false positives and false negatives of
all the classes and compute the F1 score with the summed values.

53

54 CHAPTER 5. DATASET AND SOTA

• Macro: Compute the F1 score for each task and average all of them.

• Weighted: Compute the F1 score for each task and compute a weighted
sum of them, were the weight is assign according to the percentage of
samples in each class.

The chosen metric for this problem is the weighted F1 score because
there is high skewness in both, train and test data.

5.3 Reference Methods

In this section we present the reference baseline models we are comparing
to. The first two are RNN based models that work at utterance (dialogue)
level and a word level, respectively. We propose a third reference, a trans-
former based model that used sentence representations pre-computed by
sentenceBERT.

Utterance level model:

The first model was proposed in [Martinez et al., (2019)] for the vio-
lence prediction task. Their model is a RNN with attention that works at
a dialogue level (utterances), they pre-compute a feature vector for each
utterance by concatenating their n-gram vector with other linguistic, sen-
timent, abusive, and semantic representations. The model is depicted on
Figure 5.4. We take the score reported by Shafai M. et. al. in [Shafaei et
al., (2020)] where they adapted the model for MPAA rating classification
using the original model’s public implementation3. It could be argued that
Martinez’s model works with two hierarchical levels: utterance and words,
however the representation of each utterance is a fixed vector computed
with traditional NLP techniques, our hierarchical approaches allow these
representations to be fine-tuned for this particular task.

LSTM with attention:

The second reference model is the current state-of-the-art and was pre-
sented in [Shafaei et al., (2020)], it is a word based LSTM with an attention
model on top similar to that explained on Subsection 2.2.3. Their model
allows the inclusion of emotion, similarity and genre information by concate-
nating the corresponding feature vectors to the representation computed by
the recurrent module. The architecture is shown on Figure 5.5.

3https://github.com/usc-sail/mica-violence-ratings/tree/master/experiments

54

5.3. REFERENCE METHODS 55

Figure 5.4: Utterance level model. Taken from [Martinez et al., (2019)]. The
script is divided into utterances, representing each one as the concatenation
of different traditional NLP feature vectors. A single script representation
is computed with a RNN with attention.

Figure 5.5: LSTM with attention and extra features. Taken from [Shafaei et
al., (2020)]. The similarity, emotional and genre vectores are concatenated
on different steps before the dense classification layers.

55

56 CHAPTER 5. DATASET AND SOTA

Non ent-to-end transformer.
As a third reference, we propose a non end-to-end4 version of our trans-

former based model. We follow the hierarchical approach used for RNN
models by dividing the script into sentences using the NLTK sentence to-
kenizer, and computing a fixed embedding vector for each of them using a
pre-trained sentenceBERT model (purple boxes in Figure 5.6). We use a
biLSTM with attention (red and green boxes on Figure 5.6) to compute the
final representation of the script.

Figure 5.6: Transformer based reference model. The sentence embeddings
are pre-computed with sentenceBERT and then fed to a biLSTM with at-
tention.

4We do not consider this model end-to-end because we can not backpropagate the error
to the word level representations.

56

Chapter 6

Experiments and Results

In this chapter we detail the evaluation performed for this work. In
Section 6.1 we talk about our experimental setup. In Section 6.2 we show
the results gotten with our RNN based models. In Section 6.3 we show the
results obtained with our transformer based model and how they compare
to the baselines. In Section 6.4 we use our proposed visualization technique
to get insights about our transformer based models, In Section 6.5 we ex-
plore the embedding space produced by our models, the effect of different
extra features added as feature vectors and through our proposed Genre-
DistilBERT model. We also visualize how certain keywords are distributed
among the space.

6.1 Experimental setup

Each model is trained over a fixed number of epochs (different for each
kind of model), we compute the weighted F1 score after each epoch and save
the model with the best score in the valuation set; then, the best model is
evaluated on the test set. Because of the random nature involved in the
training of deep learning models, the results of an architecture may change
from one training session to another. To get more robust evidence on the
performance of the models, we train each model five times with the same
configuration and report the average weighted F1 score over the five runs
as well as the best F1 score. We are aware that 5 runs is still a small
number from an statistical standpoint, however the training of these models
is expensive in time and resources1 which strongly limits the number of
training rounds we can perform.

114 hours in two Nvidia Titan RTX working in parallel.

57

58 CHAPTER 6. EXPERIMENTS AND RESULTS

Model Reported New Average (best)

Text only 78.3 78.93 (79.68)

Text + Genre 79.49 79.63 (80.39)

Text + NRC 78.94 79.63 (80.63)

Text + Genre+ NRC 81.62 80.37 (81.62)

Text + Similarity 80.53 81.87 (82.59)

Text +NRC + Sim 83.26 81.72 (83.26)

Text + Genre + Sim 81.26 81.41 (82.19)

Text + Genre + NRC + Sim 83.68 83.054 (83.68)

Table 6.1: Comparison of results reported in [Shafaei et al., (2020)] vs av-
erage weighted F1 score of five runs. We noticed changes of around 1 point,
which encourages the idea of multiple runs. The right most column shows
the average and the best F1 score over the five runs.

The authors of [Shafaei et al., (2020)] kindly agreed to repeat their ex-
periments five times to include them on our evaluation framework, the com-
parison between their old and new results is displayed on Table 6.1. As we
can see there is considerable variation between the original reported results
and the average, this supports the idea of repeating the experiments at least
a few times.

We perform experiments in both of our proposals with two loss functions:
the Negative Log Likelihood (NLL) and the Adjacency Loss (AdjLoss). The
Negative Log Likelihood is commonly used in classification tasks, the Ad-
jacency Loss was proposed in [Cheng et al., (2008)] to exploit the natural
order of the categories, i.e. G < PG < PG-13 < R. While the Negative Log
Likelihood take as target vectors the one hot encodings of the categories,
the Adjacency Loss has the following target vectors for each class:

G→ (0, 0, 0, 0)

PG→ (1, 0, 0, 0)

PG-13→ (1, 1, 0, 0)

R→ (1, 1, 1, 0)

Intuitively, this loss penalize harder the classification into classes that
are further apart.2

2On inference, the assigned class is determined by the first position of the vector with
a value less that a certain threshold. We set such threshold to 0.5 in our experiments.

58

6.2. EVALUATION OF THE PROPOSED RNN MODELS 59

6.2 Evaluation of the proposed RNN models

We perform experiments with the LSTM based models at two and three
hierarchical levels: word, sentences and scenes; presented in Section 4.1.
Both models share the following architecture details: the embedding layer is
initialized with glove embeddings of size 300 and not frozen; the hidden size
of each biLSTM and attention modules is 128; the classifier module is set
as a single linear layer. Both models are trained with the Adam optmizer3.

The purpose of these experiments is to understand the impact of a hi-
erarchical architecture in the performance of the model. The results are
summarized on Table 6.2, we include the traditional NLP baselines pro-
posed in [Shafaei et al., (2020)]: a Threshold model, which classifies based
on the amount of bad words; and a Bag of Terms model, which uses the con-
catenated unigrams, bigrams, Bag of Actors, Bag of Directors and emotional
feature vectors to train a linear SVM.

The proposed hierarchical models outperformed both reference methods
in the SOTA, which confirms our hypothesis that exploiting the natural
structure of the script leads to a better classification performance. While the
Adjacency Loss with the two level model performs better than the Negative
Log Likelihood, the opposite happens with the three level models, hence
there is not enough evidence to conclude that either loss function is better.
We achieved a better result by using the division into scenes, but, the results
are still close and it remains as an open question if the results can be further
improved by using the real division into scenes and not an approximation4.
However, the two level model offers a simpler alternative with a smaller
number of trainable parameters.

3Learning rate: 10−3 for the classifier layer and 10−4 for the rest.
Batch size: 8 for the two level model and 16 for the three level model.
Weight Decay: 10−4, β0 = 0, β1 = 0.999.
4We divided the script into 110 scenes, this is the average number of scenes according

to the work of Stephen Follows analyzing 12,309 films. https://stephenfollows.com/what-
the-average-screenplay-contains/

59

60 CHAPTER 6. EXPERIMENTS AND RESULTS

Model Weighted F1 (best)

Threshold model 65.89

Bag of Terms 74.29

Martinez et al., (2019) 75.06

Shafaei et al., (2020) 78.93 (79.68)

2 level model (NLL) 80.7097(81.0354)

2 level model (AdjLoss) 81.1234(82.2513)

3 level model (NLL) 81.6408(82.5966)

3 level model (AdjLoss) 79.6590(81.0354)

Table 6.2: Results for the proposed LSTM based models compared to refer-
ence. Our best model uses three levels in its hierarchy. The two level model
has a better performance with the Adjacency Loss and the three level model
with the NLL.

6.3 Evaluation of the proposed Transformer mod-
els

For all the experiments in this section we use the distilBERT-base-
uncased model from the transformers library. We use the AdamW opti-
mizer5, which is the huggingface’s Adam implementation that includes a
different weight decay normalization.

We start by testing the impact of the usage of the Adjacency loss func-
tion versus the Negative Log Likelihood. Then, we perform different exper-
iments by changing the architecture of the pooler and head modules of the
hierarchical transformer, described in Section 4.2.

For the pooler module:

• Average: The sequence representation is computed by averaging the
embedding of each word computed by the transformer.

∗ Bert Pooler: The sequence representation is computed by passing
the embedding of the [CLS] token through a linear layer with a tanh
activation.

5Learning rate: 10−3 for the classifier layer and 10−5 for the rest.
Batch size: 8. Sequence length: 80.
Weight Decay: 10−4, β0 = 0, β1 = 0.999.

60

6.3. EVALUATION OF THE PROPOSED TRANSFORMER MODELS 61

• Attention: The sequence is passed through an attention layer which
computes the representation as a weighted sum of the word embed-
dings.

For the head layer:

• Average: The script representation is computed by averaging the
representation of each sequence.

∗ biLSTM with attention: The embeddings of each sequence are fed
as a sequence to a biLSTM model with an attention layer on top. All
the hidden dimensions for this module are set to 128.

• Transformer: The embeddings of each sequence are fed to a single
transformer encoder layer with 12 attention heads, the average of the
output of the transformer is fed through a linear layer to get a sequence
representation of size 256.

The classifier is always chosen as a single linear layer.

6.3.1 Evaluating Loss Function

We start with the comparison between loss functions, both of these ex-
periments are done with the BERT Pooler and biLSTM with attention head
configuration. We can see on Table 6.3 that the best run with the NLL loss
got a F1 score of 83.8902, which is already better than all the previous re-
sults achieved with text only. This give a positive answer to our question on
designing a transformer based model capable of exploiting transfer learning
to improve the State of the Art on MPAA rating prediction. We also note
around a 2 point increase in average when using the Adjacency Loss, while
this does not prove that the Adjacency Loss is strictly better, it shows that
it has a good performance with our architecture and setup, hence we use it
for all the remaining experiments.

Loss Weighted f1 (best)

NLL 81.6622 (83.2015)

Adjacency 83.1148 (84.7000)

Table 6.3: Loss function comparison of the Transformer model described in
Section 4.2. Both results outperform any previous model. The Adjacency
Loss works better with our architecture and outperforms al the SOTA mod-
els, including those that use extra features.

61

62 CHAPTER 6. EXPERIMENTS AND RESULTS

6.3.2 SentenceBERT (Reference Method)

The next experiment compares the previous model with our sentence-
BERT reference, both trained with the Adjacency Loss. We perform grid
search over the learning rate for sentenceBERT6. The hierarchical trans-
former experiment is performed with the BERT pooler and the biLSTM
with attention head. The results in Table 6.4 show that sentenceBERT has
similar performance to the RNN references, and it is outperformed by the
hierarchical transformer by around 5 points in the F1 score.

Model (learning rate) Weighted F1 (best)

sentenceBERT (0.00001) 74.5209 (76.0701)

sentenceBERT (0.0001) 77.1718 (77.9649)

sentenceBERT (0.001) 78.4585 (80.9149)

Hierarchical transformer 83.1148 (84.7000)

Table 6.4: Comparison of the hierarchical transformer to the sentenceBERT
baseline. sentenceBERT has similar performance to the RNN references,
and it is outperformed by the hierarchical transformer by around 4.66 in the
F1 score.

6.3.3 Poolers in the Proposed Method

The next batch of experiments focuses on the different pooler modules.
Each experiment is performed with a biLSTM with attention as head. The
results on Table 6.5 show a slightly better performance when using the
average pooler, this is consistent with a similar experiment presented in
[Reimers and Gurevyh, (2019)] on the use of different poolers. Even if the
average scheme seems to have the best performance, it is harder to visualize.
Since interpretability is one of our objectives, we decided that the slight
increase in performanece is not enough to prefer it over the BERT Pooler.
If we view it as a joint module with the last transformer encoder layer, we
can consider the BERT Pooler as an attention based architecture moreover,
it was already pre-trained as part of BERT; hence it is expected for its
performance to be at least as good as an attention layer.

6Learning rate values: 0.00001, 0.0001, 0.001

62

6.3. EVALUATION OF THE PROPOSED TRANSFORMER MODELS 63

Pooler Weighted f1 (best)

Attention 82.4638 (83.6390)

Average 83.2031 (84.3501)

BERT pooler 83.1148 (84.7000)

Table 6.5: Pooler Layer Comparison of the transformer model proposed in
4.2.

6.3.4 Head in the Proposed Method

The purpose of this experiments is to understand the impact that the
head module, in charge of computing a script representation from the se-
quence embeddings, has in the performance of the model proposed in Section
4.2. The experiments are performed with the BERT Pooler as the pooler
layer because, as we previously mentioned, it provides a better interpretabil-
ity. The results summarized on Table 6.6 show that the “average head”
had the worst performance, this is something that we expected because we
included this experiment as a baseline to understand the impact of trans-
fer learning on the task; despite having the lowest performance among the
heads, this naive approach increased the performance on around 2 points
compared to the LSTM with attention reference..

There is not considerable difference between the biLSTM with attention
and transformer heads, however the latter has more parameters making it
harder to train in a small dataset. The similar performance in both of these
two experiments reinforces our hypothesis: the usage of attention mechanism
to merge sequence embedding into a single script representation is not only
important for visualization, but also increase the performance of the model.

Head Weighted f1 (best)

Average 80.4415 (81.0614)

biLSTM with attention 83.1148(84.7000)

Transformer 83.0685(83.2865)

Table 6.6: Head module comparison of the model proposed in Section refH-
BERT

6.3.5 Extra Features in the Proposed Method

The next batch of experiments includes Emotion, Genre and Similarity
information into our proposed Hierarchical transformer. These results are

63

64 CHAPTER 6. EXPERIMENTS AND RESULTS

summarized on Table 6.7, and their corresponding LSTM with attention
reference results are shown on Table 6.8.

Features Weighted F1 (best)

Text only 83.1148 (84.7000)

Text + Genre 83.3693 (83.8683)

Text + NRC 83.2000 (83.9607)

Text + Genre + NRC 83.1837 (83.7956)

Text + Similarity 85.1174 (86.2400)

Text + Genre + Sim 84.5852 (86.2411)

Text + NRC + Sim 84.5132 (86.2411)

Text + Genre + NRC + Sim 85.2280 (85.7888)

Table 6.7: Hierarchical transformer with additional features. The ex-
periments with the similarity feature can not be performed before post-
production.

Contrary to what happened to the results reported in [Shafaei et al.,
(2020)], the performance of the hierarchical transformer seems to be de-
creased by the inclusion of the emotion (NRC) and genre vectors. Recall
that both of those features come from an analysis of the plot, meaning that
the hierarchical transformer does a better job extracting important plot in-
formation from the script.

Features Weighted F1 (best)

Text only 78.93 (79.68)

Text + Genre 79.63 (80.39)

Text + NRC 79.63 (80.63)

Text + Genre + NRC 80.37 (81.62)

Text + Similarity 81.87 (82.59)

Text + Genre + Sim 81.41 (82.19)

Text + NRC + Sim 81.72 (83.26)

Text + Genre + NRC + Sim 83.054 (83.68)

Table 6.8: LSTM with attention reference with additional features. The
experiments with the similarity feature can not be performed before post-
production. Provided by the authors of [Shafaei et al., (2020)].

Our GenreDistilBERT model, proposed in Subsection 4.2.2, includes the
genre feature into the transformer module. Its performance is worst than the

64

6.3. EVALUATION OF THE PROPOSED TRANSFORMER MODELS 65

Model Weighted F1 (best)

Hierarchical transformer (text only) 83.1148 (84.7000)

GenreDistilBERT 82.8552 (83.8874)

Table 6.9: The GenreDistilBERT model has a words performance that the
hierarchical transformers trained with text only. The interesting properties
of this model are presented on Subsection 6.5.2.

text only hierarchical transformer (Table 6.9), however, it has a big impact
in the geometry in the embeddings space, as we will see in Subsection 6.5.2.

As we mentioned in Section 4.2 the bag of keywords vector7 is concate-
nated to the representation of the scrips computed by the hierarchical trans-
former and used to train a linear SVM model8. We train a SVM for each of
the five reported runs and report the average score, each SVM is fit with a
grid search for the C parameter over the values in {0.0001, 0.001, 0.01, 0.1, 1}.
We apply this approach to the text only model and the model with all the
extra features added. The results on Table 6.10 show and improvement of
around 0.7 points in the F1 score for both models. It remains as future
work to reduce the list of keywords; a short list can ease the collection of
this data.

Features Weighted f1 (best)

Text only 83.7097 (85.0478)

Genre+NRC+Sim 85.9713 (86.7997)

Table 6.10: Addition of bag of keywords vector. There is an increase of
around 0.7 points in the F1 score for both models.

In Table 6.11 we present a summary of the results, including the tradi-
tional NLP baselines proposed in [Shafaei et al., (2020)]. Similarly, Figure
6.1 shows a visualization of the 5 runs of the models and how they perform
against the RNN baselines.

7Constructed with the 1000 most frequent keywords in the corpus.
8The vector is not included in an end-to-end architecture because of its high sparsity.

65

66 CHAPTER 6. EXPERIMENTS AND RESULTS

Model Weighted F1 (best)

Baselines

Treshold Model 65.89

Bag of Terms 74.29

Reference models

Martinez, (2019) 75.06

Shafaei, (2020), text only 78.93 (79.68)

Shafaei, (2020), text + NRC + Genre 80.37 (81.62)

sentenceBERT+LSTM. Sentence level 78.4585 (80.9149)

Hierarchical LSTM proposals (word level)

Words and sentences (NLL) 80.7097 (81.0354)

Words and sentences (AdjLoss) 81.1234 (82.2513)

Hierarchical LSTM proposals (sentence level)

Words, sentences and scenes (NLL) 81.6408 (82.5966)

Words, sentences and scenes (AdjLoss) 79.6590 (81.0354)

Hierarchical Transformer proposals (features available before post-production)

Text only 83.1148 (84.700)

Text + NRC 83.2000 (83.9607)

Text + Genre 83.3696 (83.8637)

Test + NRC + Genre 83.1837 (83.7956)

GenreDistilBERT 82.8552 (83.8874)

Hierarchical Transformer proposals (features available in post-production)

Shafaei, (2020), text + NRC + Genre + Sim 83.05 (83.68)

Text + Similarity 85.1174 (86.2400)

Text + NRC + Similarity 84.5132 (86.2411)

Text + Genre + Similarity 84.5852 (84.8581)

Text + NRC + Genre + Similarity 85.2280 (85.7888)

Hierarchical transformer proposals (keywords)

Text + Keywords 83.7097 (85.0478)

Text + NRC + Genre + Sim + Keywords 85.9713 (86.7997)

Table 6.11: Summary of the experiments in this chapter. The hierarchical
LSTM models outperform the text only baselines by 2.71 on average (2.92
comparing best cases). The hierarchical transformer models outperform the
text only baselines by 4.78 on average (5.02 comparing best cases). When
adding Genre or Emotion features, the hierarchical transformer outperforms
the corresponding baseline by 2.94 on average (2.24 comparing best cases).
The hierarchical transformer with the all the extra features outperforms the
baseline by 2.18 on average (2.11 comparing best cases). The inclusion of
keywords improves the performance of the studied models in around 0.7
points. 66

6.4. VISUALIZING THE HIERARCHICAL TRANSFORMER 67

Figure 6.1: Comparison of transformer based experiments, each one depicted
as a boxplot of the 5 runs. The red line corresponds to the previous text
only SOTA. Models before the blue line are trained with text only, and those
before the green line with features availble before post-production.

6.4 Visualizing the Hierarchical Transformer

On this section we analyze the insights obtained from the visualization
tools we designed, described in Section 6.5. We present one correctly clas-
sified movie example for each class. For each movie we compare the words
and context visualized in the 20 sequences with the most attention score
in the LSTM with attention layer with the official reasons for the assigned
rating according to the movie ratings web page (www.filmratings.com). All
the examples were computed with our text only Hierarchical Transformer
unless stated otherwise.

According to a medium post9 published by Scott Myers, known writer
and producer, several occurrences of the word “fuck” can easily lead to a R
rating, he emphasize that a movie is more likely to get rated R if the word
is used in a sexual context rather than as a curse word only. We visualized
the 20 top sequences of the R rated movie “Superbad” and noticed that
most of them included the derivatives of the word “fuck” many of them in
a sexual context. Figure 6.2 shows an example where the word is used with

9https://gointothestory.blcklst.com/reader-question-is-there-a-rule-as-to-how-many-
cuss-words-can-be-used-in-a-script-4b5ffd8f2bcb

67

68 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.2: Movie title: Superbad. Rating: R. Visualization of a sequence
where the word “fuck” is used in both as a sexual activity and as a curse
word.

both meaning.

The movie “Fierce Creatures” got the PG-13 rating because of sexual
innuendo and language. Some visualizations emphasize the word “fucking”
and the context around it, this matches the language part of their reason.
We also saw the sentences “I’m getting undressed for sex” and “are those
breasts real?” in the visualizations, this shows that our model does not
decide based only in the amount of bad words, but also takes into account
the sexual content in the script. Figure 6.3 shows how the word breasts is
important for the model.

The PG rated movie “The Book of Life” is an animated movie inspired
on the mexican day of the death celebration, many words present in the
visualizations seem to be derivatives of the word death or are part of the
context of such word. The movie was rated PG because of “some thematic
elements” which may include the concept of death and matches the inter-
pretation of our model. Figure 6.4 shows how the word dead is important
even if it is not surrounded by a negative context.

We noted that it is difficult to give an interpretation to the most im-
portant word and sentences in G movies, this may happen because a higher
rating implies the inclusion of content that can not be present in lower rated
movies. However, words and sentences present in G movies may be inside
higher rated pictures without any penalty. Figure 6.5 shows the top sequence
for the G rated movie “Winnie the Pooh: A Very Merry Pooh Year”, there

68

6.4. VISUALIZING THE HIERARCHICAL TRANSFORMER 69

Figure 6.3: Movie title: Fierce Creatures. Rating: PG-13. The visualization
words shows how the word breasts is important regardless it not being a bad
word.

Figure 6.4: Movie title: The Book of Life. Rating: PG. The visualization
emphasize the use of the word dead even if it is not surrounded by a negative
context.

69

70 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.5: Movie title: Winnie the Pooh: A Very Merry Pooh Year. Rating:
G. There is no clear reason on how the presence of these words can impact
the classification.

is no clear reason on how these words can impact the classification.

It is also interesting to visualize those movies mis-classified by our model.
The most concerning mistake is why our model is classifying the G rated
movie “Camion” into the R category. After reviewing the top 20 sentences
we conclude that the movie does not belong to the G rating, because in
most of the reviewed sequences there are swear words and references to
death, like those in Figure 6.6. The corrupted information comes from the
IMDB website, where the movie is rated G (Figure 6.7), but there is no
record of this rating in the Movie Ratings website.

Another misclassified example is the G rated documentary “Oceans”
assigned to the PG-13 rating by our model. According to our visualization
this happens because of the presence of the word massacre, that appears
on a disclaimer at the end of the movie. If we remove this sentence and
reclassify the script, the predicted rating goes down to PG. We conclude
that the strong weight that the model puts on this sequence is due to the
low number of sequence in the script (15), even if the movie is almost two
hours long. This highlights the natural limitation of text models in the
MPAA rating classification problem: there are movies that rely mainly on
visual storytelling to engage the viewer.

70

6.4. VISUALIZING THE HIERARCHICAL TRANSFORMER 71

Figure 6.6: Movie title: Camion. Predicted rating: R. Real rating:
G(according to IMDB). Example of a noisy labeled movie. There is Presence
of curse words and references to death.

Figure 6.7: Information of the movie “Camion” displayed on the IMDB
website.

71

72 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.8: Movie title: Oceans. Predicted rating: PG-13. Real rating: G.
The visualization shows a high importance in the word massacre, which was
a disclaimer at the end of the movie.

6.5 Visualizing the embedding space

Our models naturally generate a script embedding space by removing
the classifier layer (the green component of Figure 4.4), in this section we
visualize such space to understand if the space reflect the difference between
movies with different movie rating. We also analyze how does the presence
of external features impacts the structure of the space. We use the tSNE
dimensionality reduction tool to visualize the space. We present the visu-
alizations of the spaces generated with the hierarcical trained on text only,
and the model trained with extra features (genre, NRC, and similarity).

6.5.1 Hierarchical transformers

Figure 6.9 shows the embedding space of the test set produced by the
model trained only on text. This visualization shows that our model under-
stand the order of the target classes, i.e. each movie is closer to the movies
on the same or adjacent classes. If we repeat the procedure with only the
correctly classified sample we can see that non adjacent classes are push
apart even further (Figure 6.10).

72

6.5. VISUALIZING THE EMBEDDING SPACE 73

Figure 6.9: tSNE visualization of all the samples in the test set, embedded
with the model trained only on text. Color represents the assigned label.
The model understand the class order, i.e. movies on adjacent classes are
nearby.

Figure 6.10: tSNE visualization of correctly classified samples in the test
set, embedded with the model trained only on text. Color represents the
assigned label. Points of non adjacent classes are pushed even further apart

73

74 CHAPTER 6. EXPERIMENTS AND RESULTS

(a) Text only embeddings.

(b) Genre+Similarity+Genre embeddings.

Figure 6.11: Script embedding spaces. The pie chart on each points depicts
the genres present in each movie. The embedding space generated with all
the extra features keeps close those movies with the same genres.

74

6.5. VISUALIZING THE EMBEDDING SPACE 75

The inclusion of extra features influences the embedding space by spread-
ing the points. On Figure 6.11 we compare the spaces generated by the best
models trained in text only, and Emotion+Similarity+Genre, respectively,
the points are represented by pie charts colored by the genres present in
each movie. We can see that in the second graph there are small clusters
with a dominant color spread through the space.

6.5.2 GenreDistilBERT

Even if our GenreDistilBERT model did not obtain a better performance
in terms of the F1 score, Figure 6.12 shows the impact that the inclusion
of the genre feature at a transformer level had in the embedding space
by separating the movies with the Family genre. According to the IMDB
website, movies belonging to the Family genre should be universally accepted
viewing for a younger audience, however, the R rated movie “Sex, Death and
Bowling” belongs to this genre. This highlights two problems: the movie
should not be tagged as a Family movie, and the model is paying too much
attention to the genre.

Figure 6.12: Embedding space generated by the GenreDistilBERT model.
All the movies of the Family genre are isolated from almost all other movies.

We visualized the top 20 sequences of the movie “Sex, Death and Bowl-
ing”, we realized that the Family token was present in most of them, an
example is depicted on figure 6.13. Furthermore, if we mask out the token

75

76 CHAPTER 6. EXPERIMENTS AND RESULTS

in each sequence before classification, the predicted rating changes from PG
to PG-13, which is still not correct but closer to the true rating. We con-
clude that we need more data for the training since the genre embeddings
are being trained from scratch and can easily overfit.

Figure 6.13: Movie title: Sex, Death and Bowling. Predicted rating: PG.
Real rating: R. The Family Token appears as important for the classification,
but the movie should not belong to the Family, genre.

6.5.3 Visualizing keywords

The results on the addition of keywords to the model already show that
there is an increase of performance, but why is it different to include key-
words?, what do they bring to the model that we can not extract from
the script? The following visualization show the distribution of 4 keywords
across the movies: bare-chested-male, female-nudity, blood, and dancing.
Note that this keywords refer to visual action that are not necessarily re-
flected inside the dialogues.

Figure 6.14 shows the distribution of the bare-chested-male keyword, the
number of occurrences decrease from the R rating to 0 in the G rating.
Figure 6.15 shows that the presence of female-nudity is reserved to PG-13
and R ratings. Blood is an element that can be spotted in the video but that
not necessarily in the dialogues. Figure 6.16 shows a higher presence of the
blood keyword in R rated movies and its absence in PG and below. Figure
6.17 shows that the keyword dancing is scattered over the space, meaning
that not all the keywords are as important for this task. We suggest further
research on this topic to build a short set of useful visual keywords.

76

6.5. VISUALIZING THE EMBEDDING SPACE 77

Figure 6.14: Movies with the bare-chested-male keyword. There are no
ocurrences on G rated movies.

Figure 6.15: Movies with the female-nudity keyword. The movie appears in
PG-13 and R ratings only.

77

78 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.16: Movies with the blood keyword. High number of occurrences
on R rated movies and no appearances on PG movies and below.

Figure 6.17: Movies with the dancing keyword. The occurrences are scat-
tered over the space.

78

Chapter 7

Conclusions

In this chapter we present our conclusions and the open lines we suggest
for further research on this problem. The proposed LSTM and transformer
based models that use the hierarchical structure of the document perform
better than those that work at either word level or precomputed sentence
embeddings such as the utterance level model [Martinez et al., (2019)], and
our proposed sentenceBERT reference. The improvement over the word level
SOTA models comes from the use of the natural structure of the document:
scene, sentences and words. We consider that the MPAA rating is strongly
affected by each word and their context. Thus, the improvement over the
sentence level model comes from the word level finetunning that we can
perform in our hierarchical models.

Our splitting strategy makes it possible to apply the advantages of trans-
former models to this long document classification problem. The simplest
strategy to merge the representation of each sequence (average) already
makes an improvement over the RNN by around 1.5 points in the F1 score.
While our preferred strategy (LSTM with attention) get an improvement of
around 5 points with both attention based strategies. This shows the im-
portance on how the sequences relate to each other versus classifying each
sequence independently.

We designed a visualization scheme that highlights the sequences and
words most important for the MPAA rating classification, as well as their
interaction with their surrounding context at different layers of the model.
The visualized information matches the official reasons for the assigned rat-
ing. These reasons go beyond bad words and into the presence of sexual
innuendo and thematic elements, like the idea of death.

The inclusion of genre and emotional vectors into the hierarchical trans-

79

80 CHAPTER 7. CONCLUSIONS

former do not show significant improvement in the F1 score. This suggests
that between the pretraining and the finetunning, the model develops a good
understanding of the domain and the language. It also opens the possibility
to avoid the use of these often noisy features.

The embedding space generated by our models recognize the natural
order of the categories and keeps close the movies from adjacent categories.
The inclusion of extra features spreads the embeddings over the space and
slightly cluster them based on their genres. Our proposed genreDistilBERT
model did not make an improvement in the F1 score. However, the geometry
of the space seemed to be changed to reflect the presence of certain genres.
We visualized that the model may put too much attention on the genre
feature and that we need more data to avoid over-fitting because the genre
embedding part of the transformer is being trained from scratch.

7.1 Future work

While we got an improvement on the F1 score by including the bag of
keywords vector in a post-training scheme. We suggest a deeper study on
which keywords are more important for the classification. Particularly those
that encode visual information that can not be extracted from the script.

The MPAA rating classification is strongly related to the sentimental
information in the movie. We propose the inclusion of emotional features
by either computing them with modern techniques (as our deepmoji ap-
proach in the appendix) or by pre-training the model into a domain related
emotional task.

Our proposed models exploit the relations between sentences as sequen-
tial information inside the document. Nevertheless, most of these sentences
are dialogue. We propose the adaptation of conversation related models,
like DialoGPT, into the proposed framework.

80

Bibliography

[Alammar, (2018)] Alammar J. (2018, June 27). The illustrated Trans-
former [Blog post]. Retrieved from http://jalammar.github.io/illustrated-
transformer/.

[Azab et al., (2019)] Azab, M., Kojima, N., Deng, J., & Mihalcea, R. (2019,
November). Representing Movie Characters in Dialogues. In Proceedings
of the 23rd Conference on Computational Natural Language Learning
(CoNLL) (pp. 99-109).

[Bahdanau et al., (2014)] Bahdanau, D., Cho, K., & Bengio, Y. (2014).
Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

[Battu el al., (2018)] Battu, V., Batchu, V., Gangula, R. R. R., Dakanna-
gari, M. M. K. R., & Mamidi, R. (2018). Predicting the Genre and Rating
of a Movie Based on its Synopsis. In Proceedings of the 32nd Pacific Asia
Conference on Language, Information and Computation.

[Bojanowski et al., (2017)] Bojanowski, P., Grave, E., Joulin, A., &
Mikolov, T. (2017). Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5, 135-
146.

[Cheng et al., (2008)] Cheng, J., Wang, Z., & Pollastri, G. (2008, June).
A neural network approach to ordinal regression. In 2008 IEEE Interna-
tional Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence) (pp. 1279-1284). IEEE.

[Corby, (2020)] Corby, R. (2020). Turing-NLG: A 17-billion-
parameter language model by Microsoft [Blog post]. Retrieved from
https://blog.apastyle.org/apastyle/2016/04/how-to-cite-a-blog-post-in-
apa-style.html.

81

82 BIBLIOGRAPHY

[Davidson et al., (2017)] Davidson, T., Warmsley, D., Macy, M., & Weber,
I. (2017). Automated hate speech detection and the problem of offensive
language. In Eleventh International AAAI Conference on Web and Social
Media.

[Devlin et al., (2019)] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
(2019, June). BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers)
(pp. 4171-4186).

[Fan et al., (2008)] Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., &
Lin, C. J. (2008). LIBLINEAR: A library for large linear classification.
Journal of machine learning research, 9(Aug), 1871-1874.

[Felbo et al., (2017)] Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., &
Lehmann, S. (2017, September). Using millions of emoji occurrences to
learn any-domain representations for detecting sentiment, emotion and
sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing (pp. 1615-1625).

[Giannakopoulos et al., (2010)] Giannakopoulos, T., Makris, A., Kos-
mopoulos, D., Perantonis, S., & Theodoridis, S. (2010, May). Audio-visual
fusion for detecting violent scenes in videos. In Hellenic conference on ar-
tificial intelligence (pp. 91-100). Springer, Berlin, Heidelberg.

[Gninkoun and Soleymani, (2011)] Gninkoun, G., & Soleymani, M. (2011).
Automatic violence scenes detection: A multi-modal approach. In Working
Notes Proceedings of the MediaEval 2011 Workshop.

[Gorinski et al., (2018)] Gorinski, P., & Lapata, M. (2018, June). What’s
this movie about? a joint neural network architecture for movie content
analysis. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers) (pp. 1770-1781).

[Joachims, (2002)] Joachims, T. (2002). Learning to classify text using sup-
port vector machines (Vol. 668). Springer Science & Business Media.

[Joshi et al., (2010)] Joshi, M., Das, D., Gimpel, K., & Smith, N. A. (2010,
June). Movie reviews and revenues: An experiment in text regression. In
Human Language Technologies: The 2010 Annual Conference of the North

82

BIBLIOGRAPHY 83

American Chapter of the Association for Computational Linguistics (pp.
293-296).

[Lan et al., (2005)] Lan, M., Tan, C. L., Low, H. B., & Sung, S. Y. (2005,
May). A comprehensive comparative study on term weighting schemes for
text categorization with support vector machines. In Special interest tracks
and posters of the 14th international conference on World Wide Web (pp.
1032-1033).

[Li et al., (2019)] Li, L. H., Yatskar, M., Yin, D., Hsieh, C. J., & Chang, K.
W. (2019). Visualbert: A simple and performant baseline for vision and
language. arXiv preprint arXiv:1908.03557.

[Martinez et al., (2019)] Martinez, V. R., Somandepalli, K., Singla, K., Ra-
makrishna, A., Uhls, Y. T., & Narayanan, S. (2019, July). Violence rating
prediction from movie scripts. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 33, pp. 671-678).

[Mathur et al., (2018)] Mathur, P., Sawhney, R., Ayyar, M., & Shah, R.
(2018, October). Did you offend me? classification of offensive tweets
in hinglish language. In Proceedings of the 2nd Workshop on Abusive
Language Online (ALW2) (pp. 138-148).

[Mikolov et al., (2013)] Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.

[Mikolov et al., (2013)] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.
S., & Dean, J. (2013). Distributed representations of words and phrases
and their compositionality. In Advances in neural information processing
systems (pp. 3111-3119).

[Mohammad, (2011)] Mohammad, S. (2011, June). From Once Upon a Time
to Happily Ever After: Tracking Emotions in Novels and Fairy Tales. In
Proceedings of the 5th ACL-HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities (pp. 105-114).

[Nobata et al., (2016)] Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y.,
& Chang, Y. (2016, April). Abusive language detection in online user
content. In Proceedings of the 25th international conference on world wide
web (pp. 145-153).

83

84 BIBLIOGRAPHY

[Pappagari et al., (2019)] Pappagari, R., Zelasko, P., Villalba, J., Carmiel,
Y., & Dehak, N. (2019, December). Hierarchical Transformers for Long
Document Classification. In 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU) (pp. 838-844). IEEE.

[Park and Fung, (2017)] Park, J. H., & Fung, P. (2017, August). One-step
and Two-step Classification for Abusive Language Detection on Twitter.
In Proceedings of the First Workshop on Abusive Language Online (pp.
41-45).

[Pennington et al., (2014)] Pennington, J., Socher, R., & Manning, C. D.
(2014, October). Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP) (pp. 1532-1543).

[Reimers and Gurevyh, (2019)] Reimers, N., & Gurevych, I. (2019, Novem-
ber). Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP) (pp. 3973-3983).

[Rumerhart et al., (1985)] Rumelhart, D. E., Hinton, G. E., & Williams,
R. J. (1985). Learning internal representations by error propagation (No.
ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science.

[Salton and Buckley, (1988)] Salton, G., & Buckley, C. (1988). Term-
weighting approaches in automatic text retrieval. Information processing
& management, 24(5), 513-523.

[Sang et al., (2019)] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019).
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. arXiv, arXiv-1910.

[Schmidt et al., (2017)] Schmidt, A., & Wiegand, M. (2017, April). A survey
on hate speech detection using natural language processing. In Proceedings
of the Fifth International workshop on natural language processing for
social media (pp. 1-10).

[Schroff et al., (2015)] Schroff, F., Kalenichenko, D., & Philbin, J. (2015).
Facenet: A unified embedding for face recognition and clustering. In Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion (pp. 815-823).

84

BIBLIOGRAPHY 85

[Shafaei et al., (2019)] Shafaei, M., López-Monroy, A. P., & Solorio, T.
(2019, May). Exploiting Textual, Visual, and Product Features for Pre-
dicting the Likeability of Movies. In FLAIRS Conference (pp. 215-220).

[Shafaei et al., (2020)] Shafaei, M., Samghabadi, N. S., Kar, S., & Solorio,
T. (2020, May). Age Suitability Rating: Predicting the MPAA Rating
Based on Movie Dialogues. In Proceedings of The 12th Language Re-
sources and Evaluation Conference (pp. 1327-1335).

[Singh et al., (2018)] Singh, V., Varshney, A., Akhtar, S. S., Vijay, D., &
Shrivastava, M. (2018, October). Aggression detection on social media
text using deep neural networks. In Proceedings of the 2nd Workshop on
Abusive Language Online (ALW2) (pp. 43-50).

[Vaswani et al., (2017)] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is
all you need. In Advances in neural information processing systems (pp.
5998-6008).

[Vig, (2019)] Vig, J. (2019, July). A Multiscale Visualization of Attention
in the Transformer Model. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations
(pp. 37-42).

[Yang et al., (2016)] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., &
Hovy, E. (2016, June). Hierarchical attention networks for document clas-
sification. In Proceedings of the 2016 conference of the North American
chapter of the association for computational linguistics: human language
technologies (pp. 1480-1489).

[Zhang et al., (2018)] Zhang, Z., Robinson, D., & Tepper, J. (2018, June).
Detecting hate speech on twitter using a convolution-gru based deep neural
network. In European semantic web conference (pp. 745-760). Springer,
Cham.

85

Appendix

Appendix

In this appendix we present complementary information of our work. In
Section A we show the results of each runs for the experiments presented
in chapter 6. In Section B we propose our hierarchical deepmoji method to
combine emotional features generated by the deepmoji [Felbo et al., (2017)]
with our hierarchical transformer approach.

A Full Tables of Results

On this section we include the extended version of the tables presented
in Chapter 6. Table 1 shows the results for each run of the LSTM with
attention reference model, as provided by the authors of [Shafaei et al.,
(2020)]. Table 2 shows the results for each run of the experiments performed
on our proposed hierarchical transformer model.

Features Run 1 Run 2 Run 3 Run 4 Run 5 Mean Std
Text Only 78.30 79.68 79.51 78.83 78.34 78.93 0.6430

NRC 78.94 80.63 79.92 79.26 79.42 79.63 0.6598
Genre 79.49 79.69 79.2 80.39 79.37 73.63 0.4619

Genre+NRC 81.62 79.2 80.63 80.11 80.29 80.37 0.8765
Similarity 80.53 81.66 82.19 82.38 82.59 81.87 0.8247
NRC+Sim 83.26 80.74 80.68 81.36 82.54 81.72 1.1419
Genre+Sim 81.62 79.2 80.63 80.11 80.29 80.37 1.1419

NRC+Genre+Sim 83.68 82.83 82.73 83.58 82.45 83.054 0.5451

Table 1: Results of each run of the LSTM with attention reference. Provided
by the authors of [Shafaei et al., (2020)]

Model Run 1 Run 2 Run 3 Run 4 Run 5 Mean Std

Hierarchical LSTM models

2 levels (NLL) 81.62 79.83 80.25 81.60 80.24 80.71 0.8408

2 levels (AdjLoss) 80.43 80.90 78.86 83.18 82.25 81.12 1.6713

3 levels (NLL) 80.92 81.50 82.60 82.14 81.04 81.64 0.7177

3 levels (AdjlLoss) 81.04 79.03 77.54 79.96 80.74 79.66 1.4184

SentenceBERT reference method

lr 0.00001 75.24 73.53 76.07 74.35 73.42 74.52 1.1328

lr 0.0001 77.62 77.13 76.47 76.67 77.97 77.17 0.6269

lr 0.001 77.39 80.92 77.76 78.08 78.15 78.46 1.4062

Hierarchical transformer models (loss function comparison)

NLL 81.91 81.45 80.49 83.20 81.27 81.66 0.8959

AdjLoss 84.70 83.76 83.05 81.82 82.24 83.11 1.0360

Hierarchical transformer models (pooler comparison)

Average 82.34 83.47 84.35 82.42 83.43 83.20 0.7485

BERT Pooler 84.70 83.76 83.05 81.82 82.24 83.11 1.0360

Attention 82.56 83.64 81.54 81.62 82.96 82.46 0.8006

Hierarchical transformer models (head comparison)

Average 81.25 81.06 80.68 80.21 79.01 80.44 0.7969

biLSTM with attention 84.70 83.76 83.05 81.82 82.24 83.11 1.0360

Transformer 84.09 82.71 82.22 83.11 83.73 83.17 0.6757

Hierarchical transformer models (features available before post-production)

Text only 84.70 83.76 83.05 81.82 82.24 83.11 1.0360

Text + NRC 82.55 83.38 82.89 83.96 83.22 83.20 0.4766

Text + Genre 83.87 82.89 83.46 83.32 83.31 83.37 0.3146

Text + NRC + Genre 83.27 83.23 82.91 82.71 83.80 83.18 0.3687

GenreDistilBERT 82.58 83.89 82.71 82.31 82.78 82.86 0.5404

Hierarchical transformer models (similarity)

Text + Similarity 86.24 85.07 84.72 84.26 85.30 85.12 0.6626

Text + NRC + Similarity 86.24 82.23 84.50 84.67 84.92 84.51 1.2938

Text + Genre + Similarity 84.47 84.86 84.36 84.64 84.60 84.59 0.1664

Text + NRC + Genre + Sim 85.46 85.79 84.74 85.54 84.62 85.23 0.4639

Hierarchical transformer models (keywords)

Text only 82.23 82.88 85.05 84.14 84.24 83.71 1.0131

Text + NRC + Genre + Sim 86.80 86.39 85.78 84.87 86.01 85.97 0.6494

Table 2: Results for each run for the experiments performed in 6.

B. HIERARCHICAL DEEPMOJI

B Hierarchical deepmoji

Because the emotional charge can impact the MPAA rating assign to a
movie, we wanted to include an emotional component into the model. On
the main work we used the NRC affective Lexicon to compute the emotional
features from the movie script, however, there are more modern approaches
to sentiment extraction.

The deepmoji model, presented in [Felbo et al., (2017)] is a RNN based
architecture trained on twitter to predict the emoji present on a tweet. The
model architecture is depicted in Figure 1.

Figure 1: Deepmoji architecture. There are skip connections between the
embedding layers and the attention layer.

Because the deepmoji model is trained of tweets, which have a short
fixed length, it is not used to deal with long sequences, such as scripts. We
follow a hierarchical approach and pre-compute emotional embeddings for
each sentence in the script by removing the classification layer of the model.
The sequence of embeddings is fed to a biLSTM with attention to compute
a representation for the whole script. This representation is concatenated
with that computed with the hierarchical transformer model before going

through a classification layer. The model is depicted on Figure 2. We chose
some of our pretrained models (with and without extra features) and trained
our deepmoji approach for each one of their five runs. The full results are
displayed on Table 3.

Figure 2: Our proposal to mix the deepmoji information with the hierar-
chical transformer embeddings. The deepmoji and Hierarchical transformer
features are precomputed.

B. HIERARCHICAL DEEPMOJI

Model Run 1 Run 2 Run 3 Run 4 Run 5 Mean Std

Text only

H. transformer 84.70 83.76 83.05 81.82 82.24 83.11 1.0360

H. Deepmoji 83.75 84.10 82.59 84.02 83.30 83.55 0.6232

Text + Genre

H. transformer 83.87 83.89 83.46 83.32 83.31 83.37 0.3146

H. Deepmoji 82.96 83.04 82.76 82.98 83.41 83.03 0.2377

Text + Sim

H. transformer 86.24 85.07 84.72 84.26 85.30 85.12 0.6625

H. Deepmoji 85.56 84.76 84.28 86.02 84.86 85.10 0.6904

Text + NRC + Genre + Sim

H. transformer 85.45 85.79 84.74 85.54 84.62 85.23 0.4639

H. Deepmoji 85.86 85.20 84.79 86.09 85.65 85.52 0.5196

Table 3: Comparison of hierarchical transformers vs the hierarchical deep-
moji approach. It is not clear if the inclusion of deepmoji features increase
the performance of the hierarchical transformer.

.

