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Introduction

Given a field, there is a correspondence between geometric objects in K™ and algebraic
objects in R = Klxy,...,x,|. Specifically, given an ideal I in R there is a corresponding
variety Vi = {z € K" | f(x) =0, f € I}. On the other hand, given a variety V C K"
there is a corresponding ideal Iy = {f € R | f(z) = 0,2 € V}. The relation between
these is given by

\4 V, and ICly,.
If the field is algebraically closed, the Hilbert Nullstellensatz Theorem establishes that

V(I)=V(/I).

A variety can be abstracted from sets in K™ to subsets in Spec(R). In this context,
V(I) = {p € Spec(R) | I C p}. The Zariski topology in Spec(R) is defined by its closed
sets; {V(I)};cr. If I is principal, generated by f € R, we say that the variety V(I) is a
hypersurface. We set

Iy =

Uy = Spec (R) \ V(f) = Spec (Ry),

which is an open set in this topology. The collection of open sets {Us} rep form a basis
for the Zariski topology. In fact, using that V(f + g) = V(f) NV (g), we deduce that

Spec(R) \V(I) = | JU;.

fel

Using the above, we can study the hypersurface V(f) by investigating the properties
of Ry. This presents a challenge because, in general, R; is not a finitely generated
R—module. In this work, we study the action of higher order differential operators on Ry
as a mean to put additional structure to Ry.

In characteristic zero the differential operators on the polynomial ring are described

by the Weyl Algebra
R <61, cee ,8n> g HOIHK(R, R),
0
where 0; = o In contrast, in prime characteristic this is not enough for describe it. If
L
R = Fp[z1,...,z,), then 0?(a¥) = p! = 0 in F,. We can define the following differential
operators for o € N”

0, otherwise,

iaa@ﬁ> _ {(g) 277y < B Vi

where (8) = (21)... (), and 2° = 2{* ... 2. Thus, we have that

aEN">.

1
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iv INTRODUCTION

In characteristic zero, we have that Ry is a finitely generated Dpx-module. Further-
more, Ry is cyclic by the existence of Bernstein-Sato polynomial [I, 2, B]. This is a
nonzero polynomial bs(s) € Q[s] such that there is d(s) € Dpgk[s] with

S)fT = bs(t) ', for every t € Z.

The main goal of this thesis is to describe the work of Alvarez Montaner, Blickle, and
Lyubeznik [4]. The following Theorem is a stronger statement in prime characteristic,
which does not use the Bernstein-Sato polynomial.

THEOREM 0.1 (Theorem [3.13 (see also [])). Let R be a regular finitely generated

commutative algebra over an F—finite regular local ring A of prime characteristic p > 0.
Let f € R be a nonzero element. Then, Ry = Dg - %

This approach uses characterization of differential operators in prime characteristic,
Frobenius decent, Morita equivalence, and p—th roots of ideals. One of the consequences
of the , we obtain the corresponding result for direct summands of rings [5].

In [chapter 1] we provide background on differential operators in general. We approach
the topic in a categorical view. At the end of the first chapter we give some properties of
differential operators over rings of prime characteristic.

On the our goal is to develop the Morita Equivalence and give the back-
ground for it. In this chapter we mainly use the book [6] as reference. From this, there
are two examples that we are interested in: the Morita Equivalence between a ring and
the n X n—matrix with entries on the ring; and the Frobenius Descent. The former is
used to define the latter along with the Corollary and Proposition [2.41]

Finally, in we prove the main theorem in this work. In order to obtein
this result, we explore p—th roots of ideals. We relate this idelas to the action of Dpj4 on
Ry. At the end of the chapter, we use this theorem to obtain the corresponding result for
direct summands.



CHAPTER 1

Differential Operators

In this chapter we go through basic definitions and properties of differential operators.
Our focus is to understand them as functors and when they have a useful and simple
presentation. Another focus is in the case of prime characteristic and how we can express
them in a more computable way. In this chapter we consider a ring to be commutative
with unit, unless stated otherwise.

1. Definition and first properties

In general, in this section we will write A C R to say that R is an A—algebra. If we
refer to a module without specifying if it’s either left or right, then the result is equally
valid for both right and left and the actual side of the action does not play part in the
proof.

In this section we define differential operators

We begin this section by recalling some useful isomorphism for

LEMMA 1.1. Let A and R be any ring. If M is an A—module, Q) is an R—module,
and N is both an A— module and an R—module. Then the homomorphism

n: Homg (N ®4 M, Q) — Homu (M, Hompg (N, Q))

defined by

[n(NH(m)] (n) = f(n @ m),
s an isomorphism whose inverse \ is given by

[A(9)] (n @m) = [g(m)] (n).

ProoOF. We proceed to show that the compositions nA and An are the respective
identities. Let f € Hompg (N ®4 M, Q) and g € Hom,4 (Hompg (N, Q)). Then

[An()](n @ m) = [Aln(f)l](n®@m) = [[n(f)](m)|(n) = f(n @m),
and

[nA(@)I(m)](n) = [n[A(g)l)(m)](n) = [A(g)l(n @ m) = [g(m)](n),

which shows that the statement is true. O

COROLLARY 1.2. Let R be an A—algebra. Then, for any R—modules M and N, there
are 1somorphisms

Hompg (R ®4 R, M) = Homy (R, Hompg (R, M)) = Homy (R, M) .
PROOF. The first isomorphism is given by Lemma [1.1] by the map

[n(@)](m)](r) = ¢(r @ m)

and the second isomorphism is given by 7, (m) — [n,(m)](1) = ¢(1 @ m). O
1



2 1. DIFFERENTIAL OPERATORS

Note that Homp (R ®4 M, N) is canonically an R ® 4 R—module by the action
(@®@b-p)(r®m) = ¢lla®b)(r@m)] = plar® bs).
On the other hand, there are two possible actions of R on Homy (M, N):
i) (a-0)(m)=ad(m).
it) (b-3d)(m) = §(bm).
By default we are considering the first action, but we can encode both of them as an
R ®4 R action by
(a®b)-0(m)=ad(bm).

If we consider the homomorphism R — R® 4 R defined by r — r ® 1, then the restriction
of R scalars coincides with the R ® 4 R action.

Now, we have that the isomorphism in Corollary is actually an isomorphism of
R ®4 R—modules. Let 6 € Homy (M, N) and ¢ € Hompg (R ®4 M, N) be such that
d(m) = (1 ® m). Then, we have that
[a®b-](m) = [a@b-¢](1em) = p(a@bm) = [[n(¢)](bm)l(a) = alln(@)](bm)](1) = ad(bm)
since [1(¢)](bm) is an R—linear homomorphism.

DEFINITION 1.3. Given a pair of rings A C R, and R—module M. We say that
0 € Homu (R, M) is an A—linear derivation if

d(rs) =rd(s) + sd(r), for all r,s € R.

We denote the set of all A—linear derivations from R to M by Dery (M).

DEFINITION 1.4. From now on, we write Prjq = R ®4 R. Consider p : Pra — R

defined by p(r®@s) = rs. If Agja = ker p, then the module of A—linear Kdhler differentials
on R is

ARja
Qpa = —24.
Afa

Furthermore, there is a natural map d : R — Qpgja, called the universal differential,
defined by

d(r) = (1®T—T®1)+A%|A € Qp|a.
PROPOSITION 1.5. Let Agj4 as before. The set
{ler—r®l|reR}

generates Agja as an R—module.

PrROOF. Let r € R. Then,

pl@r—re@l)=pler)—purel)=1r—r1=0.

Thus, we have that (1 ®7r —r®1|r € R) C Agja.

Now, let w = f: 1; ® 8; € Apgja. Recall that 0 = p(w) = i r;s;. Thus,

i=1 i=1

w=w+0®1 = Zn:m@sﬁ— (im&) ®1= zn:(nébsi—nsi@l) = Zn:ri(lé?si—si@l),
=1

i=1 i=1 i=1
and so, w € (1®@r —r® 1|r € R). O



1. DEFINITION AND FIRST PROPERTIES 3

DEFINITION 1.6. Define the adjoin homomorphism of A—modules by
ad : R —— Ppja
r=1r—rel.

We have that the homomorphism ¢ : Prja — Apgja of R—modules given by ¢(r ® s) = rad(s)
is a splitting of the inclusion Ap4 < Pgj4. Furthermore, we have that

ad(rs) =1®@rs—rs®1
=1Qrs—r®s+r®Xs—rs®1
=(ler—ra)(1es)+(lews—s®1)(rel)
=ad(r)(1®s)+ad(s)(r®1)
ProroOSITION 1.7. For a pair of rings A C R and a R—module M, there is an iso-
morphism of R—modules
Dery (M) = Hompg (QR|A, M)

which s functorial on M.

PROOF. Let § € Dery (M) C Homyu (R, M). As seen in Corollary [1.2] there is a
unique map ¢ € Homy (Prja, M) such that ¢(r @ s) = ré(s). It follows that

vad(r) =p(l®@r—rel)=15(r) —rdé(l) =d(r),
and that
plad(r)ad(s)) =e((1@r—re1)(1®s—s®1))
=p(lXrs—s@r—rs+rsxl)
= 10(rs) — so(r) — rd(s) +rso(1)
=0(rs) — so(r) —rd(s)
=0

since 0 is a derivation. Therefore, we conclude that there is a unique map ¢ : Agja/ Aﬁﬂ LM
that satisfies

(bd(r):gb(l@r—?"@l—l—AQRM):g0(1®7“—r®1):5(7").
L]

DEFINITION 1.8. Let M be any R—module. For any r € R, we use p, to denote the
multiplication by 7 on the module, i.e., p.(m) = rm.

DEFINITION 1.9. Let R be a an A—algebra. We define the A—linear differential
operators on R of order ar most ¢, denoted by Dﬁﬂ 4> inductively by

o D, = Homp (R, R).
o DE‘A = {6 € Homy (R, R) ) 9, 1] € Dgi, for all r € R},

where [0, p,] = 0p, — 6.
The collection of all the A—linear differential operators on R is

Dpia = Diya-

1€N



4 1. DIFFERENTIAL OPERATORS

PROPOSITION 1.10. Dg4 is both an R—module and a Pra—module with the actions
defined by
re0 =0, and XS0 = 0.

PROOF. First, we note that for any § € D%‘A there is t € R such that § = p;. Thus,

re 0= 1,0 = piepty = e € Dy 4,
and
r @50 = pljts = feflefts = frts € Dy 4.
Now, suppose there is some n € N such that for all § € D}%A, and r € R, we have that
r-6€Dp,. Letd € D%TAI and r, s € R. Then, we have that

[(r - 0), ps] = (pr0)prs — pus (1)
= ﬂr(;ﬂs - MT/’LS(;
= 1[0, pis) € D%‘A
since [0, f15] € D4
Similarly, suppose there is some n € N such that for all § € Digias and r ® s € Ppja,

we have that r ® s -6 € Dis- Let )€ DZTAl, r® s € Pgria, and t € R. Then,

[(r®s) -0l ] = [(r @ s) - ]pe — w[(r ® s) - 0]
= [t pte — pelperOpas)
= [rOfbepls — HrteOfls
= fur[O gt — pe6) st
= (r®as)- [0, ] € Diys
since [0, 1] € Dy 4.
We showed that every D}ﬂ 4 1s an R—module and Pgrj4—module, and so Dpy4 is too. [

PROPOSITION 1.11. If v € D, and B € Dy, then a8 € D"

Proor. We proceed by induction on & = m +n. Let r € R. The case k = 0 and

k = 1 follow from the action r ® s - a = props € D%Tj*o, because fi, fts € D 4.

Now, suppose the conclusion is valid for some k& € N. Let m,n € N such that
m+n==~k+1, and o € Dy, andﬂGD?ﬂA. Then,

[aB, 1] = (aB)pr — pr ()
= abp, — apB + apf — praf
= a(Bpr — peB) + (vt — pir )3
— alf. ] + [ )8 € Dy,
because |3, ] € Dg‘;("fl) and [a, i) 3 € Dgrjl)m. O
As a consequence of the previous proposition
ProproOSITION 1.12. If R is an A—algebra, then
D}ﬂA = R® Dery (R).
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PROOF. For any 6 € D}Q'A, we take ' = 0 — sy € D}%‘A. Note that
(1) = 0(1) = ps(ry(1) = 0(1) = 6(1) =0
It follows, for any r € R, that
[0, ] (1) = &"(r) — o' (1) = &'(r)

Since [¢', .| € D%‘A, we conclude that [0, u,] = pe(r). Now, for any r,s € R, we have
that

8 (rs) = 0", (s)
= [0"pr — p1r0" + p1r0'](5)
= [norry + ped')(s)
=0 (r)s +rd'(s),
and so, 0’ € Dery (R). Therefore, D}Q'A = Hompg (R, R) ® Dery (R) = R® Dery (R). O

DEeFINITION 1.13. Let A C R be a pair of rings, and both M and N be R—module.
We define the A—linear differential operators from M to N, inductively by

e DY, (M,N) = Homg (M, N).

o Diyy(M,N) = {6 € Hom, (M, N) ’ 6, 1,] = ad(r)d € Dig (M, N), for all 7 € R}.
and so

Dpja(M,N) = | | Diya(M, N).
ieN
For simplicity, we write D, (N) = D (R, N), and Dgja(N) = Dgja(R, N). Note that
we also can write D%M(M) = {6 € Homy (R, M) |ad(r)é =0, for all r € R}.
D%M(M) = {6 € Homy (R, M) |ad(r)é =0, for all r € R}

In general Dpja(M, N) is no longer a noncommutative ring, unless M = N. Never-
theless, the composition of differential operators is still defined.

PROPOSITION 1.14. Let M, N, and L be R—modules. If § € D%‘A(M, N) and
0 € Dfy4(N, L), then 95 € D (M, L).
PRrROOF. The proof is analogous to the proof of Proposition [1.11] 0

One of our goals in this chapter is to understand both Dgj4(M, N) as a module and
as a functor. We need to show that Dpg 4 satisfies functorial properties that are natural
on both M and N.

PrOPOSITION 1.15. Let ¢ : M — M’ and ¢ : N — N’ be homomorphisms between
R—modules. Let § € DiR‘A(M, N), and 0 = pd¢, as shown in the commutative diagram

M —2 5 N

LT

M—23 N
Then § € D(M',N").



6 1. DIFFERENTIAL OPERATORS
PROOF. Recall that ¢ € Homg (M, M') = DY, ,(M, M), and
¢ € Hompg (N, N') = Dy, ,(N, N'). Now, using Proposition we have that
9 = p3p € DM, N').
0

We showed there are functorial properties between modules over the same ring. Fur-
thermore, if we fixed the modules, then there are functorial properties for different rings.

PROPOSITION 1.16. Let A % S L R be ring homomorphisms. If M and N are R
modules, then for every i € N

PROOF. First note that

Hompg (M, N) C Homg (M, N) C Homu (M, N).
Thus, we have that
D%|S(M, N)=Homg (M,N) = D?{|A<M7 N),
and that
D% 4(M,N) = Hompg (M, N) € Homg (M, N) = Dg ,(M,N).

We proceed by induction. Suppose that the result is true for some n € N. Let

0 € D%T;(M , ). Using the definition, we have that
d € Homg (M, N) C Homy (M, N),

such that ad(r)d € Dy g(M,N) C Dy ,(M, N), by induction hypothesis. It follows that
§ € Dyl (M, N).

Now, let 6 € Derl(M, N). Since § € Homy (M, N), we need to check that

ad(s)d € Dy ,(M, N), for every s € S. Using that
ad(s)d(m) = 6(s-m) —s-0(m) = 6(f(s)m) — f(s)d(m) = ad(f(s))d(m),
we have by induction hypothesis
ad(5)6 = ad(())5 € Dyya(M, N) € D4 (M, N).
Therefore 6 € Dgltll(M ,N), and so we have that

Diglg (M, N) C DiAi(M,N) C Dghi (M, N).

2. Principal parts
In this section we develop tools to compute differential operators as

LEMMA 1.17. Gwen a ring S, an ideal J C S and an S—module M, we have that

M
M= —.
S/J ®s M
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PRroOF. Consider the exact sequence
J—=S—=S/J—=0.
Using that — ®g M is a right exact functor, we have the following exact sequence
JRsM — S®sM — S/J®s M — 0.
Recall that for any s € S and m € M, we have that
s@m=1® sm.

It follows that S ®¢ M = M, and that J ® M = JM. Thus, by universal property of the
cokernel, we conclude that
M
S/J®s M =2 —.
/I ®s JM
O
DEFINITION 1.18. Take Agj4 as in definition[I.4, We define the module of i—principal
parts of R over A as
Pria

i+1 -
A

(-
Pria =

Now, given an R—module M, set
Pria(M)=R®a M, and P}é‘A(M) = Ppja(M) ®Pgia PIi%|A'
Using the lemma [1.17, we have that
R®a M
A%}L‘(R @4 M)
Define the map d : M — Pgia(M) by dy(m) =1 @4 m. Let py : Pria(M) — Py (M)

the natural projection. Then, we take dj; = pj;dar. Note that both Prj4(M) and Py , (M)
are P 4—modules.

I

Ppy4(M)

PRrROPOSITION 1.19. Let R be an A—algebra, and let M and N be R—modules. There
s an isomorphism

Homp (Pha(M), N) — Dig o(M,N)
¢ = ody.

PROOF. Recall, from Corollary [1.2] that Homyu (M, N) = Homp (Pga(M),N) is a
Pgja—module. Note that 6 € D%‘A(M, N) if and only if, for any r € R,

ad(r)d € Dgi‘(M, N).
By continuing this process, we have that § € Dy ,(M, N) C Homy (R, M) if and only if
ad(rg) - --ad(r;)0 = 0, for any ro,...,r; € R.

Using Corollary , we can take ¢ € Homp (Pra(M),N) such that §(m) = (1 ® m).
Thus,

0 = [ad(ro) - -~ ad(r)8] (m) = [ad(ro) --- ad(ry)p] (1 ® m) = p(ad(ro) - -~ ad(r:)(1 © m)).
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It follows that @(AE&(H ®a M)) = 0, and so, there exists ¢ : P§|A(M) — N such that
the following diagram commutes

M B P a(ar) Py (M)
N 5 % ) -
S
Since all the correspondences are unique, and that p,;dy; = di;, we showed the desired
isomorphism. 0
COROLLARY 1.20. With the same assumptions as before,

Dpgia(M, N) = lim Homp, (Pg4(M), N)

€N

ProprosiTiON 1.21. We have that
Diya(M) = M & Dery (M) .
ProOF. Consider the exact sequence

Pria/A%i4 _ Pra
0 — Aga/A% . — Ppia/A%  — A~ ZRA )
R|A/ R|A R|A/ R|A ARlA/A%‘A AR\A

We define
@1 Pria = Pria/A%a = Arja/ AR = Qrja
r@s+ Apa = —s(1@r—rol)+ A,
Note that

p(l@r—r@1+ AL ) =pl@r+A%,) —or®1+AL,)
= —r(1®1-101) - (-1(1®r—r®1))+ A},
- 1®T_T®1+A%%|A7
and so ¢ is a split map.
Recall that ;1 : Pga — R is surjective. Thus,
Ppia = Pria/Aga = R.
Now, we have that
Dpya(M) = Hompg, (P!, M)
=~ Hompg (R ® Qpja, M)
= Homp (R, M) @ Hompg (Qga, M)
= M @ Dergja (M).
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3. Prime characteristic in differential operators

We
We recall properties of the Frobenius map and look at the effect it has on differential
operators

PROPOSITION 1.22. If R is an A—algebra, then the functor D%‘A(—) = D%‘A(R, —) is
a left exact functor.

PROOF. As we showed in Proposition 1.19, we have that D, (=) = Di4(R, )

Homp (P}ﬂ s —), which is a left exact functor.

I

PROPOSITION 1.23. Let R be an A—algebra, and W C R a multiplicative subset. Then

1pi o~ pi ~ Di
W™ Pria = Py—igia = Pyoigwna)-1ar

PrROOF. First, we have

1 i 1 (R®aR
WPy, =Wol)™! ( N )
R|A
Using that
Igw=wRl+(1w-w®l)cw®l+ A,
and that
i W_1R®A W_IR ~ _ _ R®AR
PW*IR‘A: Ai+1 :(W®]‘) 1(1®W) ! Ai—l—l
W-1R|A R|A
we conclude that in fact I/V”P}%| g4 = PéV,l RlA- For the second equality, note that
ar r ar wr wr ar r ar
Tl g2 _T1lg ™2 1272

w w1 wWo ww wWwa wwn wWwa w1 w Wa ’
It follows that, there is an A—isomorphism
WIR@AW'R— W'R®uwna-14a W'R
r r r r
o2 el
w1 W2 w1 w9

O

THEOREM 1.24. Let R be an A—algebra. If W C R is a multiplicative closed subset,
and M 1is an R—module. Then

W Dgia(R, M) = Dy ga(W ™ R,W™IM) 2 Dy 1 gy wnay— 4 (W R, W M)
PROOF. From the Proposition [1.23] we have that
Dw—lR‘A(W_lR, W_lM) = HOHIW—lR (PéVflRIA’ W_1M>

& HomW—1R (Plz/‘V—lR|(WﬂA)71A’ WﬁlM)
=~ HomWﬂR (W_lpll_'-ilA, W_lM) .
From Proposition, we have that

i
Homyy -1 <PW*1R\(WDA)’1A’

W) = D, (R, M).

“1R|(WNA)~1A
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Note that P}'ﬂ 4 1s finitely generated and, using that R is Noetherian, is also finitely
presented. It follows from Lemma that

Homy 15 (W™ Pryy, WIM) = W Homp (Phya, M) = W' Dgja(R, M).

In the following we follow the results of [7], with some differences in the proofs.

DEFINITION 1.25. Let A be a ring of characteristic p > 0. Then the map
FA A— A
a > af

is an homomorphism of rings, and we call it the Frobenius map. Now, for any e > 0 define
°A as A—algebra given by the Frobenius map F§ : A — “A. Note that the Frobenius map
Fjy:°A — ¢t A is a homomorphism of A—algebras because, for any A € A and a € A,

Fa(h-a) = Fa(Xa) = N"a’ = X-a® = \- Fu(a).

DEFINITION 1.26. Let A be a ring of characteristic p, and let R be an A—algebra. If
Fy: A— Ais the Frobenius map, we consider A to be an A—algebra with the structure
provided by this map. We define

e+1

R®IA) — 1A®AR

where A acts as follows a-1®7r = Fy(a) ®r = 1®ar. We can make R4 an A—algebra
by a +— a ® 1. With this structure, the map

Fria: RPY 5 R
a®@r— ar?
is an A—algebra homomorphism. Thus, we have the commutative diagram of A—algebras

GRia FRria

R—>R(P‘A
A—>A

where Gpja(r) =1 ®r, for r € R. Recursively, we define
RO = (RN ~ eq @, R =A@, R
and write the iteration of the relative Frobenius by F e R 5 R

LEMMA 1.27. Let A be a ring of characteristic p > 0, and let R be an A—algebra. If
M and N are R—modules, then

DII)?C\Al(M N) C Hompea) (M, N).

PRrROOF. First, set S, = R¥IY . Since S, is an A—algebra via the map A — A ® 1, k we
have that .S, is generated as an A—module by {1 ® r | » € R}. As seen in Proposition ,
we have that Ag |4 is generated as an S,—module by {1® s —s® 1| s € S}. Combining
both of these observations, we have that

{1®(1®r)—(l®r)®1|rec R}
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generates Ag, |4 as an A—module. If G,, = F§|A R4 F§|A- Then,
Gule(lern-1ernel)=10r" - gl=>1rm" —r @ 1)”
Thus, G (Ag,j4) € A’I’;A Now, let 6 € D%‘;(M N). Using Theorem , we have that
Homyg, (Ps,a(M),N) = Homy (M, N) = Homp (Pra(M),N),

and so there are 1 € Homg, (Ps,ja(M),N) and ¢ € Homp (Pga(M),N) such that
P(l®m) =14
Y(l®@m)=39dm) =¢p(l®@m).

Since M and N are S,—modules by restriction of scalars, we have that

Y(s@m)=s-P(1@m) = Fyu(s)o(m) = Frs(s)p(l ®@m) = o(Fra(s) ®m)
It follows that for any s, s, € S, and m € M

(Sa @ sp)0(m) = P((50 ® $p)(1 @ m))
= (S0 ® Frya(sy)m)
(Fria(sa) @ Fpja(sp)m)
((FRja(54) ® Fpja(se))(1®m))
(Gr(8q ® sp)(1 @ m)).

'd
'a
'

As seen in the Proposition [1.19, we have that @(AI;;'APR‘AM) = 0. and so

As,140(m) = 9(Gn(As,a)(1 @ m)) C (AL (1@ m)) = 0.
Therefore, we conclude that
(s®1—-1®s)d =0,
i.e., s6(m) = §(sm), for any s € S,,. O

PROPOSITION 1.28. Suppose that R is generated by ri,...,r; as an RPY-algebra.
Then, for every e € N, R is finitely generated by the same elements as RPN -algebra.

PrROOF. We proceed by induction. Suppose that for some e € N, R is finitely gener-
ated by the same elements as R 4)-algebra. Recall that R?14) =~ ¢4 @, R. Using the
hypothesis for a given r € R there are a, € A r, € R such that

« (8% (03 «
r= E (g @ 1) Tt = g ATt et
(e} «

By inductive hypothesis, there are a,g € A and r,3 € R such that

Ta =Y (Gap @Tap) 17" - Tz = Aapr? P Z’B‘Z.
5

BeB BEB
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It follows that

r= E agrhrt )t

acA
p
= Z Ao, (Z aagriﬂrfl = -Tf‘) ity
acA BeB
e+1
_ Z Z aaaZBT25 qu-ﬁ-pﬁl . ‘T,?z-i-pﬂz‘
a€A BeB
Therefore, R is generated as an R®*14) algebra by 71,...,7y. U

LEMMA 1.29. Suppose that R is generated by { elements as an RPY-algebra. Then

Hom gpejay (M, N) C Dg"rl, for each e € N.

PRrROOF. Fix e € N. Let S, = R?14)_ Consider ARps,. Using the identity
ad(rs) =1@rs—rs1=(1r—r1)(1®s)+(1l®s—s®1)(rel),
we have that

ad (Z STt .rge> = sead(r{*...r(?) € (ad(r1), ... ad(r)).

«

Since each ad(r;) € Aps,, we conclude that
Apgjs, = (ad(r1),...,ad(re)).
as an ideal of Pgig,. Note that
(1@r—rel) =12 - @l=12" -(1ern)lel=1ar"" 18 (1®r)l =0,

and so, by pigeonhole principle, Ag’fse = 0. Thus, Pé’r;e_l = R®g, R. It follows that

Homg, (M, N) = Homp, (Pgs, (M), N)

> Homp, Pyl (M), N)

~ 1
:D}f'se (M, N).

Using Proposition [1.16| and the commutative diagram
A > R
Se

DFSN M, N) € DN (M N).

we have that

O

THEOREM 1.30. Let R be an A—algebra, with A a ring of characteristic p > 0. If the
relative Frobenius Fr4 RPIA) — A is finite, then

Dpa(M,N) = | ) Hompgera) (M, N).

eeN
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PROOF. From lemma [[.27] we have that

Dpa(M,N) = | D51 (M, N) € | Hompgera) (M, N).
eeN eeN

Now, using that the relative Frobenius Fpg4 : R®4) — A is finite, we have that R is

finitely generated by ¢ elements as an R®) —algebra, for some ¢ € N. Thus, by lemma
1.29, we conclude that

| Hompeea) (M, N) C | DE7H(M, N) = Dja(M, N).

eeN eeN

O

DEFINITION 1.31. Let R be a ring of prime characteristic p > 0. If F': R — R is the
Frobenius map, then, for each e € N, define

D' = Endpe (R),
where R = F&(R) C R.

PROPOSITION 1.32. Let k be a perfect field of prime characteristic p > 0. If R is a
Wr| Kk
K—algebra, then R = RPIK.

PROOF. First, note that Wk is injective. We need to show that Wk is surjective.
Using that K is perfect, we have K? = Fi(K) = K. It follows for any k®r € RPX there
is k' € K such that k = Fg(k), and so

k@r=Fr(k)@r=10kr=Wgx(k'r).
It follows that the composite
JMLLN - VL UEN
is the Frobenius map Fr: R — R. 0

COROLLARY 1.33. If R is essentially of finite type over k, a perfect field of prime
characteristic p > 0. Then,

Dpj = | Hompye (R, R) .

eeN

PROOF. This result is a consequence of Theorem and Proposition Let
S =k[zy,...,x,] such that

R2EW 1 (K[zy,...,2,)/1),
for some ideal I C S and a multiplicative set W C S/I. Since k is perfect, we have that
Fo(SP*) = Fs(S) = SP = KP[2f, ... a%] = K[a%, ..., 2]

It follows that the set {z{*---2% |0 <a; <p,i=1,...,n} is a generating set of S as an
S? module. Thus, the map Fyj is finite. Consider the commutative diagram

Fsx
S —— gk S,

A

R —— RV =5

S

R



14 1. DIFFERENTIAL OPERATORS

Since the vertical maps are induced by a projection and a localization, we conclude that
Py is also finite and, by Theorem [T.30]

Dy = | Hompoer (R, R) = | J Hompee (R, R) = | J DY .

eeN eeN eeN



CHAPTER 2

Morita equivlance

In this chapter, our goal is to define the Frobenius Descent by using Morita Equiva-
lences. We first explain what is a Morita Equivalence, for which we start with a back-
ground in Category Theory. Then, we develop the necessary tools to prove Morita’s
Theorem. After that, we show the Morita Equivalence between a ring R and Mat,, (R)
the n X n—matrices with entries on R. Finally, we define the Frobenius Descent with the
use of the later Morita equivalence.

1. Categorical Prelimenaries

DEFINITION 2.1. We say that two categories C and D are equivalent if there exists
functors F': C — D and G : D — C such that

FG2L1p, and GF = 1,.
Equivalently, for any C' € C and D € D there are natural isomorphisms
ne:GF(C)— C and ¢ep:FG(D)— D.
DEFINITION 2.2. Let F': C — D, be a functor:
(1) We say that F is full, if for any objects C;,Cy € C, the map
Hom¢ (C1, Cy) — Homp (F(Ch), F(Cy))

is surjective.
(2) We say that F is faithful, if for any C;,Cy € C, the map

HOIIlC (Cl, Cg) — HOI’HD (F(Cl), F(CQ))
is injective.
(3) We say that F is essentially surjective, if for any D € D there is C' € C such that
F(C)=D.

THEOREM 2.3. If a functor F' : C — D s a category equivalence, then F' is fully
faithful and essentially surjective.
Proor. We show the statement by parts.

(1) [Essentially surjective.] For any D € D, there is C' = G(D) such that F(C) =
F(G(D)) = FG(D) = D.
(2) [Faithful.] Since GF(C;) = C;, we have that the composite

HOIIlc (Cl, CQ) — HOIHD (F(Cl), F(Cg)) — HOIIIC (GF(Cl), GF(OQ))

is an isomorphism. Thus, we have that the first map is injective.

15
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(3) [Full.] For convenience, we write H = GF. Note that for any C' € C we have the
commutative diagram

HC) —X ¢

WH(C)T TICT .

H(H(C)) —— H(C)

C
H(nc)
Thus, we have that

nenuc) = ncH(ne).

Since 7 is an isomorphism, we have that gy = H(nc).
Let g € Homp (F(Ch), F(C5)). Define f = nc,G(g)ng, as shown in

H(C) 22 H(C)

ncll lﬂcg :

Cl """"" f """" > 02

Note that the map G(g) induces the following commutative diagram

H(H(Cy)) 29 H(H(Cy))

WH(Cl)l lnH(Cz) :

Thus, we have that
H(f) = H(ne,)H(G(9))H (1)

= N(ca) H(G(9) (01

= G(9)
Using that G is faithful, we conclude that F(f) = g, because G is a category
equivalence. So we conclude that F'is full.

O

DEFINITION 2.4. Let R be aring. A left R—module is an Abelian group (M, +) along
with a left action of R into M such that for all r,s € R and m,n € M, we have:
(1) (r+s)-(m+n)=r-m+r-n+s-m+s-n.
(2) (rs)-m=1r-(s-m).
(3) 1 -m =m.
Similarly, a right R—module is an Abelian group (M, +) along with a right action of R
into M
(1) (m+n)-(r+s)=r-m+r-n+s-m+s-n.
(2) m-(sr)=(m-s)-r.
We'll add the notation of R —Mod to the category of left R modules, and Mod —R to
the category of right R modules.
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DEFINITION 2.5. Let R and S be two rings. Then an (R —.S)—bimodule is an Abelian
group (M, +) such that

(1) M is both a left R—module and a right S—module.
(2) For every r € R, s € S, and m € M we have that
(rm)s = r(ms).
DEFINITION 2.6. Let f,g: M — N be two homomorphisms between R—modules. We
define:

e The equalizer of f and g is an R—module £ and a homomorphism e : £ — M,
which satisfy fe = ge, such that for any homomorphism o : A — M, if fa = ga,
then there exists a unique homomorphism u : A — E such that eu = a.

/
E—— M ?N

. g
Ta

A

e The coequalizer of f and g is an R—module ) and a homomorphism ¢ : N — @,
which satisfy ¢f = qg, such that for any homomorphism g : N — B, if 8f = fg,
then there exists a unique homomorphism v : () — B such that vg = 5.

f
M —N-—"25Q

2

B

)
L

PROPOSITION 2.7. The equalizer of f and g is given by
Eq(f,g9) =Ker(f —g) ={m € M| f(m) = g(m)},
along with the inclusion e : Eq(f,g) — M.

PROOF. Directly from the definition, we have that (f —g)e = 0, and so ft = gt. Now,
if h: A — M is such that fh = gh, then (f — g)h = 0. By the universal property of the
kernel, there is a homomorphism u : A — Eq(f, g), such that eu = h. U

PROPOSITION 2.8. The coequalizer of f and g is

Coeq(f, g) = Coker(f — g)
along with the projection q : N — Coeq(f, g).

PROOF. Using that ¢(f — g) = 0, we have that ¢f = qg. Let h : N — A be such that
hf = hg. It follows that (f — g)h = 0. By the universal property of the cokernel, there is
a homomorphism v : Coeq(f, g) — A, such that vg = h. O

PROPOSITION 2.9. Let f,g: M — N be two homomorphisms between R—modules. If
F: R—Mod — S — Mod is an equivalence of categories, then

F(Eq(f,9)) 2 Eq(F(f),F(g9)) and F(Coeq(f,g)) = Coeq(F(f), F(g)).
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PROOF. Let a : A — F(M) and 8 : F(N) — B such that F(f)a = F(g)a and
BF(f) = BF(g). By Theorem [2.3| F' is essentially surjective, thus there are R—modules

¢ ¥
A" and B’ such that F(A’) = A and B = F(B’). Let

o =ap, and B =Y

Using that F is full, by Theorem [2.3] there are o’ : A’ — M and 8" : N — B’ such that
F(a") = o and F(B") = §'. Using the universal properties of the equalizer and co-
equalizer there are v’ : A" — Eq(f,g) and v' : Coeq(f,g) — B’ such that o = eu’, and

ﬁ// — U,q.

F(Eq(f,9)) —<% F (M) % F(N) 22, F(Coeq(f, 9))

rRe F(g) .
T MR

W F(A) F(B) -

A B

If u=F(u)¢~! and v ="' F(v'), then we have that
Fleyu = F(e)(F(u)¢™) = Flew)s™ = F(a")p™ = /¢! = ago™ = o,

and
vF(q) = ¢ F()F(q) =y F(V'q) =7 F(B") =78 =~ '9p = B.
Therefore, we conclude that

F(Eq(f,g9)) = Eq(F(f),F(g9)) and F (Coeq(f,g)) = Coeq(F(f), F(g))
0

LEMMA 2.10. Let F : R — Mod — S — Mod be an equivalence of categories. If
f,g9: A— B are homomorphisms in R — Mod, then

F(f+g)=F(f)+ F(g)

PROOF. First we have that

A1 B

s e

where Ay(a) = (a,a) and Vg(by,by) = by + bs.
Let p; : A A — Aand 7; : B® B — B be the natural projections to the i—th
coordinate. From Proposition 2.7, we have that

Eq(p1, p2) ={(a,a) e AG A|ac A} = A.
Similarly, using Proposition [2.8 we have that
(b1, b2) + Imgmy & (—72)] = (b1, ba) + (b2, —b2) + Img[my & (—2)]
= (b1 + b2,0) + Img[m & (—m2)],
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since mo @ (—mgy) = Ty ® 0 — 0 @ . It follows that (Coeq(ma @ 0,0 ® m2)) = (B, Vp).
Applying the functor F' we have the diagram

F(A) P9 p(B)
F(Aml TF(vBo
F(A)® F(A) FOTG F(B) @ F(B)

Using Proposition , we have that F(A4) = Apy and F(Vp) = Vgp). Thus, we
conclude that

F(f+g)=F(f)+ F(g)
O

DEFINITION 2.11. Two rings R and S are (right) Morita equivalent if the categories
Mod —R and Mod —S' are equivalent. We denote this by R ~ S.

One of the goals of the following section is to show that Mod —R and Mod —S are
equivalent if and only if R — Mod and S — Mod are equivalent.

LEMMA 2.12 (Splitting Lemma). In an Abelian category, let

0ASBS oS0

be an exact sequence. The following statements are equivalent:

(1) There is an isomorphism B é A @ C such that 14 = Yo is the natural inclusion
of A into the direct sum, and pc = 1! is the natural projection from the direct
sum into C.

(2) There is an homomorphism g : C — B such that 5g = 1p.

(8) There is an homomorphism [ : B — A such that fa = 14.

If a short exact sequence satisfies the above properties, we say that the sequence and the
morphisms o and B split.

PROOF.
[(1) = (2)]. Let 1o : C toA @ C the natural inclusion. If we define g = ¢!, then
we have that

Bg = By e = poie = 1¢,

which proves the statement.
[(2) = (3)]. First, using that Sg = 15, note that for any b € B

B —gB(b)) = B(b) — (Bg)B(b) = B(b) — B(b) = 0.
Using that the sequence is exact, we have that b — gf8(b) € ker(5) = Img(«). Now, using
that « is injective, we have that A ~ Img(a). Define f(b) = a™'(b— gB(b)). Note that

fa(a) = f(a(a)) = o (a(a) — gB(a(a))) = o~ (a(a)) = a.

Thus, we proved the statement.
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[(3) = (1)]. First, using that fa = 14, we have that for any b € B

fb—af(b)) = f(b) = (fa)f(b) = 0.
Since b = b—af(b)+af(b), we have that B = ker(f)+Img(«). Now, if b € ker(f)NImg(«),
then f(b) = 0 and there is a € A such that
b= ala) = a((fo)(a)) = af(ala)) = af(b) = 0.
It follows that B = ker(f)®Img(a). Using that /3 is surjective and that Img(«) = ker(f3),
we have that

~ B ker(f) ®Img(a)  ker(f) ®ker(8) . or
= ker(f) ker(5) N ker(3) = ker(f).

Since « is injective, we have that A = Img(«a), and so
B =ker(f) ®Img(a) =Ca A=A C.

O

DEFINITION 2.13. Let G and M be modules over a ring R. We say that G generates
M if and only if there is a nonempty set A and an epimorphism

GY—~ M —0.

Furthermore, if G generates every R—module, we say that G is a generator.

LEMMA 2.14. Let G and M be R — modules. If G generates M, then there is a subset
H C Homg (G, M) such that

M=) h(G).

heH

PROOF. Using that G generates M, there is a set A and an epimorphism G4 % M.
Consider the following commutative diagram

G4 ¢ >
G

(ga)aeA = Z La(ga>7

acA
because g, = 0 but finitely many o € A. Therefore,

M =¢(G") S ¢alG) S M,

a€cA

It (ga>a€A € GA: then

and so, with H = {¢,}aca we have the desired result.
0

PROPOSITION 2.15. For any R—module G, the following statements are equivalent:

(1) G is a generator.
(2) There exists n € N and an R—module G', such that

G"=RaG
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PROOF.
[(1) = (2)]. Using the definition of a generator, there is a nonempty set A and an
epimorphism
G*L R—0.
Thus, there is (ga)aca € G4 such that p ((ga)aca) = 1. Using that G is a direct sum, we
have that there are ay,...,q, € A such that g,, # 0 and g, = 0, for o # «;. Therefore,
we can take 7 as the restriction

@ Go, = GWY - R
=1

and it still is an epimorphism. Define h: R — @ G,, by

i=1

h(r)=r Z G-
i=1
Since wh(r) = r for all » € R, by splitting lemma [2.12] we have that 7 splits, and so

G" = @ Gao, = R & ker(pi).
i=1
Thus, we proved the statement.

[(2) = (1)]. Note there is an epimorphism G — R. Let M be any R—module.
Since R is a generator, there is a nonempty set A and an epimorphism R — A. Tt
follows that

GA 5 RW 5 A
is an epimorphism. 0
DEFINITION 2.16. Let P be an module over a ring R. We say that P is projective

if for every epimorphism f : M — N and every homomorphism g : P — N, there is a
unique h : P — M such that fh = g, i.e., the diagram commutes

M S >
7 0

LEMMA 2.17. Every free module is projective.

PROOF. Given a set A, consider P = R be the free module over A. Let f : M — N
be an epimorphism, and ¢g : P — N any morphism. For every o € A, write 1, € P the
unit corresponding to R, in P. Now, using that f is epi, there are m, € M such that

9(1a) = f(ma).
Define h : P — M by setting h(1,) = m,, and extending by linearity. Thus, by construc-
tion, we have that hf = g, i.e., P is projective. 0
PROPOSITION 2.18. Given a R—module P, the following statements:
(1) P is projective.
(2) Every epimorphism M — P — 0 splits.
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(8) P is isomorphic to a direct summand of a free module, i.e., there is a set A and
a P' module such that
RA ~pgp.

PROOF.

[(1) = (2)] Let f: M — P be any epimorphism. Using that P is projective, we
have that there is g : P — M such that gf = 1p. By splitting lemma [2.12] we have that
the epimorphism f splits.

[(2) = (3).] Since R is a generator, there is a set A and a epimorphism f : R4 — P.
By hypothesis, the epimorphism f splits, specifically, if P’ = ker(f), then R = P g P'.

[(B) = (1).] Let f: M — N be any epimorphism, and g : P — N any morphism.
Since P is isomorphic to a direct summand of a free module F', we have that the identity in
P factors through F', which is a projective module. It follows the following commutative

diagram
P
ar
F— P
v \ l
M ——— N —0
Thus, P is projective. O

COROLLARY 2.19. An R—module P is a finitely generated projective module if and
only if there is n € N and a module P', such that

R~ paopP.

DEFINITION 2.20. An R—module P is a progenerator if it is a finite projective gener-
ator.

DEFINITION 2.21. Let M be a right S—module. Define R = Endg (M). Note that M
is a left R—module by the action

f-m=f(m),f € Rand m € M.
Furthermore, since f € Endg (M), we have that for any s € S
fo(m-s)=f(m-s)=f(m)-s=(f-m)-s
and so M is an (R — S)—bimodule. We denote by BiEndg (M) = Endg (M), and we call

it the biendomorphism ring.

REMARK. For any right S—module M as before, there is a morphism S — BiEndg (M)
given by the map s — — - s.
PROPOSITION 2.22. Let M, M', and M" be right S—modules.

o [fM =M & M", and M' generates M", then there is a monomorphism

BiEndg (M) 2 BiEndg (M').

corresponding to the restriction map.
e BiEndg (M) = BiEndg (M®™), for any n € N.
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PROOF.

e Let R = FEndg (M) and R' = Endg (M'). If 1 : M' — M and p: M — M’ are
the inclusion and the projection for the direct summand M’, then for any f € R,
we have that pfit € R'. Similarly, if f' € Endg (M’) = R/, then we have that
tf'p € R. Therefore, we have that

pR. C R = puR'pu C pRu,

because 1, = pt.

Let ¢ € Endg (M) = BiEndg (M). If Res(v¥) = pipt, then we have that
Res(v) is an Z—homomorphism because all three are. We need to show that
is R'—linear. Let f' € R'. Using that f = +f’p € R, we have that

Res(¥)f' = purf’
= p(f'p)
= p(f)e
= p(fi)
= puf'(pyr)
— ' Res(v).
It follows that Res(v) € Endg (M’) = BiEndg (M’). Now, we need to show that
Res is an homomorphism. If ¢,y € BiEndg (M), then
Res(1 + 12) = p(¢1 + ¥2)t = pore + pibat.

If o =1p € R, then

Res(¢11h2) = pth1thar = prtarpr
= p1ihapL
= prpit
= pupirt
= Res(1)1) Res(1s).
Thus, we conclude that in fact Res : BiEndg (M) — BiEndg (M’) is a ring

homomorphism.

Now, let ¢ € BiEndg (M) such that Res(¢) = 0. It follows that

0= tRes(¥) = 1pyhr = phr = oL = hrpL = Yu
If we have that M’ generates M”, then M’ also generates M. Using Lemma [2.14],
if H = Homg (M’, M), then

> M) =M

heH

Also note that
H C Homg (M', M) @ Homg (M", M) = Homg (M' & M", M) = Homg (M, M) = R,
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with the inclusion given by Homg (¢, M) : Homg (M’', M) — Homg (M, M).
Therefore, we have that M = Ri(M'), and so

B(M) = $(Ry(M')) = Rpu(M') = R -0 = 0.

With this, we conclude that Res is an injective homomorphism of rings.
e As shown before, the map Res : BiEndg (M") — BiEndg (M) is an injective ring
homomorphism. We only need to show that Res is surjective.
Let ¢, : M — M™ be the inclusion in the /—coordinate, py : M™ — M the
projection of the k—coordinate, R = Endg (M™) and R’ = Endg (M). We have
that

prRuy € peRey.
Let ¢ € Endg (M). Note that
Pr(mas . mp) = (Y(ma), . (mn))

n

= > u(¥(my))

1

~
Il

\E

Lﬂﬁ(me)

~

3

1

e (pe(ma, ..., ma)).

~

=1
Using that pyty = Orelas, we have that 1™y = 1), and ppp™ = 1hp;. Recall
that ppfie € R and ¢ € Endg (M), thus
prfY" e = (prfre)
= Y(prfu)
= pe" fre.

By uniqueness of the universal property of the direct product, we have that
o =" fu
By uniqueness of universal property of the direct sum, we conclude that
V= for,

and so 1" € Endg (M™). Since Res¢” = p11p™1; = 1), we have that Res is
surjective, which concludes the proof.

O

THEOREM 2.23. If P is a progenerator right S—module, and R = Endg (P), then, P
s also a progenerator as a left R—module.

PROOF. As we showed before, there are n,m € N and S’, P’ right S—modules such
that

P >~S8qS. and S"=PoP.
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It follows that
P9 =~ Homg (S@”, P)
=~ Homg (P & P, P)
=~ R @ Homg (P, P),
which shows that P is a generator as an R—module. Similarly have that
R¥™ =~ Homyg (P®m, P)
=~ Homg (S @ S', P)
=~ P & Homg (5, P),

and so P is a finitely generated projective R—module. O

2. Morita’s Theorem

Our goal in this section is to prove Morita’s Theorem, and using it define the Frobenius
Descent.

THEOREM 2.24 (Morita’s Theorem). Let R and S be rings. Then two additive functors
F : Mod—R — Mod —S and G : Mod —S — Mod —R are inverse equivalences if and
only if here exists a (R, S)—bimodule P such that:

(1) P is a progenerator in both R — Mod and Mod —S.
(2) R = Endg (P) and S = Endg (P).
(3) Fg—@)RP, (de%HomS(P,—).

Furthermore, if there is such a (R, S)—bimodule P satisfying these conditions, then
G= —®5HOH13<P,R)

LEMMA 2.25. If R and S are Morita equivalent through F : Mod —R — Mod —S and
G : Mod —S — Mod —R, then there are Z—isomorphisms

Homg (F(M), N) — Homp (M, G(N))
and
Homg (N, F(M)) — Homg (G(N), M) .

PRrROOF. Using theorem [2.3] any equivalence of categories is full faithful and essentially
surjective and so we have the isomorphism of sets

Homg (F(M), N) = Hompg (G(F(M)),G(N)) .

Using the lemma [2.10, we have that the map is an homomorphism of Abelian groups.
Now, since GF(M) = M as R—modules, we have that

Hompg (G(F(M)),G(N)) = Hompg (M, G(N))
as R—modules, and so, we have that
Homg (F(M), N) = Hompg (M,G(N)) .

By the same reasoning, we conclude that Homg (N, F/(M)) — Hompg (G(N), M) is
Z—linear. U
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LEMMA 2.26. Let P be a right S—module, M a right R—module, and U a (R, S)—bimodule.

Then there is a homomorphism
M ®p Homg (P,U) % Homg (P, M @z U)

defined by [n(m ® §)] (p) = m®J(p). If P is a finitely generated and projective S—module,
then n is an isomorphism.

PrOOF. From the definition 7 is a Z—homomorphism. If g : M — M', f : P — P,
and h : U — U’ are maps in the respective categories, then we have two maps

M ®g Homg (P,U) - M' ®p Homg (P',U")
m® ¢ g(m) @ hef,
and
Homg (P, M @5 U) — Homg (P, M' @5 U")
v lg@ by,

given by the naturality of both hom and tensor functors. Let p’ € P, m € M, and
¢ € Homg (P,U), then

[g @ hl[n(m @ )| f(p) = [g @ hllm @ p(f(D))]
= g(m) ® hof(p')
= [nlg(m) @ hof1)(p).-

This shows that 7 is natural in all three entries. For convenience, we write
F(P)= M ®r Homg (P,U), and G(P)=Homg (P,M ®grU).

Thus, n becomes a natural transformation between F' and G. When P = S, we have that
the results follows from

F(S)= M ®g Homg (S,U) 2 M @r U = Homg (S, M @ U) = G(S)

Using the additivity from both the hom and tensor functors, we have that both F and G
are additive. Thus, for any n € N,

F(SM) 2= @G(s™).

Now, let P be any finitely generated and projective S—module. This means that there
is n € N and a S—module P’ such that S = P @ P’. We have the split exact sequence

0—P—S™ P -0,
which induces the following commutative diagram
0 — F(P) —— F(S™) —— F(P) —— 0
| I [
0 — G(P) —— G(S™) —— G(P") —— 0.

By the Five Lemma, we conclude that F'(P) = G(P). O
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LEMMA 2.27. Let P be a left R—module, N a right S—module, and U a (R, S)—bimodule.
Then there is a homomorphism
Homg (U, N) ®g P < Homg (Homg (P,U), N)
given by [v(y @ p)] (0) = ~vd(p). If P is a finitely generated and projective R—module, then

v is an isomorphism.

PRrROOF. Similarly as before, we have that v is a Z—homomorphism that is natu-
ral in all three entries. For convenience, we write F(P) = Homg (U, N) ®g P and
Homg (Homp (P,U), N), and so v becomes a natural transformation between F and G.
When P = R, we have that the results follow from

F(R) = Homg (U, N) ®g R = Homg (U, N) = Homg (Hompg (R,U), N) = G(R)
Using the additivity from both the hom and tensor functors, we have that both F' and G
are additive. Thus, for any n € N,

F(R™) = G(RM).

Now, let P be any finitely generated and projective R—module. This means that
there is n € N and a S—module P’ such that R™ = P ® P’. So we have the split exact
sequence

0—P—R™ P 0,

which induces the following commutative diagram
0 — F(P) —— F(R™) —— F(P') —— 0
0 — G(P) —— G(R™) —— G(P') —— 0.
By the Five lemma, we conclude that F'(P) = G(P). O

PROPOSITION 2.28. If P is an (R, S)—bimodule that is a progenerator as an Mod —S
and R = Endg (P). Then, P a progenerator in Mod —R and S = Endg (P).

PRroOOF. The first part of the result is shown in Theorem [2.23] We only need to show
that S = Hompg (P, P). In order to prove that, we use the Proposition and we have
the commutative diagram

/l\

BiEndg (P) —— BiEndg (P®") —— BlEndS Sa S

BiEndg (S

Thus, we have a monomorphism from BiEndg (P) = Endg (P) into S, which itself injects
into Endg (P), and so, we conclude that Endg (P) = S. O

PROOF OF MORITA’S THEOREM [2.24]. First, suppose that F' and G are inverse equiv-
alences. Let P = F(R), which by definition is a right S—module. We have that P is a
(R, S)—bimodule, since

Endg (P) = Homg (F(R), F(R)) = Homp (R, R) & R

acts on the left, and commutes with the right S action.
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We want to show that P is a progenerator as a right S—module. Let N be a right
S—module. Using the Theorem [2.3] there is an R—module M with F(M) = N. Recall
that R is a generator. Then, there is a nonempty set A and an epimorphism R4 — M — 0.
It follows that

PA~ F(RY = F(M)= N — 0.
Since N was arbitrary, we conclude that P is a generator of S—modules.
Now, consider an epimorphism N — P — 0. Recall that G(P) = G(F(R)) = R.
Using that R is projective and the Proposition [2.18] the epimorphism
G(N) - R—0

splits. It follows that the epimorphism F(G(N)) 2 N — P — 0 splits, and so P is
projective. Thus, the first condition is satisfied. Note that the second condition on P is
satisfied by Proposition [2.28|

Now, using Lemma [2.25, we have that for any S—module N

G(N) = Hompg (R,G(N)) =2 Homg (F(R), N) = Homg (P, N)
In particular, using that S = Endg (P) and R = Endg (P), we have that
G(S) = Homg (P, S) = Homg (P,Hompg (P, P)) = Hompg (P, Homg (P, P)) = Hompg (P, R)
Using lemma it follows that for any R—module M,
F(M) = Homg (S, F(M))
= Hompg (G(S5), M)
=~ Hompg (Hompg (P, R) , M)
=~ Hompg (R, M) ®p P
=M ®gP.
Thus, the third condition is satisfied.

Now, suppose that such a bimodule P exists. Using the Lemmas and [2.26], we
have that

FG(N) gI‘IOIHS (P,M@RP) %JM@RHOIIls(P,P) %M,
and
GF(M) %JHOHIS(P,N) ®RPgHOIﬂ5(H0mR(P,P),N) = N.

So, we have that F' and G are inverse of each other.
For the last remark, we proceed similarly by defining @) = G(S) = Hompg (P, R). Using
that GG is an equivalence of categories, we conclude that

G- ®sQ=—®sHomg (P, R).
O
COROLLARY 2.29. Let R and S be rings. Then Mod —R = Mod —S if and only if

R —Mod = S — Mod. Furthermore, there is (S, R)—bimodule P such that

(1) P is a progenerator in both S — Mod and Mod —R.
(2) R = Endg (P) and S = Endg (P).
(3) F = P®gr— and G = Homg (P, —) = Hompg (P, R) ®g —.
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PROOF. Suppose that R — Mod = S — Mod. Then, Mod —R? = Mod —S°. Using
Morita’s Theorem , there is a (R, S°?)—bimodule P such that is a progenerator in
R = R? = Endger (P) 2 Endg (P), and S = S? = Endge (P) = Endg(P),
and there are functors
F(=)=—-Q®raw P = PRr—, and G(—)=—Qgo»Hompge (P, R?) = Hompg (P, R)®s—,

which are inverse of each other from R—Mod = Mod — R to S—Mod = Mod —S°. Since
P is a (S, R)—bimodule, we can take the functors — ®¢ P and — @ Hompg (P, R), which
are equivalences between Mod —S and Mod —R, by Morita’s Theorem. The converse is
proven in a similar fashion. 0

3. Morita equivalence: Ring and n x n—Matrix ring

In this section we show that R and S = Mat,,(R), the ring of n x n matrices with entries
in R, are Morita equivalent.

THEOREM 2.30. Let M and M' be R—modules and f : M — M’ a homomorphism of
R—modules. We define the functor F': R — Mod — S — Mod by

F(=)=R"®g -,
and its inverse 1s
G(—) = Homp (R", R) ®s —
Let P=R" = R" ®gr R. It follows that P is a progenerator in R — Mod. Using that
S~ Endg (R~ R” 2 P'>~PgR"™"

we have that P is a generator and a finitely generated projective module, i.e., P is a
progenerator in .S — Mod.
We only need to check that R = Endg (R™). First, since there is an inclusion

R— S
r—rl,,
we have that
Endg (R") C Endg (R") = Mat,(R).

Let {e;} denote the canonical basis of R™. For simplicity we consider {e;} as nx1—matrices
(column vectors). {£;;} the n x n—matrix with 1 in position (7, j) and 0 elsewhere. Let v
be a 1 x n—matrix (a row vector) and w be a n X 1—matrix (a column vector). We have
that e;v is the n X n—matrix with v in the :—th row and 0 elsewhere,

(eiv)jr = (€:)jvr = dijup,

j j J

and that we? is the n x n—matrix with w in the j—th column and 0 elsewhere
(we) ki = wy(e] ); = 65w

T
J

(€€ Jue = (€0)r(e] )e = Oixbje = (Eij)ne

Using this, we have that F;; = e;e
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If M is a n X n—matrix, then e]TM is the j—th row of M and Me; is the i—th column
of M, because

(6?M)1k = Z(e?)lek = Mj and (Mei)kl = Z Mkj(ei)j = Mkz
i=1 7=1
Using that

(ME;j) ke = Z Min(Eij)ne = Z Min0indje = 0;0Myi,
h=1 h=1

we have that M E;; = Mez-eJT is the matrix whose j—th column is the i—th column of M

and 0 elsewhere. Similarly with

(EiyM)e = (Ei)inMue =Y 06 Mye = 0 M
h=1 h=1
we have that E;; M = eiejTM is the matrix whose i—th row is the j—th row of M.
Now, let M € Endg (R"), and consider it as a matrix. Thus, we have that M E;; = E;; M.
It follows that for any i # k

and so M is a diagonal matrix.
We need to show that M = r1,, for some r € R. Note that
T

[ =elel’el = e = Eu.

_ T
Ez'jEji = €i€j € € i

Thus,

My = (MEn)1 = (MEyEj)n = (EyMEn)n = Y _(Evw)i(MEn)j = (MEn)n = M.
j=1
Therefore, M = M, 1,,. we conclude that R = Endg (R") by the inclusion R — S defined
earlier.
Using Morita’s Theorem [2.24] we conclude that F(—) = R" ®g — is a equivalence of
categories with the inverse functor G(—) = Hompg (R", R) ®s —.

4. Morita equivalence: Frobenius Descent
In this section, we define the Frobenius Descent.

PrRoOPOSITION 2.31. Let R be a ring, M be an R—submodule, and W C R a multi-
plicative subset. Then the R—linear map

Y WITRQr M — WM
T rm
w w

s an isomorphism.

PRrROOF. We need to show that 1 is bijective. If = ® m such that = = 0, then there
is w’ € W such that w'rm = 0. It follows that

!/

1
- Q@m =w'r - ®m:T®w’rm: -
w'w w'w w'w w'w

®0=0,

r
w
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and so, 1 is injective. Now, for any 2 € WM there is - ® m such that ¢(+ ®m) = 2,
and so v is surjective. Thus, we conclude that v is bijective. 0
COROLLARY 2.32. Let R be a ring and W C R a multiplicative closed subset. Then
W )W 'R®x —
is a functor between R—modules and W~ R—modules.

PrRoOOF. Consider 1 as in Proposition Let f: M — N be an homomorphism of
R—modules. If 7 € W~tM, then

W (5) = v(wr@ e () = e(lw-a®S) (% ® m) = (% ® f(m)) -
Thus, for any - € W-IR,
Wl <1@> _ iy ( rm> _ flrm) rf(m)LW_lf (@)
w' w ww ww ww w w/’
We conclude that W~ f is W1 R—linear. O

PROPOSITION 2.33. Let R be a ring, and M, N be R—modules. If W C R is a
multiplicative closed subset, then

WM @y g WINZW ! (M®zN).
ProoFr. Using Proposition [2.31}, we have that
WM @w-1gWIN= (W'R@r M) @y-1r (W 'R®zN)
=W 'R®r (M ®gN)
=W (M®gN).
0

PROPOSITION 2.34. [8] Tag 02C6] Let W1, Wy C R be multiplicative closed subsets,
and M be an R—module. If W is the image of Wy in Wy 'R, then

(WiW,) ' R=W, (W5 'R).

PROPOSITION 2.35. Let L & M % N be an evact sequence of R—modules. Then
WL — WM — W™IN is also exact.

PRroor. Using that localization is a functor, we have that W—'L — WM — W~IN
is a complex. Let ™ € W~'M such that 0 = (W~'g) (=) = & By definition, there is
w' € W such that 0 = w'g(m) = g(w'm). It follows that w'm € ker(g) = Img(f). Thus,
there is [ € L such that f(I) = w'm, and so

ww  ww w
We conclude that the sequence WL — WM — W~IN is exact. O

LEMMA 2.36. Let R be a ring, M and N are R—modules, and W C R a multiplicative
closed subset. If M is finitely presented, then

W~ (Hompg (M, N)) = Homy—1z (WM, W™'N)
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Proor. Using that M is finitely presented, there are n,m € N and an exact sequence

(1) R™ — R" — M — 0.
For convenience, write S = W™'R. Localize the sequence to get the exact sequence
(2) S™— S"— S®r M — 0.

On the other hand, if we use the functor Homg (—, V) on the sequence , then we have
the exact sequence

(3) 0 — Homg (M,N) — N® — N™.
On this sequence, we take the localization to get
0 — S®gHomg (M,N) = (S®g N)" = (S®gr N)™.
Now, if we use the functor Homg (—, S ® g V), then we have the exact sequence
0 — Homg (S®r M,S®@rN) = (S®@r N)" = (S®@r N)™.
Note there is an S—linear homomorphism
¢ :S®gHompg (M, N) — Homg (S ®g M, S ®g N)
1 f—=mef
Thus, we have the commutative diagram

0 > 0 )S@RHOHIR<M,N)—><S®RN)n—>(S®RN)m

|| l l |

0 — 0 —— HOHls(S@RM,S@RN) E— (S@RN)n E— (S@RN)m

By Five Lemma, we have that ¢ is an isomorphism, and so
W~ (Homp (M, N)) = S @ Hompg (M, N)
= Homg (S ®r M, S ®@r N)
=~ Hompy—1z (WM, W™'N).
O

DEFINITION 2.37. Let R be a ring and M an R—module.

(1) We say that M is locally free if we can cover Spec(R) by {D(f;)}icw, such that
My, is a free Ry, —module, for all i € &7

(2) We say that M is finite locally free if we can choose the covering such that My,
is finitely generated free module.

LEMMA 2.38. [8, Lemma 00HN| Let R be a ring, and M be an R—module.

(1) Let M be an R—module. For m € M the following are equivalent:
(a) m = 0.
(b) m maps to zero in M, for all p € Spec (R).
(¢c) m maps to zero in My, for all m € max R.
(2) For an R—module M the following are equivalent:
(a) M = 0.
(b) M, =0 for all p € Spec (R).
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(¢) Myn =0 for all m € max R.
(3) Given a complex My — My — M3 of R—modules the following are equivalent:
(a) My — My — Mj is exact.
(b) (My), = (Mz), = (M), for all p € Spec (R).
(¢c) (M1)m = (M2)m — (M3)m for all m € max R.

LEMMA 2.39. [8, Tag 00EO]| Let R be a ring, and M be an R—module. Suppose there
are fi,..., fn € R, for some n € N, such that (f1,..., f.) = R.
(1) If each My, =0, then M = 0.
(2) If each My, is finite Ry, —module, then M is finite R—module.
(3) If each My, is finitely presented Ry, —module, then M is finitely presented R—module.
(4) Let My — My — M be complex of R—modules. If each (My)s, — (Ma)s, — (Ms)y,
1s exact, then My — My — Ms is exact.

COROLLARY 2.40. If R is a Noetherian ring, and M 1s finitely locally free R—module,
then M 1s finitely presented.

Proor. Using that M is finitely locally free, there are fi,...,f, € R such that
(fi,-..,fn) = R and that each My, is finitely free. By Lemmma we conclude that
M is finitely presented, because a finitely free module is finitely presented. 0

PROPOSITION 2.41. Let R be a Noetherian ring, and f : R — A be a homomorphism
of rings such that A is a locally finitely generated free R—module. If S = Endg (A),
then the functor f*(—) = A®pg — is an equivalence between the categories R — Mod and
S — Mod, whose inverse is the functor H(—) = Hompg (A, R) ®g —.

ProOOF. Let W C R be a multiplicative closed subset, M be an R—module and N an
A—module. Using Corollary and Lemma [2.36], we have that

WS = W' Endg (4) = W' Homp (4, A) = Homy -1 (WA, WA).

Using that A is locally finitely free, there are rq,...,r; € R such that (ry,...,7,) = R
and each A,, = R, for some n; € N. Note that
Let M be an R—module, and N be an S—module. As seen in Theorem [2.30], for each

r; there are isomorphisms
M,, = Homg,, (R}, Ry,) ®s,, R @g,, M, = (Homg (A, R) ©s A®g M), = (H[f*(M))
and

Ny, = R} @, Homp, (R, R.,) ®s, Ny, = (A®p Homp (A, R) ®s N), = (f H(N))

Using Lemma [2.39, we conclude that ' and H are equivalences of categories. 0]

T

Ti

DEFINITION 2.42. A commutative ring R of characteristic p is said to be F—finite if
the Frobenius map Fg : R — R is finite, that is, R is a finite module over R? = Fr(R).

COROLLARY 2.43 (Frobenius Descent). Let R be reqular and F— finite ring. Consider
the Frobenius map F° : R — °R. Then (F¢)" is a equivalence of categories between

R — Mod and DY — Mod.

PROOF. First note that
Endg (‘R) = Endge (R) = D'
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Since R is regular, °R is locally free. Thus, by Proposition [2.41] we conclude that

Fe)* (=) = “R®p — is an equivalence of the categories of R—modules and D' —modules
( q g R :
whose inverse is

H*(~) = Homp (R, R) ®

pl -
O
We conclude that all DS) are Morita equivalent through R. Additionally, if M is a

Dg)—module, then there is the R—module N = H¢(M) such that (F¢)" (N) = M. Now,
for any ¢ € N we consider
(F")" (M) = (F™)" (N).



CHAPTER 3

Generators of D-modules

In this chapter, we consider R as a ring with prime characteristic. Also, in this chapter,
we look at generators of Ry as a Dr—module.

LEMMA 3.1. [9] Let R be a regular finitely generated algebra over a regular F— finite
local Ting A of prime characteristic p > 0. Then Ry with the Dr—module structure has
finite length for every f € R.

1. Ideal of p-th roots
DEFINITION 3.2. Suppose that R is a free RP°—module. Then any f € R can be
written as
F=>_d'f
icd
where {fi}icr is an RP"—basis of R. In this context, we define

(HMPT = (c1,0,...)

In this section R is a regular and F'—finite ring of prime characteristic p.
PRrROPOSITION 3.3. The Dg) are nested.

PROOF. Let ¢/ > e and 0 € Dg), then for any 7, f € R
6, 6/—6 pe 6,—8 pe 6/
s =s () 1) = () st = s,

Thus, in fact § € DSI). O

DEFINITION 3.4. Let I C R be an ideal. We write Pl = F°(I)R, i.e., to the ideal
generated by the p®—th powers of the elements of I. Note that if { f;} is a generating set
of I, then I = ({f7'}).

LEMMA 3.5. IfI,J C R are such that I?1 C J¥l then I C J.

ProOOF. If R has no nilpotent elements, then we have that the Frobenius map F' is
injective. Using the last definition, we have that

Fe(I) = FE(I)RN F¢(R) = I" N RY C JPIN RY = F¢(J)RN F¢(R) = F°(J).
Thus, using the injectivity of F', we have that I C J. O

We have defined the ideal generated by the p®—powers. Now, we would like to define
the ideal generated by p®—roots. One way we can make sense of this is by looking at

R as an RP"—module, and then taking the ideal generated by the coefficients of this
representation, which is denoted as 10/7°.

35
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LEMMA 3.6. If R is F—finite ring. Then
. e1\ [P°]
R (I

PROOF. Since R is a finitely generated RP"—module and Dg%e) commutes with local-
ization, we may assume that R is a free RP°—module. As we have said before, we can

write any f € R as
f=) &
icA
It follows that for any o € DS) = Endpye (R), then
€ € € [pe]
8(f) = Do) e = ()"
i€A
e\ [P°]
and so Dg) . f C <(f)[1/17 ]) p '
Now, set &; as the RF"—linear map defined via §;(f;) = &;j, the Kronecker delta. It

e e\ [P°]
follows that 6;(f) = ¢/ . Thus, we conclude that ((f)[l/p ]) C Dg%e) - f, since each

)

generator of the first is contained in the latter. 0

LEMMA 3.7. (/)1 = (poyliet]

PROOF. It suffies to prove this for each localization at every maximal ideal of R. Thus,
we can assume that R is local, with maximal ideal m, and R is both a free RP—module
and a R’ —module.

Let {f;} be a RP—basis and {g;} be a RF"—module. Since 1 ¢ m, using Nakayama’s
Lemma, we can take f; = 1.

For any r € R there are a; € R such that

r= Zaffi
7

For each a; there are b;; € R such that a; =) ije g;. It follows that
J

7

r= Z Z (bggj)pfi = Zb]z?;ﬂgffi’
i g bJ

and so, {g} fi} is a RY'basis.

If we write f =) cg.’egj, then, by raising f to the p—power, we have that
J

e+1 e+1
=" g =3¢ gh
j j

Thus,
(= (e = (i

LEMMA 3.8. For any f,g € R, we have that
(fg)[l/pe} C (f)[l/pe} (g)[l/pe} C (f)[l/pe}
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PROOF. As before, we assume that R is a free RP*—module with a basis {f;}. Write
f= Z & f; and g = Z V" f;. Multiplying these, we have

fg — Zcp fzf] = Zcf bgafjgfﬂ = Z (Cibjaijg)pe fg,
1,5,0 1,5,¢

where a;;, are such that f;f; = > afjg fe. Thus, we have that
;

(F9)"7) = Uejaued) € (e (b)) = (17 ()7 € ()P,

(1/p°]

The last contention follows using that (f) is an ideal. O

LEMMA 3.9.

(fpeﬂ—l)[l/pﬁl] C (fpe—l)[l/Pe] .

PROOF. Since f7"' =1 = fr"" =2 fr=1 we have that (fpe+1_1>
by Lemma Using Lemma [3.7 we conclude that

<fpe+1_1)[1/17€+1] <fpe+1 )[UPGH] _ (<fpe_1>P) [1/pet] _ (fpe—l)[l/Pe]

] (o))

2. Ideal of p-th roots and differential operators

PROPOSITION 3.10. The chain of ideals

()i ()5

stabilizes at e if and only if there is § € DSH) such that 0 (%) = flp

e € e 1/pe
PROOF. Suppose the chain stabilizes at e, ie., (f? _1)[1/”} = (fp “—1>[ ] for
e < €. Using Lemma (3.7, we have that

(fpe“—l) [1/p747] _ (fpe—1)[1/p€] _ <fpe+1 >[1/pe+1] .
It follows from Lemma [B.6] that

e+1 e+1
e+1 f,pe+1 (<fpe+1 )[l/pe+1]) [P _ ((fpe+11> [l/pe+l}) [P _ Dg%eJrl) | fp‘f“—l‘

Since 1 is RP—lineal, we have that f7" P =15 f7"'~7 ¢ DE;H) - P71 and so there
exists 0 € DSH) such that

fpe+1,p _5. fpe+1,1 _5 (fpe+1,1> .

Using that 6 is RP"" —lineal, we have the equality

s () = () = (),
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I e _5 1
7 \w)
Suppose there is § € DSH) such that ¢ <
we obtain that f*"' 7 =§ (fpeH*l). Thus,

e+1]

<<fpe+1_p> [1/p6+1]) p D(e+1 fpe+1

and so

% = f—lp Similarly as in the last paragraph,

[1/p=+1]

et o1 1/ e+1
and (fp i _p) C (fp " _1)[ . ], by using Lemma It follows from Lemma
that the equality

(fpe_l) 1/p ] (fpe+1 1) [1/p€+1]
holds, because f7"' 7 = (f*"~1)".
. _ 1/ e+1
We showed that if(5 € D(e+1) such that & (l> fp, then (f7"~1) [1/p¢] (fp + —1>[ P ]

Recall that D( °) C D ) for any e < €, and so, we have that

(fpe_l)[l/pe} _ <fpe+1_1>[1/p6+1] o (fpe'—1> [1/6] |

COROLLARY 3.11. The chain of ideals

(0] s ()

stabilizes if and only z'f% generates Ry as a Dr module.

PROOF. Suppose that 1 ;7 generates Ry as a D module. Then there is § € Dg such
that ¢ (7) = F‘ Using Proposmon 3.10| we conclude that the chain stabilizes.

Now, suppose that the chain stabilizes at some e € N. By Proposition there
is 9, € D§§“) such that 51(%) = fip Additionally, using that R is locally finitely free
RP—module, there is a cover {ry,...,r¢} such that R, is finitely free R? —module. As
shown in the proof of Lemma (3.7, we can take a basis that contains 1, and so
Thus, using Lemma [2.39 we conclude there is a RP—module isomorphism

R, ~ R’ & R/R".
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Now, for ¥ +y € R, with x € R and y € R/RP, define dy(a? + y) = d1(x)?. We claim
that &y € DSH). If ¢,r € R with r = 2P + y, then
5 5 € 5 5 p 5 €
(e ) = (@ oy 1) = (@) = [ 0] = ) = ),

Thus, we have that 9, € DSH). It follows that
pet2 1 pet2 1
77 (5) =5 (7 5)
-5 (175
-l (5)]
f
e+1 1
0

o pe+1 1 P
= f fp
1
— et
- f fp2 .
Thus, 52(#) = f% If we proceed inductively, we have that - € Dg - f, for every

e € N. Since { 1 } is a generating set of R; as an R—module it also generates as an
eeN

Dr—module. O
THEOREM 3.12. Let R = Klxy,...,x,] be the polynomial ring over a perfect field k

1/p?
of prime characteristic p. If f € R, then the chain (fpfl)[l/pl] D (fp21>[ d D ...

stabilizes.

Qn

PROOF. For convenience we will use the multi-index notation, i.e., 2% = 7" ... 22"
Note that the monomials {2 | 0 < «; < p°} is a RP"—basis of R. For any e € N, there
are Ceo, € R such that

=2 e

Thus, we have that
(p° — 1) deg(f) = deg(f*" ") > deg(cl,) = p° deg(cea);

e—

and so

deg(f) > ¥ "L deg(f) > deg(cen).

Since V. = {¢ € R | deg(q) < deg(f)} is a k vector space of finite dimension, the
descending chain

2
Ve o v ()5
stabilizes. Using that {c..} € V' N (fpe_l) L] is the generating set of (fpe—l)[l/Pe]’ we
1/p?

conclude that the original chain (fp_l)[l/pl] > (fp2_1>[ D ... stabilizes. O
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THEOREM 3.13. Let R be a regular finitely generated algebra over an F— finite reqular
local ring A of prime characteristic p > 0. Let f € R be a nonzero element. Then

Ry =Dt
PRrROOF. There is a Dr—isomorphism

QZF*Rf%Rf

r rP
S t»—>s—

f [
1 1
e ftlp-l) tp—1) o —
A S CARLY)
which shows that # is surjective. Without loss of generality, we consider that f is not

a zero-divisor. Let s ® 5 € ker(), then sz ftp = 0 if and only if sr? =0 if and only if
0=sr"® # =5® %, and so 0 is injective. Thus, we identified F* Ry with Ry.
Let M = Dp - % We will refer to F*M as the image under 6. Now, note that

pl pl l *
(f f) T

Since F*M is a Dp—submodule of R that contains 4 7 we have that M C F*M. It follows
the chain

For any ﬁ € Ry we have that

r

MCFMCF*MCF*MC ...

and that € F**M, for each e € N. Thus, |J, .y F**M = Ry, since {fﬂ } is a generating

set.

Now, if M C F*M, then F**M C F*™*M for each e € N, because F*(—) = ‘R ®p —
and “R is faithfully flat R—module. We arrive at a contradiction with Lemma[3.1} Thus,
we conclude that

fpe

1
M = Dny = By

3. Differential summands

Direct summands as seen in are useful for describing properties of modules.
Furthermore, some families of rings, such as rings of invariants under a linearly reductive
group actions, and affine toric rings, are direct summands of polynomial rings. Also, the
Hochster-Roberts Theorem [10], which states that direct summands of regular rings are
Cohen-Macaulay, suggests there are some similar behavior between direct summands and
regular rings. We can find such examples where direct summands are normal rings [11],
with rational singularities in characteristic zero [12] or strongly F-regular singularities in
prime characteristic [11].

LEMMA 3.14. Let A C S C R be rings. Let v : S — R be the natural inclusion, and
let 5 € Homg (R,S). If 6 € DS|A, then BéL € DS|A Furthermore, the result holds for

o€ Dng.
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PRrOOF. Note that ¢ € Homg (S, R) = Dg,(S, R) and 8 € Homg (R, S) = Dg|A(R, S).
Using Proposition [1.16] we have that

§ € Diga(R, R) C Dy 4(R, R).
Additionally, with Proposition [1.14] we conclude that
BoL € DgTjJ“O(S, S) = f9|A.
For the case § € Dgl) 1» we have that
Bou(s”'r) = s” Bou(r)
since both are S?” = §' lineal. U

THEOREM 3.15. Let R be a reqular F'—finite domain. Let S C R be an extension of
Noetherian rings such that S is a direct summand of R. Then Sy is generated by % as

Dg—module.
PROOF. Recall that Ry is generated as a Dr—module by % As seen in the proof of
Corollary [3.11} for any e € N, there and ¢’ > e and § € DS,) such that ¢ (%) = f% It

follows that ) ) )
o =a (75 =10 (5) = 1 =

Let 8 : R — S be a splitting and ¢ : S — R the inclusion map. Using Lemma [3.14] the
map 6 = 36 € DE; ). Since p¢ — 1> 0 and p® — p° > 0, we have that 7 ~L, 7 7" € S,
and so ¢(fP° 71) = fP° ~Land B(f*" *°) = fP° ~P°. We conclude that

(1 1
ol=]=—.
(f) v

Thus, by Corollary we conclude that S is generated as a Dg—module by % 0
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