

Guanajuato, Gto., diciembre de 2020

DISTRIBUTED MODEL PREDICTIVE
CONTROL FOR FORMATION OF

QUADROTORS

T E S I S
Que para obtener el grado de

Maestro en Ciencias
con Especialidad en

Computación y Matemáticas Industriales

Presenta
Salim Vargas Hernández

Directores de Tesis:
Dr. Héctor Manuel Becerra Fermín

Dr. Jean Bernard Hayet

Autorización de la versión final
Dr. Héctor Manuel Becerra Fermín

Autorización de la versión final
Dr. Jean Bernard Hayet

M I

Acknowledgements

I want to thank CIMAT for being an academically rigorous institution that also provided

me with a lot of personal support.

I would like to express my deepest gratitude to my thesis directors Héctor Becerra and

Jean-Bernard Hayet, without their wise guidance, remarkable patience and persistent

help this thesis would not have been possible.

Special thanks to Antonio Sánchez for all his technical support during the experiments

with real quadrotors in the robotics laboratory. Thank you for all the fun and mutually

enriching conversations.

I wish to acknowledge the support and great love of my family. They never let me

down and always believe in me. Also my friends, including of course the ones that I

made at CIMAT, provided me with unwavering support and motivation. Thank you for

all the funny experiences and insightful conversations.

I want to thank CONACYT for all the support given in order to successfully complete

this journey. Also I would like to thank Intel Labs for the financial help provided in

order to finish this thesis and the trust placed in my work.

M II

To all the wonderful people that saved my life

M III

Abstract
This thesis addresses the problem of controlling a group of quadrotors in a distributed

way to achieve desired formations with guarantee of collision avoidance and connectivity

maintenance. The obstacles can be other agents or fixed obstacles in the environment.

The connectivity is modeled through a graph, being neighbor agents those connected by

an edge. The maximum distance between neighbor agents is limited by a constant to

maintain connectivity. A Model Predictive Control (MPC) strategy has been proposed

to solve the formulated problem, which is an effective control strategy with flexibility to

consider constraints relative not only to the evasion and connectivity between agents,

but also to elements of the environment, such as dimensions of the space where the

quadrotors can move. Moreover, the predictive component of this control technique

allows the agents to anticipate (in a time window) the realization of the required actions

to guarantee the agents not to collide and maintain connectivity.

Formation control is addressed as a consensus problem of virtual agents, which are

related to the real ones by constant displacement vectors that define the shape of the

formation. Two ways of reaching consensus of the virtual agents have been explored,

the first one generating trajectories for consensus and then tracking them using MPC,

and the second one introducing directly the local consensus error at each iteration to

the MPC cost function. Regarding obstacle avoidance and connectivity maintenance, it

was evaluated the use of hard and/or soft constraints in the MPC optimization problem.

Furthermore, both decentralized and distributed control architectures were studied; in

the first, only the agents position is communicated between neighbors, while in the

second, both position and control inputs are shared.

Based on simulation results, the best formation control strategy resulted on using

the local consensus error directly in the MPC cost function, and including both hard

and soft constraints for obstacle avoidance and connectivity maintenance, all of this

inside a distributed control architecture. This final strategy showed advantages in the

smoothness of the generated paths, the velocity of convergence to the desired formation,

and the effectiveness to avoid obstacles. It was shown in both realistic simulations and

real experiments with quadrotors.

M IV

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline of the work . 2

2 Preliminaries 3

2.1 Dynamic model of a quadrotor . 3

2.2 Feedback linearization for low level control 7

2.3 Control architectures of Multi-agent systems (MAS) 12

2.3.1 Centralized control . 13

2.3.2 Decentralized control . 13

2.3.3 Distributed control . 13

2.4 Consensus . 14

2.4.1 Multi-agent networks and graph theory 15

2.4.2 Consensus protocol . 15

2.4.3 Spectral properties . 16

2.4.4 Convergence analysis . 16

2.4.5 Formation control . 17

2.4.6 Discretization . 18

2.5 Model Predictive Control . 18

2.5.1 Model of the system . 19

2.5.2 Cost function . 20

2.5.3 Optimization problem . 20

2.5.4 Formulation as a quadratic programming problem 21

2.5.5 Common constraints . 23

3 State of the art 25

3.1 Solving the MPC optimization problem 25

3.2 MPC and quadrotors . 25

Contents V

3.3 MPC and consensus . 26

3.4 Formation control and collision avoidance 27

4 Model Predictive Control for formation control of quadrotors 29

4.1 Decentralized architecture with a predefined consensus path 30

4.1.1 Consensus-driven trajectories . 30

4.1.2 Cost function for the Model Predictive Control 31

4.1.3 Obstacle avoidance . 31

4.1.4 Connectivity maintenance . 36

4.2 Decentralized architecture with local consensus error 39

4.2.1 Cost function for the Model Predictive Control 39

4.3 Distributed architecture . 40

4.3.1 Cost function for the Model Predictive Control 40

4.3.2 Obstacle avoidance . 41

4.3.3 Connectivity maintenance . 44

4.4 Discussion and strategy selection . 45

5 Simulations and experiments 59

5.1 Simulations in Gazebo . 59

5.1.1 Simulation performance . 60

5.2 Experiments with real Bebop 2.0 quadrotors 66

5.2.1 Experiments results . 68

6 Conclusions and future work 76

M 1

Chapter 1

Introduction

1.1 Motivation

The last decade, the study of Multi-Agent Systems (MASs) has attracted considerable

attention due to the wide applications of these kind of systems. From a practical point

of view, multiple agents have improved capabilities when their work cooperatively in

comparison to the capabilities of a single agent. The control of a MAS may involve

many different related research topics and problems, such as consensus, formation con-

trol, flocking, coverage control, among others. The general interest is that multiple

autonomous agents work together to achieve a global task or a collective group behav-

ior.

In cooperative control of MASs for robotics applications, one of the main areas of

interest is formation control. In this task, given any initial configuration of the robots,

the objective is to achieve a predefined formation using only information exchanged

between agents. Usually the target is to achieve a certain shape in the formation,

not necessarily at a particular absolute place in the space but respecting the relative

constraints imposed by the specified formation.

The formation control task is closely related with the evasion task, in the sense that,

as the robots try to achieve the formation, they also need to avoid collisions with other

agents and with any other obstacle present in the environment. This second task in-

creases the difficulty of the control as not many formation control strategies easily allow

to consider obstacle avoidance. The realization of both tasks, formation and obstacle

avoidance, must be guaranteed by using a distributed strategy considering only infor-

mation of neighboring agents in the MAS and local information of the obstacles position

in the environment.

1. Introduction 2

On the other hand, with the recent improvement of hardware capabilities, Model Pre-

dictive Control offers a very flexible strategy for formation control. Its main advantage

is the simplicity of its formulation when considering the evasion task; as this control

strategy is based on solving an optimization problem, the evasion task can be intro-

duced to the formation task by just adding hard or soft constraints to the optimization

problem in a very intuitive way. Also, Model Predictive Control, as its name refers, is

based on predicting the future movements of the controlled agent and, in some cases,

of other agents, and it uses this information to anticipate the evolution of the system

instead of reacting to instantaneous changes.

In this thesis, a Model Predictive Control strategy is presented for the formation con-

trol problem, specifically in the case of quadrotors, which are modeled at kinematic level.

The objective is that a group of quadrotors reaches a desired formation in tridimensional

position. The formulation considers evasion but also connectivity maintenance, which

means that a connectivity model of the group of agents is maintained along the missions.

Along with the theoretical formulation, some simulations and experimental results on

real quadrotors are presented.

1.2 Outline of the work

In Chapter 2, the theoretical background for the full understanding of this thesis is

presented, such as the dynamic model of a quadrotor and a possible low level control,

the architectures for controlling a MAS, the fundamentals about consensus theory and

its application to formation control, and the basics of Model Predictive Control.

In Chapter 3, some of the most recent works regarding both Model Predictive Control

and formation control, and their application to quadrotors are reviewed.

Chapter 4 is the main chapter of this thesis, the proposed control strategies for for-

mation control with quadrotors are detailed. Two control architectures, two forms of

solving formation tasks and two ways of leading with evasion and connectivity main-

tenance are presented. Finally, some discussion is done in order to choose the best

combination of strategy components based on simulation results.

In Chapter 5, performance results of the final control strategy proposed in Chapter 4

are presented in simulations in the dynamic simulator Gazebo, and in real experiments

with Bebop 2.0 quadrotors.

Finally, Chapter 6 corresponds to the conclusions of this thesis.

M 3

Chapter 2

Preliminaries

In this chapter, we are going to present some background topics that we are going

to use in the rest of the chapters of this work. First, in Section 2.1, we present the

dynamic model of a quadrotor and describe some basic movements of this aircraft.

Then, in Section 2.2, we introduce a low level velocity control for a quadrotor via

feedback linearization. Three main control architectures for multiple agents systems are

explained in Section 2.3. The basics of consensus theory and its relation with formation

control are presented in Section 2.4. Finally, Section 2.5 is an introduction to Model

Predictive Control.

2.1 Dynamic model of a quadrotor

A quadrotor or quadcopter is an aircraft with four rotors, each of them being located

on an extremity of the robot. Figure 2.1 shows a schema of a typical quadrotor. The

red sphere corresponds to the main body and the four disks to the rotors. To be able

to fly in a stable way, two of the propellers rotate counter-clockwise (the front and rear

ones in blue), and the other two rotate clockwise (the left and right ones in green), each

pair canceling in some way the moment generated by the other. In the following, we

are going to present the dynamic model of a quadrotor given in [Sab15]. All the physics

details can be consulted in this reference. Also, some considerations on blade flapping

and induced drag effects, which are not tackled here, can be consulted in [MKC12].

Using the Newton-Euler-based representation of the orientation of a quadrotor, we

can represent the internal state of the system by 12 variables. Six of them refer to the

position x, y, z of the center of mass of the quadrotor in a inertial reference frame

(given by {XO, YO, ZO} in Figure 2.1) and their respective velocities vx, vy, vz. Given

2. Preliminaries 4

F1

F3 F2

F4

d

XB

YB

ZB

O XO

YOZO

Figure 2.1: Quadrotor model.

the inertial frame of reference and the body frame {XB, YB, ZB}, the other six variables

refer to the Euler angles φ, θ, ψ and their velocities ωx, ωy, ωz. Hence, the state

variables are

x =
�
x y z vx vy vz φ θ ψ ωx ωy ωz

�T
. (2.1)

A quadrotor is a system with four inputs, considering as inputs of the system the total

thrust u1 = F1+F2+F3+F4, where each Fi is the individual trust on propeller i, and the

torques for the three Euler angles (pitch, roll and yaw) u2, u3 and u4, respectively. These

inputs can be gathered in a vector u = (u1, u2, u3, u4)
T , and the quadrotor dynamics

can be expressed as

ẋ = f(x) + g(x)u, (2.2)

2. Preliminaries 5

where

f(x) =

vx

vy

vz

0

0

−g

wx + sin(φ) tan(θ)wy + cos(φ) tan(θ)wz

cos(φ)wy − sin(φ)wz

sin(φ) sec(θ)wy + cos(φ) sec(θ)wz

Iy−Iz
Ix

wywz

Iz−Ix
Iy

wxwz

Ix−Iy
Iz

wxwy

(2.3)

and

g(x) =

0 0 0 0

0 0 0 0

0 0 0 0
1
m
(cos(φ) cos(ψ) sin(θ) + sin(φ) sin(ψ)) 0 0 0

1
m
(cos(φ) sin(ψ) sin(θ)− sin(φ) cos(ψ)) 0 0 0

1
m
(cos(φ) cos(θ)) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
d

Ix
0 0

0 0
d

Iy
0

0 0 0
1

Iz

, (2.4)

where m corresponds to the mass of the quadcopter, d is the distance from any rotor to

the center of the quadcopter, g is the value of gravity constant and Ix, Iy and Iz are the

diagonal elements of the inertia matrix of the quadcopter. The equations 2.3 and 2.4

are clearly non linear, as the expressions involve, among others, trigonometric functions

of some parts of the state.

One can show that the vector of inputs u is related to the velocity of the i-th rotor

2. Preliminaries 6

ω̄i, i = 1, . . . , 4 by the following expression [Sab15]

u1

u2

u3

u4

=

cT cT cT cT

−
√
2

2
d cT −

√
2

2
d cT

√
2

2
d cT

√
2

2
d cT

−
√
2

2
d cT

√
2

2
d cT

√
2

2
d cT −

√
2

2
d cT

−cQ cQ −cQ cQ

ω̄2
1

ω̄2
2

ω̄2
3

ω̄2
4

,

where cT is the thrust factor and cQ is the drag factor of the quadcopter.

We can identify four basic movements of a quadrotor: vertical displacement due to

the total thrust and rotational movements on yaw ψ, pitch φ and roll θ. Figure 2.2

shows these four movements and the thrusts needed on each rotor to achieve them.

F1

F3 F2

F4

(a) Thrust.

F1

F3 F2

F4

(b) Yaw ψ.

F1

F3
F2

F4

(c) Pitch φ.

F1

F3

F2

F4

(d) Roll θ.

Figure 2.2: The four basic movements of a quadrotor.

The vertical movement of a quadrotor corresponds to the total thrust, that is equal

to the sum of the individual thrusts of the propellers. The yaw ψ movement is achieved

by unbalancing the thrusts of the counter-clockwise rotors and the clockwise ones; a

2. Preliminaries 7

reactive torque is then produced by the rotors with the greater velocities. The pitch φ

and roll θ motions correspond to unbalanced velocities between opposite rotors. These

types of movements also lead to horizontal displacement, i.e. they allow quadrotors to

move forward or sideways.

Given that a quadrotor has 3 position and 3 rotational states and only four inputs,

one per rotor, a quadrotor is an underactuated system, and its control is not an easy

task. Also, we have to remark that this dynamic model is based on ideal situations and

that the control of a real quadrotor must overcome some unmodeled physical effects.

Due to the underactuated nature of the system, some cascaded control strategies have

been conceived such as in [MKC12] and [LLM10]. Having said this, in the next section

we are going to present a feedback linearization control for a quadrotor, which is also a

studied strategy for controlling a quadrotor in [Sab15] and [MBM01].

2.2 Feedback linearization for low level control

Feedback linearization is a control strategy that transforms a non-linear system into

a linear one by applying an appropriate change of variables and control input. To be

linearizable by feedback, a system requires to be affine in the control, and that means

it should be of the form

ẋ = f(x) + g(x)u,

y = h(x).

Let us now consider a change of variables z = T (x) given by a diffeomorphism T such

that T (0) = 0. The proposed control input is searched to be of the form

u = α(x) + β(x)ν, (2.5)

such that the dynamics of the transformed system ż is a linear function of the control

input, that is

ż = b(x) +Δ(x)u,

where v is an auxiliary control input. In that case, the functions α(x) and β(x) will be

necessarily

α(x) = −Δ−1(x)b(x), (2.6)

β(x) = Δ−1(x). (2.7)

2. Preliminaries 8

Using the control in (2.5) with the functions (2.6) and (2.7), the dynamics of the

transformed system ż result in

ż = b(x)−Δ(x)Δ−1(x)b(x) +Δ(x)Δ−1(x)ν = b(x)− b(x) + ν = ν. (2.8)

Equation (2.8) suggests that if a control input u satisfying (2.5), (2.6) and (2.7) can

be found, then the dynamics of the output ż could be set easily in terms of an auxiliary

control input ν.

We are interested in the formulation of a velocity control using feedback linearization,

this because we will propose a high-level control for formation tasks that give us linear

velocities as outputs, and these velocities will be the input of this lower-level control.

Then, considering the quadrotor dynamics described in (2.2) and choosing an output

of the same length as the input, the output y for controlling the linear velocities of the

quadrotor (vx, vy, vz) and the yaw angle ψ can be established as the following

y = h(x) =
�
vx vy vz ψ

�T
. (2.9)

The relative degree is the number of times an output component needs to be differ-

entiated in order for at least one component of the input to appear. That is

ri = (inf k | ∃j, 1 ≤ j ≤ 4, LgjL
k−1
f hi �= 0),

where Lf and Lgj are the Lie derivatives with respect to f and gj respectively. Given

a scalar function h : Rn −→ R and a vector field f : Rn −→ Rn, the Lie derivative or

directional derivative of h in the direction of f is defined as the scalar function

Lfh = ∇h · f,

where ∇h denotes the gradient vector that gathers all the partial derivatives of h

∇h =

�
∂h

∂x1

∂h

∂x2

· · · ∂h

∂xn

�T
.

The Lie derivatives of superior order can be defined recursively as

L0
fh = f ; Li

fh = Lf

�
Li−1
f h

�
= ∇

�
Li−1
f h

�
· f for i ≥ 1.

In the same way, if g(x) is another vectorial field, the double directional derivative of

2. Preliminaries 9

h with respect to f and g is given by

LgLfh = ∇ (Lfh) · g.

We search a control input of the form (2.5) such that

�
y
(r1)
1 y

(r2)
2 y

(r3)
3 y

(r4)
4

�T
= b(x) +Δ(x)u, (2.10)

which is satisfied by taking

Δ(x) =

Lg1L
r1−1
f h1(x) · · · Lg4L

r1−1
f h1(x)

...
. . .

...

Lg1L
r4−1
f h4(x) · · · Lg4L

r4−1
f h4(x)

 ,

and

b(x) =

Lr1
f h1(x)

...

Lr4
f h4(x)

 .

Nevertheless, the control law in (2.5) defined by (2.6) and (2.7) can only be established

when the matrix Δ(x) is non-singular.

For the system (2.2) along with output (2.9), the relative degrees are

r1 = r2 = r3 = 1, r4 = 2

and

Δ(x) =

1
m
(cos(φ) cos(ψ) sin(θ) + sin(φ) sin(ψ)) 0 0 0

1
m
(cos(φ) sin(ψ) sin(θ)− sin(φ) cos(ψ)) 0 0 0

1
m
(cos(φ) cos(θ)) 0 0 0

0 0
d sin(φ)

Iy cos(θ)

cos(φ)

Iz cos(θ)

. (2.11)

However, we notice that the matrix Δ(x) in (2.11) is singular for all x. Therefore, the

control law cannot be computed; this happens because r1+ r2+ r3+ r4 = 5 < 12 that is

the order of the system. Hence, there exists zero dynamics (see [Kha02], Chapter 13).

In order to avoid the zero dynamics and the singularity in (2.11), a dynamic extension

(see [Sas99], Chapter 9) can be used, such that a double integrator is introduced in u1

2. Preliminaries 10

as follows:

u1 = ζ,

ζ̇ = �,

�̇ = ū1,

and to preserve consistency in the notation, the rest of the inputs are now denoted

u2 = ū2,

u3 = ū3,

u4 = ū4.

As we are taking as outputs the linear velocities for this low-level control, and given

that the three variables corresponding to the absolute position (x, y, z) are not involved

in the dynamics of the rest of variables, we are going to consider a new system without

the three variables relating to position, and with the two new variables relative to the

double integrator

˙̄x = f̄(x̄) + ḡ(x̄)ū,

ȳ = h̄(x̄),
(2.12)

where

x̄ =
�
vx vy vz φ θ ψ ζ � ωx ωy ωz

�T
, (2.13)

f̄(x̄) =

1
m
(cos(φ) cos(ψ) sin(θ) + sin(φ) sin(ψ))

1
m
(cos(φ) sin(ψ) sin(θ)− sin(φ) cos(ψ))

−g + 1
m
(cos(φ) cos(θ))

ωx + sin(φ) tan(θ)ωy + cos(φ) tan(θ)ωz

cos(φ)ωy − sin(φ)ωz

sin(φ) sec(θ)ωy + cos(φ) sec(θ)ωz

�

0
Iy−Iz
Ix

ωyωz

Iz−Ix
Iy

ωxωz

Ix−Iy
Iz

ωxωy

(2.14)

and

2. Preliminaries 11

ḡ(x̄) =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0
d

Ix
0 0

0 0
d

Iy
0

0 0 0
1

Iz

(2.15)

and finally,

h̄(x̄) =
�
vx vy vz ψ

�T
. (2.16)

For the new system, the relative degrees {r1, r2, r3, r4} are

r1 = r2 = r3 = 3, r4 = 2.

Now we have r1 + r2 + r3 + r4 = 11, which equals the order of the system, so the new

system is linearizable by feedback using

Δ(x̄) =

cos(φ) cos(ψ) sin(θ)+sin(φ) sin(ψ)
m

− ζ(sin(φ) cos(ψ) sin(θ)−cos(φ) sin(ψ))d
mIx

ζ cos(φ) cos(θ)d
mIy

0
cos(φ) sin(ψ) sin(θ)−sin(φ) cos(ψ)

m
− ζ(sin(φ) sin(ψ) sin(θ)+cos(φ) cos(ψ))d

mIx

ζ sin(ψ) cos(θ)d
mIy

0
cos(φ) cos(θ)

m
− ζ cos(φ) cos(θ)d

mIx
− ζ sin(θ)d

mIy
0

0 0 sin(φ)d
cos(θ)Iy

cos(φ)
cos(θ)Iz

.

(2.17)

The matrix Δ(x̄) in (2.17) is non-singular for every x̄ where ζ �= 0 and −π
2
< φ, θ < π

2
.

The singularities arise when the propellers stop rotating (i.e. ζ = u1 = 0), or when the

quadrotor tilts up to 90 degrees, reaching a completely vertical position (i.e. φ ∈ {−π
2
, π
2
}

or θ ∈ {−π
2
, π
2
}). In practice, these situations appear only when the quadrotor needs

to do acrobatic maneuvers but this is outside the scope of this work. Given this, the

2. Preliminaries 12

system (2.12) can be transformed by a change of coordinates λ = Φ(x̄) given by

λ1 = h̄1(x̄) = vx λ4 = h̄2(x̄) = vy λ7 = h̄3(x̄) = vz λ10 = h̄4(x̄) = ψ

λ2 = Lf̄ h̄1(x̄) = v̇x λ5 = Lf̄ h̄2(x̄) = v̇y λ8 = Lf̄ h̄3(x̄) = v̇z λ11 = Lf̄ h̄4(x̄) = ψ̇

λ3 = L2
f̄
h̄1(x̄) = v̈x λ6 = L2

f̄
h̄2(x̄) = v̈y λ9 = L2

f̄
h̄3(x̄) = v̈z

.

(2.18)

In these new coordinates, the system can be rewritten as

λ̇ = Aλ+ Bν

ȳ = Cλ,
(2.19)

in which

A =

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

, B =

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

,

C =

1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

,

i.e. the system is now written in a linearized form.

2.3 Control architectures of Multi-agent systems (MAS)

There exists three main strategies for controlling multi-agent systems in general, and

multiple quadrotor systems in particular [WG18]. The factors that differentiate each one

depend on where the controllers computation takes place, and what type of information

is communicated between agents. Hereafter, we briefly present these strategies.

2. Preliminaries 13

2.3.1 Centralized control

In the centralized control strategy, the computation work by all the controllers takes

place in the same station. The states information xi(t) (for agent i, at time t) is

gathered together in one computation station, then the control law is calculated for

each agent and communicated back to each of them. The computation station could be

any one of the agents or a remote computer. The advantage of this strategy is that all

the information is available before computing the control laws.

The Figure 2.3 shows a schema of a centralized control architecture.

x2(t)

x
3 (t)

x
4(
t)

Figure 2.3: Centralized control architecture. The agents share their states xi(t) with a
single agent who is going to compute all the control inputs.

2.3.2 Decentralized control

In the decentralized control strategy, the computation of the controllers takes place in a

different station for each agent. Only the states information xi(t) is shared between the

agents and, with that data, each agent computes its own control law. Since each agent i

only knows the states xj(t) of its partners j but does not know the control law they have

computed, the agents do not know what the others are going to do next. The agents

could collect the states information of all their partners or well the states information

could be gathered together in one place and then be communicated to each agent.

The Figure 2.4 shows a schema of a decentralized control architecture.

2.3.3 Distributed control

As in the decentralized control strategy, in the distributed control strategy the compu-

tation of the control laws takes place in different stations, for each agent. Nevertheless,

2. Preliminaries 14

x1(t)

x
1 (t)

x
2 (t)

x 2
(t)

x3(t)

x
4(
t)

Figure 2.4: Decentralized control architecture. The agents share only their states xi(t)
with their neighbors.

the information shared between the agents consists not only on the states xi(t) but also

on the control inputs ui(t) computed by the neighbors. In this strategy, the agents need

a mean of communication and the information can not be just gathered together in one

place and communicated to each agent, as it is done in decentralized control.

The Figure 2.5 shows a schema of a distributed control architecture.

x1(t), u1(t)

x
1 (t),

u
1 (t)

x
2 (t),

u
2 (t)

x 2
(t)
,
u 2
(t)

x3(t), u3(t)

x
4(
t)
,
u
4(
t)

Figure 2.5: Distributed control architecture. The agents share their states xi(t) and also
their computed control inputs ui(t) with their neighbors.

2.4 Consensus

Given a networked multi-agent system, consensus means to reach an agreement state

for all the agents. This agreement should be achieved only with the sharing of local

information of connected agents. In this section, we are going to describe the main

results in consensus theory, and more detailed information can be found in [OSFM07].

Let us consider a system of n agents with state variables xi(t) at time t ∈ R for

2. Preliminaries 15

i = 1, . . . , n with every agent having m state-variables, that is xi ∈ Rm. The aim of a

consensus protocol is to define control inputs ui(t) such that the agreement in the state

variables of all agents in the network can be asymptotically accomplished.

2.4.1 Multi-agent networks and graph theory

1 2

34

Figure 2.6: Graph induced by communication topology of a 4-agent network.

The interaction topology of a multi-agent network can be mathematically represented

by a directed graph G = (V,E) where V = {1, 2, . . . , n} is the set of nodes or agents,

and where E ⊂ V × V is the set of edges of the graph.

An edge (i, j) belongs to E if the agent i is communicated through the network with

agent j. The set of neighbors of agent i is denoted by Ni = {j ∈ V |(i, j) ∈ E}.
A directed graph G has a directed spanning tree if there is a vertex i such that there

is a (directed) path to any other vertex in the graph.

The Laplacian matrix of a graph G is defined by

L =
�
lij

�
=

−1 j ∈ Ni,

|Ni| j = i.

This matrix has the property that all its rows sum 0.

2.4.2 Consensus protocol

Let us consider a multi-agent system where the dynamics of every state-variable of each

agent is a simple integrator, resulting on a decoupled dynamics for each agent of the

2. Preliminaries 16

form

ẋi = Imui = ui ∈ Rm ∀i ∈ V. (2.20)

The aim is to asymptotically reach a configuration of states for the system such that

x1 = x2 = · · · = xn. (2.21)

Given the initial conditions of the system xi(0) for i ∈ V , the consensus protocol is

given by the control law

ẋi(t) =
�

j∈Ni

(xj(t)− xi(t)). (2.22)

Equation (2.22) can be expressed in terms of the Laplacian matrix of the graph, giving

the following expression

Ẋ = −LX, (2.23)

where X =
�
xT
1 xT

2 · · · xT
n

�T
.

2.4.3 Spectral properties

The Laplacian matrix has always a zero eigenvalue λ1 = 0 that corresponds to the

eigenvector 1 =
�
1, 1, · · · , 1

�T
. This is because all the rows of this matrix sums to 0,

that is
�

j Lij = 0 for any i.

This means that one equilibrium of the system is of the form

X∗ =

α

α
...

α

= α1 (2.24)

where all the agents states agree on the same value α.

In [OSFM07], it is shown that X∗ is the only equilibrium (up to a multiplicative

factor) for connected graphs.

2.4.4 Convergence analysis

In order to achieve consensus, the graphGmust have a directed spanning tree. In [OSFM07],

it is shown that the final consensus value depends on whether the connectivity graph

is directed or undirected. If the graph G is undirected, it can be shown that the final

2. Preliminaries 17

consensus value is equal to the mean of the initial values, that is

α =
1

n

�

i∈V
xi(0). (2.25)

The rate of convergence will depend on the second smallest eigenvalue λ2 of L, known

as algebraic connectivity. For dense graphs, λ2 is larger than for sparse graphs, resulting

on a slower consensus for the latter ones [OM04].

If the graph G is directed, the consensus value depends on the eigenvector v of L such

that vTL = 0 and the consensus value is

α =
vTX(0)�

j

vj
, (2.26)

which is again an average value of the initial states, but weighted by coefficients
vi�
j

vj
.

In [OM04] the authors extend the notion of algebraic connectivity to directed graphs,

by the application of a mirror operation that gives as result an undirected graph from

the original directed one, obtaining similar conclusions as for the undirected case.

2.4.5 Formation control

Consensus can be used for formation control. Assume that we are given a set of desired

configurations of the agents, defined by n displacement vectors di with respect to an

arbitrary origin, then we will see that virtual agents can be defined to achieve consensus

between them and, at the same time, to ensure that the formation is reached.

The displacement vector di starts from the origin to the desired position of the agent

i. Inspired by [JG17], let us consider a virtual agent zi as

zi = xi − di. (2.27)

Because vectors di are constant, virtual agents defined by (2.27) have the same dy-

namics as the real agents as expressed in (2.28), so the results presented along this

section apply also to virtual agents. We have

żi = ẋi = ui. (2.28)

2. Preliminaries 18

Then, in order to achieve consensus between virtual agents, the control law should be

ui(t) =
�

j∈Ni

(zj(t)− zi(t)). (2.29)

Considering αz as the consensus value reached by the virtual agents, then the final

state of real agents will satisfy

xi − di = αz.

Moreover xi = di+αz, and this means that when consensus is achieved for the virtual

agents zi, the configuration between the real agents xi would be the same as the one

defined by vectors di, up to an overall displacement given by the consensus final value

αz.

2.4.6 Discretization

Up to this moment we have considered continuous-time expressions, nevertheless in

practice the signals received and sent to robots are digital signals, i.e. discrete signals

sampled every T seconds. Given an initial time t0 ∈ R, the time can be discretized as

tk := t0 + kT,

where k ∈ N, resulting on the sequence {t0, t1, t2, . . . , tk, . . . } that corresponds to the

instants of time where we receive and send signals to the robot.

From now on, abusing of notation, we will refer as ·(k) instead of ·(tk) for the discrete
time expressions.

2.5 Model Predictive Control

Model Predictive Control (MPC) is a control strategy that takes advantage of the fact

that there may exist a reasonably good enough predictive model of the system that we

want to control. Given that predictive model, this control strategy aims to predict the

behavior of the system within a time window and evaluate the effect of this behavior

through a user-defined cost function.

In this section, we are going to describe briefly the fundamentals of Model Predictive

Control, but the reader looking for more details can consult sources such as [CSdlPL12],

[Lee11] and [CBA99].

2. Preliminaries 19

Figure 2.7 shows a block diagram of a general MPC when a reference r is given for

the states x. In order to choose the control input, a cost function Φ(k) is minimized at

each iteration k; this cost function is typically expressed in terms of the control input

and of some other parameters that the specific problem needs to take into account.

Using the model of the system, the states of the system can be predicted (x̂) along a

predefined horizon. It is important to remark that the cost function Φ(k) considers these

predictions. Then, once Φ(k) is optimized, we will obtain inputs for all the iterations

along the prediction horizon, but only the control input of the present iteration u(k)

will be applied to the system.

One of the main advantages of Model Predictive Control is that, given the main

optimization problem, it also permits to integrate constraints according to the system

specific characteristics such as bounds on the inputs or the states, and obstacle avoid-

ance.

Cost function
Φ(k) (2.31)

arg min
u

{Φ(k)}
(2.32)

System

Constraints
Sec. 2.5.5

Model
(2.30)

r(k) err(k) x(k + 1)

−
x(k)

u(k)

u(k + t)x̂(k + t)
r(k + t)

err(k + t)

−

Figure 2.7: Model Predictive Control block diagram.

2.5.1 Model of the system

We are going to consider a discrete time linear model of the system. This model is

defined in (2.30) and is represented by the “Model” block in Figure 2.7.

x(k + 1) = Ax(k) + Bu(k), (2.30)

where x(k) =
�
x1(k) x2(k) · · · xm(k)

�T
is the vector ofm state variables at iteration

k and u(k) =
�
u1(k) u2(k) · · · ul(k)

�T
is the vector of l control inputs applied to

2. Preliminaries 20

the system at iteration k. The matrices A ∈ Rm×m and B ∈ Rm×l completely describe

the model.

2.5.2 Cost function

We are going to consider the generic cost function for Model Predictive Control presented

in [CFZ15] that considers a given reference r for the states and a term for the waste of

energy from the inputs. This cost function penalizes the error between the actual and

predicted states from the reference, and the amount of the inputs. The equation (2.31)

shows this cost function and it corresponds to the “Cost function” block in Figure 2.7.

Φ(k) = β

Hp�

t=Hw

||x(k + t|k)− r(k + t|k)||2 + γ
Hu�

t=1

||u(k + t− 1|k)||2. (2.31)

The notation a(m|n) in use in the equation above refers to the predicted value of a

at the iteration m such that the value of a is known at iteration n < m. This prediction

is obtained from the model (2.30) of the system.

The value Hp corresponds to the prediction horizon, which is the length of the window

of predicted values for the state variables. The value Hu is called the control horizon

and corresponds to the number of steps of control to be taken into account. The value

of Hu should be less or equal to the prediction horizon Hp.

Finally, the numberHw is the window parameter, and corresponds to the first iteration

in the prediction horizon to be penalized. This is used because we usually do not want

to start penalizing the error from the reference since the actual state. Hw should be

superior or equal to 1, and inferior to the prediction horizon Hp.

2.5.3 Optimization problem

At each iteration of Model Predictive Control, the following optimization problem is

solved

u∗ = arg min
u

Φ(k). (2.32)

Solving the optimization problem (2.32) gives as a result an optimal input sequence

of future controls

{u∗(k|k),u∗(k + 1|k), . . . ,u∗(k +Hu − 1|k)} (2.33)

2. Preliminaries 21

associated to a minimum cost Φ∗(k).

The input actually applied to the controlled system, at each iteration, corresponds to

the first term of the sequence (2.33), that is u∗(k|k), discarding the rest of the sequence.

Some authors, such as [HT12], use the information of the rest of the sequence as a warm

start for the optimization problem at the next iteration.

2.5.4 Formulation as a quadratic programming problem

For general dynamic systems, the optimization problem (2.32) is hard to solve and it is

not evident that a solution exists. In order to rewrite (2.32) as a quadratic programming

problem, that guarantees that a global minimum exists, the following vectors are defined

X(k + 1) :=

x(k + 1|k)
x(k + 2|k)

...

x(k +Hp|k)

R(k + 1) :=

r(k + 1|k)
r(k + 2|k)

...

r(k +Hp|k)

U(k) :=

u(k|k)
u(k + 1|k)

...

u(k +Hu − 1|k)

,

(2.34)

where the different numerical values over the horizon are stacked together. Then, having

that Hw = 1, the objective function (2.31) can be rewritten as

Φ(k) = (X(k + 1)−R(k + 1))TQ(X(k + 1)−R(k + 1)) +U(k)TCU (k), (2.35)

where the matricesQ and C hold weights for the different terms of the objective function,

Q :=

β 0 · · · 0

0 β · · · 0
...

...
. . .

...

0 0 · · · β

C :=

γ 0 · · · 0

0 γ · · · 0
...

...
. . .

...

0 0 · · · γ

.

As seen above, we have used uniform weights along the horizon window, but the

weights could be defined in a different manner (penalizing differently according to the

position in the horizon window).

Given the model of the system defined in (2.30), it can be shown that the model can

be extended along the prediction horizon as

X(k + 1) = PXx(k) + PUU(k), (2.36)

2. Preliminaries 22

where

PX :=

A

A2

...

AHp

, (2.37)

PU :=

B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AHu−1B AHu−2B . . . B
...

...
...

AHp−1B AHp−2B · · ·
Hp−Hu�

i=0

AiB

. (2.38)

Given those expressions, the objective cost function (2.35) can be rewritten as

Φ(k) =
1

2
U(k)TH(k)U (k) + f(k)TU(k) + g(k), (2.39)

where

H(k) := 2
�
P T
U QPU + C

�
, (2.40)

f(k) := 2P T
U Q

�
PXx(k)−R(k + 1)

�
, (2.41)

g(k) :=
�
PXx(k)−R(k + 1)

�T
Q
�
PXx(k)−R(k + 1)

�
. (2.42)

The matrix (2.40) is positive definite and describes the quadratic part of the objective

function (2.39), and the vector (2.41) describes the linear part. The last term (2.42) is

independent of U so it has no influence in the determination of the optimum U ∗.

The cost function (2.39) is written as a quadratic form in U , and this ensures that

solving optimization problem (2.32) is possible and that the optimum is unique, because

H(k) is positive definite.

There exists a lot of solvers for this type of optimization problems, that are fast and

reliable. This is important given the fact that the system we are using, a quadrotor,

requires a fast computation of the control inputs.

Reference as a linear function of U

If the reference r(k+ t|k) for the state variables depends linearly on the predicted states

x(k + t|k), a vector A(k) ∈ RmHp and a matrix B(k) ∈ R(mHp)×(mHu) can be found in

2. Preliminaries 23

order to rewrite the reference vector R(k + 1) along the prediction horizon as a linear

function of the input vector U (k) along the control horizon as follows

R(k + 1) = A(k) + B(k)U (k). (2.43)

Given this and the extended model (2.36), the matrix H(k) and vectors f(k) and

g(k) of the quadratic form of the cost function (2.39) will be defined as

H(k) := 2
��
PU − B(k)

�T
Q
�
PU − B(k)

�
+ C

�
, (2.44)

f(k) := 2
�
PU − B(k)

�T
Q
�
PXx(k)−A(k)

�
, (2.45)

g(k) :=
�
PXx(k)−A(k)

�T
Q
�
PXx(k)−A(k)

�
. (2.46)

2.5.5 Common constraints

Model Predictive Control is very flexible when it is necessary to take constraints into

account as they just need to be attached to the optimization problem, as shown in the

“Constraints” block of Figure 2.7. Some of the most used ones are the ones related to

the physical limitations in the control input signals, such as bounds in the values that

can be applied to the system. These constraints can be expressed as

umin(k) ≤ u(k) ≤ umax(k), (2.47)

then the optimization problem (2.32) becomes

u∗ = arg min
u

Φ(k),

subject to Lu ≤ �
(2.48)

where

L =

�
Im

−Im

�
� =

�
umax(k)

−umin(k)

�
. (2.49)

Extending this to the quadratic form in (2.39), the previous constraints can take the

form

U(k) ≤ Umax(k) (2.50)

−U (k) ≤ −Umin(k) (2.51)

2. Preliminaries 24

where

Umin(k) :=

umin(k)

umin(k + 1)
...

umin(k +Hu − 1)

, Umax(k) :=

umax(k)

umax(k + 1)
...

umax(k +Hu − 1)

.

M 25

Chapter 3

State of the art

In this chapter, we briefly review some state-of-the-art works in the topics explored in

this thesis.

3.1 Solving the MPC optimization problem

In [CBA99] Model Predictive Control is fully reviewed, from the main elements of every

MPC strategy, to several industrial applications examples. This book explains in detail

the MPC formulation, its analytic solution when constraints are not considered, along

with some numerical procedures that are good when we need to consider restrictions

in the output or predicted values. This reference also includes a full chapter regarding

robust MPC when uncertainties and inaccuracies arise.

Being computation time a common disadvantage of the implementations of Model

Predictive Control, in [HT12] a method based on constraint reduction with exact pe-

nalization is proposed for reducing the computation time of the optimization problem

solved at each iteration of Model Predictive Control. The article proposes a primal-dual

interior point method that takes advantage of the redundancy of some of the constraints

of the optimization problem. Also, the constraints are separated into hard and soft, and

latter violations can be traded off, permitting the use of infeasible warm starts for the

optimization problem.

3.2 MPC and quadrotors

In [CW13], a Model Predictive Control for quadrotors is presented for position control

problems. The non-linear dynamics of the quadrotor is linearized around hover state

3. State of the art 26

to obtain a linear model to be used in the MPC; this model is also decoupled into a

rotational and a positional system. Due to the fact that the linear model performs

well only in a vicinity of the hover conditions, the authors propose a cascade structure

where first, having as input the desired position, an MPC control generates the total

thrust and pitch and roll angles, constrained to be near the hover configuration, then a

second MPC uses the angles as inputs to generate the rotational torques, determining

the 4 inputs needed to achieve the desired position. The paper presents simulations that

support the effectiveness of the proposed cascaded control.

A comparison between two state-of-the-art approaches to Linear and Nonlinear Model

Predictive Control for quadrotors is held in [KBS16]. The two methods performance

is evaluated in three scenarios: hovering state, step response and aggressive trajectory

tracking. They adopt a cascade control scheme for the two inner controllers: an atti-

tude controller and a model based trajectory tracking controller; this scheme permits

to run control algorithms on separate and adequate hardware. The two approaches

show comparable behavior, with the nonlinear formulation performing slightly better

on disturbance rejection.

3.3 MPC and consensus

A review on the recent results in the design of distributed Model Predictive Control

is presented in [CSdlPL12]. The article presents several schemes, among which the

cooperative distributed Model Predictive Control, where the same global cost function

is optimized in each of the local controllers, and where each of them takes into account

the effects of its inputs on the entire plant. Distributed Model Predictive Control is

also reviewed, where the controllers do not know the dynamics of their neighbors. They

propose a solution in order to reach an agreement.

As we have seen it in Chapter 2, consensus theory is very useful for formation control.

In [CFZ15] and [DLL17], we can see two MPC-based approaches for consensus of first-

order multi-agent systems. The first one presents a decentralized MPC-based consensus

protocol for the case where the topology of communication between the agents switches

every T seconds. They give some conditions over the connectivity graphs to ensure

convergence of the agents. Depending on the characteristics of the connectivity graphs,

they propose a control protocol that can ensure convergence, in some cases, even for

an arbitrary value of the sampling period T . Also, in this paper, a window parameter

3. State of the art 27

Hw is introduced to consider the time-delay between applying a control and viewing its

effect into the system. The reference for the MPC considered in this work consists on

the local consensus error at each iteration.

In [DLL17], a distributed, MPC-based control for consensus among the same type

of agents is proposed. The control protocol depends on the actual consensus error and

on the predicted quantities along the prediction horizon. This protocol permits to use

a predefined consensus value, rather than the one given by the average of the initial

states of the agents. Also, the rate of convergence is shown to be greater than the

one of the classical consensus protocol. Finally, a particular formulation of the exact

solution of the optimization problem is given, permitting a low computational cost at

each iteration.

A distributed consensus and Model Predictive Control for formation of quadrotors

is formulated in [CS18]. The formation control problem is decoupled into horizontal

and vertical motions and the optimization problem considered in the Model Predictive

control is different for each motion. The leader of the formation tracks the desired rate

for each motion and generates the desired formation trajectories for the followers which

follow these by solving each one a Model Predictive Control optimization problem. The

studied movements where straight flight, turning around and following an helicoidal

path. The results where presented only as simulations.

A formation control of a fleet of quadrotors with Model Predictive Control is presented

in [DS18]. The article explores centralized and decentralized control architectures and

studies the performance of formation control in two scenarios: a static reference and a

dynamic one for tracking. All of this is conceived in a motion capture environment so

the position of every quadrotor is known through all the experiment. The C/GMRES

method to solve the Model Predictive Control optimization problem is proved to be

fast enough to assemble and maintain a formation following a static reference for both

architectures.

3.4 Formation control and collision avoidance

In the terms of formation control of quadrotors, [YSN17] propose a method that consid-

ers collision avoidance using Model Predictive Control, including a term of consensus.

Collision avoidance between the agents is considered by adding a term of repulsive force

to the cost function of Model Predictive Control. The difficulty arises from the nonlin-

3. State of the art 28

earity of the repulsive function and makes that it should be approximated as a linear

function, in order to achieve real-time control. Also, the model is assumed as a linear

system. The method is verified via experiments with three quadcopters.

On the other hand, a nonlinear Model Predictive formation Control is presented

in [RSCSC15]. The controllers are distributed to each quadcopter and coupling is

done through its objective function. The kinematic model of the quadrotor is formu-

lated relative to a the Serret-Frenet frame moving along a reference curved path. The

Serret-Frenet frame is specially useful for curved trajectories, and some details about

this frame and an application to path following of quadrotors can be found in [KG17].

In [RSCSC15], the coordination problem is solved through adjustments in the robot’s

speeds, combined with the path update rate for each robot. Since the Model Predictive

Control optimization problem is not always feasible due to measurement errors, some

of the constraints are relaxed in order to obtain an optimum. The results are presented

in a realistic simulation scenario.

A cooperative formation control strategy is proposed in [KN15], with collision-avoidance

capability, for a quadrotor system using decentralized Model Predictive Control and

consensus-based control. The dynamic model of a quadrotor is linearized and a multi

quadrotor system modeled as a graph. For each quadcopter, a Model Predictive Con-

trol optimization problem involving formation and collision avoidance is solved, but the

coupled constraints related with collision avoidance permit consistency for the whole

quadrotor system.

A collision avoidance control scheme between multiple quadrotor systems is formu-

lated in [IN17]. It uses distributed Model Predictive Control. Two quadrotor teams

must follow a trajectory while keeping a defined formation, but at some point the tra-

jectories cross. The collision risk is considered in the cost function as a penalty term

and a Kalman filter is used to estimate the positions and the predicted future positions

of an obstacle. A proof of the stability of the formation control is presented. However,

the results are only shown in a simulation environment.

As we can see, a lot of theoretical work has been done in both consensus with MPC

and formation control of quadrotors with MPC, but there are almost none that includes

realistic simulations nor experiments with real quadrotors. In this work, we aim to

formulate a MPC based formation control algorithm but also test its performance in both

realistic simulations and real experiments. Also, we want to introduce the maintenance

of connectivity, along obstacle avoidance, as part of the formation control task.

M 29

Chapter 4

Model Predictive Control for formation

control of quadrotors

Assumptions

We are going to consider a network of n agents described by a directed graph G which

has a spanning tree (i.e., the graph is connected). Each agent i has m state-variables

described as a vector xi ∈ Rm. A desired formation configuration for the whole set of

agents is given by a set of n displacement vectors di ∈ Rm (see Chapter 2.4.5).

All the agents are assumed to have the same dynamics, where the model of the

dynamics for each state-variable is the one of a simple integrator (2.20). Considering

a constant sampling period T , the discrete model of the dynamics for each agent i is

given by

xi(k + 1) = xi(k) + Tui(k). (4.1)

where ui(k) ∈ Rm is the vector of control inputs. In this chapter, we will present two

main strategies for the formation control of n quadrotors, modeled at kinematic level as

in (4.1), given a desired configuration. In section 4.1, a control strategy in two steps is

presented. The first step defines the reference trajectories for each quadrotor and the sec-

ond one corresponds to a decentralized MPC-based tracking control for these reference

trajectories. In section 4.2, we present a single-step, decentralized MPC-based control,

using as a reference the consensus error at each iteration. In section 4.3, corresponding

distributed architecture considerations for the previous strategies are presented. Finally,

in section 4.4, we discuss the main advantages and disadvantages of each strategy and

present some simulations to support the selection of the best strategy to implement.

Some basic Python simulations associated with obstacle avoidance and connectivity

maintenance are introduced in this chapter, while more detailed simulations made within

4. Model Predictive Control for formation control of quadrotors 30

the dynamic simulator Gazebo are presented in Chapter 5, along with experiments with

real quadrotors.

4.1 Decentralized architecture with a predefined

consensus path

Given the classical consensus protocol defined in (2.22), the trajectories for all the agents

can be pre-defined in order to achieve consensus. Even though these trajectories are

not necessarily collision-free, they can be used as a reference for the Model Predictive

Control algorithm presented in (2.31). As we will see, some constraints need to be added

in order to avoid collisions.

Following this idea, in this section, we are going to introduce a two-step control:

firstly, consensus trajectories for virtual agents are generated; secondly, the generated

trajectories are followed using decentralized Model Predictive Control, while adding

some constraints to avoid collisions.

4.1.1 Consensus-driven trajectories

In order to reach the desired configuration defined by the vectors di, virtual agents zi are

defined as in (2.27). Using Euler integration with sampling period T and the consensus

protocol defined in (2.29), discrete reference trajectories ri(k) for each virtual agent zi

can be defined as follows.

To characterize the initial conditions of the system, we define ri(0) = zi(0) = xi(0)−
di for i = 1, . . . , n, and the reference path for each virtual agent is described by

ri(k + 1) = ri(k) + T
�

j∈Ni

(rj(k)− ri(k)). (4.2)

These reference paths ri are updated at least until consensus is achieved and, conse-

quently, until the real agents reach a formation. If we would like to find the reference

trajectories for a real agent xi, we should add di to ri(k) for all the iterations k:

xi(k) = ri(k) + di.

4. Model Predictive Control for formation control of quadrotors 31

4.1.2 Cost function for the Model Predictive Control

We are considering a decentralized control architecture (see Section 2.3), so the control

inputs for each agent are computed separately and are not sent to the other agents.

Given (2.28), the optimization problem can be expressed in terms of the virtual agents

zi and the control inputs. Then, the optimal control inputs u∗
i can be directly applied

to real agents xi.

Each agent will minimize an individual cost function of the form (2.31) taking as

reference the path generated by (4.2). With the parameters defined in Section 2.5.2, the

cost function for the agent i is defined by

Φi(k) = βi

Hp�

t=Hw

||zi(k + t|k)− ri(k + t)||2 + γi

Hu�

t=1

||ui(k + t− 1|k)||2. (4.3)

The first term penalizes deviations from the reference trajectory induced by the con-

sensus control (Eq. (4.2)), while the second term penalizes high values of the control

inputs.

4.1.3 Obstacle avoidance

The mere minimization of (4.3) will lead to achieve a formation with the same charac-

teristics of the one defined by vectors di, but there is no guarantee about the absence

of collisions between real agents. Given this, it is mandatory to consider constraints in

the optimization problem to ensure that the real agents do not collide. Even more, we

will ensure that they do not approach each other more than a security distance D > 0.

We can consider two types of constraints: hard constraints, in the form of equalities or

inequalities in the optimization problem, and soft constraints, in the form of a penalty

term to be added to the cost function (4.3).

Given that we are considering a decentralized control architecture, an agent will only

receive the information about the positions of its neighbors, so it would be able to

avoid only the agents it is communicated with. We will also apply the following evasion

strategies to the collision avoidance with respect to fixed obstacles that can be in the

environment; we suppose either that each agent knows in advance the position of the

fixed obstacles or that it can measure its relative distance to the obstacles.

4. Model Predictive Control for formation control of quadrotors 32

Hard constraints

Given an agent i, hard constraints for collision avoidance along the prediction horizon

are expressed in the form

||xi(k + t|k)− xj(k)||2 ≥ D2, (4.4)

with t = 1, . . . , Hp and j ∈ Ni. As the agent i only knows the position of its neighbors at

iteration k and does not know in what direction they are going to move, the neighboring

agents are considered as static obstacles along the prediction horizon.

There will be Hp constraints of the type of (4.4) for each neighbor j of agent i, adding

in total Hp|Ni| inequality constraints to the optimization problem. These constraints

ensure that, along the prediction horizon, the distance between the agent i and the

actual position of its neighbors, is at least D for all the predicted positions of agent i.

Considering that all the predicted positions along the prediction horizon Hp are actu-

ally close from each other, it is reasonable to suggest that most of the Hp|Ni| constraints
of the form (4.4) are very similar. Depending on the connectivity of the graph G and

on the size of the prediction horizon Hp, several constraints could be needed, making

the optimization problem computationally harder to solve. On the other hand, some

configurations of the system, along with the perturbations associated with the system,

can lead to inconsistent constraints, making the optimization problem impossible to

solve.

Hence, as a lighter and more flexible alternative, let us consider the average distance

between the agent i and a neighbor j ∈ Ni along the prediction horizon. This average

value is given by

d2ij =
||Xi(k + 1)− Yj(k)||2

Hp

, (4.5)

where

Xi(k + 1) :=

xi(k + 1|k)
xi(k + 2|k)

...

xi(k +Hp|k)

, Yj(k) :=

xj(k)

xj(k)
...

xj(k)

.

Then, we consider just one constraint for each neighbor, given by

d2ij ≥ D2. (4.6)

There will be |Ni| constraints of type (4.6) added to the optimization problem. This

4. Model Predictive Control for formation control of quadrotors 33

option to manage the collision avoidance is computationally cheaper; however, this type

of constraint does not ensure that all the predicted positions are away from the neighbors

by more than D, as only the average is.

We can rewrite the average distance (4.5) explicitly in terms of the vector Ui(k), that

stacks the future controls, as defined in (2.34), using (2.36)

d2ij (Ui(k)) =
||Pxxi(k) + PUUi(k)− Yj(k)||2

Hp

(4.7)

=
1

Hp

�
Ui(k)

TP T
U PUUi(k)

+ 2 (PXxi(k)− Yj(k))
T PUUi(k) (4.8)

+ ||PXxi(k)− Yj(k)||2
�
.

We solve the optimization problem as a quadratic programming problem for the vector

Ui(k), and constraints in this type of formulation should be linear inUi(k). Nevertheless,

as we can see in (4.8), d2ij(Ui(k)) is non linear in Ui(k) (it is quadratic instead). Hence,

we can linearize d2ij(Ui) around Ui = 0 in order to get a linear approximation that

we can use in the formulation of the constraints. Let d̄2ij be this linear approximation

defined as

d̄2ij (Ui(k)) = d2ij(0) +∇Ui
d2ij(0) · (Ui(k)− 0)

=
||PXxi(k)− Yj(k)||2

Hp

+
2

Hp

(PXxi(k)− Yj(k))
T PUUi(k). (4.9)

Then, constraint (4.6) is substituted by

d̄2ij ≥ D2. (4.10)

Figure 4.1 shows the levels of the squared distance linear approximation d̄2ij for an

agent xi and an obstacle xj. The red line corresponds to the level d̄2ij = D2, when

the constraint (4.10) becomes active; therefore, the control is forced to stay at the left

side of the red line. As we can see, the levels are perpendicular to the line between

the agent xi and the obstacle xj; in particular, the level d̄2ij = D2 should be tangent

to the security circumference in green dashed line, but the linearization error does not

make this possible. Nevertheless, the red line and the security circumference stay close

to each other.

4. Model Predictive Control for formation control of quadrotors 34

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

xi

xj

−0.64

−0.32

0.00

0.32

0.64

0.96

1.28

1.60

d̄
ij

2

Figure 4.1: Shape of the linearized distance d̄2ij for an agent xi and an obstacle xj.

Soft constraints

In [KN15], the authors propose to add a penalty term to the cost function to be optimized

in order to avoid collisions; they claim that, even though adding this term does not

guarantee the absence of collisions, it is enough in most of practical situations.

This penalty term is of the form of a potential field and is given by

ρij =
kd

(dij −D)2
, (4.11)

where kd > 0 is a constant associated with the smoothness of evasion and dij is the

average distance defined in (4.5). This penalty term in (4.11) becomes smaller as the

agents are farther, and increases as they approach one to the other.

This penalty term is clearly non linear nor quadratic in Ui(k), hence, as we did before,

we propose an approximation of ρij that we can use for the quadratic programming

formulation of the optimization problem. Let ρ̄ij be a linear approximation around

Ui = 0 of the penalty term defined as

ρ̄ij (Ui(k)) = ρij(0) +∇Ui
ρij(0) · (Ui(k)− 0)

=
kd

(dij(0)−D)2
− kd

(dij(0)−D)3
1

dij(0)
∇Ui

d2ij(0) ·Ui(k)

=
kd

(dij(0)−D)2
− 2kd

Hpdij(0) (dij(0)−D)3
(PXxi(k)− Yj(k))

T PUUi(k).

(4.12)

The linear approximation ρ̄ij has an independent term and adding it to the cost

4. Model Predictive Control for formation control of quadrotors 35

function will not affect the optimum U ∗
i (k), so we only need to add to the cost function

the linear penalty term

− kρ (PXxi(k)− Yj(k))
T PUUi(k), (4.13)

where kρ =
2kd

Hpdij(0) (dij(0)−D)3
.

We can also consider the quadratic term of the Taylor approximation of ρij(Ui(k))

around Ui = 0 by adding to the matrix H(k) of the quadratic form, the following matrix

kρ

�
1

Hpdij(0)

�
1

dij(0)
+

3

dij(0)−D

�

P T
U (PXxi(k)− Yj(k)) (PXxi(k)− Yj(k))

T PU − P T
U PU

�
.

(4.14)

Basic simulations

To evaluate the performance of the previous obstacle avoidance constraints, some very

simple simulations made in Python are presented hereafter. The experiment consists of

two agents lying on the two opposite corners of a square, at the same elevation level.

Then, each agent tries to reach the opposite corner, making the agents going one towards

the other. Some Gaussian noise is added to the position of each agent neighbor, which

gives certain randomness to the chosen evasion path.

Figure 4.2 shows a decentralized evasion maneuver using only average hard constraints

of the form (4.10) between a green agent, who goes from the red dot (0, 0, 1) to the black

dot (2, 2, 1), and a blue agent, who goes from the black dot to the red one. As we can

see, the evasion maneuver occurs mainly vertically, along the Z axis, causing that one

agent passes on top of the other one.

Nevertheless, in practice, when a quadrotor is at the same (x, y) coordinates but at a

higher altitude than a neighboring one, a lot of disturbance is created over the quadrotor

who is at the bottom, from air turbulence. This is why we propose to handle the evasion

between agents only in the XY plane, considering the other agents as obstacles modeled

as infinite cylinders.

Figure 4.3 shows a top view of the same experiment as before but with the difference

that we force the evasion to occur only horizontally, using the cylindrical constraints.

On the left is the evasion using only average hard constraints of the form (4.10), adapted

to consider only horizontal evasion; the evasion maneuver is performed around (0.8, 0.8)

4. Model Predictive Control for formation control of quadrotors 36

X

0.0
0.5

1.0
1.5

2.0

Y

0.0

0.5

1.0

1.5

2.0

Z

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

Figure 4.2: Decentralized evasion between two agents using only average hard con-
straints of the form (4.10). Evasion is performed mainly along the Z axis.

for the green agent and around (1.2, 1.2) for the blue one. On the other hand, the figure

in the right shows the same evasion experiment but using also soft constraints of the

form (4.13), adapted for horizontal evasion; the evasion maneuver occurs earlier than

the scenario on the left, taking place around (0.75, 0.75) for the green agent and around

(1.25, 1.25) for the blue one. Also, the final trajectory presents a lot of oscillations.

These oscillations that we observe with the use of soft constraints in the form of a penalty

term in the cost function may appear because, at some iterations, the penalty term has

increased a lot and leads the agents to evade themselves, affecting the consensus, and

then, when the penalty term has decreased, the agents become closer again in order to

achieve their target positions.

Along with Figure 4.3, Figure 4.4 shows the distance between the two agents during

the simulation. For the scenario using only average hard constraints, sometimes the

distance reaches the security distance D, even trespassing this bound at some iterations.

In the case of the right figure, where we also use soft constraints, the distance between

the agents never reaches the security distance D, but it oscillates a lot in its vicinity.

4.1.4 Connectivity maintenance

The connectivity between agents, that is defined through the graph G modeling the

communication between agents, usually depends on the distance between them. Hence,

4. Model Predictive Control for formation control of quadrotors 37

Figure 4.3: Decentralized evasion bet
average hard constraints
linear soft constraints of the

Figure 4.4: Distance between two agents for the decentralized evasion maneuver of
Figure 4.3. On the left: Using only the average hard constraints of the
form (4.10). On the right: Using also the linear soft constraints of the
form (4.13).

in order to preserve the connectivity between two neighbor agents, the distance between

them should be top-limited by a constant E, which corresponds to the maximum dis-

tance that two neighbor agents can have without losing communication. We can rewrite

the constraints for obstacle avoidance in order to satisfy connectivity maintenance.

Hard constraints

Considering the average

prediction horizon dij, giv

in (4.6), we can write connectivit

4. Model Predictive Control for formation control of quadrotors 38

As we did for the obstacle avoidance constraints, we need to consider linear constraints

in terms of Ui(k). Hence, considering the linear approximation of the average distance

d̄2ij given by (4.9), the constraints of the form (4.15) are substituted by

d̄2ij ≤ E2. (4.16)

Soft constraints

Following the idea used for obstacle avoidance, of a penalty term of the form of a

potential field, the term (4.11) can be adapted for connectivity maintenance as

τij =
kc

(dij − E)2
, (4.17)

where kc > 0 and dij is the average distance defined in (4.5). This penalty term becomes

larger as the agents are farther and near the maximum distance E.

Following the same idea of Taylor approximation in (4.12), we can consider the linear

penalty term to be added to the cost function as

− kτ (PXxi(k)− Yj(k))
T PUUi(k), (4.18)

where kτ =
2kc

Hpdij(0) (dij(0)− E)3
.

We can also consider the quadratic term of the Taylor approximation by adding to

the matrix H(k) of the quadratic form, the matrix

kτ

�
1

Hpdij(0)

�
1

dij(0)
+

3

dij(0)− E

�

P T
U (PXxi(k)− Yj(k)) (PXxi(k)− Yj(k))

T PU − P T
U PU

�
.

(4.19)

Using both types of soft constraints, the ones for obstacle avoidance and the ones for

connectivity maintenance, results on the sum of both penalty terms, giving a potential

field of two asymptotes for the average distance dij. Figure 4.5 illustrates the penalty

terms when they are used only for obstacle avoidance or connectivity maintenance, or

for both tasks simultaneously.

4. Model Predictive Control for formation control of quadrotors 39

0.5 1.0 1.5 2.0 2.5
dij

10−1

100

101

102

103

104

D

0.5 1.0 1.5 2.0 2.5
dij

10−1

100

101

102

103

104

E

0.5 1.0 1.5 2.0 2.5
dij

10−1

100

101

102

103

104

D

E

Figure 4.5: Shape of the soft constraints. Left: Obstacle avoidance. Center: Connectiv-
ity maintenance. Left: Both.

4.2 Decentralized architecture with local consensus

error

Instead of generating reference trajectories for each agent, we can also use the theoret-

ical consensus values between neighbors at each iteration as a reference for the Model

Predictive Control cost function, i.e., not separating the two processes. This approach

is inspired by the results of [CFZ15].

As in the previous section, we consider virtual agents defined as in (2.27) and we aim

at controlling them to achieve consensus between them and reach the desired formation

for the corresponding real agents. In order to achieve this, a communication graph with

a spanning tree is enough [CFZ15].

4.2.1 Cost function for the Model Predictive Control

The cost function for each agent i is defined as follows

Φi(k) = βi

Hp�

t=Hw

||zi(k + t|k)− qi(k)||2 + γi

Hu�

t=1

||ui(k + t− 1|k)||2, (4.20)

where

qi(k) =
1

|Ni(k)|+ 1

�

j∈Ni(k)∪{i}
zj(k). (4.21)

As mentioned above, one can see that the objective function is now expressed as

the sum of predicted consensus errors in the near future (instead of deviations to the

reference trajectory arising from solving the consensus problem separately) and control

errors (similar to Eq. 4.3). At each iteration, the reference value qi is the same for all

4. Model Predictive Control for formation control of quadrotors 40

the prediction horizon, because we do not have more information about what will occur

to the neighbors. The term qi(k) corresponds to the theoretical consensus of the actual

positions of virtual agent i and its neighbors, as presented in (2.25).

As we are still considering a decentralized control architecture, in order to avoid

collisions, the same constraints defined in (4.4), (4.6) and (4.11) can be used.

4.3 Distributed architecture

The main advantage of using a distributed control architecture (see Section 2.3) relies

in the fact that each agent can take into account the movements that are going to be

performed by its neighbors, since they also communicate their control inputs.

Again, we are going to look for the consensus of virtual agents as defined in (2.27) to

consequently achieve the agents formation.

4.3.1 Cost function for the Model Predictive Control

It is worth noting that the two options of decentralized schemes described in the previous

sections can be extended to the distributed form. On the one hand, the cost function

using the reference trajectories for each agent defined in (4.3) keeps the same form by

using a distributed control architecture, as the reference path is predefined and cannot

be changed.

On the other hand, the cost function that considers the local consensus error defined

in (4.20) presents an opportunity to take advantage of distributed control. The reference

value qi can change along the prediction horizon by considering a different consensus

theoretical value for each term in the prediction horizon. In this case, the cost function

of agent i is defined as

Φi(k) = βi

Hp�

t=Hw

||zi(k + t|k)− qi(k + t|k)||2 + γi

Hu�

t=1

||ui(k + t− 1|k)||2, (4.22)

where

qi(k + t|k) = 1

|Ni(k)|+ 1

�

j∈Ni(k)∪{i}
zj(k + t|k). (4.23)

As it appears in (4.23), agent i considers that its neighbor j ∈ Ni will apply the same

control input as the one that it has computed through its own MPC and that it has

4. Model Predictive Control for formation control of quadrotors 41

communicated to him along all the prediction horizon, that is

zj(k + 1|k)
zj(k + 2|k)

...

zj(k +Hp|k)

= PXzj(k) + PU

ũj(k)

ũj(k)
...

ũj(k)

, (4.24)

where ũj(k) is the communicated control input from j to i and PX , PU are defined as

in (2.37), (2.38) according to the dynamics in (4.1).

The reference qi(k + t|k) for the distributed architecture depends not only on the

predicted states of the neighbors of agent i, but also on the predicted states of the agent

itself, that involves a linear dependency of qi(k + t|k) on the inputs ui that are going

to be computed.

An extended reference vector Qi(k + 1) along the prediction horizon can be defined

as follows

Qi(k + 1) =
1

|Ni(k)|+ 1

�
j∈Ni(k)

zj(k + 1|k)
�

j∈Ni(k)

zj(k + 2|k)
...

�
j∈Ni(k)

zj(k +Hp|k)

+
1

|Ni(k)|+ 1

zi(k + 1|k)
zi(k + 2|k)

...

zi(k +Hp|k)

. (4.25)

As stated in (2.43), vectorQi(k+1) can be rewritten asQi(k+1) = Ai(k)+Bi(k)Ui(k)

where

Ai(k) :=
1

|Ni(k)|+ 1

�
j∈Ni(k)

zj(k + 1|k)
�

j∈Ni(k)

zj(k + 2|k)
...

�
j∈Ni(k)

zj(k +Hp|k)

+
1

|Ni(k)|+ 1
PXzi(k),

Bi(k) :=
1

|Ni(k)|+ 1
PU .

4.3.2 Obstacle avoidance

Considering the communicated control inputs in the constraints for obstacle avoidance

may lead to an anticipated or smoother evasion maneuver.

4. Model Predictive Control for formation control of quadrotors 42

The average distance along the prediction horizon between the agent i and a neighbor

j ∈ Ni will now be defined as

h2
ij :=

||Xi(k + 1)− X̃j(k + 1)||2
Hp

, (4.26)

where Xi(k+1) is defined as in (4.5) and X̃j(k+1) gathers all the predicted states for

the neighbor j given ũj(k), the communicated control input from j to i:

X̃j(k + 1) :=

x̃j(k + 1|k)
x̃j(k + 2|k)

...

x̃j(k +Hp|k)

=

zj(k + 1|k)
zj(k + 2|k)

...

zj(k +Hp|k)

+

dj

dj

...

dj

. (4.27)

Hard constraints

The constraint presented in (4.4) can be modified for the distributed architecture as

follows:

||xi(k + t|k)− x̃j(k + t|k)||2 ≥ D2. (4.28)

Using just the average distance, the constraint (4.6) becomes

h2
ij ≥ D2. (4.29)

Following the linearization presented in (4.9) and given that X̃j(k+1) is independent

of Ui(k), the linear model for h2
ij (Ui(k)) is defined as

h̄2
ij (Ui(k)) =

���
���PXxi(k)− X̃j(k + 1)

���
���
2

Hp

+
2

Hp

�
PXxi(k)− X̃j(k + 1)

�T

PUUi(k)

(4.30)

then the constraint (4.29) can be substituted by

h̄2
ij ≥ D2. (4.31)

Soft constraints

The decentralized penalty term in (4.11) becomes

σij =
kd

(hij −D)2
. (4.32)

4. Model Predictive Control for formation control of quadrotors 43

In order to solve the optimization problem as a quadratic programming problem, as

we did in (4.13), we can consider the linear penalty term to be added as

− kσ

�
PXxi(k)− X̃j(k + 1)

�T

PUUi(k) (4.33)

where kσ =
2kd

Hphij(0) (hij(0)−D)3
.

As for the decentralized case, we can also consider the quadratic term of the Tay-

lor approximation of σij(Ui(k)) around Ui = 0 by adding to the matrix H(k) of the

quadratic form, the matrix

kσ

�
1

Hphij(0)

�
1

hij(0)
+

3

hij(0)−D

�

P T
U

�
PXxi(k)− X̃j(k)

��
PXxi(k)− X̃j(k)

�T

PU − P T
U PU

�
.

(4.34)

Basic simulations

Figure 4.6 shows the same experiment as in the previous section in Figure 4.3, but

considering now a distributed architecture. On the left is the evasion maneuver using

only the average hard constraints of the form (4.31), adapted to consider only horizontal

evasion; the evasion maneuver is performed around (0.62, 0.62) for the green agent and

around (1.37, 1.37) for the blue one. On the other hand, the figure on the right shows the

same evasion experiment but using also the soft constraints of the form (4.33) adapted

for horizontal evasion; the evasion maneuver occurs around the same coordinates as for

the left scenario, but in a different direction. This is probably caused by the randomness

introduced by the Gaussian noise added to the perception of neighbors.

The whole evasion maneuver starts earlier than the one that we observed in the

decentralized case, because each agent knows in advance what its neighbor is planning

to do. Also, the final trajectory for the right scenario presents much less oscillations

than the equivalent one in the decentralized architecture.

Along with Figure 4.6, Figure 4.7 shows the distance between the two agents along

the simulation. For the scenario using only the average hard constraints, the distance

only approaches and almost reaches the security distance D. In the case of the right

figure, using also the soft constraints, the distance between the agents never reaches

the security distance D, and the oscillations are drastically decreased from what we

observed with the decentralized architecture.

4. Model Predictive Control for formation control of quadrotors 44

Figure 4.6: Distributed evasion maneuv
the average hard constrain
the linear soft constraints

Figure 4.7: Distance between two agents for the distributed evasion maneuver of Fig-
ure 4.6. On the left: Using only the average hard constraints of the
form (4.31). On the right: Using also the linear soft constraints of the
form (4.33).

4.3.3 Connectivity maintenance

Regarding connectivity maintenance, we will see that considering the communicated

controls may also result in smoother trajectories.

Hard constraints

Considering the average distance

prediction horizon, given

we can write connectivit

4. Model Predictive Control for formation control of quadrotors 45

As we did for obstacle avoidance constraints, we need to consider linear constraints

in terms of Ui(k). Hence, considering the linear approximation of the average distance

h̄2
ij given by (4.30), the constraints of the form (4.15) are substituted by

h̄2
ij ≤ E2. (4.36)

Soft constraints

The decentralized penalty term in (4.17) can be adapted for a distributed architecture

as

υij =
kc

(hij − E)2
, (4.37)

where kc > 0 and hij is the average distance defined in (4.26). This penalty term

becomes larger as the agents are farther and near the maximum distance E. Then, we

can consider the linear penalty term to be added to the cost function as

− kυ

�
PXxi(k)− X̃j(k)

�T

PUUi(k), (4.38)

where kυ =
2kc

Hphij(0) (hij(0)− E)3
.

We can also consider the quadratic term of the Taylor approximation by adding to

the matrix H(k) of the quadratic form, the matrix

kυ

�
1

Hphij(0)

�
1

hij(0)
+

3

hij(0)− E

�

P T
U

�
PXxi(k)− X̃j(k)

��
PXxi(k)− X̃j(k)

�T

PU − P T
U PU

�
.

(4.39)

4.4 Discussion and strategy selection

Now we are going to discuss the main advantages and disadvantages of the different

strategies presented along this chapter. Based on this discussion, we are going to select

the best strategy in three main areas of the formation control: the type of the reference

to be used in the cost function of the Model Predictive Control, i.e., predefined reference

or local consensus error; the types of the constraints to be considered for both obstacle

evasion and connectivity maintenance, i.e., average hard and/or soft constraints; and

finally the control architecture (decentralized or distributed).

All the experiments along this section consider a fully connected communication graph

4. Model Predictive Control for formation control of quadrotors 46

for the agents, which means that every agent knows the positions, and the computed

controls for the distributed architecture, of all the other agents.

Reference for the Model Predictive Control

Regarding the reference for the Model Predictive Control, using a predefined consen-

sus path offers some advantages over using local consensus error; the first concerns

computation time, since having a predefined consensus path decreases the amount of

computations that are needed at each iteration; another advantage relates with the eva-

sion as, when an agent faces an obstacle, it just needs to deviate from its reference and

then return to its predefined path, without affecting the reference for the other agents.

X

0.0
0.5

1.0
1.5

2.0

Y

−1.0

−0.5

0.0

0.5

1.0

Z

0.0

0.5

1.0

1.5

2.0

O

Figure 4.8: Target formation for 4 quadrotors.

We first compared the performance of the approaches in the way in which the reference

trajectory is generated. The experiment aims to achieve a formation as the one in

Figure 4.8, which shows the displacement vectors that defines the desired formation

for 4 agents. Figure 4.9 shows a comparison between using as a reference the local

consensus error or the predefined consensus trajectories. The experiment is designed

in such a way that two agents must avoid each other. For evasion between agents,

average hard constraints of the form (4.10) and a decentralized control architecture are

considered.

The reference trajectories consist on straight lines from the initial formation to the

target one. However, when evasion constraints are added, the final trajectories differ

from the reference ones, but the evasion between the blue and green agents does not

affect the trajectories of the two other agents. In the case of the use of local consensus

4. Model Predictive Control for formation control of quadrotors 47

X

−0.5
0.0

0.5
1.0

1.5

Y

−0.5

0.0

0.5

1.0

1.5

Z

0.0

0.5

1.0

1.5

2.0

Initial formation

Final formation

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(a) Local consensus error

(b) Predefined reference

Figure 4.9: Decentralized formation experiment using evasion constraints of the
form (4.10). On the top: Using local consensus error as reference. On
the bottom: Using predefined reference paths (dotted lines).

error as reference for the MPC, the trajectories

the agents that do not need to evade themselv

that shows the trajectories and final consensus

consensus error as the reference, the trajectories

more curvy, even though these agents do

using predefined paths as the reference leads

followed if the agents do no need to evade

It is important to remark that the predefined

in the sense of the bounds of the input con

4. Model Predictive Control for formation control of quadrotors 48

X

−2.0−1.5−1.0−0.5
0.0

0.5
1.0

Y

0.0

0.2

0.4

0.6
0.8

1.0

Z

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

X

−2.0−1.5−1.0−0.5
0.0

0.5
1.0

Y

0.0

0.2

0.4

0.6
0.8

1.0

Z

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

Figure 4.10: Trajectories of the virtual agents for the formation experiment of Figure 4.9.
Left: Using local consensus error as reference. Right: Using predefined
paths (dotted lines).

predefined consensus trajectory advances too fast in the time, then the controls gener-

ated with the MPC can saturate and make impossible to reach the reference trajectory.

Figure 4.11 shows the controls generated for the formation experiment in Figure 4.9

using predefined consensus trajectories as reference for the MPC. We can see that the

controls saturate a little at the beginning, but then the reference trajectories advance

slower and this makes possible for the MPC to reach them; the controls saturate again

when there is a need of evasion between the agents. If the predefined reference trajec-

tories advance really fast, the behavior of the generated trajectories of the MPC will be

very similar to the ones generated using as a reference the local consensus error.

−5

0

5

u
x

−5

0

5

u
y

0 25 50 75 100 125 150 175
iterations

−5

0

5

u
z

Figure 4.11: Input controls for the Figure 4.9 (b).

As a side note, even though we are considering a complete communication graph, a

4. Model Predictive Control for formation control of quadrotors 49

graph with a spanning tree is enough to achieve consensus between the virtual agents

and therefore the desired formation. For obstacle avoidance, only the communication

between the blue and green agents is needed. Then, the communication could be relaxed

with a lighter graph, depending on the formation requirements for each experiment.

Nevertheless, the main disadvantage of using a predefined consensus path as reference,

arises with the presence of fixed obstacles in the environment. In this case, we cannot

guarantee the achievement of the formation because, if the final position of the formation

given the predefined consensus path is obstructed by any fixed obstacle, then the agents

will not be able to reach the desired configuration. That is why we choose as a reference

for the MPC the local consensus error, because of its capability to adapt to different

environments, even with the presence of fixed obstacles and even when the evasion

maneuvers of one agent affect the consensus reference.

Type of constraints

Regarding the obstacle avoidance strategies, we have three choices for implementation:

use only average hard constraints of the form (4.10) or (4.31), depending on the archi-

tecture; use only soft constraints on the form of a penalty term such as (4.13) or (4.33);

or finally, use a combination of the previous two, i.e. both hard and soft constraints.

Beyond the advantages and disadvantages of the different strategies presented through

the previous figures of this chapter, such as approaching and occasionally trespassing the

security distance D, or the presence of a lot of oscillations, here we are going to present

some cases of failures corresponding to the different strategies for obstacle avoidance.

As stated in [KN15], using only soft constraints of the form (4.13) or (4.33) has shown

to be enough to avoid collisions between agents. Nevertheless, in some cases, the use

of only this type of constraints makes impossible to reach the position reference. As we

can see in Figure 4.12, facing the same experiment as in Figure 4.3, the use of only soft

constraints of the form (4.13) makes impossible in some cases to reach the reference for

each agent, as the distance between the agents keeps oscillating forever and none of the

agents knows what to do next.

However, when we add average hard constraints of the form (4.10) to the same ex-

periment, the agents are now able to avoid themselves and reach successfully theirs

references. This can be appreciated in Figure 4.13.

In the cases where the use of only soft constraints of the form (4.13) is enough to

reach the reference, adding average hard constraints of the form (4.10) helps to reduce

4. Model Predictive Control for formation control of quadrotors 50

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

Figure 4.12: Case of failure for decentralized evasion between two agents using only the
soft constraints of the form (4.13).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5
m

Distance between agents

D

Figure 4.13: The same evasion experiment as in Figure 4.12 using both hard and soft
constraints.

the oscillations. In Figure 4.14, we present a case of success for an evasion maneuver

between two agents using only the soft constraints. The oscillations appear along 85

iterations, while in Figure 4.15, using both soft and hard constraints, the oscillations

appear only along 50 iterations.

Apparently, for the decentralized architecture, the use of only average hard constraints

is not good enough to make the agents reach the reference for some avoidance cases.

Figure 4.16 shows an experiment of an evasion maneuver between three agents, where

the use of only average hard constraints is not sufficient to make the agents reach

the formation, as the distance between the agents stays at the vicinity of the security

distance D. Again, the use of soft constraints of the form (4.13) makes possible for the

agents to reach the target reference, as it can be seen in Figure 4.17.

4. Model Predictive Control for formation control of quadrotors 51

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

Figure 4.14: Case of success for a decentralized evasion maneuver between two agents
using only the soft constraints of the form (4.13).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5
m

Distance between agents

D

Figure 4.15: The same evasion experiment as in Figure 4.14 but using both the hard
and soft constraints. The oscillations are considerably reduced.

To evaluate the ratio of success of each evasion strategy, we performed 3000 evasion

experiments: 1000 between two agents, 1000 between three agents and 1000 between four

agents, where each agent is on the corner of a square and attempts to reach the opposite

corner. Each experiment was performed using either only average hard constraints,

only soft constraints or the combination of both, for the decentralized and distributed

architectures. Table 4.1 shows the results. It is important to remark that a failure case

is considered when the agents could not reach their reference and that we have observed

no case where the agents collide, i.e., the distance between the agents never trespass the

security distance D.

It is interesting to notice that neither the average hard constraints alone, nor the soft

constraints alone have a good performance for all the evasion cases. For example, in

4. Model Predictive Control for formation control of quadrotors 52

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

m

Distance between agents

D

Figure 4.16: Case of failure for an evasion maneuver between three agents using only
average hard constraints of the form (4.10). The red circles correspond to
the security radius.

−0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 25 50 75 100 125 150 175
iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
m

Distance between agents

D

Figure 4.17: The same evasion experiment as in Figure 4.16 but using both hard and
soft constraints.

N. agents
Decentralized Distributed

Avg. hard Soft Both Avg. hard Soft Both

2 100% 0.6% 100% 100% 0% 100%

3 0% 100% 100% 90.6% 71.4% 100%

4 0% 99.8% 100% 25.6% 12.9% 99.2%

Table 4.1: Percentage of success for evasion maneuvers between different number of
agents using the three proposed evasion strategies, in both decentralized and
distributed architectures.

the decentralized architecture, the use of only average hard constraints is effective only

for the two agents case of evasion, while the use of only soft constraints is only effective

4. Model Predictive Control for formation control of quadrotors 53

for the evasion of three and four agents. However, the use of both types of constraints

is effective for the three evasion cases, in both decentralized and distributed control

architectures.

These results lead us to conclude that the best avoidance strategy consists on using

both types of constraints, soft and average hard. They allow to reach the reference for

the MPC and to reduce oscillations when the distance between the agents is near the

security distance D.

We have run simulations for evasion experiments up to 30 agents, and the use of

both types of constraints, soft and average hard, has shown to be effective to avoid

collisions. The generated paths can be seen in Figure 4.18, for both decentralized and

distributed architectures. The evasion experiments have as an initial configuration a

regular polygon and each agent has to reach the diametrically opposite point of the

circumference that circumscribes the polygon. We observed that the length of each side

of the polygon should be four times the security distance D in order to give enough

space for the evasion. Also we have not observed any increment on the computation

time of the optimization problem, just an increment on the time needed to construct

this problem.

Figure 4.18: Generated paths for evasion between 30 agents using both hard and soft
constraints. Left: Decentralized architecture. Right: Distributed architec-
ture.

In the case of connectivity maintenance, as the proposed constraints are of the same

form as the ones for evasion, based on the previous results, we choose also to use both

types of constraints, soft and average hard constraints.

4. Model Predictive Control for formation control of quadrotors 54

Control architecture

Regarding the choice of the control architecture, decentralized or distributed, we refer

to the quality of the solution provided by each method. Figure 4.19 shows the same

success case of Figure 4.15 but using a distributed control architecture. The oscillations

in the generated trajectory and in the distance between agents have almost vanished

compared to the decentralized case.

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

Figure 4.19: The same evasion experiment as in Figure 4.15 but using a distributed
control architecture, resulting on a smoother trajectory.

Regarding the computed con ws, in the top, the computed

controls for the decentralized ottom, the controls for the dis-

tributed architecture. As w trols oscillate drastically less

in the distributed architecture. can notice is that the evasion

effect in the controls starts case, where the controls change

their behavior around 5 iterations g time-step in the decentral-

ized architecture; this is caused ossess each agent in advance

regarding the actions to be taken by its neighbors.

Given all these observations, we choose as our baseline formation control strategy an

MPC using as reference the local consensus error between virtual agents, both average

hard constraints of the form (4.31) and soft constraints of the form (4.33) adapted

for horizontal evasion, and both average hard constraints of the form (4.36) and soft

constraints of the form (4.38) for connectivity maintenance, all of this using a distributed

control architecture.

4. Model Predictive Control for formation control of quadrotors 55

−2.5

0.0

2.5

u
x

0 25 50 75 100 125 150 175
iterations

−2.5

0.0

2.5

u
y

(a) Decentralized architecture

(b) Distributed architecture

Figure 4.20: Computed controls for the evasion experiments of Figures 4.15 and 4.19.

Complete performance example

Here we illustrate the performance of a distributed

in the case of four quadrotors in an environmen

reference the local consensus error, and both

and linear soft constraints of the form (4.33)

The Figure 4.8 shows the target formation

show the control results.

As we can see in Figure 4.21, the green

and orange agents respectively. Also, the generated trajectories present few oscillations,

due to the combination of the two types of constraints for evasion, i.e. average hard and

soft ones.

The distance between the agents, as presented in Figure 4.22, never reaches the secu-

rity distance D, but some oscillations can be observed near this limit. The oscillations

in the distance between the blue and green agents are caused by the evasion maneuver

with respect to the post, as we can see on the left.

4. Model Predictive Control for formation control of quadrotors 56

X

−0.5
0.0

0.5
1.0

1.5

Y

−0.5

0.0

0.5

1.0

1.5

Z

0.0

0.5

1.0

1.5

2.0

Initial formation

Final formation

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

Figure 4.21: Distributed formation control of 4 agents, using both average hard con-
straints of the form (4.31) and linear soft constraints of the form (4.33).

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance to obstacle

D

Figure 4.22: Distance between agents and to the obstacle for the distributed formation
control of Figure 4.21.

Regarding the controls showed in Figure 4.23, some oscillations are observed, but the

inputs are always restricted by the controls bounds. We can also see some disturbances

caused by the added noise that the controls attempt to overcome.

If we consider also connectivity maintenance constraints of the form (4.36) and (4.18)

with E = 2.25, we can see results as the ones in Figures 4.24, 4.25 and 4.26. Adding

the connectivity constraints results in more complicated trajectories, as we can see in

Figure 4.24. When the orange and purple agents try to stay within the connectivity

maximum distance E, they have an impact in the trajectory of the other agents as well.

As we can see in Figure 4.25, the distance between the agents stays within the limits

4. Model Predictive Control for formation control of quadrotors 57

Figure 4.23: Computed controls for the

X

−0.5
0.0

0.5
1.0

1.5

Y

−0.5

0.0

0.5

1.0

1.5

Z

0.0

0.5

1.0

1.5

2.0

Initial formation

Final formation

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

Figure 4.24: Distributed formation control of 4 agents, using both average hard con-
straints of the form (4.31) and (4.36), and linear soft constraints of the
form (4.33) and (4.38), for both evasion avoidance and connectivity main-
tenance respectively.

of the security distance D and the connectivity maximum distance E. The distance

between the orange and purple agents approaches to the distance E but does not trespass

the limit. We can see some oscillations near the limits because of the use of the soft

constraints both for obstacle avoidance and connectivity maintenance. Nevertheless,

the use of average hard constraints makes these oscillations not to extend for a lot of

4. Model Predictive Control for formation control of quadrotors 58

iterations.

Figure 4.25: Distance bet
control of Figure

Finally, in Figure 4.26,

formation experiment. The

connectivity maintenance constraints. Also, as the connectivity maintenance consider

also the distance in the Z-axis, some changes in uz can be seen for the orange and

purple agents. The final formation is achieved later than for the previous case, but the

difference is only of about 5 iterations.

−5

0

5

u
x

−5

0

5

u
y

0 25 50 75 100 125 150 175
iterations

−5

0

5

u
z

Figure 4.26: Computed controls for the formation experiment of Figure 4.24.

M 59

Chapter 5

Simulations and experiments

In this chapter, we present the results obtained both in simulations and in real experi-

ments for the implementation of the control strategies presented in the previous chapter

for the formation problem of quadrotors. First, in Section 5.1, the results for simulations

are presented, and then some real-life experiments appear in Section 5.2.

5.1 Simulations in Gazebo

The control strategies presented in the previous chapter have been implemented in

the Gazebo simulator [KH04] for the same formation problem of quadrotors given by

Figure 4.8. For this purpose, we have used the rotorS package [FBAS16].

The control strategy presented in this work has as outputs linear velocities for the

quadrotor, assuming that there exists a low level control that transforms these linear

velocity commands into velocities for each rotor. This low level control can be of the form

of the one presented in Section 2.2, but we have decided to use the low level control

provided by the rotorS package, which we will describe hereafter. Nevertheless, the

rotorS package includes only a position control. Hence, in order to achieve simulation,

the velocities generated by our control are integrated at each time step, resulting on a

position that is passed as a reference to the low-level position control implemented on

the rotorS package.

Low level control in rotorS

The position control included in the rotorS package is an implementation of [LLM10].

This is a geometric non-linear tracking control that achieves almost global asymptotic

stability of the tracking error.

5. Simulations and experiments 60

This control considers a model for the quadrotor based on the special Euclidean

group SE(3). The main advantage of this is that every configuration has only one

representation, and also that it avoids the singularities that can arise when using Euler

angles. The control inputs considered by the control are the total thrust f and the total

moment M of the quadrotor. These can be directly mapped to the velocities of each

rotor.

As shown in Figure 5.1, given a desired trajectory and a desired angle yaw ψ, the

controller computes in cascade: first, the total thrust f to achieve asymptotic trajectory

tracking, and, then, the total moment M in order to achieve zero error on attitude

tracking.

Trajectory
tracking

Attitude
tracking

Quadrotor

dynamics

x, v, R,Ω
Controller

f

M

xd

�b1d

�b3d

Figure 5.1: Position controller structure from [LLM10].

The control is tuned by four gain vectors: kx, kv, kR, kΩ ∈ R3. kx and kv are

associated with the position and velocity errors, respectively, and kR, kΩ to the attitude

and angular velocity errors, respectively.

The rotorS package contains preset values of the four gains for different models of

quadrotors. Nevertheless, in our simulations we got to adjust the gains corresponding to

the z axis in order to achieve good performance, since we observed an undesired motion

in the altitude of the drones when using the preset gains.

5.1.1 Simulation performance

Here we present the simulation results for a formation control experiment driven in

Gazebo. We use the control scheme proposed in Chapter 4, i.e., a Model Predictive

Control scheme using as reference the local consensus error at each iteration; both

average hard and soft constraints are used for obstacle avoidance, all of this along with

a distributed control architecture. The target formation is given by Figure 4.8 and a

5. Simulations and experiments 61

fixed column is located at (0.5, 0.5). As in Python simulations of Chapter 4.4, a fully

connected communication graph is considered. Since this is the same experimental

setup as in Chapter 4, it is expected to get similar results to those of the Python

implementation.

At each iteration k, the controller computes the linear velocities vx(k), vy(k) and

vz(k), that are then integrated into positions by

x(k + 1) = x(k) + Tvx(k),

y(k + 1) = y(k) + Tvy(k),

z(k + 1) = z(k) + Tvz(k),

where T = 0.01s is the sampling period. Finally, the position (x(k + 1), y(k + 1), z(k + 1))

is passed as a reference to the position controller from the rotorS package.

Formation experiment without connectivity constraints

Simulation parameters: The prediction horizonHp is set to 15 and the control horizon

Hu is equal to 10. The gain for the penalty term kd is equal to 10.0 and the control

inputs must lie within the (−5.0, 5.0) interval. These parameters are the same as the

ones used for the Python simulations.

Figure 5.2 shows some snapshots of the evolution of the quadrotors during the ex-

periment. Initially, the quadrotors form a unitary square and they reach the de-

sired formation of Figure 4.8. The complete simulation can be seen in the video

https://youtu.be/PTsa7ThsWSs.

Figure 5.2: Evolution of the quadrotors for a formation experiment in Gazebo.

The generated paths can be seen in Figure 5.3, along with the paths generated by the

5. Simulations and experiments 62

Python simulations of Chapter 4, for comparison. We can see that the paths in both

simulations are very similar.

(a) Gazebo

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

Python

Figure 5.3: Comparison and Python simulations
for the formatio

The main difference b ulations is the time required

to reach the target formation. The simulations in Python required about 50 iterations

to achieve consensus between the virtual agents and, therefore, the desired formation,

while in Gazebo the same task took around 300 iterations. This is reasonable because,

while in Python the model is assumed to be perfect and the computed velocities are

perfectly executed, in Gazebo more physics factors are considered. Also, the low level

control can be the cause of the slower performance.

Figure 5.4 shows the distance between the agents and the distance to the fixed column

during the Gazebo simulation. We can see that two pairs of agents get close to the

security distance but hardly violate the limit. We also observe some oscillations as

the agents approach the security distance between them or with respect to the fixed

obstacle.

Finally, Figure 5.5 shows the control computed by the MPC. Saturation can be ob-

served at the predefined limits, altogether with some oscillations due to the evasion

maneuvers.

5. Simulations and experiments 63

0 100 200 300 400 500
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

0 100 200 300 400 500
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance to obstacle

D

Figure 5.4: Distance between agents and to the obstacle for the distributed formation
control of Figure 5.2.

−5

0

5

u
x

−5

0

5

u
y

0 100 200 300 400 500
iterations

−5

0

5

u
z

Figure 5.5: Computed controls for the formation experiment of Figure 5.2.

Formation experiment with connectivity constraints

Simulation parameters: In this simulation case, the parameters are the same as in

the last experiment without connectivity constraints, adding the parameter kc = 1.0 for

the connectivity soft constraints.

Some snapshots of the evolution of the quadrotors during the formation experiment

with connectivity constraints can be seen in Figure 5.6. In contrast with the previous

experiment without connectivity constraints, where the whole maneuver occurs in a very

symmetric way, here we observe that two agents have to wait for the others to move,

and then they complete the formation. This can be seen in more detail in the video

https://youtu.be/GozRDSlKMX0.

The two agents at the bottom cannot separate as much as they did in the exper-

5. Simulations and experiments 64

Figure 5.6: Evolution of the quadrotors for a formation experiment in Gazebo with con-
nectivity constraints.

iment without connectivity constraints. But in contrast with the Python simulation,

where the agents behave symmetrically, the simulations in Gazebo result in two of the

agents waiting for the others to move, avoiding this way to violate the connectivity

constraints. A comparison between the paths generated by Gazebo and Python can be

seen in Figure 5.7. In this case, the blue and orange agents wait for the others to move.

The generated paths for the other two agents, green and purple, are similar in both

simulations.

Due to the connectivity constraints and given that two agents have to wait for the

others to move, the achievement of the desired formation took about 100 more iterations

than for the previous experiment. Figure 5.8 shows the distance between the agents and

to the fixed obstacle. We observe that the distance between the orange and purple

agents approaches but do not trespass the connectivity limit E. Nevertheless, at some

point the distance between the green and purple agents violates the evasion limit D.

Figure 5.9 shows the computed controls for this formation experiment with connectiv-

ity constraints. Due to these constraints, more oscillations are observed but the controls

stay within the predefined limits.

As we saw in Figure 5.8, the distance between the agents trespassed the security

distance D, but this can be avoided by increasing the gain kd of the penalty evasion

term. Figure 5.10 shows the distance between the agents and to the obstacle when we

increase the evasion penalty parameter to kd = 19. The inferior limit D is no more

trespassed but the connectivity limit E is violated at some iterations. Also, we observe

that the consensus takes about 500 iterations, 100 more than for the experiment with

kd = 10.

5. Simulations and experiments 65

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(a) Gazebo

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(b) Python

Figure 5.7: Comparison between the paths generated by Gazebo and Python simulations
for the formation experiment in Figure 5.6.

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

E

D

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance to obstacle

D

Figure 5.8: Distance between agents and to the obstacle for the distributed formation
control of Figure 5.6.

The paths generated with this increased penalty parameter can be seen in Figure 5.11.

In this case, the orange and blue agents wait for the green and purple ones to move,

and due to the increased penalty parameter kd, the generated trajectories are more

complicated than for the previous cases. This is also reflected in the computed controls

in Figure 5.12.

5. Simulations and experiments 66

−5

0

5

u
x

−5

0

5

u
y

0 100 200 300 400 500 600 700
iterations

−5

0

5

u
z

Figure 5.9: Computed controls for the formation experiment of Figure 5.6.

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

E

D

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance to obstacle

D

Figure 5.10: Distance between agents and to the obstacle for the distributed formation
control with increased penalty parameter kd = 19.

5.2 Experiments with real Bebop 2.0 quadrotors

We ran some formation experiments with Bebop 2.0 quadrotors from Parrot R� as the

one shown in Figure 5.13.

Experiments setup

All the experiments have been run in a motion capture environment, so that the position

of every quadrotor is known along all the experiment. Each quadrotor has some reflecting

markers that are tracked by the set of cameras of the motion capture system. These

positions are read by each quadrotor, at each iteration, in order to know where its

neighbors are.

The control velocities are calculated in a different computer for each quadrotor and

5. Simulations and experiments 67

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

Figure 5.11: Paths generated by a Gazebo simulation with an increased penalty param-
eter kd = 19.

−5

0

5

u
x

−5

0

5

u
y

0 100 200 300 400 500 600 700
iterations

−5

0

5

u
z

Figure 5.12: Computed controls for the formation experiment of Figure 5.11.

then communicated to the aircraft via WiFi using the bebop autonomy driver [Mon15],

so the computations are not performed on board.

A distributed communication architecture is set in ROS so that each agent can publish

its computed controls and also read the computed controls published by its neighbors.

5. Simulations and experiments 68

Figure 5.13: The Bebop 2 quadrotor from Parrot R�.

The bebop autonomy driver allows us to directly publish velocity commands to the

Bebop 2.0 quadrotor, that uses its own low level control to transform the velocity com-

mands into velocities for each rotor.

Finally, due to the lack of space, only formation experiments with three quadrotors

have been performed. Also, one of the quadrotors stays at hovering along the experi-

ment, acting as a leader, resulting on a communication graph given by

A =

0 1 0

1 0 0

1 1 0

 ,

where the last agents send its states to the other two but does not receive any informa-

tion.

5.2.1 Experiments results

The main issue we faced when implementing our control was the inertia accumulated

by the quadcopter when moving at more than 0.05m/s, and the inability of the low

level control to overcome it; this results in the quadcopter not changing its direction

adequately or stopping, even when the computed and communicated controls were de-

manding it.

To overcome this, we set the limits of the control inputs in −0.03 and 0.03 meters

per second, resulting on the quadcopters moving slower but accumulating less inertia.

Nevertheless, as we can see in Figure 5.12 or in Figure 5.9, the proposed control always

saturate the control inputs at the first iterations (due to the use of the local consensus

error as reference that is large at the beginning), causing a lot of accumulated inertia

5. Simulations and experiments 69

when we ran experiments with the Bebop 2.0 quadrotors.

Given that decreasing more the limits of the control inputs will lead the quadrotors in

not moving at all, we decided to significantly increase the parameter γi of the cost func-

tion (4.22) that penalizes the size of the control inputs. With a value of γi ∈ [750, 1000]

the control inputs saturation significantly decreased, resulting on less problems associ-

ated with the quadrotor inertia.

A large penalty of the control inputs leads to a slower and more controlled movement,

but avoiding to reach the formation at the last iterations. Considering that increasing

the penalty of the consensus local error βi of equation (4.22) will lead again to saturated

control inputs, and given that these saturation problems arise mainly during the first

iterations, we introduced a dynamic value for βi, depending on the consensus error ei

at the present iteration, given by

βi(ei) =

βmax −

βmax − βmin

er
ei ei < er,

βmin ei ≥ er,
(5.1)

where βmin and βmax are the bounds for the parameter βi and er is a predefined level of

error.

The dynamic value of βi given by (5.1) produces low values when the consensus error

is high, i.e., when the quadcopters are far from the target formation. In this case,

the computed controls will focus in a slower and controlled movement. Then, when the

error starts to decrease and the computed controls become lower, the value of βi becomes

higher in order to penalize more the consensus error, resulting in higher computed inputs

that can lead to the actual achievement of the target formation.

Finally, due to the computation time required to solve the optimization problem in

each computer and in order to make the sampling period uniform for all the agents, the

parameter T was set to 0.1 seconds.

Here we present the results for two experiments: a formation control experiment for

three quadcopters without obstacle, and the same experiment but considering a single

column obstacle. The dimensions of the space where the quadcopters can navigate was

of 4.75m× 3m and the limits of this space were introduced as hard constraints for the

optimization problem. Due to the lack of physical space, we did not perform experiments

with connectivity constraints. Also, to ensure that the formation was achieved within

the available space, one of the three quadcopters remains in hovering state along all the

experiments, i.e., it is not controlled and is not meant to move, but that agent acts as

5. Simulations and experiments 70

X

0.0
0.5

1.0
1.5

2.0

Y

−1.0

−0.5

0.0

0.5

1.0

Z

−0.5

0.0

0.5

1.0

1.5

O

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Y

Figure 5.14: Target formation for experiments with three Bebop 2.0 quadrotors.

an anchor for the formation. Figure 5.14 shows the target formation used along the

experiments.

Both experiments were run with the same parameters: The prediction horizon Hp is

15 and the control horizon Hu is equal to 10. The gain for the evasion penalty term is

kd = 1. The control penalty parameter is γi = 1000 and the consensus error penalty

parameter is set to be within the [20, 100] interval, with a level of error er = 3.

Formation experiment without obstacles

Figure 5.19 shows some snapshots of the evolution of a formation experiment with 3

Bebop 2.0 quadrotors as seen from the top. Two quadrotors start at the right and the

third one at the lower left. At the end of the experiment the three quadrotors reach the

desired configuration given by Figure 5.14. A video of this experiment can be consulted

in https://youtu.be/1vbekKOyr7U.

The generated paths for the three quadrotors, along with the initial and final forma-

tion, can be seen in Figure 5.16. The green agent moves in a practically straight line

until it reaches the vicinity of its target position. The blue agent tries to minimize its

error with respect to the green agent and that is why its path approaches to (0,−1);

but when the green agent is closer, the blue agent gets also closer to its target position.

Some oscillations can be observed near the target position as the agents try to converge

to the desired formation. Finally, even though the orange agent is not controlled and is

meant to stay at the same position, we can see some displacement due both to the inner

hovering control and to the external disturbance generated by the turbulence of the

other quadrotors. Nevertheless, the controlled agents adjust to this movement, reaching

5. Simulations and experiments 71

Figure 5.15: Evolution of a formation experiment with 3 real Bebop 2.0 quadrotors.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Initial formation

Final formation

Figure 5.16: Paths generated by the formation experiment of Figure 5.15.

the target position.

As can be seen in Figure 5.16, there is no risk of collision along the experiment.

Therefore in Figure 5.17 we observe that the distance between agents does not approach

a lot to the security distance.

Finally, the computed control inputs appear in Figure 5.18. We observe very little

saturation, because of the very high value of the control penalty parameter and the

adaptive value of consensus error penalty parameter. The control velocities oscillate

but decreasing in amplitude, allowing the system to converge. The computed control

5. Simulations and experiments 72

0 100 200 300 400 500 600 700
iterations

0

1

2

3

4

m

Distance between agents

D

Figure 5.17: Distance between agents in the formation experiment of Figure 5.16.

input of the orange agent remains in 0 as it is not controlled.

−0.03

0.00

0.03

u
x

−0.03

0.00

0.03

u
y

0 100 200 300 400 500 600 700
iterations

−0.03

0.00

0.03

u
z

Figure 5.18: Computed control inputs for the formation experiment of Figure 5.16.

Formation experiment with a column obstacle

Figure 5.19 shows some snapshots of the evolution of a formation experiment with 3

Bebop 2.0 quadrotors with an obstacle as seen from the top. The target formation is

the same as in the previous experiment, given by Figure 5.14. The initial configuration

is very close to the previous one also, with two quadrotors aligned at the right and

the third one at the bottom left corner. The obstacle corresponds to the white column

5. Simulations and experiments 73

observed in the scene and is located at the right of the agent in the left, with the purpose

of avoiding an straight trajectory for this agent. This experiment can be seen in the

video https://youtu.be/aDLBDzEqpB0.

Figure 5.19: Evolution of a formation experiment with 3 real Bebop 2.0 quadrotors with
an obstacle.

As can be seen in Figure 5.20, the green agent does not follow anymore a straight

trajectory, as it has to evade the obstacle. The trajectory of the blue agent is very

similar to the one of the previous experiment, trying to decrease the error relative to

green agent first, and when this one is closer, converging to the desired formation. In

this experiment, the movement of the noncontrolled orange agent has a lower amplitude

than in the previous experiment, but it can still be appreciated.

The distance between the agents and to the obstacle along the experiment can be

seen in Figure 5.21. At the beginning, the distance between the green agent and the ob-

stacle is close the security distance, and following a straight trajectory as in Figure 5.16

would have lead in trespassing this limit, that is why the green agent chooses a curved

trajectory farther from the obstacle. The obstacle also stops the blue agent movement

to the left around the iterations 100 and 150. It is important to remark that, even

though the gain for the evasion penalty term kd = 1 is much lower than the value of the

control penalty parameter γi = 1000 or the consensus error penalty parameter whose

lower value is 20, it is enough to avoid collisions. This is because of the form of the

potential field of the evasion penalty term, that increases infinitely as the distance to an

obstacle or between agents approaches the security distance. This small value for the

penalty term gain also permits the control to focus on the formation task when there

are no risk of collision.

5. Simulations and experiments 74

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Initial formation

Final formation

Figure 5.20: Paths generated by the formation experiment of Figure 5.19.

0 50 100 150 200 250 300 350
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

Distance between agents

D

0 50 100 150 200 250 300 350
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

Distance to obstacle

D

Figure 5.21: Distance between agents and to the obstacle in the formation experiment
of Figure 5.20.

Finally, Figure 5.22 shows the computed controls. Some saturation can be observed

at the first 100 iterations, and then again between iterations 100 and 150 for the blue

agent when there is a need to evade the obstacle and to adapt to the movement of the

green agent. Again, the controls oscillate but with decreased amplitude, leading to a

safer convergence.

5. Simulations and experiments 75

−0.03

0.00

0.03

u
x

−0.03

0.00

0.03

u
y

0 50 100 150 200 250 300 350
iterations

−0.03

0.00

0.03

u
z

Figure 5.22: Computed control inputs for the formation experiment of Figure 5.20.

M 76

Chapter 6

Conclusions and future work

This thesis has addressed the problem of controlling a group of quadrotors in a dis-

tributed way to achieve desired formations with guarantees of collision avoidance be-

tween the agents themselves and obstacles in the environment, and connectivity main-

tenance. A Model Predictive Control strategy has been proposed for the formation

control of quadrotors, showing a good performance both in realistic simulations and in

real experiments with quadrotors. The main advantage of this control strategy is its

capability and flexibility to consider constraints relative not only to the evasion and con-

nectivity between agents, but also to the elements of the environment, such as obstacles

and dimensions of the space where the quadrotors can move. Moreover, the predictive

component of this control technique allows the agents to anticipate (in a time window)

the realization of the required actions to guarantee collision avoidance and connectivity

maintenance.

Two ways of reaching consensus of virtual agents, achieving this way the desired for-

mation have been explored, the first one generating trajectories for consensus and then

tracking them using MPC, and the second one introducing directly the local consen-

sus error at each iteration to the MPC cost function. Regarding obstacle avoidance

and connectivity maintenance, the main question was choosing between adding hard

and/or soft constraints to the MPC optimization problem. Finally, regarding control

architecture, both decentralized and distributed control were studied.

Based on simulation results, the best formation control strategy resulted on using the

local consensus error directly in the MPC cost function, and including both hard and

soft constraints for obstacle avoidance and connectivity maintenance; all of this inside a

distributed control architecture. This final strategy showed advantages in the smooth-

ness of the generated paths, the velocity of convergence to the desired configuration,

6. Conclusions and future work 77

and the effectiveness to avoid obstacles.

The proposed control scheme behaves well also in real experiments, despite the fact of

using a very simple first order linear model for the dynamics of the quadrotor. Neverthe-

less, further work can be done in this aspect in order to decide if a more complex model

improves the behavior of the control and whether this improvement has a significant

effect on computation time.

Because of its simple model, the proposed formation control strategy can be applied

not only to quadrotors, but also to any holonomic robot or even to a non-holonomic

robot, provided that there exists a low level control that transforms the computed

velocity controls into controls for each particular robot, permitting to apply this control

even to heterogeneous systems of multiple agents.

Also, the proposed formation control strategy, can be extended to a leader-followers

scheme where, knowing the position but also the future control inputs of a leader, the

followers can maintain a given formation while moving along the leader’s trajectory.

In principle, this can be achieved by defining a particular communication graph, and

applying the proposed formation control to the followers, while the leader moves around.

We are interested to endow to the whole formation capacities of navigation in unknown

environments, however, for that goal, the proposed scheme must be extended to use

onboard sensing, since the current results rely on the use of a motion capture system

that limits the workspace of the group of quadrotors.

M 78

Bibliography

[CBA99] Eduardo F. Camacho and Carlos Bordons-Alba, Model predictive control, 1

ed., Advanced Textbooks in Control and Signal Processing, Springer-Verlag

London, London, UK, 1999.

[CFZ15] Zhaomeng Cheng, Ming-Can Fan, and Hai-Tao Zhang, Distributed mpc

based consensus for single-integrator multi-agent systems, ISA Transactions

58 (2015).

[CS18] Chia-Wei Chang and Jaw-Kuen Shiau, Quadrotor formation strategies based

on distributed consensus and model predictive controls, Applied Sciences 8

(2018), 2246.

[CSdlPL12] Panagiotis D. Christofides, Riccardo Scattolini, David Munoz de la Peña,

and Jinfeng Liu, Distributed model predictive control: A tutorial review and

future research directions, Computers & Chemical Engineering 51 (2012),

21–41.

[CW13] X. Chen and L. Wang, Cascaded model predictive control of a quadrotor

uav, 2013 Australian Control Conference, 2013, pp. 354–359.

[DLL17] X. Dai, C. Liu, and F. Liu, Consensus protocol based on distributed model

predictive control for first-order multi-agent systems, 2017 13th IEEE In-

ternational Conference on Control Automation (ICCA), 2017, pp. 982–987.

[DS18] Löıc Dubois and Satoshi Suzuki, Formation control of multiple quadcopters

using model predictive control, Advanced Robotics 32 (2018), no. 19, 1037–

1046.

[FBAS16] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart, Robot

operating system (ros): The complete reference (volume 1), ch. RotorS—A

Modular Gazebo MAV Simulator Framework, pp. 595–625, Springer Inter-

national Publishing, Cham, 2016.

Bibliography 79

[HT12] Meiyun Y. He and André L. Tits, Constraint reduction with exact penaliza-

tion for model-predictive rotorcraft control, 2012.

[IN17] M. Ille and T. Namerikawa, Collision avoidance between multi-uav-systems

considering formation control using mpc, 2017 IEEE International Confer-

ence on Advanced Intelligent Mechatronics (AIM), 2017, pp. 651–656.

[JG17] Jingfu Jin and Nicholas R. Gans, Collision-free formation and heading con-

sensus of nonholonomic robots as a pose regulation problem, Robotics Au-

ton. Syst. 95 (2017), 25–36.

[KBS16] Mina Kamel, Michael Burri, and Roland Siegwart, Linear vs nonlinear

MPC for trajectory tracking applied to rotary wing micro aerial vehicles,

CoRR abs/1611.09240 (2016).

[KG17] S. Kumar and R. Gill, Path following for quadrotors, 2017 IEEE Conference

on Control Technology and Applications (CCTA), 2017, pp. 2075–2081.

[KH04] N. Koenig and A. Howard, Design and use paradigms for gazebo, an open-

source multi-robot simulator, 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3,

2004, pp. 2149–2154 vol.3.

[Kha02] Hassan K Khalil, Nonlinear systems; 3rd ed., Prentice-Hall, Upper Saddle

River, NJ, 2002.

[KN15] Yasuhiro Kuriki and Toru Namerikawa, Formation control with collision

avoidance for a multi-uav system using decentralized mpc and consensus-

based control, 2015 European Control Conference, ECC 2015, Institute of

Electrical and Electronics Engineers Inc., November 2015, European Con-

trol Conference, ECC 2015 ; Conference date: 15-07-2015 Through 17-07-

2015, pp. 3079–3084 (English).

[Lee11] Jay H. Lee, Model predictive control: Review of the three decades of de-

velopment, International Journal of Control, Automation and Systems 9

(2011), 415–424.

[LLM10] T. Lee, M. Leok, and N. H. McClamroch, Geometric tracking control of

a quadrotor uav on se(3), 49th IEEE Conference on Decision and Control

(CDC), 2010, pp. 5420–5425.

Bibliography 80

[MBM01] V. Mistler, A. Benallegue, and N. K. M’Sirdi, Linéarisation exacte

et découplage entrées-sorties. comparaison entre l’hélicoptère standard et

l’hélicoptère 4 rotors, Proceedings 10th IEEE International Workshop

on Robot and Human Interactive Communication. ROMAN 2001 (Cat.

No.01TH8591), 2001, pp. 586–593.

[MKC12] R. Mahony, V. Kumar, and P. Corke, Multirotor aerial vehicles: Modeling,

estimation, and control of quadrotor, IEEE Robotics Automation Magazine

19 (2012), no. 3, 20–32.

[Mon15] Mani Monajjemi, bebop autonomy - ros driver for parrot bebop drone

(quadrocopter) 1.0 & 2.0, http://bebop-autonomy.readthedocs.io/,

2015, Accessed: 2020-12-05.

[OM04] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of

agents with switching topology and time-delays, IEEE Transactions on Au-

tomatic Control 49 (2004), no. 9, 1520–1533.

[OSFM07] Reza Olfati-Saber, J. Fax, and Richard Murray, Consensus and cooperation

in networked multi-agent systems, Proceedings of the IEEE 95 (2007), 215–

233.

[RSCSC15] Tiago Ribeiro, Andre Scolari Conceicao, Inkyu Sa, and Peter Corke,

Nonlinear model predictive formation control for quadcopters, IFAC-

PapersOnLine 48 (2015), 39–44.

[Sab15] Francesco Sabatino, Quadrotor control: modeling, nonlinear control design,

and simulation, Master’s thesis, KTH Electrical Engineering, 6 2015.

[Sas99] Shankar Sastry, Nonlinear systems: Analysis, stability, and control, 1 ed.,

Interdisciplinary Applied Mathematics 10, Springer-Verlag New York, 1999.

[WG18] Alexander Waldejer and Ashkan Ghodrati, Distributed model predictive

control for a coordinated multi-agent system, Master’s thesis, Chalmers Uni-

versity of Technology, 2018.

[YSN17] Kenta Yamamoto, Kazuma Sekiguchi, and Kenichiro Nonaka, Experimen-

tal verification of formation control by model predictive control considering

collision avoidance in three dimensional space with quadcopters, 2017 11th

Asian Control Conference (ASCC), 12 2017, pp. 1602–1607.

