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Introduction

Historically, optimal transport theory is originated in the XVIII century thanks to the French
mathematician Gaspard Monge, who proposed the problem of finding the most efficient way
of moving a sand pile onto another pile with the same volume [18]. Here, efficient means
that the transportation has to be chosen so that it minimizes the average displacement.
Surprisingly, it turned out be a very difficult problem at that time, and remained untouched
until new developments were proposed by the Soviet mathematician Leonid Kantorovich. In
1942, Leonid Kantorovitch proposed a relaxed version of Monge’s problem by using a more
modern approach which appears more natural from a theoretical perspective. This relaxation
gave the possibility to attack Monge’s transportation problem and, some decades later, to
provide solutions. Roughly speaking, this formulation says: instead of giving for each particle
x a specific destination S(x), we will allow the mass of a particle x to be split among several
target destinations y. From then on, Monge-Kantorovich type problems have become an
important subject of study on probability theory and convex optimization.

More recently, new interests aroused in optimal transport due to Yann Brenier’s work on
polar decomposition of vector-valued functions ([9], 1987) and its application to determine
generalized solutions to the Euler equations ([19], 1989). Also, V. N. Sudakov’s work in
Monge’s original problem ([25], 1979) aroused interest among the mathematical community;
however, the solution that he proposed was incomplete. In 2003, this issue was observed and
fixed by Luigi Ambrosio in [1]. In the meantime, a different solution of Monge’s transport
problem was obtained by Lawrence C. Evans and Wilfrid Gangbo in ([16], 1999), via partial
differential equations techniques. Nowadays, Optimal Transport has become into a powerful
modern theory which has a profound interaction among various fields of mathematics such as
partial differential equations [21], gradient flows [4], fluid mechanics [10] and geometry [19].
This also explains why optimal transport theory has found several applications in economics
[17], urban planning [11], engineering and statistics.

The aim of this thesis work is to present a rigorous proof of Ambrosio-Sudakov’s Theo-
rem, which states that Monge’s Transportation problem, with cost c(x, y) = |x − y| admits
a unique solution. The proof that we present here is essentially an adaptation made by Fil-
ippo Santambrogio in [23] from Ambrosio’s original paper [1]. Furthermore, we will study
a minimal flow problem introduced by Martin Beckmann in [5], and rigorously prove that
L1 Monge’s transport problem and Beckmann’s problem are equivalent, via a decomposition
theorem due to Smirnov [24].

Now, we give the overall structure of this thesis work: In Chapter 1, we will study some
basic notions in optimal transport theory. Section 1.1 presents a brief introduction to Monge-
Kantorovich problems, explaining its mathematical formulation. We also study the differences
between these two transport problems, and we prove that Kantorovich’s problem admits an
optimal transport plan. In section 1.2, we establish a strong duality result for Kantorovich’s
problem and we also prove necessary and sufficient conditions for optimality. Moreover, we
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show that Kantorovich’s dual problem admits a solution over the space of c-concave functions.
Finally, we study existence and uniqueness results when the cost is a strictly convex function.
In particular, we present Brenier’s theorem which states that Kantorovich’s problem with
quadratic cost admits a unique optimal transport plan which is induced by the gradient of a
convex function.

In Chapter 2, we will study the L1 theory of optimal transportation. Section 2.1 presents
some issues of the one-dimensional Monge-Kantorovich transport problem, and shows that,
under a convexity assumption on the cost function, there exists a unique solution to Kan-
torovich’s problem and it is induced by the monotone transport map. In Section 2.2, we
mainly focus on developing necessary tools and results to prove Ambrosio-Sudakov’s Theo-
rem; to accomplish this task, we split this section into two subsections. In the first subsection,
we show Kantorovich-Rubinstein’s formula and present the secondary variational problem as-
sociated to L1-Kantorovich’s problem. The second subsection presents a further study on the
geometric properties of transport rays and how a Kantorovich potential interact with them.
We also establish Lipschitz regularity results for the directions of all transport rays. Finally,
we state and prove Ambrosio-Sudakov’s Theorem.

In Chapter 3, we will present Beckmann’s minimal flow problem and its connection with
the L1 theory of optimal transportation. In particular, we will exploit its relation with
Monge’s original problem. Section 3.1 presents a brief remainder about existence and unique-
ness of the solutions of the continuity equation. In Section 3.2, we first prove that Beckmann’s
problem admits a solution which can be built from a solution of L1-Kantorovich’s problem,
also we associate to this solution a scalar measure known as transport density. Moreover, we
introduce the notion of transport intensity and transport flow to show Smirnov’s decompo-
sition theorem; this theorem will allow us to prove that any optimal solution of Beckmann’s
problem is induced by an optimal transport plan for L1-Kantorovich’s problem, and such
a solution does not depend on the choice of the optimal plan, which means that any opti-
mal transport plan gives us the same solution and transport density. Finally, Section 3.3
presents Lp integrability results of the transport density associated to the unique solution of
Beckmann’s problem.



Chapter 1

Kantorovich and Monge transport
problems.

In this chapter, we will present some basic tools and classical results in optimal transport
theory needed for this thesis. For a more complete introduction the reader may refer to Cédric
Villani’s book [26] or Filippo Santambrogio’s book [23], which are the references consulted
for the development of this chapter.

1.1 A brief introduction to optimal transport theory
Historically, optimal transport theory has its origins in the XVIII century thanks to the
French mathematician Gaspard Monge, who proposed the problem of finding the most effi-
cient (economic) way of moving a mass distribution into another one with respect to a given
cost function, which represents the needed work to move a unit mass from one place to an-
other [18]. In modern mathematical notation the problem is the following: given two positive
densities φ, ψ on R3, with

∫
R3 φ(x)dx =

∫
R3 ψ(y)dy, the aim is to find a map T : R3 → R3

such that ∫
A

(y)dy =
∫
T−1(A)

φ(x)dx, (1.1.1)

for any Borel set A ⊂ R3, and{∫
R3
|T (x)− x|φ(x)dx : T satisfies (1.1.1)

}
is minimized. In this case, the map T describes the movement and T (x) represents the
destination of a unit mass originally located at x. This problem remained unsolved until
Sudakov proposed a partial solution in 1979 [25]. Many years later, Ambrosio observed
that Sudakov’s original proof was incomplete (due to regularity issues) and fixed it in [1].
Nowadays, this problem is not only important from a theoretical point of view, but because
of its applications in mathematical economics (see for instance, [17]).

Now, we present the modern formulation of Monge’s problem. Let T : X → Y be a Borel
map, with X,Y measure spaces. The push forward (or image measure) of a measure µ on
X through T is the Borel measure, denoted by T#µ, and defined on Y by

T#µ(B) = µ(T−1(B)),
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Figure 1.1: A transport map from µ to ν.

for every Borel subset B ⊂ Y . A Borel map T : X → Y is said to be a transport map
between µ and ν, if T#µ = ν. Let us remark that T#µ can equivalently be defined by the
change of variables formula: ∫

Y
fd(T#µ)(y) =

∫
X
f(T (x))dµ(x), (1.1.2)

for every Borel function f : Y → R̄.
Example 1.1.1. Suppose that T : Ω1 → Ω2 is a diffeomorphism, and Ω1,Ω2 are open subsets
of Rd. We also assume that dµ = ρ1dL d, dν = ρ2dL d are probability measures on X and
Y , respectively. Then, T is a transport map if∫

Y
ρ2(y)dy =

∫
X
ρ2(T (x))Det(DT(x))dx =

∫
X
ρ1(x)dx.

Hence, T is a transport map if and only if the following equation holds:

ρ1(x) = ρ2(T (x))Det(DT (x)) almost everywhere.

Problem 1.1.2 (Monge’s problem). Given two probability measures µ ∈P(X), ν ∈P(Y )
and a cost function c : X × Y → [0,∞]. Consider the following problem which we will call
Monge’s transport problem:

inf
{
M(T ) :=

∫
c(x, T (x))dµ : T#µ = ν

}
, (MP)

Once that we have stated the Monge problem, a natural question arises: do minimizers
exist? What we usually do to prove existence is the following: take a minimizing sequence
{Tn}n≥1, find a bound on it giving compactness in some topology (here, if the support of
ν is compact, then the maps Tn take value in a common bounded set, and so one can get
compactness of Tn in the weak-* L∞ convergence), take a limit Tn ⇀ T , and prove that
T is a minimizer. This requires semi-continuity of the functional M with respect to this
convergence; but we also need that the limit T still satisfies Monge’s constraint. In general
we can construct a sequence of maps {Tn}n≥1 such that Tn ⇀ T , but T does not satisfy the
constraint. As an example of this phenomenon, one can consider the sequence Tn(x) = T (nx)
where T : R→ R is a 1-periodic function such that

T (x) =
{

1, if x ∈ [0, 1
2)

−1, if x ∈ [1
2 , 1),

2



Figure 1.2: A transport plan γ in Kantorovich’s problem.

and the measures µ = L |[0,1] and ν = (δ1+δ−1)
2 . One may check that (Tn)#µ = ν for all

n ∈ N; nevertheless, Tn ⇀ T = 0 and this function satisfies T#µ = δ0 6= ν. Therefore, this
constraint on T is not closed under weak convergence.

Now, we give an example where an optimal transport does not exist.
Example 1.1.3. Consider the measures µ = δa, a ∈ X, and suppose that ν is not a Dirac
measure. In this case there is no transport map, since T#δa = δT (a) and ν is not of the form
δb for some b ∈ Y . In general, measures with atoms cannot be sent through a transport map
to atomless measures.

Because of these difficulties, we will forget (MP) for a while and pass to the generalization
known as Kantorovich’s problem. This problem give us an alternative way to describe the
displacement of mass. Instead of giving for each x the destination T (x), we give for each pair
(x, y) the number of particles going from x to y.

Definition 1.1.4. Given µ ∈P(X) and ν ∈P(Y ), we define the set of transport plans as
(see figure 1.2):

Π(µ, ν) = {γ ∈P(X × Y ) : (πx)#γ = µ, (πy)#γ = ν} , (1.1.3)

where πx and πy are the two projections of X × Y onto X and Y , respectively.

Problem 1.1.5 (Kantorovich’s problem). Let µ ∈ P(X) and ν ∈ P(Y ) be probability
measures, and a cost function c : X × Y → [0,∞]. Consider the following problem which we
will call Kantorovich’s problem:

inf
{
K(γ) :=

∫
X×Y

cdγ : γ ∈ Π(µ, ν)
}

(KP)

The minimizers of this problem are called optimal transport plans between µ and ν.

Example 1.1.6 (The discrete case). Suppose that X and Y are discrete spaces where all
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points have the same mass:

µ = 1
n

n∑
i=1

δxi , ν = 1
n

n∑
i=1

δyj .

Since all points {xi}ni=1 and {yj}nj=1 have the same mass, Monge’s problem can be written as
a minimization problem over all bijections T : X → Y , that is

inf
{

1
n

n∑
i=1

c(xi, yσ(i)) : σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation
}
.

On the other hand, any measure in Π(µ, ν) can be represented as a double-stochastic n×n
matrix π = (πij), which means that all the coefficients πij are non-negative and for all j ≥ 1,∑
i

πij = 1, and for all i ≥ 1,
∑
j

πij = 1. Hence, Kantorovich’s problem can be rewritten as

the following finite dimensional linear optimization problem:

inf

 1
n

∑
ij

πijc(xi, yj) : π ∈ B

 ,
where B is the set of all n×n double-stochastic matrices. It can be proved that B is a convex
set, and the minimum of the discrete (KP) is attained in one of the extreme points of B. On
the other hand, a famous theorem due to Birkhoff (see [26]) states that the set of extremal
points of B is exactly the set of permutation matrices, i.e matrices whose entries are 0 or 1.
Therefore, the solution to the discrete (KP) is a permutation matrix, which correspond to a
transport map (a bijection from X to Y )
Remark 1.1.7. Thanks to the previous example we observe that, although Monge’s problem
involves fewer variables than Kantorovich’s problem, the existence of minimizers might be
harder to prove in the first case (due to the constraint on σ). In fact, we will prove later
that, under certain conditions, the infimum is attained in the general case.

Let T : X → Y be a measurable map, if γ ∈ Π(µ, ν) is an optimal transport plan of the
form γ := (Id, T )#µ = γT , then T will be called an optimal transport map from µ to ν. Since
(Id, T )−1

# µ(C) = µ
(
(Id, T )−1(C)

)
for any γT measurable set C and

(Id, T )−1(A× Y ) = {x ∈ X : x ∈ A, T (x) ∈ Y } = A

(Id, T )−1(X ×B) = {x ∈ X : T (x) ∈ B} = T−1(B)

for any A ⊂ X and B ⊂ Y . Then the following lemma is just a straightforward consequence
of the change of variable formula (1.1.2).

Lemma 1.1.8. γT ∈ Π(µ, ν) if and only if T pushes µ onto ν. In such a case, the functional
K takes the form

∫
X c(x, T (x))dµ(x).

From now on, we will understand that X,Y are Polish spaces.
Notation 1.1.9. • We denote by M+(X) the set of finite positive measures on X.

Thanks to the Riesz representation theorem we can endow this space with the norm
‖λ‖ = |λ|(X), with |λ| denotes the total variation measure (see [20]).
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• C0(X) denotes the space of continuous functions vanishing at infinity (for every ε > 0
there exist a compact subset K ⊂ X so that |f(x)| < ε on X/K) endowed with the
supremum norm.

• Cb(X) denotes the set of bounded continuous functions on X endowed with the supre-
mum norm. If X is compact, then C0(X) = Cb(X) = C(X).

Definition 1.1.10. We will say that µn weakly converges to µ if and only if for every
φ ∈ Cb(X) we have that

∫
φ dµn →

∫
φ dµ. We denote by µn ⇀ µ this type of convergence.

In a probability space P(X) it is natural to work in the general setting of Polish spaces.
If we require X to be a Polish space then P(X) is tight, and hence we may apply Prokhorov’s
theorem to derive several results related with the convergence of subsequences to some prob-
ability distribution. We next present an example to illustrate this point.
Example 1.1.11 (Probabilistic interpretation). Let X,Y be two Polish spaces and let µ ∈
P(X) and ν ∈P(Y ). A common problem in probability theory is to minimize the expected
value of some function c, over all pairs (X,Y ) of random variables such that Law(X) = µ
and Law(Y ) = ν, in other words

inf {E[c(X,Y )] : Law(X) = µ, and Law(Y ) = ν} ,

where this expected value depends on the joint law of (X,Y ), which is the main known.
Transport plans γ ∈ Π(µ, ν) are all possible joint laws between X and Y . In particular, if
X,Y are vector valued random variables with cost c(X,Y ) = |X − Y |p, then the problem
reads as follows:

inf {‖X − Y ‖p : Law(X) = µ, and Law(Y ) = ν}

If p = 2, by performing some easy computations it can be shown that the previous problem is
reduced to the maximization of the quantity E[(X−x0) · (Y −y0)], where x0 = E(X) =

∫
xdµ

and y0 = E(Y ) =
∫
ydν. This means that we must find the joint law of random variables

with maximal covariance.
In Kantorovich’s problem we also need to allow the cost function to be lower semi-

continuous in order to encompass certain type of applications. Let us give an example of
this situation.
Example 1.1.12 (Transport problem with l.s.c cost). Let X be a metric space, and µ, ν ∈
P(X). Consider the lower semi-continuous cost function

c(x, y) =
{

0, if x = y

1, if x 6= y,

which is a distance in X. In this particular case, it can be proved that the optimal trans-
portation cost is

min(KP) = 1
2 |µ− ν|,

where the right hand side of the equation is the total variation of µ − ν. We will postpone
the proof of this claim until chapter two (Example 2.2.6).
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Finally, we prove that Kantorovich’s problem admits a minimizer by applying a direct
method in calculus of variations. We will also use Prokhorov’s compactness theorem without
giving its proof (the proof of this result can be found in [6]).

Theorem 1.1.13. Let X and Y be Polish spaces, µ ∈ P(X), ν ∈ P(Y ) and c : X × Y →
R ∪ {+∞} a lower semi-continuous function. Then the Kantorovich problem (KP) admits a
solution, that is, there is a γ ∈ Π(µ, ν) that minimizes K.

Proof. In order to prove compactness of Π(µ, ν), we will apply Prokhorov’s Theorem. First,
we show that Π(µ, ν) is tight (see Definition A.0.6). Indeed, let ε > 0; since probability
measures are inner regular (because every probability measure is a Radon measure), then we
can find compact sets KX ⊂ X and KY ⊂ Y such that µ(X \KX) < ε

2 and µ(Y \KY ) < ε
2 .

So, for any γ ∈ Π(µ, ν) we have:

γ((X × Y ) \ (KX ×KY )) ≤ γ((X \KX)× Y ) + γ(X × (Y \KY ))
= µ(X \KX) + ν(Y \KY )
< ε.

Therefore, Π(µ, ν) is tight. By Prokhorov’s Theorem it follows that for every sequence
{γn}n≥1 there exist γ ∈ P(X × Y ) and a subsequence {γnk}k≥1 such that γnk ⇀ γ. It
remains to show that γ ∈ Π(µ, ν). Let {γn}n≥1 ∈ Π(µ, ν) such that, for every φ ∈ Cb(X×Y )
we have: ∫

X×Y
φdγn −→

∫
X×Y

φdγ.

Let us fix a point y0 ∈ Y , then φ(x, y0) ∈ Cb(X) and∫
X
φ(x, y0)dµ(x) =

∫
X×Y

φ(x, y0)dγn(x, y) −→
∫
X×Y

φ(x, y0)dγ(x, y) =
∫
X
φ(x, y0)d((πx)#γ)

for all φ ∈ Cb(X × Y ), then it follows that (πx)#γ = µ. Similarly (πy)#γ = ν. Hence,
γ ∈ Π(µ, ν).
On the other hand, since c is lower semi-continuous and bounded from below, then there
exists a sequence {cj}j≥1 of j-Lipschitz functions such that, for every (x, y) ∈ X×Y we have
cj(x, y)↗ c(x, y). Thus, we can write

K(γ) = sup
j≥1

Kj(γ),

where Kj(γ) =
∫
cjdγ (thanks to the monotone convergence Theorem). Since, each Kj is

continuous for the weak convergence and the supremum of continuous functions is lower
semi-continuous, then the functional K : M+(X×Y )→ R∪{+∞} is lower semi-continuous.

Let {γn}n≥1 be a minimizing sequence, i.e. K(γn) → inf
γ∈Π(µ,ν)

K(γ). By Weierstrass’s

Theorem (see Appendix A, Theorem A.0.3) there exists a transport plan γ∗ ∈ Π(µ, ν) such
that

K(γ∗) = inf {K(γ) : γ ∈ Π(µ, ν)} .

6



1.2 Kantorovich’s duality
Kantorovich’s problem (KP) is a linear optimization problem with convex constraints. Thus,
we may apply the duality theory for convex problems and try to find the dual problem (DP)
for (KP).

Let γ ∈M+(X × Y ). Then, we have

sup
(φ,ψ)∈Cb(X)×Cb(Y )

{∫
X
φdµ+

∫
Y
ψdν

}
−
∫
X×Y

(φ(x) + ψ(y))dγ =
{

0, if γ ∈ Π(µ, ν)
+∞, otherwise.

Hence, (KP) can be rewritten as follows:

inf
γ∈Π(µ,ν)

∫
X×Y

cdγ + sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

(φ(x) + ψ(y))dγ, (1.2.1)

if we assume that it is possible to interchange sup with inf (in other words, if we suppose a
mini-max principle holds), then

sup
φ,ψ

∫
φdµ+

∫
Y
ψdν + inf

γ∈Π(µ,ν)

∫
X×Y

c(x, y)− (φ(x) + ψ(y))dγ. (1.2.2)

Notice that one can rewrite the infimum over γ as a constraint on φ and ψ:

inf
γ∈M+(X×Y )

∫
X×Y

(c− φ⊕ ψ)dγ =
{

0, if φ⊕ ψ ≤ c
−∞, otherwise,

where (φ ⊕ ψ)(x, y) := φ(x) + ψ(y). Indeed, let γ ∈ M+(X × Y ). If φ ⊕ ψ > c for some
measurable set A with γ(A) > 0, let (x0, y0) ∈ A and ε > 0 such that φ(x0) + ψ(y0) −
c(x0, y0) = ε > 0; let us consider the measure γλ = λδ(x0,y0) for some λ > 0. Clearly,
γλ ∈M+(X × Y ) and we have that:∫

A
(c− (φ⊕ ψ))dγ ≥

∫
A
c(x, y)− (φ(x) + ψ(y))dγλ = −λε→ −∞,

when λ goes to ∞.
Before giving a formal formulation of this optimization problem, let us give an informal

interpretation of this duality, given by Caffarelli and Villani in [26].
The shipper’s problem: Assume for a moment that you are the owner of some bakeries

and coffee shops in Venice, and daily need to transport a certain amount of bread to each coffee
shop. To accomplish this task, you hire workers who will charge you c(x, y) for transporting
a bread tray located at bakery x to the coffee shop located at y. Moreover, suppose that
bakeries daily production and the bread needed at each coffee shop are fixed. Now, let us
imagine the following situation: while you are trying to figure out the way to minimize your
transportation cost, a friend of yours comes over and offers you to transport the bread with
his truck, and agrees to set the prices such that

φ(x) + ψ(y) ≤ c(x, y),

with φ(x) the price for loading a bread tray located at bakery x, and ψ(y) the price for
delivering it at the coffee shop located at y. Surprisingly, Kantorovich’s duality tells us that
your friend may arrange the prices in such a way that you will pay him exactly the same as
you would have spent by doing the transport by yourself.
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Problem 1.2.1 (Dual problem). Let µ ∈P(X) and ν ∈P(Y ) probability measures, and a
cost function c : X × Y → [0,∞] we consider the problem

sup
{∫

X
φdµ+

∫
Y
ψdν : (φ, ψ) ∈ Cb(X)× Cb(Y ), φ⊕ ψ ≤ c

}
. (DP)

Remark 1.2.2. One can easily show that sup(DP) ≤ min(KP). Indeed, let (φ, ψ) be any
admissible pair. Then,∫

X×Y
cdγ ≥

∫
X×Y

(c− φ⊕ ψ)dγ +
∫
X
φdµ+

∫
Y
ψdν ≥

∫
X
φdµ+

∫
Y
ψdν,

since c − φ ⊕ ψ ≥ 0. Hence, if we take infimum over all γ ∈ Π(µ, ν), and supremum with
respect to (φ, ψ), then the desired inequality holds.

The following definition gives us a natural candidate to be an optimizer for (DP) once
one of the functions φ or ψ is fixed.

Definition 1.2.3 (c-concavity). Given a function f : X → R, we define the c-transform
f c : Y → R (see figure 1.3) by

f c(y) = inf
x∈X
{c(x, y)− f(x)}

We also define the c-transform of g : Y → R by

gc(x) = inf
y∈Y
{c(x, y)− g(y)}

• A function ψ on X is said to be c-concave if there is φ : Y → R such that ψ = φc.
We denote by c− conc(X) the set of c-concave functions.

• A function ψ on Y is said to be c-concave if there is φ : X → R such that ψ = φc.
We denote by c− conc(Y ) the set of c-concave functions.

Example 1.2.4. Let c(x, y) = 1
2 |x−y|

2, λ > 0 and consider the function χ(x) = 1
2(1−λ)|x|2

defined on a compact domain Ω ⊂ Rd. Now, we compute χc. Indeed,

χc(y) = inf
x∈Rd

{1
2 |x− y|

2 − 1
2(1− λ)|x|2

}
≥ inf

x∈Rd

{1
2(|x| − |y|)2 − 1

2λ|x|
2
}
.

Then, we have equality when x is a scalar multiple of y and the second infimum is realized
whenever ‖x‖ = 1

λ‖y‖. Hence, if we substitute x = 1
λy we get that χc(y) = −1−λ

2λ |y|
2.

Now, we recall the definition of the Legendre transformation (or convex conjugate).
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Figure 1.3: Geometric representation of a c-concave function

Definition 1.2.5 (Legendre transform). Let (X, 〈·, ·〉) be a Hilbert space. Given a function
f : X → R, we define the Legendre transform or convex conjugate f∗ : X → R as follows:

f∗(y) := sup
x∈X
{〈x, y〉 − f(x)} .

The following proposition gives us a connection between c-concavity and convexity.

Proposition 1.2.6. Given a function χ : Rd → R∪{+∞}, let us define uχ : Rd → R∪{+∞}
through uχ(x) = 1

2 |x|
2 − χ(x). Then we have uχc = (uχ)∗. In particular, a function φ is c-

concave if and only if x 7→ 1
2 |x|

2 − φ(x) is convex and lower semi-continuous.

Proof. First, we observe that

uχc(x) = 1
2 |x|

2 − χc(x) = sup
y∈Rd

{1
2 |x|

2 − 1
2 |x− y|

2 + χ(y)
}

= sup
y∈Rd

{1
2 |x|

2 − 1
2 |x|

2 + x · y − 1
2 |y|

2 + χ(y)
}

= sup
y∈Rd

{
x · y −

(1
2 |y|

2 − χ(y)
)}

= sup
y∈Rd

{x · y − uχ(y)}

= (uχ)∗(x).

The second assertion follows from the fact that a function is convex and lower semi-continuous
if and only if it is written as the supremum of affine functions.

We now focus on the existence of an optimal pair (φ, ψ) for (DP). Once this result has
been proved, we will show that strong duality holds.

The following proposition gives us some useful properties of c-concave functions.
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Figure 1.4: Subgradient of a convex function. Geometrically, the elements of ∂φ(x0) or
subgradients at x0 are vectors which are perpendicular to the tangent planes on φ(x0).

Proposition 1.2.7. Let X and Y be two nonempty sets, and let c(x, y) : X×Y → R∪{+∞}
be a function. Let φ : X → R ∪ {+∞}, then:

• φ(x) + φc(y) ≤ c(x, y)

• φcc̄c = φc.

• φcc ≥ φ. We have equality φcc = φ if and only if φ is c-concave. In general, φcc is the
smallest c-concave function larger than φ.

Let φ : X → R be a lower semi-continuous function; the c-superdifferential is defined
as:

∂cφ := {(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)} .

Also, we can define ∂cφ(x) := {y ∈ Y : (x, y) ∈ ∂cφ}.
If φ is convex and c(x, y) = |x− y|2, then the definition of ∂cφ(x) coincides with the classical
definition of subdifferential,

∂φ(x) :=
{
y ∈ Rd : φ(x) + φ∗(y) = x · y

}
,

where φ∗ denotes the Legendre transform of φ (see figure 1.4).
Remark 1.2.8. • Let gα : X → R̄ be a family of functions such that

|gα(x)− gα(x′)| ≤ ω(dX(x, x′)),

with ω a modulus of continuity. Then, g(x) = infα gα(x) shares the same modulus of
continuity.

• If c : X × Y → R is uniformly continuous, then there exists a modulus of continuity
ω : R+ → R+ with ω(0) = 0 such that |c(x, y) − c(x′, y′)| ≤ ω (dX(x, x′) + dY (y, y′)).
Hence, we have

|(c(x, y)− φ(x))− (c(x, y′)− φ(x))| ≤ ω(dY (y, y′)),

which means that |φc(y)− φc(y′)| ≤ ω(dY (y, y′)) (by the definition of c-transform and
the first part of this Remark). Applying a similar reasoning we can show that φcc̄ also
shares the same continuity modulus.
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• Given an admissible pair (φ, ψ) in the maximization problem (DP), one always can
replace it with (φ, φc) and then with (φcc̄, φc). Indeed, let us fix y0 ∈ Y , if c(x, y)−φ(x)
realize its infimum at x0, then φc(y0)+φ(x0) = c(x0, y0) (i.e, (x0, y0) ∈ ∂cφ). In general,
by Proposition 1.2.7 we have that φ⊕φc ≤ c and therefore (φ, φc) is an admissible pair
for (DP). On the other hand, by definition we have

φcc̄(x) = inf
y∈Y
{c(x, y)− φc(y)} .

Then, φcc̄(x) ≤ c(x, y)−φc(y) for all (x, y) ∈ X×Y . Therefore, (φcc̄, φc) is an admissible
pair as well.

Remark 1.2.9. If (φn, ψn) is a maximizing sequence, then we may find a maximizing se-
quence of the form (φcc̄n , φcn). Indeed, let us suppose that∫

φndµ+
∫
ψndν −→ sup(DP).

By the constraints on the dual problem and Proposition 1.2.7 we have that, ψn ≤ φcn and
φcc̄n ≥ φn. Then, ∫

X
φcc̄n dµ+

∫
Y
φcndν ≥

∫
X
φndµ+

∫
Y
ψndν −→ sup(DP).

Hence, sup
φ∈c−conc(X)

{∫
X
φdµ+

∫
Y
φcdν

}
= sup(DP) since (φcc̄n , φcn) also satisfies the con-

straints of (DP).
Note that the notion of c-transform allows us to improve a maximizing sequence {(φn, ψn)}n≥1

by replacing it with the pair (φcc̄n , φcn), and so we can get a uniform bound. After that, we
prove that the sequence is uniformly bounded as well. Hence, by Arzela-Ascoli’s Theorem
we guarantee the existence of a convergent subsequence to an admissible pair (φ, φc) which
is optimal.

Theorem 1.2.10. Suppose that X and Y are compact metric spaces and c : X × Y → R is
continuous. Then there exists a solution (φ, ψ) to the dual problem (DP) and it has the form
φ ∈ c-conc(X), ψ ∈ c-conc(Y ), and ψ = φc. In particular

sup(DP) = max
φ∈c−conc(X)

{∫
X
φdµ+

∫
Y
φcdν

}
.

Proof. Let (φn, ψn) be a maximizing sequence; then by Remarks 1.2.8 and 1.2.9 we can
improve the sequence by using c and c̄-transforms, so that the new maximizing sequence
shares the same modulus of continuity. In order to simplify notation we will denote by
(φn, ψn) this new sequence. Then, we can assume a uniform bound on the continuity of these
functions since, |φcc̄(x)− φcc̄(x′)| ≤ ω(dX(x, x′)) and |φc(y)− φc(y′)| ≤ ω(dY (y, y′)). So, the
sequence is equicontinuous

It only remains to check equiboundedness in order to apply Arzela-Ascoli’s Theorem.
Since each φn is continuous on a compact set we can extract its minimum and without loss
of generality suppose that min

x∈X
φn(x) = 0 for all n ∈ N. Then for every x ∈ X we have:
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|φn(x)| = |φn(x)− φn(x0)| ≤ ω(dX(x, x0)) ≤ ω(diam(X)) = M,

for all n ∈ N. So, supn∈N |φn(x)| ≤ M . Thus, if ψn = φcn, then we also have ψn(y) =
inf
x∈X
{c(x, y)− φn(x)} ∈ [min c−M,max c]. This shows that {φn}n≥1 and {ψn}n≥1 are uni-

formly bounded. Hence, up to a subsequence we can assume that φn → φ and ψn → ψ, let
us see that ψ = φc. Indeed, let y ∈ Y , then

ψ(y) = lim
n→∞

ψn(y) = lim
n→∞

φcn(y)

= lim
n→∞

inf
x∈X
{c(x, y)− φn(x)}

= inf
x∈X

{
c(x, y)− lim

n→∞
φn(x)

}
= inf

x∈X
{c(x, y)− φ(x)}

= φc(y),

since φn → φ uniformly. By applying the dominated convergence theorem, it is easily seen
that ∫

X
φndµ+

∫
Y
ψndν −→

∫
X
φdµ+

∫
Y
ψdν.

Moreover, we have that φ(x) + ψ(y) ≤ c(x, y). This shows that (φ, ψ) is an admissible pair
for (DP) and that it is optimal (since the original sequence is minimizing).

Remark 1.2.11. If we assume that strong duality holds, then Theorem 1.2.10 implies

min(KP) = max
φ∈c−conc(X)

{∫
X
φdµ+

∫
Y
φcdν

}
,

which also shows that the minimum of (KP) is a convex function of (µ, ν).

Definition 1.2.12. The functions φ realizing the maximum of (DP) are called Kantorovich
potentials for the transport plan between µ and ν.

Now, we will focus on proving that strong duality holds and characterizing optimal trans-
port plans. To do so, we give some preliminary results without proof (see [23, 26]).

Definition 1.2.13. On a separable metric space X, the support of a measure γ is defined
as the smallest closed set on which γ is concentrated:

spt(γ) :=
⋂
{A : A is closed and γ(X \A) = 0} .

Moreover, we also have the following characterization:

spt(γ) = {x ∈ X : γ(B(x, r)) > 0 ∀r > 0} .
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Definition 1.2.14. Let c : X ×Y → R∪{+∞} be a function. We say that a set Γ ⊂ X ×Y
is c-cyclically monotone (denoted c-CM) if for every k ∈ N, every permutation σ of
{1, 2, . . . , k} and every finite collection of points (x1, y1), . . . , (xk, yk) ∈ Γ we have:

k∑
i=1

c(xi, yi) ≤
k∑
i=1

c(xi, yσ(i)).

The following theorem is a well known generalization of Rockafeller’s Theorem (see The-
orem A.0.13).

Theorem 1.2.15. Let Γ 6= ∅ be a c-CM subset in X × Y and c : X × Y → R. Then, there
exists a c-concave function φ : X → R ∪ {−∞}, with φ 6= −∞ such that Γ ⊂ ∂cφ.

Example 1.2.16. Let c(x, y) = |x− y|2, and Γ ⊂ Rd ×Rd be a c-cyclically monotone set. If
σ is a cycle, then for any choice of points (x1, y1), . . . , (xT , yT ) ∈ Γ we have

T∑
i=1

xi · yi =
T∑
i=1
|xi − yi|2 ≥

T∑
i=1
|xi − yi+1|2 =

T∑
i=1

xi · yi+1, (1.2.3)

with yT+1 = y1. Every set Γ satisfying (1.2.3) is said to be cyclically monotone. Hence, if
φ is lower semi-continuous and convex, then Theorem 1.2.15 implies that

Γ ⊂
{

(x, y) ∈ Rd × Rd : φ(x) + φ∗(y) = x · y
}
,

which means that Γ is contained in the graph of ∂φ (Rockafeller’s Theorem).
Although the condition of being a c-CM set may seem strange at first, its continuous

counterpart when c = |x− y|2 is clearer. Let ρ : {1, 2, . . . , T, T + 1} → {x1, x2, . . . , xT+1} be
a discrete closed path, such that ρ(T + 1) = ρ(0). If we imagine that y is a vector field so
that y(xi) = yi and y(t) = y(ρ(t)), then by (1.2.3) we have that

T∑
t=1

y(t) · (ρ(t)− ρ(t− 1)) ≥ 0,
T∑
t=1

y(t− 1) · (ρ(t)− ρ(t− 1))

which means in a continuous setting that
∮
ydρ ≤ 0 and

∮
ydρ ≥ 0. Hence, y is a conservative

vector field.
Remark 1.2.17. Informally, we might think that c-CM sets provide a criteria to find local
minimizers. Indeed, as in Example 1.1.6, let us consider the discrete Kantorovich’s problem,
and take A = {(x1, y1), . . . (xk, yk)} ⊂ X × Y ; if A is not c-CM, then it cannot be contained
in the support of an optimal transport plan, since we can find a permutation σ such that
the optimal transport plan can be improved by sending some mass from xj to yσ(j), for all
j ∈ {1, 2, . . . , k}. Moreover if we keep applying this process, we can improve a transport plan
until it is supported on a c-CM set (see figure 1.5).
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Figure 1.5: Improving the cost by a cycle in Remark 1.2.17.

Remark 1.2.18. In Example 1.1.6 we saw that the solution to the discrete Kantorovich
problem is an n × n permutation matrix, which represents a transport map. Let us assume
that yi = T (xi), and T is optimal. Then, we have the optimality condition:

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i)),

for every permutation σ. Hence, in the discrete setting, the support of γ is a c-cyclically
monotone set.

Now, we shall prove that any optimal transport plan is concentrated on a c-CM set.

Theorem 1.2.19. If γ is an optimal transport plan for the cost c : X × Y → R and c is
continuous, then spt(γ) is a c-CM set.

Proof. We prove the statement by contradiction: Suppose that spt(γ) is not a c-CM set, then
there is a number N ∈ N, {(xi, yi)}Ni=1 ⊂ spt(γ) and a permutation σ such that

N∑
i=1

c(xi, yi) >
N∑
i=1

c(xi, yσ(i)).

Let ε < 1
2N
∑N
i=1(c(xi, yi)− c(xi, yσ(i)). Since c is continuous there exists δ > 0 such that for

all i ∈ {1, . . . , N} and (x, y) ∈ B(xi, δ)×B(yi, δ) we have

c(x, y) > c(xi, yi)− ε,

and also for all (x, y) ∈ B(xi, δ)×B(yσ(i), δ) we have that

c(x, y) < c(xi, yσ(i)) + ε.

Intuitively, the idea of the proof is to build a new measure γ̄ which contradicts optimality
of γ. Indeed, let Vi = B(xi, δ) × B(yi, δ); since (xi, yi) ∈ spt(γ), then γ(Vi) > 0 for all
i ∈ {1, . . . , N}. Now, we define the measures γi := 1

γ(Vi)γ |Vi , µi := (πx)#γi and νi := (πy)#γi.
For any i we can consider the measure γ̄i = µi⊗νσ(i) ∈ Π(µi, νσ(i)) and take ε0 < 1

N mini γ(Vi).
We now define the following measure:

γ̄ := γ − ε0
N∑
i=1

γi + ε0

N∑
i=1

γ̄i.
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To finish the proof we shall prove that γ̄ ∈ Π(µ, ν) and has lower cost than γ. We fist
observe that the conditions ε0γi = ε0

γ(Vi)γ |Vi and ε
γ(Vi) ≤

1
N imply that ε0γi < 1

N γ, which
means that γ −

∑N
i=1 γi is positive and hence γ̄ is a positive measure. Now, we compute the

marginals of γ̄:

(πx)#γ̄ = (πx)#γ − ε0
N∑
i=1

(πx)#γi + ε0

N∑
i=1

(πx)#γ̄i = µ− ε0
N∑
i=1

µi + ε0

N∑
i=1

µi = µ,

(πy)#γ̄ = (πy)#γ − ε0
N∑
i=1

(πy)#γi + ε0

N∑
i=1

(πy)#γ̄i = µ− ε0
N∑
i=1

νi + ε0

N∑
i=1

νσ(i) = ν,

since σ is a permutation. Thus, γ̄ ∈ Π(µ, ν). On the other hand, since γi is concentrated on
Vi and γ̄i on B(xi, δ)×B(yσ(i), δ), then we have∫

X×Y
cdγ −

∫
X×Y

cdγ̄ = ε0

∫
X×Y

cdγi − ε0
N∑
i=1

cγ̄i

≥ ε0
N∑
i=1

(c(xi, yi)− ε)
∫
X×Y

dγi − ε0
N∑
i=1

(c(xi, yσ(i)) + ε)
∫
X×Y

dγ̄i

= ε0

N∑
i=1

(c(xi, yi)− ε)− ε0
N∑
i=1

(c(xi, yσ(i)) + ε)

ε0

(
N∑
i=1

c(xi, yi)−
N∑
i=1

c(xi, yσ(i)) + 2Nε
)
> 0,

which contradicts the optimality of γ. Therefore, spt(γ) is a c-CM set.

Now, we present a strong duality result when the cost function is uniformly continuous
and bounded.

Theorem 1.2.20. Suppose that X and Y are Polish spaces and that c : X × Y → R is
uniformly continuous and bounded. Then, the problem (DP) admits a solution (φ, φc) and
therefore we have max(DP) = min(KP).

Proof. Since c is continuous, then (KP) admits a solution γ ∈ Π(µ, ν). Also, Γ = spt(γ) is a
c-CM set thanks to Theorem 1.2.19. Hence, we can apply Theorem 1.2.15 to guarantee the
existence of a c-concave function φ such that

Γ ⊂ ∂cφ = {(x, y) ∈ Ω× Ω : φ(x) + φc(y) = c(x, y)} .

Since φcc̄ = φ and φc is c̄-concave, then we have that φ and φc are continuous (since c is
uniformly continuous). Moreover, we also observe that

φc(y) = inf
x∈X
{c(x, y)− φ(x)} ≤M1,

with M1 > 0 (since c is bounded). Then, φc is upper bounded and therefore φ is lower
bounded. Analogously, from

φ(x) = inf
y∈Y
{c(x, y)− φc(y)} ≤M2
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we obtain that φc and φ are lower and upper bounded, respectively. This proves that φ and
φc are bounded as well (just take M = max(M1,M2)). Hence, (φ, φc) is an admissible pair
for (DP).

On the other hand, since Γ is concentrated on the set where φ(x) + φc(y) = c(x, y) then∫
X
φdµ(x) +

∫
Y
φcdν(y) =

∫
X×Y

c(x, y)dγ(x, y),

which implies that

sup(DP) ≥
∫
X
φdµ+

∫
Y
φdν =

∫
X×Y

cdγ = min(KP).

Since we already know that sup(DP) ≤ min(KP), then the desired equality holds and (φ, φc)
is an optimal pair in (DP).

To prove the duality formula when the cost function is lower semi-continuous and bounded
from below, we will use the fact that there exists a sequence {ck}k≥1 of k-Lipschitz functions
such that ck converge increasingly to c. But first, let us state the following lemma which is
a straightforward application of Prokhorov’s Theorem.

Lemma 1.2.21. Suppose that {ck}k≥1 and c are lower semi-continuous functions bounded
from below and that ck converge increasingly to c. Then

lim
k→∞

min
{∫

ck dγ : γ ∈ Π(µ, ν)
}

= min
{∫

c dγ : γ ∈ Π(µ, ν)
}
.

Now, we can prove the following duality theorem.

Theorem 1.2.22 (Kantorovich’s duality). If X, Y are Polish spaces and c : X × Y → R ∪
{+∞} is lower semi-continuous and bounded from below, then the duality formula sup(DP) =
min(KP) holds.

Proof. Let us consider a sequence {ck}k≥1 of k-Lipschitz function such that ck ↗ c. Then,
by Theorem 1.2.19 we have strong duality for each k ∈ N. Hence,

min
{∫

ckdγ : γ ∈ Π(µ, ν)
}

= max
(φ,ψ)∈Cb(X)×Cb(Y )

{∫
φdµ+

∫
ψdν : φ⊕ ψ ≤ ck

}
≤ sup

(φ,ψ)∈Cb(X)×Cb(Y )

{∫
φdµ+

∫
ψdν : φ⊕ ψ ≤ c

}
,

since every pair (φ, ψ) satisfying φ(x) + ψ(y) ≤ ck(x, y) also satisfies φ(x) + ψ(y) ≤ c(x, y).
Letting k →∞ and applying Lemma 1.2.21 to the left-hand side of the last inequality we get
that:

min
{∫

c dγ : γ ∈ Π(µ, ν)
}
≤ sup

(φ,ψ)∈Cb(X)×Cb(Y )

{∫
φdµ+

∫
ψdν : φ⊕ ψ ≤ ck

}
.

Therefore, sup(DP) ≥ min(KP). Since we know that sup(DP) ≤ min(KP), then the duality
formula holds.
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Remark 1.2.23. The strong duality formula that we proved for a lower semi-continuous
cost differs from the continuous case, since our proof does not guarantee the existence of an
optimal pair.
Example 1.2.24. Let T : Rd → Rd be a homothety defined by T (x) = λx, with λ > 0. We
will show that for any compactly supported measure µ ∈ P(Rd), the map T is an optimal
transport from µ to T#µ with respect to the quadratic cost c(x, y) = 1

2 |x−y|
2. Let us consider

the potential φ(x) = 1
2(1 − λ)|x|2 and compute φc to show that T is optimal. Indeed, since

µ is compactly supported, we can work on a compact domain Ω = max{1, λ}spt(µ) ⊂ Rd
where the potential is bounded. By Example 1.2.4 we have that φc(y) = −1−λ

2λ |y|
2.

By Definition of c-transform we know that φ(x) + φc(y) ≤ 1
2 |x− y|

2. Then, we have

min(KP) ≥
∫

Ω
φ(x)dµ(x) +

∫
Ω
φc(x)dν(x) =

∫
Ω

1
2(1− λ)|x|2dµ(x)−

∫
Ω

1− λ
2λ |y|

2dµ(x)

=
∫

Ω

(1− λ)2

2 |x|2dµ(x)

=
∫

Ω

1
2 |(1− λ)x|2dµ(x)

=
∫

Ω
c(x, T (x))dµ(x).

Hence, T is an optimal transport map.
Kantorovich’s duality allows us to obtain the following theorem taken from [23].

Theorem 1.2.25. Let c be a lower semi-continuous cost function, γ ∈ Π(µ, ν) an optimal
transport plan. Then, there exist a c-concave function φ and a c-CM set Γ such that spt(γ) ⊂
Γ ⊂ ∂cφ.

Remark 1.2.26. If we assume in Theorem 1.2.25 that X × Y is compact and c continuous,
then the c-concave function φ is the Kantorovich potential associated to the optimal plan γ.

1.2.1 The Kantorovich problem with strictly convex cost

In this section we will consider the case X = Y = Ω ⊂ Rd and the cost c of the form
c(x, y) = h(x− y), where h is a strictly convex function. We will assume that Ω is compact
for simplicity. We will prove the existence of an optimal transport T and a representation
formula for it.

Proposition 1.2.27. If c ∈ C1(Ω × Ω), φ is a Kantorovich potential differentiable at x0,
where c is the transport cost from µ to ν, and (x0, y0) ∈ spt(γ) with γ an optimal transport
plan. Then, ∇φ(x0) = ∇xc(x0, y0).

Proof. By the duality formula we have that max(DP) = min(KP) holds and both extremal
values are realized (since Ω is compact). Then, if γ ∈ Π(µ, ν) is optimal for (KP), then there
is a Kantorovich potential φ such that φ(x) + φc(y) = c(x, y) on spt(γ). Let us fix (x0, y0) ∈
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spt(γ), then x 7→ c(x, y0) − φ(x) is minimal at x = x0, since φc(y0) = c(x0, y0) − φ(x0) and
φc(y0) = inf

x∈Ω
{c(x, y0)− φ(x)}. Hence, if φ and c(·, y0) are differentiable at x0 and x0 /∈ ∂Ω,

one gets ∇x(c(x0, y0)− φ(x0)) = 0. Therefore, ∇φ(x0) = ∇xc(x0, y0).

The aim of this proposition is to deduce from (x0, y0) ∈ spt(γ) that y0 is indeed uniquely
defined from x0. This would show that γ is concentrated on a graph, that of the map
associating y0 to each x0. Furthermore, this map turns out to be the optimal transport.
Before proving this fact, we state a well known result about differentiability of Lipschitz
functions (the proof of this theorem may be found in [3], chapter 3).

Theorem 1.2.28 (Rademacher). Let f : Ω ⊂ Rd → R be a locally Lipschitz function, with Ω
an open set. Then, f is differentiable almost everywhere with respect to the Lebesgue measure.

In the following theorem we will deduce that for every x0 the point y0 such that (x0, y0) ∈
spt(γ) is unique, in other words, γ = γT where T (x0) = y0 by requiring that µ is absolutely
continuous with respect to the Lebesgue measure.

Theorem 1.2.29. Let µ, ν ∈ P(Ω), and Ω ⊂ Rd a compact set. Then, there exists an
optimal transport plan γ ∈ Π(µ, ν) for the cost c(x, y) = h(x − y) with h strictly convex.
If µ is absolutely continuous with respect to the Lebesgue measure and µ(∂Ω) = 0, then
the optimal transport plan is unique and of the form (Id, T )#µ. Moreover, there exists a
Kantorovich potential φ, and the map T and the potential φ are linked by

T (x) = x− (∇h)−1(∇φ(x))

Proof. Theorems 1.1.13 and 1.2.10 give the existence of an optimal transport plan γ ∈ Π(µ, ν)
and a Kantorovich potential φ ∈ c− conc(X). Let (x0, y0) ∈ spt(γ). If φ is differentiable at
x0 and x0 /∈ ∂Ω, then ∇φ(x0) ∈ ∂h(x0 − y0). Indeed, let z ∈ Ω such that y0 + z ∈ Ω. Since
∇φ(x0) ∈ ∂φ(x0) and φ(x0) + φc(y0) = h(x0 − y0), then we have

h(x0 − y0)− φc(y0) +∇φ(x0) · (z − (x0 − y0)) = φ(x0) +∇φ(x0) · (z − (x0 − y0))
≤ φ(y0 + z).

This last inequality implies that

h(x0 − y0) +∇φ(x0) · (z − (x0 − y0)) ≤ φ(y0 + z) + φc(y0) ≤ c(y0 + z, y0) = h(z).

Hence, ∇φ(x0) ∈ ∂h(x0 − y0). From strict convexity of h we have that ∂h is univalued and
injective. Therefore, ∂h(x0 − y0) = {∇φ(x0)} and the relation

x0 − y0 = (∇h)−1(∇φ(x0))

holds for every (x0, y0) ∈ spt(γ).
On the other hand, we note that the set of points where h is not differentiable is Lebesgue-

negligible by Rademacher’s Theorem. Moreover, φ is almost everywhere differentiable with

18



Figure 1.6: Uniqueness of the optimal map

respect to the Lebesgue measure. Indeed, since h is locally Lipschitz and Ω is bounded, then
c is Lipschitz on Ω × Ω. Also, φ shares the same modulus of continuity of c, which means
that φ is Lipschitz. Hence, Rademacher’s Theorem implies that φ is differentiable a.e.
From the absolute continuity assumption on µ we have that {x ∈ Ω : ∇φ(x) does not exist}
and ∂Ω are µ-negligible as well. Therefore, the map T (x) = x− (∇h)−1(∇φ(x)) is defined µ
almost everywhere.

It remains to show that γ = (Id, T )#µ. We observe that T is a Borel map on dom(∇φ)
(Since, ∇φ is Borel measurable on dom(∇φ) and (∇φ)−1 is continuous). Hence, to complete
the proof, it suffices to show that γ and (Id, T )#µ coincides on products U × V of Borel sets
U, V ⊂ Ω. Let A := {(x, y) ∈ spt(γ) : x ∈ dom∇φ(x)}. For (x, y) ∈ A we have y = T (x),
then

(U × V ) ∩A =
((
U ∩ T−1(V )

)
× Ω

)
∩A

Clearly, A is Borel measurable since it is the intersection of the Borel measurable set dom∇φ×
Ω and the closed set spt(γ). Thus, γ(W ∩A) = γ(W ) for all W ⊂ Ω×Ω. Applying this fact
in the last inequality we get that

γ(U × V ) = γ
((
U ∩ T−1(V )

)
× Ω

)
= µ

((
U ∩ T−1(V )

))
= (Id, T )#µ,

since γ ∈ Π(µ, ν). Therefore, we have shown that every optimal transport plan γ is induced
by a transport map T (x) = x− (∇h)−1(∇φ(x)) which pushes µ forward to ν.

To prove uniqueness lets suppose there exist two optimal transport plans γ1 = (Id, T1)#µ
and γ2 = (Id, T2)#µ, and define γ = 1

2γ1 + 1
2γ2. We see easily see that γ is also an optimal

plan, but it cannot be concentrated on the graph of some measurable function, unless T1 = T2,
µ-a.e (see figure 1.6).

Let us illustrate how the last theorem works with an example.
Example 1.2.30. Let T : Rd → Rd be a homothety defined by T (x) = λx, with λ > 0. We
shall prove that T is optimal by using Theorem 1.2.29. Indeed, by Example 1.2.24 we know
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that φ(x) = 1
2(1 − λ)|x|2 is a Kantorovich potential. Since µ is compactly supported and

c(x, y) is convex then, we may apply Theorem 1.2.29 to get that the optimal transport map
T and φ are linked by

T (x) = x− (∇h)−1(∇φ(x)),

where h(z) = 1
2 |z|

2. Since, ∇φ(x) = (1− λ)x and ∇h(z) = z, then

T (x) = (∇h)−1((1− λ)x) = x− (1− λ)x = λx.

Remark 1.2.31. The regularity of the measure µ is very important in Theorem 1.2.29. If

µ ({x ∈ Ω : ∇φ(x) does not exists}) > 0

or µ(∂Ω) > 0, then we cannot guarantee the existence of an optimal transport map since T
depends on the points where we can differentiate φ.
Remark 1.2.32. Since c(x, y) = |x − y|p with p > 1 is strictly convex, then by Theorem
1.2.29 we can guarantee the existence of a unique optimal transport map T such that T (x) =
x− (∇h)−1(∇φ(x)), where φ is the corresponding Kantorovich potential.

1.2.2 Brenier’s Theorem

In this sub-section we will briefly study the Kantorovich and Monge’s problem on the quadratic
case, i.e. when the cost function is of the form c(x, y) = 1

2 |x − y|
2. We shall prove in this

case a stronger result than Theorem 1.2.29 due to Yann Brenier in [23, 26]. Finally, we will
give two well-known applications of Brenier’s Theorem to prove the isoperimetric inequality
and Brenier’s polar factorization Theorem for vector fields.

Let us first prove a compact version of Brenier’s Theorem, which turns out to be a direct
consequence of Theorem 1.2.29.
Remark 1.2.33. Let φ : Rd −→ R ∪ {−∞} be a c-concave function, and define v(x) :=
|x|2
2 −φ(x). Then, y ∈ ∂cφ(x) if and only if y ∈ ∂v(x). To prove this assertion, it’s enough to

observe that y ∈ ∂cφ(x) if and only if the following holds

φ(x) = c(x, y)− φc(y),
φ(z) ≤ c(x, y)− φc(y), ∀z ∈ Rd,

for any continuous cost. In the quadratic case, we would have

φ(x)− |x|
2

2 = 〈x,−y〉+ |y|
2

2 − φc(y)

φ(z)− |z|
2

2 = 〈z,−y〉+ |z|
2

2 − φc(z) ∀z ∈ Rd.

Therefore,

y ∈ ∂cφ(x)←→ φ(z)− |z|
2

2 ≤ φ(x)− |x|
2

2 + 〈(z − x),−y〉 ∀z ∈ Rd

←→ −y ∈ ∂
(
φ− | · |2

)
(x)

y ∈ ∂v(x).
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Theorem 1.2.34 (Brenier). Let c(x, y) = 1
2 |x−y|

2 and µ, ν ∈P(Ω). If µ� L d, then there
exists a unique optimal transport plan from µ onto ν which is of the form (Id,∇u)#µ, where
u is a convex function and ∇u is the unique (up to µ-negligible sets) gradient of a convex
function such that (∇u)#µ = ν. Moreover, if we assume that ν � L d, then γ = (∇u∗, Id)#ν
and ∇u∗ pushes forward ν onto µ.

Proof. Let γ ∈ Π(µ, ν) be an optimal transport plan. From Theorem 1.2.25 and Proposition
1.2.6 we know that for any Kantorovich potential φ (which is c-concave in the compact
case) it holds spt(γ) ⊂ ∂cφ, and u(x) = |x|2

2 − φ(x) is convex and lower semicontinuous.
Moreover, the previous remark implies that ∂cφ = ∂u. Since u is a convex function, then u is
locally Lipschitz and consequently, ∇u is well-defined µ-a.e. which means that every optimal
transport plan is concentrated on its graph. Therefore, γ = (Id,∇u)#µ (it’s induced by the
gradient of the convex function u).

On the other hand, we note that

{(x, y) : u∗(x) + u∗∗(y) = x · y} = {(x, y) : u∗(x) + u(y) = x · y},

since u = u∗∗ whenever u is convex and lower semi-continuous. Thus, Graph(∂u) = Graph(∂u∗).
If γ is optimal between µ and ν, then for every (x, y) ∈ spt(γ) we have that y = ∇u(x) is
equivalent to x ∈ ∂u∗(y). But, since u∗ is ν-a.e. differentiable then the equation x =
∇u∗(y) = ∇u∗(∇u(x)) holds in spt(γ). Hence, x = ∇u∗(∇u(x)) µ-a.e. Similarly, we obtain
y = ∇u(∇u∗(y)) ν-a.e. Therefore, γ = (∇u∗, Id)#ν and ∇u∗ pushes forward ν onto µ.

Remark 1.2.35. We note that the existence of an optimal transport map is true under
weaker conditions assumptions on µ. For instance, we can replace the condition µ absolutely
continuous with the following: µ(A) = 0 for any set A ⊂ Rd such that H d−1(A) < +∞, with
H d−1 the (d− 1)-dimensional Hausdorff measure.

We observe that the previous theorem is valid only if we assume compactness on the
domain Ω. In order to give a less restrictive result and to show why the quadratic case
deserves special attention, we can adapt our previous analysis (by using some tools from
convex analysis) to the case of unbounded domains and prove Brenier’s Theorem (see [23, 26]),
but first let us sketch an important characterization that we will need to prove this result.

Remark 1.2.36. Suppose that µ, ν are probability measures on Rd such that
∫
X
|x|2dµ(x)+∫

Y
|y|2dν(y) < +∞. Since |x − y|2 = |x|2 − 2(x · y) + |y|2, then minimize the Kantorovich

functional with quadratic cost is equivalent to maximize
∫
x · y dγ (since we can withdraw

the parts depending only on x or y in the optimization problem).

Theorem 1.2.37. Let µ, ν ∈P(Rd) be two probability measures such that∫
Rd
|x|2dµ(x),

∫
Rd
|x|2dν(y) <∞,

and c(x, y) = 1
2 |x − y|

2. Then γ ∈ Π(µ, ν) is an optimal transport plan if and only if spt(γ)
is cyclically monotone.
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Proof. According to the Example 1.2.16, we have that every c-cyclically monotone set is
necessarily cyclically monotone when the cost is quadratic. Hence, if we assume that γ ∈
Π(µ, ν) is optimal, then spt(γ) is a cyclically monotone set by Theorem 1.2.19.

On the other hand, let us assume that γ̄ is cyclically monotone. By Rockafeller’s Theo-
rem there exists a proper convex and lower semi-continuous function u such that spt(γ) ⊂
Graph(∂u). Let u∗ be the Legendre transform of u, then x ·y ≤ u(x)+u∗(y) with equality on
spt(γ). Moreover, since we have finite second moments it is enough to show that γ̄ maximizes∫
Rd×Rd x · ydγ(x, y) over Π(µ, ν). Now, by integrating the previous inequality we get:∫

Rd×Rd
x · ydγ(x, y) ≤

∫
Rd×Rd

[u(x) + u∗(y)]dγ(x, y)

=
∫
Rd
u(x)dµ(x) +

∫
Rd
u∗(y)dν(y)

=
∫
Rd×Rd

u(x)dγ̄(x, y) +
∫
Rd×Rd

u∗(y)dγ̄(x, y)

=
∫
Rd×Rd

[u(x) + u∗(y)]dγ̄(x, y)

=
∫
Rd×Rd

x · ydγ̄(x, y),

for any γ ∈ Π(µ, ν). Therefore, γ̄ is optimal.

Theorem 1.2.38 (Brenier). Let µ, ν ∈ P(Rd) and c(x, y) = 1
2 |x − y|2. Suppose that∫

|x|2dµ(x)+
∫
|y|2dν(y) < +∞, and µ� L d. Then, there exists a unique optimal transport

plan γT ∈ Π(µ, ν), where T can be written as the gradient of a convex function, that is T = ∇u
for some convex function u. Moreover, if we assume that ν � L d, then γ = (∇u∗, Id)#ν
and ∇u∗ pushes forward ν onto µ.

Proof. Let γ be an optimal transport plan. By Theorem 1.2.37 it follows that spt(γ) is cycli-
cally monotone (thanks to the finite second moments’ hypothesis), and consequently spt(γ)
is concentrated on Graph(∂u) for some convex proper and lower semi-continuous function u
(due to Rockafeller’s Theorem). Since u ∈ L1(µ), then u is finite µ-a.e. Moreover, we deduce
that spt(µ) ⊂ {u < +∞} (which is a convex set), that is µ

(
{u < +∞}

)
= 1. Further-

more, the boundary of the set {u < +∞} is µ-negligible by Rademacher’s Theorem. Hence,
µ (Int({u < +∞})) = 1. On the other hand, u is differentiable µ-a.e on Int({u < +∞}) which
means that ∂u(x) = {∇(x)} for µ-a.e point x ∈ Rd. Then, we have that y = ∇u(x) for every
(x, y) ∈ spt(γ). Therefore, γ is concentrated on the graph of ∇u, that is γ = (Id,∇u)#µ.

So far we have proven existence, now we will show uniqueness. Indeed, let us assume that
γ = (Id,∇u1)#µ = (Id,∇u2)#µ are both optimal. Then, (u1, u

∗
1) is an optimal pair to the

dual problem as well as (u2, u
∗
2), which means we have the following equality∫

Rd×Rd
[u2(x) + u∗2(y)]dγ(x, y) =

∫
Rd×Rd

[u1(x) + u∗1(y)]dγ(x, y) =
∫
Rd×Rd

x · ydγ(x, y).

Since y = ∇u1(x) for every (x, y) ∈ spt(γ), then∫
Rd×Rd

[u2(x) + u∗2(∇u1(x))− x · ∇u1(x)]dµ(x) = 0.
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Hence, u2(x) + u∗2(∇u1(x)) = x · ∇u1(x), and as a consequence ∇u1(x) ∈ ∂u2(x) for µ-a.e.
point x ∈ Rd. Since u2 is differentiable µ-a.e we necessarily have that ∇u1 = ∇u2 µ-a.e. This
proves uniqueness.

Finally, the idea to prove γ = (∇u∗, Id)#ν is identical to the one given in the compact
case.

Corollary 1.2.39. Let X,Y ⊂ Rd and µ ∈ P(X), ν ∈ P(Y ). Under the assumptions
of Brenier’s Theorem, we have that ∇u is the unique solution to Monge’s transportation
problem:

1
2

∫
x
|x−∇u(x)|2dµ(x) = 1

2 inf
T#µ=ν

{∫
X
|x− T (x)|2dµ(x)

}
.

Proof. From Section 1.1, we know that min(KP) ≤ inf(MP). Let γ ∈ Π(µ, ν) be an optimal
transport plan for c; by Brenier’s Theorem there exists a unique optimal transport plan γT
for (KP), with T = ∇u some convex function u. Hence, γT = γ. Since T (x) = y on spt(γ)
we have

inf(MP) ≤ 1
2

∫
X
|x−∇u(x)|2dµ(x)

= 1
2

∫
X×Y

|x−∇u(x)|2dγ(x, y)

= 1
2

∫
X×Y

|x− y|2dγ(x, y)

=
∫
X
c(x, y)dγ(x, y)

= min(KP),

Therefore, min(KP) = inf(MP). Uniqueness of T comes from uniqueness of γT .

The first application of Brenier’s Theorem that we will see is one of the most famous in
geometry: the isoperimetric inequality. It establish that the unit ball in Rd is the surface with
lower surface area among all surfaces with the same volume. Before proving this inequality,
let us recall a well-known inequality.

Proposition 1.2.40 (Arithmetic vs geometric mean inequality). Let x1, x2, . . . , xn ∈ be any
finite collection of non-negative real numbers. Then

n
√
x1x2 · · ·xn ≤

x1 + x2 + · · ·+ xn
n

Now we prove the isoperimetric inequality using optimal transport tools.
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Theorem 1.2.41 (Isoperimetric inequality). Let Ω ⊂ Rd be a bounded domain with piece-wise
smooth boundary. If Vol(B1(0)) = Vol(Ω), then H d−1(∂B1(0)) ≤ H d−1(∂Ω) (the surface
area of Ω is larger than the surface area of B1(0)).

Proof. Let f(x) = χΩ(x) and g(y) = χB1(y), then the measures dµ = f(x)dx, dν = g(y)dy
are absolutely continuous with respect to L d. If we consider the Kantorovich problem with
quadratic cost, then by Brenier’s Theorem there exists a unique optimal transport map
T = ∇u for some convex function u. Then, for any ψ ∈ C∞c (B1(0)) we have∫

Ω
ψ(∇u(x))f(x)dx =

∫
B1(0)

ψ(y)g(y)dy.

Also, we can apply a change of variables y = ∇(x) to get∫
Ω
ψ(∇u(x))f(x)dx =

∫
Ω
ψ(∇u(x))g(∇u(x))|det(D2u(x))|dx.

Since, ψ is an arbitrary test function it follows that

f(x) = g(∇u(x))|det(D2u(x))| a.e. in Ω.

Thus, the convex function u satisfies that |det(D2u(x))| = χΩ(x)
χB1 (∇u(x)) = 1 almost everywhere

in Ω.
On the other hand, we know that the Hessian matrix D2u is positive semi-definite (since

u is convex). Then, all its eigenvalues λ1, λ2, . . . , λd are non-negative real numbers, which
means that det(D2u) = λ1λ2 · · ·λd. Hence, proposition 1.2.40 implies:

1 = d

√
det(D2u) = d

√
λ1λ2 · · ·λd ≤

λ1 + λ2 + · · ·λd
d

= 1
d
Tr(D2u) = 1

d
∆u.

Now, we integrate over Ω the last inequality to obtain

Vol(Ω) =
∫

Ω
1dx ≤ 1

d

∫
Ω

∆u(x)dx.

Since ∇u transports Ω onto B1(0), then |∇u(x)| ≤ 1. By the divergence Theorem A.0.12 we
have

Vol(B1(0)) = Vol(Ω) ≤ 1
d

∫
Ω

∆u(x)dx = 1
d

∫
Ω
∇ · ∇u(x)dx = 1

d

∫
∂Ω
∇u(x) · n̂dH d−1(x)

≤ 1
d

∫
Ω
|∇u(x)||n̂|dH d−1(x)

≤ 1
d

∫
Ω
dH d−1(x)

= 1
d
H d−1(∂Ω).

Finally, since Vol(B1(0)) = 1
dH

d−1(B1(0)), we conclude that H d−1(B1(0)) ≤ H d−1(∂Ω).

As a second application of Theorem 1.2.38, we shall prove the Brenier polar decomposition
Theorem of vector fields on Rd (see [9]).
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Definition 1.2.42. Let (Ω, µ) be a measure space. A Borel function s : Ω→ Ω is said to be
a measure-preserving map if s#µ = µ

Theorem 1.2.43 (Polar decomposition). Let Ω ⊂ Rd be an open bounded set and F : Ω →
Y ⊂ Rd a measurable vector field. Consider the rescaled Lebesgue measure L d

Ω on Ω and
assume that ν = F#L d

Ω is absolutely continuous with respect to the Lebesgue measure. Then,
there exists a unique measure preserving map s : Ω → Ω and ∇u, with u : Ω → R convex,
such that F = ∇u ◦ s. Moreover, s is the unique solution of

min
ξ#µ=µ

∫
|F (x)− ξ(x)|2dx.

Equivalently, s is the unique solution of

max
ξ#µ=µ

∫
Ω
F (x) · ξ(x)dx.

Proof. Set µ = L d
Ω and let ∇u be the optimal transport for the quadratic cost between µ

and ν (whose existence is guarantee by Brenier’s Theorem). Since ν is also an absolutely
continuous measure we have that ∇u∗ pushes forward ν onto µ, that is (∇u∗)#ν = µ (where
u∗ denotes the Legendre transform u). Let s = ∇u∗ ◦ F , so we have that s#µ = µ, since

s#µ = (∇u∗ ◦ F )#µ = (∇u∗)#(F#µ) = (∇u∗)#ν = µ.

Moreover, since ∇u ◦ ∇u∗ = Id almost everywhere in Ω, then we have

∇u ◦ s = ∇u ◦ (∇u∗ ◦ F ) = (∇u ◦ ∇u∗) ◦ F = Id ◦ F = F,

which gives the desired decomposition. Uniqueness of the measure preserving map s comes
from the fact that ∇u is unique. Indeed, if s̄ is another measure-preserving map such that
∇u ◦ s̄ = F , then we get s̄ = Id ◦ s̄ = ∇u∗ ◦ F = s, which means that s is unique.

On the other hand, since ∇u is an optimal transport map, then we have that∫
Ω×Rd

y · xdγ(x, y) ≤
∫

Ω
∇u(x) · xdx,

for every γ ∈ Π(µ, ν). Let ξ : Ω → Ω be any measure-preserving map and consider the
measure (ξ, F )#µ ∈ Π(µ, ν). Then,∫

Ω
F (x) · ξ(x)dx =

∫
Ω×Rd

y · xd ((ξ, F )#µ) (x, y) ≤
∫

Ω
∇u(x) · xdx =

∫
Ω
∇u(s(x)) · s(x)dx

=
∫

Ω
F (x) · s(x)dx.

Therefore, s is optimal.
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Finally, let us finish this section by giving an example where we can explicitly compute
the optimal transport map using Brenier’s Theorem.
Example 1.2.44 (Radial transport problem in R2). Let us consider the quadratic cost
c(x, y) = 1

2 |x− y|
2, and the measures dµ = fdL 2 and dν = gdL 2, with f(x) = 1

πχB(0,1)(x)
and g(x) = 1

8π (4− |x|2).
We want to find and optimal transport map T between µ and ν. To do that, we first

prove the following claim: if f, g are functions satisfying:

(a)
∫
R2
fdL 2 =

∫
R2
gdL 2.

(b) The transport condition, T#fL 2 = gL 2 is satisfied, for T : R2 → R2 of the form
T (x) = ρ(|x|) x

|x| , with ρ : R+ → R+ a monotone increasing function.
Then, T is an optimal transport map with respect to the quadratic cost.
Since ρ is positive and increasing then, there exist a convex increasing function ψ : R+ → R
such that ψ′ = ρ. Let us define the function u : R2 → R by u(x) := ψ(|x|) which is a convex
function. Indeed, since ψ is increasing convex, then for all t ∈ [0, 1] and x, y ∈ R2 we have
that

u((1− t)x+ ty) = ψ(|(1− t)x+ ty|) ≤ (1− t)ψ(|x|) + tψ(|y|) = (1− t)u(x) + tu(y).

Then, we get that ∇u(x) = ψ′(x) x
|x| = ρ(|x|) x

|x| = T (x). Hence, Brenier’s Theorem implies
the desired optimality of T . Now, thanks to our previous claim and the radial symmetry of
this problem we only need to find a map T (x) = ρ(|x|) x

|x| satisfying conditions (a) and (b),
which is equivalent to finding T satisfying Fµ(T (x)) = Fν(x), with

Fν(x) =
∫
B(0,|x|)

gdL 2(t) = 1
8π

∫ 2π

0

∫ |x|
0

(4− t2)tdtdθ = |x|
2

2 − |x|
4

16

Fµ(x) =
∫
B(0,|x|)

fdL 2(t) = 1
π

∫ 2π

0

∫ |x|
0

tdtdθ = |x|2.

Then, we want to solve the equation, |ρ(|x|)|2
2 − |ρ(|x|)|4

16 = |x|2 which is equivalent to solving
|y|2(|y|2 − 8) = −16|x|2, if we consider y = ρ(|x|). Then, if we simplify this expression and
substitute with z = |y|2 we obtain the equation z2 − 8z = −16|x|2. Write the left hand side
as a square and take square root of both sides of the equation to get

z = 4
√

1− |x|2 + 4 or z = −4
√

1− |x|2 + 4.

Thus, if we substitute back z = |y|2 and take the square root of both sides we have that

|y| = ±
√

4
√

1− |x|2 + 4 = ±2
√√

1− |x|2 + 1 or

|y| = ±
√
−4
√

1− |x|2 + 4 = ±2
√

1−
√

1− |x|2,

since we are looking for positive functions, then the only two possible candidates are:

y = 2
√√

1− |x|2 + 1 or 2
√

1−
√

1− |x|2.

Therefore, if we take ρ(|x|) = 2
√

1−
√

1− |x|2, then one obtains the optimal transport map

T (x) = 2
√

1−
√

1− |x|2 x
|x|
.
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Chapter 2

L1 Optimal Transport Theory

In this chapter, we give a detailed exposition about the Monge’s transport problem for the
cost c(x, y) = |x − y|. We will prove that, under certain hypothesis on the source measure
we can guarantee the existence of an optimal transport map. The proof that we present here
follows Santambrogio’s presentation [23], and is originally due to Ambrosio and Sudakov in
[1, 25].

2.1 The one dimensional transport problem
In this section, we look at the one-dimensional transport problem. We will prove that there
exists a unique optimal transport plan induced by a transport map which is obtained by
monotone rearrangement. We are interested in studying this problem in R because it turns
out that, if we consider the restriction of an optimal plan for the L1 transport problem over a
certain family of segments, then it behaves exactly as the one-dimensional optimal transport
map. The results that we include in this section without proof can be found in [23, 27].

Definition 2.1.1. Given a probability measure µ ∈P(R) we define its cumulative distri-
bution function (CDF) Fµ trough:

Fµ(x) = µ((−∞, x]),

which is nondecreasing, right-continuous and continuous at any point where µ has no atom.

Definition 2.1.2. Given a nondecreasing and right-continuous function F : R → [0, 1] its
pseudo-inverse is the function given by

F [−1](x) := inf {t ∈ R : F (t) ≥ x} ,

where the infimum is a minimum as soon as the set is nonempty and bounded from below
(otherwise it is −∞), thanks to the right-continuity of F .
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Figure 2.1: Cumulative distribution function Fµ and its pseudo-inverse F [−1]
µ

Note that the following properties hold, thanks to the definition of pseudo-inverse:

• F [−1](x) ≤ a if and only if F (a) ≥ x.

• F [−1](x) > a if and only if F (a) < x.

Now, we look at some very important properties of the pseudo-inverse.

Theorem 2.1.3. If µ ∈ P(R) and F [−1]
µ is the pseudo-inverse of a cumulative distribution

function Fµ, then (F [−1]
µ )#(L 1 |[0,1]) = µ. Moreover, given µ, ν ∈ P(R), if we set the

measure γmon := (F [−1]
µ , F

[−1]
ν )#(L 1 |[0,1]), then γmon ∈ Π(µ, ν) and

γmon((−∞, a]× (−∞, b])) = min {Fµ(a), Fν(b)} .

This plan is known as the co-monotone transport plan between µ and ν.

Example 2.1.4. Let us consider uniform densities on [a, b] and [c, d], respectively; that is,
µ = 1

b−a ·L
1 |[a,b] and ν = 1

d−c ·L
1 |[c,d]. Then, we easily compute the cumulative distribution

function in each case: Fµ(x) = x−a
b−a and Fν(y) = y−c

d−c . Then, the pseudo-inverse for these
measures is given by: F−1

µ (p) = (1 − p)a + pb and F−1
ν (r) = (1 − r)c + rd. Thus, the

co-monotone transport plan is such that

γmon((−∞, x0]× (−∞, y0]) = L 1 ({p ∈ [0, 1] : (1− p)a+ pb ≤ x0, (1− p)c+ pd ≤ y0})

= L 1
({

p ∈ [0, 1] : p ≤ x0 − a
b− a

, p ≤ y0 − c
d− c

})
= min

{
x0 − a
b− a

,
y0 − c
d− c

}
.

Given µ, ν ∈P(R), what we will do next is to build a monotone transport map pushing
forward µ onto ν.

Theorem 2.1.5. Given two measures µ, ν ∈ P(R), suppose that µ is atomless. Then,
there exists a unique (up to µ-negligible sets) nondecreasing map Tmon : R → R such that
(Tmon)#µ = ν. This map is defined through Tmon(x) := F

[−1]
ν (Fµ(x)) (see figure 2.2).
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Figure 2.2: Monotone transport map Tmon.

The following characterization lemma will be crucial to prove that the monotone map
Tmon optimizes a whole class of convex transport costs.

Lemma 2.1.6. Let γ ∈ Π(ν, µ) be a transport plan between two measures µ, ν ∈ P(R).
Suppose that the following property is satisfied:

(x, x′), (y, y′) ∈ spt(γ) with x < x′ implies that y ≤ y′.

Then, we have γ = γmon. In particular, there is a unique γ satisfying the previous condition.
Moreover, if µ is atomless, then γ = γTmon (up to countable sets).

Proof. To verify the first part of the statement, we just need to prove γ((−∞, a]×(−∞, b]) =
min {Fµ(a), Fν(b)}, since the sets (−∞, a]× (−∞, b] generates all the open products U × V .

Let us consider the following sets A = (−∞, a] × (b,+∞) and B = (a,+∞) × (−∞, b].
We know by assumption that (x, x′), (y, y′) ∈ spt(γ) with x < x′, implies y ≤ y′. Thus, if
(x0, y0) ∈ spt(γ) then

spt(γ) ⊂
{

(a, b) ∈ R2 : a ≤ x0, b ≤ y0
}
∪
{

(a, b) ∈ R2 : a ≥ x0, b ≥ y0
}

Hence, it is not possible to have γ(A) and γ(B) both positive, otherwise we would have points
in the support not satisfying the hypothesis (see figure 2.3). Then, we can write

γ((−∞, a]× (−∞, b]) = min {γ((−∞, a]× (−∞, b] ∪A), γ((−∞, a]× (−∞, b] ∪B)} .

But,

γ((−∞, a]× (−∞, b] ∪A) = γ((−∞, a]× R) = Fµ(a)
γ((−∞, a]× (−∞, b] ∪B) = γ(R× (−∞, b]) = Fν(b).

Then, γ((−∞, a]× (−∞, b]) = min {Fµ(a), Fν(b)}. Therefore, γ = γmon. To prove the second
statement, we assume that µ is atomless. For any point x ∈ R, we define the interval Ix as
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Figure 2.3: spt(γ) ∩ (A1 ∪A2) = ∅, in Lemma 2.1.6.

the minimal interval I such that spt(γ) ∩ ({x} ×R) ⊂ {x} × I, which might be reduced to a
singleton. Notice that the hypothesis on spt(γ) implies that the interior of all these intervals
are disjoint. Otherwise there exist x < x′ ∈ spt(µ) such that Ix ∩ Ix′ 6= ∅; let z ∈ Ix ∩ Ix′ ,
since (x, z), (x′, z) ∈ spt(γ), then we have that z < z, which is a contradiction. Thus, there
is at most a countable quantity of points such that Ix is not a singleton; then the set

{x ∈ spt(µ) : Card({y : (x, y) ∈ spt(γ)}) > 1}

is countable, and hence is µ-negligible (thanks to the fact that µ is atomless). Therefore, for
µ-a.e. x ∈ R there exists a unique y = T (x) such that (x, y) ∈ spt(γ), in other words, we can
define µ-a.e. a map T such that γ is concentrated on the graph of T . Clearly this map will
be monotone (by the monotone condition on spt(γ)). Finally, since T#µ = ν (by Theorem
2.1.5) then we necessarily have that T = Tmon( up to µ-negligible sets ).

Now, we are ready to prove that the monotone transport map is optimal when c(x, y) =
h(y − x), with h a strictly convex function.

Theorem 2.1.7 (Optimality of the monotone map). Let h : R → R+ be a strictly convex
function and µ, ν ∈ P(R) be probability measures. Consider the cost function c(x, y) =
h(y− x) and suppose that (KP) has finite value. Then, (KP) has a unique solution, which is
given by γmon. If µ is atomless, then this optimal plan is induced by Tmon. When h is convex,
then the same γmon is optimal, but no uniqueness is guaranteed. Moreover,

min(KP) =
∫ 1

0
h(F [−1]

ν − F [−1]
µ )dL 1.

Proof. Let γ ∈ Π(µ, ν) be an optimal transport plan. Then, by Theorem 1.2.25 we know that
spt(γ) ⊂ Γ, for some c-CM set Γ. In particular, for every pair (x, y), (x′, y′) ∈ spt(γ) we have
that:

h(y − x) + h(y′ − x′) ≤ h(y′ − x) + h(y − x′). (2.1.1)

We will use strict convexity of h to prove that inequality 2.1.1 implies a monotone behavior,
that is, x < x′ implies y ≤ y′; this will allow us to apply Lemma 2.1.6 and conclude the proof.
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In order to prove y ≤ y′ we argue by contradiction, suppose that y > y′ and let a = y−x,
b = y′−x′ and δ = x′−x > 0, then b+ δ < a. Moreover, if we let t = δ

a−b , then t ∈ (0, 1) and

b+ δ = (1− t)b+ ta,

a− δ = tb+ (1− t)a.

From condition (2.1.1) we have that h(a) + h(b) ≤ h(b + δ) + h(a − δ). But h is strictly
convex, so

h(a) + h(b) ≤ h(b+ δ) + h(a− δ)
< (1− t)h(b) + th(a) + (1− t)h(a) + th(b)
= h(a) + h(b),

which is a contradiction. Therefore, thanks to the condition y ≤ y′ and Lemma 2.1.6, the
statement follows in the strictly convex case. Now, we generalize the statement when h is
convex. It is well known that every convex function can be bounded from below by an affine
function h(x) ≥ (ax+ b)+ (we are taking the positive part since h ≥ 0). One can check that
f(x) =

√
4 + (ax+ b)2 + 1

2(ax+ b) is strictly convex and satisfies 0 ≤ f(x) ≤ 1 +h(x). Then,
for every ε > 0 hε = h+ εh is strictly convex and satisfies

h ≤ hε ≤ (1 + ε)h+ ε.

Let us take the transport cost cε(x, y) := hε(y−x); in this case we know that γmon is optimal
for

∫
R×R

cε(x, y)dγ(x, y), and hence:

∫
R×R

h(y − x)dγmon(x, y) ≤
∫
R×R

hε(y − x)dγmon(x, y) ≤
∫
R×R

hε(y − x)dγ(x, y)

≤ (1 + ε)
∫
R×R

h(y − x)dγ(x, y) + ε,

for all γ ∈ Π(µ, ν). Taking ε → 0, we get that γmon is also optimal for the cost c. Finally,
consider the change of variable t = Fµ(x). Since Tmon(x) = F

[−1]
ν (Fµ(x)), then it follows

min(KP) =
∫
R
h(y − x)dµ(x) =

∫ 1

0
h
(
F [−1]
ν (t)− F [−1]

µ (t)
)
dt.

We will give some easy examples where c is convex but not strictly convex and Tmon is
not the unique optimal transport map.
Example 2.1.8 (Book shifting). Consider the cost function c(x, y) = |x − y|, µ = L 1 |[0,2]
and ν = 1

2L 1 |[1,3]. Then,

Tmon(x) = F [−1]
ν (Fµ(x)) = inf

{
t ∈ R : 1

2L 1 |[1,3] ((−∞, t]) ≥ 1
2L 1 |[1,2] (−∞, x])

}
= x+ 1,

is the monotone transport form µ onto ν. Its cost is∫
|Tmon(x)− x|dµ = 1

2

∫ 2

0
|x+ 1− x|dx = 1.
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On the other hand, the transport map

T̄ (x) =
{
x+ 2 if x ≤ 1
x if x > 1,

also satisfies that T̄#µ = ν and
∫
|T̄ (x) − x|dµ = 1

2
∫ 2
0 2dx = 1. However, since T#µ = ν

implies
∫
Txdµ =

∫
ydν, one sees that∫

|Tx− x|dµ ≥
∫
Txdµ−

∫
xdµ =

∫
xdν −

∫
xdµ = 3

2 −
1
2 = 1.

Hence, an optimal map should give a minimal cost of 1. Therefore, T̄ is also optimal.
Example 2.1.9 (Linear cost). Suppose that c(x, y) = h(x − y), with h : Rd → R a linear
function and let µ, ν ∈ P(R) compactly supported measures. Then, any optimal transport
plan γ ∈ π(µ, ν) is optimal and any transport map as well. Indeed, observe that∫

R×R
h(x− y)dγ(x, y) =

∫
R
h(x)dµ(x)−

∫
R
h(y)dν(y).

Hence,
∫
R×R h(x− y)dγ(x, y) depends only on its marginals, which means that any transport

plan γ is optimal.
Example 2.1.10 (Distance costs on the line). Suppose that c(x, y) = |x − y| and that
µ, ν ∈ P(R) are such that sup {spt(µ)} < inf {spt(ν)}. Observe that for every (x, y) ∈
spt(µ) × spt(ν), we have c(x, y) = |x − y| = y − x. Thus, any transport plan γ ∈ Π(µ, ν) is
optimal.

2.2 L1 Monge’s transport problem

2.2.1 Secondary variational problem

From now on, we will focus on the original Monge transportation problem, that is, the
transport problem with cost c(x, y) = |x− y| and µ� L d. In general, the strategy to prove
this result will be to propose an alternative variational problem such that, any solution to this
problem is also a solution to the L1 Kantorovich’s problem, which we know behaves as the
monotone transport plan. Then, we prove that such a solution is induced, up to µ-negligible
sets, by a transport map if the gradient of the kantorovich potential has Lipschitz regularity.

Before beginning a detailed analysis of this problem, we shall give some preliminary ideas.

Remark 2.2.1. Since any distance is symmetric, we will avoid the distinction between the
c̄-transform and c-transform.

If c is a distance on X, then we can give the following characterization result about
c-concave functions.

Proposition 2.2.2. If c : X×X → R is a distance, then the function u : X → R is c-concave
if and only if it is Lipschitz continuous, with Lip(u) ≤ 1. We will denote by Lip1(X) the set
of such functions. Moreover, for every u ∈ Lip1(X), we have uc = −u.
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Proof. Let u be a c-concave function. Then, there exists χ : X → R ∪ {−∞} such that

u(x) = χc(x) = inf
y∈X
{c(x, y)− χ(y)} .

Let us assume that χ(y) 6= −∞. Note that the function x 7→ c(x, y) − χ(y) belongs to
Lip1(X), then we necessarily have u ∈ Lip1(X) (since we are taking the infimum of Lipschitz
functions). Conversely, take a function u ∈ Lip1(X). We claim that

u(x) = inf
y∈X
{c(x, y) + u(y)} .

Indeed, we note that u(x) ≥ inf
y∈X
{c(x, y) + u(y)} (since one can take y = x). On the other

hand, since u ∈ Lip1(X) then u(x) − u(y) ≤ c(x, y), that is, u(x) ≤ c(x, y) + u(y) for all
y ∈ X. Hence, the desired equality follows and shows that u = (−u)c.

Notation 2.2.3. Given a cost function c : X × Y → R, µ ∈ P(X) and ν ∈ P(Y ), let us
denote the minimum of (KP) by Jc(µ, ν), that is

Jc(µ, ν) := min
{∫

X×X
c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
.

Remark 2.2.4. As a consequence of the duality formula (Theorem 1.2.22) and Proposition
2.2.2, if c(x, y) = d(x, y), with d a metric on X, we have the following duality formula known
as the Kantorovich-Rubinstein formula:

Jc(µ, ν) = sup
{∫

X
ud(µ− ν) : u ∈ Lip1(X)

}
.

Now, we will give an example where we show how to find an optimal transport map
through the Kantorovich-Rubinstein formula.
Example 2.2.5 (Monge radial problem). Let us consider the same setting as in Example
1.2.44 : we will find the optimal transport between µ = f ·L 2 and ν = g ·L 2, when the cost
function is c(x, y) = |x− y| and f(x) = 1

πχB(0,1)(x), g(x) = 1
8π (4− |x|2). Applying the same

reasoning of Example 1.2.44 we find the transport map T (x) = 2
√

1−
√

1− |x|2 x
|x| . Now, let

us find the cost associated to this T , to do so, we must compute:∫
R
|x− T (x)|dµ(x) = 1

π

∫ 2π

0

∫ 1

0

∣∣∣∣t− 2
√

1−
√

1− t2
∣∣∣∣ dtdθ =

∫ 1

0

∣∣∣∣t− 2
√

1−
√

1− t2
∣∣∣∣ tdt.
(2.2.1)

To simplify the right hand side of (2.2.1), we use the change of variable t = sin(y) and
dt = cos(y)dy. Then,

√
1− t2 =

√
cos2(y). Note that this substitution is invertible over

0 < y < π
2 with inverse y = arcsin(t). This gives us the bounds y = arcsin(0) = 0 and

y = arcsin
(
π
2
)
. Thus,

∫
R
|x− T (x)|dµ(x) = 2

∫ π
2

0
cos(y)

∣∣∣∣∣sin(y)−
√

1−
√

cos2(y)
∣∣∣∣∣ dy

One can perform the computations to show that,
∫ π

2
0 cos(y)

∣∣∣∣sin(y)−
√

1−
√

cos2(y)
∣∣∣∣ dy = 1

5 ,
which means that ∫

R
|x− T (x)|dµ(x) = 2

5 .
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Let us prove now that the transport map T is optimal. Indeed, consider the potential u(x) =
−|x|, which clearly belongs to Lip1(R2). Then, by the duality formula we have:

Jc(µ, ν) = max
{∫

R
u(x)d(µ− ν) : u ∈ Lip1(R)

}
≥
∫
R
−|x|d(µ− ν)(x)

=
∫
R
−|x|dµ(x) +

∫
R
|x|dν(x)

= 1
π

∫ 1

0
−t22πdt+ 1

8π

∫ 2

0
t2(4− t2)2πdt

= −2
3 +

∫ 2

0
t2dt− 1

4

∫ 2

0
t4dt

= 2
5 .

Since T achieves this lower bound, then it must be optimal.
Finally, we prove the pending claim from Example 1.1.12, that is, Jc(µ, ν) equals to the

total variation |µ− ν|.
Example 2.2.6 (Total variation). Let us consider the lower semi-continuous cost function

c(x, y) =
{

0, if x = y

2, if x 6= y.

We easily see that c is a distance on X, and any function u : X → R such that |u(x)| ≤ 1
belongs to Lip1(X) with respect to the metric c, since x 6= y implies that, |u(x) − u(y)| ≤
|u(x)|+ |u(y)| ≤ 2 = c(x, y). Let µ− ν = (µ− ν)+ − (µ− ν)− be the Jordan decomposition,
with (µ − ν)± ∈ M (X) and (µ − ν)+ ⊥ (µ − ν)−. Since, µ, ν are probability measures we
have (µ− ν)+(X) = (µ− ν)−(X). On the other hand, it is well known that

sup
0≤u≤1

∫
X
ud(µ− ν) = (µ− ν)+ and sup

−1≤u≤0

∫
X
ud(µ− ν) = (µ− ν)−,

if µ, ν are probability measures. Then, we have

sup
|u|≤1

∫
X
ud(µ− ν) = 2(µ− ν)+(X) = 2(µ− ν)−(X) = |µ− ν|.

Hence, by the duality formula we get that

Jc(µ, ν) = sup
{∫

X
vd(µ− ν) : v ∈ Lip1(X)

}
≥ sup

0≤u≤1

∫
X
ud(µ− ν) = 2

∫
X
d(µ− ν)+

=
∫
X
d|µ− ν|.

For the opposite bound, fix a point x0 6= x and let u be a Kantorovich potential. Then

J (µ, ν) =
∫
X
ud(µ− ν) =

∫
X

[u(x)− u(x0)]d(µ− ν) ≤
∫
X
s(x, x0)d(µ− ν) ≤ 2

∫
X
d(µ− ν)+

=
∫
X
d|µ− ν|.

Therefore, we get that Jc(µ, ν) =
∫
X
d|µ− ν|.
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As we saw in Examples 2.1.9 and 2.1.10, the optimal transport plan γ whit cost c(x, y) =
|x− y| is not unique necessarily unique. To fix this issue, we need to take a special optimizer
γ and prove that it is induced by a transport map. For simplicity, we will suppose that X is
a domain Ω ⊂ Rd.

Definition 2.2.7. Let us define O(µ, ν) as the set of optimal transport plans for the cost
|x− y|. To simplify notation, we define Kp(γ) :=

∫
Ω×Ω
|x− y|pdγ(x, y) with γ ∈P(Ω× Ω),

and mp its minimal value on Π(µ, ν). Then,

O(µ, ν) := argminγ∈Π(µ,ν)K1(γ) = {γ ∈ Π(µ, ν) : K1(γ) ≤ m1} .

Note that O(µ, ν) is a closed subset (with respect to the weak convergence) of Π(µ, ν),
which is compact. Indeed, let {γn}n≥1 ⊂ O(µ, ν) a sequence such that γn ⇀ γ. This means

that
∫

Ω×Ω
φdγn →

∫
Ω×Ω

φdγ for all φ ∈ Cb(Ω × Ω). In particular,
∫

Ω×Ω
cdγn →

∫
Ω×Ω

cdγ.

Since K1(γn) ≤ m1 for all n ∈ N and K1 is lower semi-continuous, we immediately obtain
K1(γ) ≤ m1. Thus, O(µ, ν) is ∗-closed. Compactness of O(µ, ν) follows directly, since Π(µ, ν)
is ∗-compact.
Remark 2.2.8. Let u be a Kantorovich potential for the transport between µ and ν with
cost c(x, y) = |x− y|. Then, γ ∈ O(µ, ν) if and only if

spt(γ) ⊂ {(x, y) ∈ Ω× Ω : u(x)− u(y) = |x− y|} .

Indeed, optimality of γ implies∫
Ω×Ω

(u(x)− u(y))dγ =
∫

Ω×Ω
|x− y|dγ,

then u(x)− u(y) = |x− y| γ-a.e. On the other hand, if the equality holds on spt(γ) implies
that

∫
Ω×Ω(u(x)− u(y))dγ = K1(γ). Since u is a Kantorovich potential we have

m1 = max
{∫

Ω×Ω
ud(µ− ν) : u ∈ Lip1(Ω)

}
= K1(γ).

Thus, γ ∈ O(µ, ν).

Problem 2.2.9 (Secondary variational). Keeping the same notation as before, let us define
the the secondary variational problem as

inf {K2(γ) : γ ∈ O(µ, ν)} ,

which has a solution γ̄ since K2 is continuous and O(µ, ν) is ∗-compact.
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Now, the aim is to characterize the transport plan γ̄ and prove that it is induced by a
transport map. By Remark 2.2.8, we know that the condition γ ∈ O(µ, ν) can be rewritten
as a condition on the support of γ. Then γ̄ also solves:

min
{∫

Ω×Ω
cdγ : γ ∈ Π(µ, ν)

}
, with c(x, y) =

{
|x− y|2, if u(x)− u(y) = |x− y|
+∞, otherwise.

(2.2.2)

Then, Problem 2.2.9 and (2.2.2) are equivalent minimization problems.
Remark 2.2.10. Let c : Ω× Ω→ R ∪ {+∞} be a cost function defined by

c(x, y) =
{
|x− y|2, if (x, y) ∈ A
+∞, otherwise,

(2.2.3)

with A ⊂ Ω × Ω a closed set. Since c is lower semi-continuous on Ω × Ω, then by theorem
1.2.25 we must have that spt(γ) is concentrated on a c-cyclically monotone set Γ. Hence, any
solution for the secondary variational problem γ̄ is also concentrated on Γ.

The following lemma states that the set Γ from last remark satisfies a certain monotonicity
condition.

Lemma 2.2.11. Suppose that Γ ⊂ Ω × Ω is c-CM for the cost function defined in (2.2.3).
Then, (x1, y1), (x2, y2) ∈ Γ and (x1, y1), (x2, y2) ∈ A implies that (x1 − x2) · (y1 − y2) ≥ 0
(monotonicity condition).

Proof. Since Γ is a c-CM set, for any pair (x1, y1), (x2, y2) ∈ Γ we have that c(x1, y1) +
c(x2, y2) ≤ c(x1, y2) + c(x2, y1). Let us suppose that (x1, y2), (x2, y1) ∈ spt(γ). Observe that
the previous inequality is equivalent to |x1− y1|2 + |x2− y2|2 ≤ |x1− y2|2 + |x2− y1|2. Thus,
if we expand the squares we get

− 2(x1 · y1)− 2(x2 · y2) ≤ −2(x1 · y2)− 2(x2 · y1)
⇔ (x1 − x2) · y2 ≤ (x1 − x2) · y1

⇔ (x1 − x2) · (y1 − y2) ≥ 0,

as desired.

2.2.2 Transport rays and Ambrosio-Sudakov’s Theorem

In this section we will study geometric properties of transport rays, and we prove that an
optimal plan γ̄ to the secondary variational problem behaves, on each transport ray, as the
monotone transport plan γmon. We will also study some Lipschitz regularity properties of
the Kantorovich potential associated to γ̄. Finally we present Ambrosio-Sudakov’s Theo-
rem, which guarantees the existence of an optimal transport map for Monge’s transportation
problem.
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Figure 2.4: If u : R→ R, then we can easily represent a transport ray [x, y] and its elements
y ∈ Trans(b+)(u) and x ∈ Trans(b−)(u)

Definition 2.2.12 (Transport ray). If a segment [x, y] is maximal with respect to the set
inclusion among all segments satisfying the condition u(x)−u(y) = |x− y|, we say that [x, y]
is a nontrivial transport ray. The corresponding open segment ]x, y[ is called the interior of
a transport ray and the points x, y its boundary points. We will call direction of a transport
ray the unit vector x−y

|x−y| . We now define the following sets:

• Let Trans(u) be the union of all nondegenerate transport rays, in other words

Trans(u) :=
⋃
{[x, y] : [x, y] is a nontrivial transport ray} .

• Let Trans(b)(u) be the union of boundary points of all segments in Trans(u),

• Let Trans(b+)(u) be the set of upper boundary points of nondegenerate transport rays
(those points where u is minimal on the transport ray, say the points y)

• Let Trans(b−)(u) be the set of lower boundary points of nondegenerate transport rays
(those points where u is maximal on the transport ray, say the points x)

The following lemma collects some geometric properties of a Kantorovich potential u ∈
Lip1(Ω).

Lemma 2.2.13 (Differentiability of Kantorovich potentials). Let [x, y] ∈ Trans(u) be a trans-
port ray. Then u is affine on [x, y]. Moreover, if z ∈]x, y[ (the open segment), then u is
differentiable at z and ∇u(z) = e := x−y

|x−y| .

Sketch of proof. Geometrically, we can see from figure 2.5 that u must be differentiable on
]x, y[ since the graph of u is trapped between two cones (|x − y| at x and y). Now, let us
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Figure 2.5: Geometric representation of the differentiability of u in Lemma 2.2.13

give a short proof of this fact without technical details. Indeed, we already know that u is
an affine function on [x, y], in other words,

u(x)− u(x+ t(y − x)) = t|y − x|, ∀t ∈ [0, 1].

This implies that, if we set e = x−y
|x−y| , then the partial derivative along e is equal to −1 for

any z ∈]x, y[. Let θ be a unit vector such that e · θ = 0, then

u(z + hθ)− u(z) = u(z + hθ)− u(z +
√
|h|e) + u(x+

√
|h|e)− u(z)

= |hθ −
√
|h|e| −

√
|h||e|

≤
√
|h|2 + |h| −

√
|h|

= O(|h|
3
2 ) = o(|h|).

Analogously, we can check that u(z + hθ)− u(z) ≥ o(|h|). Hence u(z + hθ)− u(z) = o(|h|),
which means that u is differentiable at z, and ∇u(z) = e.

Proposition 2.2.14. (a) Let [x1, y1], [x2, y2] be two different transport rays. Then, they only
can meet at a point z which is a boundary point for both of them, and in such a case, u
is not differentiable at z.

(b) In particular, if one removes the µ-negligible set

S(u) := {z ∈ Ω : ∇u(z) does not exists} ,

the transport rays are disjoint.

Sketch of proof. (a): we observe that, if z ∈ [x1, y1] then we must have e = ∇u(z). Indeed,
let t� 1 such that z + te ∈ [x1, y1] ( we may intersect a sufficiently small ball centered at z
with [x1, y1]). By Lemma 2.2.13, we also have

t = |z + t− z| = u(z + te)− u(z) = t∇u(z) · e+ o(t) =⇒ 1 = ∇u(z) · e+ o(t)
t
,
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Figure 2.6: ∇u(z) in Proposition 2.2.14.

which means that ∇u(z) · e = 1. Since |∇u(z)| ≤ 1, then we must have ∇u(z) = e. Instead
of giving a proof of the possibilities of ∇u(z), with z ∈ sx1,y1 ∩ sx2,y2 , we give a geometric
argument in picture 2.6.

(b): This is just a simple consequence of (a) and Rademacher’s Theorem.

Let us fix a transport plan γ̄ which is optimal for the secondary variational problem, we
will try to prove that it is induced by a transport map. To do so, we use the fact that γ̄ is
concentrated on a c-CM set Γ (since the cost function is given as in (2.2.3)) and see how this
interacts with transport rays. Thus, we may assume that

Γ ⊂ A = {(x, y) ∈ Ω× Ω : u(x)− u(y) = |x− y|} .

Let [x, y] be a transport ray, then we can define an order relation on [x, y] through:

x ≤ x′ ⇐⇒ u(x′) ≤ u(x).

Remark 2.2.15. For any transport ray s ∈ Trans(u), we have u(x′) − u(y′) = |x′ − y′|
whenever x′, y′ ∈ s and x′ ≤ y′ (for the order relationship on s).

Finally, the following lemma gives us the relation between an optimal plan γ̄ of the
secondary variational problem and the monotone transport plan. We shall prove that γ̄ has
a monotone behavior on each transport ray as the monotone transport plan that we studied
in Section 2.1 (see Lemma 2.1.6).

Lemma 2.2.16. Suppose that x1, x2, y1 and y2 are all points in a transport ray [x, y] and
(x1, y1), (x2, y2) ∈ Γ. Then, if x1 < x2, we also have y1 ≤ y2.
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Proof. Since Γ ⊂ A, then |xj − yj | = u(xj) − u(yj) for j = 1, 2; so we get that x1 ≤ y1 and
x2 ≤ y2. On the other hand, thanks to the order relation on [x, y] and Remark 2.2.15 we have
that (x1, y2), (x2, y1) ∈ A. Also, since Γ is c-CM, then (x1 − x2) · (y2 − y1) ≥ 0 (by Lemma
2.2.11), with x1−x2 and y1−y2 two vectors on the ray [x, y]. Since these vectors are parallel
to e, then y1 and y2 are ordered as x1 and x2 are. Hence, y1 ≤ y2.

Now, we shall prove an important proposition which encompasses all the interaction
between Γ and the transport rays that we have observed so far.

Proposition 2.2.17. The optimal transport plan γ̄ is concentrated on a set Γ with the fol-
lowing properties:

(a) If (x, y) ∈ Γ, then

• either x ∈ S(u), which is Lebesgue-negligible,
• or x /∈ Trans(u), which means that x does not belong to a nondegenerate transport
ray. In this case, we necessarily have that y = x.
• or x ∈ Trans(b+)(u) \ S(u). In such a case, we must have y = x since x is contained
in a unique transport ray s and it cannot have other images y ∈ s, due to the order
relation on s.
• or x ∈ Trans(u) \ (Trans(b+)(u) ∪ S(u)). Here, we observe that y ∈ s, with s the
unique transport ray s which contains the point x.

(b) On each transport ray s, Γ ∩ (s× s) is contained in the graph of a monotone increasing
multivalued function.

(c) On each transport ray s, the set

Ns =
{
x ∈ s \ Trans(b+)(u) : Card({y : (x, y) ∈ Γ}) > 1

}
is countable.

Proof. (a): This statement follows from the properties of transport rays and Γ studied in
Proposition 2.2.14, Lemma 2.2.15 and Lemma 2.2.16.

(b), (c): Notice that if we argue as in Lemma 2.1.6, then the following holds. If s is a
segment and Γ′ ⊂ (s × s) is such that: (x1, y1), (x2, y2) ∈ Γ′, with x1 < x2 implies, y1 ≤ y2
for the order relation on s. Then, Γ′ is contained in the graph of a monotone increasing
multi-valued function such that, every point might be sent to either a point or a segment.
From Lemma 2.1.6, we also observe that the interiors of these segments are disjoint, and
there is at most a countable number of points where the image is not a singleton. Thus,
{x ∈ s : Card({y : (x, y) ∈ Γ′}) > 1} is countable. This means that, up to countable sets, Γ′
is contained in the graph of a monotone single-valued map Ts.

Hence, by Lemma 2.2.16 we can apply the previous reasoning to Γ ∩ (s × s), with s a
transport ray. Then, Γ∩ (s× s) is concentrated in the graph of a monotone increasing multi-
valued function, which is a single-valued map Ts (up to a countable) and each set Ns is at
most countable.
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Remark 2.2.18. Note that the set Γ \
⋃
s Γ∩ (s× s), with s a transport ray, is µ-negligible.

Hence, if µ(∪sNs) = 0, by Proposition 2.2.17 we would have that the optimal transport plan
γ̄ is induced by a transport map T (up to µ-negligible sets) as long as µ� L d.
Remark 2.2.19. If we assume that µ � L d, then all the measures {µs} given by the
disintegration of µ along the transport rays s are atomless. Now, we consider the measures
{νs} given by the disintegration of ν over the rays s. We know that on each transport ray s,
γ̄ is induced by a monotone map Ts (up to countable sets) such that Ts#µs = νs (thanks to
Proposition 2.2.17). Thus, roughly speaking, the transport map T is obtained by gluing all
the monotone maps (in a measurable way) on every transport ray.

Now, it is important to note that with the last remark a very natural question arises:
under which circumstances µ(∪sNs) = 0? In order to answer this question, let us introduce
a property for negligibility which will guarantee that µ(∪sNs) = 0, and therefore γ̄ will be
induced by a transport map.

Definition 2.2.20. We say that property N holds for a given Kantorovich potential u, if
for every subset B ⊂ Ω such that

• B ⊂ Trans(u) \ Trans(b+)(u),

• B ∩ s is at most countable for every transport ray s,

we have that L d(B) = 0.

The following lemma states that property N holds, if ∇u has Lipschitz regularity on each
transport ray.

Lemma 2.2.21. Property N holds if ∇u is Lipschitz continuous. Moreover, if there exists
a countable family of sets {Eh}∞h=1 such that ∇u |Eh is Lipschitz continuous and

L d(Trans(u) \ ∪∞h=1Eh) = 0.

Then, property N also holds.

Proof. First, we assume that ∇u is Lipschitz. Let {Yq}q∈Q be the collection of all hyperplanes
parallel to the first d−1 coordinate axes and with rational entries on the last coordinate (Yq =
{(x1, . . . , xd−1, q) : xj ∈ R, ∀j ∈ {1, 2, . . . , d− 1}}). Consider a set B ⊂ Ω which satisfies
the hypothesis in Definition 2.2.20. Since B ⊂ Trans(u) \ Trans(b+)(u), then the points
of B belong to nondegenerate transport rays (those with positive length). Thus, for every
z ∈ B1 = B \ {x ∈ s : s is parallel to each Yq} there is a transport ray s such that z ∈ s
and s ∩ Yq 6= ∅ for some q ∈ Q, this means that every point of B1 belongs to a transport
ray that meets at least one hyperplane at exactly one point. Analogously, if we consider
the collection of all hyperplanes {Hq}q∈Q parallel to the last d − 1 coordinate axes with
rational coefficient on the first coordinate, then we have similar conditions for the set B2 =
B \ {x ∈ s : s is parallel to each Hq}. Thus, without loss of generality, we can suppose that
every point of B belongs to a transport ray that meets at least one hyperplane Yq at exactly
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Figure 2.7: Rectification map f in Lemma 2.2.21

one interior point (since B = B1 ∪ B2, and if we prove L d(Bj) = 0 for j = 1, 2, then we
would have that L d(B) = 0).

On the other hand, since B ∩ s is at most countable for every transport ray s and the
collection {Yq} is countable as well then, up to countable unions, we can suppose that B ⊂ SY ,
where SY is the collection of transport rays all meeting the same hyperplane Y . Moreover,
by Proposition 2.2.14 we also may assume that B does not contain boundary points of two
different transport rays.

Now, let us consider the hyperplane Y (the one which satisfies B ⊂ SY ) and let us define
f : Y × R→ Rd given by f(y, t) = y + t∇u(y). This map is well defined on the set

A := {(y, t) ∈ Y × R : y ∈ Int(s), for some s ∈ SY } ,

since u is differentiable at y, and y+ t∇u(y) belongs to the interior of the same transport ray
(see figure 2.7). We also have that f |A is injective. Indeed, if we suppose that y+ t∇u(y) =
f(y, t) = f(y′, t′) = y′ + t′∇u(y′), then two different transport rays cross at this points, but
this is only possible if y = y′ (since y, y′ cannot be boundary points). Thus, ∇u(y) and ∇(y′)
must coincide as well. Therefore, (y, t) = (y′, t′). Since B is contained in the image of f , then
f : B′ = f−1(B)→ B is a bijection. We also have that f is Lipschitz continuous. Indeed, by
our hypothesis ∇u is Lipschitz, then

|f(y, t)− f(y′, t′)| = |y + t∇u(y)− (y′ + t′∇u(y′))|
≤ |y − y′|+ |t∇u(y)− t′∇u(y′)|
≤ C(|y − y′|+ |t− t′|).

Note that B′ is a subset of Y × R containing at most countably many points on every line
{y} × R. Then, we may apply Fubini’s Theorem to get

L d(B′) =
∫
Rd
χB′(x)dL d(x) =

∫
R

H d−1(B′)dL (y) = 0,

which implies that L d(B) = L d(f(B′)) ≤ Lip(f)dL d(B′) = 0. Thus, L d(B) = 0. This
shows that property N holds.

It is clear now that property N is also true when ∇u |Eh is Lipschitz continuous, since
one may apply the same arguments on each set B ∩Eh to obtain that L d(B ∩Eh) = 0, then
we deduce

L d(B) = L d (∪∞h=1B ∩ Eh) = 0.
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Definition 2.2.22. A function f : Ω→ Rd is said to be countably Lipschitz if there exists
a countable family of sets {Eh}∞h=1, such that f |Eh is Lipschitz continuous and

L d(Ω \ ∪∞h=1Eh) = 0.

Remark 2.2.23. Thanks to Lemma 2.2.21, if we are able to prove that ∇u is countably
Lipschitz, then we would have that property N holds for our Kantorovich potential u, and
therefore ∪sNs is µ-negligible.

Now, our goal is to prove that ∇u is countably Lipschitz on Trans(u). The following
theorem from real analysis is a well-known result that allows us to extend Lipschitz functions
defined in any subset of Rd.

Theorem 2.2.24 (Kirszbraun). If Ω ⊂ Rd, then every L-Lipschitz function f : Ω → R can
be extended to an L-Lipschitz function f̄ : Rd → R.

A function f : Ω→ R is said to be λ-convex if x 7→ f(x)− λ
2 |x|

2 is convex and λ-concave
if x 7→ f(x) + λ

2 |x|
2 is concave. λ-convex functions for λ > 0 are strictly convex, and for

λ < 0, they just have second derivative (where it exists) which are bounded from below.
Function which are λ-convex or λ-concave for some values λ are also called semi-convex or
semi-concave functions.

Now we want to prove that ∇u is countably Lipschitz. But first, we will show that u
coincides with some λ-concave function on a sequence of sets covering everything but the
points in Trans(u)(b+). We do that via the following result.

Theorem 2.2.25. There exist some sequence {Eh}h≥1 such that:

(a) ∪∞h=1Eh = Trans(u) \ Trans(b+)(u).

(b) On each Eh the function u is the restriction of a λ-concave function, for a value λ(h).

Proof. We first prove (a): Let us define the sets:

Eh :=
{
x ∈ Trans(u) : ∃ z ∈ Trans(u) such that, u(x)− u(z) = |x− z| > 1

h

}
,

that is, Eh is the set of points in the transport rays which are at least at distance 1
h from

the upper boundary of its respective ray (see figure 2.8). We note that Eh ⊂ Trans(u) \
Trans(u)(b+), since Eh does not contain boundary points of the rays. Then, ∪∞h=1Eh ⊂
Trans(u) \ Trans(u)(b+). We easily obtain the other contention. Indeed, if one takes x ∈
Trans(u)\Trans(u)(b+), then x ∈ sa,b for some transport ray sa,b. In this way u is differentiable
at x, and z = x+t∇u(x) ∈ sa,b for a sufficiently small t and u(x)−u(z) = |x−z| = t|∇u(x)| =
t. Hence, if we set h ∈ N such that t > 1

h , then x ∈ Eh. We have shown then

∪∞h=1Eh = Trans(u) \ Trans(b+)(u)
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Figure 2.8: The sets Eh defined in Theorem

(b): Let ch : Rd → R be a fixed function such that:

• ch ∈ C2(Rd), |∇ch(z)| ≤ 1,

• ch(z) ≥ |z| for all z ∈ Rd, and ch(z) = |z| for all z /∈ B
(
0, 1

h

)
.

Let us set λh := −‖D2ch‖L∞ . We note that, if x ∈ Eh then the following inequality holds:

u(x) = inf
y∈Rd

{|x− y|+ u(y)} ≤ uh(x) := inf
y∈Rd

{ch(x− y) + u(y)} ,

since we have the condition |z| ≤ ch(z). Moreover,

uh(x) ≤ inf
y/∈B(0, 1

h)
{|x− y|+ u(y)} = u(x),

where the inequality is justified thanks to the fact that ch(z) = |z| for all z /∈ B
(
0, 1

h

)
, and

the equality holds by definition of Eh. Thus, we have that u(x) = uh(x) for all x ∈ Eh.
Now, we shall prove that uh is λh-concave. Indeed, notice that ch − λh

2 is concave since
the determinant of D2

(
ch(x)− ‖D

2ch‖L∞
2 |x|2

)
turns out to be negative. Then, we have

uh(x) + λh
2 |x|

2 = inf
y∈Rd

{
ch(x− y) + u(y) + λh

2 |x|
2
}

= inf
y∈Rd

{
ch(x− y) + λh

2 |x− y|
2 + λh(x · y)− λh

2 |y|
2 + u(y)

}
.

Thus, we have written uh(x) as the infimum of concave functions, since ch(x−y) + λh
2 |x−y|

2

is concave, x · y is linear and λh
2 |y|

2 + u(y) is constant with respect to x. Therefore, uh(x) is
λh-concave.

The previous theorem allowed us to replace the function u with some functions uh which
share the same regularity of a convex function. However, this is not enough, since convex
functions in general are not differentiable. A countable decomposition is needed and the
following theorem give us what we need (see [2], Theorem 5.34).
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Theorem 2.2.26. If f is a convex function, then ∇f is countably Lipschitz.

Now, we are ready to prove that ∇u has the desired property.

Proposition 2.2.27. If u is a Kantorovich potential, then ∇u : Trans(u)→ Rd is countably
Lipschitz.

Proof. By Theorem 2.2.25 we have that, ∪∞h=1Eh = Trans(u) \ Trans(b+)(u) and u |Eh is
λ-concave for some value λ. Note that the countable Lipschitz regularity of Theorem 2.2.27
is also true for the gradient of λ-concave functions. This implies that each ∇uh is countably
Lipschitz and, by countable unions, ∇u is countably Lipschitz in Trans(u)\Trans(b+)(u).

Finally, we obtain the main result of this chapter.

Theorem 2.2.28 (Ambrosio-Sudakov). Let µ, ν ∈ P(Ω), such that µ � L d. Then, the
secondary variational problem admits a unique solution γ̄ ∈ Π(µ, ν), which is induced by a
transport map T , monotone nondecreasing on every transport ray.

Proof. Existence: Let γ̄ ∈ Π(µ, ν) be a solution of the secondary variational problem, and
let u be the Kantorovich potential associated to γ̄. Note that Proposition 2.2.26, together
with Lemma 2.2.21 guarantees that Property N holds, which means that µ(∪∞s=1Ns) = 0,
since the set ∪∞h=1Ns, with

Ns =
{
x ∈ s \ Trans(b+)(u) : Card({y : (x, y) ∈ Γ}) > 1

}
satisfies the conditions from Definition 2.2.20 and µ� L d. Hence, Proposition 2.2.17 can be
applied to get that γ̄ = γT , where T is a transport map which is monotone nondecreasing on
each transport ray. Notice that we still need to prove that T is Borel measurable; since this
can be done by applying a measurability criterion in the setting of disintegration of measures
given in [1], we will not deal with this issue here.

Uniqueness: Suppose that two different transport plans γT1 and γT2 optimize the sec-
ondary variational problem, then the measure γ = 1

2γT1 + 1
2γT2 also solves the problem. Hence,

there exists a transport map T such that γ = γT . But this is impossible unless T1 = T2 µ-a.e.
Therefore, γT1 = γT2 (up to µ-negligible sets).

The optimal transport plan γ̄ in Theorem 2.2.28 will be called ray-monotone trans-
port plan, and the transport map which corresponds to γ̄ is known as the ray-monotone
transport map.

Corollary 2.2.29. If µ � L d, then the ray-monotone transport map is optimal for the L1

Monge’s transport problem.
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Proof. By Ambrosio-Sudakov’s Theorem, there is an optimal solution γ̄ for the secondary
variational problem, which is induced by the ray-monotone transport map T . Hence, since
γ̄ = (Id, T )#µ we must have

inf(MP) = minK1(γ̄) =
∫

Ω×Ω
|x− y|dγ̄(x, y) =

∫
Ω
|x− T (x)| dµ(x).
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Chapter 3

Beckmann’s Problem and
Transport Density

In this chapter, we present Beckmann’s problem and its connection with the L1 Monge’s
transport problem. The aim of this chapter is to prove that both problems are equivalent,
and study regularity issues of the transport density associated to the solution of Beckmann’s
problem. The proofs that we present here essentially follow Santambrogio’s presentation
[21, 22, 23].

3.1 The continuity equation
Eulerian formalism: Describes for every point x and every time t what are the velocity,
the density, and the flow rate (in intensity and direction) of particles x at times t. We can
classify these models into static ones and dynamic ones.

• In a dynamical model, one usually works with two variables, the density ρt(x) and the
velocity vt(x). If we suppose that vt is Lipschitz continuous and bounded, then the
position of the particle initially located at x will be given by the solution of the ODE:{

y′x(t) = vt(yx(t)),
yx(0) = x.

(3.1.1)

Let us now define the map Yt(x) = yx(t) and consider an initial density ρ0 � L d.
Then, we can define a family of absolutely continuous densities {ρt}t as ρt := (Yt)#(ρ0)
(understanding that ρt is a measure). We will see later that ρt along with vt satisfy the
equation ∂tρt +∇ · (ρtvt) = 0.

• Static models, might be thought as a time average of some dynamical model. For
instance, suppose that a certain fluid passes through a pipe. If some fluid is injected
through one side of the pipe according to a density ρ1 and then exits through the
other side with density ρ2. In a static framework, the vector field w standing for flows
connecting ρ1 and ρ2 is expected to satisfy, ∇ · w = ρ1 − ρ2.

Let {ρt}t be a family of densities with no flux boundary conditions (Neumann condi-
tions) ρtvt · n = 0, with n a normal interior vector. The following equation is known as the
continuity equation:

∂tρt +∇ · (ρtvt) = 0, (3.1.2)
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which is formally thought in the distributional sense.
From now on, we will suppose that Ω ⊂ Rd is a bounded domain, or Ω = Rd. The

following definition give us a notion of solution for the continuity equation in a distributional
sense.

Definition 3.1.1. We say that a family of pairs {(ρt, vt) : ρt ∈P(Ω), vt a vector fields} with

vt ∈ L1(ρt;Rd) and
∫ T

0
‖vt‖L1(ρt) =

∫ T

0

∫
Ω
|vt|dρtdt < ∞ solves the continuity equation

3.1.2 on (0, T ) in the distributional sense, if for any bounded and Lipschitz test function
φ ∈ C1

c ((0, T )× Ω) we have that∫ T

0

∫
Ω

[(∂tφ)dρtdt+∇φ · vt] dρtdt = 0

• Note that in the last definition we require the support of φ to be far form t = 0, 1 but
not from ∂Ω, when Ω is bounded; also Ω is usually supposed to be close, but we will
write Ω to stress the fact that we include its boundary.

• If Ω 6= Rd, this definition includes no-flux boundary conditions on ∂Ω, i.e., ρtvt · n = 0.

Remark 3.1.2. If we want to impose the initial and final measures, we say that (ρt, vt)
solves equation 3.1.2 in the distributional sense, with initial data ρ0 and ρT , if for every test
function φ ∈ C1

c ([0, T ]×Ω) (now we do not require that the support to be far from t = 0, 1),
we have∫ T

0

∫
Ω

(∂tφ)dρtdt+
∫ T

0

∫
Ω
∇φ · vtdρtdt =

∫
Ω
φ(T, x)dρT (x)−

∫
Ω
φ(0, x)dρ0(x).

We also define a weak solution of the continuity equation as follows.

Definition 3.1.3. We say that {(ρt, vt)}t solves the continuity equation in the weak sense if
for any test function ψ ∈ C1

c (Ω), the map t 7→
∫

Ω
ψdρt is absolutely continuous in t and, for

a.e. t, we have that
d

dt

∫
Ω
ψdρt =

∫
Ω
∇ψ · vtdρt.

Remark 3.1.4. • If the same conditions from definition 3.1.3 hold, the map t 7→ ρt is
automatically continuous for the weak convergence (take ψ = 1), and if we impose the
initial data ρ0 and ρ1, then, ρt ⇀ ρ0 and ρt ⇀ ρ1, with t→ 0 and t→ 1, respectively.

• These two notions of solution are equivalent: It can be shown that every weak solution
is a distributional solution and every distributional solution admits a representative
(another family ρ̄t = ρt, for a.e. t) which is weakly continuous and is a weak solution.

A usual way to produce a solution to the continuity equation is by using a flow (3.1.1).
Let us assume that vt is Lipschitz continuous and uniformly bounded, then by existence
and uniqueness theorem of ODE’s there is a family of densities {ρt}t induced by the flow
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(3.1.1), such that ρt := (Yt)#ρ0. Let us suppose that spt(ρt) ⊂ Ω (which is satisfied if ρ0 is
concentrated on Ω and vt satisfies appropriate Neumann boundary conditions). Now, we will
show that (ρt, vt)t is a weak solution. Indeed, let ψ : Ω→ R be a test function, then:

d

dt

∫
Ω
ψdρt = d

dt

∫
Ω
ψ(yx(t))dρ0(x) (ρt = (Yt)#ρ0)

=
∫

Ω
∇ψ(yx(t)) · y′x(t)dρ0(x)

=
∫

Ω
∇ψ(yx(t)) · vt(yx(t))dρ0(x)

=
∫

Ω
∇ψ(y) · vt(y)dρt(y),

which proves that we have, ∂tρt +∇ · (ψvt) = 0, in the weak sense.
Remark 3.1.5. Suppose that ρ is Lipschitz continuous in (t, x), that v is Lipschitz in x,
and the continuity equation ∂tρt +∇ · (ρtvt) = 0 is satisfied in the weak sense. Then, from
Rademacher’s Theorem it can be inferred that the continuity equation also holds in the a.e.
sense.

From now on, we will understand a solution to the continuity equation either as a weak
solution or solution in the distributional sense. The following result states that the solution
of the continuity equation is also unique under certain assumptions on the vector fields vt
(see [23], chapter 4).

Theorem 3.1.6. Suppose that vt : Ω → Rd is Lipschitz continuous in x, uniformly in t,
and uniformly bounded, and consider its flow Yt. Also, we suppose that for every x ∈ Ω and
every t ∈ [0, T ], we have Yt(x) ∈ Ω (which is clear for Ω = Rd and require suitable Neumann
conditions on vt otherwise). Then, for every probability measure ρ0 ∈ P(Ω), the measures
ρt = (Yt)#ρ0 solve the continuity equation 3.1.2 with initial data ρ0. Moreover, every solution
of the same equation with ρt � L d for every t is necessarily obtained as ρt = (Yt)#ρ0. In
particular, the continuity equation admits a unique solution.

3.2 Beckmann’s problem
In this section, we will show that Beckmann’s problem admits a unique solution. Moreover,
we shall prove a decomposition theorem which will allow us to deduce that the solution of
Beckmann’s problem is induced by an optimal transport plan of Monge’s original problem
[22, 23].

In 1952 Martin Beckmann introduced the following flow minimization problem in [5]:

min
{∫

Ω
H (w)dx : ∇ · w = µ− ν

}
,

where H (z) = H(|z|) and H(t) = g(t)t, with H a super-linear function. Intuitively, The
super-linearity condition on H means that the congestion effect becomes stronger as the
traffic increases.

This problem has been wildly studied not only because its applications in economics and
urban traffic congestion [11, 12], but because it turns out to provide a natural way to pass
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from Lagrangian to Eulerian frameworks and back. In this section, we will only discuss the
problem when H(z) = |z|, which is a limit case in the class of costs H(z) = |z|p, 1 < p <∞.
The reason to deal with this case lies in its relation with Monge’s transportation problem
that we discussed in Chapter 2.

Let us consider the following minimization problem

min
{∫

Ω
|w(x)|dx : w : Ω→ Rd, ∇ · w = µ− ν

}
,

where the divergence condition is to be read in the weak sense, with no-flux boundary con-
ditions, in other words, −

∫
Ω
∇φ · dw =

∫
Ω
φd(µ− ν) for any test function φ ∈ C1(Ω).

Remark 3.2.1. We observe that there may not exist an L1 vector field minimizing the L1

norm under this constraints. Indeed, if we think in a direct method in calculus of variations,
we take a sequence {wn}n≥1 and we would like to get a converging subsequence. If we could do
so, it would be easy to prove that w satisfies the divergence constraints, since wn ⇀ w(weakly
in L1) and the relation −

∫
Ω
∇φ·wn dx =

∫
Ω
φd(µ−ν) implies that∇·w = µ−ν. However, the

condition
∫

Ω
|w(x)|dx <∞ is not enough to guarantee the existence of a weakly convergent

subsequence, for instance, the sequence wn(x) = nχ(0, 1
n) is bounded in L1([0, 1]), but does

not has any weakly convergent subsequence.
To avoid these well-posedness difficulties, we will work on a more natural setting, the

framework of vector measures (see [6] or Appendix A to see relevant definitions and notation).

Notation 3.2.2. We denote by M d(Ω) the space of finite vector measures on Ω endowed
with the total variation norm, i.e.

‖λ‖ := |λ|(Ω) = sup
{∫

Ω
ξ · dλ : ‖ξ‖L∞ ≤ 1

}
.

We will say that λn ⇀ λ (weakly converge) if and only if
∫

Ω
ξ · dλn →

∫
Ω
ξ · dλ for every

ξ ∈ Cb(Ω,Rn). Also, we will denote by

M d
div(Ω) :=

{
w ∈M d(Ω) : ∇ · w is a scalar measure

}
.

Problem 3.2.3 (Beckmann’s problem). Let Ω ⊂ Rd be a compact and convex domain. The
following flow minimization problem is known as Beckmann’s problem:

min
{
|w |(Ω) : w ∈M d

div(Ω), ∇ · w = µ− ν
}
, (BP)

with divergence imposed in the weak sense, and no-flux boundary conditions.

Now, we are ready to prove the following theorem which guarantee that (BP) admits a
solution and min(BP) = min(KP).
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Theorem 3.2.4. Suppose that Ω ⊂ Rd is compact and a convex domain. Then, Beckmann’s
problem admits a solution. Moreover, min(BP) = min(KP) and a solution to (BP) can be
built from a solution for (KP).

Proof. Let us start by proving that min(KP) ≤ min(BP). Indeed, let φ ∈ C1(Ω) such that
|∇φ| ≤ 1. Then, if one takes any w ∈M d

div(Ω) with ∇ · w = µ− ν, we have

|w |(Ω) =
∫

Ω
d|w | ≥

∫
Ω

(−∇φ)d|w | = −
∫

Ω
∇φ · dw =

∫
Ω
φd(µ− ν). (3.2.1)

Now, let u be a Kantorovich potential such that
∫

Ω
ud(µ − ν) = max(DP) = min(KP) and

define the sequence φk = ηk ∗ u, with ηk = kdη(kx) the standard mollifier function such that
spt(ηk) ⊂ B

(
0, 1

k

)
. By some well known properties of mollifier function we get that φk → u

uniformly (since we are assuming that Ω is compact). Moreover, the condition u ∈ Lip1(Ω)
implies that {φk}k≥1 ⊂ Lip1(Ω)∩C1(Ω) and |∇φk| ≤ 1 (by the mean value theorem). Hence,
inequality 3.2.1 holds for {φk}k≥1, then we get∫

Ω
d|w | ≥ − lim

k→∞

∫
Ω
∇φk · dw = lim

k→∞

∫
Ω
φkd(µ− ν) =

∫
Ω
ud(µ− ν) = min(KP),

for any admissible w. Thus, min(BP) ≥ min(KP).
We will show the reverse inequality and how to construct an optimal w from an optimal

transport plan γ for (KP). Let γ ∈ Π(µ, ν) be an optimal transport plan, now we construct
the vector measure w[γ], which is induced by γ:

〈w[γ], ξ〉 :=
∫

Ω×Ω

∫ 1

0
ω′x,y(t) · ξ(ωx,y(t))dtdγ(x, y), (3.2.2)

for every ξ ∈ C(Ω;Rd), and ωx,y being a parametrization of the segment [x.y] ⊂ Ω (since Ω is
convex). Without loss of generality we will fix ωx,y(t) = (1− t)x+ ty. It can be shown that
w[γ] satisfies the divergence constraint. Indeed, if one takes ξ = −∇φ, with φ ∈ C1(Ω) then

−
∫

Ω
∇φ · dw[γ] = 〈w[γ],−∇φ〉 =

∫
Ω×Ω

∫ 1

0
ω′x,y(t) · ∇φ(ωx,y(t))dtdγ(x, y)

= −
∫

Ω×Ω

∫ 1

0

d

dt
(φ(ωx,y(t))dtdγ(x, y)

=
∫

Ω×Ω
(φ(x)− φ(y))dγ(x, y)

=
∫

Ω
φd(µ− ν),

and hence w[γ] ∈M d
div(Ω). Now we estimate the mass of w[γ]. Let us define the transport

density σγ through the duality:

〈σγ , φ〉 :=
∫

Ω×Ω

∫ 1

0
|ω′x,y(t)|φ(ωx,y(t))dtdγ(x, y), (3.2.3)
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for all phi ∈ C(Ω;R). We will prove that |w[γ] | = σγ . Indeed, let u be the Kantorovich
potential associated to γ, by Lemma 2.2.13 and Proposition 2.2.17 u is differentiable on each
transport ray, and for every t ∈ (0, 1) and x, y ∈ spt(γ) we have that ωx,y(t) is in the interior
of the transport ray [x, y] (if x 6= y), and the following is valid

ω′x,y(t) = −|x− y| x− y
|x− y|

= −|x− y|∇u(ωx,y(t)).

If we define the function φt(x, y) = ωx,y(t) = (1− t)x+ ty ∈ Ω, then for every ξ ∈ C(Ω;Rd)
we can write:∫

Ω
ξ · dw[γ] = 〈w[γ], ξ〉 =

∫
Ω×Ω

∫ 1

0
−|x− y|∇u(ωx,y(t)) · ξ(ωx,y(t))dtdγ(x, y)

= −
∫ 1

0
dt

∫
Ω×Ω
∇u(ωx,y(t)) · ξ(ωx,y(t))|x− y|dγ(x, y)

= −
∫ 1

0
dt

∫
Ω×Ω
∇u(z) · ξ(z)d((φt)#(cγ)) ,

where cγ is the measure on Ω × Ω with density c(x, y) = |x − y| with respect to γ. On the
other hand, performing a similar computation we get that∫

Ω
φdσγ = 〈σγ , φ〉 =

∫ 1

0
dt

∫
Ω×Ω

φ(z)d((πt)#(cγ)).

Hence, if we take φ = −ξ · ∇u we get
∫

Ω
ξ · dw[γ] = −

∫
Ω
ξ · ∇udσγ for every ξ ∈ C0(Ω,Rd),

which shows that w[γ] = −∇uσγ and |∇u| = 1 σγ-a.e. This gives the density of w[γ] with
respect to σγ , and shows that |w[γ] | = σγ . We also note that the mass of σγ is given by∫

Ω
dσγ =

∫
Ω×Ω

∫ 1

0
|ω′x,y(t)|dtdγ(x, y) =

∫
Ω×Ω

∫ 1

0
|x− y||∇u(ωx,y(t))|dtdγ(x, y)

=
∫

Ω×Ω

∫ 1

0
|x− y|dtdγ(x, y)

=
∫

Ω×Ω
|x− y|dγ(x, y)

= min(KP).

Thus, by equation 3.2.4 we get

min(KP) ≤ min(BP) ≤ |w[γ] |(Ω) = σγ(Ω) = min(KP). (3.2.4)

This proves the optimality of w[γ]. Therefore, a minimizer for the (BP) exists and
min(BP) = min(KP) (such a minimizer has been built from a solution of (KP)).

Remark 3.2.5. Let us consider the transport density σγ from Theorem 3.2.4. If we look at
the action of σγ on sets, then we have for every Borel set A,

σγ(A) =
∫

Ω×Ω
H 1(A ∩ [x, y])dγ(x, y),

where [x, y] is the segment joining x and y.

52



Figure 3.1: σγ(A) represents the average of the length of all segments A∩ [x, y] according to
γ.

Remark 3.2.6. The transport density σ = σγ that we defined in (3.2.3) satisfies the so-called
Monge-Kantorovich system: 

∇ · (σ∇u) = µ− ν in Ω,
|∇u| ≤ 1 in Ω,
|∇u| = 1 σ − a.e.

We note that this system is formally solved if the product ∇u ·σ makes sense, in other words,
if σ ∈ L1. To overcome this difficulty, in the last section we will study Lp regularity of the
transport density σ.

In the following example, we will find the transport density σ between two concrete
measures in R2.
Example 3.2.7. Let µ = f · L 2 and ν = g · L 2, with f = 1

πχB(0,1) and g = 1
4πχB(0,2).

By applying the same reasoning as in Example 2.2.5 and Theorem 2.2.28, we find a radial
optimal transport plan T which is the unique solution of Kantorovich’s transport problem.
Hence, σ must be a radial function. Let u(x) = −|x| be its associated Kantorovich potential;
thanks to Remark 3.2.6 we know that σ and u must satisfy

−∇ · (σ∇(|x|)) = −∇ ·
(
σ
x

|x|

)
= 1
π
χB(0,1)(x)− 1

4πχB(0,2)(x)

=⇒ −∇σ · x
|x|
− σ∇

(
x

|x|

)
= 1
π
χB(0,1)(x)− 1

4πχB(0,2)(x)

=⇒ σ′
x · x
|x|

+ σ
2− 1
|x|

= 1
4πχB(0,2)(x)− 1

π
χB(0,1)(x)

=⇒ σ′ + σ
1
|x|

= 1
4πχB(0,2)(x)− 1

π
χB(0,1)(x).

To find the transport density we need to solve the ODE

σ′(r) + σ
1
r

=
{
− 3

4π , if r ≤ 1,
1

4π , if 1 ≤ r ≤ 2,

with σ(0) = 0. Indeed, if we multiply both sides of the equation σ′(r) + σ(r)1
r = − 3

4π by
exp

∫ 1
rdr = r, it can be obtained

(rσ(r))′ = − 3r
8π =⇒ rσ(r) = − 3

4π

∫
rdr = −3r2

8π + c1 =⇒ σ(r) = − 3
8πr + c1

r
,
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which means that σ(r) = − 3r
8π , if x ∈ B(0, 1). Applying analogous computations, we obtain

that σ(r) = r
2π + c2

r , if x ∈ B(0, 2) \ B(0, 1). Finally, we need both possible solutions to
coincide if |x| = 1, that is, − 3

8π = 1
2π + c2. Therefore, the transport density is given by

σ(|x|) =

−
3

8π |x|, if x ∈ B(0, 1),
1

2π |x| −
7

8π|x| , if x ∈ B(0, 2) \B(0, 1).

In order to complete the analysis of this section, we will analyze the one dimensional
(BP). With this in mind, we suppose that Ω = [a, b] ⊂ R.

First, we note that the condition ∇ · w = µ − ν is stronger if d = 1. Indeed, we note
that in R there exist just one partial derivative for the vector field w, this implies that the
condition ∇ · w = µ− ν along with the Neumann boundary conditions means that

w(x) = w(a) +
∫ x

a
w′(t)dt =

∫ x

a
w′(t)dt =

∫ x

a
d(µ− ν)(t) = Fµ(x)− Fν(x). (3.2.5)

Thus, w(b) = 0 thanks to the fact Fµ(b) = Fν(b). On the other hand, we recall the following
connections between measures and functions with bounded variation in the one dimensional
case.
Well known Facts:

• BV([a, b]) ⊂ L∞([a, b]).

• Every monotone increasing function on a compact interval is the cumulative distribution
function of unique positive measure

• Every function in BV([a, b]) is the cumulative distribution of a unique signed measure.

Remark 3.2.8. Thanks to the fact that w′ is a measure, we have w ∈ BV([a, b]), and hence
we can say that M 1

div([a, b]) = BV([a, b]). Therefore we have the following facts:

• Since w ∈ BV([a, b]), then w belong to every Lp space, including the case p =∞.

• If µ, ν ∈ Lp([a, b]), then w ∈W1,p([a, b]) thanks to the fact that w′ ∈ Lp([a, b]).

• By (3.2.5) it follows:

min(BP) = {|w |([a, b]) : w ∈ BV([a, b]), ∇ · w = µ− ν} =
∫ b

a
|Fµ − Fν |dL 1

= ‖Fµ − Fν‖L1([a, b]).

• In this case, the transport density σ is given by σ = |w | and σ ∈ BV([a.b]), since the
absolute value of a BV function is also a BV function.

3.2.1 Smirnov’s decomposition

In this section, we first introduce some objects that generalize w[γ], σγ and we prove the
Smirnov’s decomposition theorem. This theorem will be useful to characterize an optimal
vector measure w coming from an optimal transport plan. Let us now introduce some no-
tation. Let Ω ⊂ Rd be a compact, connected, with no empty interior set. We define the
set

C := {ω : [0, 1]→ Ω : ω is an absolutely continuous curve} .
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Given ω ∈ C and φ ∈ C(Ω), let us set the quantity

Lφ(ω) :=
∫ 1

0
φ(ω(t))|ω′(t)|dt, (3.2.6)

which represents the length of the curve, weighted with some function φ. When we take
φ = 1, L1(ω) is the usual length of ω, let us denote it by L(ω).
Remark 3.2.9. Note that these quantities are well defined, since absolutely continuous
curves have distributional derivative ω′ ∈ L1([0, 1]), and ω(t1) = ω(t0) +

∫ t1

t0
ω′(t)dt for

every t0 < t1, so ω is differentiable a.e.

Definition 3.2.10. If Q ∈ P(C ) is a probability measure such that
∫

C
L(ω)dQ(ω) < +∞.

We will called Q a traffic plans.

Example 3.2.11. If we consider the flow given by{
y′x(t) = vt(yx(t)),
yx(0) = x,

(3.2.7)

with vt a velocity vector field. Then we can define Y : Ω→ C as Y (x) = yx. This map allow
us to transport the measure µ ∈ P(Ω) to another measure Q = Y#µ. Then, Q is a traffic
plan.
Remark 3.2.12. We endow the space C with the uniform convergence metric. Then, Arzela-
Ascoli theorem guarantees that the set {ω ∈ C : Lip(ω) ≤ α} is compact for every α > 0.
Please be aware that the space (C , ‖·‖∞) is not complete (since the uniform limit of absolutely
continuous curves does not necessary belong to C ).

We will associate two measures on Ω related to a traffic plan Q, the traffic intensity and
the traffic flow.

Definition 3.2.13. The scalar measure, called traffic intensity and denoted by iQ ∈
M+(Ω) is defined by∫

Ω
φdiQ :=

∫
C

(∫ 1

0
φ(ω(t))|ω′(t)|dt

)
dQ(ω) =

∫
C
Lφ(ω)dQ(w),

for all φ ∈ C(Ω;R+). The interpretation of this measure is the following: for a connected set
A ⊂ Ω, the quantity iQ(A) represents the total accumulated traffic in A induced by Q.

We also associate a vector measure wQ with any traffic plan Q ∈P(C ) through∫
Ω
ξ · dwQ :=

∫
C

(∫ 1

0
ξ(ω(t)) · ω′(t)dt

)
dQ(ω),

for all ξ ∈ C(Ω;Rd). We will call wQ traffic flow induced by Q.
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Example 3.2.14. Let us consider Y (x) = yx, induced by the flow (3.1.1). If we set µ = δx0

for some x0 ∈ Ω. Then, we have that Q = δyx0
and∫

Ω
diQ =

∫
Ω

∫ 1

0
|vt(yx(t))|dtd(δyx0

) =
∫ 1

0
|vt(yx0(t))|dt.

Then, iQ = H 1 |yx0 ([0,1]). Also,∫
Ω

1 · dwQ =
∫

Ω

∫ 1

0
1 · vt(yx(t))
|vt(yx(t))|dtd(δyx0

) =
∫ 1

0
1 · vt(yx0(t))
|vt(yx0(t))|dt.

Hence, wQ = vt(yx0 (t))
|vt(yx0 (t))|H

1 |yx0 ([0,1]).
Example 3.2.15. Consider the transport plan γ =

∑n
i=1 riδ(xi,yi), with ri ≥ 0 and

∑n
i=1 ri =

1. In this case, the traffic plan is given by Q =
∑n
i=1 riδωxi,yi , where ωxi,yi is the segment

joining xi with yi. Following the same ideas from Example 3.2.14 we can compute the traffic
intensity (which is in this case σγ), and the traffic flow wQ:

σγ =
n∑
i=1

riH
1 |ωxi,yi ([0, 1])

wQ =
n∑
i=1

ri
yi − xi
|xi − yi|

H 1 |ωxi,yi ([0, 1])

Definition 3.2.16. Let et : C → Rd be the evaluation map at time t. We will say that a
traffic plan Q is admissible if (e0)#Q = µ and (e1)#Q = ν, where µ, ν ∈P(Ω).

Remark 3.2.17. If we take a gradient field ξ = ∇φ in the definition of traffic flow, then we
have ∫

Ω
∇φ · dwQ =

∫
C

(∫ 1

0
∇φ(ω(t)) · ω′(t)

)
dQ(ω) =

∫
C

[φ(ω(1))− φ(ω(0))]dQ(ω)

=
∫

Ω
φd((e1)#Q− (e0)#Q),

where et denotes the evaluation map, et(ω) = ω(t). This means that ∇ · wQ = µ − ν in the
distributional sense, and is endowed with no-flux conditions. Hence, wQ is an admissible flow
connecting µ and ν.

The aim of this section is to prove Smirnov’s decomposition Theorem following Santam-
brogio’s approach [22]. This Theorem will allow us to decompose a vector measure into a
flow induced by a measure on paths and a vector field in Ker(∇·). With this goal in mind,
we first need to prove some preliminary results.
Remark 3.2.18. If we take ξ ∈ C(Ω;Rd), then by Cauchy-Schwarz inequality we have∫

Ω
ξ · dwQ ≤

∫
C

(∫ 1

0
|ξ(ω(t))||ω′(t)|dt

)
dQ(ω) =

∫
Ω
|ξ|diQ.

Thus, |wQ | ≤ iQ, where |wQ | is the total variation measure. It can be shown, that in
general, equality does not holds (since the curves of Q could produce some cancellations).
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The following proposition give us some useful properties of the traffic intensity and traffic
flow.

Proposition 3.2.19. (a) If T : C → C is a map such that for every ω, the curve T (ω) is
a re-parametrization in time of ω, then wT#Q = wQ and iT#Q = iQ (both are invariant
under re-parametrization.

(b) For every Q, we have that
∫

C
L(ω)dQ(ω) = iQ(Ω).

(c) If Qn ⇀ Q and iQn ⇀ i, then i ≥ iQ.

(d) If Qn ⇀ Q , wQn ⇀ w and iQn ⇀ i, then

‖w−wQ ‖ ≤ i(Ω)− iQ(Ω).

In particular, if Qn ⇀ Q and iQn ⇀ iQ, then wQn ⇀ wQ

Proof. (a): The proof of this part comes form the invariance of both, Lφ(ω) = Lφ(T (ω)) and∫ 1

0
ξ(ω(t)) · ω′(t)dt =

∫ 1

0
ξ(T (ω(t))) · T (ω(t))′dt.

(b): It follows directly from the definition of iQ and by testing with φ = 1.

(c): To check the inequality i ≥ iQ, we first prove a particular case. Let us fix a test
function φ ∈ C(Ω) such that φ ≥ ε0 > 0. By definition of traffic intensity we can write∫

Ω
φdiQn =

∫
C

(∫ 1

0
φ(ω(t))|ω′(t)|dt

)
dQn(ω).

Then, the function Lφ(ω) =
∫ 1

0 φ(ω(t))|ω′(t)|dt is positive and lower semi-continuous. Indeed,
let {ωn}n≥1 ⊂ C a sequence such that ωn → ω. Let

{
ωnj

}
j≥1

be a subsequence such that

Lφ(ωnj )→ lim inf
n→∞

Lφ(ωn) < +∞. Then, we can assume that
∫ 1

0
|ω′nj |dt is bounded for every

j ∈ N, since

Lε0(ωnj ) = ε0

∫ 1

0
|ω′nj |dt ≤ Lφ(ωnj ) < +∞.

Then, there exists a subsequence of
{
ωnj

}
j≥1

weakly converging to ω′ as a measure. To avoid
confusion, let us assume that ω′n ⇀ ω′ weakly (as measures). Then, up to a subsequence,
there exist a measure f ∈ M+([0, 1]) such that f ≥ |ω′| and |ω′n| ⇀ f , since the variation
measure satisfies |ω′| ≤ lim inf

n→∞
|ω′n|. Moreover, φ(ωn(t))→ φ(ω(t)) uniformly, which gives

∫ 1

0
φ(ωn(t))|ω′n(t)|dt→

∫ 1

0
φ(ω(t))df(t) ≥

∫ 1

0
φ(ω(t))|ω′(t)|dt.

Thus, Qn ⇀ Q and iQn ⇀ i implies that∫
Ω
φdi = lim

n→∞

∫
Ω
φdiQn = lim inf

n→∞

∫
C
Lφ(ω)dQn(ω) ≥

∫
C
Lφ(ω)dQ(ω) =

∫
Ω
φdiQ. (3.2.8)
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Now, if we take an arbitrary φ ∈ C(Ω) then we can add a constant ε0 > 0 and apply the
same reasoning of equation (3.2.1) to get that∫

Ω
(φ+ ε0)di = lim inf

n→∞

∫
C
Lφ(ω)dQn(ω) + ε0i(Ω) ≥

∫
Ω

(φ+ ε0)diQ.

Since i is a finite measure, we let ε0 → 0 to obtain that Lφ is lower semi-continuous and
iQ ≤ i.
(d): Let us fix a vector field ξ ∈ C(Ω;Rd) and a number λ > 1. Then we have:∫

Ω
ξ · dwQn =

∫
C

(∫ 1

0
ξ(ω(t)) · ω′(t)dt

)
dQn(ω)

=
∫

C

(∫ 1

0
ξ(ω(t)) · ω′(t) + λ‖ξ‖L∞L(ω)− λ‖ξ‖L∞L(ω)dt

)
dQn(ω) (3.2.9)

=
∫

C

(∫ 1

0
ξ(ω(t)) · ω′(t) + λ‖ξ‖L∞L(ω)dt

)
dQn(ω)− λ‖ξ‖L∞iQn(Ω).

We also note that the function

ω 7→
∫ 1

0
(ξ(ω(t)) · ω′(t) + λ‖ξ‖L∞L(ω))dt ≥ (λ− 1)‖ξ‖L∞L(ω),

is lower semi-continuous with respect to ω. Indeed, by similar arguments if we take ω → ω
uniformly (as we did before), we can suppose that L(ωn) is bounded and then obtain that

ω′n ⇀ ω′ weakly (up to a subsequence). Then,
∫ 1

0
ξ(ωn(t)) · ω′ndt→

∫ 1

0
ξ(ω) · ω′(t)dt and

∫ 1

0
(ξ(ω(t)) · ω′(t) + λ‖ξ‖L∞L(ω))dt ≤ lim inf

n→∞

∫ 1

0
(ξ(ωn(t)) · ω′n(t) + λ‖ξ‖L∞L(ωn))dt,

since L(ω) is lower semi-continuous. This means that, if we pass to the limit in equation
(3.2.13) we get∫

Ω
ξ · dw = lim

n→∞

∫
Ω
ξ · dwQn

≥
∫

C

(∫ 1

0
ξ(ω(t)) · ω′(t) + λ‖ξ‖L∞L(ω)

)
dQ(ω)− λ‖ξ‖L∞i(Ω)

=
∫

Ω
ξ · dwQ+λ‖ξ‖L∞(iQ(Ω)− i(Ω)).

Analogously, if we replace ξ with −ξ we get,
∫

Ω
ξ · dw ≤

∫
Ω
ξ · dwQ+λ‖ξ‖L∞(i(Ω)− iQ(Ω)).

Thus, letting λ→ 1 we have the following estimate∣∣∣∣∫
Ω
ξ · dw−

∫
Ω
ξ · dwQ

∣∣∣∣ ≤ ‖ξ‖L∞(i(Ω)− iQ(Ω))

=⇒ sup
‖ξ‖L∞≤1

∣∣∣∣∫
Ω
ξ · dw−

∫
Ω
ξ · dwQ

∣∣∣∣ ≤ i(Ω)− iQ(Ω)

Therefore, ‖w−wQ ‖ ≤ i(Ω) − iQ(Ω). Finally, the last property follows from the previous
work. Indeed, may can assume that there exists a subsequence such that wQnk ⇀ w for some
vector measure w (since Qn ⇀ Q, and then one may suppose that, up to a subsequence,
wQn ⇀ w), and i = iQ implies that ‖w−wQ ‖ ≤ i(Ω) − iQ(Ω) = 0. Thus, wQnk ⇀ wQ,
which also implies the full convergence of the sequence.
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Now, we will show an approximation lemma which will be useful to prove Smirnov’s
decomposition theorem.

Lemma 3.2.20. Let µ, ν ∈P(Ω) be two probability measures on a smooth compact domain
Ω, and a vector measure w ∈M d

div satisfying ∇ · w = µ− ν in the distributional sense (with
no-flux boundary conditions). If {Ωε} is a sequence of smooth compact domains such that,
Ω ⊂ Int(Ωε) and Ωε → Ω in the Hausdorff topology, then there exist a family of vector fields
{wε}ε ⊂ C∞(Ωε) with wε ·nΩε = 0, two families of densities {µε}ε and {νε}ε in C∞(Ωε),
bounded from below by positive constants kε > 0, such that

∇ · wε = µε − νε and
∫

Ωε
µε =

∫
Ωε
νε = 1,

and wε ⇀ w, µε ⇀ µ, νε ⇀ ν and |wε |⇀ |w |.

Proof. We first extend the measures µ, ν and w equals to zero out of Ω (that is, µ(Ωc) =
ν(Ωc) = w(Ωc) = 0) and take convolution in Rd with a Gaussian kernel ηε(x) = 1√

ε
exp

(
−π|x|2

ε

)
,

then we get the measures µ̄ε = µ ∗ ηε, ν̄ε = ν ∗ ηε and w̄ε = w ∗ηε, where

µ ∗ ηε(x) :=
∫
Rd
ηε(x− y)dµ(y), ν ∗ ηε(x) :=

∫
Rd
ηε(x− y)dν(y),

w ∗ηε(x) :=
∫
Rd
ηε(x− y)(1 · dw(y)).

These measures satisfy the constraint ∇ · ω̄ε = µ̄ε − ν̄ε, since

−
∫

Ω
∇φ · dω̄ε = −

∫
Ω
∇φ · d(w ∗ηε) = −

∫
Rd

∫
Ω
ηε(x− y)(∇φ(x) · dw)dy

=
∫
Rd

∫
Ω
ηε(x− y)φ(x)d(µ− ν)dy

=
∫

Ω
φd(µ̄ε − ν̄ε),

for every test function. Since ηε > 0, we also have that µ̄ε and ν̄ε are positive densities. Using
these densities, we will do a regularization on their support and boundary behavior, since
their support is not necessarily Ωε and w̄ε · nΩε is not zero. Indeed, let us set∫

Ωε
dµ̄ε = 1− aε and

∫
Ωε
dν̄ε = 1− bε,

with aε, bε → 0 as ε → 0 (since µ̄ε ⇀ µ and ν̄ε ⇀ ν). On the other hand, since tε =
dist(Ω, ∂Ωε)→ 0 (thanks to the Hausdorff convergence), if we set tε = ε

1
3 then it follows that

tε
ε → +∞, as ε → 0 and ‖ηε‖L∞(B(0,tε)c) → 0, as ε goes to zero. Hence, |wε ·nΩ′ | ≤ cε, with
cε → 0.

Let us consider uε the solution to the problem
∆uε = aε−bε

L d(Ωε) , if Ωε

∂uε
∂n = −w̄ε · nΩε , , on ∂Ωε∫
Ωε uε = 0,

(3.2.10)
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and the vector field ∇uε. We observe that the problem (3.2.10) admits a solution, since

−
∫
∂Ωε

w̄ε · nΩε =
∫

Ωε
(µ̄ε − ν̄ε) = aε − bε.

Now, we use integration by parts to get that∫
Ωε
|∇uε|2dL d = −

∫
Ωε
uε∆uεdL d −

∫
∂Ωε

uε(w̄ε · nΩε)dH d−1

= −
∫

Ωε
uε

(
aε − bε
L d(Ωε)

)
dL d −

∫
∂Ωε

uε(w̄ε · nΩε)dH d−1

≤ cε
∫
∂Ωε
|uε|dH d−1 + (aε + bε)L d(Ωε)

∫
Ωε
|uε|2dL d

≤ cεH d−1(∂Ωε)
∫
∂Ωε
|uε|2dH d−1 + (aε + bε)L d(Ωε)

∫
Ωε
|uε|2dL d

≤ C(cε + aε + bε)‖∇uε‖L2(Ωε),

thanks to Poincare’s inequality and (3.2.10). This shows that ‖∇uε‖L2(Ωε) → 0 (since C does
not depend on ε), and then Holder inequality implies ‖∇uε‖L1(Ωε) → 0. Also we observe that,
|w̄ε|⇀ |w | since w̄ε ⇀ w and w̄ε is a convolution. Hence, the following measures:

µε = µ̄ε |Ωε + aε
L d(Ωε)

; νε = ν̄ε |Ωε + bε
L d(Ωε)

; wε = w̄ε |Ωε +∇uε

satisfy all the required conditions. Therefore, we have built an approximating sequence
{(wε, µε, νε)}ε such that, wε, µε, νε ∈ C∞(Ωε), wε ·nΩ′ε = 0, ∇·wε = µε−νε and (wε, µε, νε) ⇀
(µ, ν,w), as desired.

Dacorogna-Moser transport: Let us present a very useful construction due to Da-
corogna and Moser. Let w : Ω → Rd be a Lipschitz vector field such that w ·n = 0 on ∂Ω
and ∇ ·w = f0 − f1, with f0 and f1 two probability densities which are Lipschitz continuous
and bounded from below. Then we can define the vector field vt(x) as follows:

vt(x) = w(x)
ft(x) , where ft = (1− t)f0 + tf1 (see figure 3.2),

and consider the Cauchy problem {
y′x(t) = vt(yx(t))
yx(0) = x.

We define a map Y : Ω→ C given by Y (x) = yx(·). Then, consider the measure Q := Y#f0
and ρt := (et)#Q := (Yt)#f0. Thanks to section 3.1, we already know that {ρt}t solves
the continuity equation ∂tρt + ∇ · (ρtvt) = 0. On the other hand, since ∂tft = f1 − f0 and
∇ · (ftvt) = ∇ ·w = f0 − f1, we must have that {ft}t also solves the continuity equation. By
Theorem 3.1.6, since ρ0 = f0 we deduce that ρt = ft (recall all the ingredients are Lipschitz
continuous). In particular, x 7→ yx(1) is a transport map from f0 to f1.

In the following lemma we will show some useful properties of the traffic intensity and
traffic flow of the associated measure in Dacorogna-Moser construction.
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Figure 3.2: vt(x) in Dacorogna-Moser construction.

Lemma 3.2.21. If Q is the associated measure in Dacorogna-Moser construction, then w =
wQ and |wQ | = iQ.

Proof. Let φ ∈ C(Ω;R) be a test function, then∫
Ω
φdiQ =

∫
Ω

∫ 1

0
φ(yx(t))|y′x(t)|dtd(Y#f0) =

∫
Ω

∫ 1

0
φ(yx(t))|vt(yx(t))|dtf0(x)dx

=
∫ 1

0

∫
Ω
φ(y)|vt(y)|ft(y)dydt

=
∫

Ω
φ(y)|w(y)|dy,

so we have that iQ = |w |. On the other hand, let ξ ∈ C(Ω;Rd) be a vector field. Then,∫
Ω
ξ · dwQ =

∫
Ω

∫ 1

0
ξ(yx(t)) · vt(yx(t))dtf0(x)

=
∫ 1

0

∫
Ω
ξ(y) · vt(y)ft(y)dydt

=
∫

Ω
ξ · w(y),

since vt(y) = w(y)
ft(y) . Thus, wQ = w. In this case, we also have |wQ | = iQ = |w | due to the

fact that all curves share the same direction at every given point, as a consequence of the
Existence and Uniqueness ODE’s theorem and hence no cancellation is possible.
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Finally, we are ready to prove Smirnov’s decomposition theorem. The statement that we
present here is a particular version of a more general decomposition theorem due to Smirnov
[24].

Theorem 3.2.22 (Smirnov’s decomposition). For every finite vector measure w ∈M d
div(Ω)

and µ, ν ∈P(Ω) with ∇ · w = µ− ν, there exists a traffic plan Q ∈P(C ) with (e0)#Q = µ
and (e1)#Q = ν such that |wQ | = iQ ≤ |w |, and

‖w−wQ ‖+ ‖wQ ‖ = ‖w−wQ ‖+ iQ(Ω) = ‖w ‖.

In particular, |wQ | 6= |w | unless wQ = w.

Remark 3.2.23. • Note that the statement ‖w−wQ ‖+ ‖wQ ‖ = ‖w ‖ is equivalent to
the measure decomposition w = wQ+(w−wQ), with |wQ | ⊥ |w−wQ | (by uniqueness
of the Jordan decomposition).

• We will say that a vector measure w is a cycle, if ∇ · w = 0, i.e. a vector measure
in Ker(∇·). The decomposition given in Theorem 3.2.22 give us the decomposition of
any vector measure into a cycle w−wQ and a flow wQ induced by a measure on paths,
such that ‖w ‖ = ‖w−wQ ‖+ ‖wQ ‖

Proof of theorem 3.2.19. Let {Ωε} be a sequence of smooth compact domains such that,
Ω ⊂ Int(Ωε) and Ωε → Ω in the Hausdorff topology. Then, by Lemma 3.2.20 there exists a
sequence {(wε, µε, νε)}ε with wε, µε, νε ∈ C∞(Ωε) such that, wε ·nΩε = 0, ∇ ·wε = µε − νε (in
the distributional sense), (wε, µε, νε) ⇀ (w, µ, ν) and |wε | ⇀ |w |. If we apply Dacorogna-
Moser’s construction to the vector fields wε, we obtain a sequence of measures {Qε}ε such
that Qε = Y#µ

ε. Let us suppose that these are probability measures on C := AC(Ω′), with
Ω ⊂ Ωε ⊂ Ω′ and such that each measure is concentrated on curves valued in Ωε.

By properties of the traffic intensity and traffic flow associated to Qε (Lemma 3.2.21) we
have that iQε = |wε | and wQε = wε, also the invariance under reparametrization (Proposition
3.2.19) allows us to reparametrize by constant speed the curves on which Qε is supported,
without changing traffic intensities and traffic flows. Then, we will use curves ω such that
L(ω) = Lip(ω). On the other hand, we note that

∫
C
Lip(ω)dQε(ω) is bounded, since

lim
ε→0+

∫
C
Lip(ω)dQε(ω) = lim

ε→0+

∫
C
L(ω)dQε =

∫
Ω′
diQε

= lim
ε→0+

∫
Ω′
d|wε |

=
∫

Ω′
d|w | = |w |(Ω′) < +∞.

Thus, the sequence {Qε}ε is tight, thanks to the fact that the sets {ω ∈ C : Lip(ω) ≤ L}
are compact for every L ∈ R+. By Prokhorov’s Theorem we may assume that, up to a
subsequence, Qε ⇀ Q, where this measure is concentrated on curves valued on Ω (since
Ωε → Ω in the Hausdorff topology). From the Dacorogna-Moser construction we know that
Qε were constructed so that (e0)#Qε = µε and (e1)#Qε = νε, thus letting ε → 0+ it follows
that (e0)#Q = µ and (e1)#Q = ν.
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Figure 3.3: The Smirnov’s decomposition of w in Example 3.2.24

Moreover, since iQε = |wε |⇀ |w | and wε ⇀ w, then Proposition 3.2.19 implies |wQ | ≤
iQ ≤ |w | and

‖w−wQ ‖ ≤ |w |(Ω)− iQ(Ω) ≤ ‖w ‖ − iQ(Ω).
Thus, we have that

‖w−wQ ‖+ ‖wQ‖ ≤ ‖w−wQ ‖+ iQ(Ω) ≤ ‖w ‖. (3.2.11)

Let ξ ∈ C(Ω;R) be a vector field such that ‖ξ‖L+∞ ≤ 1. Then,∣∣∣∣∫
Ω
ξ · dw

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
ξ · dw−

∫
Ω
ξ · dwQ

∣∣∣∣+ ∣∣∣∣∫
Ω
ξ · dwQ

∣∣∣∣
=⇒ sup

‖ξ‖L∞≤1

∣∣∣∣∫
Ω
ξ · dw

∣∣∣∣ ≤ sup
‖ξ‖L∞≤1

∣∣∣∣∫
Ω
ξ · dw−

∫
Ω
ξ · dwQ

∣∣∣∣+ sup
‖ξ‖L∞≤1

∣∣∣∣∫
Ω
ξ · dwQ

∣∣∣∣ ,
which means that ‖w ‖ ≤ ‖w−wQ ‖ + ‖wQ ‖ is satisfied. Hence, we conclude that ‖w ‖ =
‖w−wQ ‖+ ‖wQ ‖ by combining last inequality and (3.2.11).

The following example shows what happens to a cycle in Dacorogna-Moser’s construction.

Example 3.2.24. Let B(0, r) ⊂ R2 with r > 0, and let B−(0, r), B+(0, r) be the half circles
with respect to the vertical axis. Also, we assume that spt(µ)∪ spt(ν) ⊂ B+(0, r) and a cycle
of w is contained in B−(0, r) (see figure 3.3).

In this case, we note that the approximating sequence {µε} and {νε} may have positive
mass in B−(0, r), an such mass goes to zero as ε→ 0+. Also, we observe that the vector field
from Dacorogna-Moser’s construction satisfies

vεt = wε

(1− t)µε + νεt
=⇒ wε = vεt((1− t)µε + νεt). (3.2.12)

Hence, the curves satisfying (3.2.12) will follow the cycle w−wQ, passing many times on
each point of this cycle, which means that the flow wε |B−(0,r) is obtained from a small mass
which passes many times through the cycle. Thus, since Qε ⇀ Q we must have that Q is
concentrated on curves staying in B+(0, r) and wQ |B−(0,r)= 0.
Remark 3.2.25. In general, if cycles are located in regions where µ and ν have positive
measure, we cannot apply the same reasoning from Example 3.2.24.
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3.2.2 Characterization and uniqueness of optimal vector measures.

Now, we are ready to prove the following characterization theorem which states that an
optimal vector measure w in Beckmann’s problem always comes from an optimal transport
plan γ, and also that all the optimal transport plans γ give us the same w[γ] and σγ , if
µ� L d. Hence, in the end, w[γ] does not depend on the choice of γ.

Theorem 3.2.26 (Characterization and uniqueness of the optimal w). Let w be an optimal
vector measure for (BP). Then, there is an optimal transport plan γ ∈ Π(µ, ν) such that
w = w[γ]. Moreover, If µ � L d, then the vector field w[γ] does not depend on the choice of
the optimal transport plan γ.

Proof. By Theorem 3.2.22 (Smirnov’s decomposition), there exists a measure Q ∈ P(C )
with (e0)#Q = µ and (e1)#Q = ν such that |wQ | = iQ ≤ |w |. Since w is optimal, then the
equality |w | = |wQ | = iQ must hold. Moreover, we have from Smirnov’s decomposition:

‖w ‖Q = ‖w−wQ ‖+ ‖wQ ‖ = ‖w ‖,

since ‖w−wQ ‖ = 0. In this case, w = wQ. Since wQ and iQ are invariant under reparametriza-
tions, we can assume that Q is concentrated on curves which are parametrized by constant
speed. Let S = {ωx,y ∈ C : ωx,y(t) = (1− t)x+ ty} and define the map S : Ω × Ω → S by
S(x, y) = ωx,y. Since the definition of wγ is just a particular case of the definition of wQ,
when we take Q = S#γ, then the first part of statement is proved if we show that Q = S#γ,
with γ and optimal transport plan. Indeed, by optimality of w we have:

min(BP) = |w |(Ω) = iQ(Ω) =
∫

C
L(ω)dQ(ω)

=
∫

C

(∫ 1

0
|ω′(t)|dt

)
dQ(ω)

≥
∫

C
|ω(0)− ω(1)|dQ(ω)

=
∫

Ω×Ω
|x− y|d((e0, e1)#Q)(x, y)

≥ min(KP) = min(BP),

since Theorem 3.2.4 guarantees min(BP) = min(KP). Thus, we have the equality

|w |(Ω) =
∫

C
|ω(0)− ω(1)|dQ(ω) =

∫
Ω×Ω
|x− y|d((e0, e1)#Q)(x, y), (3.2.13)

which means that Q must be concentrated on curves such that L(ω) = |ω(0)−ω(1)|, in other
words, Q is concentrated in S. Also, the measure γ = (e0, e1)#Q belongs to Π(µ, ν) and is
optimal for the Kantorovich problem, thanks to equation (3.2.13). Therefore Q = S#γ, and
in such a case, we get w = w[γ], which is the first part of the statement.

Now, we prove the second part of the theorem. Let u ∈ Lip1(Ω) be a Kantorovich potential
for an optimal transport γ ∈ Π(µ, ν); since u does not depend on γ, then it determines a
partition into transport rays, let us denote by R such a partition. Note that, by Proposition
2.2.14, the points of Ω where ∇u does not exist, are the points which belong to several
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transport rays and hence are Lebesgue negligible thanks to Rademacher’s theorem; we denote
by S the set of such points. Since µ � L d, then µ(S) = 0 and γ is concentrated in the set
(πx)−1(Sc). Let R : Ω × Ω → R be a map sending each pair (x, y) into the transport ray
containing x, which is well defined γ-a.e. and is a Borel map. Then, we can disintegrate the
measure γ along to the transport rays containing the point x according to R: there exist a
family of measures {γr}r∈R such that, for every test function φ ∈ C(Ω× Ω) we have that∫

Ω×Ω
φdγ =

∫
R−1(r)

∫
Ω×Ω

φdγrdλ,

which we will denote by γ = γr⊗λ, with λ = R#γ and r the variable related to each transport
ray, every γr is a probability measure concentrated in R−1(r). Also, we have that for a.e.
r ∈ R, the transport plans γr ∈ Π(µr, νr) are optimal.

On the other hand, the vector measure w[γ] can also be obtained through the disintegration
of γ, that is, w[γ] = wγr ⊗λ, where wγr is the vector measure induced by γr, such that it is
optimal in (BP). Hence, if want to prove that w[γ] does not depend on γ, we just need show
that each λ and each wγr only depends on the marginals µ, ν. It is clear that λ does not
depend on γ (since λ is the push-forward measure of a map which just depends on x and
hence only depends on µ). Also, we note that wγr only depends on the marginal measures
of γr, since each wγr is optimal in a one dimensional Beckmann’s problem, and according to
Remark 3.2.8 wγr only depends on the marginal measures.

We claim now that (πx)#γ
r and (πy)#γ

r do not depend on γ. Indeed, note that the claim
easily follows for the first marginal thanks to the fact that (πx)#γ

r must coincides with the
disintegration of µ according to R, that is, (πx)#γ

r = µr. For the marginal νr := (πy)#γ
r,

we have to perform a further analysis due to the condition ν(S) = 0 does not necessarily
holds. Let us decompose this marginal into:

(πy)#γ
r = (πy)#(γr |Ω×S) + (πy)#(γr |Ω×Sc). (3.2.14)

We observe that the second term on the right hand side of (3.2.14) is equal to ν |Sc (again by
uniqueness of the disintegration), and then (πy)#(γr |Ω×Sc) does not depend on γ since ν |Sc
depends only on the set S. Now, it just remain to prove the claim for ν |S= (πy)#(γr |Ω×S).
By definition of the set S, we know that this measure is concentrated on those points where
different transport rays may intersect, that is, ν |S is concentrated on the two end points of
the transport rays r. Then, ν |Sc is an atomic measure which is composed by at most two
Dirac masses.

On the other hand, let us recall that the condition u(x)−u(y) = |x−y| on spt(γ), implies
that the transport must follow a unique direction on each transport ray r. Now, we claim
that the boundary point where u is maximal cannot have any mass of ν. In order to prove
this claim we argue by contradiction: if we suppose that the measure ν has positive mass
at the beginning of a transport ray, then we have an atom for the measure µ as well. By
hypothesis we know that, µ � L d and property N holds (by Theorem 2.2.21), this means
that the set of rays r such that µr has an atom is negligible. Thus, the source measure cannot
have an atom at the beginning of any transport ray, which is a contradiction. Hence, νr |S is
a single Dirac mass.

Finally, since νr |S is Dirac mass and νr |S (r) + νr |Sc= µr(r) then, νr |S (r) = 1− νr |Sc
(r) (thanks to the fact that the total mass of µr must be transport to the single boundary
point where νr |S is concentrated), which only depends on µ and ν.

Hence, we have proved that wγ does not depend on γ, and therefore w neither depend on
γ.
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Remark 3.2.27. If µ� L d, we saw in Theorem 3.2.26 that any optimal w is vector measure
of the form w[γ], and does not depend on the optimal γ. Hence, (BP) admits a unique solution.

3.3 Integrability of the transport density
We have proved some results concerning existence and uniqueness of an optimal vector mea-
sure w ∈ M d

div for (BP). In this case, we do not have any additional information about the
transport density σ, except that is a measure. In this section, we will investigate whether the
transport density have additional integrability properties assuming more regularity on the
marginal measures of an optimal transport plan. We will prove that the transport density is
absolutely continuous and belongs to Lp. The proofs that we present here follows essentially
Santambrogio’s research work [21], and originally proved through different techniques in [13].

Before proving this integrability theorems, we give some useful results.

Proposition 3.3.1. Suppose that X and Y are compact metric spaces and that c : X×Y → R
is continuous. Let us suppose that {γn}n≥1 ⊂ P(X × Y ) is a sequence which are optimal
between their own marginals µn = (πx)#γn and νn = (πy)#γn, and suppose that γn ⇀ γ.
Then, µn ⇀ µ = (πx)#γ and νn ⇀ ν = (πy)#γ, and γ is an optimal transport plan between
µ and ν.

Proof. Let Γn = spt(γn). Then, up to a subsequence, we can suppose that Γn → Γ in the
Hausdorff topology. By optimality of γn, we have that each Γn is a c-CM set. Now, we claim
that the Hausdorff limit of c-CM sets is a c-CM set. Indeed, let us fix (x1, y1), . . . , (xk, yk) ∈ Γ,
then there are points (xn1 , yn1 ), · · · , (xnk , ynk ) ∈ Γn such that, for each i = 1, . . . , k we have that
(xni , yni )→ (xi, yi) ∈ Γ.

The cyclical monotonicity of the sets Γn implies
k∑
i=1

c(xni , yni ) ≤
k∑
i=1

c(xni , yσ(i)), and then

we have that

lim
n→∞

k∑
i=1

c(xni , yni ) =
k∑
i=1

c(xi, yi) ≤ lim
n→∞

k∑
i=1

c(xni , yσ(i)) =
k∑
i=1

c(xi, yσ(i)),

with σ a permutation. Hence, Γ is a c-CM set. Finally, since γn ⇀ γ and Γn → Γ we may
apply Proposition A.0.5 to obtain that spt(γ) ⊂ Γ. Moreover, since c is continuous and X is
compact, then γ is an optimal transport plan between of µ onto ν.

In the following lemma, we shall prove that discrete measures are dense for the weak
topology in P(Ω). In particular, this result will allows us to approximate the marginal
measure ν of an optimal transport plan by atomic measures in Theorem 3.3.5.

Lemma 3.3.2. Let Ω ⊂ Rd be a compact subset and µ ∈ P(Ω). Then, the set of Dirac
measures of the form

∑n
j=1 cjδxj is dense for the weak convergence.
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Proof. Let ε > 0, then there exist N ∈ N and point x1, x2, . . . , xN ∈ Ω such that Ω ⊂
∪Ni=1B(xi, ε) (by compactness). Let us define a partition of Ω as follows: take K1 = B(x1, ε),
and Ki = B(xi, ε) \∪i−1

r=1Kr, for i = 2, . . . , N and K1 = B(x1, ε). We also define the sequence
µε =

∑N
i=1 µ(Ki)δxi .

We shall prove that µε ⇀ µ as ε → 0. Indeed, let φ ∈ C(Ω). Since Ω is compact, then φ
admits a modulus of continuity ω, that is, |φ(x) − φ(y)| ≤ ω(|x − y|) and ω an increasing
function such that limtto0 ω(t) = 0. Since diam(Ki) ≤ ε, then we get

∣∣∣∣∫
Ω
φdµ−

∫
Ω
φdµε

∣∣∣∣ ≤ N∑
i=1

∫
Ki

|φ(x)− φ(xi)|dµ(x) ≤
N∑
i=1

∫
Ki

ω(diam(Ki)) ≤ ω(ε),

which means that µε weakly converge to µ as ε→ 0.

Definition 3.3.3. Let µ, ν ∈P(Ω) be two probability measures, γ ∈ Π(µ, ν) and πt(x, y) =
(1− t)x+ ty. We define the standard interpolation measure µt as, µt = (πt)#γ.

Remark 3.3.4. From now on, we will assume that d > 1, since in the one dimensional case
(d = 1) the transport density σ ∈ BV (Ω), which means that σ is essentially bounded (see
Remark 3.2.8).

From now on, we assume that Ω ⊂ Rd is a compact and convex domain, and µ, ν ∈P(Ω).
The following theorem states L1 regularity of the transport density σ.

Theorem 3.3.5. Let Ω ⊂ Rd is a convex domain, and µ � L d. Let σ be the transport
density associated with the transport plan of µ onto ν. Then, σ � L d.

Proof. Let γ ∈ π(µ, ν) be an optimal transport plan, and take σ = σγ (the transport density).
Consider µt := (πt)#γ, the standard interpolation between the two measures µ0 = µ and
µ1 = ν. In the previous section we saw that σ can be written as

σ =
∫ 1

0
(πt)#(cγ)dt,

where c is the cost function c(x, y) = |x − y|. Since Ω is compact, then for all φ ∈ C(Ω) we
have

〈σ, φ〉 =
∫ 1

0

∫
Ω
φ(z)(πt)#(cγ)dt ≤ ‖φ‖L∞

∫ 1

0
µtdt.

Thus, there is a constant C > 0 such that

σ ≤ C
∫ 1

0
µtdt. (3.3.1)

Hence, it is sufficient to prove that almost every measure µt is absolutely continuous to get
the desired result. Indeed, if L d(A) = 0 and µt � L d then, σ(A) ≤ C

∫ 1
0 µt(A)dt = 0, which

means that σ � L d. Now, we will show that µt � L d for 0 < t < 1, to do so, we will
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Figure 3.4: The sets Ωi(t) of Theorem 3.3.5

prove first that the statement holds in the discrete case, and then we apply an approximation
argument (by means of Lemma 3.3.2 and Proposition 3.3.1) to show the general case.

Let ν be a finitely atomic measure, with {xi}Ni=1 its atoms. Since µ � L d, then γ is
induced by a transport map T (the ray-monotone transport map), which is composed by
N homotheties. Now, we want to quantify this absolute continuity in order to apply an
approximation argument.

Let A be any Borel set, then there exists δ(ε) > 0 such that, L d(A) < δ implies µ(A) < ε.
Note that the domain Ω is the disjoint union of a finite number of sets Ωi = T−1({xi}); we
will call Ωi(t) the images of Ωi through the map x 7→ (1 − t)x + tT (x) (see figure 3.4). We
claim that these sets are essentially disjoint. Indeed, if z ∈ Ωi(t) ∩ Ωj(t) with i 6= j, then
two transport rays, [x′i, xi] and [x′j , xj ], cross at z with x′i ∈ Ω ∈ Ωi and x′j ∈ Ωj . Since
Kantorovich’s potential is not differentiable at points where transport rays meet, then we
must have that the five points x′i, x′j , z, xi, xj are collinear. But this implies that z ∈ lxi,xj ,
where lxi,xj is one of the lines connecting two atoms xi and xj . But we only have finitely
many of these lines, then the set of such lines is L d-negligible. Hence, L d(Ωi(t)∩Ωj(t)) = 0
for i 6= j for d > 1. On the other hand, we also have

µt(A) =
N∑
i=1

µt(A ∩ Ωi(t)) =
N∑
i=1

µ

(
A ∩ Ωi(t)− txi

1− t

)
= µ

(
N⋃
i=1

A ∩ Ωi(t)− txi
1− t

)
,

since Ωi(t) are essentially disjoint and γ(π−1
t (A ∩ Ωi(t))) = γ

(
π−1
x

(
A∩Ωi(t)−txi

1−t

))
. Also, for

every i ∈ {1, 2, . . . , N} we have

L d
(
A ∩ Ωi(t)− txi

1− t

)
= 1

(1− t)dL d(A ∩ Ωi(t)),
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then

L d

(
N⋃
i=1

A ∩ Ωi(t)− txi
1− t

)
≤ 1

(1− t)d
N∑
i=1

L d(A ∩ Ωi(t)) = 1
(1− t)dL d(A).

Hence, if we suppose that L d(A) < (1 − t)dδ(ε) we get L d
(⋃N

i=1
A∩Ωi(t)−txi

1−t

)
< δ(ε), and

then µt(A) < ε.
We now show the general case. Indeed, since Ω is compact, then we can apply Lemma

3.3.2 to get a sequence of atomic measures {νn}n≥1, such that νn ⇀ ν; let γn ∈ Π(µ, νn) be
the corresponding optimal transport plan. By Proposition 3.3.1, we also have that γn ⇀ γ ∈
Π(µ, ν) and µnt ⇀ µt, with µt = (πt)#γ. Let us now prove that the interpolation measures
µt are absolutely continuous for all t ∈ (0, t). As we did before, take a Borel set A such that
L d(A) < (1− t)dδ(ε). Since L d is a regular measure, then there is an open set B such that
A ⊂ B and L d(B) < (1− t)dδ(ε), which implies µnt (B) < ε. Thus, by weak convergence and
Theorem A.0.4 (lower semi-continuity on open sets), we have

µt(A) ≤ µt(B) ≤ lim inf
n→∞

µnt (B) ≤ ε.

Therefore, µt � L d and then σ � L d as well.

Note: Form now on, we will understand ‖µ‖Lp as ‖f‖Lp(Ω), when µ = f ·L d.

Theorem 3.3.6. Let us suppose that µ = f ·L d, with f ∈ Lp(Ω), where Ω is compact and
convex. Then,

(a) if p < d̄ := d
d−1 , the unique transport density σ associated with a transport plan of µ onto

ν belongs to Lp(Ω);

(b) if p ≥ d̄, then σ ∈ Lp(Ω) for all q < d̄.

Proof. We prove first (a): applying the same ideas from Theorem 3.3.5, we just need to
prove that each measure µt with t ∈ [0, 1) belongs to Lp, and after that, we perform some
estimations on their Lp norm. Let µ, ν ∈ P(Ω) be probability measures, both belonging to
Lp(Ω), and σ the unique transport density associated with the transport of µ onto ν. By
(3.3.1) and Minkowski’s inequality we have

‖σ‖Lp =
(∫

Ω
f(x)pdx

) 1
p

≤
[∫

Ω

(
c1

∫ 1

0
ft(x)pdt

)p
dx

] 1
p

≤ C
∫ 1

0

[∫
Ω
ft(x)pdx

] 1
p

dt

= C

∫ 1

0
‖µt‖Lpdt,

with µt = ft ·L d. As in the previous theorem, we consider first the discrete case and then
we use an approximation argument. Let us recall that each measure is absolutely continuous
and its density must coincides on each set Ωi(t) with the density of a homothetic image of µ
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on Ωi, with homothetic ratio (1− t), that is, ft = (1− t)−df . Then, we have∫
Ω
ft(x)pdx =

N∑
i=1

∫
Ωi(t)

ft(x)pdx =
N∑
i=1

∫
Ωi

(
f(x)

(1− t)d
)p

(1− t)ddx

= (1− t)d(1−p)
N∑
i=1

∫
Ωi
f(x)pdx

= (1− t)d(1−p)
∫

Ω
f(x)pdx. (3.3.2)

Thus, we obtain ‖µt‖Lp = (1− t)−
d
p′ , with p′ = p

p−1 .
We now prove that this inequality is also true for the general case. If ν is not atomic,

we use the same approximation of Theorem 3.3.5, which means that we may approximate ν
with atomic measures {νn}n≥1 to obtain that γn ⇀ γ and µnt ⇀ µt, where γn ∈ Π(µ, νn) and
γ ∈ Π(µ, ν) are the associated optimal plans. Thus, by lower semi-continuity with respect to
the weak convergence and equation (3.3.2) it follows that

‖µt‖Lp =
∫

Ω
ft(x)pdx ≤ lim inf

n→∞

∫
Ω
fnt (x)pdx = lim inf

n→∞
‖µnt ‖Lp ≤ (1− t)

−d
p′ ‖µ‖Lp .

Hence,

‖σ‖Lp ≤ C
∫ 1

0
‖µt‖Lpdt ≤ C‖µ‖Lp

∫ 1

0
(1− t)−

d
p′ dt.

Since the last integral is finite whenever p′ = p
p−1 > d⇐⇒ p(d− 1) > −d⇐⇒ p(d− 1) < d,

which is equivalent to p < d
d−1 = d̄, then desired result follows.

To prove (b): we assume p ≥ d̄ = d
d−1 . Since the densities µ and µt belong to Lp, then

µt, µ ∈ Lq for all q < p. Thus, we can repeat estimations from (a) to get

‖σ‖Lq ≤ C
∫ 1

0
‖µt‖Lqdt ≤ C‖µ‖Lq

∫ 1

0
(1− t)−

d
q′ dt,

with q′ = q
q−1 and q < p. Therefore, σ ∈ Lq for all q < p.

The following example shows the sharpness of the bound on p that we set in Theorem
3.3.6.
Example 3.3.7. We give an example where, even if µ ∈ L∞, the transport density σ does
not belong to Ld̄.

Consider µ = f ·L d with f = χA (the characteristic function on A) and the annulus

A = B(0, R) \B
(

0, R2

)
,

with R chosen such that
∫
f(x)dx = 1, and take ν = δ0 (see figure 3.5). Since c(x, y) = |x−y|,

then R
2 γ ≤ cγ ≤ Rγ, which implies that the integrability of σ =

∫ 1

0
(πt)#(cγ)dt is the same

as that for
∫ 1

0
(πt)#(γ)dt =

∫ 1

0
µtdt.

On the other hand, we saw that µt = ft ·L d and its density must coincide on each set
Ai(t) with the density of a homothetic image of µ on A, with ratio (1 − t), then we have
ft = (1− t)−dχ(1−t)A (since we need

∫
ft(x)dx = 1). Then,∫ 1

0
ft(x)dt =

∫ 1

0

1
(1− t)dχ(1−t)A(x)dt =

∫ 2
R
|x|

1
R
|x|

1
sd
ds = 2

R
|x|1−d − 1

R
|x|1−d = 1

R
|x|1−d
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Figure 3.5: µ and ν in Example 3.3.7.

for |x| ≤ R
2 , thanks to the change of variable s = 1− t. Thus, the function |x|1−d belongs to

Lp in a neighborhood of zero if (1−d)p+d > 0⇔ (1−d)p+ (d−1) > −1⇔ p−dp+d−1 >
−1⇔ dp− d− p+ 1 = (d− 1)(p− 1) < 1, which means that this function belong to Lp only
when p < d̄.
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Appendix A

Preliminary results

We established some definitions and results (meanly from measure theory) that were used
throughout this work.

Theorem A.0.1 (Banach-Alaoglu). Let X a Banach space which is separable and let {φn}n≥1
a bounded sequence in X∗(the dual space of X), then there is a subsequence {φnk}k≥1 such
that φnk converges weakly to some φ ∈ X.

We denote by M (X) the set of finite measures on X, to such measures, we associate its
total variation measure |λ| ∈M+(X) through:

|λ|(A) := sup
{ ∞∑
i=1
|λ(Ai)| : A = ∪∞i=1Ai, Ai ∩Aj = ∅ , i 6= j

}

Theorem A.0.2 (Riesz representation Theorem). Suppose that X is a separable and locally
compact metric space, and consider C0(X). Then for all ψ ∈ C0(X)∗ there exist a unique λ ∈
M (X) such that 〈ψ, φ〉 =

∫
X
φ dλ for every φ ∈ C0(X). Moreover, C0(X)∗ is isometrically

isomorphic to M (X) endow with the norm ‖λ‖ = |λ|(X).

Theorem A.0.3 (Weierstrass). If f : X → R ∪ {+∞} is lower semi-continuous and X is
compact, then there exists x̄ ∈ X such that f(x̄) = inf{f(x) : x ∈ X}.

Theorem A.0.4. Let {µn}n≥1 be a sequence of Borel probability measures and µ ∈ P(Ω).
Then the following conditions are equivalent:

• µn ⇀ µ.

• For every close set F , one has lim supn→∞ µn(F ) ≤ µ(F ).

• For every open set U , one has µ(U) ≤ lim infn→∞ µn(U).

Proposition A.0.5. Let X be a compact metric space, and dH the Hausdorff distance among
compact subsets of X. If dH(An, A) → 0, and {µn}n≥1 is a sequence of positive measures
such that spt(µn) ⊂ An and µn ⇀ µ, then spt(µ) ⊂ A.

Definition A.0.6. A sequence {µn}n≥1 of probability measures is said to be tight if for every
ε > 0, there is a compact subset K ⊂ X so that µn(X \K) < ε for every n ∈ N
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The following theorem gives us a characterization of sequential compactness in M (X)
with respect to the narrow topology.
Theorem A.0.7 (Prokhorov). Let {µn}n≥1 be a tight sequence of probability measures over
a Polish space (a metrizable, complete and separable space) X. Then, there exist µ ∈P(X)
and a subsequence {µnk}k≥1 such that µnk ⇀ µ (converge in duality with Cb(X)). Conversely,
every sequence which satisfies µn ⇀ µ is necessarily tight.

We now introduce the notion of disintegration of measures, which is widely use in the
context of optimal transportation theory [6].
Definition A.0.8. Let X be a measure space endow with a Borel measure µ and a map
f : X → Y , with Y a topological space. We say that a family (µy)y∈Y is a disintegration
of µ according to f , if every µy is concentrated on f−1({y}), and for every test function
φ ∈ C(X), the map y 7→X φdµy is Borel measurable and∫

X
φdµ =

∫
Y
dν(y)

∫
X
φdµy,

where ν = f#µ. The disintegration of µ is usually denoted by µ := µy ⊗ ν.
Theorem A.0.9 (Disintegration). Let X,Y be two Polish spaces, and let f : X → Y be a
Borel map, and µM (Y ) a positive finite measure; let us consider ν = f#µ. Then, there exists
a disintegration (µy)y∈Y of µ according to f .

Now, we give a quick reminder about vector measures.
Definition A.0.10. A finite vector measure λ : B(Ω) → Rd is map associating to any
Borel subset A ⊂ Ω a vector λ(A) ∈ Rd such that for every disjoint countable union A =
∪∞i=1Ai, with Ai ∩Aj = ∅ for i 6= j, we have that

∞∑
i=1
|λ(Ai)| < +∞, and λ(A) =

∞∑
i=1

λ(Ai),

where the second sum means a sum over each coordinate in the vector measure. The integral
of a Borel function ξ : Ω → Rd with respect to λ is well defined if |ξ| ∈ L1(Ω, |λ|), and is

denoted
∫

Ω
ξ · dλ and can be compute as

d∑
i=1

∫
Ω
ξidλi.

Proposition A.0.11 (Polar decomposition). for every λ ∈ M d(Ω) there exists a Borel
function u : Ω→ Rd such that λ = u|λ| and |u| = 1 |λ|-a.e. In particular, we have

∫
Ω
ξ ·dλ =∫

Ω
(ξ · u)d|λ|. This is also know as the polar decomposition of λ.

Theorem A.0.12 (Divergence Theorem). Let Ω ⊂ Rd be a compact domain with piece-wise
smooth boundary. If F is a C1 vector field defined on a neighborhood of Ω, then∫

Ω
∇ · Fdx =

∫
∂Ω
F · n̂dH d−1(x).

Now, we state a well-known theorem in convex analysis due to Rockafellar.
Theorem A.0.13 (Rockafellar). Let Γ ⊆ Rn × Rn. Then, the following statement is equiv-
alent
• There exists a a proper lower semi-continuous and convex function ϕ : Rn → R such
that Γ is contained in the graph of ∂ϕ, namely if (x, y) ∈ Γ then y ∈ ∂ϕ(x).

• Γ is cyclically-monotone.
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