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Introduction

Given a field, there is a correspondence between geometric objects in Kn and algebraic
objects in R = K[x1, . . . , xn]. Specifically, given an ideal I in R there is a corresponding
variety VI = {x ∈ Kn | f(x) = 0, f ∈ I}. On the other hand, given a variety V ⊆ Kn

there is a corresponding ideal IV = {f ∈ R | f(x) = 0, x ∈ V }. The relation between
these is given by

VIV = V, and I ⊆ IVI .

If the field is algebraically closed, the Hilbert Nullstellensatz Theorem establishes that
V (I) = V (

√
I).

A variety can be abstracted from sets in Kn to subsets in Spec(R). In this context,
V (I) = {p ∈ Spec (R) | I ⊆ p}. The Zariski topology in Spec(R) is defined by its closed
sets; {V (I)}I⊆R. If I is principal, generated by f ∈ R, we say that the variety V (I) is a
hypersurface. We set

Uf = Spec (R) \ V (f) ∼= Spec (Rf ) ,

which is an open set in this topology. The collection of open sets {Uf}f∈R form a basis
for the Zariski topology. In fact, using that V (f + g) = V (f) ∩ V (g), we deduce that

Spec(R) \ V (I) =
⋃
f∈I

Uf .

Using the above, we can study the hypersurface V (f) by investigating the properties
of Rf . This presents a challenge because, in general, Rf is not a finitely generated
R−module. In this work, we study the action of higher order differential operators on Rf

as a mean to put additional structure to Rf .
In characteristic zero the differential operators on the polynomial ring are described

by the Weyl Algebra

R 〈∂1, . . . , ∂n〉 ⊆ HomK(R,R),

where ∂i =
∂

∂xi
. In contrast, in prime characteristic this is not enough for describe it. If

R = Fp[x1, . . . , xn], then ∂pi (x
p
i ) = p! = 0 in Fp. We can define the following differential

operators for α ∈ Nn

1

α!
∂αx (xβ) =

{
(βα)x

β−α, αi ≤ βi ∀i
0, otherwise,

where (βα) =
(
β1
α1

)
. . .
(
βn
αn

)
, and xβ = xβ11 . . . xβnn . Thus, we have that

DR|Fp = R

〈
1

α!
∂αx

∣∣∣∣ α ∈ Nn

〉
.
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iv INTRODUCTION

In characteristic zero, we have that Rf is a finitely generated DR|K-module. Further-
more, Rf is cyclic by the existence of Bernstein-Sato polynomial [1, 2, 3]. This is a
nonzero polynomial bf (s) ∈ Q[s] such that there is δ(s) ∈ DR|K [s] with

δ(t)f t+1 = bf (t)f
t, for every t ∈ Z.

The main goal of this thesis is to describe the work of Àlvarez Montaner, Blickle, and
Lyubeznik [4]. The following Theorem is a stronger statement in prime characteristic,
which does not use the Bernstein-Sato polynomial.

Theorem 0.1 (Theorem 3.13 (see also [4])). Let R be a regular finitely generated
commutative algebra over an F−finite regular local ring A of prime characteristic p > 0.
Let f ∈ R be a nonzero element. Then, Rf = DR · 1

f
.

This approach uses characterization of differential operators in prime characteristic,
Frobenius decent, Morita equivalence, and p−th roots of ideals. One of the consequences
of the , we obtain the corresponding result for direct summands of rings [5].

In chapter 1, we provide background on differential operators in general. We approach
the topic in a categorical view. At the end of the first chapter we give some properties of
differential operators over rings of prime characteristic.

On the chapter 2, our goal is to develop the Morita Equivalence and give the back-
ground for it. In this chapter we mainly use the book [6] as reference. From this, there
are two examples that we are interested in: the Morita Equivalence between a ring and
the n × n−matrix with entries on the ring; and the Frobenius Descent. The former is
used to define the latter along with the Corollary 1.33 and Proposition 2.41.

Finally, in chapter 3, we prove the main theorem in this work. In order to obtein
this result, we explore p−th roots of ideals. We relate this idelas to the action of DR|A on
Rf . At the end of the chapter, we use this theorem to obtain the corresponding result for
direct summands.



CHAPTER 1

Differential Operators

In this chapter we go through basic definitions and properties of differential operators.
Our focus is to understand them as functors and when they have a useful and simple
presentation. Another focus is in the case of prime characteristic and how we can express
them in a more computable way. In this chapter we consider a ring to be commutative
with unit, unless stated otherwise.

1. Definition and first properties

In general, in this section we will write A ⊆ R to say that R is an A−algebra. If we
refer to a module without specifying if it’s either left or right, then the result is equally
valid for both right and left and the actual side of the action does not play part in the
proof.

In this section we define differential operators
We begin this section by recalling some useful isomorphism for

Lemma 1.1. Let A and R be any ring. If M is an A−module, Q is an R−module,
and N is both an A− module and an R−module. Then the homomorphism

η : HomR (N ⊗AM,Q) −→ HomA (M,HomR (N,Q))

defined by

[[η(f)](m)] (n) = f(n⊗m),

is an isomorphism whose inverse λ is given by

[λ(g)] (n⊗m) = [g(m)] (n).

Proof. We proceed to show that the compositions ηλ and λη are the respective
identities. Let f ∈ HomR (N ⊗AM,Q) and g ∈ HomA (HomR (N,Q)). Then

[λη(f)](n⊗m) = [λ[η(f)]](n⊗m) = [[η(f)](m)](n) = f(n⊗m),

and

[[ηλ(g)](m)](n) = [[η[λ(g)]](m)](n) = [λ(g)](n⊗m) = [g(m)](n),

which shows that the statement is true. �

Corollary 1.2. Let R be an A−algebra. Then, for any R−modules M and N , there
are isomorphisms

HomR (R⊗A R,M) ∼= HomA (R,HomR (R,M)) ∼= HomA (R,M) .

Proof. The first isomorphism is given by Lemma 1.1 by the map

[[η(ϕ)](m)](r) = ϕ(r ⊗m)

and the second isomorphism is given by ηϕ(m) 7→ [ηϕ(m)](1) = ϕ(1⊗m). �
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2 1. DIFFERENTIAL OPERATORS

Note that HomR (R⊗AM,N) is canonically an R⊗A R−module by the action

(a⊗ b · ϕ)(r ⊗m) = ϕ[(a⊗ b)(r ⊗m)] = ϕ(ar ⊗ bs).
On the other hand, there are two possible actions of R on HomA (M,N):

i) (a · δ)(m) = aδ(m).
ii) (b · δ)(m) = δ(bm).

By default we are considering the first action, but we can encode both of them as an
R⊗A R action by

(a⊗ b) · δ(m) = aδ(bm).

If we consider the homomorphism R −→ R⊗AR defined by r 7→ r⊗ 1, then the restriction
of R scalars coincides with the R⊗A R action.

Now, we have that the isomorphism in Corollary 1.2 is actually an isomorphism of
R ⊗A R−modules. Let δ ∈ HomA (M,N) and ϕ ∈ HomR (R⊗AM,N) be such that
δ(m) = ϕ(1⊗m). Then, we have that

[a⊗b·δ](m) = [a⊗b·ϕ](1⊗m) = ϕ(a⊗bm) = [[η(ϕ)](bm)](a) = a[[η(ϕ)](bm)](1) = aδ(bm)

since [η(ϕ)](bm) is an R−linear homomorphism.

Definition 1.3. Given a pair of rings A ⊆ R, and R−module M . We say that
∂ ∈ HomA (R,M) is an A−linear derivation if

∂(rs) = r∂(s) + s∂(r), for all r, s ∈ R.
We denote the set of all A−linear derivations from R to M by DerA (M).

Definition 1.4. From now on, we write PR|A = R ⊗A R. Consider µ : PR|A −→ R
defined by µ(r⊗s) = rs. If ∆R|A = kerµ, then the module of A−linear Kähler differentials
on R is

ΩR|A =
∆R|A

∆2
R|A

.

Furthermore, there is a natural map d : R −→ ΩR|A, called the universal differential,
defined by

d(r) = (1⊗ r − r ⊗ 1) + ∆2
R|A ∈ ΩR|A.

Proposition 1.5. Let ∆R|A as before. The set

{1⊗ r − r ⊗ 1 | r ∈ R}
generates ∆R|A as an R−module.

Proof. Let r ∈ R. Then,

µ(1⊗ r − r ⊗ 1) = µ(1⊗ r)− µ(r ⊗ 1) = 1r − r1 = 0.

Thus, we have that 〈1⊗ r − r ⊗ 1|r ∈ R〉 ⊆ ∆R|A.

Now, let w =
n∑
i=1

ri ⊗ si ∈ ∆R|A. Recall that 0 = µ(w) =
n∑
i=1

risi. Thus,

w = w+0⊗1 =
n∑
i=1

ri⊗si+

(
n∑
i=1

risi

)
⊗1 =

n∑
i=1

(ri⊗si−risi⊗1) =
n∑
i=1

ri(1⊗si−si⊗1),

and so, w ∈ 〈1⊗ r − r ⊗ 1|r ∈ R〉. �
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Definition 1.6. Define the adjoin homomorphism of A−modules by

ad : R −−−→ PR|A

r 7→ 1⊗ r − r ⊗ 1.

We have that the homomorphism φ : PR|A −→ ∆R|A ofR−modules given by φ(r ⊗ s) = r ad(s)
is a splitting of the inclusion ∆R|A ↪−→ PR|A. Furthermore, we have that

ad(rs) = 1⊗ rs− rs⊗ 1

= 1⊗ rs− r ⊗ s+ r ⊗ s− rs⊗ 1

= (1⊗ r − r ⊗ 1)(1⊗ s) + (1⊗ s− s⊗ 1)(r ⊗ 1)

= ad(r)(1⊗ s) + ad(s)(r ⊗ 1)

Proposition 1.7. For a pair of rings A ⊆ R and a R−module M , there is an iso-
morphism of R−modules

DerA (M) ∼= HomR

(
ΩR|A,M

)
which is functorial on M .

Proof. Let δ ∈ DerA (M) ⊆ HomA (R,M). As seen in Corollary 1.2, there is a
unique map ϕ ∈ HomA

(
PR|A,M

)
such that ϕ(r ⊗ s) = rδ(s). It follows that

ϕ ad(r) = ϕ(1⊗ r − r ⊗ 1) = 1δ(r)− rδ(1) = d(r),

and that

ϕ(ad(r) ad(s)) = ϕ((1⊗ r − r ⊗ 1)(1⊗ s− s⊗ 1))

= ϕ(1⊗ rs− s⊗ r − r ⊗ s+ rs⊗ 1)

= 1δ(rs)− sδ(r)− rδ(s) + rsδ(1)

= δ(rs)− sδ(r)− rδ(s)
= 0

since δ is a derivation. Therefore, we conclude that there is a unique map φ : ∆R|A/∆
2
R|A −→M

that satisfies

φd(r) = φ(1⊗ r − r ⊗ 1 + ∆2
R|A) = ϕ(1⊗ r − r ⊗ 1) = δ(r).

�

Definition 1.8. Let M be any R−module. For any r ∈ R, we use µr to denote the
multiplication by r on the module, i.e., µr(m) = rm.

Definition 1.9. Let R be a an A−algebra. We define the A−linear differential
operators on R of order ar most i, denoted by Di

R|A, inductively by

• D0
R|A = HomR (R,R).

• Di
R|A =

{
δ ∈ HomA (R,R)

∣∣∣ [δ, µr] ∈ Di−1
R|A, for all r ∈ R

}
,

where [δ, µr] = δµr − µrδ.
The collection of all the A−linear differential operators on R is

DR|A =
⋃
i∈N

Di
R|A.



4 1. DIFFERENTIAL OPERATORS

Proposition 1.10. DR|A is both an R−module and a PR|A−module with the actions
defined by

r · δ = µrδ, and r ⊗ s · δ = µrδµs.

Proof. First, we note that for any δ ∈ D0
R|A there is t ∈ R such that δ = µt. Thus,

r · δ = µrδ = µrµt = µrt ∈ D0
R|A,

and

r ⊗ s · δ = µrδµs = µrµtµs = µrts ∈ D0
R|A.

Now, suppose there is some n ∈ N such that for all δ ∈ Dn
R|A, and r ∈ R, we have that

r · δ ∈ Dn
R|A. Let δ ∈ Dn+1

R|A and r, s ∈ R. Then, we have that

[(r · δ), µs] = (µrδ)µs − µs(µrδ)
= µrδµs − µrµsδ
= µr[δ, µs] ∈ Dn

R|A

since [δ, µs] ∈ Dn
R|A.

Similarly, suppose there is some n ∈ N such that for all δ ∈ Dn
R|A, and r ⊗ s ∈ PR|A,

we have that r ⊗ s · δ ∈ Dn
R|A. Let δ ∈ Dn+1

R|A , r ⊗ s ∈ PR|A, and t ∈ R. Then,

[[(r ⊗ s) · δ], µt] = [(r ⊗ s) · δ]µt − µt[(r ⊗ s) · δ]
= [µrδµs]µt − µt[µrδµs]
= µrδµtµs − µrµtδµs
= µr[δµt − µtδ]µs
= (r ⊗A s) · [δ, µt] ∈ Dn

R|A

since [δ, µt] ∈ Dn
R|A.

We showed that everyDi
R|A is an R−module and PR|A−module, and soDR|A is too. �

Proposition 1.11. If α ∈ Dm
R|A and β ∈ Dn

R|A, then αβ ∈ Dm+n
R|A .

Proof. We proceed by induction on k = m + n. Let r ∈ R. The case k = 0 and
k = 1 follow from the action r ⊗ s · α = µrαµs ∈ D0+1+0

R|A , because µr, µs ∈ D0
R|A.

Now, suppose the conclusion is valid for some k ∈ N. Let m,n ∈ N such that
m+ n = k + 1, and α ∈ Dm

R|A and β ∈ Dn
R|A. Then,

[αβ, µr] = (αβ)µr − µr(αβ)

= αβµr − αµrβ + αµrβ − µrαβ
= α(βµr − µrβ) + (αµr − µrα)β

= α[β, µr] + [α, µr]β ∈ Dm+n−1
R|A ,

because α[β, µr] ∈ Dm+(n−1)
R|A and [α, µr]β ∈ D(m−1)+n

R|A . �

As a consequence of the previous proposition

Proposition 1.12. If R is an A−algebra, then

D1
R|A
∼= R⊕DerA (R) .
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Proof. For any δ ∈ D1
R|A, we take δ′ = δ − µδ(1) ∈ D1

R|A. Note that

δ′(1) = δ(1)− µδ(1)(1) = δ(1)− δ(1) = 0

It follows, for any r ∈ R, that

[δ′, µr](1) = δ′(r)− rδ′(1) = δ′(r)

Since [δ′, µr] ∈ D0
R|A, we conclude that [δ′, µr] = µδ′(r). Now, for any r, s ∈ R, we have

that

δ′(rs) = δ′µr(s)

= [δ′µr − µrδ′ + µrδ
′](s)

= [µδ′(r) + µrδ
′](s)

= δ′(r)s+ rδ′(s),

and so, δ′ ∈ DerA (R). Therefore, D1
R|A = HomR (R,R)⊕DerA (R) ∼= R⊕DerA (R). �

Definition 1.13. Let A ⊆ R be a pair of rings, and both M and N be R−module.
We define the A−linear differential operators from M to N , inductively by

• D0
R|A(M,N) = HomR (M,N).

• Di
R|A(M,N) =

{
δ ∈ HomA (M,N)

∣∣∣ [δ, µr] = ad(r)δ ∈ Di−1
R|A(M,N), for all r ∈ R

}
.

and so

DR|A(M,N) =
⋃
i∈N

Di
R|A(M,N).

For simplicity, we write Di
R|A(N) = Di

R|A(R,N), and DR|A(N) = DR|A(R,N). Note that

we also can write D0
R|A(M) = {δ ∈ HomA (R,M) | ad(r)δ = 0, for all r ∈ R}.

D0
R|A(M) = {δ ∈ HomA (R,M) | ad(r)δ = 0, for all r ∈ R}

In general DR|A(M,N) is no longer a noncommutative ring, unless M = N . Never-
theless, the composition of differential operators is still defined.

Proposition 1.14. Let M, N , and L be R−modules. If δ ∈ Di
R|A(M,N) and

∂ ∈ Dk
R|A(N,L), then ∂δ ∈ Di+k

R|A(M,L).

Proof. The proof is analogous to the proof of Proposition 1.11. �

One of our goals in this chapter is to understand both DR|A(M,N) as a module and
as a functor. We need to show that DR|A satisfies functorial properties that are natural
on both M and N .

Proposition 1.15. Let φ : M −→ M ′ and ϕ : N −→ N ′ be homomorphisms between
R−modules. Let δ ∈ Di

R|A(M,N), and ∂ = ϕδφ, as shown in the commutative diagram

M ′ N ′

M N

∂

φ

δ

ϕ

Then δ ∈ D(M ′, N ′).
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Proof. Recall that φ ∈ HomR (M,M ′) = D0
R|A(M,M ′), and

ϕ ∈ HomR (N,N ′) = D0
R|A(N,N ′). Now, using Proposition 1.14 we have that

∂ = ϕδφ ∈ D0+i+0
R|A (M ′, N ′).

�

We showed there are functorial properties between modules over the same ring. Fur-
thermore, if we fixed the modules, then there are functorial properties for different rings.

Proposition 1.16. Let A
g−→ S

f−→ R be ring homomorphisms. If M and N are R
modules, then for every i ∈ N

Di
R|S(M,N) ⊆ Di

R|A(M,N) ⊆ Di
S|A(M,N).

Proof. First note that

HomR (M,N) ⊆ HomS (M,N) ⊆ HomA (M,N) .

Thus, we have that

D0
R|S(M,N) = HomR (M,N) = D0

R|A(M,N),

and that

D0
R|A(M,N) = HomR (M,N) ⊆ HomS (M,N) = D0

S|A(M,N).

We proceed by induction. Suppose that the result is true for some n ∈ N. Let
δ ∈ Dn+1

R|S (M,N). Using the definition, we have that

δ ∈ HomS (M,N) ⊆ HomA (M,N) ,

such that ad(r)δ ∈ Dn
R|S(M,N) ⊆ Dn

R|A(M,N), by induction hypothesis. It follows that

δ ∈ Dn+1
R|A (M,N).

Now, let δ ∈ Dn+1
R|A (M,N). Since δ ∈ HomA (M,N), we need to check that

ad(s)δ ∈ Dn
S|A(M,N), for every s ∈ S. Using that

ad(s)δ(m) = δ(s ·m)− s · δ(m) = δ(f(s)m)− f(s)δ(m) = ad(f(s))δ(m),

we have by induction hypothesis

ad(s)δ = ad(f(s))δ ∈ Dn
R|A(M,N) ⊆ Dn

S|A(M,N).

Therefore δ ∈ Dn+1
S|A (M,N), and so we have that

Dn+1
R|S (M,N) ⊆ Dn+1

R|A (M,N) ⊆ Dn+1
S|A (M,N).

�

2. Principal parts

In this section we develop tools to compute differential operators as

Lemma 1.17. Given a ring S, an ideal J ⊆ S and an S−module M , we have that

S/J ⊗S M ∼=
M

JM
.
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Proof. Consider the exact sequence

J −→ S −→ S/J −→ 0.

Using that −⊗S M is a right exact functor, we have the following exact sequence

J ⊗S M −→ S ⊗S M −→ S/J ⊗S M −→ 0.

Recall that for any s ∈ S and m ∈M , we have that

s⊗m = 1⊗ sm.

It follows that S ⊗SM ∼= M , and that J ⊗M ∼= JM . Thus, by universal property of the
cokernel, we conclude that

S/J ⊗S M ∼=
M

JM
.

�

Definition 1.18. Take ∆R|A as in definition 1.4. We define the module of i−principal
parts of R over A as

P i
R|A =

PR|A

∆i+1
R|A

.

Now, given an R−module M , set

PR|A(M) = R⊗AM, and P i
R|A(M) = PR|A(M)⊗PR|A P

i
R|A.

Using the lemma 1.17, we have that

P i
R|A(M) ∼=

R⊗AM
∆i+1
R|A(R⊗AM)

.

Define the map dM : M −→ PR|A(M) by dM(m) = 1⊗Am. Let ρiM : PR|A(M) −→ P i
R|A(M)

the natural projection. Then, we take diM = ρiMdM . Note that both PR|A(M) and P i
R|A(M)

are PR|A−modules.

Proposition 1.19. Let R be an A−algebra, and let M and N be R−modules. There
is an isomorphism

HomR

(
P i
R|A(M), N

)
−→ Di

R|A(M,N)

φ 7→ φdiM .

Proof. Recall, from Corollary 1.2, that HomA (M,N) ∼= HomR

(
PR|A(M), N

)
is a

PR|A−module. Note that δ ∈ Di
R|A(M,N) if and only if, for any r ∈ R,

ad(r)δ ∈ Di−1
R|A(M,N).

By continuing this process, we have that δ ∈ Di
R|A(M,N) ⊆ HomA (R,M) if and only if

ad(r0) · · · ad(ri)δ = 0, for any r0, . . . , ri ∈ R.

Using Corollary 1.2, we can take ϕ ∈ HomR

(
PR|A(M), N

)
such that δ(m) = ϕ(1 ⊗m).

Thus,

0 = [ad(r0) · · · ad(ri)δ](m) = [ad(r0) · · · ad(ri)ϕ](1⊗m) = ϕ(ad(r0) · · · ad(ri)(1⊗m)).
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It follows that ϕ(∆i+1
R|A(R ⊗A M)) = 0, and so, there exists φ : P i

R|A(M) −→ N such that

the following diagram commutes

M PR|A(M) P i
R|A(M)

N

δ

dM ρiM

ϕ
φ

.

Since all the correspondences are unique, and that ρiMdM = diM , we showed the desired
isomorphism. �

Corollary 1.20. With the same assumptions as before,

DR|A(M,N) = lim→
i∈N

HomR

(
P i
R|A(M), N

)
Proposition 1.21. We have that

D1
R|A(M) ∼= M ⊕DerA (M) .

Proof. Consider the exact sequence

0 −→ ∆R|A/∆
2
R|A −→ PR|A/∆

2
R|A −→

PR|A/∆
2
R|A

∆R|A/∆2
R|A

∼=
PR|A
∆R|A

−→ 0.

We define

ϕ : P 1
R|A = PR|A/∆

2
R|A −→ ∆R|A/∆

2
R|A = ΩR|A

r ⊗ s+ ∆2
R|A 7→ −s(1⊗ r − r ⊗ 1) + ∆2

R|A.

Note that

ϕ(1⊗ r − r ⊗ 1 + ∆2
R|A) = ϕ(1⊗ r + ∆2

R|A)− ϕ(r ⊗ 1 + ∆2
R|A)

= −r(1⊗ 1− 1⊗ 1)− (−1(1⊗ r − r ⊗ 1)) + ∆2
R|A

= 1⊗ r − r ⊗ 1 + ∆2
R|A,

and so ϕ is a split map.
Recall that µ : PR|A −→ R is surjective. Thus,

P 0
R|A = PR|A/∆R|A ∼= R.

Now, we have that

D1
R|A(M) ∼= HomR

(
P 1,M

)
∼= HomR

(
R⊕ ΩR|A,M

)
∼= HomR (R,M)⊕ HomR

(
ΩR|A,M

)
∼= M ⊕DerR|A (M) .

�
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3. Prime characteristic in differential operators

We
We recall properties of the Frobenius map and look at the effect it has on differential

operators

Proposition 1.22. If R is an A−algebra, then the functor Di
R|A(−) = Di

R|A(R,−) is
a left exact functor.

Proof. As we showed in Proposition 1.19, we have that Di
R|A(−) = Di

R|A(R,−) ∼=
HomR

(
P i
R|A,−

)
, which is a left exact functor. �

Proposition 1.23. Let R be an A−algebra, and W ⊆ R a multiplicative subset. Then

W−1P i
R|A
∼= P i

W−1R|A
∼= P i

W−1R|(W∩A)−1A
.

Proof. First, we have

W−1P i
R|A = (W ⊗ 1)−1

(
R⊗A R

∆i+1
R|A

)
.

Using that
1⊗ w = w ⊗ 1 + (1⊗ w − w ⊗ 1) ∈ w ⊗ 1 + ∆R|A,

and that

P i
W−1R|A =

W−1R⊗AW−1R

∆i+1
W−1R|A

∼= (W ⊗ 1)−1(1⊗W )−1

(
R⊗A R

∆i+1
R|A

)
we conclude that in fact W−1P i

R|A
∼= P i

W−1R|A. For the second equality, note that

a

w

r1

w1

⊗ r2

w2

=
ar1

ww1

⊗ wr2

ww2

=
wr1

ww1

⊗ ar2

ww2

=
r1

w1

⊗ a

w

r2

w2

.

It follows that, there is an A−isomorphism

W−1R⊗AW−1R −→ W−1R⊗(W∩A)−1AW
−1R

r1

w1

⊗ r2

w2

7→ r1

w1

⊗ r2

w2

.

�

Theorem 1.24. Let R be an A−algebra. If W ⊆ R is a multiplicative closed subset,
and M is an R−module. Then

W−1DR|A(R,M) ∼= DW−1R|A(W−1R,W−1M) ∼= DW−1R|(W∩A)−1A(W−1R,W−1M)

Proof. From the Proposition 1.23, we have that

DW−1R|A(W−1R,W−1M) ∼= HomW−1R

(
P i
W−1R|A,W

−1M
)

∼= HomW−1R

(
P i
W−1R|(W∩A)−1A

,W−1M
)

∼= HomW−1R

(
W−1P i

R|A,W
−1M

)
.

From Proposition, we have that

HomW−1R

(
P i
W−1R|(W∩A)−1A

,W−1M
)
∼= Di

W−1R|(W∩A)−1A
(R,M).
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Note that P i
R|A is finitely generated and, using that R is Noetherian, is also finitely

presented. It follows from Lemma 2.36 that

HomW−1R

(
W−1P i

R|A,W
−1M

) ∼= W−1 HomR

(
P i
R|A,M

) ∼= W−1DR|A(R,M).

�

In the following we follow the results of [7], with some differences in the proofs.

Definition 1.25. Let A be a ring of characteristic p > 0. Then the map

FA : A −→ A

a 7→ ap

is an homomorphism of rings, and we call it the Frobenius map. Now, for any e ≥ 0 define
Ae as A−algebra given by the Frobenius map F e

A : A −→ Ae . Note that the Frobenius map
FA : Ae −→ Ae+1 is a homomorphism of A−algebras because, for any λ ∈ A and a ∈ A,

FA(λ · a) = FA(λp
e

a) = λp
e+1

ap = λ · ap = λ · FA(a).

Definition 1.26. Let A be a ring of characteristic p, and let R be an A−algebra. If
FA : A −→ A is the Frobenius map, we consider A to be an A−algebra with the structure
provided by this map. We define

R(p|A) = A1 ⊗A R
where A acts as follows a · 1⊗ r = FA(a)⊗ r = 1⊗ ar. We can make R(p|A) an A−algebra
by a 7→ a⊗ 1. With this structure, the map

FR|A : R(p|A) −→ R

a⊗ r 7→ arp

is an A−algebra homomorphism. Thus, we have the commutative diagram of A−algebras

R R(p|A) R

A A

GR|A FR|A

FA

where GR|A(r) = 1⊗ r, for r ∈ R. Recursively, we define

R(pe+1|A) =
(
R(pe|A)

)p|A ∼= Ae ⊗ Ae−1 Rpe−1|A ∼= Ae ⊗A R

and write the iteration of the relative Frobenius by F e
R|A : R(pe|A) −→ R.

Lemma 1.27. Let A be a ring of characteristic p > 0, and let R be an A−algebra. If
M and N are R−modules, then

Dpe−1
R|A (M,N) ⊆ HomR(pe|A) (M,N) .

Proof. First, set Sn = R(pe|A). Since Sn is an A−algebra via the map λ 7→ λ⊗ 1, k we
have that Sn is generated as an A−module by {1⊗ r | r ∈ R}. As seen in Proposition 1.5,
we have that ∆Sn|A is generated as an Sn−module by {1⊗ s− s⊗ 1 | s ∈ S}. Combining
both of these observations, we have that

{1⊗ (1⊗ r)− (1⊗ r)⊗ 1 | r ∈ R}
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generates ∆Sn|A as an A−module. If Gn = F e
R|A ⊗A F e

R|A. Then,

Gn(1⊗ (1⊗ r)− (1⊗ r)⊗ 1) = 1⊗ rpe − rpe ⊗ 1 = (1⊗ rpe − rpe ⊗ 1)p
e

.

Thus, Gn(∆Sn|A) ⊆ ∆pe

R|A. Now, let δ ∈ Dpe−1
R|A (M,N). Using Theorem 1.2, we have that

HomSn

(
PSn|A(M), N

) ∼= HomA (M,N) ∼= HomR

(
PR|A(M), N

)
,

and so there are ψ ∈ HomSn

(
PSn|A(M), N

)
and ϕ ∈ HomR

(
PR|A(M), N

)
such that

ψ(1⊗m) = δ

ψ(1⊗m) = δ(m) = ϕ(1⊗m).

Since M and N are Sn−modules by restriction of scalars, we have that

ψ(s⊗m) = s · ψ(1⊗m) = F e
R|A(s)δ(m) = F e

R|A(s)ϕ(1⊗m) = ϕ(F e
R|A(s)⊗m)

It follows that for any sa, sb ∈ Sn and m ∈M

(sa ⊗ sb)δ(m) = ψ((sa ⊗ sb)(1⊗m))

= ψ(sa ⊗ F e
R|A(sb)m)

= ϕ(F e
R|A(sa)⊗ F e

R|A(sb)m)

= ϕ((F e
R|A(sa)⊗ F e

R|A(sb))(1⊗m))

= ϕ(Gn(sa ⊗ sb)(1⊗m)).

As seen in the Proposition 1.19, we have that ϕ(∆pe

R|APR|AM) = 0. and so

∆Sn|Aδ(m) = ϕ(Gn(∆Sn|A)(1⊗m)) ⊆ ϕ(∆pe

R|A(1⊗m)) = 0.

Therefore, we conclude that

(s⊗ 1− 1⊗ s)δ = 0,

i.e., sδ(m) = δ(sm), for any s ∈ Sn. �

Proposition 1.28. Suppose that R is generated by r1, . . . , r` as an R(p|A)-algebra.
Then, for every e ∈ N, R is finitely generated by the same elements as R(pe|A)-algebra.

Proof. We proceed by induction. Suppose that for some e ∈ N, R is finitely gener-
ated by the same elements as R(pe|A)-algebra. Recall that R(pe|A) ∼= Ae ⊗A R. Using the
hypothesis for a given r ∈ R there are aα ∈ A rα ∈ R such that

r =
∑
α

(aα ⊗ rα) · rα1
1 · · · r

α`
` =

∑
α

aαr
p
αr

α1
1 · · · r

α`
`

By inductive hypothesis, there are aαβ ∈ A and rαβ ∈ R such that

rα =
∑
β∈B

(aαβ ⊗ rαβ) · rβ11 · · · r
β`
` =

∑
β∈B

aαβr
pe

αβr
β1
1 · · · r

β`
` .



12 1. DIFFERENTIAL OPERATORS

It follows that

r =
∑
α∈A

aαr
p
αr

α1
1 · · · r

α`
`

=
∑
α∈A

aα

(∑
β∈B

aαβr
pe

αβr
β1
1 · · · r

β`
`

)p

rα1
1 · · · r

α`
`

=
∑
α∈A

∑
β∈B

aαa
p
αβr

pe+1

αβ rα1+pβ1
1 · · · rα`+pβ`` .

Therefore, R is generated as an R(pe+1|A) algebra by r1, . . . , r`. �

Lemma 1.29. Suppose that R is generated by ` elements as an R(p|A)-algebra. Then

HomR(pe|A) (M,N) ⊆ D`pe−1
R|A , for each e ∈ N.

Proof. Fix e ∈ N. Let Se = R(pe|A). Consider ∆R|Se . Using the identity

ad(rs) = 1⊗ rs− rs⊗ 1 = (1⊗ r − r ⊗ 1)(1⊗ s) + (1⊗ s− s⊗ 1)(r ⊗ 1),

we have that

ad

(∑
α

sαr
α1
1 . . . rα``

)
=
∑
α

sα ad(rα1
1 . . . rα`` ) ∈ (ad(r1), . . . ad(r`)).

Since each ad(ri) ∈ ∆R|Se , we conclude that

∆R|Se = (ad(r1), . . . , ad(r`)).

as an ideal of PR|Se . Note that

(1⊗ ri− ri⊗ 1)p
e

= 1⊗ rp
e

i − r
pe

i ⊗ 1 = 1⊗ rp
e

i − (1⊗ ri)1⊗ 1 = 1⊗ rp
e

i − 1⊗ (1⊗ ri)1 = 0,

and so, by pigeonhole principle, ∆`pe

R|Se = 0. Thus, P `pe−1
R|Se = R⊗Se R. It follows that

HomSe (M,N) ∼= HomR

(
PR|Se(M), N

)
∼= HomR

(
P `pe−1
R|Se (M), N

)
∼= D`pe−1

R|Se (M,N).

Using Proposition 1.16 and the commutative diagram

A R

Se

we have that
D`pe−1
R|Se (M,N) ⊆ D`pe−1

R|A (M,N).

�

Theorem 1.30. Let R be an A−algebra, with A a ring of characteristic p > 0. If the
relative Frobenius FR|A : R(p|A) −→ A is finite, then

DR|A(M,N) =
⋃
e∈N

HomR(pe|A) (M,N) .
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Proof. From lemma 1.27, we have that

DR|A(M,N) =
⋃
e∈N

Dpe−1
R|A (M,N) ⊆

⋃
e∈N

HomR(pe|A) (M,N) .

Now, using that the relative Frobenius FR|A : R(p|A) −→ A is finite, we have that R is

finitely generated by ` elements as an R(p|A)−algebra, for some ` ∈ N. Thus, by lemma
1.29, we conclude that⋃

e∈N

HomR(pe|A) (M,N) ⊆
⋃
e∈N

D`pe−1
R|A (M,N) = DR|A(M,N).

�

Definition 1.31. Let R be a ring of prime characteristic p > 0. If F : R −→ R is the
Frobenius map, then, for each e ∈ N, define

D
(e)
R = EndRpe (R) ,

where Rpe = F e
R(R) ⊆ R.

Proposition 1.32. Let k be a perfect field of prime characteristic p > 0. If R is a

K−algebra, then R
WR|K∼= Rp|K.

Proof. First, note that WR|K is injective. We need to show that WR|K is surjective.

Using that K is perfect, we have Kp = FK(K) = K. It follows for any k⊗ r ∈ Rp|K there
is k′ ∈ K such that k = FK(k), and so

k ⊗ r = FK(k′)⊗ r = 1⊗ k′r = WR|K(k′r).

It follows that the composite

R
WR|K−−−→ Rp|K FR|A−−−→ R

is the Frobenius map FR : R −→ R. �

Corollary 1.33. If R is essentially of finite type over k, a perfect field of prime
characteristic p > 0. Then,

DR|k =
⋃
e∈N

HomRp
e (R,R) .

Proof. This result is a consequence of Theorem 1.30, and Proposition 1.32. Let
S = k[x1, . . . , xn] such that

R ∼= W−1 (k[x1, . . . , xn]/I) ,

for some ideal I ⊆ S and a multiplicative set W ⊆ S/I. Since k is perfect, we have that

FS|k(S
p|k) = FS(S) = Sp = Kp[xp1, . . . , x

p
n] = K[xp1, . . . , x

p
n].

It follows that the set {xa11 · · ·xann | 0 ≤ ai < p, i = 1, . . . , n} is a generating set of S as an
Sp module. Thus, the map FS|k is finite. Consider the commutative diagram

S Sp|k S

R Rp|k R

FS|k

FR|k

.
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Since the vertical maps are induced by a projection and a localization, we conclude that
FR|k is also finite and, by Theorem 1.30,

DR|k =
⋃
e∈N

HomR(pe|k) (R,R) =
⋃
e∈N

HomRpe (R,R) =
⋃
e∈N

D
(e)
R .

�



CHAPTER 2

Morita equivlance

In this chapter, our goal is to define the Frobenius Descent by using Morita Equiva-
lences. We first explain what is a Morita Equivalence, for which we start with a back-
ground in Category Theory. Then, we develop the necessary tools to prove Morita’s
Theorem. After that, we show the Morita Equivalence between a ring R and Matn(R)
the n× n−matrices with entries on R. Finally, we define the Frobenius Descent with the
use of the later Morita equivalence.

1. Categorical Prelimenaries

Definition 2.1. We say that two categories C and D are equivalent if there exists
functors F : C −→ D and G : D −→ C such that

FG
η
' 1D, and GF

ε' 1C.

Equivalently, for any C ∈ C and D ∈ D there are natural isomorphisms

ηC : GF (C) −→ C and εD : FG(D) −→ D.

Definition 2.2. Let F : C −→ D, be a functor:

(1) We say that F is full, if for any objects C1, C2 ∈ C, the map

HomC (C1, C2) −→ HomD (F (C1), F (C2))

is surjective.
(2) We say that F is faithful, if for any C1, C2 ∈ C, the map

HomC (C1, C2) −→ HomD (F (C1), F (C2))

is injective.
(3) We say that F is essentially surjective, if for any D ∈ D there is C ∈ C such that

F (C) ∼= D.

Theorem 2.3. If a functor F : C −→ D is a category equivalence, then F is fully
faithful and essentially surjective.

Proof. We show the statement by parts.

(1) [Essentially surjective.] For any D ∈ D, there is C = G(D) such that F (C) =
F (G(D)) = FG(D) ∼= D.

(2) [Faithful.] Since GF (Ci) ∼= Ci, we have that the composite

HomC (C1, C2) −→ HomD (F (C1), F (C2)) −→ HomC (GF (C1), GF (C2))

is an isomorphism. Thus, we have that the first map is injective.

15



16 2. MORITA EQUIVLANCE

(3) [Full.] For convenience, we write H = GF . Note that for any C ∈ C we have the
commutative diagram

H(C) C

H(H(C)) H(C)

ηC

H(ηC)

ηH(C) ηC .

Thus, we have that

ηCηH(C) = ηCH(ηC).

Since ηC is an isomorphism, we have that ηH(C) = H(ηC).
Let g ∈ HomD (F (C1), F (C2)). Define f = ηC2G(g)η−1

C1
as shown in

H(C1) H(C2)

C1 C2

G(g)

ηC1
ηC2

f

.

Note that the map G(g) induces the following commutative diagram

H(H(C1)) H(H(C2))

H(C1) H(C2)

H(G(g))

ηH(C1)
ηH(C2)

G(g)

.

Thus, we have that

H(f) = H(ηC2)H(G(g))H(η−1
C1

)

= ηH(C2)H(G(g))η−1
H(C1)

= G(g)

Using that G is faithful, we conclude that F (f) = g, because G is a category
equivalence. So we conclude that F is full.

�

Definition 2.4. Let R be a ring. A left R−module is an Abelian group (M,+) along
with a left action of R into M such that for all r, s ∈ R and m,n ∈M , we have:

(1) (r + s) · (m+ n) = r ·m+ r · n+ s ·m+ s · n.
(2) (rs) ·m = r · (s ·m).
(3) 1R ·m = m.

Similarly, a right R−module is an Abelian group (M,+) along with a right action of R
into M

(1) (m+ n) · (r + s) = r ·m+ r · n+ s ·m+ s · n.
(2) m · (sr) = (m · s) · r.
(3) m · 1R = m.

We’ll add the notation of R−Mod to the category of left R modules, and Mod−R to
the category of right R modules.
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Definition 2.5. Let R and S be two rings. Then an (R−S)−bimodule is an Abelian
group (M,+) such that

(1) M is both a left R−module and a right S−module.
(2) For every r ∈ R, s ∈ S, and m ∈M we have that

(rm)s = r(ms).

Definition 2.6. Let f, g : M −→ N be two homomorphisms between R−modules. We
define:

• The equalizer of f and g is an R−module E and a homomorphism e : E −→ M ,
which satisfy fe = ge, such that for any homomorphism α : A −→M , if fα = gα,
then there exists a unique homomorphism u : A −→ E such that eu = α.

E M N

A

e
f

g
α

u

• The coequalizer of f and g is an R−module Q and a homomorphism q : N −→ Q,
which satisfy qf = qg, such that for any homomorphism β : N −→ B, if βf = βg,
then there exists a unique homomorphism v : Q −→ B such that vq = β.

M N Q

B

f

g

q

β
v

Proposition 2.7. The equalizer of f and g is given by

Eq(f, g) = Ker(f − g) = {m ∈M | f(m) = g(m)},

along with the inclusion e : Eq(f, g) ↪−→M .

Proof. Directly from the definition, we have that (f−g)e = 0, and so fι = gι. Now,
if h : A −→ M is such that fh = gh, then (f − g)h = 0. By the universal property of the
kernel, there is a homomorphism u : A −→ Eq(f, g), such that eu = h. �

Proposition 2.8. The coequalizer of f and g is

Coeq(f, g) = Coker(f − g)

along with the projection q : N −→ Coeq(f, g).

Proof. Using that q(f − g) = 0, we have that qf = qg. Let h : N −→ A be such that
hf = hg. It follows that (f − g)h = 0. By the universal property of the cokernel, there is
a homomorphism v : Coeq(f, g) −→ A, such that vq = h. �

Proposition 2.9. Let f, g : M −→ N be two homomorphisms between R−modules. If
F : R−Mod −→ S −Mod is an equivalence of categories, then

F (Eq(f, g)) ∼= Eq(F (f), F (g)) and F (Coeq(f, g)) ∼= Coeq(F (f), F (g)).
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Proof. Let α : A −→ F (M) and β : F (N) −→ B such that F (f)α = F (g)α and
βF (f) = βF (g). By Theorem 2.3 F is essentially surjective, thus there are R−modules

A′ and B′ such that F (A′)
φ∼= A and B

ψ∼= F (B′). Let

α′ = αφ, and β′ = ψβ

Using that F is full, by Theorem 2.3, there are α′′ : A′ −→M and β′′ : N −→ B′ such that
F (α′′) = α′ and F (β′′) = β′. Using the universal properties of the equalizer and co-
equalizer there are u′ : A′ −→ Eq(f, g) and v′ : Coeq(f, g) −→ B′ such that α′′ = eu′, and
β′′ = v′q.

F (Eq(f, g)) F (M) F (N) F (Coeq(f, g))

F (A′) F (B′)

A B

F (e) F (f)

F (g)

F (q)

β′ F (v)

v

F (u) α′

ψ−1φ−1

u

If u = F (u′)φ−1 and v = ψ−1F (v′), then we have that

F (e)u = F (e)(F (u′)φ−1) = F (eu′)φ−1 = F (α′′)φ−1 = α′φ−1 = αφφ−1 = α,

and

vF (q) = ψ−1F (v′)F (q) = ψ−1F (v′q) = ψ−1F (β′′) = ψ−1β′ = ψ−1ψβ = β.

Therefore, we conclude that

F (Eq(f, g)) ∼= Eq(F (f), F (g)) and F (Coeq(f, g)) ∼= Coeq(F (f), F (g)).

�

Lemma 2.10. Let F : R − Mod −→ S − Mod be an equivalence of categories. If
f, g : A −→ B are homomorphisms in R−Mod, then

F (f + g) = F (f) + F (g)

Proof. First we have that

A B

A⊕ A B ⊕B

f+g

∆A

f⊕g

∇B

where ∆A(a) = (a, a) and ∇B(b1, b2) = b1 + b2.
Let ρi : A ⊕ A −→ A and πi : B ⊕ B −→ B be the natural projections to the i−th

coordinate. From Proposition 2.7, we have that

Eq(ρ1, ρ2) = {(a, a) ∈ A⊕ A | a ∈ A} ∼= A.

Similarly, using Proposition 2.8, we have that

(b1, b2) + Img[π2 ⊕ (−π2)] = (b1, b2) + (b2,−b2) + Img[π2 ⊕ (−π2)]

= (b1 + b2, 0) + Img[π2 ⊕ (−π2)],
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since π2 ⊕ (−π2) = π2 ⊕ 0− 0⊕ π2. It follows that (Coeq(π2 ⊕ 0, 0⊕ π2)) ∼= (B,∇B).
Applying the functor F we have the diagram

F (A) F (B)

F (A)⊕ F (A) F (B)⊕ F (B)

F (f+g)

F (∆A)

F (f)⊕F (g)

F (∇B)

Using Proposition 2.9, we have that F (∆A) = ∆F (A) and F (∇B) = ∇F (B). Thus, we
conclude that

F (f + g) = F (f) + F (g).

�

Definition 2.11. Two rings R and S are (right) Morita equivalent if the categories
Mod−R and Mod−S are equivalent. We denote this by R ' S.

One of the goals of the following section is to show that Mod−R and Mod−S are
equivalent if and only if R−Mod and S −Mod are equivalent.

Lemma 2.12 (Splitting Lemma). In an Abelian category, let

0 −→ A
α−→ B

β−→ C −→ 0

be an exact sequence. The following statements are equivalent:

(1) There is an isomorphism B
ψ∼= A⊕ C such that ιA = ψα is the natural inclusion

of A into the direct sum, and ρC = βψ−1 is the natural projection from the direct
sum into C.

(2) There is an homomorphism g : C −→ B such that βg = 1B.
(3) There is an homomorphism f : B −→ A such that fα = 1A.

If a short exact sequence satisfies the above properties, we say that the sequence and the
morphisms α and β split.

Proof.
[(1) =⇒ (2)]. Let ιC : C toA⊕C the natural inclusion. If we define g = ψ−1ιC , then

we have that

βg = βψ−1ιC = ρCιC = 1C ,

which proves the statement.
[(2) =⇒ (3)]. First, using that βg = 1B, note that for any b ∈ B

β(b− gβ(b)) = β(b)− (βg)β(b) = β(b)− β(b) = 0.

Using that the sequence is exact, we have that b− gβ(b) ∈ ker(β) = Img(α). Now, using

that α is injective, we have that A
α∼= Img(α). Define f(b) = α−1(b− gβ(b)). Note that

fα(a) = f(α(a)) = α−1(α(a)− gβ(α(a))) = α−1(α(a)) = a.

Thus, we proved the statement.
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[(3) =⇒ (1)]. First, using that fα = 1A, we have that for any b ∈ B
f(b− αf(b)) = f(b)− (fα)f(b) = 0.

Since b = b−αf(b)+αf(b), we have that B = ker(f)+Img(α). Now, if b ∈ ker(f)∩Img(α),
then f(b) = 0 and there is a ∈ A such that

b = α(a) = α((fα)(a)) = αf(α(a)) = αf(b) = 0.

It follows that B = ker(f)⊕ Img(α). Using that β is surjective and that Img(α) = ker(β),
we have that

C ∼=
B

ker(f)
=

ker(f)⊕ Img(α)

ker(β)
∼=

ker(f)⊕ ker(β)

ker(β)
∼= ker(f).

Since α is injective, we have that A ∼= Img(α), and so

B = ker(f)⊕ Img(α) ∼= C ⊕ A ∼= A⊕ C.
�

Definition 2.13. Let G and M be modules over a ring R. We say that G generates
M if and only if there is a nonempty set A and an epimorphism

GA −→M −→ 0.

Furthermore, if G generates every R−module, we say that G is a generator.

Lemma 2.14. Let G and M be R−modules. If G generates M , then there is a subset
H ⊆ HomR (G,M) such that

M =
∑
h∈H

h(G).

Proof. Using that G generates M , there is a set A and an epimorphism GA ϕ−→M .
Consider the following commutative diagram

GA M

G

ϕ

ια ϕα

If (gα)α∈A ∈ GA, then

(gα)α∈A =
∑
α∈A

ια(gα),

because gα = 0 but finitely many α ∈ A. Therefore,

M = ϕ
(
GA
)
⊆
∑
α∈A

ϕα(G) ⊆M,

and so, with H = {ϕα}α∈A we have the desired result.
�

Proposition 2.15. For any R−module G, the following statements are equivalent:

(1) G is a generator.
(2) There exists n ∈ N and an R−module G′, such that

Gn ∼= R⊕G′
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Proof.
[(1) =⇒ (2)]. Using the definition of a generator, there is a nonempty set A and an

epimorphism

GA ρ−→ R −→ 0.

Thus, there is (gα)α∈A ∈ GA such that ρ ((gα)α∈A) = 1. Using that G(A) is a direct sum, we
have that there are α1, . . . , αn ∈ A such that gαi 6= 0 and gα = 0, for α 6= αi. Therefore,
we can take π as the restriction

n⊕
i=1

Gαi −→ G(A) −→ R

and it still is an epimorphism. Define h : R −→
n⊕
i=1

Gαi by

h(r) = r

n∑
i=1

gαi .

Since πh(r) = r for all r ∈ R, by splitting lemma 2.12, we have that π splits, and so

Gn ∼=
n⊕
i=1

Gαi
∼= R⊕ ker(pi).

Thus, we proved the statement.
[(2) =⇒ (1)]. Note there is an epimorphism G −→ R. Let M be any R−module.

Since R is a generator, there is a nonempty set A and an epimorphism R(A) −→ A. It
follows that

G(A) −→ R(A) −→ A

is an epimorphism. �

Definition 2.16. Let P be an module over a ring R. We say that P is projective
if for every epimorphism f : M −→ N and every homomorphism g : P −→ N , there is a
unique h : P −→M such that fh = g, i.e., the diagram commutes

P

M N 0

gh

f

Lemma 2.17. Every free module is projective.

Proof. Given a set A, consider P = R(A) be the free module over A. Let f : M −→ N
be an epimorphism, and g : P −→ N any morphism. For every α ∈ A, write 1α ∈ P the
unit corresponding to Rα in P . Now, using that f is epi, there are mα ∈M such that

g(1α) = f(mα).

Define h : P −→M by setting h(1α) = mα, and extending by linearity. Thus, by construc-
tion, we have that hf = g, i.e., P is projective. �

Proposition 2.18. Given a R−module P , the following statements:

(1) P is projective.
(2) Every epimorphism M −→ P −→ 0 splits.
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(3) P is isomorphic to a direct summand of a free module, i.e., there is a set A and
a P ′ module such that

R(A) ∼= P ⊕ P ′.

Proof.

[(1) =⇒ (2)] Let f : M −→ P be any epimorphism. Using that P is projective, we
have that there is g : P −→ M such that gf = 1P . By splitting lemma 2.12, we have that
the epimorphism f splits.

[(2) =⇒ (3).] Since R is a generator, there is a set A and a epimorphism f : R(A) −→ P .
By hypothesis, the epimorphism f splits, specifically, if P ′ = ker(f), then R(A) ∼= P ⊕P ′.

[(3) =⇒ (1).] Let f : M −→ N be any epimorphism, and g : P −→ N any morphism.
Since P is isomorphic to a direct summand of a free module F , we have that the identity in
P factors through F , which is a projective module. It follows the following commutative
diagram

P

F P

M N 0

1P

Thus, P is projective. �

Corollary 2.19. An R−module P is a finitely generated projective module if and
only if there is n ∈ N and a module P ′, such that

R⊕n ∼= P ⊕ P ′.

Definition 2.20. An R−module P is a progenerator if it is a finite projective gener-
ator.

Definition 2.21. Let M be a right S−module. Define R = EndS (M). Note that M
is a left R−module by the action

f ·m = f(m), f ∈ R and m ∈M.

Furthermore, since f ∈ EndS (M), we have that for any s ∈ S
f · (m · s) = f(m · s) = f(m) · s = (f ·m) · s

and so M is an (R− S)−bimodule. We denote by BiEndS (M) = EndR (M), and we call
it the biendomorphism ring.

Remark. For any right S−moduleM as before, there is a morphism S −→ BiEndS (M)
given by the map s 7→ − · s.

Proposition 2.22. Let M, M ′, and M ′′ be right S−modules.

• If M = M ′ ⊕M ′′, and M ′ generates M ′′, then there is a monomorphism

BiEndS (M)
Res−−→ BiEndS (M ′) .

corresponding to the restriction map.
• BiEndS (M) ∼= BiEndS (M⊕n), for any n ∈ N.
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Proof.

• Let R = EndS (M) and R′ = EndS (M ′). If ι : M ′ −→ M and ρ : M −→ M ′ are
the inclusion and the projection for the direct summand M ′, then for any f ∈ R,
we have that ρfι ∈ R′. Similarly, if f ′ ∈ EndS (M ′) = R′, then we have that
ιf ′ρ ∈ R. Therefore, we have that

ρRι ⊆ R′ = ριR′ρι ⊆ ρRι,

because 1M ′ = ρι.
Let ψ ∈ EndR (M) = BiEndS (M). If Res(ψ) = ρψι, then we have that

Res(ψ) is an Z−homomorphism because all three are. We need to show that
is R′−linear. Let f ′ ∈ R′. Using that f = ιf ′ρ ∈ R, we have that

Res(ψ)f ′ = ρψιf ′

= ρψ(ιf ′ρ)ι

= ρ(ψf)ι

= ρ(fψ)ι

= ριf ′(ρψι)

= f ′Res(ψ).

It follows that Res(ψ) ∈ EndR′ (M
′) = BiEndS (M ′). Now, we need to show that

Res is an homomorphism. If ψ1, ψ2 ∈ BiEndS (M), then

Res(ψ1 + ψ2) = ρ(ψ1 + ψ2)ι = ρψ1ι+ ρψ2ι.

If ϕ = ιρ ∈ R, then

Res(ψ1ψ2) = ρψ1ψ2ι = ρψ1ψ2ιρι

= ρψ1ψ2ϕι

= ρψ1ϕψ1ι

= ρψ1ιρψ1ι

= Res(ψ1) Res(ψ2).

Thus, we conclude that in fact Res : BiEndS (M) −→ BiEndS (M ′) is a ring
homomorphism.

Now, let ψ ∈ BiEndS (M) such that Res(ψ) = 0. It follows that

0 = ιRes(ψ) = ιρψι = ϕψι = ψϕι = ψιρι = ψι

If we have that M ′ generates M ′′, then M ′ also generates M . Using Lemma 2.14,
if H = HomS (M ′,M), then∑

h∈H

h(M ′) = M

Also note that

H ⊆ HomS (M ′,M)⊕ HomS (M ′′,M) = HomS (M ′ ⊕M ′′,M) = HomS (M,M) = R,
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with the inclusion given by HomS (ι,M) : HomS (M ′,M) −→ HomS (M,M).
Therefore, we have that M = Rι(M ′), and so

ψ(M) = ψ(Rι(M ′)) = Rψι(M ′) = R · 0 = 0.

With this, we conclude that Res is an injective homomorphism of rings.
• As shown before, the map Res : BiEndS (Mn) −→ BiEndS (M) is an injective ring

homomorphism. We only need to show that Res is surjective.
Let ι` : M −→ Mn be the inclusion in the `−coordinate, ρk : Mn −→ M the

projection of the k−coordinate, R = EndS (Mn) and R′ = EndS (M). We have
that

ρkRι` ⊆ ρ`Rι`.

Let ψ ∈ EndR′ (M). Note that

ψn(m1, . . . ,mn) = (ψ(m1), . . . , ψ(mn))

=
n∑
`=1

ι`(ψ(m`))

=
n∑
`=1

ι`ψ(m`)

=
n∑
`=1

ι`ψ(ρ`(m1, . . . ,mn)).

Using that ρkι` = δk`1M , we have that ψnι` = ι`ψ, and ρkψ
(n) = ψρk. Recall

that ρkfι` ∈ R′ and ψ ∈ EndR′ (M), thus

ρkfψ
nι` = (ρkfι`)ψ

= ψ(ρkfι`)

= ρkψ
nfι`.

By uniqueness of the universal property of the direct product, we have that

fψnι` = ψnfι`.

By uniqueness of universal property of the direct sum, we conclude that

ψnf = fψn,

and so ψn ∈ EndR (Mn). Since Resψn = ρ1ψ
(n)ι1 = ψ, we have that Res is

surjective, which concludes the proof.

�

Theorem 2.23. If P is a progenerator right S−module, and R ∼= EndS (P ), then, P
is also a progenerator as a left R−module.

Proof. As we showed before, there are n,m ∈ N and S ′, P ′ right S−modules such
that

P⊕m ∼= S ⊕ S ′, and S⊕n ∼= P ⊕ P ′.
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It follows that

P⊕n ∼= HomS

(
S⊕n, P

)
∼= HomS (P ⊕ P ′, P )

∼= R⊕ HomS (P ′, P ) ,

which shows that P is a generator as an R−module. Similarly have that

R⊕m ∼= HomS

(
P⊕m, P

)
∼= HomS (S ⊕ S ′, P )

∼= P ⊕ HomS (S ′, P ) ,

and so P is a finitely generated projective R−module. �

2. Morita’s Theorem

Our goal in this section is to prove Morita’s Theorem, and using it define the Frobenius
Descent.

Theorem 2.24 (Morita’s Theorem). Let R and S be rings. Then two additive functors
F : Mod−R −→ Mod−S and G : Mod−S −→ Mod−R are inverse equivalences if and
only if here exists a (R, S)−bimodule P such that:

(1) P is a progenerator in both R−Mod and Mod−S.
(2) R ∼= EndS (P ) and S ∼= EndR (P ).
(3) F ∼= −⊗R P, and G ∼= HomS (P,−).

Furthermore, if there is such a (R, S)−bimodule P satisfying these conditions, then

G ∼= −⊗S HomR (P,R)

Lemma 2.25. If R and S are Morita equivalent through F : Mod−R −→ Mod−S and
G : Mod−S −→ Mod−R, then there are Z−isomorphisms

HomS (F (M), N) −→ HomR (M,G(N))

and

HomS (N,F (M)) −→ HomR (G(N),M) .

Proof. Using theorem 2.3, any equivalence of categories is full faithful and essentially
surjective and so we have the isomorphism of sets

HomS (F (M), N)
∼=−→ HomR (G(F (M)), G(N)) .

Using the lemma 2.10, we have that the map is an homomorphism of Abelian groups.
Now, since GF (M) ∼= M as R−modules, we have that

HomR (G(F (M)), G(N)) ∼= HomR (M,G(N))

as R−modules, and so, we have that

HomS (F (M), N) ∼= HomR (M,G(N)) .

By the same reasoning, we conclude that HomS (N,F (M)) −→ HomR (G(N),M) is
Z−linear. �
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Lemma 2.26. Let P be a right S−module, M a right R−module, and U a (R, S)−bimodule.
Then there is a homomorphism

M ⊗R HomS (P,U)
η−→ HomS (P,M ⊗R U)

defined by [η(m⊗ δ)] (p) = m⊗δ(p). If P is a finitely generated and projective S−module,
then η is an isomorphism.

Proof. From the definition η is a Z−homomorphism. If g : M −→ M ′, f : P ′ −→ P ,
and h : U −→ U ′ are maps in the respective categories, then we have two maps

M ⊗R HomS (P,U) −→M ′ ⊗R HomS (P ′, U ′)

m⊗ ϕ 7→ g(m)⊗ hϕf,

and

HomS (P,M ⊗R U) −→ HomS (P ′,M ′ ⊗R U ′)
ψ 7→ [g ⊗ h]ψf,

given by the naturality of both hom and tensor functors. Let p′ ∈ P ′, m ∈ M , and
ϕ ∈ HomS (P,U), then

[g ⊗ h][η(m⊗ ϕ)]f(p′) = [g ⊗ h][m⊗ ϕ(f(p′))]

= g(m)⊗ hϕf(p′)

= [η[g(m)⊗ hϕf ]](p′).

This shows that η is natural in all three entries. For convenience, we write

F (P ) = M ⊗R HomS (P,U), and G(P ) = HomS (P,M ⊗R U).

Thus, η becomes a natural transformation between F and G. When P = S, we have that
the results follows from

F (S) = M ⊗R HomS (S, U) ∼= M ⊗R U ∼= HomS (S,M ⊗R U) = G(S)

Using the additivity from both the hom and tensor functors, we have that both F and G
are additive. Thus, for any n ∈ N,

F (S(n)) ∼= G(S(n)).

Now, let P be any finitely generated and projective S−module. This means that there
is n ∈ N and a S−module P ′ such that S(n) ∼= P ⊗ P ′. We have the split exact sequence

0 −→ P −→ S(n) −→ P ′ −→ 0,

which induces the following commutative diagram

0 F (P ) F (S(n)) F (P ′) 0

0 G(P ) G(S(n)) G(P ′) 0.

η η η

By the Five Lemma, we conclude that F (P ) ∼= G(P ). �
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Lemma 2.27. Let P be a left R−module, N a right S−module, and U a (R, S)−bimodule.
Then there is a homomorphism

HomS (U,N)⊗R P
ν−→ HomS (HomR (P,U) , N)

given by [ν(γ ⊗ p)] (δ) = γδ(p). If P is a finitely generated and projective R−module, then
ν is an isomorphism.

Proof. Similarly as before, we have that ν is a Z−homomorphism that is natu-
ral in all three entries. For convenience, we write F (P ) = HomS (U,N) ⊗R P and
HomS (HomR (P,U) , N), and so ν becomes a natural transformation between F and G.
When P = R, we have that the results follow from

F (R) = HomS (U,N)⊗R R ∼= HomS (U,N) ∼= HomS (HomR (R,U) , N) = G(R)

Using the additivity from both the hom and tensor functors, we have that both F and G
are additive. Thus, for any n ∈ N,

F (R(n)) ∼= G(R(n)).

Now, let P be any finitely generated and projective R−module. This means that
there is n ∈ N and a S−module P ′ such that R(n) ∼= P ⊗ P ′. So we have the split exact
sequence

0 −→ P −→ R(n) −→ P ′ −→ 0,

which induces the following commutative diagram

0 F (P ) F (R(n)) F (P ′) 0

0 G(P ) G(R(n)) G(P ′) 0.

ν ν ν

By the Five lemma, we conclude that F (P ) ∼= G(P ). �

Proposition 2.28. If P is an (R, S)−bimodule that is a progenerator as an Mod−S
and R ∼= EndS (P ). Then, P a progenerator in Mod−R and S ∼= EndR (P ).

Proof. The first part of the result is shown in Theorem 2.23. We only need to show
that S ∼= HomR (P, P ). In order to prove that, we use the Proposition 2.22 and we have
the commutative diagram

S BiEndS (S)

BiEndS (P ) BiEndS (P⊕m) BiEndS (S ⊕ S ′)

∼=

∼= ∼=

Thus, we have a monomorphism from BiEndS (P ) ∼= EndR (P ) into S, which itself injects
into EndR (P ), and so, we conclude that EndR (P ) ∼= S. �

Proof of Morita’s Theorem 2.24. First, suppose that F andG are inverse equiv-
alences. Let P = F (R), which by definition is a right S−module. We have that P is a
(R, S)−bimodule, since

EndS (P ) = HomS (F (R), F (R)) ∼= HomR (R,R) ∼= R

acts on the left, and commutes with the right S action.
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We want to show that P is a progenerator as a right S−module. Let N be a right
S−module. Using the Theorem 2.3, there is an R−module M with F (M) ∼= N . Recall
that R is a generator. Then, there is a nonempty set A and an epimorphism RA −→M −→ 0.
It follows that

PA ∼= F (RA) −→ F (M) ∼= N −→ 0.

Since N was arbitrary, we conclude that P is a generator of S−modules.
Now, consider an epimorphism N −→ P −→ 0. Recall that G(P ) = G(F (R)) ∼= R.

Using that R is projective and the Proposition 2.18, the epimorphism

G(N) −→ R −→ 0

splits. It follows that the epimorphism F (G(N)) ∼= N −→ P −→ 0 splits, and so P is
projective. Thus, the first condition is satisfied. Note that the second condition on P is
satisfied by Proposition 2.28.

Now, using Lemma 2.25, we have that for any S−module N

G(N) ∼= HomR (R,G(N)) ∼= HomS (F (R), N) = HomS (P,N)

In particular, using that S ∼= EndR (P ) and R ∼= EndS (P ), we have that

G(S) ∼= HomS (P, S) ∼= HomS (P,HomR (P, P )) ∼= HomR (P,HomS (P, P )) ∼= HomR (P,R)

Using lemma 2.27, it follows that for any R−module M ,

F (M) ∼= HomS (S, F (M))
∼= HomR (G(S),M)
∼= HomR (HomR (P,R) ,M)
∼= HomR (R,M)⊗R P
∼= M ⊗R P.

Thus, the third condition is satisfied.
Now, suppose that such a bimodule P exists. Using the Lemmas 2.27 and 2.26, we

have that

FG(N) ∼= HomS (P,M ⊗R P ) ∼= M ⊗R HomS (P, P ) ∼= M,

and

GF (M) ∼= HomS (P,N)⊗R P ∼= HomS (HomR (P, P ) , N) ∼= N.

So, we have that F and G are inverse of each other.
For the last remark, we proceed similarly by defining Q = G(S) ∼= HomR (P,R). Using

that G is an equivalence of categories, we conclude that

G ∼= −⊗S Q ∼= −⊗S HomR (P,R) .

�

Corollary 2.29. Let R and S be rings. Then Mod−R ∼= Mod−S if and only if
R−Mod ∼= S −Mod. Furthermore, there is (S,R)−bimodule P such that

(1) P is a progenerator in both S −Mod and Mod−R.
(2) R ∼= EndS (P ) and S ∼= EndR (P ).
(3) F ∼= P ⊗R − and G ∼= HomS (P,−) ∼= HomR (P,R)⊗S −.
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Proof. Suppose that R −Mod ∼= S −Mod. Then, Mod−Rop ∼= Mod−Sop. Using
Morita’s Theorem 2.24, there is a (Rop, Sop)−bimodule P such that is a progenerator in

R ∼= Rop ∼= EndSop (P ) ∼= EndS (P ) , and S ∼= Sop ∼= EndRop (P ) ∼= EndR (P ) ,

and there are functors

F (−) = −⊗RopP ∼= P⊗R−, and G(−) = −⊗SopHomRop (P,Rop) ∼= HomR (P,R)⊗S−,
which are inverse of each other from R−Mod ∼= Mod−Rop to S−Mod ∼= Mod−Sop. Since
P is a (S,R)−bimodule, we can take the functors −⊗S P and −⊗R HomR (P,R), which
are equivalences between Mod−S and Mod−R, by Morita’s Theorem. The converse is
proven in a similar fashion. �

3. Morita equivalence: Ring and n× n−Matrix ring

In this section we show that R and S = Matn(R), the ring of n× n matrices with entries
in R, are Morita equivalent.

Theorem 2.30. Let M and M ′ be R−modules and f : M −→M ′ a homomorphism of
R−modules. We define the functor F : R−Mod −→ S −Mod by

F (−) = Rn ⊗R −,
and its inverse is

G(−) = HomR (Rn, R)⊗S −

Let P = Rn ∼= Rn ⊗R R. It follows that P is a progenerator in R−Mod. Using that

S ∼= EndR (Rn) ∼= Rn2 ∼= P n ∼= P ⊕Rn2−n

we have that P is a generator and a finitely generated projective module, i.e., P is a
progenerator in S −Mod.

We only need to check that R ∼= EndS (Rn). First, since there is an inclusion

R −→ S

r 7→ r1n,

we have that

EndS (Rn) ⊆ EndR (Rn) ∼= Matn(R) .

Let {ei} denote the canonical basis ofRn. For simplicity we consider {ei} as n×1−matrices
(column vectors). {Eij} the n×n−matrix with 1 in position (i, j) and 0 elsewhere. Let v
be a 1× n−matrix (a row vector) and w be a n× 1−matrix (a column vector). We have
that eiv is the n× n−matrix with v in the i−th row and 0 elsewhere,

(eiv)jk = (ei)jvk = δijvk,

and that weTj is the n× n−matrix with w in the j−th column and 0 elsewhere

(weTj )ki = wk(e
T
j )i = δijwk.

Using this, we have that Eij = eie
T
j

(eie
T
j )k` = (ei)k(e

T
j )` = δikδj` = (Eij)k`
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If M is a n×n−matrix, then eTjM is the j−th row of M and Mei is the i−th column
of M , because

(eTjM)1k =
n∑
i=1

(eTj )iMik = Mjk and (Mei)k1 =
n∑
j=1

Mkj(ei)j = Mki.

Using that

(MEij)k` =
n∑
h=1

Mkh(Eij)h` =
n∑
h=1

Mkhδihδj` = δj`Mki,

we have that MEij = Meie
T
j is the matrix whose j−th column is the i−th column of M

and 0 elsewhere. Similarly with

(EijM)k` =
n∑
h=1

(Eij)khMh` =
n∑
h=1

δikδjhMh` = δikMj`

we have that EijM = eie
T
jM is the matrix whose i−th row is the j−th row of M .

Now, letM ∈ EndS (Rn), and consider it as a matrix. Thus, we have thatMEii = EiiM .
It follows that for any i 6= k

Mki = δiiMki = (MEii)ki = (EiiM)ki = δikMii = 0,

and so M is a diagonal matrix.
We need to show that M = r1n, for some r ∈ R. Note that

EijEji = eie
T
j eje

T
i = ei ||ej||2 eTi = eie

T
i = Eii.

Thus,

M11 = (ME11)11 = (ME1iEi1)11 = (E1iMEi1)11 =
n∑
j=1

(E1i)1j(MEi1)j1 = (MEi1)i1 = Mii.

Therefore, M = M111n. we conclude that R ∼= EndS (Rn) by the inclusion R ↪−→ S defined
earlier.

Using Morita’s Theorem 2.24, we conclude that F (−) = Rn ⊗R − is a equivalence of
categories with the inverse functor G(−) = HomR (Rn, R)⊗S −.

4. Morita equivalence: Frobenius Descent

In this section, we define the Frobenius Descent.

Proposition 2.31. Let R be a ring, M be an R−submodule, and W ⊆ R a multi-
plicative subset. Then the R−linear map

ψ : W−1R⊗RM −→ W−1M
r

w
⊗m 7→ rm

w
is an isomorphism.

Proof. We need to show that ψ is bijective. If r
w
⊗m such that rm

w
= 0, then there

is w′ ∈ W such that w′rm = 0. It follows that

r

w
⊗m =

w′r

w′w
⊗m = w′r

1

w′w
⊗m =

1

w′w
⊗ w′rm =

1

w′w
⊗ 0 = 0,
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and so, ψ is injective. Now, for any m
w
∈ W−1M there is 1

w
⊗m such that ψ( 1

w
⊗m) = m

w
,

and so ψ is surjective. Thus, we conclude that ψ is bijective. �

Corollary 2.32. Let R be a ring and W ⊆ R a multiplicative closed subset. Then

W−1(−) ∼= W−1R⊗R −
is a functor between R−modules and W−1R−modules.

Proof. Consider ψ as in Proposition 2.31. Let f : M −→ N be an homomorphism of
R−modules. If m

w
∈ W−1M , then

W−1f
(m
w

)
= ψ(1W−1R⊗f)ψ−1

(m
w

)
= ψ(1W−1R⊗f)

(
1

w
⊗m

)
= ψ

(
1

w
⊗ f(m)

)
=
f(m)

w
.

Thus, for any r
w′
∈ W−1R,

W−1f
( r
w′
m

w

)
= W−1f

( rm
w′w

)
=
f(rm)

w′w
=
rf(m)

w′w

r

w′
W−1f

(m
w

)
.

We conclude that W−1f is W−1R−linear. �

Proposition 2.33. Let R be a ring, and M, N be R−modules. If W ⊆ R is a
multiplicative closed subset, then

W−1M ⊗W−1RW
−1N ∼= W−1 (M ⊗R N) .

Proof. Using Proposition 2.31, we have that

W−1M ⊗W−1RW
−1N ∼=

(
W−1R⊗RM

)
⊗W−1R

(
W−1R⊗R N

)
∼= W−1R⊗R (M ⊗R N)

∼= W−1 (M ⊗R N) .

�

Proposition 2.34. [8, Tag 02C6] Let W1,W2 ⊆ R be multiplicative closed subsets,
and M be an R−module. If W1 is the image of W1 in W−1

2 R, then

(W1W2)−1R ∼= W1
−1 (

W−1
2 R

)
.

Proposition 2.35. Let L
f−→ M

g−→ N be an exact sequence of R−modules. Then
W−1L −→ W−1M −→ W−1N is also exact.

Proof. Using that localization is a functor, we have that W−1L −→ W−1M −→ W−1N

is a complex. Let m
w
∈ W−1M such that 0 = (W−1g)

(
m
w

)
= g(m)

w
. By definition, there is

w′ ∈ W such that 0 = w′g(m) = g(w′m). It follows that w′m ∈ ker(g) = Img(f). Thus,
there is l ∈ L such that f(l) = w′m, and so

W−1f

(
l

w′w

)
=
f(l)

w′w
=
w′m

w′w
=
m

w
.

We conclude that the sequence W−1L −→ W−1M −→ W−1N is exact. �

Lemma 2.36. Let R be a ring, M and N are R−modules, and W ⊆ R a multiplicative
closed subset. If M is finitely presented, then

W−1 (HomR (M,N)) ∼= HomW−1R

(
W−1M,W−1N

)

https://stacks.math.columbia.edu/tag/02C6
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Proof. Using that M is finitely presented, there are n,m ∈ N and an exact sequence

(1) Rm −→ Rn −→M −→ 0.

For convenience, write S = W−1R. Localize the sequence (1) to get the exact sequence

(2) Sm −→ Sn −→ S ⊗RM −→ 0.

On the other hand, if we use the functor HomR (−, N) on the sequence (1), then we have
the exact sequence

(3) 0 −→ HomR (M,N) −→ Nn −→ Nm.

On this sequence, we take the localization to get

0 −→ S ⊗R HomR (M,N) −→ (S ⊗R N)n −→ (S ⊗R N)m.

Now, if we use the functor HomS (−, S ⊗R N), then we have the exact sequence

0 −→ HomS (S ⊗RM,S ⊗R N) −→ (S ⊗R N)n −→ (S ⊗R N)m.

Note there is an S−linear homomorphism

ϕ : S ⊗R HomR (M,N) −→ HomS (S ⊗RM,S ⊗R N)

1⊗ f 7→ µ1 ⊗ f.
Thus, we have the commutative diagram

0 0 S ⊗R HomR (M,N) (S ⊗R N)n (S ⊗R N)m

0 0 HomS (S ⊗RM,S ⊗R N) (S ⊗R N)n (S ⊗R N)m

.

By Five Lemma, we have that ϕ is an isomorphism, and so

W−1 (HomR (M,N)) ∼= S ⊗R HomR (M,N)
∼= HomS (S ⊗RM,S ⊗R N)

∼= HomW−1R

(
W−1M,W−1N

)
.

�

Definition 2.37. Let R be a ring and M an R−module.

(1) We say that M is locally free if we can cover Spec(R) by {D(fi)}i∈A , such that
Mfi is a free Rfi−module, for all i ∈ A .

(2) We say that M is finite locally free if we can choose the covering such that Mfi

is finitely generated free module.

Lemma 2.38. [8, Lemma 00HN] Let R be a ring, and M be an R−module.

(1) Let M be an R−module. For m ∈M the following are equivalent:
(a) m = 0.
(b) m maps to zero in Mp for all p ∈ Spec (R).
(c) m maps to zero in Mm for all m ∈ maxR.

(2) For an R−module M the following are equivalent:
(a) M = 0.
(b) Mp = 0 for all p ∈ Spec (R).

https://stacks.math.columbia.edu/tag/00HN
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(c) Mm = 0 for all m ∈ maxR.
(3) Given a complex M1 −→M2 −→M3 of R−modules the following are equivalent:

(a) M1 −→M2 −→M3 is exact.
(b) (M1)p −→ (M2)p −→ (M3)p for all p ∈ Spec (R).
(c) (M1)m −→ (M2)m −→ (M3)m for all m ∈ maxR.

Lemma 2.39. [8, Tag 00EO] Let R be a ring, and M be an R−module. Suppose there
are f1, . . . , fn ∈ R, for some n ∈ N, such that (f1, . . . , fn) = R.

(1) If each Mfi = 0, then M = 0.
(2) If each Mfi is finite Rfi−module, then M is finite R−module.
(3) If each Mfi is finitely presented Rfi−module, then M is finitely presented R−module.
(4) Let M1 −→M2 −→M3 be complex of R−modules. If each (M1)fi −→ (M2)fi −→ (M3)fi

is exact, then M1 −→M2 −→M3 is exact.

Corollary 2.40. If R is a Noetherian ring, and M is finitely locally free R−module,
then M is finitely presented.

Proof. Using that M is finitely locally free, there are f1, . . . , fn ∈ R such that
(f1, . . . , fn) = R and that each Mfi is finitely free. By Lemmma 2.39 we conclude that
M is finitely presented, because a finitely free module is finitely presented. �

Proposition 2.41. Let R be a Noetherian ring, and f : R −→ A be a homomorphism
of rings such that A is a locally finitely generated free R−module. If S = EndR (A),
then the functor f ∗(−) = A⊗R − is an equivalence between the categories R −Mod and
S −Mod, whose inverse is the functor H(−) = HomR (A,R)⊗S −.

Proof. Let W ⊆ R be a multiplicative closed subset, M be an R−module and N an
A−module. Using Corollary 2.40 and Lemma 2.36, we have that

W−1S = W−1 EndR (A) = W−1 HomR (A,A) ∼= HomW−1R

(
W−1A,W−1A

)
.

Using that A is locally finitely free, there are r1, . . . , rt ∈ R such that (r1, . . . , rn) = R
and each Ari

∼= Rni
ri

, for some ni ∈ N. Note that
Let M be an R−module, and N be an S−module. As seen in Theorem 2.30, for each

ri there are isomorphisms

Mri
∼= HomRri

(
Rni
ri
, Rri

)
⊗Sri R

ni
ri
⊗Rri Mri

∼= (HomR (A,R)⊗S A⊗RM)ri
∼= (Hf ∗(M))ri

and

Nri
∼= Rni

ri
⊗Rri HomRri

(
Rni
ri
, Rri

)
⊗Sri Nri

∼= (A⊗R HomR (A,R)⊗S N)ri
∼= (f ∗H(N))ri

Using Lemma 2.39, we conclude that F and H are equivalences of categories. �

Definition 2.42. A commutative ring R of characteristic p is said to be F−finite if
the Frobenius map FR : R −→ R is finite, that is, R is a finite module over Rp = FR(R).

Corollary 2.43 (Frobenius Descent). Let R be regular and F−finite ring. Consider
the Frobenius map F e : R −→ Re . Then (F e)∗ is a equivalence of categories between

R−Mod and D
(e)
R −Mod.

Proof. First note that

EndR ( Re ) ∼= EndRe (R) = D
(e)
R .

https://stacks.math.columbia.edu/tag/00EO
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Since R is regular, Re is locally free. Thus, by Proposition 2.41, we conclude that

(F e)∗ (−) = Re ⊗R− is an equivalence of the categories of R−modules and D
(e)
R −modules,

whose inverse is
He(−) = HomR ( Re , R)⊗

D
(e)
R
−.

�

We conclude that all D
(e)
R are Morita equivalent through R. Additionally, if M is a

D
(e)
R −module, then there is the R−module N = He(M) such that (F e)∗ (N) ∼= M . Now,

for any t ∈ N we consider (
F t
)∗

(M) =
(
F e+t

)∗
(N).



CHAPTER 3

Generators of D-modules

In this chapter, we consider R as a ring with prime characteristic. Also, in this chapter,
we look at generators of Rf as a DR−module.

Lemma 3.1. [9] Let R be a regular finitely generated algebra over a regular F−finite
local ring A of prime characteristic p > 0. Then Rf with the DR−module structure has
finite length for every f ∈ R.

1. Ideal of p-th roots

Definition 3.2. Suppose that R is a free Rpe−module. Then any f ∈ R can be
written as

f =
∑
i∈A

cp
e

i fi

where {fi}i∈A is an Rpe−basis of R. In this context, we define

(f)[1/pe] = (c1, c2, . . .) .

In this section R is a regular and F−finite ring of prime characteristic p.

Proposition 3.3. The D
(e)
R are nested.

Proof. Let e′ > e and δ ∈ D(e)
R , then for any r, f ∈ R

δ(rp
e′

f) = δ

((
rp

e′−e
)pe

f

)
=
(
rp

e′−e
)pe

δ (f) = rp
e′

δ (f) .

Thus, in fact δ ∈ D(e′)
R . �

Definition 3.4. Let I ⊆ R be an ideal. We write I [pe] = F e(I)R, i.e., to the ideal
generated by the pe−th powers of the elements of I. Note that if {fi} is a generating set

of I, then I [pe] = ({fp
e

i }).

Lemma 3.5. If I, J ⊆ R are such that I [pe] ⊆ J [pe], then I ⊆ J .

Proof. If R has no nilpotent elements, then we have that the Frobenius map F is
injective. Using the last definition, we have that

F e(I) = F e(I)R ∩ F e(R) = I [pe] ∩Rpe ⊆ J [pe] ∩Rpe = F e(J)R ∩ F e(R) = F e(J).

Thus, using the injectivity of F , we have that I ⊆ J . �

We have defined the ideal generated by the pe−powers. Now, we would like to define
the ideal generated by pe−roots. One way we can make sense of this is by looking at
R as an Rpe−module, and then taking the ideal generated by the coefficients of this
representation, which is denoted as I [1/pe].

35
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Lemma 3.6. If R is F−finite ring. Then

D
(e)
R · f =

(
(f)[1/pe]

)[pe]

.

Proof. Since R is a finitely generated Rpe−module and D
(e)
R commutes with local-

ization, we may assume that R is a free Rpe−module. As we have said before, we can
write any f ∈ R as

f =
∑
i∈A

cp
e

i fi.

It follows that for any δ ∈ D(e)
R = EndRpe (R), then

δ(f) =
∑
i∈A

cp
e

i δ(fi) ∈ ({cp
e

i }) =
(

(f)[1/pe]
)[pe]

,

and so D
(e)
R · f ⊆

(
(f)[1/pe]

)[pe]

.

Now, set δi as the Rpe−linear map defined via δi(fj) = δij, the Kronecker delta. It

follows that δi(f) = cp
e

i . Thus, we conclude that
(

(f)[1/pe]
)[pe]

⊆ D
(e)
R · f , since each

generator of the first is contained in the latter. �

Lemma 3.7. (f)[1/pe] = (fp)[1/p
e+1].

Proof. It suffies to prove this for each localization at every maximal ideal of R. Thus,
we can assume that R is local, with maximal ideal m, and R is both a free Rp−module
and a Rpe−module.

Let {fi} be a Rp−basis and {gj} be a Rpe−module. Since 1 /∈ m, using Nakayama’s
Lemma, we can take f1 = 1.

For any r ∈ R there are ai ∈ R such that

r =
∑
i

api fi

For each ai there are bij ∈ R such that ai =
∑
j

bp
e

ij gj. It follows that

r =
∑
i

∑
j

(
bp
e

ij gj

)p
fi =

∑
i,j

bp
e+1

ij gpj fi,

and so, {gpj fi} is a Rpe+1
basis.

If we write f =
∑
j

cp
e

j gj, then, by raising f to the p−power, we have that

fp =
∑
j

cp
e+1

j gpj =
∑
j

cp
e+1

j gpj f1.

Thus,

(fp)[1/p
e+1] = ({cj}) = (f)[1/pe] .|

�

Lemma 3.8. For any f, g ∈ R, we have that

(fg)[1/pe] ⊆ (f)[1/pe] (g)[1/pe] ⊆ (f)[1/pe]
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Proof. As before, we assume that R is a free Rpe−module with a basis {fi}. Write

f =
∑
i

cp
e

i fi and g =
∑
i

bp
e

i fi. Multiplying these, we have

fg =
∑
i,j

cp
e

i b
pe

j fifj =
∑
i,j,`

cp
e

i b
pe

j a
pe

ij`f` =
∑
i,j,`

(cibjaij`)
pe f`,

where aij` are such that fifj =
∑̀
ap

e

ij`f`. Thus, we have that

(fg)[1/pe] = ({cibjaij`}) ⊆ ({ci}) ({bj}) = (f)[1/pe] (g)[1/pe] ⊆ (f)[1/pe] .

The last contention follows using that (f)[1/pe] is an ideal. �

Lemma 3.9. (
fp

e+1−1
)[1/pe+1]

⊆
(
fp

e−1
)[1/pe]

.

Proof. Since fp
e+1−1 = fp

e+1−pfp−1, we have that
(
fp

e+1−1
)[1/pe+1]

⊆
(
fp

e+1−p
)[1/pe+1]

,

by Lemma 3.8. Using Lemma 3.7, we conclude that(
fp

e+1−1
)[1/pe+1]

⊆
(
fp

e+1−p
)[1/pe+1]

=
((
fp

e−1
)p)[1/pe+1]

=
(
fp

e−1
)[1/pe]

�

2. Ideal of p-th roots and differential operators

Proposition 3.10. The chain of ideals(
fp−1

)[1/p1] ⊇ (fp2−1
)[1/p2]

⊇ . . .

stabilizes at e if and only if there is δ ∈ D(e+1)
R such that δ

(
1
f

)
= 1

fp
.

Proof. Suppose the chain stabilizes at e, i.e.,
(
fp

e−1
)[1/pe]

=
(
fp

e+1−1
)[1/pe

′]
for

e < e′. Using Lemma 3.7, we have that(
fp

e+1−1
)[1/pe+1]

=
(
fp

e−1
)[1/pe]

=
(
fp

e+1−p
)[1/pe+1]

.

It follows from Lemma 3.6 that

D
(e+1)
R · fpe+1−p =

((
fp

e+1−p
)[1/pe+1]

)[pe+1]

=

((
fp

e+1−1
)[1/pe+1]

)[pe+1]

= D
(e+1)
R · fpe+1−1.

Since 1R is Rp−lineal, we have that fp
e+1−p = 1R · fp

e+1−p ∈ D(e+1)
R · fpe+1−1, and so there

exists δ ∈ D(e+1)
R such that

fp
e+1−p = δ · fpe+1−1 = δ

(
fp

e+1−1
)
.

Using that δ is Rpe+1−lineal, we have the equality

fp
e+1−p = δ

(
fp

e+1−1
)

= fp
e+1

δ
(
f−1
)

= fp
e+1

δ

(
1

fp

)
,
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and so
1

fp
=
fp

e+1−p

fpe+1 = δ

(
1

fp

)
.

Suppose there is δ ∈ D(e+1)
R such that δ

(
1
f

)
= 1

fp
. Similarly as in the last paragraph,

we obtain that fp
e+1−p = δ

(
fp

e+1−1
)

. Thus,((
fp

e+1−p
)[1/pe+1]

)[pe+1]

= D
(e+1)
R · fpe+1−p

= D
(e+1)
R · δ

(
fp

e+1−1
)

=
(
D

(e+1)
R · δ

)
· fpe+1−1

⊆ D
(e+1)
R · fpe+1−1

=

((
fp

e+1−1
)[1/pe+1]

)[pe+1]

,

and
(
fp

e+1−p
)[1/pe+1]

⊆
(
fp

e+1−1
)[1/pe+1]

, by using Lemma 3.5. It follows from Lemma

3.7 that the equality (
fp

e−1
)[1/pe]

=
(
fp

e+1−1
)[1/pe+1]

holds, because fp
e+1−p =

(
fp

e−1
)p

.

We showed that if δ ∈ D(e+1)
R such that δ

(
1
f

)
= 1

fp
, then

(
fp

e−1
)[1/pe]

=
(
fp

e+1−1
)[1/pe+1]

.

Recall that D
(e)
R ⊆ D

(e′)
R for any e < e′, and so, we have that(

fp
e−1
)[1/pe]

=
(
fp

e+1−1
)[1/pe+1]

= · · · =
(
fp

e′−1
)[1/pe

′]
.

�

Corollary 3.11. The chain of ideals(
fp−1

)[1/p1] ⊇ (fp2−1
)[1/p2]

⊇ . . .

stabilizes if and only if 1
f

generates Rf as a DR module.

Proof. Suppose that 1
f

generates Rf as a DR module. Then there is δ ∈ DR such

that δ( 1
f
) = 1

fp
. Using Proposition 3.10 we conclude that the chain stabilizes.

Now, suppose that the chain stabilizes at some e ∈ N. By Proposition 3.10 there

is δ1 ∈ D
(e+1)
R such that δ1( 1

f
) = 1

fp
. Additionally, using that R is locally finitely free

Rp−module, there is a cover {r1, . . . , r`} such that Rri is finitely free Rp
ri
−module. As

shown in the proof of Lemma 3.7, we can take a basis that contains 1, and so

Rri
∼= Rp

ri
⊕Rri/R

p
ri
.

Thus, using Lemma 2.39, we conclude there is a Rp−module isomorphism

Rri
∼= Rp ⊕R/Rp.
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Now, for xp + y ∈ R, with x ∈ R and y ∈ R/Rp, define δ2(xp + y) = δ1(x)p. We claim

that δ2 ∈ D(e+2)
R . If c, r ∈ R with r = xp + y, then

δ2(cp
e+2

r) = δ2((cp
e+1

x)p + cp
e+2

y) = δ1(cp
e+1

x)p =
[
cp
e+1

δ1(x)
]p

= cp
e+2

δ1(x)p = cp
e+2

δ2(r).

Thus, we have that δ2 ∈ D(e+2)
R . It follows that

fp
e+2

δ2

(
1

fp

)
= δ2

(
fp

e+2 1

fp

)
= δ2

([
fp

e+1 1

f

]p)
=

[
δ1

(
fp

e+1 1

f

)]p
=

[
fp

e+1

δ1

(
1

f

)]p
=

[
fp

e+1 1

fp

]p
= fp

e+2 1

fp2
.

Thus, δ2( 1
fp

) = 1

fp2
. If we proceed inductively, we have that 1

fpe
∈ DR · 1

f
, for every

e ∈ N. Since
{

1
fpe

}
e∈N

is a generating set of Rf as an R−module it also generates as an

DR−module. �

Theorem 3.12. Let R = K[x1, . . . , xn] be the polynomial ring over a perfect field k

of prime characteristic p. If f ∈ R, then the chain (fp−1)[
1/p1] ⊇

(
fp

2−1
)[1/p2]

⊇ . . .

stabilizes.

Proof. For convenience we will use the multi-index notation, i.e., xα = xα1
1 . . . xαnn .

Note that the monomials {xα | 0 ≤ αi < pe} is a Rpe−basis of R. For any e ∈ N, there
are ceα ∈ R such that

fp
e−1 =

∑
α

cp
e

eαx
α.

Thus, we have that

(pe − 1) deg(f) = deg(fp
e−1) ≥ deg(cp

e

eα) = pe deg(ceα),

and so

deg(f) >
pe − 1

pe
deg(f) ≥ deg(ceα).

Since V = {q ∈ R | deg(q) < deg(f)} is a k vector space of finite dimension, the
descending chain

V ∩
(
fp−1

)[1/p1] ⊇ V ∩
(
fp

2−1
)[1/p2]

⊇ . . .

stabilizes. Using that {ceα} ∈ V ∩
(
fp

e−1
)[1/pe]

is the generating set of
(
fp

e−1
)[1/pe]

, we

conclude that the original chain (fp−1)[
1/p1] ⊇

(
fp

2−1
)[1/p2]

⊇ . . . stabilizes. �
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Theorem 3.13. Let R be a regular finitely generated algebra over an F−finite regular
local ring A of prime characteristic p > 0. Let f ∈ R be a nonzero element. Then
Rf = DR · 1

f
.

Proof. There is a DR−isomorphism

θ : F ∗Rf −→ Rf

s⊗ r

f t
7→ s

rp

f tp
.

For any r
f t
∈ Rf we have that

r

f t
= rf t(p−1) 1

f tp
= θ

(
rf t(p−1) ⊗ 1

f t

)
which shows that θ is surjective. Without loss of generality, we consider that f is not
a zero-divisor. Let s⊗ r

f t
∈ ker(θ), then s r

p

f tp
= 0 if and only if srp = 0 if and only if

0 = srp ⊗ 1
f t

= s⊗ r
f t

, and so θ is injective. Thus, we identified F ∗Rf with Rf .

Let M = DR · 1
f
. We will refer to F ∗M as the image under θ. Now, note that

θ

(
fp−1 ⊗ 1

f

)
= fp−1 1

fp
=

1

f
∈ F ∗M.

Since F ∗M is a DR−submodule of Rf that contains 1
f
, we have that M ⊆ F ∗M . It follows

the chain

M ⊆ F ∗M ⊆ F 2∗M ⊆ F 3∗M ⊆ . . .

and that 1
fpe
∈ F e∗M , for each e ∈ N. Thus,

⋃
e∈N F

e∗M = Rf , since
{

1
fps

}
is a generating

set.
Now, if M ( F ∗M , then F e∗M ( F e+1∗M for each e ∈ N, because F ∗(−) = Re ⊗R −

and Re is faithfully flat R−module. We arrive at a contradiction with Lemma 3.1. Thus,
we conclude that

M = DR
1

f
= Rf .

�

3. Differential summands

Direct summands as seen in chapter 2 are useful for describing properties of modules.
Furthermore, some families of rings, such as rings of invariants under a linearly reductive
group actions, and affine toric rings, are direct summands of polynomial rings. Also, the
Hochster-Roberts Theorem [10], which states that direct summands of regular rings are
Cohen-Macaulay, suggests there are some similar behavior between direct summands and
regular rings. We can find such examples where direct summands are normal rings [11],
with rational singularities in characteristic zero [12] or strongly F -regular singularities in
prime characteristic [11].

Lemma 3.14. Let A ⊆ S ⊆ R be rings. Let ι : S −→ R be the natural inclusion, and
let β ∈ HomS (R, S). If δ ∈ Di

S|A, then βδι ∈ Di
S|A. Furthermore, the result holds for

δ ∈ D(i)
S|A.
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Proof. Note that ι ∈ HomS (S,R) = D0
S|A(S,R) and β ∈ HomS (R, S) = D0

S|A(R, S).
Using Proposition 1.16 we have that

δ ∈ Di
R|A(R,R) ⊆ Di

S|A(R,R).

Additionally, with Proposition 1.14, we conclude that

βδι ∈ D0+i+0
S|A (S, S) = Di

S|A.

For the case δ ∈ D(i)
S|A, we have that

βδι(sp
i

r) = sp
i

βδι(r)

since both are Sp
0

= S lineal. �

Theorem 3.15. Let R be a regular F−finite domain. Let S ⊆ R be an extension of
Noetherian rings such that S is a direct summand of R. Then Sf is generated by 1

f
as

DS−module.

Proof. Recall that Rf is generated as a DR−module by 1
f
. As seen in the proof of

Corollary 3.11, for any e ∈ N, there and e′ ≥ e and δ ∈ D(e′)
R such that δ

(
1
f

)
= 1

fpe
. It

follows that

δ(fp
e′−1) = δ

(
fp

e′ 1

f

)
= fp

e′

δ

(
1

f

)
= fp

e′ 1

fpe
= fp

e′−pe .

Let β : R −→ S be a splitting and ι : S −→ R the inclusion map. Using Lemma 3.14, the

map δ̂ = βδι ∈ D(e′)
S . Since pe

′ − 1 > 0 and pe
′ − pe > 0, we have that fp

e′−1, fp
e′−pe ∈ S,

and so ι(fp
e′−1) = fp

e′−1 and β(fp
e′−pe) = fp

e′−pe . We conclude that

δ̂

(
1

f

)
=

1

fpe
.

Thus, by Corollary 3.11, we conclude that S is generated as a DS−module by 1
f
. �
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