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Abstract

The use of stochastic differential equations has been popularized in different areas such as Physics,
Mathematical biology, and Finance. The analytic solution of this type of equations is in most cases
extremely difficult or impossible and numerical methods must be used for their solution. In this
work, we use the discontinuous Galerkin method (DG) for the solution of conservation laws with
multiplicative white noise, and the local discontinuous Galerkin (LDG) for the solution of parabolic
equations with multiplicative white noise. We first do a revision of classic, weak and entropy solutions
for the conservation laws and parabolic PDEs. Once understood the deterministic problems we study
the concept of Brownian motion, stochastic differential equations and add a multiplicative white noise
in time to the conservation laws and parabolic problems. Then we proceed to study the discontinuous
Galerkin method for deterministic conservation laws and the local discontinuous Galerkin for parabolic
problems. In both cases, we include numerical examples to study their performance and order of
convergence. In addition, we compare the performance of the LDG method with other methods for
the convective-dominated convection-diffusion equations. As part of the numerical experimentation,
we observe the oscillatory behavior that the DG method has for discontinuous solutions. To overcome
this problem we study the use of a two step process called limiters. First, we detect elements of the
domain that have oscillations and second we reconstruct the solutions in elements with oscillatory
behavior. We work with the TVB and BDF limiters and propose a modified version of these limiters,
the ATVB and the M-BDF limiters. A great disadvantage the DG and LDG methods have is the
use of analytic integration in their weak formulations. We work with a nodal entropy DG that uses
the Gauss-Lobatto quadrature to avoid analytical integration which ensures entropy stable solutions.
Then we apply the DG for the stochastic convection equation and the stochastic Burgers equation,
including the use of limiters and entropy stable solutions. The stochastic heat equation and linear
convection-diffusion equations are solved with the LDG method. The inclusion of limiters and entropy
stable solutions for stochastic conservation laws are a contribution made in the thesis, they had not
been previously studied.
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Chapter 1
Introduction

1.1 Motivation

Conservation laws and convection-diffusion equations in their deterministic version have a wide range
of applications. Conservation laws are equations that describe quantities such as mass, momentum,
and energy or the distribution of objects like cars, individuals in population models or microscopic
particles in space and time. The basic principle is that the change in time of the total amount of
the object of study in a region, equals to the amount of the object that enters or exits through the
boundary of the region and what it is produced or consumed inside the domain. This intuition is
formalized and generalized by the so called Transport theorem, which is a generalized version of the
differentiation under an integral sign. This theorem assumes that the domain in which the total amount
of the object of study is computed is changing its position and boundary in time. It relates the change
in time of the total amount of the object of study to the amount of quantity that enters and exits the
domain in time due to the flux and the produced or consumed quantity inside the domain in time.
In addition, these laws assume that the Continuum hypothesis holds. This hypothesis allows us to
consider a continuous model for situations that are not continuous, for example, the modeling of a
population. In the population example, we are interested in knowing how the number of individuals,
a discrete quantity, behaves in space and time. The idea is that if we view the population from far
away enough we lose the view of the individuals and the population seems to be continuous. Think
of a wave in a football stadium, if we focus on an individual we do not see a wave, but if we watch it
from far away (on the other side of the field or with a drone) we do not see individuals and only see
the wave.

We will work with two examples, the convection equation and Burgers’ equation. Both of them
can be interpreted in terms of a traffic model. The first assumes that there is heavy traffic and that the
cars move at a constant speed in one direction. The second one models the velocity profile of vehicles
u(x, t). At each time t̂ the map x → u(x, t̂) describes the velocity of a vehicle at the spatial position x
at the time t̂. Denoting the trajectory of a vehicle by x(t), this model assumes that the speed of each
vehicle ẋ(t) satisfies ẋ(t) = u(x(t), t), with u(x, t) the solution to the burgers equation evaluated at
the trajectory of the vehicle x(t). It can be shown that under those hypothesis, the acceleration of the
vehicle ẍ(t) is zero. The vehicle density is allowed to vary on a range, the highway is full or empty.
The importance of the Burgers’ equation is that is the simplest model with a flux that is nonlinear

1



CHAPTER 1. INTRODUCTION 2

and it is helpful to understand the behaviours of these kind of equations. The Burgers equation has
applications in interference dynamics, cosmology, statistical mechanics and hydrodynamical turbulence
[10].

The second type of equations we consider are the convection-diffusion equations, they add diffusion
to a conservation law. Which means that in addition to the transport of our quantity of interest
(dynamics of the conservation law), we add to the macroscopic model the effects of what is occurring
at a molecular level. We can understand intuitively the diffusive part by thinking in the following
experiment. Consider a glass with water in which a droplet of colorant is put on the center of the glass
of water. Assume that we have put the colorant with a lot of care so that there is no impulse by the
effect of introducing the droplet. As time progresses the water will start to be mixed with the colorant.
This mixing occurs due to the movement of the colorant molecules, which flow from highly colorant
concentrated areas to less concentrated areas. The convection-diffusion equation is the mixture of these
two phenomena, the transport of our quantity of interest plus the macroscopic effects of the molecular
behavior.

An example where convection-diffusion equations can be used is in the modeling of the concentra-
tion of a pollutant in a river. The flow of the river transports the pollutant from one part to another of
the river, the effect of convection. If we moved at the river’s speed we would be able to see the effects
of the diffusion of the contaminant in the water, going from regions with higher density to regions
with lower density. The example of the concentration of a pollutant in a river helps us to introduce
a type of problem we will focus on, namely the convective-dominated equations. These equations are
dominated by the convective part of the equation. For example, the speed of the river is much greater
than the speed at which the contaminant is diffusing in the river. Since the convective part is domi-
nant, the solution to these equations is closer to the solution of conservation laws. We will study that
the solutions of conservation laws can be problematic and have discontinuities, something unexpected
for a differential model. Due to the dominance of the convective phenomena, most numerical schemes
have problems while solving convective-dominated equations.

Although the previous models can help to study what is observed in nature they still miss an
important fact: we do not always certainly know how to tune the parameters of the equations to match
a particular event. For example, assume that there is a factory that is dropping pollutants on a river.
If the factory is not willing to provide information on what exactly they are dropping into the river and
how much pollutant they are dropping, how can the model be used? We could do a chemical analysis
of the water and estimate the density of the pollutant (a key variable for the model) by measuring it
at different times of the day. If these measurements vary randomly during the day we can not assign a
simple function to the density. It might be better to model the variation with a random variable and
assume each measurement we did is a realization of the random variable. With respect to how much
pollutant the company is leaking, we could as well model it with a random variable. Note that although
these two phenomena are related to the same process, each introduces a different type of stochastic
process. In the first one, a random variable modeling the density, the quantity of interest itself becomes
a stochastic process. Whereas the second case, a random variable modeling the amount of pollutant
introduced, introduces a stochastic process to the model and therefore the solution becomes one.

The solution of these two types of equations changes a lot, even numerically. In this work, we
focus on the second type of equation, where we model the introduction of the pollutant with a random
variable. In particular, we will use a white noise which is the “derivative” of a Brownian motion.
The reason to consider this model is that we are assuming that the pollutant is being introduced
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continuously in time. This model is the easiest one to work with. More complicated models, for
example, using a Levy process are out of the scope of this work. Note that we are assuming that
the position of where the pollutant is being introduced is deterministic. We could model the position
varying with a Brownian motion as well, but this would correspond to a white noise in space time,
a much more complicated problem. The particular model we assume, is a multiplicative white noise.
Which means that we add to the deterministic equation a function depending on the quantity of
interest multiplied by the white noise. In case of the function being constant or independent to the
quantity of interest, the equation has additive white noise. Thus the formulation of numerical solution
for problems with multiplicative white noise is more general than a formulation for equations with
additive noise.

1.2 Background

The study of numerical solutions to conservation laws and convection-diffusion equations is a well
establish area of study, in particular in the computational fluid dynamics community [16], [25] , [27],
[46], [53] and [72].

The numerical solution of the stochastic conservation laws and convection-diffusion equations with
multiplicative white noise had been studied using finite differences techniques [6],[7] and [9]. The use
of Discontinuos Galerkin (DG) method and Local Discontinuous Galerkin (LDG) method have been
recently studied in [47] and [48].

Conservation laws might have discontinuous solutions even for continuous initial conditions. Most
numerical methods suffer from the Gibbs phenomena in discontinuous solutions, oscillations appear
near discontinuities. For the original formulation of the DG method, Cockburn in [16] borrowed a
technique from the finite differences community called the slope limiter to control oscillations. As part
of the development of the DG and LDG methods new limiting techniques have been developed. In
[77] there is a panoramic perspective of the articles published up to 2013. More modern formulations
are the use of wavelets [14], WENO reconstructions [59], artificial neural networks [60], convolutional
neural networks [69] and the use of a multi-layer perception [74].

The DG and LDG methods use the weak formulation of the PDE to define the numerical method.
It is known that weak solutions, these that satisfy the weak form of the equation, may not unique
which is a disadvantage. To select the physically relevant solution, the concept of entropy solutions
was developed, see for example [46]. To set up the DG and LDG numerical schemes some of the
integrals in the weak formulation have to be performed analytically, which can be really difficult to do
in some cases. In [13] and [66], the authors explore the use of numerical integration for the set up of
DG and LDG ensuring entropy stable numerical solutions.

1.3 Objectives

Our main objective was to study the present framework of Discontinuous Galerkin methods to solve
deterministic and stochastic convection-diffusion equations and extend the entropy stable formulation
to the stochastic case. To achieve this objective, the following specific objectives were proposed:

i) Study the DG and LDG methods to gain a deep understanding of the methods, their uses,
limitations and understand their differences.
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ii) Explore limiting techniques known for DG methods and analyze their efficiency.

iii) With some points to improve, determine more suitable limiters for hyperbolic conservation laws.

iv) Understand the entropy stable numerical integration for the set up of DG and LDG and apply
it to stochastic conservation laws.

v) Validation of the proposed modifications in the deterministic and stochastic setting.

1.4 Methodology

The methodological techniques used for the development of this work are described and structured in
the following chapters:

• Chapter 2 Introduce formally the conservation laws, convection-diffusion problems, their weak,
and entropy solutions. Study what stochastic differential equations are and give examples of
stochastic conservation laws and stochastic convection-diffusion equations with their correspond-
ing solutions.

• Chapter 3 Formal study of DG and LDG methods. In the introduction of the LDG methods,
we include a brief discussion on why the DG method does not work for parabolic problems. For
other formulation of the Galerkin methods, we explored the continuous Galerkin method, the
Petrov-Galerkin method, and the Interior-Penalty methods. We compared them with the LDG
method for convection-diffusion and convective-dominated equations and determined the best
method is the LDG method.

• Chapter 4 Study of limiters. A technique used to improve the DG solutions for discontinuous
solutions of conservation laws. In particular, we work with the TVB and BDF limiters, which
we modify to propose the ATVB and M-BDF limiters.

• Chapter 5 Study of nodal entropy stable DG solutions. A technique used to avoid doing analytic
integration in the DG and LDG methods employing the Gauss-Lobatto quadrature to ensure
entropy solutions. We only worked with the DG case.

• Chapter 6 Use of the DG method for stochastic conservation laws and of the LDG method for
stochastic parabolic equations. The improvements done as compared to [47] are the numerical
incorporation of limiters and nodal entropy stable solutions, they were not included in [47] and
left as future work.



Chapter 2
Deterministic and Stochastic Conservation Laws

2.1 Introduction

In this chapter we first review hyperbolic equations or conservation laws, as examples we include
the solution of the linear convection equation and the Burgers’ equation. Second, we study parabolic
equations, in particular the heat equation and the convection-diffusion equation.Thirdly, we give a brief
introduction to stochastic differential equations, formulate the method of characteristics for stochastic
conservation laws, solve the stochastic convection and Burgers equation, and state the stochastic version
of the heat and convection-diffusion equation. For each type of equation we introduce the concept of
weak solutions and entropy solutions.

2.2 Deterministic case

A scalar partial differential equation (PDE) of two variables has the general form:

F (x, y, ux, uy, uxx, uxy, . . .) = 0 (2.1)

where x and y are independent variables in a set O ⊂ R2 and u(x, y) is the dependent variable. We
denote by ux the derivative of u respect to x, that is, ux = ∂u

∂x .

In particular we consider linear PDEs, which in the divergence form can be written as

Au := −∇ · (a∇u) + b ·∇u+ cu = f, (2.2)

where the coefficients satisfy

a(�x) ≥ a0 > 0, c(�x)− 1

2
∇ · b(�x) ≥ 0 for �x ∈ O. (2.3)

These previous conditions are needed to establish important theorems regarding the solutions of PDEs
[20]. The symbol ∇u denotes the gradient of the function u and ∇ · b the divergence of b.

For the problem to be well posed, equation (2.3) must be complemented with some initial condi-
tions and possibly boundary conditions. The initial condition from now on, is denoted by u0(x) and
unless stated differently the boundary conditions are assumed to be periodic.

5



CHAPTER 2. DETERMINISTIC AND STOCHASTIC CONSERVATION LAWS 6

The coefficients of the second order derivatives of u, can be arranged into a matrix A(�x), called
the principal part of the equation. The principal part defines a classification for PDEs.

Definition 2.2.1 (Classification of linear PDEs.). A linear PDE might be classified as one of the
following:

a) The equation (2.2) is said to be elliptic at the point �x provided A(�x) is positive definite.

b) The equation (2.2) is said to be parabolic at the point �x provided A(�x) has 0 as an eigenvalue
and the remaining eigenvalue is positive.

c) The equation (2.2) is said to be hyperbolic at the point �x provided A(�x) has one negative and
one positive eigenvalue.

An equation is called elliptic, parabolic or hyperbolic if the corresponding property is satisfied in all
the points of its domain.

An example of such classification is the convection-diffusion equation:

Linear one dimensional convection-diffusion equation. Let α and D be non-negative constants,
the one dimensional convection-diffusion equation is given by

uy + αux −Duxx = 0. (2.4)

The principal part of the equations is

A(x) =

�
−D 0
0 0

�
.

Thus, the equation is parabolic.

When the diffusive part uxx is suppressed, D = 0, this equation becomes hyperbolic .

α2uxx = α(αux)x = α(−uy)x

= α(−ux)y = −(αux)y

= −(−uy)y = uyy

=⇒ uyy − α2uxx = 0

=⇒ A(x) =

�
−α2 0
0 1

�
,

for α = 1 this equation is the so called wave equation.

The relative values of α and D determine the dominant character in the convection-diffusion
equation. Whenever D << |α| the problem is said to be convective-dominated. The wave equation is
an example of a conservation law. The main type of equations we are going to deal with are conservation
laws and convection-diffusion equations.

2.2.1 Hyperbolic problems

Let u(x, t) be a quantity representing mass, momentum or energy with x ∈ O = [a1, a2] and t ∈ [0, T ].
Such quantity, depending on the studied problem might be assumed to be conserved. Which means
that the change of the total quantity in a sub-domain Ô ⊂ O in time is given by the amount of quantity
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that flows in and out of Ô and the amount of u generated in the sub-domain. The flow into Ô is the
amount of quantity that is transported through the boundaries of Ô. Assuming that the rate of flow or
flux is given by a function f ∈ C∞ and that there is no generation in the sub-domain, the conservation
law, by integration by parts, is given by

∂

∂t

�

Ô
udx+

�

Ô
(f(u(x)))xdx = 0. (2.5)

Equation (2.5) is the integral form of the conservation law. Since Ô is arbitrary, (2.5) is equivalent to

ut + (f(u))x = 0, (2.6)

the differential form of the conservation law.

Classic applications of conservation laws are models for population, traffic, kinetic equations and
the Euler equations [46]. Some of these models rely on two important theorems of the theory of
hyperbolic equations, the Transport theorem and the Continuum hypothesis, for more information, we

refer the reader to [53]. The particular examples we consider are when f(u) = αu and f(u) =
u2

2
,

called the convection equation and Burgers’ equation, respectively,

ut + (αu)x = 0 convection equation, (2.7)

ut +

�
u2

2

�

x

= 0 Burgers’ equation . (2.8)

An important method for solving hyperbolic equations is the so called method of characteristics.
The aim of the method is to find curves in the (x, t, z) space that reduce the PDE to a system of
ordinary differential equations (ODE).

Since u is a solution of (2.6) it satisfies

(fu(u), 1, 0) · (ux, ut,−1) = 0.

The vector (ux, ut,−1) is normal to the surface S := {(x, t, u(x, t))} at each point (x, t, u(x, t)).
Thus, the vector (fu(u), 1, 0) lies in the tangent plane to S. Consequently, to find a solution of (2.6),
we need to find the surface S such that at each point (x, t, z) the vector (fu(u), 1, 0) is in its tangent
plane. For doing so, we construct curves that lie in S parametrized as

(x(s), t(s), z(s)) = (x(s), t(s), u(x(s), t(s))),

s ≥ 0. These curves must satisfy the following system of ODE

dx

ds
= fu(z(s)), (2.9)

dt

ds
= 1, (2.10)

dz

ds
= 0, (2.11)
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with the initial condition (x(0) = x0, t(0) = 0, z(0) = u0(x0)) for s = 0, so that the vector (fu(z(s)), 1, 0)
will be tangent to such curves.

The ODE system (2.9),(2.10) and (2.11) are called the characteristic equations of (2.6) and their
solutions are the characteristic curves.

The equation for t and z have the solution

t(s) = s+ c2, z(s) = c3,

with initial conditions
t(s) = s, z(s) = u0(x0).

Then

dx

ds
= fu(z(s)),

=⇒ dx

ds
= fu(u0(x0)),

=⇒ x(s) = fu(u0(x0))s+ c1,

by the initial condition

x(s) = fu(u0(x0))s+ x0.

Then
x0 = x(s)− fu(u0(x0)),

substituting x0 in z(s),

z(s) = u0(x(s)− fu(u0(x0))s).

We then conclude that the solution along the characteristic (x(s), t(s)) = (fu(u0(x0))s+ x0, s) is

u(x, t) = u0(x0 − fu(u0(x0))t). (2.12)

The solutions of the convection equation and the Burgers’ equation given x0 ∈ O are

u(x, t) = u0(x0 − αt), u(x, t) = u0(x0 − u0(x0)t),

respectively, for x in the characteristic determined by x0.

The solution of the convection equation is just a displacement of the initial condition u0 with
a speed α, which might move to the right if α > 0 and to the left if α < 0. The Burgers’ equation
solution is defined implicitly and for some initial conditions might be explicitly obtain.

For the more general equation

a(x, t)ux + b(x, t)ut = c(x, t),
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(a) Characteristic curves convection equation, sine
inertial condition

(b) Characteristic curves Burgers’ equation, sine
inertial condition

Figure 2.1: Characteristic curves for convection and Burgers’ equations with sine initial condition

a similar procedure can be done and the characteristic equations are
dx

ds
= a(x, t),

dt

ds
= b(x, t), ,

dz

ds
= c(x, t),

for a more formal approach and details on the method of characteristics see [20].

Let us consider the domain O = [0, 1], the initial condition u0(x) = sin(2πx) and solve the
convection equation and the Burgers’ equation.

The characteristic curves for the convection equation and the Burgers’ equation starting at a
point x0 ∈ O are

x(t) = αs+ x0, x(t) = sin(x0)s+ x0,

respectively. Both sets of curves are straight lines. For the convection equation they are parallel with
slope α Figure 2.1a. Therefore they never intersect and the method of characteristics is well defined
for all t > 0. For the Burgers’ equation (Figure 2.1b) the slope of the curves depends on the initial

point x0. In fact, if 0 < x0 <
1

2
, then sin(2πx0) > 0 while for x1 =

1

2
, sin(2πx1) = 0. Consequently,

there is a coordinate (x̂, t̂) such that the characteristics starting at x0 and x1 intersect and the solution
is multi-valued. In Figure 2.2 we show how the initial condition evolves in time and that it becomes
multi-valued and two particular characteristics intersecting. How is u(x̂, t̂) then defined? This shows
that conservation laws might not be well defined for all times. When the solution becomes multi-valued,
as in the previous example, it is said that the equation has a shock discontinuity. It can be shown that
for a smooth initial condition u0(x) for which u�0(x) is negative in an open interval. The solution to
the Burgers’ equation has its first shock at time

Tb =
−1

minu�0(x)
, (2.13)

called the breaking time. The general result, states that for a convex f, if u�
0(x) is negative in an open

intervar, the breaking time is given by

Tb = − 1

min(f ��(u0(x))u�0(x)).
(2.14)
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Figure 2.2: Multivalued solution for Burgers’ equation

To show this, first note that for any x0 < x1, such that fu(u0(x0)) �= fu(u0(x1)), the time at which
the characteristics intersect is given by

t(x0, x1) = − 1
fu(u0(x1))−fu(u0(x0))

x1−x0

. (2.15)

Therefore, since f is convex, the required condition for a shock to occur in a positive time is that
u0(x0) > u0(x1). Let us assume that for the point x̂ there is a left neighborhood Bx̂ in which u0(x) is
decreasing. This hypothesis is valid since there is an open interval where u�

0(x) < 0. The characteristics
that start in the neighborhood will intersect the characteristic of x̂ in a positive time. Define tx̂(x) :=
t(x, x̂) with t(x, x̂) as in (2.15). For two points x0, x1 ∈ Bx̂ with x0 < x1, t(x0)x̂ > t(x1)x̂. Thus, tx̂ is
a decreasing function. Therefore, the time at which the first intersection with the characteristic at x̂,
is obtained by taking the limit x → x̂−, resulting in

Tb(x̂) = − 1

f ��(u0(x̂))u�0(x̂)
. (2.16)

Note that if characteristic starting a point outside of Bx̂, intersects the characteristic of x̂, the
time of the intersection, by (2.15), is necessarily greater than Tb(x̂) (2.16). Thus, the first positive
time at which a characteristic starting at a point x intersects any characteristic (if it does it) is given
by Tb(x). Taking the minimum over the domain, we obtain (2.14).

At the breaking time the solution is set to be discontinuous instead of multivalued, to at least
satisfy being a function. Consequently is not differentiable and cannot satisfy (2.6). Therefore, there
is a need to have a better definition of what being a solution to the equation (2.6) means. For this, we
introduce the concept of a weak solution to the conservation law.

Shock discontinuities are not the only type of discontinuities that conservation laws might have.
The distinctive feature of shock discontinuities is that at least two characteristics intersect. As we know,
the convection equation has parallel characteristics. If we consider a discontinuous initial condition for
such equation, the discontinuity in the solution is not produced by the intersection of characteristics,
they remain parallel at all times. This type of discontinuity is called contact discontinuities. The
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(a) Characteristic curves convection equation, Rie-
mann initial condition ur < ul.

(b) Characteristic curves Burgers’ equation, Rie-
mann initial condition ur > ul.

Figure 2.3: Characteristic curves for convection and Burgers’ equations with Riemann initial condition

distinctive feature of these discontinuities is that the characteristic curves are parallel. For systems of
conservation laws, contact discontinuities can appear in more examples. The formal requirement for
these discontinuities is that the characteristic field is linearly degenerate, see [44]. In the setting we
work on this thesis, this condition can only be met by the fluxes convection equation.

If we multiply ut + (f(u))x = 0 by a test function (see Appendix A) φ(x, t) with support in O
and integrate in space and time, we obtain

� ∞

0

�

O
[φut + φ(f(u))x]dxdt = 0,

integrating by parts � ∞

0

�

O
φut + φxf(u)dxdt = −

�

O
φ(x, 0)u(x, 0)dx. (2.17)

Definition 2.2.2. The function u(x, t) is called a weak solution of the conservation law if (2.17) holds
for all function φ ∈ C1

0 (O × R+).

This definition allows the possibility of solutions in the Sobolev space H1
0 (see Appendix A) to

the conservation law and to consider discontinuous initial conditions. For understanding how to define
a solution when a shock wave appears, we study the solutions for the Riemann initial condition (2.18).
Let O = (−∞,∞), the Riemann initial condition is defined as

u0(x) =

�
ul x < 0

ur x > 0.
(2.18)

Note that if ur < ul Figure 2.3a the solution instantly develops a shock. To define a solution for such
equation, we add a viscous term �uxx to it and study the behaviour of the solution u�(x, t), when � → 0.
The new equation is known as the viscid Burgers’ equation,

ut +

�
u2

2

�

x

= �uxx, (2.19)
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for a small � > 0.

Let us assume that u(x, t) = v(ξ), with ξ = x− ct, where c is a constant to be determined. Using
the chain rule, ux = v� and ut = −cv�, obtaining the ODE

−cv� + vv� = �v��,

with boundary condition v(−∞) = ul and v(∞) = ur and v�(±∞) = 0. Integrating

v2

2
− cv = �v� + C. (2.20)

Then

−cul +
u2l
2

= C = −cur +
u2r
2
.

Consequently c =
ul + ur

2
, then C = −ulur

2 . Substituting C and c in (2.20), the equation can be solved
by separation of variables, obtaining

v(ξ) = ur +
ul − ur
eA + 1

,

with A = ξ
(ul − ur)

2�
+ C. Using the trigonometric identity

1− e
x
2 − e

x
2

e
x
2 + e

x
2

= 1− tanh
�x
2

�
,

substituting ξ = x− ct,

u�(x, t) =
ur + ul

2
− ul − ur

2
tanh

�
(x− ct)(ul − ur)

4�

�
. (2.21)

In Figure 2.4 we show the solution surface for different values of �. This figure shows that the
solution when � → 0 tends to the initial condition moving at the velocity c =

ul + ur
2

. This motivates
to propose the solution

u(x, t) =

�
ur if x < st

ul if x > st,
(2.22)

with s = c. It can be shown that this is in fact a weak solution of the Burgers’ equation and that
u� → u when � → 0. The solution (2.22) is the initial condition traveling at a speed s =

ul + ur
2

,

thus s is known as the shock speed, or more generally the Rankine-Hugoniot condition. The solution
obtained by adding the viscous term �uxx and then studying the limit of the solutions when � → 0
is generally know as a vanishing viscosity solution, and the solution for a fixed � is called the viscous
profile for the shock wave. For an introduction viscous solutions see [38].

The Rankine-Hugoniot condition can be obtained from the weak formulation of the conservation
law (2.17) by integrating in a vicinity of a shock wave, for the details see [20] or [46]. The Rankine-
Hugoniot condition for a general conservation law reads

s =
f(ul)− f(ur)

ul − ur
. (2.23)



13

Figure 2.4: Viscous solutions for � = 0.1, 0.05, 0.02, 0.001

Assume that the conservation law develops a shock in the time interval t1 ≤ t ≤ t2, (where t2
could equal infinity) and that there is a smooth curve in the (x, t) plane parametrized by x = a(t), for
t1 ≤ t ≤ t2 that describes the path of the shock in the (x, t) plane. Since u is discontinuous along the
curve, for each t ∈ [t1, t2], the one-sided limits

u+(t) = lim
x→a(t)+

u(x, t), u−(t) = lim
x→a(t)−

u(x, t),

exist and are not equal. Due to the Rankine-Hugoniot condition, the curve satisfies

a�(t) =
f(u+)− f(u−)

u+ − u+
.

This ODE can be solved to obtain the curve that the shock follows, note that the initial condition is
obtained at the point (x, t1) where the shock is formed. Therefore, the Rankine-Hugoniot condition
allows us to define a solution in the case of a shock wave, but as the following example shows, is not
enough to obtain uniqueness.

Consider the Burgers’ equation with the Riemann initial condition (2.18) in the case ul < ur.
Note that the characteristics do not fill completely the (x, t) plane. Thus, it is not clear how to define
a solution in the region without characteristics Figure 2.3b. There are at least two ways of filling the
void space left by the characteristics.

The first is called the rarefaction wave,

u(x, t) =





ul x < ult
x
t ult ≤ x ≤ urt

ur x > urt,

(2.24)
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this solution can be analytically found by realising that conservation laws have the property of self-
similarity, i.e., the equation is invariant when replacing the variables x, t by λx,λt. Using the change
of variables u(x, t) = v

�x
t

�
= v(ξ), substituting v(ξ) in the conservation law (2.6) and using the chain

rule, results after some algebra in �
f �(v(ξ)− x

t

�
v� = 0.

In the nontrivial case v� �= 0, it must be satisfied

f �(v(ξ)) =
x

t
.

Assuming f to be strictly convex leads to the expression

v(x, t) = (f �)−1
�x
t

�
,

from which (2.24) is deduced.

The second solution is

u(x, t) =

�
ul x < ul+ur

2 t

ur x > ul+ur

2 t.
(2.25)

Both solutions can be shown to be a weak solution for the Burgers’ equation, but is one of them
a “better" solution? The first solution is clearly a continuous function, whereas the second one is a
discontinuous solution that satisfies the Rankine-Hugoniot condition. Additionally, the characteristics
behave differently for each case. In (2.24) they behave like a fan, fulfilling the void space without
intersecting. Whereas in (2.25) the characteristics start from the shock.

In the previous example adding viscosity to the equation helped us to find a solution. A natural
question to ask is if adding viscosity in this example and taking the limit of the viscous coefficient to
zero will converge to any of these solutions. For the particular case of the viscous Burgers’ equation
the solution can be found using the Cole-Hopf transformation (we explain this method in the next
section) but in general, adding viscosity to the conservation law will result in an equation difficult to
solve. Although it can be shown that the vanishing viscosity solution for an arbitrary conservation law
is a weak solution [64].

The concept of entropy solutions is used to avoid working with vanishing viscosity solutions. This
concept is related to the behaviour of the characteristics with respect to a shock. Characteristics
represent the flow of the initial condition information, in this example there is a void of information.
As a heuristic, since information is taken from the initial data it should not be created at a shock.
This means that the characteristic curves must flow into the shock and not start from them.

In our example when two characteristics intersect at a point on a shock the solution on the
characteristic from the left of the shock is ul and the solution on the right characteristic to the shock
is ur, with ul > ur. For the characteristics to intersect in the direction of the shock, the slope of the
characteristic curve from the left must be greater than the speed of the shock and the speed of the
shock must be greater than the slope of the characteristic of the curve from the right. Recall that the
characteristic curves are

x(t) = fu(u)t+ x0,
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then the heuristic in terms of the slopes of the characteristics and the speed of the shock s, is

fu(ul) > s > fu(ur), (2.26)

known as the Lax entropy condition. With this condition solution (2.25) is not admissible. In this
example f(u) = u2

2 , which is a convex function and therefore if ul > ur, fu(ul) > s > fu(ur). The Lax
entropy condition (2.26) is not suited for an arbitrary conservation law, it requires that the flux f is a
convex function [46].

For a more general entropy formulation, we again consider the viscous conservation problem.

u�t + (f(u�))x = �u�xx. (2.27)

Let η = η(u) be an arbitrary strictly convex function, which we call the entropy function, and
define the function

ψ(u) =

� u

0
f �(s)η�(s)ds. (2.28)

The functions ψ and η satisfy the relation

ψ� = η�f �. (2.29)

Multiplying η�(u) in both sides of (2.27), using the chain rule and the relation (2.29), we obtain

η(u�)t + ψ(u�) = �η(u�)xx − �η��(u�).

Integrating over the rectangle [x1, x2]× [t1, t2] gives

� t2

t1

� x2

x1

η(u�)t + ψ(u�)xdxdt = �

� t2

t1

�
η�(u�(x, t))u�x(x, t)

��x=x2

x=x1

�
dt− �

� t2

t1

� x2

x1

η�� · (u�x)2dxdt.

As � → 0, the first term on the right side vanishes even for the discontinuous case. However, the
second term includes the integration of (u�

x)
2 over the rectangle [x1, x2]×[t1, t2], that for a discontinuous

u will not vanish in the limit. By assumption η is convex thus the product �η�� · (u�x)2 > 0. This implies
that the weak solution satisfies

� t2

t1

� x2

x1

η(u)t + ψ(u)xdxdt ≤ 0, (2.30)

for all x1, x2, t1 and t2. The inequality (2.30) is called the entropy inequality, the function ψ is the
entropy flux and (η,ψ) an entropy pair [64]. The previous reasoning, can be made instead over an
arbitrary rectangle, integrating over the hole space time domain with an arbitrary test function. The
result is the same entropy inequality, but in the distribution sense. Using this formulation and formally
integrating in space,

d

dt

�

O
η(u)dx ≤ 0, (2.31)

meaning that the total entropy is non-decreasing with respect to time.
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An alternative weak form of the entropy inequality can be formulated by integrating (2.30) against
a smooth test function φ, obtaining the weak form of the entropy inequality,

� ∞

0

�

O
φtη(u(x, t)) + φxψ(u(x, t))dxdt ≤ −

�

O
φ(x, 0)u0(x)dx. (2.32)

For the Burgers’ equation with f(u) =
u2

2
and η = u2, implies ψ = 2

3u
3. Then,

ηu + ψx = (u2)t +

�
2

3
u3
�
x,

if u is smooth using the chain rule,

2u

�
ut +

�
u2

2

�

x

�
= 0.

For discontinuous u, we integrate over an infinitesimal rectangle [x1, x2] × [t1, t2] so that the charac-
teristic curve of the discontinuity approximately divides the rectangle in two triangles through the
diagonal connecting (x1, t1) and (x2, t2). Over the triangle defined by the vertices (x1, t1), (x1, t2) and
(x2, t2) we have u = ul and over the triangle (x1, t1), (x2, t1) and (x2, t2) we have u = ur. Then, it can
be shown [46] that

� t2

t1

� x2

x1

(u2)t +

�
2

3
u3
�

x

dxdt = −1

6
(ul − ur)

3(t2 − t1) +O((t2 − t1)
2),

for small t2 − t1 > 0 the O((t2 − t1)
2) term will not affect the sign of the integral. Therefore (2.30) is

satisfied if and only if (iff) ul > ur.

As a general rule if a convex flux f develops a discontinuity in its solution, with values ul and
ur at the left and right of the discontinuity, respectively. The entropy solution can be determined as
follows: If ul < ur the solution is a rarefaction wave, otherwise, ur < ul the solution is a shock wave.
For non convex flux the entropy solution is determined by the Oleink condition [64] and it states

• (ul < ur) the solution is a shock iff the graph of f restricted to the interval [ul, ur], is situated
above its chord.

• (ul > ur) the solution is a shock iff the graph of f restricted to the interval [ur, ul], is situated
below its chord.

In conclusion, conservation laws might be solved analytically using the method of characteristics,
but they present two major problems. First, the evolution of the initial condition in time can become
multi-valued and the solution develops a shock. Second, the characteristic might not define a solution
for all the points in the domain. The solution to the first problem is to construct a shock using the
Rankine-Hugoniot condition and to the second one is to use a rarefaction wave. In both cases, the
solutions must satisfy the entropy inequality (2.30).

Definition 2.2.3. We say that a function u ∈ L∞(O × (0,∞)) is an weak entropy solution of the
initial-value problem �

ut + f(u)x = 0 in O × (0,∞)

u(x, 0) = u0(x) on O × {t = 0},
(2.33)
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provided � ∞

0

�

O
uφt + f(u)φxdxdt+

�

O
φ(x, 0)u0(x)dx = 0

for all test function φ with compact support in O, and for all entropy pairs (η,ψ)
� ∞

0

�

O
φtη(u(x, t)) + φxψ(u(x, t))dxdt ≤ −

�

O
φ(x, 0)u0(x)dx.

There is a theorem due to Kružkov that ensures the existence and uniqueness of entropy solutions
for the scalar conservation laws, [64].

Theorem 2.2.1. For every bounded measurable initial condition u0 on O = R and every flux f ∈ C∞

flux, there exists one and only one entropy solution of (2.6) in L∞(O × (0, T ))
�
C([0, T )), so that it

satisfies the maximum principle

||u||L∞(O×(0,T )) = ||u0||L∞(O). (2.34)

The discontinuous Galerkin method requires a particular definition of weak solution [16]. We
include this particular definition in this chapter. For it, we require a partition of the interval [0, 1],

without loss of generality. Lets assume a uniform partition of width h =
1

N
, N ∈ N i.e. xj =

j

N
, for

j = 0, . . . , N, denote by Ij = (xj , xj+1).

Definition 2.2.4. The function u(x, t) is called a weak solution of the conservation law if for every
interval Ij and every test function φ, the following equalities are satisfied

�

Ij

utφdx−
�

Ij

f(u)φxdx = −(f(u)φ)
��x=xj+1

x=xj
(2.35)

�

Ij

u(x, 0)φdx =

�

Ij

u0(x)φ(x)dx. (2.36)

In the following we solve analytically the benchmark problems that will be used for the validation
of the methods presented in this work.

Example 1. Linear convection equation. We consider the two initial conditions, a sine wave

u0(x) = sin(2πx), (2.37)

and an impulse

u0(x) =

�
0 if x ∈ [0, 0.4] ∪ [0.6, 1]

1 if x ∈ (0.4, 0.6),
(2.38)

in the domain O = [0, 1].

The solution to the convection (α = 1) with both initial conditions for a given x0 ∈ O is given by

u(x, t) = u0(x0 − t),

see Figures 2.5a and 2.5b. In the Figure 2.5a we include a characteristic to graphically show that the
solution is constant along the characteristics.
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(a) Solution surface convection equation sine ini-
tial condition.

(b) Solution convection equation impulse initial
condition.

Figure 2.5: Solutions to convection equation.

Example 2. Burgers’ equation. We as well solve this equation for the sine and impulse initial
conditions

We have previously worked with the sine initial condition and we know that the method of
characteristics is valid up to the time

Tb =
−1

minu�0(x)
=

1

2π
.

For t > Tb we need to determine the characteristic curve for the shock. We know that this characteristic
curve satisfies

x�(t) =
f(ul)− f(ur)

ul − ur
=

ul + ur
2

.

From the Figure 2.1b it can be seen that the shock occurs at x =
1

2
. Note that the initial condition is

symmetric with respect to x =
1

2
, then ul = −ur, thus

x�(t) = 0

=⇒ x(t) =
1

2
for all t ≥ Tb,

due to the initial condition x

�
1

2π

�
= 1

2 . This means that the shock stays constant at x =
1

2
. There

is no explicit formula for the solution after the time Tb, but it can be constructed as follows. For

t > Tb find 0 < x̂ <
1

2
such that

1

2
= x̂ + u0(x̂)t. The values at the discontinuity are ul = u0(x̂) and

ur = −u0(x̂). The rest of the solution can be constructed using the characteristics with initial points
in [0, x̂] ∪ [1− x̂, 1], Figure 2.6a.

The impulse initial condition is the combination of the Riemann condition with ul < ur at x = 0.4
and ul > ur at x = 0.6. Therefore the entropy solution of the problem is to consider a rarefaction wave
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(a) Solution Burgers’ equation sine initial condi-
tion.

(b) Solution Burgers’ equation impulse initial con-
dition.

Figure 2.6: Solutions to Burgers’ equation.

starting at x = 0.4 and a shock solution at x = 0.6 with speed s =
1

2
. The method of characteristics

thus results in

u(x, t) =





0 0 ≤ x < 0.4
x
t 0.4 < x < t+ 0.4

1 0.4 + t < x < t
2 + 0.6

0 t
2 + 0.6 < x.

(2.39)

The characteristic x(t) = t + 0.4 defining the rarefaction wave and the characteristic x(t) =
t

2
+ 0.4

defining the shock intersect at (x, t) = (0.8, 0.4). For t ≥ 0.4 the shock wave is parametrized by x(·),
with ul(t) =

x

t
and ur(t) = 0. Using the Rankine-Hugoniot condition,

x�(t) =

1
2

�
x(t)
t

�2

x(t)
t

=
x(t)

2t

=⇒ x(t) =

�
8

5
t

� 1
2

.

Thus, for t ≥ 0.4 the solution is

u(x, t) =





0 0 < x < 0.4

x
t 0.4 < x <

�
8
5 t
� 1

2

0 x >
�
8
5 t
� 1

2 ,

(2.40)

Figure 2.6b.

2.2.2 Parabolic problems

In this section we briefly deal with the heat equation or diffusion equation and its properties. Later
we focus on our main parabolic example, the convection-diffusion equation. This equation is the
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combination of a conservation law and the diffusion equation.

The diffusion or heat equation is a mathematical expression that explains how some physical
quantities, for example heat, move in a medium. Heat flows from hotter regions to colder regions, and
the more drastic the temperature difference between two regions, the more rapid the flow of the heat.
Then the substance or heat moves through a cross section at x at time t proportionally to its density
gradient ux. In other words, the flux f is proportional to the gradient ux. Heat moving from hotter
regions to colder regions, is expressed by saying that if ux > 0, then J < 0 (the heat moves to the
right), and if ux < 0, then J > 0 (the substance moves to the right), i.e.,

f(x, t) = −Dux(x, t).

This relationship is known as Fick’s Law [51], the positive constant D is called the diffusion constant.
Using the conservation law (2.6) we obtain

ut = Duxx. (2.41)

The interpretation of the diffusion equation as a heat flow allows to give a probabilistic interpretation
to its solution. A heat flow is governed by the random movement of its molecules and their collisions,
which cause the energy to disperse from high-energy regions to low-energy regions [51]. We can assume
that u(x, t) represents a probability density function for the random variable X = X(t) (see Appendix
B.0.1) giving the location of a particle at time t. We assume that the movement of the particle occurs
in one spatial dimension and at discrete time steps τ . At each time step the particle jumps a distance
h to the left or right with equal probability. Then the probability of a particle being in an interval
[x, x+ h] at the time t is u(x, t)h. For a position (x, t+ τ), a particle could have only come from the
intervals [x− h, x] or [x+ h, x+ 2h], then the probability of a particle being in the interval [x, x+ h]
can be written as

u(x, t+ τ) =
1

2
u(x− h, t) +

1

2
u(x− h, t),

known as the master equation. Expanding each term of the master equation with their Taylor series
at (x, t) with the increments h in space and τ in time and simplifying,

ut +
τ

2
utt =

h2

2τ
uxx + . . . .

The coefficients of the elements after uxx are a positive power of h times
h2

2τ
. Then taking h, τ → 0

with the ratio
h2

2τ
= D constant, we get the diffusion equation

ut = Duxx.

A more general result explaining the relationship of the diffusion equation and stochastic processes is
the Fokker-Plank equation [3]. This argument is correct but it lacks some formality, we later use the
Laplace-De Moivre Theorem to give a formal proof.

The solution of the diffusion equation (2.41) when O = (−∞,∞) for a continuous and bounded
initial condition u0(x), is given by

u(x, t) =

�

R
K(x, y, t)u0(u)dy,
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with

K(x, y, t) =
1

(4πt)
1
d

exp

�
−(x− y)2

4t

�
,

known as the fundamental solution. It can be shown that such u(x, t) is of class C∞ and that

lim
t→∞

u(x, t) = f(x).

Although the case O = (−∞,∞) is interesting, for studying numerical methods we require a
bounded domain. Once again we consider O = [0, 1] , for T > 0 define,

OT := O × [0, T ]

∂∗OT := (Ō × {0}) ∪ (∂O × (0, T )),

the set ∂∗OT is called the reduced boundary of OT .

We say that u solves the heat equation with initial condition u0 and periodic boundary if

ut = uxx for (x, t) ∈ (0, 1)× (0, T )

u(0, t) = u(1, t) for t ∈ (0, T )

u(0, x) = u0(x) for x ∈ (0, 1). (2.42)

The typical method for solving (2.42) is separation of variables see [36] and Fourier decomposition
[31]. Let

φk(x) = e2πikx, for k ∈ Z,

then assume
u(x, t) = γ(t)φk(x), γ(0) = 1.

Substituting u(x, t) in the diffusion equation an ODE for γ is obtained. Solving it and using the
periodic condition, the solution u(x, t) is

u(x, t) = e−4π2k2tφk(x).

We assume the initial condition u0 ∈ L2[0, 1], then it can be expressed as the Fourier series,

u0(x) =
�

k∈Z
αkφx(x), (2.43)

with

αk =

� 1

0
u0(x)φk(x)dx.

The superposition principle states that if u and v solve a PDE, their sum u + v is a solution. Then
using the superposition principle, we conclude that the solution to the problem (2.42) is given by,

u(x, t) =
�

k∈Z
αke

−4π2k2tφk(x). (2.44)

The following are main results from the theory of PDE on heat equations, see [36] and [20] for
the proofs and more general formulations.
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Theorem 2.2.2. Maximum Principle. Let u be a solution of (2.42) with O open and bounded and

uxx − ut ≥ 0 in OT . (2.45)

We then have
sup
OT

= sup
∂∗OT

u, (2.46)

if T < ∞, we can take max instead of sup.

The maximum principle theorem, states that the maximum of a the solution to the heat equation
is attained in the boundary ∂∗OT . A corollary or this theorem is the uniqueness of solutions for the
heat equation.

Corollary 2.2.2.1. Let u, v be solutions of (2.42) with u = v on ∂∗OT . Then u = v on OT .

We now have an introductory perspective of what the diffusion equation is and what to expect
from its solutions. Then we are prepared to define the convection-diffusion equation, simply stated as

ut + (f(u))x = Duxx. (2.47)

We now present some examples with known solution for linear and nonlinear parabolic conserva-
tion laws.

Example 3. Linear convection-diffusion equation. Consider f(u) = αu, for α ∈ R,

ut + αux = Duxx for (x, t) ∈ (0, 1)× (0, T )

u(0, t) = u(1, t) for t ∈ (0, T )

u(0, x) = u0(x) for x ∈ (0, 1). (2.48)

From the work done on the conservation law and the diffusion equation, is straightforward to verify
that, expressing the initial condition with its Fourier series (2.43). The solution of the linear convection-
diffusion equation is

u(x, t) =
�

k∈Z
αke

−4π2k2Dtφk(x− αt). (2.49)

For the initial condition u0(x) = sin(x) with O = [0, 2π] the solution is

u(x, t) = e−t sin(x), (2.50)

see Figure 2.7.

The linear convection diffusion equation satisfies the maximum principle,

min
O

u0(x) ≤ u(x, t) ≤ max
O

u0(x).

Example 4. Nonlinear convection-diffusion equation. Consider f(u) =
u2

2
,

ut +

�
u2

2

�

x

= Duxx for (x, t) ∈ (0, 1)× (0, T )

u(0, t) = u(1, t) for t ∈ (0, T )

u(0, x) = u0(x) for x ∈ O. (2.51)
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Figure 2.7: Solution of the linear convection-diffusion equation with sine initial condition, α = d = 1

It should be noted that generally (2.51) is usually known as the Burgers’ equation or viscid Burgers’
equation and what we called the Burgers’ equation is known as the inviscid Burgers’ equation. There
is a general technique called the Cole-Hopf transformation for solving (2.51) when O = (−∞,∞) [20].

The transformation is defined by

u = −2D
φx

φ
,

then

ut =
2D(φtφx − φφxt)

φ2
, uux =

4D2φx(φφxx − φ2
x)

φ3
and

Duxx = −2D2(2φ3
x − 3φφxxφx + φ2φxxx)

φ3
.

Substituting into the nonlinear convection-diffusion equation,

2D(−φφxt + φx(φt −Dφxx +Dφφxxx))

φ2
= 0 ⇐⇒ −φφxt + φx(φt −Dφxx) +Dφφxxx = 0

⇐⇒ φx(φt −Dφxx)− φ(φxt −Dφxxx) = 0

⇐⇒ φx(φt −Dφxx)− φ(φt −Dφxx)x = 0. (2.52)

Thus, if φ is solution to the heat equation,

φt −Dφxx = 0

φ0(x) = exp

�
−
� x

0

u0(y)

2D
dy

�
,

the equality (2.52) is valid and u defined by

u = −2D(log φ)x

is a solution to the nonlinear convection-diffusion equation. The solution φ can be “easily” be found
using the fundamental solution. The solution using the Cole-Hopf transformation was followed from
[43].
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Note that for u to be defined φ(x) > 0, for all x ∈ R. The numerical methods developed in this
thesis require periodic boundary conditions. Then for the numerical tests, we require a periodic initial
condition that is everywhere positive. That is why we consider the initial condition φ0(x) = 2+sin(x).
Using the fundamental solution, it can be shown that φ(x, t) = 2 + e−Dt sin(x). From the Cole-Hopf
transformation we obtain

u(x, t) = −2D
cos(x)

2eDt + sin(x)
, (2.53)

with initial condition

u0(x) = −2D
cos(x)

2 + sin(x)
,

which is periodic on O = [0, 2π].

If the magnitude of D on any of theses examples is small enough, the convective part of the
equation will dominate and we say the problem is convective-dominated. In such case, it can be
expected that the solution of the problem behaves like the solution of conservation laws. Although
theoretically the solutions do not have discontinuities and are properly defined in their domains at all
times, numerically this will not be the case. Therefore, we require to define weak solutions for the
convection-diffusion equations. We give two different formulations, the first one is more classic and its
an extension of Definition 2.2.2. The second one was specifically designed for the local discontinuous
Galerkin [16].

Definition 2.2.5. (Weak solution version 1, Ref. [31]) We say u is a weak solution of the convection-
diffusion equation (2.47) if for every test function φ with φ(0) = 0 and use integration by parts it
follows,

� 1

0
utφ−Duxφx + f(u)xφdx = 0 (2.54)

� 1

0
u(x, 0)φdx =

� 1

0
u0(x)φdx. (2.55)

This definition can be extended to be an entropy solution as follows [33]. Let (η,ψ) and entropy
pair and define the entropy 3-tuple (η,ψ, r) with r the diffusion entropy flux satisfying

r� = η�D. (2.56)

By adding artificial viscosity to the convection-diffusion equation, it can be derived the entropy in-
equality

η(u)t + ψ(u)x − r(u)xx ≥ 0, (2.57)

satisfied in the distribution or weak sense. Entropy solutions for convection-diffusion equations be-
come particularly important for degenerated equations. Where the diffusion coefficient is variable and
becomes zero in some parts of the domain.

Definition 2.2.6. We say u is a weak entropy solution to the convection-diffusion equation, provided
it satisfies (2.54) and (2.61) for all test functions φ and that satisfies (2.57) for all entropy 3-tuple
(η,ψ, r).
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For the definition of the second formulation we require a partition of the interval [0, 1], let us

assume a uniform partition of width h =
1

N
, N ∈ N i.e. xj =

j

N
, for j = 0, . . . , N, denote by

Ij = (xj , xj+1). Define the new variable q =
√
Dux and rewrite (2.51) as follows

ut + (f(u)−
√
Dq)x = 0 in OT (2.58)

q − g(u)x = 0 in OT (2.59)
u(x, 0) = u0(x), on (0, 1), (2.60)

where g(u) =
√
Du.

Definition 2.2.7. (Weak solution version 2, Ref. [16]) We say u is a solution of (2.58)-(2.60) if for
each interval Ij , j = 1, . . . , N and for every test functions φ1,φ2,φ3 the following equalities hold

�

Ij

utφ1dx−
�

Ij

(f(u)−
√
Dq)(φ1)xdx+ ((f(u)−

√
Dq)(φ1))

��x=xj+1

x=xj
= 0 (2.61)

�

Ij

qφ2dx−
�

Ij

g(u)(φ2)xdx+ (g(u)(φ2))
��x=xj+1

x=xj
= 0 (2.62)

�

Ij

u(x, 0)φ3dx−
�

Ij

u0(x)φ3dx = 0. (2.63)

An analogous definition of weak entropy solution can be made with the weak solutions defined in
Definition 2.2.7.

2.3 Stochastic case

In this work we focus on stochastic parabolic conservation laws (stochastic convection-diffusion equa-
tions). Recall that if the diffusion term vanishes we have hyperbolic conservation laws and on the
other hand, the stochastic heat equation is obtained when the transport term is not considered. The
stochastic counterparts are obtained by adding a Brownian motion in the time variable to the deter-
ministic equations. The intuition of the stochastic PDEs we work with is that the white noise acts
on the reaction term of the equations. In the deduction of the integral form of the conservation law
equation (2.5), we assumed that there was no production or loss of the quantity of interest. If we
assume such production by a function F , the integral form of the conservation law reads

d

dt

�

O
u(x, t)dx = −

�

∂O
f(u)x +

�

O
F (x, t, u(x, t))dx,

from which the differential equation

ut + (f(u))x = F (x, t, u(x, t)),

is obtained. The function F is called the reaction. In the following we will assume that F is modeled
by a multiplicative white noise

F (x, t, u) = g(x, t, u)dWt. (2.64)

Thus, the problems that we are going to consider, can be presented by the general convection-diffusion
equation perturbed by a multiplicative white noise of the form

du = (−f(u)x +Duxx)dt+ g(ω, t, u, ux)dWt in O × (0, T ]× Ω, (2.65)
u(ω, x, 0) = u0(x) on O × Ω,
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The initial condition u0(x) is deterministic and g(u) is a multiplicative noise, it is said to be multiplica-
tive because g(u) depends on the solution u . As expected from our study of the convection-diffusion
equation, for D > 0, and sufficient regularity of f and g, the solutions of (2.65) exists and are unique.
When D = 0, (the conservation law), the solutions will have shocks or rarefactions, so we require a
definition of weak entropy solutions for (2.65).

A formal study of solutions to the stochastic hyperbolic case of equation (2.65) has been done
by studying viscous solutions and taking the limit of the viscosity term to zero [54]. Additionally,
solutions to this problem have been constructed by a splitting method [30]. Due to the white noise being
multiplicative, it is not expected that the mean of a stochastic conservation law with multiplicative
white noise is the solution of the deterministic equation. A formal approach to the stochastic parabolic
equations of the form (2.65) can be found in [73]. For the nonlinear case, f(u) = u2

2 , the SPDE
can be transformed into a stochastic heat equation through a procedure called the Wick exponential
substitution, see [29].

In most of the literature the stochastic forcing is introduced by using the Brownian motion, in
the article [5] a Poisson point field is used for the Burgers’ equation. The author, reformulates the
problem in terms of the associated Hamilton-Jacobi equation. With the Hamilton-Jacobi formulation
of the Burgers’ equation, the problem is solved by minimizing particle trajectories. The random forcing
is introduced as an external potential forcing, defining the contribution of the potential in a path as
the Poissonian points that the path passes through. Under such perspective, the forcing turns into a
random filed, so “questions about Burgers equations with randomness become random media questions”
[5]. Thus, for the Burgers’ equation the random forcing can be selected to model certain random media.
There are no general results of existence and uniqueness for arbitrary random forcing.

For the one spatial dimensional case there is a direct relationship between Hamilton-Jacobi equa-
tions and conservation laws [55]. Thus, the Hamilton-Jacobi formulation of stochastic conservation
laws, allows to understand the random forcing as a random environment. Therefore, the solution of
the stochastic conservation law can be understood as the minimization of paths in an environment
modeled by the stochastic forcing.

The multiplicative white noise is not only more general than additive noise, the theoretical frame-
work required for showing existence and uniqueness of solutions with white noise is more complicated.
It can be shown that additive white noise can be transformed into an equation where the flux de-
pends on the stochastic term and deterministic methods can be used to solve such problem. For the
multiplicative white noise this procedure cannot be done [8].

It is important to point out that approach (2.64) is not the only form to introduce the environ-
mental uncertainty into conservation laws. Another approach is to assume that f(u)x = αux, with α
being a realization of a normal random variable N(µ,σ). With such model we do not certainly know
the speed at which the quantity of interest is being transported, but that it has been observed to
oscillate around µ with variance σ. In this case the solution of the equation is by definition a stochastic
process. More abstract constructs include a Brownian motion in the flux function [49].

As it will be showed later, the Galerkin method, reduces the solution of these SPDE to the solution
of systems of stochastic differential equations (SDE). We refer the reader to [22], [28], [39] and [76]
for a formal approach to SPDEs. We do present a brief introduction to stochastic processes and in
particular to the Brownian motion, stochastic integration and stochastic differential equations.
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2.3.1 Theory of SDE

An stochastic process is a collection of random variables {X(τ), τ ∈ T}, the set T is called the parameter
set. The random variables take values in the called state-space, Ω, of the stochastic process. The set
T might be assumed to be discrete T = {0, 1, 2, . . . , } or continuous T = [0,∞), the usual notation is
{Xn, n ≥ 0} and {X(t), t ≥ 0}, respectively. The state-space might as well be discrete or continuous.
A particular, but unspecified outcome in Ω is denoted by ω. This section assumes the reader has
an introductory knowledge of probability see Appendix B.0.1 for a review of basic concepts. In the
Appendix B.0.2 there are relevant definitions and theorems related to the Brownian motion and SDEs.

The objective of this section is to understand how to formulate an ordinary differential equations
of the form

du(t) = F (ω, t, u(t))dt+G(ω, t, u(t))dWt, u(0) = u0 (2.66)

with Wt a stochastic process called the Brownian motion. This expression is a stochastic differential
equation. The function F is the drift term and G the diffusive term We first study the Brownian
motion, then define the integral with respect a Brownian motion and finally give the existence and
uniqueness theorem of the solution of (2.66). The content and the missing proofs of this section can
be found in [21] . A more formal approach can be found in [3], [78] and [57].

In the section of parabolic problems, we made a deduction for the heat equation by its inter-
pretation of particles moving randomly in space to the left or right and the density function of such
particles. We can describe the same phenomena by means of the trajectory of a single particle. Recall
that the time step is τ and the length of the steps is h. The following computations were followed from
[21]. Let X(t) denote the position of a particle at time t = nτ (n = 0, 1, . . .). This stochastic process
is known as a random walk. Define Sn :=

�n
i=1Xi, where the Xi are independent random variables

such that

P(Xi = 0) =
1

2

P(Xi = 1) =
1

2
,

for i = 1, . . . , representing that the particle moved to the left Xi = 0 or to the right Xi = 1 at the
time iτ. Without loss of generality it is assumed that the particle starts at x = 0. The variables Xi

satisfy V(Xi) =
1
4 . The random variable Sn is the number of steps to the right of the particle by time

t = nτ. Therefore, summing the distance advanced to the right Snh, plus the distance advanced to the
left (n− Sn)h we obtain the position of the particle at time t = nτ

X(t) = Snh+ (n− Sn)h = (2Sn − n)h.

Then

V(X(t)) = (h)2V(2Sn − n)

= (h)2n

=
h2

τ
t.

Again assume
h2

τ
= D,

X(t) = (2Sn − n)h =

�
Sn − n

2�
n
4

�
√
nh =

�
Sn − n

2�
n
4

�
√
tD.
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Figure 2.8: Brownian motion, 50 realizations and mean

Then the Laplace-De Moivre Theorem (see Appendix B.0.1) implies

lim
n→∞

P(a ≤ X(t) ≤ b) = lim
n→∞

�
a√
tD

≤ Sn − n
2�

n
4

≤ b√
tD

�

=
1√
2π

� b√
tD

a√
tD

exp
−
�

x2

2

�

=
1√
2πDt

� b

a
exp−

�
x2

2Dt

�
dx.

Thus, we obtain that the position of a particle at a time t has a N(0, Dt) distribution.

Definition 2.3.1. A real valued stochastic process W (t) = Wt, t ≥ 0 is called a Brownian motion or
Winner process if

i) W (0) = 0 almost surely (a.s.).

ii) Wt−s is N(0, t− s) for all t ≥ s ≥ 0, i.e., it has stationary increments.

iii) For all times 0 < t1 < t2 < · · · < tn, the random variables W (t1),W (t2) − W (t1), . . . ,W (tn −
tn−1), are independent, i.e., it has independent increments.

We use the notation Wt or W (t) indistinctly, Figure 2.8. It can be shown that for each sample
path w the function t → Wt(w) is continuous almost everywhere (a.e.) but it fails to be differentiable.

Now that we know what the Brownian motion is, we want to understand how to solve the equation
(2.66), intuitively we could say that the solution is given by

u(t) = u0 +

� t

0
Fdt+

� t

0
GdWt.

But, what exactly does � t

0
GdWt



29

mean? Let us work with the case G = W (t) and define a left Riemann-Stieltjes sum approximation.

Definition 2.3.2. For the interval [0, T ] define a partition P of [0, T ] as finite collection of ordered
points in [0, T ] :

P := {0 = t0 < t1 < . . . < tn = T}.
The mesh size of P is |P | := max0≤k≤n−1 |tk+1−tk|. Then the left Riemann-Stieltjes sum approximation
of
� T
0 WdW is defined as

R = R(P ) :=
n−1�

k=0

W (tk)(W (tk+1)−W (tk)).

Lemma 2.3.1. If Pn denotes a sequence of partitions such that |P n| → 0 as n → ∞, the sequence

Rn :=

n−1�

k=0

W (tnk)(W (tnk+1)−W (tnk)),

satisfies the limit

lim
n→∞

E

��
Rn − W (T )2

2
− T

2

�2
�

= 0,

which is,

lim
n→∞

Rn =
W (T )2

2
− T

2
,

in L2(Ω).

Therefore, we conclude that
� T

0
WsdWs =

W (T )2

2
− T

2
. (2.67)

An important observation to make is that we used left Riemann-Stieltjes sums to obtain (2.67).
In a more general formulation, instead of left Riemann-Stieltjes sums, the intervals [tk, tk+1] are
parametrized by a straight line and the Riemann-Stieltjes sums are defined by

Rn(λ) :=

n−1�

k=0

W ((1− λ)tnk + λtk+1)(W (tnk+1)−W (tnk)), 0 ≤ λ ≤ 1.

It can be shown that the integral
� T
0 WsdWs depends on the value λ. Left Riemann-Stieltjes sums

corresponds to λ = 0 and we will define it as the Itô integral. The Itô integral satisfies several
properties that make it more advantageous. In the literature the object dWt is usually called white
noise.

Let W (t) be a 1-dimensional Brownian motion defined on some probability space (Ω,F ,P)

Definition 2.3.3. We denote by Lp(0, T ), p = 1, 2 the space of all real valued, progressively measurable
stochastic processes G(t) such that

E
�� T

0
|G|pdt

�
< ∞.
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The construction of the Itô stochastic integral for functions in L2 resembles the construction of
the Lebesgue integral. First it is defined for some process called “step processes”, which are constant on
finite disjoint intervals of [0, T ]. Then it is shown that any stochastic process in L2 can be approximated
by a sequence of step processes in L2(Ω). The Itô stochastic integral of an arbitrary L2 stochastic
process is then defined as the limit of the stochastic integrals of the step processes that approximate
the stochastic process.

Definition 2.3.4. Suppose that X(t) is a real valued stochastic process satisfying

X(r) = X(s) +

� r

s
Fdt+

� r

s
GdWt,

for some F ∈ L1(0, T ), G ∈ L2(0, T ) and all times 0 ≤ s ≤ r ≤ T. We say that X(t) has the stochastic
differential

dXt = Fdt+GdWt,

for 0 ≤ t ≤ T.

Definition 2.3.5. (Itô Formula) Suppose that X(t) has a stochastic differential

dXt = Fdt+GdWt,

for F ∈ L1(0, T ), G ∈ L2(0, T ). Assume u : R× [0, T ] → R is continuous and that ut, ux, uxx exist and
are continuous. Define

Y (t) := u(X(t), t).

Then, Y (t) has the stochastic differential

dYt =

�
ut + uxF +

1

2
uxxG

2

�
dt+ uxGdWt, (2.68)

equivalently, Y (t) satisfies

Y (r)− Y (s) =

� r

s
ut(X, t) + ux(X, t)F +

1

2
uxx(X, t)G2dt+

� r

s
ux(Xt, t)GdWt.

Equality (2.68) is known as the Itô formula or thr Itô chain rule.

The following example not only illustrates an application of the Itô formula, but as well is the
first example of an stochastic differential equation.

Take X(t) = Wt, u(x, t) = exp (λx− λ2t
2 ), λ ∈ R, F = 0 and G = 1. Then for Y (t) = u(X(t), t)

the Itô formula implies

d

�
exp (λXt −

λ2t

2
)

�
=

�
−λ2

2
exp (λXt −

λ2t

2
) +

λ2

2
exp (λXt −

λ2t

2
)

�
dt+ λ exp (λXt −

λ2t

2
)dW

Then
dYt = λYtdWt,

with initial condition Y (0) = 1 is solved by Y (t) = u(X, t), Figure 2.9.
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Figure 2.9: Stochastic process Y (t), 50 realizations and mean, λ = 1.

Definition 2.3.6. We say that the stochastic process X(t) is an Itô process solution of the Itô stochastic
differential equation

dXt = F (Xt, t)dt+G(Xt, t)dWt (2.69)
X(0) = X0, (2.70)

for 0 ≤ t ≤ T, provided

i) X(t) is progressively measurable with respect to U(·),
ii) F ∈ L1(0, T ), G ∈ L2(0, T ),

iii) X(t) = X0 +
� T
0 F (X(s), s)ds+

� t
0 G(X(s), s)dWs a.s. for all 0 ≤ t ≤ T.

With the following example, we show how to use the Itô formula to proof a stochastic process is
a solution of a stochastic differential equation.

Consider the stochastic differential equation

dXt = fXtdt+ gXtdWt,

with initial condition X(0) = 1.

Consider the stochastic process

Y (t) = (f − 1

2
g2)dt+ gdWt,

and define X(t) = eY (t). Then, using the Itô formula

dX(t) = eY (t)

���
f − 1

2
g2
�
+

1

2
g2
�
dt+ gdWt

�

= eY (t) (fdt+ gdWt)

= fXtdt+ gXtdWt.
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Theorem 2.3.2. (Existence and uniqueness theorem) Suppose that F : R × [0, T ] → R and G : R →
[0, T ] → R, are continuous and satisfy the following conditions

i) (Uniformly Lipschitz in space)

|F (x, t)− F (x̂, t)| ≤ L|x− x̂|
|G(x, t)−G(x̂, t)| ≤ L|x− x̂|,

for all 0 ≤ t ≤ T, x, x̂ ∈ R.

ii)

|F (x, t)| ≤ L(1 + |x|)
|G(x, t)| ≤ L(1 + |x|),

for some constant L.

iii) Let X0 be a random variable in R such that

E(|X0|2) < ∞

and
X0 is independent of W+(0),

where W (t) is a given Brownian motion.

Then there exists a unique solution Xt ∈ L2(0, T ) of the stochastic differential equation (SDE):

dXt = F (Xt, t)dt+G(Xt, t)dWt (0 ≤ t ≤ T ) (2.71)
X(0) = X0. (2.72)

Note that uniqueness is understood as follows: If Xt, X̂t ∈ L2(0, T ) have continuous sample paths
almost surely, and both solve the same SDE, then

P(X(t) = X̂(t) for all 0 ≤ t ≤ T ) = 1.

2.3.2 Entropy weak solution

We first state and define weak entropy solutions for a general SPDE [19]. We then focus on particular
examples of stochastic conservation laws [47] and parabolic problems [48].

Definition 2.3.7. The function u is a stochastic weak solution of (2.65) if almost surely,
� T

0

�

O
φt(x, t)u(x, t) + (f(u)−Dux)φxdxdt =

� T

0

�

O
g(ω, x, t, u)φdxdtdWt, (2.73)

for all test functions φ ∈ D(O × [0, T ])

To give the definition of a stochastic entropy solution, we require some notation. Let D+(A) be the
non-negative test functions of D(A), N 2

ω(0, T, L
2(R)) be the space of the predictable valued processes

L2((0, T )×Ω, L2(R)) for the product measure dt× dP on the σ−field generated by the sets {0} × F0

and the rectangles (s, t] × A for any A ∈ Fs. Let Σ be the set of non-negative even convex functions
in C2(R) that approximate the absolute-valued function, such that η(0) = 0 and there exists a δ > 0
with η�(x) = 1 (resp. −1) if x > δ (resp- x < δ).
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Definition 2.3.8. The function u in N 2
ω(0, T, L

2(R)) ∈ L∞(0, T ;L2(Ω×L2(R))) is a stochastic entropy
solution of (2.65) with initial condition u0 ∈ L2(R), if almost surely for any 3-tuple (η,ψ, r) ∈ Σ×R×
D+([0, T )× R)

�

Ot

(η(u− k)φt − F η(u, k)φx +Kη(u, k)φxx)dxdt

+

�

Ot

η�(u− k)g(u)φdxdtdWt +
1

2

�

Ot

η��(u− k)h2(u)φdxdt

≥ −
�

R
η(u0 − k)φ(0)dx, (2.74)

where F η is the entropy flux for the function f, F η(a, b) =
� b
a η�(σ−b)f �(σ)dσ, and Kη(a, b) = Dη(a−b)

the flux for D.

An entropy solution in this sense satisfies being a stochastic weak solution of (2.65). For a more
complete description of stochastic entropy solutions see [9] and references therein.

As for the deterministic case, we give a definition of weak solutions for the stochastic conservation
laws [47] and stochastic parabolic equations [48] in terms of an arbitrary partition.

Definition 2.3.9. The function u(ω, x, t) is a weak solution for (2.65) with D = 0 if for any (ω, t) ∈
Ω× [0, T ] and any test function φ

�

Ij

duhdx =

��

Ij

f(u)φxdx− (fφ)
��x=xj+1

x=xj

�
dt+

��

Ij

gφdx

�
dWt (2.75)

The stochastic parabolic equation requires to be rewritten as the first order system

du = f(u)− wx + gdWt in OT (2.76)
v = ux in Ω×OT (2.77)
w = Dv in OT (2.78)

u(x, 0) = u0(x), on O, (2.79)

where g(u) =
√
Du.

Definition 2.3.10. We say u is a solution of (2.76)-(2.79) if for each interval Ij , j = 1, . . . , N and for
every test functions φ1,φ2,φ3,φ4 the following equalities hold

�

Ij

φ1du(ω, x, t)dx =

��

Ij

−w(φ1)x + fφdx+ (wφ1)
��x=xj+1

x=xj

�
dt+

�

Ij

gφdxdWt, (2.80)

�

Ij

v(ω, x, t)φ2dx = −
�

Ij

u(φ2)xdx+ (uφ2)
��x=xj+1

x=xj
, (2.81)

�

Ij

w(ω, x, t)φ3dx = D

�

Ij

vφ3dx (2.82)
�

Ij

u(ω, x, 0)φ4dx =

�

Ij

u0(x)φ4dx (2.83)
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Analogously to the previous sections we present benchmark problems where the solution is known
which will be used for the validation process. But let us first formulate the characteristic method for
a stochastic conservation law of the form

du = −(f(u))x + g(x, t, u)dWt.

The system of characteristic equations (2.9)-(2.11), is modified as follows,

dx

ds
= fu(z(s)), (2.84)

dt

ds
= 1, (2.85)

dz = gdWt, (2.86)

note that the characteristic for z is now an stochastic differential equation. The solution of (2.85) and
(2.86) are

t(s) = s and z(s) = u0(x0) +

� t

0
gdWt,

thus

x(s) = x0 +

� s

0
fu

�
u0(x0) +

� ξ

0
gdWsdξ

�
ds.

We can then conclude that over the characteristic curve

(x(t), t) =

�
x0 +

� t

0
fu

�
u0(x0) +

� ξ

0
gdWsdξ

�
ds, t

�
, (2.87)

the solution is

u(x(t), t) = u0(x0) +

� t

0
gdWt. (2.88)

Example 1. Constant-coefficient linear stochastic equation with O = [0, 2π]

du = −uxdt+ budWt in O × (0, T ]× Ω, (2.89)
u(ω, x, 0) = u0(x) on O × Ω.

The characteristic curves are (2.87)
(x(t), t) = (x0 + t, t),

and the solution is

du(x(t), t) = budWt

=⇒ u(x(t), t) = u0(x0) exp

�
bWt −

1

2
b2t

�
.

Substituting x0 = x− t, the exact solution of (2.89) is

u(ω, x, t) = u0(x− t) exp

�
bWt(ω)−

1

2
b2t

�
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(a) Solution stochastic convection equation im-
pulse initial condition, 50 realizations and mean.

(b) Solution stochastic convection equation sine
initial condition, 50 realizations and mean.

Figure 2.10: Solutions to stochastic conservation law b = 0.5.

with the impulse initial condition

u0(x) =

�
1 if x ∈

�
π
2 ,

3π
2

�
,

0 if x ∈
�
0, π2

�
∪
�
3π
2 , 2π

�
,

Figure 2.10a and a sine initial condition

u0(x) = sin(x),

Figure 2.10b. In Figures 2.11a and 2.11b the lateral and upward view of a realization of the solution
to (2.89) up to time T = 0.3 are shown. It can be seen that the solutions are not differentiable in time
and that the initial condition travels to the right as for the deterministic case.

Example 2 Stochastic Burgers equation,

du = −
�
1

2
u2
�

x

dt+ bdWt in O × (0, T ]× Ω, (2.90)

u(ω, x, 0) = u0(x) on O × Ω.

The characteristic curve x(t) (2.87) is

x(t) = x0 + u0(x0)t+ b

� t

0
Wsds

=⇒ x(t)− b

� t

0
Wsds = x0 + u0(x0)t.

If we consider a deterministic Burgers’ equation with the same initial condition u0(x),

vt +

�
1

2
u2
�

x

= 0

v(x, 0) = u0(x),
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(a) Lateral view. (b) Upward view.

Figure 2.11: Realization of surface solution for stochastic convection equation b = 2.

its solution over the deterministic characteristic x(t) = x0 + u0(x0)t is

v(x(t), t) = u0(x0).

Then, substituting

x(t)− b

� t

0
Wsds = x0 + u0(x0)t

in v(x(t), t),

v

�
x(t)− b

� t

0
Wsds, t

�
= u0(x0).

Then the solution, over the characteristic (x(t), t) is

u(x(t), t) = u0(x0) + bWt (2.91)

= v

�
x(t)− b

� t

0
Wsds, t

�
+ bWt. (2.92)

See Appendix B for the details on the computation of the random variable
� t
0 Wsds.

Example 3. Stochastic heat equation.

du = uxxdt+ budWt in O × (0, T ]× Ω, (2.93)
u(ω, x, 0) = sin(x) on O × Ω.

The exact solution of (2.93) is

u(ω, x, t) = sin(x) exp

�
bWt(ω)−

1

2
b2t− t

�
,
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Figure 2.12: Solution to the stochastic linear equation, 50 realizations and mean b = 0.5.

Example 4. Stochastic nonlinear convection-diffusion equation.

du =

�
σ2

2
uxx −

�
1

2
u2
�

x

�
dt+ (σux + b)dWt in O × (0, T ]× Ω, (2.94)

u(ω, x, 0) = sin(x) on O × Ω.

The exact solution of (2.94) is

u(ω, x, t) = v(x− b

� t

0
Wsds+ σWt, t) + bWt,

with v the solution to the Burgers’ equation, with initial condition v0(x) sin(x).

It is important to note that the function v(x, t) for both (2.90) and (2.94) develop a shock at a
time Tb. In both cases the solutions are made up of the solution v and an additive Brownian motion.
Therefore, the shock in both solutions will still be present for the stochastic case at the time Tb.
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Chapter 3
Discontinuous Galerkin Methods

3.1 Introduction

In this chapter we formulate the discontinuous Galerkin (DG) method for hyperbolic conservation laws
and the local discontinuous Galerkin (LDG) method for the parabolic case. We apply them to the
deterministic examples studied in the previous chapter and show how it outperforms other Galerkin
methods and other classic methods for the convective dominated problems. Furthermore, we provide
as well the pseudoalgorithms for the implementations of the DG and LDG. The theory of this chapter
can be found in [16], [25] and [71].

The discontinuous Galerkin method was originally introduced by Reed and Hill in 1973 [61].
This method was later adapted to solve elliptic equations and generalized to the local discontinuous
Galerkin for studying convection-dominated problems [16]. Simultaneously and independently the
interior penalty (IP) methods were developed [62]. The IP methods have a great resemblance to the
DG. They are constructed using the weak formulation, but they weakly impose inter-element continuity.
Due the resemblance of the methods some authors do not distinguish the IP methods and simply call
them discontinuous Galerkin methods. This can be confusing and misleading since the classic DG
and the IP are at first glance different and produce different results. In [2] two formulations of the
DG methods were developed, the flux formulation (generalization of the original DG method) and the
primal formulation (generalization of the IP method). This development allowed to unify the theory
of discontinuous Galerkin methods in a single framework and to understand the relationships and the
differences between the IP methods and DG methods. It was shown that the IP methods were a
particular case of the flux formulation by a careful selection of the numerical fluxes. In [2], it is shown
that 9 different formulations of DG methods can be deduced from a proper choice of flux in the flux
formulation, including DG, LDG and IP. The author of this work has the opinion that the IP method
should not be simply called a discontinuous Galerkin method, it must be properly distinguished when
used. The IP method uses parameters to define weak inter-element continuity and its results drastically
depend on the selection of the parameters.

The DG can be developed in two ways, the nodal formulation and the modal formulation. Both
formulations use the basic idea of expressing the solution of the EDP as a linear combination of a
basis. For the nodal formulation, points of the spatial domain are selected and the corresponding

39
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Lagrange polynomials are used as a base. With such selection, the method only allows to know the
solution of the problem at the selected spatial points at each time step. For the modal formulation, the
basis is usually the Legendre polynomials, but this is not necessary. With this formulation the method
finds the weights of the solution in terms of the spatial basis at each time step. Thus, the solution at
an arbitrary point in the space dimension can be computed at each time step. When the Legendre
polynomials are used in the modal formulation, the nodal and modal formulations can be related, see
[25]. In this section we work with the modal formulation. The nodal formulation is going to be used
later on in the “Entropy stable discontinuous Galerkin method” chapter.

3.2 Spatial discretization

Prior to the study of the DG and LDG methods, we introduce some concepts and useful notation. We

assume without loss of generality O = [0, 1]. Also let us assume a uniform partition of width h =
1

N
,

N ∈ N i.e. xj =
j

N
, for j = 0, . . . , N, denote by Ij = (xj , xj+1) and define xj+ 1

2
=

xj + xj+1

2
. The

intervals Ij are generally known as elements and the partition elements xj are called inter-elements.
Define the set of piecewise polynomials of degree at most K by

V K
h = {φ ∈ L1(0, 1) : φ|Ij ∈ PK(Ij), j = 1, . . . , N − 1}.

A polynomial basis commonly used to generate V k
h are the Legendre polynomial, we use Pj to denote

the Legendre polynomial of order j. The first four Legendre polynomial are

P0 = 1, P2 =
3x2 − 1

2
,

P1 = x, P3 =
5x3 − 3x

2
.

Properties of the Legendre polynomials that we are going to used are
� 1

−1
Pm(x)Pl(x)dx =

2

2l + 1
δml (3.1)

� 1

−1
Pn(x) = 0 for n ≥ 1 (3.2)

d

dx
Pn+1(x) = (2n+ 1)Pn(x) + (2(n− 2) + 1)Pn−2(x) + (2(n− 4) + 1)Pn−4 + . . . , (3.3)

Pn(1) = 1, Pn(−1) = (−1)n. (3.4)

where δml is the Kronecker delta.

3.3 Time discretization.

The DG and LDG reduce the solution of PDEs to solve a system of ODEs. For the solution of the
system of ODEs the TVD-Runge-Kutta (TVDRK) method is used in both cases. We first explain
the time integrator, so that later we can freely use it in the DG and LDG methods. The order of
the TVDRK method is related to the polynomial order used for generating V K

h , the corresponding
TVDRK order is K + 1.
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Assume we have a system of differential equations for the approximate solution uh of the form

d

dt
uh(t) = Lh(uh, t), for all t ∈ (0, T ) (3.5)

uh(0) = uh0 . (3.6)

Then for the time partition tn = nτ, the TVD Runge-Kutta methods of order two, three and four are

i) Second order

w1 = unh + τLh(u
n
h),

un+1
h =

1

2
unh +

1

2
(w1 + τLh(w

1))

ii) Third order

w1 = unh + τLh(u
n
h),

w2 =
3

4
unh +

1

4
(w1 + τLh(w

1))

un+1
h =

1

3
unh +

2

3
(w2 + τLh(w

2))

iii) Fourth order

L0
h = Lh(u

n
h)

w1 = unh + τL0
h

L1
h = Lh(w

1)

w2 =
1

2
(unh + w1) +

τ

4
(−L0

h + 2L1
h)

L2
h = Lh(w

2)

w3 =
1

9
(unh + 2w1 + 6w2) +

τ

9
(−L0

h − 3L1
h + L2

h)

L3
h = Lh(w

3)

un+1
h =

1

3
(w1 + w2 + w3) +

τ

6
(L1

h + L3
h).

The prefix TVD means that the method has the total variation diminishing property. Meaning that
the discrete total variation TV,

TV (un) =
�

j

|unj+1 − unj |,

where unj = u(xj , tn) satisfies

TV (un+1) ≤ TV (un),

see [46] and also see Algorithms 1 and 2 for the implementation of the TVD Runge-Kutta method.
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xj xj+1xj−1

φ(x+j )

φ(x−j )

Figure 3.1: Example test function discontinuous at xj .

3.4 Discontinuous Galerkin method

Recall that the conservation law is
ut + (f(u))x = 0.

Let us rewrite such equation using the weak formulation from Definition 2.2.4 with a test function
φ ∈ V K

h and consider an initial condition, then
�

Ij

utφdx =

�

Ij

f(u)φ�dx+ f(u(x+j , t))φ(x
+
j )− f(u(x−j+1, t))φ(x

−
j+1),

�

Ij

u(x, 0)φ(x) =

�

Ij

u0(x)φ(x)dx.

The notation x+j denotes the limit from the right and x−
j+1 the limit from the left. These limits are

required because the polynomial φ is only continuous in each interval Ij , that is, it is no required that
φ(x−j ) �= φ(x+j ), see Figure 3.1.

We look for an approximation uh ∈ V K
h to u at each time t ∈ (0, T ). Then there is no reason for

uh to be continuous at the inter-element points xj , in such case there is an ambiguity on how to define
f(uh(x

±
j )). Thus, the flux f(uh(x

±
j )) is substituted by a numerical flux f̂ that depends on the left and

right values of uh(x±j ),
f̂j(uh, t) := f̂(uh(x

−
j , t), uh(x

+
j , t)).

Then the approximation solution uh for each time t ∈ (0, T ) is defined as the function in V K
h that

satisfies the weak formulation
�

Ij

(uh)tφdx =

�

Ij

f(uh)φ
�dx+ f̂j(uh, t)φ(x

+
j )− f̂j+1(uh, t)φ(x

−
j+1), (3.7)

�

Ij

uh(x, 0)φ(x) =

�

Ij

u0(x)φ(x)dx, (3.8)

for all φ ∈ V k
h and all Ij , j = 0, 1, . . . , N − 1.

The numerical flux is chosen so that

i) (Locally Lipschitz ) For each point x0 of the domain there is a neighborhood where the function
is Lipschitz.

ii) (Consistent) f̂(u, u) = f(u).
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iii) (Monotone) Nondecreasing of its first argument and nonincreasing of its second argument.

Classic examples of numerical fluxes are

i) The Lax-Friedrichs flux:

f̂LF (a, b) =
1

2
[f(a) + f(b)− C(b− 1)],

C = max
inf u0(x)≤s≤supu0(x)

|f �(s)|.

ii) The local Lax-Friedrichs flux:

f̂LLF (a, b) =
1

2
[f(a) + f(b)− C(b− 1)],

C = max
min(a,b)≤s≤max(a,b)

|f �(s)|.

iii) The Godunov flux:

f̂G(a, b) =

�
mina≤u≤b f(u) a ≤ b

maxb≤u≤a f(u) b < a.

There is not a definite rule for choosing a numerical flux. In most of the literature, [16] ,[25], [59] and
[71] the preferred limiter, due to its simplicity, is the LLF limiter. In [16] the authors commented that
in their experience the flux selection becomes irrelevant as K and N are increased. In most of the
numerical experiments this was the case, we point out the examples where the G flux is better. In [25],
the authors show that the LF is more dissipative than the LLF, the authors mention that even though
for some problems other flux limiters might give better results, the simplicity of the LLF makes it a
more suitable choice.

We choose the Legendre polynomials (Pl)
K
l=0 to be a basis of the polynomials at each interval Ij ,

to do so, we consider the local change of variables

ξj(x) = 2
x− xj+ 1

2

h
.

Since for each time t ∈ (0, T ) we assume that uh ∈ V k
h , then for each j = 0, . . . , N − 1 there are K

coefficients ulj dependent on time, such that

uh(x, t)|Ij =
K�

l=0

ulj(t)Pl(ξj(x)). (3.9)

Substituting (3.9) in (3.7) and (3.8) and using (3.1) and (3.4), the weak form simplifies to

d

dt
ulj(t) =

2l + 1

h

�� 1

−1
f(uh(ξ, t))P

�
l (ξ)dξ + (−1)lf̂+

j − f̂−
j+1

�
(3.10)

ulj(0) =
2l + 1

2

� 1

−1
u0(ξ)Pl(ξ)dξ, (3.11)
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for all j = 0, . . . , N − 1 and all l = 0, . . . ,K. Equation (3.10) is usually called the semidiscrete form of
the problem. See Algorithm 4 for the implementation.

Note that at each xj , j = 1, . . . , N − 1, there are two values of uh, one from the approximation
of uh in the interval Ij−1 and one from the approximation in the interval Ij . These two values are the
ones evaluated in the flux limiter f̂ .

The solution of the system of ODEs (3.10) can be represented in a vector of length (K + 1)N,

uh =
�
u00 . . . uK0 , u01 . . . uK1 . . . u0N−1 . . . uKN−1

�
.

With this notation, the ODE system can be solved using the TVD Runge-Kutta method (3.5), with
Lh represented by

[Lh(uh, t)]i =
2l + 1

h

�� 1

−1
f(uh(ξ, t))P

�
l (ξ)dξ + (−1)lf̂+

j − f̂−
j+1

�
,

for j ∈ {0, . . . , N − 1} and l ∈ {0, . . . ,K} such that i = 2(K + 1)j + l.

Notice that the method requires that the integrals

� 1

−1
f(uh(ξ, t))P

�
l (ξ)dξ and

� 1

−1
u0(ξ)Pl(ξ)dξ,

are performed analytically, which can be difficult, time consuming and even a bit tedious. The first
integral is usually done analytically, numerical quadratures can seriously affect the accuracy of the
method or even produce non-entropy solutions, specially for non-polynomial f . In Chapter 5, we work
on a numerical quadrature using Gauss-Lobatto points that produces entropy solutions. In case of f
being a polynomial, the properties (3.2) and (3.3) might be quite handy. The second integral can be
performed numerically without a great loss in accuracy.

Remark If instead of the Legendre polynomials (Pl) other polynomials were chosen as a basis,
the system of equations (3.10) would not be diagonal. As part of the work of the thesis, we did the
computations and algorithms for two other set of polynomial basis, Radau polynomials (Rl(x)) and
Bernstein polynomials (Bl(x)) for the linear convection equation and Burgers’ equation. Surprisingly,
the numerical results obtained with the Radau and Bernstein polynomials were exactly the same to
the ones obtained by using the Legendre polynomials. For the Radau polynomials this is reasonable,
since the l-th Radau polynomial is defined by

Rl(x) =
(−1)l

2
(Pl − Pl−1).

So implicitly the base is still generated by the Legendre polynomials. For the Bernstein basis it was
more intriguing that the numerical results were exactly the same. First the basis generates continuous
functions in the interval [0, 1], instead of [−1, 1], and second that the Bernstein polynomials are not
defined by means of the Legendre polynomials, so it is reasonable to expect different results. As an
example of the ODE system obtained with these polynomials we show the systems for K = 2 for an
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arbitrary interval Ij


2 1 0
1 2

3
1
6

0 1
6

4
15






d
dtu

0
j

d
dtu

1
j

d
dtu

2
j


 = Lh(uj) Radaua polynomials,




9 −9 3
−9 21 −9
3 −9 9






d
dtu

0
j

d
dtu

1
j

d
dtu

2
j


 = Lh(uj) Bernstenin polynomials,

the left side is not explicitly computed since it depends on the flux f. Since these basis did not had a
change in the results and were slower, we did not pursued continuing exploring their performance for
other examples. We do not include the results of the error in this work.

The DG method solution uh satisfies for the square entropy η(u) = u2

2 a cell entropy inequality
in each interval Ij for the entropy function ψ� = uf �,

�

Ij

�
u2h(x, t)

2

�

t

dx+ ψj+1(t)− ψj(t) ≤ 0. (3.12)

This inequality leads to L2 stability of the scheme,

d

dt

�

O

�
u2h(x, t)

2

�
dx ≤ 0.

In particular for a convex flux f(u) and in conjunction with the RKTVD method and the TVB limiter
(next section), the solution is TVB and will converge towards the unique entropy solution [34].

When polynomials of degree K are used, the corresponding order of the Runge-Kutta must at
least (k+1) so that the order of the method is O(hk+1) in the L∞ norm away from discontinuities. The
theoretical study of error bounds, stability and more theoretical properties of the RKDG (Runge-Kutta
DG) is out of the scope of this work, we refer the interested reader to [16].

In the examples of this thesis, we choose N = [10, 20, 40, 80, 160, 320], so the numerical order K̂
can be computed by

K̂ =

log

�
un
h

un+1
h

�

log(2)
.

The notation u
(K)
h is used in the tables related to all the examples to denote the K−th order polynomial

approximation, K = 1, 2, 3.

3.4.1 Examples

Example 1. Linear convection equation,

ut + ux = 0.

In the previous chapter we worked with two initial conditions a sine and an impulse function (2.37)
and (2.38). For the impulse initial condition Figure 3.2a and Figure 3.2b it can be seen that the DG
presents the Gibbs effect and oscillates around discontinuities. In the Table 3.1 the error is shown for
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the different number of elements and different polynomial orders of approximation. This table shows
that the error is indeed decreasing as a function of the elements but is not order O(hK+1). In addition
the error almost does not decreases when the polynomial order is increased. Which happens because
oscillations near discontinuities do not disappears when K increases. In the case of the sine initial
condition, see Table 3.2 and Figure 3.3 it can be seen that the order satisfies to be O(hK+1) and that
the DG approximations are indistinguishable from the exact solution for K = 3. The CFL condition
was set to 0.01 for K = 1, 0.001 for K = 2 and 0.0001 for K = 3.

(a) General view (b) Zoom on oscillatory behaviour.

Figure 3.2: Comparison of DG solutions for the linear convection equation α = 1, K = 3, T = 0.1
impulse initial condition.

Figure 3.3: Comparison of DG solutions of the linear convection equation α = 1, K = 3, T = 0.1 sine
initial condition.

Example 2. Burgers’ equation

ut +

�
u2

2

�

x

= 0.

Both of the initial conditions (2.37) and (2.38) develop a shock and (2.38) develops a rarefaction wave.
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N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 7.6× 10−2 - 5.1× 10−2 - 4.1× 10−2 -
20 4.7× 10−2 0.67 3× 10−2 0.23 2.31× 10−2 0.82
40 2.8× 10−2 0.72 1.7× 10−2 0.20 1.3× 10−2 0.82
80 1.7× 10−2 0.76 1× 10−2 0.18 7.2× 10−3 0.85
160 1× 10−2 0.73 5.8× 10−3 0.16 4× 10−3 0.85
320 6.2× 10−3 0.72 3.2× 10−3 0.15 2.2× 10−3 0.85

Time 6.43s - 8.23s - 39.33s -

Table 3.1: DG solutions linear convection equation α = 1 impulse initial condition.

N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 1.24× 10−2 - 6.11× 10−4 - 2.27× 10−5 -
20 3.13× 10−3 2 8.72× 10−5 2.97 1.44× 10−6 3.97
40 7.8× 10−4 2 9.77× 10−6 3 9.24× 10−8 3.96
80 2× 10−4 2 1.23× 10−6 2.99 5.74× 10−9 4
160 4.9× 10−5 2 1.51× 10−7 3.03 3.63× 10−10 3.98
320 2.2× 10−5 1.98 1.9× 10−8 2.98 2.3× 10−11 3.97

Time 6.43s - 8.23s - 39.33s -

Table 3.2: DG solutions linear convection equation α = 1 sine initial condition.

For the sine initial condition, prior to the shock time Tb =
1

2π
, the solution has the expected order

and for K = 3 and it can not be distinguished from the analytical solution, see Table 3.3 and Figure
3.4. After the shock time, the DG losses its order and performance. Both, the order and performance,
decay and the solutions do not greatly improve by increasing neither the elements nor the polynomial
order, see Table 3.4 Figure 3.5a and Figure 3.5b. For the impulse initial condition, the DG has no
problem in the rarefaction wave, but once again it has troubles in the discontinuity, see Table 3.4,
Figure 3.5a and Figure 3.5b. This example is the only one so far to improve by changing to the G flux,
see Table 3.5 and Figure 3.6. Sadly this behaviour depends on the parity of N, as it seen in Figure
3.7a and Figure 3.7b.

The previous examples show that the DG method is not exempt of the Gibbs phenomena. In the
next chapter we work with limiters, a technique that helps to control this oscillatory behaviour.

N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 3.37× 10−2 - 8.28× 10−3 - 9.11× 10−4 -
20 9.08× 10−3 1.89 1.17× 10−3 2.81 6.69× 10−5 3.76
40 2.26× 10−3 2 1.45× 10−4 3.02 8.84× 10−6 2.92
80 5.73× 10−4 1.98 2.86× 10−5 2.34 1.01× 10−6 3.11
160 1.57× 10−4 1.87 4.61× 10−6 2.63 1.78× 10−7 2.51
320 3.9× 10−5 2.01 6.92× 10−7 2.73 6.93× 10−8 1.36

Time 7.35s - 9.98s - 50.76s -

Table 3.3: DG solutions Burgers’ sine initial condition T = Tb − 0.05.
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N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 6.86× 10−2 - 8.28× 10−2 - 4.38× 10−4 -
20 3.72× 10−2 0.89 5.33× 10−2 0.81 2.43× 10−2 0.84
40 2.05× 10−2 0.85 3.06× 10−2 0.89 1.29× 10−2 0.91
80 1.17× 10−2 0.81 1.64× 10−3 0.81 8.43× 10−3 0.61
160 5.52× 10−3 1.08 4.11× 10−3 1.18 5.59× 10−3 0.59
320 4.76× 10−3 0.21 3.54× 10−3 0.21 5.18× 10−3 0.11

Time 9.76s - 12.83s - 111.34s -

Table 3.4: DG solutions Burgers’ sine initial condition T = Tb + 0.1.

N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 7.14× 10−3 - 1.36× 10−3 - 7.38× 10−4 -
20 1.22× 10−3 2.70 1.51× 10−4 3.17 1.44× 10−5 5.68
40 2.23× 10−4 2.45 2.38× 10−5 4.26 5.24× 10−7 4.78
80 9.99× 10−5 0.90 8.01× 10−6 1.57 7.06× 10−8 2.89
160 3.71× 10−5 1.43 1.37× 10−6 2.55 5.80× 10−8 0.28
320 8.17× 10−6 2.18 3.48× 10−7 1.98 2.74× 10−8 1.08

Time 9.76s - 12.83s - 111.34s -

Table 3.5: DG solutions Burgers’ sine initial condition T = Tb + 0.1 G flux.

3.5 Local discontinuous Galerkin method

Recall the convection-diffusion equation

ut + (f(u))x = Duxx.

The DG method cannot be applied directly to it. In [75] the authors show that if this is done, the
obtained solution is stable but inconsistent.

The following construction of the LDG method can be found in [16]. First transform the second
order PDE into the system of first order PDEs,

ut + (f(u)−
√
Dq)x = 0,

q − g(u)x = 0,

with g(x) =
√
Du. To define the LDG solution to the system we use the second version of weak

formulation (2.61)-(2.63).

Define the flux h = (hu, hq)
t by

h(u, q) = (f(u)−
√
Dq,−g(u))t.

We seek for an approximate solution wh = (uh, qh)
t, with uh, qh ∈ V k

h of w = (u, q). To construct it,
we need to find wh = (uh, qh)

t such that for any test functions φ1,φ2,φ3 ∈ V K
h the weak formulation
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N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 6.86× 10−2 - 3.46× 10−2 - 2.72× 10−2 -
20 3.72× 10−2 0.89 1.68× 10−2 1.03 1.50× 10−2 0.85
40 2.05× 10−2 0.85 8.91× 10−3 0.92 6.38× 10−3 1.23
80 1.17× 10−2 0.81 4.92× 10−3 0.85 4.12× 10−3 0.62
160 5.52× 10−3 1.08 2.74× 10−3 0.84 2.16× 10−3 0.93
320 4.76× 10−3 0.21 1.47× 10−3 0.89 1.23× 10−3 0.80

Time 9.76s - 12.83s - 111.34s -

Table 3.6: DG solutions Burgers’ impulse initial condition T = 1
2π + 0.1.

Figure 3.4: Comparison of DG solutions for the Burgers’ K = 3, T = Tb − 0.05 sine initial condition.

(2.61)-(2.63)
�

Ij

(uh)tφ1dx−
�

Ij

hu(wh)(φ1)xdx = ĥu(wh(x))φ1(x)
��x=xj+1

x=xj
, (3.13)

�

Ij

qhφ2dx−
�

Ij

hq(wh)(φ2)xdx = ĥq(wh(x))φ2(x)
��x=xj+1

x=xj
, (3.14)

�

Ij

uh(x, 0)φ3dx =

�

Ij

u0(x)φ3dx, (3.15)

is satisfied. Once again, neither uh nor qh are required to be continuous in the inter-elements xj so
fluxes hu and hq are replaced by numerical fluxes, as previously done for the DG method. To define
the numerical flux ĥ is useful to consider the following notation

[u] = u+ − u−, u =
1

2
(u+ + u−), u±j = u±j = u(x±j ).

The numerical flux is written as the sum of a diffusive flux and a convective flux:

ĥ(w−, w+) = ĥdiff (w
−, w+) + ĥconv(w

−, w+).
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(a) General view (b) Zoom on oscillatory behaviour.

Figure 3.5: Comparison of DG solutions for the Burgers’ K = 3, T = Tb + 0.1 sine initial condition.

The diffusive flux is defined by

ĥdiff (w
−, w+) =

�
− [g(u)]

[u]
q,−g(u)

�t

− Cdiff × [w],

with

Cdiff =

�
0 c12

−c12 0

�

where c12 = c12(u
−, u+) is locally Lipschitz. The convective flux is given by

ĥconv(w
−, w+) = (f̂(u−, u+), 0)t,

where f̂ is any locally Lispchitz function consistent with the nonlinearity of f.

Note that once uh has been determined at a time step, equation (3.14) determines qh by using
the flux

ĥq = −g(u)− c12[u],

without requiring the solution of any ODE.

Once the convective and diffusive fluxes are defined, we can rewrite the numerical flux ĥ as follows

ĥ(w−, w+) =

�
[ψ(u)]

[u]
− [g(u)]

[u]
q,−g(u)

�t

− C × [w], (3.16)

where

C =

�
c11 c12
−c12 0

�
, c11 =

1

[u]

�
[ψ(u)]

[u]
− f̂(u−, u+)

�t

. (3.17)

Substituting (3.17) into (3.16)

ĥ(w−, w+) = (f̂(u−, u+)− [g(u)]

[u]
q + c12[q],−g − c12[u]).



51

Figure 3.6: Comparison of DG solutions for the Burgers’ K = 3, T = Tb + 0.1 sine initial condition G
flux.

Considering c12 as the standard three point central difference

c12 = −
√
D

2
,

and recalling g(u) =
� u√

Dds =
√
Du, it is concluded that

ĥ(w−, w+) = (ĥu, ĥq) = (f̂(u+, u−)−
√
Dq−,−√

au+)t. (3.18)

Note that (3.18) does not depend on f, we can use it either with f(u) = αu or f(u) =
u2

2
.

Once again considering the polynomial basis generated by the Legendre polynomial Pl the ap-
proximations of u and q at each Ij , for j = 0, . . . , N − 1 are

uh(x, t)
��
Ij

=

K�

l=0

ulj(t)Pl(ξj(x)) and qh(x, t)
��
Ij

=

K�

l=0

qlj(t)Pl(ξj(x)). (3.19)

Thus, substituting in (3.13) and (3.14) and using Legendre polynomials as test functions the
system of ODEs for the coefficients ul

j is

d

dt
ulj =

2l + 1

h

�� 1

−1
(f(uh(ξ, t))−

√
Dqh(ξ, t))P

�
l (ξ)dξ + (−1)l(f̂j −

√
Dq−j )− (f̂j+1 −

√
Dq−j+1)

�
,

(3.20)
and qh is given by

qlj =
2l + 1

h

�� 1

−1

√
Duh(ξ, t)P

�
l (ξ) +

√
Du+j+1 − (−1)l+1u+j

�
, (3.21)

see Algorithm 5 for the implementation. We can now use the TVDRK method to solve (3.20). If a
polynomial order K is used for the approximation, recall that it is required that the order of the RK
method is K + 1. If so, the order of the method is in the L∞ norm is O(hk) [16].
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(a) General view (b) Zoom on oscillatory behaviour.

Figure 3.7: Dependence on parity of N of the G flux.

(a) General view (b) Zoom on oscillatory behaviour.

Figure 3.8: Comparison of DG solutions for the Burgers’ K = 3, T = 1
2π +0.1 impulse initial condition.

3.5.1 Examples

In the following examples we used CFL = 0.001 for K = 1, CFL = 0.0001 for K = 2, and CFL =
0.00001 for K = 3.

Example 1. Linear convection-diffusion equation

ut + αux = Duxx.

In Tables 3.7 and 3.8 the L∞ norm of the error and the order of the solutions for the polynomial orders
K = 1, 2, 3 are shown. With the choice of CFLs for D = 1 the order in general was O(hk+1), except
for N = 80, 160, 320 where the error did not decreased as expected. In the case D = 10−5 the order
was not consistently O(hk+1), but it was at least O(hk) for most of the cases. In the Figure 3.9a and
Figure 3.9b we can see a comparison of different LDG solutions. When both figures are compared
we can see that the decrement on the diffusion coefficient affects the amplitude of the sine wave. For
D = 1 the amplitude decreases faster than for D = 10−5.
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(a) D = 1. (b) D = 10−5.

Figure 3.9: Comparison of LDG solutions for the linear convection-diffusion equation K = 3, T = 0.1.

N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 1.03× 10−2 - 2.88× 10−4 - 2.13× 10−5 -
20 2.67× 10−3 1.93 5.42× 10−5 2.88 1.38× 10−6 3.99
40 6.93× 10−4 1.95 7.32× 10−5 2.41 1.9× 10−7 2.81
80 1.89× 10−4 1.86 1.37× 10−6 2.77 2.94× 10−8 2.69
160 4.99× 10−5 1.92 2.01× 10−7 3.17 2.91× 10−8 0.01
320 1.11× 10−5 2.17 6.38× 10−8 1.79 1.32× 10−8 1.13

Time 8.01s - 10.83s - 73.77s -

Table 3.7: LDG solutions for the linear convection–diffusion equation α = 1, D = 1, T = 0.1.

Example 2. Nonlinear convection-diffusion equation

ut +

�
u2

2

�

x

= Duxx.

In Tables 3.9 and 3.10 the L∞ norm of the error and the order of the solutions for the polynomial
orders K = 1, 2, 3 are shown. In this example for both D = 1 and D = 10−5 the numerical orders
are in general O(hK+1). Note that the error for D = 10−5 is much lower than the one for D = 1. The
reason for this can be seen in the Figures 3.10a and 3.10b and in the equation 2.53, the solution is
bounded at all times by 2D.

3.5.2 Convective-dominated problems

In the two previous examples we have focused on what happens when D is small, i.e., the convective
dominated case. The reason of the interest is that convective dominated problems are problematic
for numerical solvers. As part of the thesis work, we programmed the Petrov-Galerkin method (PG)
[31], the continuous Galerkin method (CG) [35] and the interior penalty method (IP) with first order
polynomial approximations [62]. These methods as well transform the PDE into the solution of a system
of ODEs. We used the backward Euler (BE) and Crank-Nicolson (CN) methods for the solution of the
ODE systems. The IP methods depend on three parameters (σ0,σ1, �) for weakly imposing continuity.
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N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 4.98× 10−2 - 6.14× 10−4 - 1.36× 10−4 -
20 1.45× 10−2 1.78 5.09× 10−4 2.08 7.26× 10−6 4.23
40 4.30× 10−3 1.75 8.67× 10−5 2.55 9.08× 10−7 3.00
80 1.04× 10−3 2.05 1.60× 10−5 2.43 4.61× 10−8 4.30
160 2.52× 10−4 2.05 1.82× 10−6 3.14 3.59× 10−8 0.36
320 5.88× 10−5 2.10 3.33× 10−7 2.45 1.62× 10−8 1.14

Time 8.01s - 10.83s - 73.77s -

Table 3.8: LDG solutions for the linear convection-diffusion equation α = 1, D = 10−5, T = 0.1.

N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 1.19× 10−1 - 2.08× 10−2 - 1.59× 10−3 -
20 3.05× 10−2 1.96 2.47× 10−3 3.07 1.25× 10−4 3.67
40 7.68× 10−3 1.99 3.00× 10−4 3.04 6.37× 10−6 4.29
80 1.78× 10−3 2.11 4.39× 10−5 2.77 5.25× 10−7 3.60
160 4.66× 10−4 1.93 5.54× 10−6 2.99 7.12× 10−8 2.88
320 1.18× 10−4 1.98 1.28× 10−6 2.11 2.32× 10−8 1.62

Time 8.01s - 10.83s - 113.68ss -

Table 3.9: LDG solutions for the non linear convection-diffusion equation D = 1, T = 0.1.

This feature makes the use of the IP methods complicated. There are values for which the method
is well characterized and there are result about their stability and convergence, for example: (1, 0, 1)
nonsymmetric interior penalty Galerkin (NPIG), (0, 0, 1) NPIG0, � = 0 incomplete interior penalty
Galerkin (IIPG) and (σ0, 0,−1) with σ0 bounded below by a large enough constant symmetric interior
penalty Galerkin (SIPG) [62]. For other values of (σ0,σ1, �) at least to the best knowledge of the
author, there are no general results that ensure convergence.

We compare in Table 3.11 the CG, PG, NPIG0 and LDG methods using order 1 polynomials for
α = D = 1. The LDG has the best performance. For the convective-dominate case Table 3.12 the PG
method did not converge, the other methods did converge but the LDG still performed better. We
had to use the parameters (σ0,σ1, �) = (0, 0, 10−4) for the IP method to converge in the convective
dominated case, but we do not know any results of its stability or order of convergence. Finding
the parameters so that the IP method converges is not an easy task and requires a lot of numerical
experimentation. Thus, we can conclude that among different formulations of the Galerkin method, the
best suited for convection-diffusion equations is the LDG method. A similar type of problems are the
degenerated problems where the parameter of the diffusion is not constant and becomes zero in some
regions of the domain. The IP methods do work for these kinds of problems [58]. We tried to adapt
the ideas developed in [58] to convective-dominated problems, but the method requires a nonempty set
where the diffusion vanishes which is not the case. Since the LDG outperformed the other methods, we
did not developed them for further examples and we do not include their construction. The interested
reader is referred to the references [31], [35] and [58] for more information.

The difficulties for solving convective-dominated equations do not only appear when using Galerkin
methods in [23], the authors compare the LDG method with the numerical solutions obtained by fully
the implicit finite difference method (IFDM) and a mixed finite difference and boundary element
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N ||u(1)h − u||L∞ Ord. K = 1 ||u(2)h − u||L∞ Ord. K = 2 ||u(3)h − u||L∞ Ord. K = 3

10 7.79× 10−7 - 1.46× 10−7 - 1.05× 10−8 -
20 1.99× 10−7 1.97 1.61× 10−8 3.18 8.74× 10−10 3.58
40 4.89× 10−8 2.03 1.94× 10−9 3.05 5.03× 10−11 4.12
80 1.20× 10−8 2.03 2.94× 10−10 2.73 3.66× 10−12 3.78
160 3.17× 10−9 1.92 3.70× 10−11 2.99 2.15× 10−13 4.09
320 7.62× 10−10 2.05 4.29× 10−12 3.11 2.03× 10−14 3.40

Time 8.01s - 10.83s - 113.68ss -

Table 3.10: LDG solutions for the non linear convection–diffusion equation D = 10−5, T = 0.1.

(a) D = 1. (b) D = 10−5.

Figure 3.10: Comparison of LDG solutions for the nolinear convection-diffusion equation K = 3,
T = 0.1.

method (BEM). They numerically show that the most efficient method for the nonlinear convection-
diffusion equations with the diffusion coefficients D = 1, 0.1, 0.01, 0.001 and a sine initial condition is
the LDG method, see Figure 3.11.

N CG NPIG 0 PG LDG K = 1

- BE CN BE CN BE CN RK
100 9.09× 10−2 8.95× 10−2 5.56× 10−2 5.7× 10−2 7.56× 10−2 7.4× 10−2 4.68× 10−4

200 2.53× 10−2 2.49× 10−2 2.22× 10−2 2.3× 10−2 1.58× 10−2 1.51× 10−2 9.00× 10−5

300 1.31× 10−2 1.35× 10−2 1.32× 10−2 1.41× 10−2 5.34× 10−3 5.42× 10−3 5.66× 10−5

Table 3.11: Comparison norm L1 of error for different methods, linear convection-diffusion D = 1

3.6 Benefits of the DG and LDG methods

The DG and LDG methods outperform other numerical schemes in the solution of conservation laws and
convection-diffusion equations, which is not the only advantage that they have. They are well suited
for complex geometries, they have high-order accuracy, hp-adaptivity is easily implemented, they have
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N CG (σ0,σ1, �) = (0, 0, 10−4) LDG K = 1

- BE CN BE CN RK
100 7.73× 10−1 7.65× 10−1 3.96× 10−2 4.02× 10−2 6.07× 10−4

200 1.55× 10−2 1.51× 10−2 1.95× 10−2 1.93× 10−2 2.37× 10−4

300 5.78× 10−3 5.72× 10−3 1.42× 10−2 1.36× 10−2 1.21× 10−4

Table 3.12: Comparison norm L1 of error for different methods, linear convection-diffusion D = 10−2

Figure 3.11: Comparison of methods for the nonlinear convection diffusion equation D = 10−2, ex-
tracted from [23]

an explicit semidiscrete form and they are parallelizable [25]. Note that they are parallelizable because
the computations in each interval Ij are independent to the computations in other intervals Ik. We
used the package NUMBA [42] from python to parallelize the codes of this thesis. In each table shown
we include the time taken to obtain the sequential solution for N = 10, 20, 40, 80, 160, 320 on a Lenovo
Legion Y720 CORI i7 7th Gen with NVIDIA GEFORCE GTX 1060.

3.7 Algorithms

The general implementation of the DG and LDG algorithms is Algorithm 2. To initialize it we ob-
tain an approximation u0h of the initial condition using Equation 3.8, select the order of polynomial
approximation K, the number of elements N, the CFL condition, the flux f, the derivative of the flux
f �, the numerical flux f̂ and the left side of the Runge-Kutta method Lh (use Algorithm 4 for DG and
Algorithm 5 for the LDG method).
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Algorithm 1 TVD Runge-Kutta

1: procedure runge_kutta(K, u0, τ, T, f(u), f
�(u), f̂ , N, h, Lh )

2: if The polynomial order K is 1 then
3: w1 = u0 + τLh(u0, f(u), f

�(u), f̂ , N, h)
4: u1 =

1
2u0 +

1
2(w

1 + τLh(w
1, f(u), f �(u), f̂ , N, h))

5: if The polynomial order K is 2 then
6: w1 = u0 + τLh(u0, f(u), f

�(u), f̂ , N, h)
7: w2 = 3

4u0 +
1
4(w

1 + τLh(w
1), f(u), f �(u), f̂ , N, h)

8: u1 =
1
3u0 +

2
3(w

2 + τLh(w
2), f(u), f �(u), f̂ , N, h)

9: if The polynomial order K is 3 then
10: L0

h = Lh(u0, f(u), f
�(u), f̂ , N, h)

11: w1 = u0 + τL0
h

12: L1
h = Lh(w

1, f(u), f �(u), f̂ , N, h)
13: w2 = 1

2(u0 + w1) + τ
4 (−L0

h + 2L1
h)

14: L2
h = Lh(w

2, f(u), f �(u), f̂ , N, h)
15: w3 = 1

9(u0 + 2w1 + 6w2) + τ
9 (−L0

h − 3L1
h + L2

h)

16: L3
h = Lh(w

3, f(u), f �(u), f̂ , N, h)
17: u1 =

1
3(w

1 + w2 + w3) + τ
6 (L

1
h + L3

h)

18: return u1

Algorithm 2 Solution of system of ODEs

1: procedure solver_ODE(K, u0, N, CFL T, f(u), f �(u), f̂ , N , h, Lh)
2: τ = CFL

N .
3: dt = τ
4: n = 1
5: while dt = nτ < T do
6: Compute un using Algorithm 1

un = runge_kutta(K,un−1, τ, T, f(u), f
�(u), f̂ , N, h, Lh)

7: n+ = 1

8: return Solution of the system of ODEs un

Algorithm 3 local Lax-Friedrichs flux
1: procedure lax_friedrichs(a, b, f, f �)
2: Define C = α for f(u) = αu linear or C = max(a, b) for f(u) = u2

2

3: Compute f̂(a, b) = f(a)+f(b)−C(b−a)
2

4: return Numerical flux f̂(a, b)
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Algorithm 4 DG Conservation law

1: procedure L_h(uh, f(u), f �(u), f̂ , N, h, Lh)
2: Define the solution vector u1.
3: for the element j = 0, . . . , N − 1 do
4: Compute by (3.9) u−j = uh(x

−
j , t), u

+
j = uh(x

+
j , t), u

−
j+1 = uh(x

−
j+1, t) and u+j+1 =

uh(x
+
j+1, t).

5: for each order polynomial l = 0, . . . ,K do
6: Compute the numerical flux difference

f̂±
j = (−1)lf̂+

j − f̂−
j+1

7: Compute and save the entry 2j(K + 1) + l of the solution u1

u1[2j(K + 1) + l] =
2l + 1

h

�� 1

−1
f(uh(ξ, t))P

�
l (ξ)dξ + f̂±

j

�
.

return Solution u1 = Lh(u0)

Algorithm 5 LDG convection-diffusion equations.

1: procedure L_h(uh, f(u), f �(u), f̂ , D,N, h, Lh)
2: Define the solution vectors u1, q.
3: for the element j = 0, . . . , N − 1 do
4: Compute by (3.19) u+j = uh(x

+
j , t) and u+j+1 = uh(x

+
j+1, t).

5: for each order polynomial l = 0, . . . ,K do
6: Compute and save the entry 2j(K + 1) + l of the solution q

q[2j(K + 1) + l] =
2l + 1

h

�� 1

−1

√
Duh(ξ, t)P

�
l (ξ) +

√
Du+j+1 − (−1)l+1u+j

�
.

7: for the element j = 0, . . . , N − 1 do
8: Compute by (3.19) q−j = qh(x

−
j , t), u

−
j = uh(x

−
j , t), q

−
j+1 = qh(x

−
j+1) and u−j+1 = un(x

−
j+1, t).

9: for each order polynomial l = 0, . . . ,K do
10: Compute and save the entry 2j(K + 1) + l of the solution u1

u1[2j(K + 1) + l] =
2l + 1

h

�� 1

−1
(f(uh(ξ, t))−

√
Dqh(ξ, t))P

�
l (ξ)dξ

�
+

+
2l + 1

h

�
(−1)l(f̂j −

√
Dq−j )− (f̂j+1 −

√
Dq−j+1)

�

return Solution u1 = Lh(u0)



Chapter 4
Limiting Techniques

4.1 Introduction

Solutions by the discontinuous Galerkin method present the Gibbs phenomenon and oscillations ap-
pear near discontinuities. To address this problem, "limiting techniques" can be used. Such techniques
consist in a two step process; first identify “troubled cells" where the solution has a highly oscillatory
behavior. Second, modify the coefficients of the DG polynomial approximation in the troubled cells.
The development of troubled cells detectors and reconstruction methods is an active area of research.
Some classic and modern slope limiters are: a multi-wavelet type [14], the minmod-type TVB [16], the
moment limiter [40], WENO reconstruction [59], artificial neural networks as a troubled-cell indicator
[60], a convolution neural network shock detector [69], and the TVB method with a multi-layer per-
ceptron [74]. For a panoramic perspective on limiters developed up to 2013 and their performance, see
[77].

In this chapter we include an introduction to limiters, we show the performance of the minmod-
based TVB limiter, the moment limiter and our proposals for limiters, without any formal results.

4.2 Two step process: identify and reconstruct

As we have mentioned earlier, the identifying and reconstruction processes are still an active area of
research. The material in this section explains the motivation and ideas of the slope limiter [16] and
moment limiter [40].

The limiting process was motivated from the slope limiter methods for finite difference methods for
conservation laws [46]. Just as the solution of the DG method, finite difference schemes have oscillations
near discontinuities and this method was created to obtain nonoscillatory discontinuities for high order
schemes. Finite difference methods compute the solution to PDEs at certain predetermined space-time
grid points (xj , tn). A natural interpretation of the numerical solution is that it approximates the exact
pointwise values of the true solution. A second interpretation is that it approximates the average value

59
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unj of the true solution at a time tn in an interval of width h that has xj as its midpoint, that is,

unj =
1

h

�

Ij

u(x, tn)dx,

with Ij = [xj − h
2 , xj +

h
2 ]. The value unj is called the cell average of u(x, tn). Note that this idea is

reasonable by the integral form of the conservation law.

Let uh(x, t)
��
Ij

=
�l

l=0 u
l
j(t)Pl(ξj(x)) be the DG approximation for a conservation law and consider

as in the previous section Ij = [xj , xj+1], j = 0, . . . , N − 1 to be a partition of the domain O. We are
looking for a way to determine when uh(x, t) has a highly oscillatory behaviour, as the ones shown in
Figure 3.2b, Figure 3.5b and Figure 3.8b. Clearly at the intervals Ij where a function oscillates, there
is an abrupt change in the spatial derivatives. The idea of the identifying process of the slope and
moment limiters is to approximate the spatial derivatives using two different methods and compare the
different approximations to determine abrupt changes in the sign and magnitudes of the derivatives.

We first explain the slope limiter, since it is more intuitive. At each interval Ij the approximate
solution uh is truncated as a first order polynomial approximation ûh(x, t) = u0j (t) + u1j (t)P1(ξj(x)).
Consider the cell averages uj−1, uj and uj+1, we dropped the time index since for this analysis is
not relevant. The first spatial derivative approximation of u(xj , t), uses the neighboring elements cell
averages solutions to compute the external forward and backward differences

Δ−uj = uj − uj−1 and Δ+uj = uj+1 − uj .

The second approximation, uses the values u+
j = uh(x

+
j , t) and u−j+1 = uh(x

−
j+1, t) to compute the

internal forward and backward approximations

ûj = uj − u+j and ǔj = u−j+1 − uj .

The terms “external” and “internal” forward and backward differences are introduced in this thesis to
help the explanation, they are not a formal definition from any of the references. What do theses quan-
tities actually mean? We use their sign and magnitude to understand them. The external backward
difference tells us if in average the values of uh increased or decreased (its sign) and by how much (its
magnitude) in Ij with respect to the average of the values of uh in Ij−1. The external forward difference
has an analogous interpretation with the intervals Ij and Ij+1. The internal backward difference tells
us if in average the function uh increases or decreases (its sign) and by how much (its magnitude) in Ij
with respect to the value of uh in xj . The internal forward difference has an analogous interpretation.
Thus, these quantities express if uh is increasing or decreasing in Ij with respect to the solution in the
neighboring intervals and with respect to its own values in the boundaries of Ij .

What happens when there is an oscillation in an interval Ij? How can oscillations be characterized?
Looking at Figure 3.2b, Figure 3.5b and Figure 3.8b we see that oscillations have inflection points such
as minimum and maximum points and the functions rapidly increase and decrease in small regions.
Thus we can expect from an oscillatory function that in average there is a change of sign in the derivative
or that the solution increases or decreases in average faster in Ij as to the average increase or decrease
of the function with respect to either Ij−1 or Ij+1. To determine a change in the sign derivative we
can verify if sign(ûj) = sign(Δ−uj) = sign(Δ+uj) and if sign(ǔj) = sign(Δ−uj) = sign(Δ+uj).
The first equality verifies a change of sign with respect to the behaviour of uh in the first half of
Ij , the second equality has an analogous interpretation. The solution does not grow faster in Ij if
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xj− 1
2

xj xj+ 1
2

xj+1 xj+ 3
2

uj−1 uj uj+1

u+j
u−j+1

x

u(x, t)

Δ−uj
Δ+uj

ûj

ǔj

Exact solution
DG solution

xj−1 xj+2

Figure 4.1: Example of oscillatory solution.

|ûj | = min(|ûj |, |Δ−uj |, |Δ+uj |) and if |ǔj | = min(|ǔj |, |Δ−uj |, |Δ+uj |). See Figure 4.1 for an example
where an oscillation makes the previous conditions fail. On xj there is an abrupt change on the sign
of the derivative and on xj+1 the magnitude of ǔj is greater.

Recall that we are considering an DG approximation truncated to the first polynomial order.
Thus, integrating

unj =
1

h

�

Ij

ûh(x, tj)dx = u0j .

Then
ûj = uj − u+j = u0j − (u0j − u1j ) = u1j = u0j + u1j − u0j = u−j+1 − uj = ǔj .

Thus, the internal forward and backward approximations are equal ûj = u1j = ǔj . From the pre-
vious discussion we define an interval to be a troubled cell if the following conditions do not hold
simultaneously

i) sign(u1j ) = sign(Δ+uj) = sign(Δ−uj)

ii) u1j = min(u1j ,Δ+uj ,Δ−uj).

These conditions can be summarized using the minmod function m and defining a troubled cell with
the minmod limiter (or slope limiter) as any interval Ij such that u10 �= m(u10,Δ+uj ,Δ−uj), with

m(a1, a2, . . . , aj) =

�
s ·min1≤j≤n |aj |, if sign(a1) = sign(a2) = . . . = sign(aj) = s,

0, otherwise.
(4.1)

Great disadvantages the minmod limiter has are that it can identify an interval where the solution
actually has an extrema, it truncates the approximate solution to a first polynomial order in the
intervals where oscillations are detected, and it does not take into account the information given by
the higher order spatial derivatives. The truncation to the first order is required for the solution
with this limiter to have total variation diminishing property, which only first order methods have,
and thus ensure the stability of the limited solution. To over come the detection in regions with
extrema, we introduce the moment limiter [40]. Note that with the first order truncation uj = u1j for
j = 0, . . . , N − 1. Thus,

Δ−uj = u0j − u0j−1 and Δ+uj = u0j+1 − u0j .
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Which shows that the coefficients of the order zero polynomial can be used to compute the external
forward and backward first differences. In [40] the author shows through Taylor expansions and
backward and froward differences of higher order that the coefficient ul

j is an internal approximation
of the l-th derivative of uh(xj , t), the l−th external forward difference is

Δl
+ =

ul−1
j+1 − ul−1

j

2l − 1
,

and the l−th external backward difference is

Δl
− =

ul−1
j − ul−1

j−1

2l − 1
.

The moment limiter identifies the interval Ij as a troubled cell if for l = K the equality

ulj = m
�
ulj ,Δ

l
+,Δ

l
−
�
, (4.2)

does not hold.

For the reconstruction process we explain two approaches. The first one is known as the MUSCL
reconstruction procedure [25], where for a troubled cell Ij we define

uh
��
Ij
(x, t) = u0j +m(u1j , u

0
j+1 − u0j , u

0
j − u0j−1).

This procedure can be used with either of the slope and moment identifiers, although it is the natural
reconstruction for the slope limiter. Its disadvantage, is that in the identified cells, the approximation
decreases its order of approximation from K to 1.

The second reconstruction process is the counter part of the moment limiter. Thus, we name it
the moment reconstruction process. For each troubled cell Ij apply sequentially from l = K up to
l = 1 the following verification process. Define

ũlj = m
�
ulj ,Δ

l
+,Δ

l
−
�
,

if ulj �= ũlj redefine ulj by the assignation ulj = ũlj . If ulj = ũlj stop the process and continue to the next
troubled cell. The author of the article mentions that this limiter can have an additional parameter
αl, with the range

1

2(2l − 1)
≤ αl ≤ 1.

The modified limiter reads

ũlj = m
�
ulj ,αl(u

l−1
j+1 − ul−1

j ),αl(u
l−1
j − ul−1

j−1)
�
.

The reason to introduce such modification is because with the strict forward and backward differences
the limiter introduces diffusion, the parameter helps to control the diffusivity, αl = 1 is the least
diffusive parameter. For the numerical experiments we use αl = 1.

Note that this reconstruction process does not diminish the order of the approximation and it is
a natural generalization of MUSCL, if K = 1 they coincide.

The references we gave can be divided in the following categories



63

Indicators Reconstruction Both
[60] and [69] [14] and [59] [16],[40] and [77]

4.3 Efficiency

We establish here the limiters that we are going to use for numerical experimentation and to propose
a limiter. We define each limiter and explain the effects of their particular parameters.

Prior to make the description of the limiters it is important to make the following observation. In
Figure 4.2a and Figure 4.2b we notice the DG solutions to the convection equation with the impulse
initial condition with a limiter and without limiter. The error with the || · ||L∞ norm is 0.47 for the
solution with the limiter and 0.50 for the solution without the limiter. It is clear that the solution with
the limiter is better, why does not the error show it? In Figure 4.2b we show a zoom on the left shock
and show the points at which the solutions are evaluated. Due to the approximate solutions being
continuous at each Ij , they do not have the discontinuity and a smooth change takes place. At a small
neighborhood of the discontinuity at least a point of the approximated solution is compared with the
exact solution and at such points due to the smooth transition, the error will be approximately the
mid-value of the left and right values of the discontinuities see Figure 4.2b. Motivated by this, instead
of measuring the error in the hole domain, we measure it outside of a neighborhood of the shocks. For
example, in this case, assume that the shocks have the characteristics x1(t) and x2(t). The error is
measured in the interval [0, x1(t) − �) ∪ (x1(t) + �, x2(t) − �) ∪ (x2(t) + �, 1], in the examples we take
� = 0.02. This might seem like a trick to make look the results better, but, the objective of the limiters
is to control oscillations. With this error, we can in fact view the effects of the oscillations instead of
a natural error caused by the discontinuity. In addition, in [16] the same idea is used to show that the
method has the theoretical order of convergence away from discontinuities, they use � = 0.1. In [59],
from the figures, it seems like the authors avoid placing points on a neighborhood of the discontinuity,
avoiding this problem. In the other referenced papers this method for measuring the error is not done.
For problems with shocks they explain the results with pictures, here we give quantitative results.
Thus, measuring the error outside small neighborhoods of discontinuities is justified.

(a) General view. (b) Zoom on discontinuity.

Figure 4.2: Comparison of DG solutions to the convection equation, impulse initial condition with and
without limiter.
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4.3.1 Standard limiters

i) Minmod-based TVB limiter (TVB) [16]. Denote

u−j+1 = u0j + ũj , u+j = u0j − ˜̃uj , (4.3)

with

ũj =

K�

l=1

uljPl(ξj(xj+1)), ˜̃uj = −
K�

l=1

uljPl(ξj(xj)). (4.4)

Consider the modified minmod function m̂

m̂(a1, a2, . . . , aj ,M, h) =

�
a1, if |a1| ≤ Mh2,

m(a1, a2, . . . , aj), otherwise,
(4.5)

h is the width of the cell, M is a positive constant dependent on the problem and m is the
minmod function. The modified minmod function is used to define

ũmod
j = m̃(ũj , u

0
j+1 − u0j , u

0
j − u0j−1,M, h), (4.6)

˜̃umod
j = m̃(˜̃uj , u

0
j+1 − u0j , u

0
l − u0j−1,M, h). (4.7)

If either ũj �= ũmod
j or ˜̃uj �= ˜̃umod

j the cell is marked as a troubled cell. The reconstruction
process is the first order approximation MUSCL. Thus, in the troubled cells the polynomial
approximation decays from degree K + 1 to order 1. This prefix TVB means that the solution
has a bounded total variation. In [65] the author shows a general method to construct TVB
methods form TVD methods, increasing the order of accuracy but loosing the TVD property.
The importance of TVB methods is that it has been shown that the solutions converge to the
unique entropy solution [17]. See Algorithm 7 for the TVB implementation. For the DG solution
with the TVB limiter see Algorithm 9 selecting Algorithm 7 as the limiter procedure and defining
Z = [M ].

ii) Moment limiter of Biswas, Devine, and Flaherty (BDF limiter) [40] with Krivodonova’s
modification. The modified coefficients of the DG expansion are defined as follows:

u
l,(mod)
j = m(ulj ,αj(u

l−1
j+1 − ul−1

j ),αj(u
l−1
j − ul−1

j−1)), (4.8)

with αj in the following range
1

2(2n− 1)
≤ αj ≤ 1.

The limiter starts at the top level l = N, if ul
j = u

l,(mod)
j the cell Ij is not marked as troubled.

If ulj �= u
l,(mod)
j the cell is marked as troubled. The reconstruction process substitutes ul

j with

u
l,(mod)
j and continues to compare ul−1

j with u
l−1,(mod)
j . If they are equal the process stops, if

they differ, ul−1
j is changed with u

l−1,(mod)
j and the process is continued decreasing in l. The

reconstruction stops when the first ul
j = u

l,(mod)
j or l = 1. In other words, for a troubled cell the

reconstruction starts from the coefficient of the highest order polynomial to the coefficient of the
first order polynomial. It is stopped at the first polynomial order l that satisfies ul

j = u
l,(mod)
j .

See Algorithm 8 with M = 0 for the implementation. For the DG solution with the BDF limiter,
see Algorithm 9 selecting Algorithm 8 as the limiter procedure and defining Z = [M ] = [0].
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4.3.2 Disadvantages of standard limiters

i) TVB limiter. The constant M depends on the initial condition. It introduces dissipation or
oscillations near discontinuities, depending on the value of M. In Figure 4.3a and Figure 4.3b
we show the solution to the linear convection equation up to time T = 2, N = 80. Small values
of M diffuse the solution whereas larger values of M makes the solution oscillatory. Selecting
M requires experimental fitting, but once it is found, the solution improves significantly. For
scalar conservation laws with a smooth initial condition, M is proportional to the curvature of
the initial condition near smooth extrema. For problems in a higher dimension or non smooth
initial data such as the Riemann problems there is no rule for choosing M.

(a) General view. (b) Zoom on diffusive behaviour.

Figure 4.3: Comparison of different values of M for the TVB limiter.

ii) BDF limiter. This limiter can produce diffusive solutions, see Figures 4.4a and 4.4b.

(a) Zoom on top part of discontinuity. (b) Zoom on bottom part of discontinuity.

Figure 4.4: Diffusive behaviour of BDF limiter.
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4.3.3 Modified limiters.

i) Adaptive TVB limiter (ATVB). As we notice earlier, the parameter M in the modified
minmod function can introduce dissipation if M is small or oscillations near the discontinuity
if M is large enough. The ATVM limiter tries to exploit this feature to avoid searching for a
parameter for each initial condition. The idea is to use the TVB limiter, but choose two values
for M, one small Ms and one big Mb. We fix the values Ms = 10 and Mb = 800. For a certain
number of iterations τ̂ in the time discretization use the TVB with Mb allowing that oscillations
appear in the solution. In the following τ̌ steps of the time discretization, use TVB with Ms, so
that the introduced oscillations diffuse. Thus, we want to create a balance between the diffusion
and the oscillations, so that the solution is not oscillatory nor diffusive.

Instead of explicitly introducing the two parameters τ̂ and τ̌ , at each time iteration we compute
the percentages of cells flagged as troubled. We introduce a threshold θ such that if the percentage
of flagged cells is less or equal than θ the M used in the modified minmod function is Mb, otherwise
use Ms. Although the threshold θ has to be determined experimentally for each conservation law,
it seems to not depend on the initial condition. If its chosen poorly, the solution will be similar
to the TVB with M = Mb or M = Ms. As a first example of the improvement of the ATVB
method, in Figures 4.5a and 4.5b TVB and ATVB methods are compared, M = 150 for TVB.
The error for the TVB method is 4.25 × 10−2, whereas the error for the ATVB is 6.54 × 10−3.
Showing a clear improvement in the solution.

The use of the percentage of troubled cells has been used in [59] for comparing their performance,
the more a limiter marks cells as troubled, the more computationally expensive it is. For the DG
solution using the ATVB limiter, see Algorithm 10 selecting Algorithm 7 as the limiter procedure
and defining Z = [Ms,Mb].

(a) Zoom on top part of discontinuity. (b) Zoom on bottom part of discontinuity.

Figure 4.5: Comparative example of ATVB improvements.

ii) Modified BDF limiter (M-BDF) To the best of the author’s knowledge, this naive modifica-
tion has not been proposed. We apply the BDF limiter but change the minmod function in (4.8)
with the modified minmod function, that is,

u
l,(mod)
j = m̂(ulj ,αj(u

l−1
j+1 − ul−1

j ),αj(u
l−1
1 − ul−1

j−1),M, h).
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As it could be expected, introducing the parameter M in the limiter gives a degree of freedom
to diffuse the solutions or makes them more oscillatory, see Figure 4.6a and Figure 4.6b for a
comparison of different values of M for the solution of the convection equation with an impulse
initial condition T = 2, N = 80. In Figures 4.7a and 4.7b we compare the BDF with the M-BDF
limiter choosing M = 150. The errors are BDF 1.14×10−2 and MBDF 5.35×10−2. See Algorithm
8 for the implementation of MBDF. For the DG solution with the MBDF limiter, see Algorithm
9 selecting Algorithm 8 as the limiter procedure and defining Z = [M ].

(a) Zoom on top part of discontinuity. (b) Zoom on bottom part of discontinuity.

Figure 4.6: Diffusive behaviour of BDF limiter.

(a) Zoom on top part of discontinuity. (b) Zoom on bottom part of discontinuity.

Figure 4.7: Comparative example of MBDF improvements.

iii) Remark An intuitive next step is to apply the adaptive technique to the M-BDF limiter and
to avoid choosing M. Although the numerical implementation might seem straight forward, the
tuning of the threshold θ is more complicated. We leave this fact as an open question for future
research.
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4.3.4 Numerical simulations

For a direct comparison of the methods in Tables 4.1, 4.2, 4.3 and 4.4 we compare the solution of the
convection equation with the impulse initial condition, the convection equation with the sine initial
condition, the solution of the Burgers’ equation with the sine initial condition and the solution of the
Burgers’ equation with the impulse initial condition. For these examples we show that the ATVB
θ parameter only depends on the conservation law and the advantages the M-BDF method over the
BDF method. The polynomial order is fixed to K = 2. This decision was made on the fact that the
improvement of the solution due to limiters varies a lot from example to example. The characteristic
behavior of each limiter is really similar for the different polynomial orders. We do not want to
overwhelm the reader with too many tables and distract our attention from the comparison of the
methods within an example and among the different examples. For all the examples, in their respective
tables the error with the || · ||L∞ is shown for the different limiters with N = 10, 20, 40, 80, 160, 320 and
K = 2. All figures are computed with K = 2, N = 80, the time is specified at each figure. The Ms

and Mb chosen for all the alternate method are Ms = 10 and Mb = 800, for the convection equation
θ = 3 and for the Burgers’ equation θ = 23.

Example 1. Convection equation with impulse initial condition. See Table 4.1 for the norm of
the errors and Figures 4.8a and 4.8b for a graphical comparison of the methods. The table shows that
the inclusion of the limiter helps the error to decrease. Comparing TVB and ATVB we notice that the
error of the ATVB method decreases faster than the error of the TVB. The M-BDF method performed
better than the BDF method at each N. All the methods perform almost similarly for N = 320. From
Figures 4.8a and 4.8b we notice that the proposed methods achieve their goal of being less oscillatory
and less diffusive than their original counterparts.

N No lim. TVB(M = 500) ATVB(3%) BDF M-BDF(M = 150)
10 2.19× 10−1 2.19× 10−1 1.75× 10−1 3.24× 10−1 1.75× 10−1

20 9.50× 10−2 9.50× 10−2 9.76× 10−2 2.56× 10−1 1.06× 10−1

40 8.07× 10−2 6.92× 10−2 1.61× 10−2 1.01× 10−1 3.63× 10−2

80 3.28× 10−2 2.45× 10−2 6.54× 10−3 3.29× 10−2 5.35× 10−3

160 1.06× 10−2 2.44× 10−3 1.47× 10−3 4.54× 10−3 8.44× 10−4

320 7.63× 10−4 2.12× 10−5 3.53× 10−5 3.39× 10−5 3.14× 10−5

Time 4.70s 4.44s 4.44s 4.55s 4.38s

Table 4.1: Error comparison for linear convection equation T = 0.1 K = 2

Example 2. Convection equation with sine initial condition. In Table 4.2 we show the errors for
the different limiters. The main objective of including this example is to show that without changing
the parameter θ the ATVB still converges. If we had used M = 40 in the TVB method in the
previous example, the results would have been much more diffusive. We add that the BDF method
and that the M-BDF method seem to converge faster than the other limiters. In addition, numerical
experimentation showed that for the M-BDF the change in M did not produce diffusion in the extrema
of the solution.

Example 3. Burgers’ equation with sine initial condition. See Table 4.3 for the norm of the
errors . The table shows that for this example, the use of the limiters only improves the solution for
small N and the order of convergence. Recall that the DG is O(hk+1) far away from the discontinuities
[16]. Thus, it could be expected that for a large enough N the DG solution would have a high degree of
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(a) Zoom on top part of the discontinuity. (b) Zoom on bottom part of the discontinuity.

Figure 4.8: Comparison of limiters for the convection diffusion equation impulse initial condition
T = 0.1, K = 2, N = 80.

N No lim. TVB(M = 40) ATVB(3%) BDF M-BDF(M = 150)
10 2.21× 10−3 2.69× 10−2 2.21× 10−3 5.49× 10−3 2.21× 10−3

20 1.07× 10−3 1.03× 10−2 1.11× 10−3 2.81× 10−3 1.07× 10−3

40 1.86× 10−4 1.10× 10−3 1.07× 10−3 3.15× 10−4 1.86× 10−4

80 8.44× 10−5 5.94× 10−4 5.94× 10−4 1.05× 10−4 8.44× 10−5

160 8.15× 10−7 7.20× 10−6 7.20× 10−6 4.04× 10−6 8.15× 10−7

320 1.03× 10−7 1.02× 10−7 1.02× 10−7 6.30× 10−7 1.03× 10−7

Time 4.70s 4.44s 4.44s 4.55s 4.61s

Table 4.2: Error comparison for linear convection equation sine initial condition T = 0.1 K = 2

accuracy with the method we are using for computing the error. In this example the TVB outperforms
the ATVB although their results are really similar. In the case of BDF and M-BDF the results almost
match. Although recall that in M-BDF we could have chosen M = 0 or M = 0.1 and exactly match
the BDF. We chose M = 10 to show that this method has flexibility in the parameter M as compared
with the TVB. If we would have chosen M = 10 in TVB the results would be similar to the ones
obtained with ATVB.

Example 4. Burgers’ equations with impulse initial condition. See Table 4.4 for the norm of
the errors and Figures 4.9a and 4.9b for a graphical comparison of the methods. For this example,
surprisingly, the best method is the DG without any limiter. Let us understand why. Note that at
t = 0 the initial condition has two discontinuities and limiters act in both. As time develops, the
left discontinuity turns into a rarefaction wave, a continuous function. Explaining why the limiters
diffuse this part of the solution. Note in Figure 4.9a that the ATVB oscillates a bit more than the
other solution, showing that through the change in M is trying to eliminate the wrongly introduced
diffusion. In the same figure we can see that the M-BDF is not as diffusive as the BDF. In general the
error for the M-BDF method is lower than the error of the BDF method.

This example has the difficulty of a rarefaction wave colliding with a shock. Thus, limiters on the
one hand have to diffuse the oscillations while not diffusing the rarefaction in an space interval that
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N No lim. TVB(M = 0.01) ATVB(23%) BDF M-BDF (M = 10)
10 4.01× 10−1 3.81× 10−1 4.17× 10−1 3.62× 10−1 3.13× 10−1

20 2.81× 10−1 2.42× 10−1 4.90× 10−2 8.95× 10−2 8.50× 10−2

40 3.68× 10−1 1.80× 10−2 2.16× 10−3 1.42× 10−4 7.67× 10−3

80 3.54× 10−2 7.60× 10−3 5.32× 10−4 2.39× 10−5 2.39× 10−5

160 2.03× 10−6 5.31× 10−5 7.47× 10−5 3.64× 10−6 3.64× 10−6

320 2.00× 10−6 9.28× 10−6 1.31× 10−5 5.33× 10−7 5.33× 10−7

Time 8.74s 9.5s 9.47s 9.22s 13.37s

Table 4.3: Error comparison for Burgers’ equation sine initial condition T = Tb + 0.1, K = 2

decreases as time progresses. It would be interesting to create a plot showing which cells were marked
at each time step to properly understand what is happening in this example.

In [40],[60] and [59] the authors include examples with rarefaction waves, from the figures in
those articles, the solutions seem to generate diffusion in the rarefaction wave. The authors consider
that making further research on the effect of limiters on solutions with rarefaction waves might be
interesting to consider.

N No lim. TVB(M = 25) ATVB(23%) BDF M-BDF(M = 1000)
10 5.54× 10−1 4.30× 10−1 5.54× 10−1 3.62× 10−1 2.98× 10−1

20 2.27× 10−1 1.93× 10−1 2.38× 10−1 2.10× 10−1 9.49× 10−2

40 5.15× 10−1 6.26× 10−2 6.82× 10−2 7.36× 10−2 5.73× 10−2

80 2.73× 10−2 3.56× 10−2 3.47× 10−2 4.56× 10−2 2.81× 10−2

160 1.39× 10−2 2.41× 10−2 2.48× 10−2 3.25× 10−2 2.50× 10−2

320 9.76× 10−3 1.36× 10−2 1.42× 10−2 1.51× 10−2 1.54× 10−2

Time 9.12s 9.23s 9.58s 9.26s 9.08s

Table 4.4: Error comparison for Burgers’ equation impulse initial condition T = Tb + 0.1, K = 2

Conclusions. We have seen four examples where the performance of the limiters varies a lot.
In the first one they improve the solution, in the second and third one the limiters only improve the
solution of small enough N and a fourth example where the limiters make the solution worst. This
wide panorama allows us to understand why the study of identifying troubled cells and reconstructing
solutions is still an active area of research.

In the examples showed here we could achieve the objectives proposed for the ATVB and M-
BDF. For the ATVB method we were able to find a θ that worked for all the initial conditions, clearly
this does not ensure that is going to work for all initial conditions. It is at least a first step in this
direction. In addition, it shows that the concept of using and adaptive M leads to better results. It
is still unclear if the proposed method for changing M is the best one, for future research we could
investigate more techniques for automatic switching. The importance of automatic switching is that
for higher dimensions and non smooth initial condition, M for the TVB method has to be determined
experimentally. This idea might help to avoid the numerical experimentation. The search of avoiding
numerical experimentation to determine M is an active area of research, in 2021 the article [74] was
published. In it the authors implement a multi-layer perceptron for the estimation of the parameter
M.
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(a) Zoom on top part of the discontinuity. (b) Zoom on bottom part of the discontinuity.

Figure 4.9: Comparison of limiters for the Burgers’ equation impulse initial condition T = Tb + 0.1,
K = 2, N = 200.

The M-BDF method showed in general better results, the advantage is that for M = 0 the BDF
method is recovered and upon necessary, better solutions can be looked for by increasing M.

4.4 Algorithms.

An important part of the implementation of limiters is the position where the limiter is applied. For
example, it could be applied each time Lh(uh) is computed in the TVDRK method, we found that
this introduces too much diffusion to the solution. Here we applied the limiter each time a complete
iteration of the TVDRK method is made. The modified solver for the system of ODEs is shown
in Algorithm 9 for non adaptive limiters and Algorithm 10 for adaptive algorithms. In most of the
algorithms, the forward and backward differences are required, recall that the boundary conditions
are considered to be periodic. Then for computing the backward difference in the interval I0 use the
solution in IN and for the forward difference in the interval IN use the solution in I0.

Algorithm 6 Modified minmod function.
1: procedure minmod(a,b,c,delta,M )
2: if absolute value of a is less or equal than M · delta2 then

return a
3: else
4: if the sign of a, b and c is the same then

return the minimum of a, b and c with the sign of a.
5: else

return 0
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Algorithm 7 TVB limiter
1: procedure TVB(Pol. order, number of intervals, vector of coefficients u, delta, M)
2: Define limited vector ul

3: for each interval Ij do
4: Compute ũj and ˜̃uj

ũj =
K�

l=1

uljPl(ξj(xj+1)), ˜̃uj = −
K�

l=1

uljPl(ξj(xj)).

5: Compute forward and backward differences (u0
j+1 − u0j ), (u

0
j − u0j−1).

6: Compute ũ
(mod)
j and ˜̃u

(mod)
j using Algorithm 6

ũmod
j = MINMOD(ũmod

j , (u0j+1 − u0j ), (u
0
j − u0j−1),M, h),

˜̃umod
j = MINMOD(˜̃umod

j , (u0j+1 − u0j ), (u
0
j − u0j−1),M, h).

7: if either ũl �= ũl,(mod) or ˜̃ul �= ˜̃ul,(mod) then
8: Mark the cell as troubled.
9: Save in the limted vector ul the zero and first order polynomial coefficients of u for the

interval Ij
10: Set to 0 the rest coefficients of the limited solution ul at Ij .
11: else
12: The solution does not need to be limited, continue with the next interval Ij .

return the limited solution ul and the proportion of troubled cells.

Algorithm 8 Moment TVB-modified limiter.
1: procedure M-BDF(Pol. order N , number of intervals, vector of coefficients u, delta, M, α )
2:
3: for each interval Ij do
4: for the polynomial coefficient l = N with step −1 up to l = 1 do
5: Compute forward and backward differences (ul+1

j−1 − ulj−1), (u
l
j−1 − ul−1

j−1).
6: Define αj = α[l]

7: Compute u
l,(mod)
j using Algorithm 6

8:
u
l,(mod)
j = MINMOD(ulj ,αj(u

l−1
j+1 − ul−1

j ),αj(u
l−1
j − ul−1

j−1),M, h).

9: if ulj = u
l,(mod)
j then

10: Stop the limiting procedure on the interval Ij and continue to the interval
11: Ik+1.
12: else
13: Update ulj with u

l,(mod)
j .

14:
return Limited vector of polynomial coefficients.
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Algorithm 9 Solution of system of ODEs using limiters

1: procedure solver_ODE_lim(K, u0, N, CFL, T, f(u), f �(u), f̂ , N , h, Lh, limiter, Z vector of
limiter parameters)

2: τ = CFL
N .

3: dt = τ
4: n = 1
5: while dt = nτ < T do
6: Compute un using Algorithm 1

un = runge_kutta(K,un−1, τ, T, f(u), f
�(u), f̂ , N, h, Lh)

7: Apply the chosen limiter procedure with its corresponding parameters Z to un.
8: n+ = 1

9: return Solution of the system of ODEs un

Algorithm 10 Solution of system of ODEs using adaptive limiters

1: procedure solver_ODE_alim(K, u0, N, CFL, T, f(u), f �(u), f̂ , N , h, Lh, limiter, Z vector
of limiter parameters,θ)

2: τ = CFL
N .

3: dt = τ
4: n = 1
5: Define steps_for_change = [τ̂ , τ̂ + 1, . . . , τ̂ + τ̌ ].
6: while dt = nτ < T do
7: Compute un using Algorithm 1

un, proportion of troubled cells = runge_kutta(K,un−1, τ, T, f(u), f
�(u), f̂ , N, h, Lh)

8: if θ < the proportion of troubled cells then
9: Apply the chosen limiter procedure with its corresponding parameters Z and M = Ms

to un.
10: else
11: Apply the chosen limiter procedure with its corresponding parameters Z and M = Mb

to un.

12: n+ = 1

13: return Solution of the system of ODEs un
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Chapter 5
Entropy Stable Discontinuous Galerkin Method

As mentioned in the second chapter, a difficulty the DG and LDG methods have is that for each flux f
several integrals have to be performed for defining the system of ODEs (3.7) and (3.20). An alternative
is to compute such integrals using numerical integration. For this, it is necessary to verify that the
solution obtained using numerical integration converge and are entropy solutions.

The DG satisfy the entropy inequality for the square entropy function (3.12) and we saw that
this inequality leads to L2 stability and thus implies, with the use of the TVDRK, convergence to
entropy solutions. The proof of L2 stability for the DG method, assumes that the integrals in the weak
formulation are done analytically. An important step of the proof uses integration by parts, a result
that in general is not used when numerical integration is done. In this section we study how to do
numerical integration in the weak formulation of the DG by using Gauss-Lobatto quadrature points
and obtain entropy solutions. The importance of using the Gauss-Lobatto quadrature is to apply
a discrete integration by parts formula, called “summation by parts”. The entropy inequalities are
rephrased discretely using the concept of “entropy stable solutions” following the definitions introduced
by Tadmor in [70]. The L2 stability is generalized in the nonlinear case by entropy stability. We followed
[13] for most of the content of this chapter. The vector notation for the DG method (5.11) and the
decomposition of the entropy stable flux in an entropy conservative flux and a dissipation function
comes from [66].

5.1 Gauss-Lobatto integration

Recall that the weak formulation of the DG method (3.7) for a hyperbolic conservation law is
�

Ij

(uh)tφdx =

�

Ij

f(uh)φ
�dx+ f̂j(uh, t)φ(x

+
j )− f̂j+1(uh, t)φ(x

−
j+1).

Previously, we performed the integrals analytically to obtain the semidiscrete form. If the flux function
f is not a polynomial, it can be difficult or impossible to compute the second integral. Here we study
how to use the Gauss-Lobatto quadrature for doing these integration numerically.

The Gauss-Lobatto quadrature of a function f(x) using K points for the integration on the

75
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interval [−1, 1] is of the form:

� 1

−1
f(x)dx =

2

K(K − 1)
[f(1) + f(−1)] +

K−1�

i=1

wif(xi) +RK ,

the point xi is the i− 1 zero of the P �
K−1(x) Legendre polynomial. The weights are defined as

wi =
2

K(K − 1)[PK−1(xi)]2
, xi �= ±1,

and the reminder is

RK =
−K(K − 1)322K−1[(K − 2)!]4

(2K − 1)[(2K − 2)!]3
f (2K−2)(ξ), −1 < ξ < 1.

From now on, when we refer to the K point Gauss-Lobatto quadrature, we refer to the points x0 =
−1 < x1 < . . . < xK−1 < xK = 1, with xi, i = 1, . . . ,K − 1 the ordered zeros of the P �

K−1 Legendre
polynomial.

With the change of variables ξj(x) = 2
x− xj+ 1

2

h
j = 0, . . . , N − 1 in the weak form (3.7), we

obtain
h

2

�

I

∂

∂t
uhφdξ =

�

I
f(uh)φ

�dξ + f̂j(uh, t)φ(x
+
j )− f̂j+1(uh, t)φ(x

−
j+1). (5.1)

Now, consider the set of Lagrange basis polynomials generated by the Gauss-Lobatto points
(xi)

K
i=0,

Ll(ξ) =

K�

m=0, m�=l

ξ − xm
xl − xm

,

for the V K
h space. Then the DG expansion is

uh(x, t)
��
Ij

=

K�

l=0

uljLl(ξj(x)), (5.2)

substituting in the weak formulation (5.1) with φ ∈ V K
h arbitrary, we obtain

h

2

K�

l=0

d

dt
ulj(t)

�

I
Ll(ξ)φ(ξ)dξ =

�

I
f(uh)φ(ξ)dξ + f̂j(uh, t)φ(−1)− f̂j+1(uh, t)φ(1). (5.3)

We now compute the integrals in equation (5.3) with the Gauss-Lobatto quadrature and use the
following vector notation for the evaluation on the Gauss-Lobatto points xi. The function uh in the
interval Ij evaluated on the points xi is represented by

−→uj =
�
uh(ξj(x0)) · · · uh(ξj(xK))

�T
=
�
u0j · · · uKj

�T
,

analogously for the functions φ and f , we define

−→
φj =

�
φ(ξj(x0)) · · · φ(ξj(xK))

�T
,

−→
fj =

�
f(u0j ) · · · f(uKj )

�T
.
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The numerical flux has the vector notation
−→
f∗
j =

�
f̂j 0 · · · 0 f̂j+1

�
.

The first quadrature integral involves the evaluation of the Lagrange polynomials at the points that
define them, due to their construction Li(xj) = δij with δij the Kronenker delta. Define the mass
matrix M, the difference matrix D and the boundary matrix B by

[M ]ij = wiδij , [D]ij = L�
i(xj), B = diag{−1, 0, · · · , 0, 1}.

Then the Gauss-Lobatto quadrature applied to (5.3) with the notation just defined gives

h

2

−→
φj

TM
d

dt
−→uj = (D

−→
φj)

TM
−→
fj −

−→
φj

TB
−→
f∗
j .

Note that the test function φ is arbitrary, we then can conclude

h

2
M

d

dt
−→uj = (D)TM

−→
fj −B

−→
f∗
j . (5.4)

This last equality is a particular case of the nodal DG formulation [25]. The general formulation of the
nodal DG does not requires to use neither the Gauss-Lobbato points nor the numerical integration. It
only considers a sequence of point (xi)

K
i=0 in each Ij and defines the Lagrange basis with such (xi)

K
i=0.

Then it uses delta functions in each xi as test function and it gets a similar equation to (5.4).

Define the continuous �·, ·� and discrete �·, ·�w inner products as

�u, v� =
� 1

−1
uvdx, �u, v�w = (

−→
uk)TM

−→
vk,

with M the mass matrix. Then the stiffness matrix S is defined as

[S]ij = �Li, L
�
j� = �Li, L

�
j�w.

The last equality holds due the Gauss-Lobatto property of being exact for polynomial of orders up
to degree 2K − 3 for K integration points. It can be shown that the stiffness, mass, difference and
boundary matrices satisfy the following discrete analog of integration by parts summation-by-parts
property (SBP)

S = MD, MD +DTM = S + ST = B. (5.5)

Using the SBP property (5.5) the nodal DG (5.4) has the equivalent formulation

h

2
M

d

dt
−→uj + S

−→
fj = B(

−→
fj −

−→
f∗
j )

h

2

d

dt
−→uj +D

−→
fj = M−1B(

−→
fj −

−→
f∗
j ). (5.6)

Note that the prior discussion can be rewritten assuming different number of Gauss-Lobatto points
at each Ij . If this approach is taken, then there would be a mass, stiffness, difference and boundary
matrices for each Ij with their dimensions depending on the number of Gauss-Lobatto points, we refer
the interested reader to [66]. In addition, the authors of such article do a more profound development
on the SBP property and the simulations approximation term (SAT’s), the left side of (5.6). In the
same article, there is a wider explanation of the relation between the modal an nodal formulation. We
do recommend the reader to prior read [13] and then for further explanations see [66]. The second
reference is much more abstract and due to its generality can be confusing for a first approach.
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5.2 Entropy stable formulation

This nodal DG form (5.6) does not satisfy any entropy condition [66], its total (discrete) entropy
(2.31) cannot be proven to diminish in time. To be entropy stable we modify (5.6) using the entropy
conservative fluxes and entropy stable fluxes introduced by Tadmor [70]. We proceed to their definition.

Let (η,ψ) an entropy pair. Recall that η is a strictly convex function and ψ satisfies for a flux
function f

ψ� = η�f �.

By convexity of η we can define the entropy variable v = η�(u) which is invertible and thus the mapping
v → u, is well defined. The potential flux Ψ is defined by

Ψ(v) = vf(u(v))− ψ(u(v)).

Definition 5.2.1. A numerical flux function fS(u−, u+) is called entropy conservative with respect
to some entropy η if it is consistent, symmetric and satisfies the following equality:

(v+ − v−)fS(u−, u+) = Ψ+ −Ψ−, (5.7)

(η,ψ) are an entropy pair. The notation u− and u+ are the left and right limits of u at a point x.

The scalar case has a unique entropy conservative numerical flux

fS(u−, u+) =

�
Ψ+−Ψ−
v+−v−

if u− �= u+

f(u−) otherwise u− = u+.
(5.8)

Example Consider the Burgers’ equation

ut +

�
u2

2

�

x

= 0,

with the square entropy η(u) = u2

2 results in the entropy variable v(u) = u, the flux function ψ, and
the potential flux Ψ

ψ =
1

3
u3, Ψ(v) =

1

6
v3.

Then the entropy conservative flux is

fS(u−, u+) =
1

6
(u2− + u−u+ + u2+).

If we consider η(u) = eu, then the entropy variable is v(u) = eu, the flux function ψ, and the potential
flux Ψ are

ψ(u) = eu(u− 1), Ψ(u) = eu
�
u2

2
− u+ 1

�
.

The entropy conservative flux fS does not simplifies as in the previous example.

Definition 5.2.2. A numerical flux function f̂(u−, u+) is called entropy stable with respect to some
entropy η if it is consistent, single-valued and satisfies the following inequality:

(v+ − v−)f̂(u−, u+) ≤ Ψ+ −Ψ−. (5.9)
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An entropy stable numerical flux can be obtained by adding some entropy dissipation to the
entropy conservative flux as follows:

f̂(u−, u+) = fS(u−, u+) + �d̂(u−, u+),

where the entropy dissipation function d̂(u−, u+) satisfies the following conditions:

1. Consistency: d̂(u, u) = 0.

2. Single-valuedness: d̂(u+, u−) = −d̂(u−, u+).

3. Entropy dissipation: (v+ − v−)d̂(u−, u+) ≤ 0.

In this work we use the local Lax-Friedrichs dissipation function

d̂(u−, u+) = −λ(u+ − u−),

where λ ≥ 0 is the maximum of |f �(u)|. The constant 0 < � ≤ 1 is used to control the added dissipation.

We modify (5.6) on an fixed but arbitrary element Ij , thus we omit the subscript j. The modified
nodal DG is

h

2

d

dt
ui + 2

K�

l=0

DilfS(u
i, ul) =

δi

wi
(f i − f∗,i), (5.10)

the superscript represents the corresponding entry of the vectors −→u ,
−→
f ,

−→
f∗, D is the difference matrix,

wi are the Gauss-Lobatto weights and

δi =





−1 i = 0

1 i = k

0 1 ≤ i ≤ K − 1.

The inclusion of the entropy stable flux f̂ occurs in the numerical flux vector
−→
f∗. Recall that the entries

of this vector are zero for i = 1, . . . ,K − 1, and for i = 0,K

−−→
f∗,0 = f̂j(uh) and

−−→
f∗,K = f̂j+1(uh).

Theorem 5.2.1. [13] If fS(ui, ul) is consistent and symmetric, then (5.10) is conservative and high
order accurate. If we further assume that fS(ui, ul) is entropy conservative in the sense of (5.7), then
(5.10) is also entropy conservative within a single element.

We now have that the nodal DG is conservative in a single element, we extend this result for all
the elements and assume that the numerical flux f̂ is entropy stable.

Theorem 5.2.2. [13] If the numerical flux f̂ at the element interface is entropy stable, then the scheme
(5.10) is entropy stable. Meaning that the discrete total entropy is non-decreasing with respect to time
(2.31). Recalling that wj are the Gauss-Lobatto weights, the discrete total entropy reads,

d

dt

N−1�

j=0

�
K�

l=0

h

2
wlηl

�
≤ 0,

for every entropy function η.
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Equation (5.10) can be rewritten in the following vector form

d

dt
−→uj =

2

h

�
−2D ◦ Fs(

−→uj ,−→uj)
−→
1 )−M−1B(

−→
fj −

−→
f∗
j )
�
, (5.11)

where ◦ is the Hadamard (pointwise) product and FS is the matrix of pairwise combinations of entropy
conservative fluxes

FS(
−→uj ,−→uj) =



fS(u

0
j , u

0
j ) . . . fS(u

0
j , u

K
j )

...
. . .

...
fS(u

K
j , u0j ) . . . fS(u

K
j , uKj )


 .

5.3 Numerical simulations

In this section we include the solution of the convection diffusion equation and Burgers’ equation with
a sine initial condition and an impulse initial condition. For the numerical integration we consider
K = 3, 4, 5. The entropy stable DG method is more computationally expensive than the usual DG
method. Thus, we only consider N = 10, 20, 40, 80. The solution of the ODE systems is as well
parallelized. The numerical solution is compared with the exact solution at a uniform partition of
the domain using (5.2). In this case the relation between the increment in time τ and the spatial
discretization is τ = CFL ∗ h

K+1
3 . The order for the nodal entropy DG is O(hK). This convergence

order is again assuming a proper choice of the TVDRK method order. We only have it up order 4,
this might be the cause for not achieving the theoretical order of convergence in the examples. In both
examples, we use the square entropy η(u) = u2

2 .

Example 1. Linear convection equation,

ut + ux = 0.

Since f(u) = u and η(u) = u2

2 then v = u and

Ψ(u) =
u2

2
.

For the sine initial condition (2.37) in the Table 5.1, we observe that the error decreases as a function
of N and of K, as expected.

N ||u(3)h − u||L∞ Order K = 3 ||u(4)h − u||L∞ OrderK = 4 ||u(5)h − u||L∞ Order K = 5

10 8.49× 10−3 - 1.65× 10−3 - 1.75× 10−5 -
20 1.03× 10−3 3.05 1.94× 10−4 3.10 4.35× 10−7 5.33
40 1.08× 10−4 3.25 4.26× 10−6 5.51 1.32× 10−8 5.04

Time 23.74s 46.02s 123.75s

Table 5.1: Error of linear convection equation with the sine initial condition T = 0.1

For the impulse initial condition (2.38) the solutions have oscillations near discontinuities. The
nodal formulation allows the use of limiters, we leave this as future work. To show the accuracy of the
nodal entropy DG, we could compute the error in the whole domain, remove a neighborhood of the
discontinuities or graph the numerical and exact solutions, we choose the later. For this problem the
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value of � determines how much diffusion is introduced to the solution, in this case we choose � = 1.
For the behaviour of the solutions with different values of �, Figure (5.1a) has solutions with � = 0.15,
Figure (5.1c) with � = 0.45 and Figure 5.1e for � = 1. The effects of a higher � is that the solutions are
less oscillatory. In Figures 5.1e, 5.2a and 5.2b we show the solutions for K = 3, 4, 5, respectively. The
improvement for N = 10 is clear as K increases. For N = 40, 80 the improvements are more subtle.
In both cases, the solution curves oscillate closer to the discontinuity and the oscillation region gets
smaller as K increases.

Example 2. Consider Burgers’ equation

ut +

�
u2

2

�

x

= 0.

Since f(u) = u2

2 and η(u) = u2

2 then v = u and

Ψ(u) =
u3

6
.

In Table 5.2 we show the L∞ norm of the errors for T = 0.1, prior to the shock. Although the numerical
order is below the optimal, the results are still good. In [13] they obtained as well that the order with
the L1, L2 and L∞ norm is below optimal and specially the L∞.

N ||u(3)h − u||L∞ Order K = 3 ||u(4)h − u||L∞ OrderK = 4 ||u(5)h − u||L∞ Order K = 5

10 6.72× 10−2 - 1.28× 10−2 - 4.46× 10−3 -
20 2.23× 10−2 1.58 2.16× 10−3 2.55 7.29× 10−4 2.61
40 5.66× 10−3 1.98 4.90× 10−4 2.14 6.38× 10−5 3.51
80 1.12× 10−3 2.34 1.02× 10−4 2.26 9.69× 10−6 2.71

Time 60.91s 208.02s 794.s

Table 5.2: Error Burgers’ equation sine initial condition T = 0.1

In Figures 5.3a, 5.3b and 5.4 we show the solutions for the sine initial condition (2.37) at time T =
Tb+0.1. We could obtain solutions that are not highly oscillatory by using � = 0.3. The improvements
as K grows are the decrease of the oscillations and the reduction of the oscillation region.

In Figures 5.5a, 5.5b and 5.6 we show the solution of the Burgers’ equation with the impulse initial
condition (2.38) for K = 3, 4, 5, respectively. On the shock part of the solution, they have a similar
behaviour to the solution of the linear convection equation with the same initial condition. On the left
side of the rarefaction wave, there are as well oscillations, but on the right side of the rarefaction wave
the solution is not as diffusive as with the modal DG. We as well choose � = 1 for the incorporation of
the diffusion in the entropy stable flux.

Conclusions. Numerical simulations show that by considering a proper nodal DG formulation
entropy solutions can be obtained. Although these algorithms were much more slower than their modal
counter part. They are advantageous for fluxes f that are not polynomial, where the integrals in the
weak formulation might not even be possible to make. This not only affects the preparation of the
algorithm, avoiding to explicitly computing Lh for each f. It makes it easier to make a general code
for an arbitrary f. Additionally, this formulation makes it easier to consider high order polynomial K.
The integration of the parameter � is not part of the standard implementation, we included it here to
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aid the control of oscillations without the use of limiters. Including limiters would complement the
action of the parameter �. Note that they are applied at different stages of the the ODE solver. The
entropy stable flux is used to define the operator Lh of the TVDRK method. Whereas the limiters
are applied after a complete step of the TVDRK solver is made. The value of � should not change if
the techniques are used simultaneously. The best choice of � will give to the limiter a more diffused
solution and so the limiter will detect less troubled cells and have a lower computational cost.

The entropy stable DG method is much more expensive than the original DG. In the Table 5.3
the computation for the solution of the Burgers’ equation with K = 3, CFL = 0.01 and T = 0.1 for
different N. In such table, we can see that the computational cost for the entropy stable DG grows
much more faster than for the DG method.

N 10 20 40 80

DG 3.86s 3.87s 3.98s 3.94s
Entropy stable DG 13.74s 15.13s 20.34s 49.07s

Table 5.3: Comparison of times for different N.

There is plenty of work to continue in this direction. In [13] the authors develop the corresponding
nodal formulation for the LDG to solve parabolic problems. Other area to explore is the use of
other quadratures, in [66] the authors explicitly include the Legendre-Gauss-Lobatto quadrature and
a general framework for other quadratures.

5.4 Algorithms

For the solution of the ODE system (5.11) we use the Algorithm 2 with the third order TVDRK,
Algorithm 1. The Lh argument of the Runge-Kutta method is Algorithm 13. The d̂ argument in
Algorithm 13 is a modification of Algorithm 3, instead of returning f(a)+f(b)−C(b−a)

2 , only return C(b−
a). Algorithm 13 requires the functions f, f �,Ψ, v as an argument and no further integration is required.
The matrix M is constructed with the weights from Algorithm 11. The difference matrix D Algorithm
12, uses the nodes of the Gauss-Lobatto quadrature obtained in Algorithm 11. We do not include an
algorithm for the boundary matrix B due to its simplicity. These matrices are only required to be
computed once. Therefore their computation is done in the Algorithm 2 prior to the first call of the
TVDRK method. If the number of quadrature points Kj varied in each element Ij there would be
a M,D,B for each different Kj quadrature points. In such case, Algorithm 13 needs to be modified
to use the proper Mj , Dj , Bj at each Ij . Once again, we recall that in the elements I0 and IN−1 the
periodic boundary condition is used for the computation of “uK

−1” and “u0N ”, respectively.

Algorithm 11 Gauss-Lobatto points and weights
1: procedure Gauss_Lob(K)
2: In the vector nodes save the Gauss-Lobatto points x0, x1, . . . , xK , xK+1, x0 = −1, xK+1

3: In the vector weights save the corresponding weights w0, . . . , wK+1.
4: return nodes, weights
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Algorithm 12 Differentiation matrix D.

1: procedure Diff_mat(nodes, K )
2: Define a matrix D of size K ×K
3: for i = 0, 1, . . . ,K do
4: for each node xi ∈ nodes do
5: [Di,j ] = L�

i(xj)
return D

Algorithm 13 Nodal DG

1: procedure Nodal_DG(u, D,M, B, K, f, f �, N, d̂, Ψ, v, h, �)
2: Define solution vector u1

3: for each element Ij j = 0 . . . , N − 1 do
4: Compute

−→
f∗
j =

�
f̂j 0 . . . 0 f̂j+1

�T
,

f̂j = fS(u
K
j−1, u

0
j ) + �d̂(uKj−1, u

0
j )

f̂j+1 = fS(u
K
j , u0j+1) + �d̂(uKj , u0j+1)

5: Update the corresponding entries in the solution vector u1 by (5.11),

u1j =
2

h

�
−2D ◦ Fs(

−→uj ,−→uj)
−→
1 )−M−1B(

−−−→
f(uj)−

−→
f∗
j )
�
,

return
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(a) � = 0.15. (b) � = 0.15 zoom.

(c) � = 0.45. (d) � = 0.45 zoom.

(e) � = 1 (f) � = 1 zoom.

Figure 5.1: Solution comparison of the convection equation with impulse initial condition for different
values of �.
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(a) Solution with K = 4. (b) Solution with K = 5.

Figure 5.2: Solutions of the convection equation with impulse initial condition for K = 4, 5.

(a) Solution with K = 3. (b) Solution with K = 4.

Figure 5.3: Solutions to the Burgers equation with sine initial condition K = 3, 4, T = Tb + 0.1
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Figure 5.4: Solutions to the Burgers equation with sine initial condition K = 5, T = Tb + 0.1

(a) Solution with K = 3. (b) Solution with K = 4.

Figure 5.5: Solutions to the Burgers’ equation with impulse initial condition K = 3, 4.
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Figure 5.6: Solutions to the Burgers’ equation with impulse initial condition K = 5.
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Chapter 6
Discontinuous Galerkin Methods for Stochastic
Equations

The motivation of introducing a stochastic source in a conservation law equation is to reduce the
uncertainty of a variable which is not known. For example, the modelling of the concentration of a
pollutant in a river. It might be the case that we a priory not know how the rate at which the pollutant
is poured, but we can model it using a white noise. Solving this stochastic conservation law will help
us to determine what is the mean behaviour of the concentration of the pollutant in the river and, if
required, estimate the variance of this behaviour.

The solution for a general f in either the conservation law or convection-diffusion equation is not
a trivial matter nor in the deterministic case neither in the stochastic case. Finite volume schemes have
previously been used for the solution of such equations [6], [9] and [32]. From the other formulations of
the discontinuous Galerkin, the IP methods have been developed for elliptic SPDE using the Karhunen-
Loève expansion, see [4], [50] and the references therein. The SPDEs in [4] and [50] assume an stochastic
flux. In terms of the example of the concentration of pollution in a river, they assume that the density
of the pollutant is modelled with a random variable.

Recall that for the deterministic case, we defined a spatial discretization Ij and the space V K
h of

picewise continuous polynomials of degree at most K. We then constructed an approximate solution uh

such that for each t ∈ [0, T ], uh(·, t) ∈ V K
h . In the stochastic case, we use the same spatial discretization

but we require to the approximate solution uh that for each (ω, t) ∈ Ω × [0, T ], uh(ω, ·, t) ∈ V K
h . In

the deterministic case, this assumption lead to a system of ODEs for finding the coefficients of the
expansion of the approximated solution in terms of the basis generated by the Legendre polynomials.
Considering the same assumption in the stochastic case, leads to a system of SODEs for the coefficients
of the expansion in terms of the Legendre polynomial basis.

Since the stochastic case leads to SODEs, we need to substitute the TVDRK method with a
suitable solver. We first review the numerical solution of stochastic differential equations using the
Itô-Taylor expansion. Then we work on the discontinuous Galerkin method. In the deterministic
framework, the DG method gave inconsistent solutions for parabolic problems. The same behavior
happens in the stochastic case. Thus, we use the DG for stochastic conservation laws and apply the

89
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LDG for the stochastic convection-diffusion equations.

6.1 Time discretization

As in the deterministic case, we can use the Taylor expansion to come up with numerical methods.
Although, for the stochastic case we need to use the Itô-Taylor expansion. The material of this section
can be found in [37]. Let Xt be the process defined by

Xt = X0 +

� t

t0

F (Xs)ds+

� t

t0

G(Xs)dWs.

Then for a twice differentiable function f, by the Itô formula

f(Xt) = f(Xt0) +

� t

t0

L0f(Xs)ds+

� t

t0

L1f(Xs)dWs,

with

L0 = F
∂

∂x
+

1

2
G2 ∂2

∂x2
, L1 = G

∂

∂x
.

Applying the Itô formula to f = F and f = G in the definition of Xt,

Xt = Xt0 +

� t

t0

�
F (X0) +

� s

t0

L0F (Xz)dz +

� s

t0

L1F (Xz)dz

�
ds+

+

� t

t0

�
G(X0) +

� s

t0

L0G(Xz)dz +

� s

t0

L1G(Xz)dz

�
dWs

= Xt0 + F (Xt0)

� t

t0

ds+G(Xt0)

� t

t0

dWs +R, (6.1)

with remainder

R =

� t

t0

� s

t0

L0F (Xs)dzds+

� t

t0

� s

t0

L1F (Xz)dWzds

+

� t

t0

� s

t0

L0G(Xs)dzdWs +

� t

t0

� s

t0

L1G(Xz)dWzdWs.

Applying the Itô formula to the term L1G of the reminder we obtain the next order Itô-Taylor approx-
imation,

Xt = Xt0 + F (Xt0)

� t

t0

ds+G(Xt0)

� t

t0

dWs + L1G(Xt0)

� t

t0

� s

t0

dWzdWs + R̂. (6.2)

Using the Itô formula it can be showed that
� t

t0

� z

t0

dWzdWs =
1

2
[W (t)−W (t0)]

2 − t− t0
2

.

With (6.2) Itô-Taylor expansion we can construct the Euler-Maruyama method and the Milstein
method. For the interval [ti, ti+1], assuming X(ti) is known, define τ = ti+1− ti, and ΔWi = W (ti+1)−
W (ti), substituting in equation (6.2) yields

X(ti+1) = X(ti) + F (X(ti))τ +G(X(ti))ΔWi +
1

2
G[X(ti)]G

�[X(ti)][(ΔWi)
2 − τ ] + R̂.
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The first three terms define the Euler-Maruyama method

X(ti+1) = X(ti) + F (X(ti))τ +G(X(ti))ΔWi,

the whole expression defines the Milstein method

X(ti+1) = X(ti) + F (X(ti))τ +G(X(ti))ΔWi +
1

2
G[X(ti)]G

�[X(ti)][(ΔWi)
2 − τ ].

The Milstein method requires the evaluation of the derivative of the diffusion term G. Higher
order methods will require as well the evaluation of derivatives of the drift and diffusion functions. To
avoid evaluating the derivatives they are approximated by finite differences, we call this schemes the
derivative free schemes,

X(ti+1) = X(ti) + F (X(ti))τ +G(X(ti))ΔWi Euler-Maurayama

X(ti+1) = X(ti) + F (X(ti))τ +G(X(ti))ΔWi +
1

4
√
τ
(G(γ+)−G(γ−))((ΔWi)

2 − τ) Milstein,

where
γ± := X(ti) + F (X(ti))τ ±G(X(ti))

√
τ .

The next order numerical approximation has the form

X(ti+1) = X(ti) + F (X(ti))τ +G(X(ti))ΔWi

+
1

4
√
τ
(G(γ+)−G(γ−))((ΔWi)

2 − τ)

+
1

4
(F (γ+)− 2F (X(ti)) + F (γ−))τ

+
1

2τ
(F (γ+)− F (γ−))ΔZi

+
1

2τ
(G(γ+)− 2G(X(ti)) +G(γ−))(ΔWiτ −ΔZi)

+
1

4τ
(G(φ+)−G(φ−)−G(γ+) +G(γ−))

�
1

3
(ΔWi)

3 − τ

�
ΔWi, (6.3)

where φ± = γ+ ±G(γ+)
√
τ and ΔZi is a normally distributed with the following mean, variance and

correlation
E(ΔZi) = 0, E((ΔZi)

2) =
1

3
τ3, E(ΔWiΔZi) =

1

2
τ2.

For the simulation of the previous schemes we use strong simulation in which the discrete incre-
ments ΔWi are directly sampled from independent Gaussian distributions in each computation interval.
Then the error is computed as the expected value of the error. Denoting the exact solution by yt and
the numerical solution by ŷt, the expected value of the error is

E|yt − ŷt|L2 .

Definition 6.1.1. A method is said to be of strong order p if

E|yt − ŷt|L2 = Op.
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It can be showed that that the Euler-Maruyama method is of strong order 0.5, the Milstein
method has strong order 1, and (6.3) has strong order 1.5 from now on we refer to it as the order 1.5
method [52]. There is a definition of weak simulation, the main difference with the strong simulation is
that the error of the weak simulation is the difference of the expected values of the true solution and
the numerical solutions

|E(yt)− E(ŷt)|.

For more information regarding the consistency, convergence and stability of the methods see [37]
chapter 9.

The methods will be required to be used for system of SDE. To define the Brownian motion in
more dimensions simply consider independent Brownian motions in each dimension. The theorems
and methods of this section can be generalized to higher dimensions [37].

6.2 Discontinuous Galerkin method

The main reference for this subsection is [47]. Recall that the stochastic conservation law with a
multiplicative stochastic perturbation is

du+ f(u)xdt = g(ω, x, t, u)dWt in Ω×O × (0, T ), (6.4)
u(ω, x, 0) = u0(x) ω ∈ Ω, x ∈ O, (6.5)

and the equation is assumed to have a periodic boundary condition. Where {Wt, 0 ≤ t ≤ T} is a
standard one-dimensional Brownian motion on a probability space (Ω,F ,P) and {Ft, 0 ≤ t ≤ T} the
natural filtration. We make the following assumptions of the functions f, g, u0(x)

i) The function g is F × B(O)× B([0, T ])× B(R)- measurable.

ii) The initial condition u0 ∈ L2(O).

iii) The functions f and g are locally Lipschitz continuous. For and M ∈ N there is a positive
constant L(M) such that for all (ω, x, t) ∈ Ω×O× [0, T ] and all u, u� ∈ R with max |u|, |u�| ≤ M,

max{|f(u)− f(u�)|, |g(ω, x, t, u)− g(ω, x, t, u�)|} ≤ L(M)|u− u�|.

iv) There exists a constant C > 0 such tat for any (ω, x, t, u) ∈ Ω×O × [0, T ]× R

max{|f(u)|, |g(ω, x, t, u)|} ≤ C(1 + |u|).

Functions with this property are said to be at most linear growing.

As in the previous DG analysis we are looking for an approximation in the weak form of the
SPDE, such that for any (ω, t) ∈ Ω× [0, T ], uh(ω, ·, t) ∈ V K

h and for an arbitrary test function φ ∈ V K
h

the following is satisfied

�

Ij

φ(x)duh(ω, ξj(x), t)dx =

��

Ij

f(uh)φ
�dx− f̂j+1φ

−
j+1 + f̂+

j φ+
j

�
dt+

��

Ij

g(ω, x, t, uh)φdx

�
dWt,

(6.6)
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where f̂ is a monotone numerical flux. The DG approximation with the Legendre polynomials Pl, at
the interval Ij is

uh(ω, x, t)
��
Ij

=
K�

l=0

ulj(ω, t)Pl. (6.7)

We can expect that when we substitute the DG approximation into the weak formulation of the SPDE
we will obtain a system of stochastic differential equations, just as the ones we studied in the previous
section.

Substituting (6.7) in (6.6), using the change of variables ξj(x) = 2
x−x

j+1
2

h and the properties of
the Legendre polynomial (3.1) and (3.2), we obtain for each l = 0, . . . ,K

dulj(ω, t) =
2l + 1

h

�� 1

−1
f(uh)P

�
l (ξ)dξ − f̂j+1 + (−1)lf̂j

�
dt

+
2l + 1

2

�� 1

−1
g(ω, ξ, t, uh)Pl(ξ)dξ

�
dWt

This equation can be summarized as the vector stochastic differential equation

du(w, t) = F (u(ω, t))dt+G(ω, t, u(ω, t))dWt, (6.8)

the vector u has length (k + 1)N and is represented by

u =
�
u00 · · ·uK0 , uK1 · · · uK1 · · ·u0N−1 · · · uKN−1

�
,

the entries of the vectors F and G are

[F ]i =
2l + 1

h

�� 1

−1
f(uh)P

�
l (ξ)dξ − f̂j+1 + (−1)lf̂j

�
dt

and

[G]i =
2l + 1

2

�� 1

−1
g(ω, ξ, t, uh)Pl(ξ)dξ

�
dWt,

for j ∈ {0, . . . , N − 1} and l ∈ {0, . . . ,K} such that i = 2(K + 1)j + l.

We now work with the modal formulation for the modal version of the stochastic conservation law.
Consider the vectors −→uj ,

−→
fj ,

−→
φj ,

−→
f∗
j as defined in Chapter 5. Then using the Gauss-Lobatto quadrature

in (6.6) we obtain
h

2

−→
φjMd−→ujdx = (−ST−→fj −B

−→
f∗
j ) +

h

2
M−→gjdWt.

Using the SBP property we can deduce another equivalent relationship

duj =
2

h

�
−D

−→
fj +M−1B

�−→
fj −

−→
f∗
j

��
dt+−→gjdWt.

Similarly to the deterministic case, we modify this nodal DG on each element by first considering an
entropy flux fS defined in (5.7) obtaining, for each l ∈ {0, . . . ,K}

dul(ω, t) =
2

h

�
−2

K�

i=0

DlifS(u
l, ui) +

δl
wl

(f l − f∗,l)

�
dt+ g(ω, t, ui)dWt, (6.9)
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where wl are Gauss-Lobatto weights and δl as defined in Chapter 5. Thus, we can define a SODE in the
form of (6.8). Just as in the deterministic case, the inclusion of the entropy stable flux f̂ (5.9) occurs
in the numerical flux vector

−→
f∗. Recall that the entries of this vector are zero for i = 1, . . . ,K − 1, and

for i = 0,K −−→
f∗,0 = f̂j(uh) and

−−→
f∗,K = f̂j+1(uh).

6.2.1 Numerical simulations

In this section we work with the constant-coefficient linear stochastic equation with the sine initial
condition and the impulse initial condition. The first initial condition allows us to corroborate the
order of convergence and the second to numerically validate the use of limiters in the stochastic case.
In the original work [13], the authors do not include limiters to control oscillations. For the solutions
with discontinuities, we measure the error outside a neighborhood of the discontinuities. In addition,
we include the nodal entropy stable DG solution with � = 1, to numerically show that the its solutions
are entropy solutions. In addition, we consider the solution of the stochastic Burgers’ equation with a
sine initial condition prior to the shock time and after the shock time, to show that limiters work in
the nonlinear case. The relationship between the time discretization and the spatial discretization is
τ = CFL(h)

3
2 .

In the following M̂ is the number of realizations of the solutions. The error estimate is given
using a Monte Carlo approximation of the L2(Ω×O × [0, T ]), given by

E[||uh(·, ·, T )− u(·, ·, T )||2L2(O)] ≈ e22 ± ν,

with

e2 :=


 1

M̂

M̂�

i=1

zi




1
2

, ν :=
2�
M̂


 1

M̂

M̂�

i=1

z2i − e42




1
2

,

where zi := ||uh(ωi, ·, T )−u(ωi, ·, T )||2L2(O), uh(ωi, ·, T ) and u(ωi, ·, T ) are the simulation with the path

ωi from the M̂ paths. The order of convergence for the linear cases has been proved to be O(hk+1) but
there is no proof for the order of convergence in the nonlinear case. In the stochastic conservation laws
and stochastic parabolic equations numerical experiments we use the strong order 1.5 method (6.3) for
solving the SODEs.

Example 1 Constant-coefficient stochastic convection equation, O = [0, 1]

du+ uxdt = budWt

u(ω, x, 0) = sin(x).

For the numerical solution we used (M̂, CFL) = (5000, 0.01) for K = 1 and (M̂, CFL) = (2500, 0.001)
for K = 2. As we can observe the order of convergence is close to the optimal order of convergence in
both cases.

Example 2 Constant-coefficient stochastic convection equation with impulse initial condition. We
show the results with the TVB 3% and BDF limiters in Table 6.2. The DG solutions for the stochastic
equation resemble the results for the non limiter and limited solutions from the deterministic case.
The TVB 3% had a smaller error for most of the N although the order of convergence of the BDF
is greater. In general, the limiters proposed in this thesis did not have a great improvement in the
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K = 1 K = 2

N e2 order ν e2 order ν

10 1.33× 10−2 - 1.62× 10−6 1.03× 10−3 - 1.55× 10−8

20 4.01× 10−3 1.73 1.45× 10−7 8.96× 10−5 3.53 1.16× 10−10

40 1.10× 10−3 1.87 1.10× 10−8 1.91× 10−5 2.23 5.19× 10−12

80 2.73× 10−4 2.01 6.76× 10−10 2.44× 10−6 2.96 8.62× 10−14

Time 82.76s 273.40s

Table 6.1: Error stochastic convection equation sine initial condition with T = 0.1.

solution, they have similar results to the original limiters. In Figures 6.1a and 6.1b the top and bottom
parts of the discontinuity are shown for the DG solution without limiter and the DG solutions with
the ATVB and BDF limiters.

TVB 3% BDF
N e2 order ν e2 order ν

10 4.54× 10−2 - 2.69× 10−5 1.29× 10−1 - 2.15× 10−4

20 2.11× 10−2 1.11 5.80× 10−6 4.58× 10−2 1.50 2.79× 10−5

40 9.46× 10−3 1.15 2.20× 10−6 1.11× 10−2 2.04 1.66× 10−6

80 2.37× 10−3 2.00 1.92× 10−7 2.10× 10−3 2.41 5.70× 10−8

Time 653.24s 654.04s

Table 6.2: Error stochastic convection equation square initial condition with K = 2 and T = 0.1.

(a) Top part of discontinuity (b) Bottom part of discontinuity

Figure 6.1: Realization of the stochastic conservation law K = 2, N = 160, T = 0.1

Example 3. Constant coefficient stochastic convection equation using Gauss-Lobatto quadrature.
This algorithm is much more computationally expensive. For all the examples b = 1. In the Table 6.3
for K = 1, 2 the order of convergence is below the optimal order of convergence, but the results are
still acceptable. For K = 3 we used M̂ = 100 and for K = 4, M̂ = 10. In Figures 6.2a and 6.2b the
solutions for N = 80, 160, 320 using three points for the integration.
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K = 3 K = 4

N e2 order ν e2 order ν

10 2.53× 10−3 - 3.61× 10−7 3.20× 10−4 - 2.20× 10−8

20 1.29× 10−3 0.97 1.07× 10−7 8.60× 10−5 1.90 1.59× 10−9

40 6.13× 10−4 1.07 2.19× 10−8 2.45× 10−5 1.81 1.22× 10−10

80 7.80× 10−5 2.97 3.92× 10−10 5.72× 10−6 2.10 5.59× 10−12

Time 384.5s 721.51s

Table 6.3: Error stochastic convection equation, Guass-Lobatto quadrature T = 0.1.

(a) Top part of discontinuity (b) Bottom part of discontinuity

Figure 6.2: Realizations of the stochastic conservation law, Guass-Lobatto quadrature K = 3, T = 0.1

Example 4 Stochastic Burgers equation with additive noise

du = −
�
u2

2

�

x

dt+ bdWt,

with the sine initial condition (2.37). In Table 6.4 the error and orders are shown time T = 0.1, prior
to the shock. Note that for both K the order of convergence is almost K + 1. In the literature there
is still no error estimate for the nonlinear case [47]. In Figures 6.3a and 6.3c we can compare the
effectiveness of the BDF and MBDF limiters for a realization of the solution. In this case is more clear
the improvement of the MBDF limiter over the BDF limiter, the diffusive behavior of the BDF limiter
is overcome.

6.3 Local discontinuous Galerkin method

The general form of the stochastic convection-diffusion partial differential equation with multiplicative
noise is

du = {Duxx − f(u)x}dt+ g(·, x, t, u, ux)dWt, (x, t) ∈ O × (0, T ) (6.10)
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K = 1 K = 2

N e2 order ν e2 order ν

10 1.39× 10−2 - 1.27× 10−6 6.97× 10−4 - 8.05× 10−9

20 4.32× 10−3 1.69 1.82× 10−7 1.04× 10−4 2.75 2.20× 10−10

40 9.95× 10−4 2.12 1.65× 10−8 1.45× 10−5 2.84 3.60× 10−12

80 2.87× 10−4 1.80 2.13× 10−9 1.97× 10−6 2.88 2.39× 10−13

Time 41.67s 378.19s

Table 6.4: Error stochastic Burgers’ equation sine initial condition with T = 0.1.

we assume the same hypothesis on f and g as in the previous section. As for the deterministic case we
have to rewrite the previous equation as a first order system and then apply the DG method.

du = [wx − (f(u))x]dt+ g(·, x, t, u, q)dWt, (x, t) ∈ O × (0, T ]

q = ux, in Ω×O × (0, T ]

w = Dq (x, t) ∈ O × (0, T ].

We look for approximations uh, vh, wh ∈ V K
h for each (ω, t) ∈ Ω × (0, T ] of u, v, w, in the weak sense.

Recall that at the inter-elements the solution is not properly defined. Thus, we consider the numerical
fluxes û, q̂ and f̂ , for û and ŵ the midpoint is used

ûj =
uh(x

−
j ) + uh(x

+
j )

2

�

Ij

φ1duh(ω, x, t) =

��

Ij

(−wh + f(uh))φ
�
1dx+ ŵj+1φ

−
1,j+1 − ŵjφ

+
1,j − f̂j+1φ

−
1j+1 + f̂jφ

+
1,j)

�
dt

+

�

Ij

g(ω, x, t, uh, qh)φ1(x)dxdWt (6.11)
�

Ij

qh(ω, x, t)φ2dx = −
�

Ij

uhφ
�
2dx+ ûj+1φ

−
2,j+1 − ûjφ

+
2,j (6.12)

�

Ij

wh(ω, x, t)φ3dx =

�

Ij

Dqhφ3dx (6.13)

where the notation u+h,j is understood as u+h,j = uh(x
+
j ) for un, wh, qh,φ1,φ2 and φ3. Once again we

consider that the basis at each Ij in V K
h are the Legendre polynomials Pl, the LDG approximations

uh, qh and wh are then

uh(ω, x, t)|Ij =
K�

l=0

ulj(ω, t)Pl(ξj(x)), qh(ω, x, t)|Ij =
K�

l=0

qlj(ω, t)Pl(ξj(x))

and

wh(ω, x, t)|Ij =
K�

l=0

wl
j(ω, t)Pl(ξj(x)).
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(a) Shock solution with BDF limiter (b) Bottom part of discontinuity

(c) Shock solution with MBDF limiter, M = 10 (d) Bottom part of discontinuity

Figure 6.3: Reduction of oscillatory behaviour with BDF and MBDF limiters, realization of solutions.

Substituting LDG approximations in the system (6.11)-(6.13) and using the properties of the Legendre
polynomials (3.1) and (3.2), we obtain for each l ∈ {0, 1, . . . ,K}

dulj =
2l + 1

h

�� 1

−1
(f(uh))− wh)P

�
l (ξ)dξ + (−1)l(f̂j − ŵj)− (f̂j+1 − ŵj+1)

�

+
2l + 1

2

� 1

−1
g(ω, x, t, uh, qh)PldξdWt

qlj =
2l + 1

h

�
−
� 1

−1
uh(ξ, t)P

�
l (ξ)dξ + ûj+1 + (−1)lûj

�

wl
j = Dqlj
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these set of equations can be reduced to

dulj =
2l + 1

h

�� 1

−1
(f(uh))−Dqh)P

�
l (ξ)dξ + (−1)l(f̂j −Dq̂j)− (f̂j+1 −Dq̂j+1)

�

+
2l + 1

2

� 1

−1
g(ω, x, t, uh, qh)PldξdWt (6.14)

qlj =
2l + 1

h

�
−
� 1

−1
uh(ξ, t)P

�
l (ξ)dξ + ûj+1 + (−1)lûj

�
, (6.15)

where q̂ is the midpoint numerical flux. Equation (6.14) can be written as a SODE of the form (6.8)
once uh is determined qh is determined as well by (6.15).

6.3.1 Numerical simulations

In each of the tables we show the L2 error and order of convergence as explained in the previous
numerical experiments. The theoretical order of convergence es O(hk+1).

Example 1 Stochastic heat equation.

du = uxxdt+ budWt, (ω, x, t) ∈ Ω×O × [0, T ]

u(x, 0) = sin(x).

In Tables 6.5 and 6.6 the errors and orders are shown for different values of the stochastic parameter
b. For the first order approximations K = 1, Table 6.5, the order of convergence is consistently below
the theoretical order of convergence. For K = 2, Table 6.6, the order behaves better and oscillates
around O(h3). For K = 1 we used (M̂, CFL) = (500, 0.01) and for K = 2, (M̂, CFL) = (250, 0.001).

b = 0.5 b = 1

N e2 order ν e2 order ν

10 1.76× 10−2 - 8.87× 10−6 1.82× 10−2 - 1.94× 10−5

20 8.30× 10−3 1.09 2.03× 10−6 8.52× 10−3 1.10 5.18× 10−6

40 4.05× 10−3 1.04 4.63× 10−7 4.39× 10−3 0.96 1.28× 10−6

80 1.95× 10−3 1.05 1.06× 10−7 2.03× 10−3 1.11 2.53× 10−7

Time 99.86s 47.66s

Table 6.5: Error of stochastic heat equation with sine initial condition T = 0.1 and D = 1

b = 0.5 b = 1

N e2 order ν e2 order ν

10 5.43× 10−4 - 2.27× 10−8 5.69× 10−4 - 2.25× 10−8

20 6.66× 10−5 3.03 1.27× 10−10 6.99× 10−5 3.03 2.88× 10−10

40 1.70× 10−5 1.97 8.15× 10−12 2.22× 10−5 1.65 2.93× 10−11

80 9.56× 10−7 4.15 2.77× 10−14 9.92× 10−7 4.49 6.88× 10−14

Time 497.51s 490.42s

Table 6.6: Error stochastic heat equation with sine initial condition T = 0.1, and K = 2
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Figure 6.4: Realizations and mean of numerical and exact solutions of the stochastic linear convective
dominated equation b = 1, T = 0.1.

Example 2 Stochastic linear convection-diffusion.

du = (Duxx − ux)dt+ budWt, (ω, x, t) ∈ Ω×O × [0, T ]

u(x, 0) = sin(x),

the solution of this equation is

u(ω, x, t) = sin(x− t) exp

�
bWt −

b2t

2
−Dt

�
.

In Tables 6.7 and 6.8 the errors and orders are shown for b = 1 and different values of the diffusion
parameter, D = 1 and D = 0.001. In both cases the order behaves almost like the theoretical order
of convergence, O(h3). For K = 1 we used (M̂, CFL) = (500, 0.01) and for K = 2, (M̂, CFL) =
(250, 0.001). In Figure 6.4 we can see realizations and the numerical and theoretical mean for the
solution of this example. Clearly, the means are indistinguishable, graphically showing that the solution
converges as well in the sense of weak simulation.

K = 1 K = 2

N e2 order ν e2 order ν

10 1.49× 10−2 - 1.34× 10−5 5.54× 10−4 - 2.36× 10−8

20 5.08× 10−3 1.55 1.42× 10−6 7.35× 10−5 2.91 4.82× 10−10

40 1.54× 10−3 1.72 1.44× 10−7 2.69× 10−5 1.45 6.94× 10−11

80 3.93× 10−4 1.97 1.07× 10−8 1.00× 10−6 4.75 8.03× 10−14

Time 452.71s 266.46s

Table 6.7: Error stochastic linear convection-diffusion equation sine initial condition T = 0.1, D = 1

Conclusions. In this section, we formulate the DG method and the LDG method for stochastic
conservation and stochastic parabolic problems, respectively. For stochastic conservation laws, we
solved linear and nonlinear problems using the DG method and constructed the stable entropy DG
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K = 1 K = 2

N e2 order ν e2 order ν

10 1.52× 10−2 - 1.41× 10−5 7.76× 10−4 - 5.41× 10−8

20 4.33× 10−3 1.82 1.20× 10−6 1.24× 10−4 2.64 1.56× 10−9

40 1.12× 10−3 1.95 7.76× 10−8 2.25× 10−5 2.47 5.07× 10−11

80 2.63× 10−4 2.09 4.18× 10−9 1.58× 10−6 3.83 2.66× 10−13

Time 461.51s 270.60s

Table 6.8: Error stochastic convective dominated equation sine initial condition T = 0.1, D = 0.001

formulation. In these examples, we were able to explore the order of convergence, the application of
limiters to control oscillations, and the use of stable entropy solutions. The inclusion of limiters for the
linear convection equation with the initial impulse condition did not show much improvement between
the standard limiters and the ATVB and M-BDF. For Burgers’ stochastic equation with N = 80, the
M-BDF showed better results than the BDF results. The numerical results obtained are promising to
continue with the theoretical study of limiters and stable solutions of entropy. For limiters, we would
first need to extend the definition of TVB and other properties to the stochastic case. The theoretical
properties of the stable entropy solutions would require an extension of the conservative entropy flows
(5.7) and the stable entropy flows (5.9) for the stochastic conservation laws. It may be the case that
it is sufficient to ensure deterministic properties almost certainly. The stochastic parabolic solved
are the stochastic heat equation and the linear stochastic diffusion-convection equation, including the
convection-dominated case. For these examples, we study the convergence for different magnitudes of
the parameter b and the effects of dominated convection. In both cases, the order of convergence is as
expected. For future work we are interested in considering more examples and more initial conditions.
In particular, the computation of the solution for non-linear equations becomes difficult, specially after
shocks or non-smooth initial conditions due to the evaluation of the integral of the Brownian motion.

6.4 Algorithms

For the solution of the stochastic problems we use M̂ times Algorithm 2 to compute the Monte Carlo
error. In each iteration, instead of computing un with the RK algorithm, we use Algorithm 14 for the
solution of the SODEs. The functions f, f � and f̂ are the flux, its derivative and the numerical flux.
The functions F and G vary from problem to problem. For conservation laws define F as Algorithm 4
for the nodal DG and as Algorithm 13 for the modal DG . For the LDG define F as Algorithm 5. For
each Algorithm 4, 5 and 13 it is necessary to include their particular arguments. The function G is a
function returning a vector with the i−th entry

[G]i =
2l + 1

2

�� 1

−1
g(ω, ξ, t, uh)Pl(ξ)dξ

�
,

with g defined for each particular problem. Due to its simplicity we do not include an algorithm for
it. The relationship between τ and h is τ = CFLδ

3
2 . The limiter option should only be included for

the DG method. We do not include a particular algorithm for the adaptive case, the modification is
done as in Algorithm 10.
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Algorithm 14 SODE system solver order 1.5

1: procedure SODE_solver(K, u0, τ, h, T, f, f
�, f̂ , N, F, G, limiter, type of limiter, Z)

2: Define dt := τ and vector solution u.
3: n = 1
4: while dt = nτ < T do
5: Let N1 and N2 be a realization of i.i.d. standard normal.
6: Define

ΔZ =

�
N1 +

N2√
3

�
τ

3
2

2
.

7: Define Feval = F (un−1, f, fp, f̂ , N, h) and Geval = G(un−1, b).
8: Compute

γ± = u0 + Fevalτ ±Geval

√
τ

G± = G(γ±, b)

F± = F (γ±, f, fp, f̂ , N, h)

φ± = γ+ ±G(γ+)
√
τ

G(φ±) = G(φ±, b)

9: Update u0 using (6.3)

un = un−1 + Fevalτ +GevalN1

+
1

4
√
τ
(G+ −G−)(N2

1 − τ)

+
1

4
(F+ − 2Feval + F−)τ

+
1

2τ
(G+ − 2Geval +G−)(N1τ −ΔZ)

+
1

4τ
(G(φ+)−G(φ−)−G+ −G−)

�
1

3
N3

1 − τ

�
N1.

10: if limiter == True then
11: Apply to un the type of limiter selected with its corresponding parameters Z.

12: Update time step dt+ = τ
return Solution u0.



Conclusions and future work

Our original objective, was to obtain an efficient discontinuous Galerkin formulation for stochastic
parabolic conservation laws with dominant convection or degenerate diffusion. For that, we studied the
discontinuous and local discontinuous Galerkin methods for hyperbolic and parabolic conservation laws
as well as numerical techniques like limiters and entropy stable discretizations which have been recently
proposed in the literature in the deterministic case. In such direction, we made two contributions to
the development of the DG method. First, numerically implement the use of limiters and the nodal
entropy stable discretization for stochastic conservation laws. Second, we propose modified limiters
which we named as the ATVB and M-BDF limiters. The improvements of the new limiters were clear
for the deterministic case, the error decreased faster and the solutions were less oscillatory and less
diffusive when compared to the original limiters.

The contributions can be summarized as follows:

• Construct two limiters: The ATVB method serves as a starting point to develop future limiters
that do not require the constant M of the TVB limiter, thus eliminating a heuristic calculation.
The M-BDF limiter considers the modified minmod function to alleviate the diffusive solutions
of the BDF limiter.

• Use the entropy stable formulation for the stochastic case. A great advantage that this formu-
lation provides, its simplicity for using high order polynomial, in the deterministic examples we
included up to K = 5 and for the stochastic case up to K = 4. In addition, the inclusion of the
parameter � in the entropy stable flux helps to decrease oscillations without the use of limiters.

• Validate the use of limiters and entropy stable solutions for stochastic conservation laws.

The future work can be synthesized in the following list:

• Study more techniques for the automatic switching between Ms and Mb, to avoid the estimation
of M in the TVB limiter. Theoretically studying how to better choose Ms and Mb.

• Implement a more general formulation of the nodal entropy DG with limiters.

• Implement the entropy stable LDG.

• Study theoretically the properties of the proposed limiters and nodal entropy stable DG for the
stochastic case.
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• Implement the algorithms in C++ for better performance and parallelization.

• Work on higher-dimensional problems.

• Work on degenerated problems, which are convection-diffusion problems where the diffusion
coefficient becomes zero in some regions.



Appendix A
Functional Analysis preliminaries

In this appendix we include the necessary background in functional analysis, in particular distribution
theory, Hilbert and Sobolev spaces. The information in this appendix can be found in [15], for a wider
panorama in distribution theory the reader is refereed to [18] and [68], further details in Hilbert and
Sobolev spaces [1].

Definition A.0.1 (Norm,Normed space, Banach space). Consider a vector space E, a map || · || : E →
R+, is called a norm if and only if

||x|| = 0 ⇐⇒ x = 0

||λx|| = |λ|||x|| for all λ ∈ R , x ∈ E

||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ E.

Then E is said to be a normed space and its norm is denoted by || · ||E . Furthermore if E satisfies
being complete respect to the following convergence

xn → x in E ⇐⇒ ||xn − x||E → 0,

it is called a Banach space.

Definition A.0.2 (Bilinear form). A bilinear form on a vector space V is a map [·, ·] : V × V → K,
where K is the field of scalars that for all u, v, w, z ∈ V and for all λ ∈ K verifies:

[λ(u+ v), w] = λ([u,w] + [v, w])

[u,λ(v + w)] = λ([u, v] + [u,w])

Definition A.0.3 (Continuous bilinear form). Let H be a Hilbert space. A bilinear form [·, ·] :
H ×H → R is called continuous provided there exists c > 0 such that

[(u, v)] ≤ C||u||H ||v||H for all u, v ∈ H.

Definition A.0.4 (Elliptic bilinear form). A bilinear form B is called H−elliptic, or for short elliptic
or coercive, provided form some α > 0,

B(v, v) ≥ α||v||2H for all v ∈ H. (A.1)
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Every coercive bilinear form B, induces a norm via

||v||B :=
�
B(v, v) (A.2)

This norm is called the energy norm.

Definition A.0.5 (Scalar product, Hilbert space). Let H to be a lineal real space, a map (·, ·)H :
H ×H → R is a scalar product if

(x, y)H > 0 ⇐⇒ x �= 0

(x, y)H = (y, x)H for all x, y ∈ H

(λx+ µy, z)H = λ(x, z)H + µ(y, z)H for all λ, µ ∈ R, x, y, z ∈ H.

If H is a Banach space respect to the norm associated to its scalar product

||x||H = (x, x)
1
2
H ,

then H is a Hilbert space.

Definition A.0.6 (Lp spaces). Let p ∈ R with 1 ≤ p < ∞, O ⊂ Rn and open set. The Lp(O) spaces
are defined as

Lp(O) = {f |f : O → R, f is measurable and
�

O
|f |pdx < ∞.}

Lemma A.0.1. If 1 ≤ p < ∞, the set Lp(O) is a Banach space with the norm

||f ||Lp =

��

O
|f |pdx

� 1
p

.

For p = 2, L2(O) we use the notation ||f || := ||f ||L2(O). In addition, this space is a Hilbert space
with the scalar product

(f, g)L2(O) =

�

O
fgdx.

We consider D(O) as the set of infinite differentiable functions in the set O. For n ∈ N, α =
(α1, . . . ,αn) ∈ Nn, is called the multi index, we define

|α| = α1 + · · ·+ αn

and

∂α =
∂|α|

∂xα1
1 . . . ∂xαn

n
,

where for |α| = 0, ∂α = 0 is the identity.

Definition A.0.7 (Support). Let φ : O → R a function, the support of φ denoted by suppφ is defined
as follows

suppφ = {x ∈ O,φ �= 0} ∩O.

Definition A.0.8. A sequence (φn)n∈N in D(O) is said to be convergent to an element φ, iff (if and
only if)
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a) There is a compact set K ⊂ O such that for all n ∈ N, suppφn ⊂ O.

b) For all α ∈ Nn, ∂αφn uniformly converges to ∂αφ in K.

Definition A.0.9 (Distribution). A map T : D(O) → R is said to be a distribution in O iff,

a) T is lineal, i.e., for all λ, µ ∈ R, φ1,φ2 ∈ D(O),

T (λφ1 + µφ2) = λT (φ1) + µT (φ2)

b) If φn tends to φ in D(O), then T (φn) tends to T (φ).

We denote by D�(O) the space of (Schwartz) distributions in O. The usual notation for the application
of distribution to a function is

T (φ) = �T,φ�D�(O),D(O).

Definition A.0.10 (Derivative of a distribution). Let T ∈ D(O), and i = 1, . . . , N. The derivative
∂T
∂xi

is defined as

� ∂T
∂xi

,φ�D�(O),D(O) = −�T, ∂φ
∂xi

�D�(O),D(O), for all φ ∈ D(O).

Definition A.0.11 (Weak derivative). Let u ∈ L1
loc(O), with L1

loc(O) the set of locally integrable
functions. A function vα ∈ L1

loc(O) is said to be the weak derivative of u if, for all φ ∈ D(O),

�

O
u∂αφdx = (−1)|α|

�

O
vαφdx.

Definition A.0.12 (Sobolev spaces). Let 1 ≤ p < ∞ and m ∈ N. The Sobolev space Wm,p(O), is

W(m,p)(O) = {u ∈ Lp(O)|∂uα ∈ Lp(O) , 0 ≤ |α| ≤ m},

with ∂α the weak derivative of u.

Definition A.0.13. The set C∞
0 (O) of the infinitely differentiable functions with compact support,

is clearly a subset of Wm,p for any m and p. The closure of C∞
0 as a subspace of Wm,p is denoted by

Wm,p
0 .

For the case m ∈ N, p = 2, denoted by Hm(O), we consider the following norm and seminorm

||v||m = ||v||Hm(O) = (
�

|α|≤m

||Dαv||2) 1
2 ,

|v|m = |v|Hm(O) = (
�

|α|=m

||Dαv||2) 1
2 ,

Lemma A.0.2. The space H1(O) is a Hilbert space with the following scalar product,

(v, w)H1(O) = (v, w)L2(O) +
n�

i=1

�
∂v

∂xi
,
∂w

∂xi

�

L2(O)

, for all v, w ∈ H1(O).

We use the corresponding notation H1
0(O).
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Definition A.0.14 (Lipschitz boundary). The boundary of O, ∂O is said to be Lipschitz if there is
a constant c > 0 and a finite number M of local coordinate systems (x̂m, xmN ) and local maps Φm,
defined in the sets

Rm = {x̃m ∈ RN−1, x̃m = (xm1 , . . . , xmN−1), |xmi | ≤ c},
that are Lipschitz in their domain for i = 1, . . . ,M and that

∂Ω = ∪M
m=1Γm,

where
Γm = {x̂m, xmN |xmN = Φm(x̂m), x̂m ∈ Rm}.

Intuitively this definitions says that a boundary is Lipschitz if it can be seen as the finite union
of images of Lipschitz functions.

Theorem A.0.3 (Green Theorem). Let u, v be scalar functions and w = (w1, . . . , wn) a vector-valued
function of x ∈ Rn. Then relation

�

O
w ·∇vdx =

�

∂O
w · nvds−

�

O
∇ · wvdx, (A.3)

holds. Where n is the outward unit normal to ∂O.

When w = ∇u the formula becomes
�

O
∇u ·∇vdx =

�

∂O

∂u

∂n
vds−

�

O
Δvdx, (A.4)

where ∂u
∂n = ∇u · n is the exterior normal derivative of u on ∂O.

Theorem A.0.4. (Sobolev inequality) Let O be a bounded domain in R. Then H1 ⊂ C(O), and there
exists a constant C = C(O) such that

||v||C(O) ≤ C||v||1, for all v ∈ H1(O). (A.5)

Theorem A.0.5 (The Lax-Milgram Theorem). Let V be a closed convex set in a Hilbert space H,
and let B : H × H → R be an elliptic bilinear form. Then, for every linear functional l ∈ H �, the
variational problem

J(v) :=
1

2
B(v, v)− �l, v�, (A.6)

has a unique minimum v ∈ V .



Appendix B
Probability

B.0.1 Probability review

Definition B.0.1 (Event). An event is a subset of the sample space Ω. A relevant collection of events
are the sigma fields F , this collections satisfy the following properties:

a) The empty set, ∅ is in F .

b) If A is in F , its complement Ac is in F .

c) If An is in F for n = 1, 2, 3, . . . ,, then
�∞

n=1An is in F .

For a proper definition of a stochastic process, a probability space is required. A probability space
is a triad (Ω,F ,P), with Ω a state-space, F a sigma algebra over Ω and P a probability distribution (or
measure)

Definition B.0.2 (Probability distribution). A function P : F → [0, 1], is said to be a probability if it
satisfies:

a) P(Ω) = 1.

b) 0 ≤ P(A) ≤ 1, for any event A.

c) If (An)n∈I a finite or countably infinite pairwise disjoint collection, i.e., Aj
�
Ak = ∅ for j �= k,

then
P(
�

n∈I
An) =

�

n∈I
P(An).

Now we can properly define a random variable.

Definition B.0.3 (Random variable). Given Ω and a probability distribution, a random variable is a
function X(ω), defined on Ω taking values in R.

The importance of random variables is that the "their probability " can be measured.

Definition B.0.4 (Distribution function). The distribution function FX(x) of the random variable X
is denoted by

FX(x) = P(Bx),
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where
Bx = {ω : X(w) ≤ x}.

All random variables have a distribution function, there are two principle types of random vari-
ables: the discrete and the continuous. In this appendix we focus on continuous random variables, in
this case, there may be a non-negative function fX(s) called the density function of X. If such function
exists the distribution function F (x) can be written in the form

FX(x) =

� x

−∞
f(x)dx. (B.1)

An important example of such random variables is the Normal density.

Definition B.0.5 (Normal density). For any constants µ ∈ R and σ2 > 0,

f(x) =
1

(2πσ2)1/2
exp

�
−(x− µ)2

2σ2

�
�(x)(∞,∞) (B.2)

We refer to this as N(µ,σ2). The special case µ = 0 and σ2 = 1 is the standard Normal Density

Definition B.0.6 (Joint density function). The pair of random variables (X,Y ) is said to be (jointly)
continuous with density f(x, y) if, for all a, b, c, d

P(a < X ≤ b ∩ c < Y ≤ d) =

� b

a

� d

c
f(x, y)dydx.

In particular this supplies the joint distribution function of X and Y , denotes by F (x, y),

F (x, y) =

� x

−∞

� b

−∞
f(u, v)dvdu.

Definition B.0.7 (Marginal density). The marginal density of X, is defined to be

fX(x) =

� ∞

−∞
f(x, y)dy.

The marginal of Y is defined analogously.

Definition B.0.8 (Independence of random variables). The pair X and Y are independent, if for all
x and y,

P(X ≤ x, Y ≤ y) = F (x, y) = FX(x)Fy(y) = P(X ≤ x)P(Y ≤ y).

In particular for X and Y are independent random variables, if for all x and y,

fX,Y (x, y) = fX(x)fY (y).

Definition B.0.9 (Expectation). Let X be a continuous random variable with density f(x). The
expected value or mean of X is denoted by E(X) and defined by

E(X) =

�

R
xf(x)dx,

provided that
�
R |x|f(x)dx is finite.
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Definition B.0.10. Let X be a continuous random variable and g real valued function , if Y = g(X),
then

E(Y ) =

�

R
g(x)fX(x)dx

Definition B.0.11 (Moments). The moments and central moments of a continuous random variable
are defined as:

a) The k−th moment of X is µk = E(Xk).

b) The k−th central moment of X is σk = E((X − E(X))k).

Definition B.0.12 (Covariance and correlation). The covariance of X and Y is

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

Their correlation coefficient (or correlation) is

ρ(X,Y ) =
cov(X,Y )�

var(X)var(Y )
,

where var(X) = σ2
2.

Definition B.0.13 (Conditional density and expectation.). If X and Y are jointly continuous then
the conditional density of X given Y is defined by

fX|Y (x|y) =
f(x, y)

fY (y)
, when fY (y) > 0.

The conditional expectation of X given Y = y is

E(X|Y = y) =

�

R
xfX|Y (x|y)dx,

provided the integral converges absolutely.

Definition B.0.14 (Moment generating function). The moment generation function (mgf) of the
random variable X is given by

MX(t) = E(etX),

for all real t where the expected value exists.

An important example of a mgf is for a normal distribution N(µ,σ2). For t ∈ R,

Mx(t) = exp(µt+
σ2t2

2
).

Definition B.0.15 (Characteristic function). The function

φX(t) = E(exp(itX)), for t ∈ R, where i2 = −1,

is called the characteristic function, or cf, of the random variable X.
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Theorem B.0.1. (Laplace-DeMovire) Let X1, . . . , Xn be independent and identically distributed ran-
dom variables, with

P(Xi = 1) = p

P(Xi = 0) = q,

for p, q ≥ 0, p+ q = 1. Define the sums

Sn :=

n�

i=1

Xi.

Then for all −∞ < a < b < ∞

lim
n→∞

P
�
a ≤ Sn − np√

npq
≤ b

�
=

1√
2π

� b

a
exp

�
−x2

2

�
.

B.0.2 Brownian motion and SDEs

Definition B.0.16. The σ− algebra W(t) := F(W (s)|0 ≤ s ≤ t) is called the history of the Brownian
motion up to (and including) time t. The σ− algebra W+(t) := F(W (s)−W (t)|s ≥ t) is the future of
the Brownian motion beyond time t.

Definition B.0.17. A family U(·) of σ−algebras ⊂ F is called nonanticipating (with respect to W (t))
if

i) U(s) ⊂ U(t) for all t ≥ s ≥ 0.

ii) W(t) ⊂ U(t) for all t ≥ 0.

iii) U(t) is independent of W+(t) for all t ≥ 0.

We refer to U(·) as a filtration.

Definition B.0.18. A real-valued stochastic process G(t) is called nonanticipating (with respect to
U(t)) if for each time t ≥ 0, G(t) is U(t) measurable.

A stochastic process G(t) being nonanticipating intuitively means that the values of the function
G at a time t depend only on the values W (u) for 0 ≤ u ≤ t.

Definition B.0.19. A stochastic process X(t) is said to be progressively measurable if, for every time
t, the map [0, t]× Ω → R defined by (s,ω) → Xs(ω) is B([0, t])×Ft measurable. [57]

Theorem B.0.2. (Properties of Itô Integral). For all constants a, b ∈ R and for all G,H ∈
L2(0, T ), we have

i)
� T
0 aG+ bHdWt = a

� T
0 GdWt + b

� T
0 HdWt.

ii) E
�� T

0 GdWt

�
= 0

iii) (Itô isometry) E
��� T

0 GdWt

�2�
= E

�� T
0 G2dt

�
.

iv) E
�� T

0 GdWt

� T
0 HdWt

�
= E

�� T
0 GHdt

�
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Definition B.0.20. For G ∈ L2(0, T ), set

I(t) :=

� t

0
GdWt (0 ≤ t ≤ T ),

the indefinite integral of G(·).
Theorem B.0.3. Assume Xt and Yt are two Itô processes, then

XtYt = X0Y0 +

� t

0
XsdYs +

� t

0
YsdXs + �X,Y �t,

where �X,Y � is the quadratic covariation process of X and Y. If Y has bounded total variation

�X,Y � = 0.

B.1 Approximation to the stochastic Wiener integral

Computation of the integral
� t
0 Wsds, [47]. Define the process

v(s) =
Wtn+τs −Wtn√

τ
,

where tn = nτ, and Wt is a standard Brownian motion. Clearly the stochastic process {v(s), 0 ≤ s ≤ 1}
is a standard Brownian motion. In addition, define the random variables

ΔWn = τ
1
2 v(1), ΔZn = τ

3
2

� 1

0
v(s)ds.

Then, if the variables v(1) and
� 1
0 v(s)ds are computed, the random variables ΔWn and ΔZn can be

obtained. These variables are the solution of the system

dx = dv(s), x(0) = 0,

dy = xds, y(0) = 0.

at time t = 1. We use a method of order 1.5 to compute the solution of the system. Denote by
xk = x(xk) and yk = y(sk), for a partition 0 = s0 < s1 < . . . < sN = 1, where

N = �τ− 1
3 �

and Then the system has the numerical solution

xk+1 = xk − (v(sk+1)− v(sk))

yk+1 = yk + xkδ +

� sk+1

sk

(v(θ)− v(sk))dθ.

The random variables (v(sk+1)− v(sk)) and
� sk+1

sk
(v(θ)− v(sk))dθ are modeled using

v(sk+1)− v(sk) =
ξk,1

N
1
2

,

� sk+1

sk

(v(θ)− v(sk))dθ =
1

2N
3
2

�
ξk,1 +

1√
3
ξk,2

�
,

with ξk,1 and ξk,2 are independent normally N(0, 1).

The random variables ΔWn and ΔZn can be reinterpreted as

ΔWn = Wtn+1 −Wtn , ΔZn =

� tn+1

tn

(Ws −Wtn)ds,

from which,
� t
0 Wsds can be computed.
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