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Abstract

Gaussian processes are extensively used for regression and optimization tasks. This thesis
aims to understand the behavior of the level sets of three-dimensional conditional Gaussian
processes. Given a random sample of one of these processes, we can infer information about
the geometrical structure of the process that generates it. With this knowledge, we can
improve our predictions or avoid local minima in the optimization case.
For our empirical analysis, we simplify the problem by conditioning a Gaussian process

over a known smooth boundary that is contained inside a given square. We model the
level sets topology of this conditioned Gaussian process via Vietoris-Rips complexes, for
which we can use fast computer algorithms to calculate the rank of their corresponding
homology groups.

Keywords: Topology of level sets, geometrical data analysis, Betti numbers, Poisson
distribution, Vietoris-Rips complexes.
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Introduction

This thesis aims to study and understand the level sets of conditional Gaussian processes.
This type of stochastic process is widely used in many areas of probabilistic and statistical
machine learning, as well as in manifold learning for tasks such as regression, classification,
and prediction; as highlighted in Rasmussen and Williams (2005).
In a regression problem, for instance, we condition a Gaussian process over a previously

observed data sample. This conditional process can then be used to produce prediction
intervals, with a certain degree of confidence, for new unobserved data points. Some
examples of the application of conditional Gaussian process can be found in Frazier (2018).
Gaussian processes (GPs) are in some cases preferred over other non-linear machine

learning methods, such as neural networks, due to the vast and rich existing theory related
to the Gaussian distribution. To apply a Gaussian process in a regression problem, we
have to place a prior distribution over the observed data sample. In other words, we
assume that the dataset comes, jointly, from a multivariate Gaussian distribution.
We are interested in studying the level sets because they can provide information about

the geometrical structure of the conditional Gaussian process. If we infer something about
the geometry of the object from where a random sample was taken, then we could use
this knowledge to provide better estimates for new predictions. If we are using Gaus-
sian processes to maximize a certain function, as in Bayesian optimization, then knowing
something about the geometry can help us to avoid local minima.
The case of the unconditional Gaussian processes was considered by Thoppe and Krish-

nan (2018). In this work, the authors analyze the Betti numbers (rank of the homology
groups, denoted by βk for k ≥ 0) of the level sets for the unconditional case and they
obtain various results about their asymptotic distribution. In their analysis, the authors
propose a theoretical novel approach to estimate the topology of the level sets via Čech
complexes.
For distribution and regression functions, Bobrowski, Mukherjee, and Taylor (2017),

Bobrowski and Mukherjee (2013) provide consistent estimators for the topology of their
level sets that could be employed to study the conditional Gaussian process case. The
theory developed in these works suggest the idea of analyzing the conditional case via an
empirical simulation study.
To the best of our knowledge, there is no other work that aims to study the level sets

of conditional Gaussian processes. Consequently, we propose a method that could provide
some intuition about their corresponding level sets. Given a fixed threshold value L,
this method simulates sample sets at level L, for which we can approximate the number
of connected components and one-dimensional holes. Our proposal is computationally
efficient because it does not require extensive computational resources. Additionally, it
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was developed in a way that could be used in a computer cluster to run multiple simulations
in parallel. This gives us the possibility of creating large sample sets, which could help to
improve the inferences that we can obtain from them.
Using the proposed method, our results show that the first two Betti numbers, which

count the number of connected components and the number of one-dimensional holes,
respectively, distribute as a Poisson distribution whose parameters depend on the selected
threshold value. To test or validate the plausibility that these empirical samples come
from a Poisson distribution, we need a test that does not require independence of the
sample elements because the simulated points that belong to the same level set are not
statistically independent. Therefore, we employed a graphical tool proposed by Nakamura
and Pérez-Abreu (1993).
There are two main reasons why this work is relevant: the first is practical and the sec-

ond is theoretical. The practical reason is linked with its application to machine learning,
in which the use of Gaussian process is common; that is, the uncertainty quantification
that we could get from the study of the level sets of conditional Gaussian process. The
theoretical reason is related to the numerical estimation of the parameters of the Pois-
son distribution that explain the first two Betti numbers β0, β1; as stated earlier, these
parameters depend on the threshold value that is used to calculate the level sets.
More specifically, given a dataset of observations (training data), the question is how

we can use these known data points to make a prediction over new observations if the
geometric relation between the observed points and their output is not trivial.
This is a difficult and open problem in machine learning. In this work, we simplify

this problem to the case where all of the known observed data points are contained in a
fixed smooth boundary, within a given square on the plane, by conditioning the Gaussian
process over this known boundary and then studying their level sets.
Obtaining some ideas or understanding more about the behavior of this particular con-

ditional Gaussian process may give some insights into how these ideas could be generalized
to other situations, such as when the boundary condition has a more complex geometrical
structure. This could lead to more confident predictions, in the regression case, when
something is known about the geometric or topological structure of the data.

This thesis is organized in five chapters. Chapter 1 is a compilation of the main an-
alytical tools that we need, with an emphasis on functional analysis concepts, Gaussian
processes, kernel methods in machine learning, and goodness of fit tests for the Poisson
distribution. This chapter is also intended to introduce the reader to the notation used
and it will provide some examples of the usefulness of the tools that presented here.
Chapter 2 provides an introduction on how to compute the Betti numbers of a given

discrete set of points. Rather than just presenting this in a simplistic algorithmic way, we
rigorously provide the definitions and theorems from algebraic topology needed to define
homology and their Betti numbers. In this chapter, we also propose a computational
method to efficiently calculate the Betti numbers. We do this by modifying the faster
existing library by Bauer (2019) that is used for data analysis exploration in the area of
topological data analysis.
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Chapter 3 presents a detailed explanation of the proposed method to study the level
sets of conditional Gaussian processes. We start with an exposition of how to simulate
a conditional Gaussian process. Then, we review some of the newly developed tools that
we use to approximate the topology of level sets of conditional Gaussian process. More
precisely, to approximate the first two Betti numbers β0, β1 of their level sets.

Chapter 4 includes a compilation of some of the simulations that we have obtained and it
describes the insights that we gather from them. For every level set, we calculated the sam-
ple mean and variance as a first step to test for the possibility that a Poisson distribution
could explain the simulated data. We then use a graphical test to verify the plausibility
that the distribution of the number connected components and one-dimensional holes at
the level sets is Poisson.
Finally, Chapter 5 contains the conclusions of our simulation study and it presents some

new questions that have arisen from this work.
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1 Preliminaries

Introduction

In this chapter, we will briefly introduce the analytic concepts that are needed for this work,
with an emphasis on functional analysis, statistical methods, and the application of kernel
methods in machine learning. In particular, we review their application to the simulation
of Gaussian processes. We begin by introducing the concepts needed to rigorously define
kernel functions. Then, we introduce the tools that will be used in Chapters 3 and 4
to statistically analyze the exceedances, above a fixed threshold value, of the level sets
of conditional Gaussian processes. The concepts and results that are presented here are
arranged in such a way that their combination becomes a natural and intuitive approach
of how to simulate the process in question. Finally, we will also work out some concrete
examples to try to make the concepts as accessible as possible.

1.1 Elements of functional analysis

1.1.1 Basic definitions

First, we will review and establish the notation of some basic definitions from functional
analysis Clapp (2017).

Definition 1.1. A metric spaceM is called complete if every Cauchy sequence of points
in M has a limit that is also in M; in other words, if every Cauchy sequence in M
converges inM.

Definition 1.2. A Banach space is a vector space X over a scalar field K, which is
equipped with a norm ‖ · ‖X and which is complete with respect to the distance function
induced by the norm.

Definition 1.3. (Inner product space) Let H be a vector space over a scalar field K. A
function 〈·, ·〉H : H×H → K is said to be a inner product if, and only if

1. 〈α1f1 + α2f2, g〉H = α1〈f1, g〉H + α2〈f2, g〉H (bi-linearity),

2. 〈f, g〉H = 〈g, f〉H (conjugate symmetry),

3. 〈f, f〉H ≥ 0, and 〈f, f〉H = 0 if and only if f = 0 (positive-definite).

Definition 1.4. A Hilbert space H is a real or complex inner product space that is also a
complete metric space with respect to the distance function induced by the inner product.
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On a vector space X with inner product 〈·, ·〉X : X ×X → K, we can define a norm using
the inner product as follows ‖f‖X :=

√
〈f, f〉X . Using a norm we can define a distance

for any f, g ∈ X as d(f, g) := ‖f − g‖X .

Remark: Unless otherwise stated, when working on an inner space X, if there is no risk
of confusion, then we will indistinguishably use the symbols 〈·, ·〉X and 〈·, ·〉.

Example 1.1. Let µ is a positive measure on A ⊆ Rd, d ≥ 1, then the space

Lp(A;µ) =
{
f : A→ R measurable :

∫
A
|f(x)| dµ <∞

}

is a Banach space with norm: ‖f‖p = (
∫
A |f(x)|p dµ)1/p.

Theorem 1.1. The following properties of the inner product and norm hold:

1. | 〈f, g〉| ≤ ‖f‖ · ‖g‖ (Cauchy-Schwartz inequality).

2. ‖f + g‖2 + ‖f − g‖2 ≤ 2‖f‖2 + 2‖g‖2.

3. 4 〈f, g〉 = ‖f + g‖2 − ‖f − g‖2.

Example 1.2. Let µ be a positive measure of X ⊆ Rd, then the space L2(X,µ) is a
Hilbert space with inner product

〈f, g〉 =
∫
X
f(x)g(x) dµ(x),

for all f, g ∈ L2(X,µ), where L2(X,µ) is the space of equivalence classes of functions that
differ by at most a set of µ-measure zero.

Example 1.3. Let a = (ai)∞i=1, b = (bi)∞i=1, where a, b ∈ H, i ≥ 1, here H is the vector
space of all convergent sequences of real numbers. The following is an inner product on
the space of infinity sequences:

〈a, b〉 =
∞∑
i=1

aibi. (1.1)

We are now ready to define a kernel function, based on lecture notes Gretton (2019)
and Sejdinovic and Gretton (2014).

Definition 1.5. (Kernel) Let X be a non-empty set. A function k : X×X→ R is called a
kernel if there exists a R−Hilbert space H and a function ϕ : X→ H such that ∀x, x′ ∈ X,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H.

Example 1.4. Suppose that X = Rd, and 〈·, ·〉H is the usual Euclidean dot product in
Rd; that is, if x = (x1, x2, . . . , xd), and y = (y1, y2, . . . , yd), the dot product defined as

〈x, y〉 =
d∑
i=1

xi · yi.
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If we take ϕ as the identity operator in Rd, then the function k defined as follows is a
kernel function

k(x, x′) = exp(〈x, y〉),

as we can use the Taylor expansion of the exponential function function and use the fact
that the countable sum of kernels in again a kernel. For a proof for this result, we refer
the reader to Steinwart and Christmann (2008), Lemma 4.8

Definition 1.6. The space lp of p-summable sequences is defined as the set of all real
sequences a = (ai)∞i=1 for which

‖a‖lp :=
( ∞∑
i=1
|ai|p

) 1
p

<∞.

Note that the last norm is the same as the one in example 1.1 when µ is the counting
measure.

Kernels can be defined in terms of sequences in lp, as shown below.

Lemma 1.1. Let X be non-empty set. Suppose that ϕi : X → R, for i ≥ 1, and that
ϕi(x) is a sequence of functions in l2, then

k(x, x′) :=
∞∑
i=1

ϕi(x)ϕi(x′) (1.2)

is a well-defined kernel function on X.

Proof. Lets first see that k is indeed a kernel function. Take as the Hilbert space H the
set of infinite convergent real sequences in l2, define the function ϕ : X→ H as the infinite
sequence ϕ(x) = (ϕi(x))∞i=1. For the inner product, take the one defined on equation (1.1).
By definition we see that k is indeed a kernel function.
Now, using the Cauchy-Schwartz inequality, for any x, x′ ∈ X, we have

|k(x, x′)| =
∣∣∣∣∣
∞∑
i=1

ϕi(x)ϕi(x′)
∣∣∣∣∣ =

∣∣〈ϕ(x), ϕ(x′)〉
∣∣

≤ ‖ϕ(x)‖l2‖ϕ(x′)‖l2 <∞.

So, the kernel in (1.2) is well defined for all x, x′ ∈ X.

Proposition 1.1. (Gaussian kernel) The Gaussian kernel in Rd is defined as

k(x, x′) := exp
(
− 1

2h2 ‖x− x
′‖2
)
, (1.3)

where h is a positive constant known as bandwidth. Here, we are using the standard
Euclidean norm in Rd, ‖x‖ =

√∑d
i=1 x

2
i , for x = (x1, x2, . . . , xd) ∈ Rd.
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Proof. We take as X = Rd, and the Hilbert space H = L2(Rd, γd), the space of square
complex-integrable functions on Rn with respect to the standard Gaussian measure,

L2(Rd, γd) :=
{
f : Rd → C s.t.

∫
Rd
|f(t)|2e−‖t‖2/2 dt <∞

}
.

The inner product on this Hilbert space is given by

〈f, g〉L2(Rn,γn) := 1√
2π

∫
Rd
f(t)g(t)e−‖t‖2/2 dt.

Take the function ϕ : Rd → L2(Rd, γd) as defined by ϕ(x)(t) = ei〈x,t〉/
√
h, where 〈·, ·〉 is

the standard Euclidean inner product in Rd (remember that x ∈ Rd is fixed and the image
of it under ϕ must be a function in L2(Rd, γd)).

It is not hard to see that ϕ is square integrable with respect to the standard Gaussian
measure because the modulus of ϕ is always 1. In fact, this means that ‖ϕ(x)‖L2(Rd,γd) = 1.

Now, we need to prove that ϕ does what it is supposed to do. Let x, x′ ∈ X

〈ϕ(x), ϕ(x′)〉L2(Rd,γd) = 1√
2π

∫
Rd
ei〈x,t〉/

√
hei〈x

′,t〉/
√
he−‖t‖

2/2 dt

= 1√
2π

∫
Rd
e−i〈x,t〉/

√
hei〈x

′,t〉/
√
he−‖t‖

2/2 dt

= 1√
2π

∫
Rd
e
i〈 (x′−x)√

h
,t〉−‖t‖2/2

dt

?= 1√
2π

∫
Rd
e
−‖t−i (x′−x)√

h
‖2/2

e−
‖x′−x‖2

2h dt

= e−
‖x−x′‖2

2h
1√
2π

∫
Rd
e
−‖t−i (x′−x)√

h
‖2/2

dt

= e−
‖x−x′‖2

2h = k(x, x′).

Where in the equality marked with ? we have completed the square

−1
2‖t‖

2 + i

〈
(y − x)√

h
, t

〉
= −1

2

[∥∥∥∥t− i(y − x)√
h

∥∥∥∥2]
− 1

2

[∥∥∥∥(y − x)√
h

∥∥∥∥2]
.

The last integral is hard to see immediately, but one can use a complex-analytic argu-
ment to show that

1√
2π

∫
Rd
e
−‖t−i (x′−x)√

h
‖2/2

dt = 1√
2π

∫
Rd
e−‖t‖

2/2 dt = 1.

1.1.2 Positive definiteness and reproducing kernels

Definition 1.7. (Positive definite functions) A symmetric function k : X × X → C is
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called positive definite if for ∀n ≥ 1, ∀(a1, a2, . . . , an) ∈ Rn, ∀(x1, x2, . . . , xn) ∈ Xn,

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0.

The function k(·, ·) is strictly positive definite if for mutually distinct xi, the equality holds
only when all the ai are zero.

Kernels are useful because they give us a way to construct a covariance matrix for
a given set of points X = {x1, x2, . . . , xn}. We define the Gram matrix point-wise as
K := [k(xi, xj)]i,j . Remember that every covariance matrix must be positive define, which
is why we need to ensure that the kernel functions always outputs matrices of this type.
The next proposition states that every Gram matrix constructed with a kernel function is
always positive definite.

Proposition 1.2. Let H be any Hilbert space, X a non-empty set and ϕ : X→ H. Then,
the function k(x, y) := 〈ϕ(x), ϕ(y)〉H is positive definite.

Proof. Let ai ∈ R, for 1 ≤ i ≤ n. By the definition of a kernel function, and the bilinearity
of the inner product, we have

n∑
i=1

n∑
j=1

aiajk(xi, xj) =
n∑
i=1

n∑
j=1
〈aiϕ(xi), ajϕ(xj)〉H

=
〈 n∑
i=1

aiϕ(xi),
n∑
j=1

ajϕ(xj)
〉
H

=
∥∥∥∥ n∑
i=1

aiϕ(xi)
∥∥∥∥2

H
≥ 0.

Reproducing kernel Hilbert space (RKHS)

Definition 1.8. Let H be a Hilbert space of functions f : X → R defined on a non-empty
set X. For a fixed x ∈ X, an evaluation functional is a linear function Fx : H → R that
evaluates each element of the space at the given point x; that is,

Fx[f ] = f(x).

Definition 1.9. (Reproducing kernel Hilbert space) A Hilbert space H of functions de-
fined on a non-empty set X, f : X → R, is said to be a Reproducing Kernel Hilbert Space
(RKHS) if the evaluation functional Fx is continuous for all x ∈ X.

Note that the last definition does not state anything related to kernels. We will now
define what we meant by a reproducing kernel, and we will describe how it is related to
the previous definition.
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Definition 1.10. (Reproducing kernel) Let H be a Hilbert space of R-valued functions
defined on a non-empty set X. A function k : X ×X → R is called a reproducing kernel
of H if it satisfies

1. ∀x ∈ X, k(·, x) ∈ X,

2. ∀x ∈ X, ∀f ∈ H, 〈f, k(·, x)〉H = f(x). (reproducing property).

In particular, note that for any x, y ∈ X,

k(x, y) = 〈k(·, x), k(·, y)〉H.

1.2 Regression with Gaussian processes

1.2.1 Gaussian processes

Here we define one of the primary tools that we have used in this work, the Gaussian
Processes (GPs) on the real plane, and in both the conditional and unconditional case.
This type of stochastic process is important because it is used extensively in different ar-

eas of statistical machine learning, it conforms one of the principal ingredients in Bayesian
optimization, as shown in Frazier (2018), Frazier and Wang (2015). An application in
finance of GPs can be found here Gonzalvez, Lezmi, Roncalli, and Xu (2019).

Definition 1.11. A random vector U ∈ Rd is called a Gaussian random vector if for every
a ∈ Rd, the linear combination a>U is a (one dimensional) Gaussian random variable.

Let us remember the following Theorem which will be useful to construct Gaussian
processes. Its proof can be found in any book related to mathematical statistics.

Theorem 1.2. A vector U ∈ Rd is a normal random vector if, and only if, one can write
U = m+AZ, for some m ∈ Rd, a k×k matrix A (of constants), and Z = (Z1, Z2, . . . , Zd)>

with Zi ∼ N (0, 1) identical distributed random variables.

Gaussian processes show that we can build remarkably flexible models and track uncer-
tainty, using the Gaussian distribution. Its mathematical definition in the following.

Definition 1.12. A Gaussian process {Xt}t∈T indexed by a set T is a family of (real-
valued) random variables Xt, all defined on the same probability space, such that for
any finite subset F ⊆ T the random vector (Xt)t∈F has a (possibly degenerate) Gaussian
distribution. If these finite-dimensional distributions are all non-degenerate, then the
Gaussian process is said to be non-degenerate.
A Gaussian process whose index set is not R or Z (e.g. a topological manifoldM with

more than one dimension) is usually called a Gaussian random field.

An alternative equivalent definition for a Gaussian process is given in the following.

Definition 1.13. A collection of random variables {Xt}t∈T is a Gaussian processes if, and
only if, every finite linear combination

∑
t∈F αtXt, for some real constants αt, is either

identically zero or its distributed as a (real) Gaussian distribution.
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It is well-known that, by employing the Kolmogorov’s Consistency Theorem, a Gaussian
process is determined by its mean and variance. We can create a Gaussian process over
any space X, given a mean function µ : X → R, and a kernel function k : X ×X → R+,

as follows.

Definition 1.14. A stochastic process a over domain X with mean function µ and co-
variance kernel k is a Gaussian process if, and only if, for any {x1, ..., xn} ∈ X and n ∈ N
the distribution of f := {f(x1), ...., f(xn)}> is

f =


f(x1)

...
f(xn)

 ∼ N


µ(x1)

...
µ(xn)

 ,

k(x1, x1) · · · k(x1, xn)

... . . . ...
k(x1, xn) · · · k(xn, xn)


 .

Given that k is defined to be a kernel function, then by Proposition 1.2 the matrix
[k(xi, kj)]1≤i,j≤n is positive-definite. Consequently, there exists a multivariate normal
distribution with mean µ and covariance matrix K := [k(xi, xj)]1≤i,j≤n.

Now, let us remember the following proposition, which is useful to calculate the param-
eters of a conditional Gaussian processes.

Proposition 1.3. Let the p×1 random vector y ∼ Np(µ,Σ), let A be any p×k constant
matrix, with rank k ≤ p. If b is any k × 1 vector of constants, then

Z = Ay + b ∼ Nk(Aµ+ b, AΣA′).

We now establish some notation that will be used in the rest of this work. From Rencher
and Schaalje (2008) we have the following results. Suppose that the random vector v is
partitioned into two subsets of variables, which we denote by x and y:

v =
(

x
y

)
= (x1,x2, . . . ,xp,y1,y2, . . . ,yq)> ∈ Rp+q.

Thus, there are p + q random variables in v. The mean vector and covariance matrix
for v partitioned as above can be expressed in the following form

µ = E[v] = E
(

x
y

)
=
(
E[x]
E[y]

)
=
(
µx

µy

)
,

Σ = cov(v) = cov
(

x
y

)
=
(

Σxx Σxy

Σyx Σyy

)
,

with Σx,y = cov(x,y) = E[(x− µx)(y− µy)]. Note that the matrix Σ is symmetric as the
matrices Σ>xy = Σyx.

The next theorem is the key result employed to conditioned a Gaussian processes over
some already observed data set.
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Theorem 1.3. If y and x are vectors with jointly multivariate normal distribution with
Σyx 6= 0, then the conditional distribution of y given x, f(y|x), is multivariate normal
with mean vector and covariance matrix

E[y|x] = µy + ΣyxΣ−1
xx(x− µx),

cov[y|x] = Σyy − ΣyxΣ−1
xxΣxy.

Proof. The conditional density of y given x is

f(y|x) = g(x,y)
h(x) ,

where g(y,x) is the joint density of y and x, and h(x) is the marginal density of x.
Consider the function (

w
u

)
= A

[(
y
x

)
−
(
µy

µx

)]
, (1.4)

where

A =
(
A1

A2

)
=
(
Ip −ΣyxΣ−1

xx

0 Iq

)
.

Note that Ip is the p × p identity matrix, similarly Iq is the q × q identity matrix. By
simplifying equation (1.4), we obtain

w = y− [µy + ΣyxΣ−1
xx(x− µx)],

u = x− µx.

Using the multivariate change-of-variable technique, the joint density of (w, u) is

p(w,u) = g(y,x)|A−1| = g(y,x).

Similarly, the marginal density of u is

q(u) = h(x)|I−1
q | = h(x).

By calculating the covariance of u,w, we get

cov(w,u) = A1ΣA2 = Σyx − ΣyxΣ−1
xxΣxx = 0.

Because the vectors are normally distributed, the last equation implies that u and w are
independent. Hence

p(w,u) = r(w)q(u),

where r(w) is the density of w. Given that p(w,u) = g(y,x) and q(u) = h(x), we also
have

g(y,x) = r(w)h(x),
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by (1.4)

r(w) = g(y,x)
h(x) = f(y|x).

Hence, we obtain f(y|x) simply by finding r(w). By Proposition 1.3, we have that r(w)
is the multivariate normal density with mean and covariance matrix

µw = A1

[(
µy

µx

)
−
(
µy

µx

)]
= 0,

Σww = A1ΣA′1

= (Ip,−ΣyxΣ−1
xx)

(
Σyy Σyx

Σxy Σyy

)(
Ip

−ΣyxΣ−1
xx

)
= Σyy − ΣyxΣ−1

xxΣxy.

Thus r(w) = r(y − [µy + ΣyxΣ−1
xx(x − µx)]) is of the form Np(0,Σyy − ΣyxΣ−1

xxΣxy).
Equivalently, y|x ∼ Np(µy + ΣyxΣ−1

xx(x− µx),Σyy − ΣyxΣ−1
xxΣxy)

Corollary 1.6. Suppose that X = (X1, X2) is jointly d−dimensional Gaussian, with
X1 ∈ Rn and X2 ∈ Rm, n < m, and n+m = d. Assume that the distribution of the mean
vector, and covariance matrix are given, respectively, by

µ =
(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then, if Σ22,Σ11 are invertible, the conditional distribution of X1 given X2 is normal
distributed. In fact, X1|X2 ∼ N (µ2|1,Σ2|1), with

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2), Σ1|2 = Σ11 − Σ12Σ−1

22 Σ21. (1.5)

This formula states that the terms µ1|2 and Σ1|2 are a liner combination of the parame-
ters of X1 and X2. Thus, the parameters of the conditional distribution X1|X2 are fairly
easily to calculate on a computer. The only computational bottleneck here is the inversion
of a matrix which has order O(n2), for a n× n matrix.

Example 1.5. SupposeX = (x1, x2, . . . , x41)> are 41 ordered points sampled from the in-
terval [−4, 4]. Using these points, and the quadratic kernel function (1.3), we can construct
the covariance matrix K = (k(xi, xj)) for 1 ≤ i, j ≤ 41. By taking 041 = (0, 0, . . . , 0)> ∈
R41 and K we take five samples with distribution N (041,K). We show these five samples,
with five different colors, in Figure 1.1. Note that we fix the set X for all the samples,
and for each sample set we have a different dataset of the form D = {(xi, yi)}41

i=1, with
xi ∈ [−4, 4], and yi = f(xi) is normally distributed.
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Figure 1.1: Sample points from MV normal distribution.

1.2.2 Gaussian processes for regression

Gaussian processes can be used to model distributions over functions, as shown in Mukher-
jee (2015), Rasmussen and Williams (2005). Therefore, they can used to build regression
models. Placing a multivariate normal distribution as a prior over the observed data will
give a posterior distribution, which can then be used to predict the expected posterior
value of the process.
Consider some dataset (training set) of n ∈ N points D = {(xi, yi)}ni=1 drawn from the

model, where x1, x2, . . . , xn ∈ Rd, for some d ≥ 0, and yi ∈ R, for 1 ≤ i ≤ n. Suppose
that there exists a relation, possibly non-linear, between the observations xi and their
corresponding response variables yi. Suppose that the relationship is approximated by a
real function f with normal noise; in other words

yi = f(xi) + εi, εi
iid∼ N(0, σ2), f ∈ HK .

With HK , a Hilbert space of functions can be defined over a non-empty set K.
Now imagine that we are also given m ∈ N new observations (or test data) T = {x∗i }mi=1

each of which would have a corresponding y∗i .
To do the estimation, we place a prior on the space of functions using a Gaussian process.

f ∼ GPs(µ(·), k(·, ·)),

where k : V × V → R+ is a kernel function, and V a vector space over R.
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By rearranging this data in matrix form, we have

X =


—x1 —

...
—xn—

 , X∗ =


—x∗1 —

...
—x∗m—

 , Y =


y1
...
yn

 , Y∗ =


y∗1
...
y∗m

 ,

ε =


ε
...
εn

 , ε∗ =


ε∗

...
ε∗m

 , f(X) =


f(x1)

...
f(xn)

 , f(X∗) =


f(x∗1)

...
f(x∗m)

 .
Note that, X ∈Mn×d(R), X∗ ∈Mm×d(R), Y ∈Mn×1(R), and Y∗ ∈Mm×1(R). Because

f is a real function, we have (entry-wise) f := f(X) ∈ Mn×1(R), and f∗ := f(X∗) ∈
Mm×1(R).
Our ultimate goal is to specify the predictive distribution on Y∗, which we know is a

multivariate normal
{Y∗ | X∗,X} ∼ N (µ∗,Σ∗).

Note that,[
Y
Y∗

] ∣∣∣X∗,X =
[

f
f∗

]
+
[
ε

ε∗

]
∼ N

(
0,
[
k(X,X) + σ2I k(X,X∗)
k(X∗,X) k(X∗,X∗) + σ2I

])
,

where k(X,X) is the n×n matrix with Kij = k(xi, xj) and k(X∗,X∗) is the m×m matrix
with K∗ij = k(x∗i , x∗j ).

To get a predictive distribution on Y∗ we write the conditional Y∗ | X∗,X. Given this
multivariate normal distribution, we simply condition over all the other variables to get
the mean and covariance for the normal posterior predictive density. Obtaining the mean
and covariance matrix

µ∗ = k(X∗,X)(k(X,X) + σ2I)−1 Y, (1.6)

Σ∗ = k(X∗,X∗) + σ2I− k(X∗,X)(k(X,X) + σ2I)−1k(X,X∗).

For instance, if we want to do inference on just one new observation x∗, then we can
calculate the distribution of f∗ as follows

p(f∗|x∗, Y,X) =
∫
w
p(f∗|x∗, w)p(w|y,X) dw,

w ∼ N(0,Σ).

One estimate for f∗ could be the maximum a posteriori (MAP) estimator.

Remark: Unless otherwise stated, we will assume that σ = 0; that is, we will not consider
noise at this time.

Example 1.6. We calculated the posterior distribution based on eight observations, which
comes from the sine trigonometric function. The results are plotted in Figure 1.2. The
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Figure 1.2: Example of a conditional process

top figure shows the distribution, where the red line is the posterior mean, the light red
area is the 95% prediction interval, the black dots are the observations (X1, Y1). The
prediction interval is computed from the standard deviation σ2|1, which is the square root
of the diagonal of the covariance matrix. The bottom figure shows five realizations (sam-
pled functions) from this distribution. Note that the distribution is quite confident of the
points predicted around the observations (X1, Y1), and that the prediction interval gets
larger the further away it is from these points. Roelants (2019).

Example 1.7. In Figure 1.3 we can see different plots of the same 3-dimensional Gaussian
processes from different angles. Where we sampled uniform points from the squared
[−5, 5]× [−5, 5] to construct the covariance matrix K.

1.3 Exceedances of the Poisson point process

Here we introduce some tools that will allow us study the exceedances of conditional
Gaussian processes, over a given threshold value.

1.3.1 Poisson point process in the plane

A counting process {N(t), t ≥ 0} is said to constitute a two-dimensional non-homogeneous
Poisson process on C ⊆ R2 with rate λ(C) ≥ 0 if:

1. The random variable P(R) counting the number of events in a region R ⊆ C is
Poisson distributed with parameter Λ(R) =

∫
R λ(V )dV

P(P(R) = k) = e−Λ(R) Λ(R)k

k! , k = 0, 1, 2, . . .
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(a) (b)

(c)

Figure 1.3: 3D Gaussian process embedded in R3.

2. The number of events occurring in any finite set of non-overlapping regions are
mutually independent; that is, for disjoint bounded Borel sets R1, R2, . . . , Rn the
random variables P(R1),P(R2), . . . ,P(Rn) are independent.

In case λ(C) = λ, P is called a homogeneous Poisson point process with intensity λ.
Palm theory may be used later for an approximation of the sample obtained from the

level sets Coeurjolly, Møller, and Waagepetersen (2017).

1.3.2 Point approximation approach

If we consider an unknown distribution function F of a random variable X, then we
are interested in estimating the distribution function Fu, which we will define later, of
the variable X above a certain threshold u. The distribution function Fu is called the
conditional excess distribution function and is defined as:

Fu(y) = P (X − u ≤ y |X > u), 0 ≤ y ≤ xF − u,

where X is a random variable, u is a given threshold, y = x− u are the excesses, and xF
is the right endpoint of F .

It is easy to verify that Fu can be written as:

Fu(y) = F (u+ y)− F (u)
1− F (u) .
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Pickands (1971) posed that for a large class of underlying distribution function F the
conditional excess distribution function Fu(y) , for u large, is well approximated by

Fu(y) ≈ F (y; k, σ), as u→∞,

where

F (y; k, σ) =

1−
(
1− ky

σ

) 1
k , k 6= 0, σ > 0,

1− e−x/σ, k = 0, σ > 0.

For 0 ≤ y ≤ xF − u, if k ≤ 0, and 0 ≤ y ≤ σ/k, if k > 0. F (x; k, σ) is the generalized
Pareto distribution. Smith (1989) applied this theory to trend detection for ground-level
ozone levels.

1.4 Goodness of fit test for Poisson distribution

In this section, we present a goodness of fit test that does not require independence among
the sample points, only equal distribution, to test if a sample of random variables comes
from a Poisson distribution. This will be useful for our simulation study because the
samples that we are working with are not necessarily statistically independent.
We will employ a tool suggested by Nakamura and Pérez-Abreu (1993) as a graphical

technique for goodness of fit test for the Poisson distribution.

Proposition 1.4. If X is a Poisson random variable with rate parameter λ ≥ 0, then the
probability generating function (p.g.f) of X is given by

ϕX(t) = e−λ(1−t), ∀t ∈ [−1, 1]. (1.7)

Note that for t ∈ (0, 1), we can define the cumulant function of X by

κ(t) := log(ϕX(t)) = λ(1− t).

Definition 1.15. (Empirical probability generating function). Given a random sample
X1, X2, . . . , Xn, the empirical probability generating function (e.p.g.f.) is defined as

ϕ̂(t) = 1
n

n∑
i=1

tXi , ∀ t ∈ (−1, 1). (1.8)

Observe that if a sample X1, X2, . . . , Xn comes from a Poisson distribution, then the
graph of the log empirical generating function

κ(t) = log(ϕ̂(t)) = log
(

1
n

n∑
i=1

tXi ,

)
, ∀ t ∈ (0, 1), (1.9)

should be similar to a straight line. Although this is not a goodness of fit for a Poisson
distribution of a given parameter λ, it is a graphical test for a Poisson distribution.
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Note that equation (1.8) was defined for all of the values in the interval (−1, 1), whereas
function (1.9) was only defined for points x ∈ (0, 1). This happens because the log function
is only defined for positive numbers (we are working only with real numbers). If we take a
negative value for t, then it could be the case that the sample has more odd numbers than
even numbers on the sample set X1, . . . , Xn. Hence, we would obtain a negative value for
ϕ̂(t), for which we cannot take its logarithm.

15



2 Betti numbers computation

Introduction

This chapter aims to introduce the elements and notation from algebraic topology that
we need for our simulation study. We start by defining the notion of simplicial complexes,
which are the generalizations of graphs in higher dimensions. By using the concept of sim-
plicial complexes, we later define what Betti numbers are and how they can be calculated
using a computer.
The Betti numbers can be interpreted as a topological summary of a certain set. Given

that our objective is to understand the levels set topology of conditional Gaussian fields,
we can use Betti numbers to approximate the true topological structure of such level
sets. Intuitively, the k-th Betti number refers to the number of k-dimensional holes on a
topological surface. This is a fundamental idea that is further developed and employed in
Chapter 3.

2.1 Topological definitions

We start by establishing the notation, based on Adler and Taylor (2003) and Reveles,
Pérez-Abreu, Nakamura, and Biscay (2016).

2.1.1 Simplicial complexes

One of the principal elements in the area of topological data analysis is the notion of
abstract simplicial complexes. To infer topological insights from the data, we use simplicial
complexes to approximate the homology of a data cloud.
A standard k-simplicial complex is a k-dimensional generalization of a graph in higher

dimensions. The mathematical definition follows.

Definition 2.1. A standard k-simplex ∆k is the set in Rk+1 defined as

∆k :=
{

(t0, t1, . . . , tk) ∈ Rk+1 :
k∑
i=0

ti = 1, ti ≥ 0, for all i
}
.

We can also define a simplex for arbitrary points in the plane, as follows:

Definition 2.2. (k-dimensional simplex) Given a set of (k+1) pointsX = {x0, x1, . . . , xk}
in Rd affine independents, the simplex σ = [x0, x1, . . . , xn] generated by X, is the convex
hull of X. The points in X are known as the vertices of σ, and the simplexes generated
by the subsets of X are called the faces of X.
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For a simplex σ generated by X, its dimension is equal to the cardinally of X minus
one; that is, dim(σ) = card(X)− 1. Simplexes of dimensions 0, 1, 2, and 3 are known as
vertices, edges, triangles, and tetrahedrons, respectively.
If we want to employ simplexes to approximate the topology of a dataset, then we need

to use many of them. This is the reason why we need to define a way to differentiate one
from another. Next, we define a structure for a set a simplexes.

Definition 2.3. An abstract simplicial complex K is a set of simplexes such that:

i. Every face of a simplex from K is also in K.
ii. The non-empty intersection of any two simplexes σi, σj ∈ K is a face of both sim-

plexes σi and σj .

We call this an abstract simplicial complex because we are not thinking about its geo-
metrical representation in the Euclidean space but as a whole with the property of being
closed under the operation of taking non-empty subsets.

By the previous definition, we know that all of the different subsets of K are the sim-
plexes of K, and that the dimension of a simplex σ is dim(σ) = card(σ)− 1.
With these two definitions, we can now define the dimension of an abstract simplicial

complex as a collection of simplexes.

Definition 2.4. (Dimension of an abstract simplicial complex) The dimension of an ab-
stract simplicial complex is defined as

dim(K) := max
σ∈K

dim(σ).

Observe that we can select all of the faces of a simplex σ whose faces are of a certain
dimension p, for some fixed number p. These are known as p-faces or p-simplexes of σ. If
σ is a simplex on a simplicial complex K, by definition, then all of the p-faces of σ are also
contained in K. The union of all the p-faces is known as the p-skeleton of K. Formally,
the definition is the following:

Definition 2.5. (Skeleton) Let K be an abstract simplicial complex and a non-negative
p ≤ dim(K). The p-Skeleton of K is defined as

Skp(K) :=
⋃

σ∈Hp

σ,

where Hp := {σ ∈ K : dim(σ) = p}.

Definition 2.6. (Čech complex) Let ρ a metric defined on Rn. For r ≥ 0, let Br(x) =
{y ∈ Rn : ρ(x, y) ≤ r}, the closed ball of radius r with center at x ∈ X. The Čech complex
for a finite set X ⊆ Rn of radius r, is defined as

C(X) =

Q ⊆ X :
⋂
x∈Q

Br(x) 6= ∅

 .
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Figure 2.1: Čech complex to the left-hand side, and Vietoris-Rips complex to the right-hand side
(Chazal et al.).

Computationally speaking, the Čech complex is hard to compute because we need to
check all of the possibles intersections. For each x ∈ X, we have to check if the intersection
of the ball centered at x with the family of balls centered at X \ {x} is not empty.
We can avoid this problem by modifying a bit the last definition. Instead of checking

all of the possible intersections at the same time, we can do it pairwise. These are known
as Vietoris-Rips complexes. The formal definition follows.

Definition 2.7. (Vietoris-Rips Complex) Let X a set of points in the metric space (M,ρ)
and α a non-negative real number. A Vietoris-Rips simplicial complex, denoted by
VR(X,α), is a set of simplexes [x0, x1, . . . , xk] such that ρ(xi, xj) ≤ α, for all values
i, j ∈ {1, 2, . . . , k}.

It follows immediately that both Čech and VR complexes are indeed abstract simplicial
complexes. Nevertheless, if X is a finite subspace of Rd, then the simplicial complex
VR(X,α) does not generally admits a geometric realization on Rn; which means that the
geometrical figure used to represent the object X may not be pictured in Rd, but in a
Euclidean space of dimension D > d.
In Figure 2.1 we can see the Čech and Vietoris-Rips complex that we get using the same

set of points and same radius α > 0.

2.1.2 Chains, boundaries, and cycles

Definition 2.8. (Chain groups) Let K be a simplicial complex. A p-chain p is defined as
a formal sum of p-simplexes; that is, p =

∑
i ciσi, where each σi is a p-simplex, and ci ∈ F,

for a field F.

For computational simplicity, our field of election will always be F = Z/2Z, which is a
field because 2 is a prime number. This means that the constant values are either ci = 1, 0.
We can define the sum of two p-chains as follows

γ = γ1 + γ2 =
∑
i

ciσi +
∑
i

diσi =
∑
i

(ci + dimod 2)σi.

18



Definition 2.9. (p-Chain group Cp) The set of p-chains together with the addition op-
erator defined earlier form the group of p-chains, denoted by (Cp,+), or simply Cp if the
sum operation is understood.

Note that this is a commutative group because the sum operator is also commutative.

Definition 2.10. The boundary of a p-simplex σ = [v0, v1, . . . , vp] is the sum of its (p−1)-
dimensional faces. We denote this operator by ∂p : Cp → Cp−1

∂pσ =
p∑
i=1

[v0, . . . , v̂i, . . . , vp],

where [v0, . . . , v̂i, . . . , vp] denotes the simplex spanned by all vertices but vi.
The boundary of a p-chain c =

∑
i aiσi, for some ai ∈ {0, 1} ∼= Z/2Z, is defined linearly

as the sum of the boundaries of its faces; that is,

∂pc =
∑
i

ai∂pσi.

We have the following convention: let K be a simplicial complex with d = dimK, if
p < 0 or p > d then its chain group Cp is empty.

Lemma 2.1. (Fundamental property) The boundary operator satisfy the following: ∂p∂p+1σ =
0, for every (p+ 1)-simplexes σ = [v0, . . . , vp+1]

Proof. Let σ be any (p+ 1)-simplex σ = [v0, . . . , vp+1]. Note that

∂p∂p+1σ = ∂p

p+1∑
i=1

[v0, . . . , v̂i, . . . , vp+1] =
p+1∑
i=1

∂p[v0, . . . , v̂i, . . . , vp+1]

=
p+1∑
i=1

i−1∑
j=1

[v0, . . . , v̂j , . . . , v̂i, . . . , vp+1] +
p+1∑
i=1

p+1∑
j=i+1

[v0, . . . , v̂i, . . . , v̂j , . . . , vp+1]

= 0.

This is intuitively true because any (p − 1)-face of σ belongs to exactly two p-faces.
Modulo two of the sum cancels itself and becomes zero. Hence, ∂p∂p+1 ≡ 0.

Claim 2.1. The boundary operator ∂p : Cp → Cp−1 is a group homomorphism; that is,
for any p-chains c1, c2 ∈ (Cp,+), we have ∂p(c1 + c2) = ∂p(c1) + ∂p(c2).

Definition 2.11. A p-cycle γ is a p-chain such that ∂γ = 0. The collection of all p-cycles,
denoted by Zp (which happens to be be a subgroup of Cp) is called the p-th cycle group.
A p-boundary is a p-chain γ that is the boundary of a (p + 1)-chain; that is, there exists
γ′ ∈ Cp+1 such that γ = ∂p+1γ

′. The collection of all p-boundaries, denoted by Bp, (which
forms a subgroup of Cp) is called the p-th boundary group.

Remember that the fundamental boundary property states that any p-boundary is a
p-cycle, this implies that Bp ≤ Zp (Bp is a normal subgroup of Zp).
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Lemma 2.2. We have the following facts

1. Bp ⊆ Zp ⊆ Cp.

2. For the boundary operator ∂p : Cp → Cp−1 have have:
Zp = ker(∂p), and Bp−1 = im(∂p).

2.1.3 Homology groups

The dimension of the homology groups summarizes important topological information of
a data cloud, such as the k-th-dimensional holes.

Definition 2.12. The rank of a group G, denoted rank(G) is the smallest cardinality of
a generating set for G, that is

rank(G) = min{|X| : X ⊆ G, 〈X〉 = G}.

If G is a finitely generated group, then the rank of G is a non-negative integer.

Definition 2.13. (Betti numbers) The p-th homology group is Hp := Zp/Bp. Under
Z/2Z-coefficients, Hp is a free commutative group, and we call its rank the p-th Betti
number denoted by, βp = rank(Hp).

We can calculate the Betti numbers as follows

βp := rank(Hp) = rank(Zp)− rank(Bp). (2.1)

Observe that equation (2.1) enables us to calculate Betti numbers on a computer if we are
able to calculate the rank of the groups Zp and Bp.

Remark: In a simplicial complex, we can consider the holes as voids bounded by simplices
of different dimensions. In dimension 0, they are connected components, in dimension 1,
they are loops bounded by edges (1-simplices), in dimension 2, they are holes bounded
by triangles (2-simplices) and in general, in dimension i, they are the holes bounded by
i-simplices. The simplicial homology is the way to find the holes in a simplicial complex.
To understand what simplicial homology is, we need to define the chains, and two special
types of chains, namely cycles and boundaries Aktas, Akbas, and Fatmaoui (2019).

The Betti numbers have been shown to be useful in inferring insights about a manifold
based solely on a random sample, as pictured in Bobrowski et al. (2017), Bobrowski and
Mukherjee (2013), and Bobrowski and Kahle (2018).

As before, given a simplicial complex K, let Cp denote the p-chain group. We denote by
np, zp, and bp the rank of the p-th chain group Cp, cycle group Zp, and boundary group
Bp, respectively. We have the following relations between these rank values.

Proposition 2.1. The following equalities holds:

1. np = zp + bp−1.
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2. βp = zp − bp.

Proof. Remember that for the boundary operator ∂p : Cp → Cp−1, we have that Zp =
ker(∂p), and Bp−1 = im(∂p). By the Rank-Nullity Theorem from linear algebra we have
that

Cp ∼= ker(∂p)⊕ im(∂p) ⇒ Cp ∼= Zp ⊕Bp−1,

which proves item 1. To prove 2, note that it follows from definition of the homology
group.

2.2 Matrix algebraic theory

In this section, we introduce some definitions that allow us to translate the problem of
the calculation of Betti numbers, the rank of the homology groups, to a linear algebra
problem. This is done with the aim to use a machine to do the computations.

2.2.1 Boundary matrix

Definition 2.14. The p-th boundary matrix ∂p = [ai,j ]i,j of a simplicial complex K is
defined point-wise as follows

ai,j =

1, if the i-th (p− 1)-simplex is a face of the j-th p-simplex;

0, otherwise.

In other words, we order the labels of the (p−1)-simplex as rows and those of the p-simplex
as columns. We put a 1 if the i-th (p− 1)-simplex is a face of the j-th p-simplex, and zero
otherwise.

Example 2.1. Suppose that Cnp = {α1, . . . , αnp}, and Cnp−1 = {β1, . . . , βnp−1}; then,
the boundary matrix Ap = (∂p[i, j])i,j has size np × np−1. So, ∂p[i, j] = 1 if and only if βj
is a face of αi, that is βj ∈ ∂p(αi).

Example 2.2. (Betti numbers) We can calculate the Betti numbers of a data cloud using
the boundary matrix, as explained in Edelsbrunner and Harer (2010). In Figure 2.2, we can
observe an example of a simplicial complex. Using the natural orientation, the boundary
matrices are as follows:

∂2 =



DEF

AB 0
BE 0
BC 0
CD 0
DE 1
DF 1
EF 1


, ∂1 =



AB BE BC CD DE DF EF

A 1 0 0 0 0 0 0
B 1 1 1 0 0 0 0
C 0 0 1 1 0 0 0
D 0 0 0 1 1 1 0
E 0 1 0 0 1 0 1
F 0 0 0 0 0 1 1


.
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Figure 2.2: Example of a simplicial complex.

Using these matrices, we can row reduce them and then, using equation (2.1), we obtain
the following values:

β0 = 1, β1 = 1.

Recall that the first two Betti numbers β0, β1 count the amount of connected compo-
nents and one-dimension holes, respectively. Note that in Figure 2.2 we have one connect
component and one hole, which what we got when reducing the boundary matrices.

Remark: The value of the Betti numbers is independent of the selected orientation; that
is, it does not matter which orientation we choose, the Betti numbers are always going to
be the same. We recommend Reveles et al. (2016) and Bobrowski and Kahle (2018) for a
more detailed explanation of this fact.

2.2.2 Matrix reduction

Let K be a simplicial complex. Given a p-chain c =
∑
i aiσi its boundary ∂c can be

computed by matrix multiplication


a1,1 a1,2 . . . a1,np

a2,1 a2,2 . . . a2,np

...
... . . . ...

anp−1,1 anp−1,2 . . . anp−1,np




a1

a2
...
anp

 ,

where the matrix ∂p = [ai,j ]i,j , for 1 ≤ np−1 and 1 ≤ j ≤ np, is the p-th boundary
matrix of the p-chain c. In words, a collection of columns represents a p-chain and the
sum of these columns gives its boundary.
Note that the rows of ∂p form a basis for the (p − 1)-st chain group Cp−1, and the

columns form a basis of the p-st chain chain group Cp. We would like to calculate the
rank of ∂p. From linear algebra, we know that elementary row and columns operations do
not change the rank of a matrix.

We can perform the following matrix operations
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1. By exchanging columns k and l and adding column k to column l, we can express
both by multiplying with a matrix V = [vi,j ]i,j on the right. To exchange two
columns, we have vl,k = vk,l = 1 and vi,i = 1 for all i 6= k, l, and all of the other
entries are zero. To add column k to column l, we have vk,l = 1, vi,i = 1 for all i
and all of the other entries are zero.

2. Similarly, we have two row operations: the first exchanges two rows and the second
adds one row to another. This is represented by a left matrix multiplication by
U = [ui,j ]i,j . To exchange two rows, we again have uk,l = ul,k = 1, ui,i = 1 for all
i 6= j, k and all the other entries zero. To add the k-th to the l-th row, we have
ul,kj = 1, ui,i = 1 for all i, and all of the other entries are zero.

To calculate the Betti number, we must reduce the boundary matrix. To do so, one
can use a variety of matrix reduction algorithms, here we show one of them. First, let us
remember the definition of a reduced matrix.

Definition 2.15. (Matrix reduction) We say that a matrix M is in reduced form if all
of the columns are linear independents. We say that a M is in Smith normal form, for
modulo two arithmetic, if it has the following structure: all initial segments of the diagonal
are 1 and everything else is 0; for instance, it has to look like Np:

Np =



1 0 0 · · · 0
0 1 0 · · · 0

0 0 . . . 0
... 1

...
0

. . .
0 · · · 0


.

To reduce a matrix M , we can follow Algorithm 1. To get the bases of the boundary
and cycle groups, we keep track of the matrix products that represent the row and column
operations. Writing Up−1 and Vp for the left and right products, we get the normal form
as Np = Up−1∂pVp. We start the reduction by initializing the matrix to Np[i, j] = [ai,j ]i,j
for all i and j. By calling the function for x = 1, we get the position of the considered
diagonal element.

Claim 2.2 The procedure of reduction terminates in O(n2
pnp−1) time, and its output

matrixM is in reduced form. Furthermore, the set of non-zero columns inM form a basis
for Bp−1, and the set of columns {βj : colM [j] = 0} form a basis for Zp.

2.3 Use of Ripser to efficiently calculate the Betti numbers

In the summer of 2020, Ripser Bauer (2019) is the fastest library that computes topological
barcodes. Ripser was written in the C/C++ programming language.

23



Algorithm 1: Matrix reduction algorithm.
Result: Reduce(x)
if there is k ≥ x, l ≥ x with Np[k, l] = 1 then

exchange rows x and k; exchange columns x and l;
for i = x+ 1 to np−1 do

if Np[i, x] = 1 then
add row x to row i

end
end
for j = x+ 1 to np do

if Np[x, j] = 1 then
add column x to column j

end
end
Reduce(x+ 1)

end

A barcode provides a way to visualize the topological features of a given data cloud for
different r values. Because we can calculate the Vietoris-Rips simplicial complex of any
dataset for different radius r, it is not clear which one should be used or which one will
help us extract its true topological structure. One option is to calculate these complexes
for all possible radius values. Then, we can plot them and see how the inherent topological
features persist as we change the radius.

Example 2.3. Generate n points on the circumference S1. Assume that this sample of
points is noisy; that is, there is some of error in the exact location of the points. Given this
noisy data cloud, we can to infer from where these points where sampled. In Figure 2.3,
we have the output given by the Ripser algorithm. We observe that only one of the bars
persists (for finite radius values), which suggests that this noisy data cloud comes from a
topological space with one connected component. Of course if we let the radius tend to
infinity we will always end up with one connected component, but this is not providing
any information about the topology of the data set. We want to to explore all the possible
radius from 0 < r < max(dist(Xi, Xj)), where the X ′is are the observed data points.

Proposed algorithm to compute Betti numbers

The Ripser library does not directly give the Betti numbers. Therefore, we have created
a sub-routine to extract them from a given data cloud with a fixed radius value r > 0.
The Ripser algorithm gives the birth and death values of a dataset at different radius.

We can use this information to calculate the Betti numbers for a particular fixed radius
value r > 0. First, we count the number of births and deaths that we have until a distance
d = 2r. The difference between these two values is the number of components that have
died within the interval [0, 2r] minus one. Algorithm 2 shows the pseudo-code for this
sub-routine.
With this new sub-routine, we can calculate the Betti curves, which are plots that

visually provide a representation of the changes that βk experience as we change the
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Figure 2.3: Example of a barcode. (Bauer (2019))

Algorithm 2: Betti number calculation.
Result: Betti number: radius r
Calculate n1 ← #{Births < 2r}, and n2 ← #{Deaths < 2r}
return n− n′ + 1.

radius.

Example 2.4. We have generated a set of uniform points within the unit square. In
Figure 2.4, we show the the Betti curves of its first two Betti numbers; that is, we have
calculated the Betti number of the same dataset using different radius. We observe that
the number of connected components converge to one as we increase the radius. For the
number of holes, we observe a maximum at about 0.025.

Figure 2.4: Betti curves of uniform points in the unit square.

25



3 Topology of the level sets

Introduction

In this chapter, we propose a computational method to analyze the level sets of condi-
tional Gaussian processes via simulations. This method combines a variety of tools from
statistics, algebraic topology, and computational algorithms to try to understand the sta-
tistical distribution of the first two Betti numbers. We start by providing an algorithm
that simulates conditional Gaussian processes and we will then analyze an approximation
to its level sets. We are not aware of any other work that aims to study the level sets of
conditional Gaussian processes. Therefore, a computational study will be useful to obtain
intuition about the statistical distribution of the number of connected components and
the numbers of holes in the level sets. In Chapter 4, we present a simulation study of a
particular conditional Gaussian process that employs this algorithm.
Recently, Thoppe and Krishnan (2018) studied the topology of the level sets of non-

conditional Gaussian fields using the novel approach of estimating their topology via Čech
complexes. Consequently, we employ a similar strategy to approximate the topology of
the level sets of a conditional Gaussian field through the use of Vietoris-Rips complexes.
We have decided to use these complexes instead of the Čech complexes for computational
efficiency given that we aim to calculate them on a computer.

3.1 Study of the supra-level sets

In this section, we present the methodology that we used to simulated a conditional
Gaussian process and to approximate its level sets topology. We must keep in mind that
this procedure must be computationally feasible. An advantage of our method is that it
can be implemented on a computer cluster, which enables us to use parallel computing.
The understanding of the level sets of a conditional Gaussian process is relevant because

they can be used to measure or quantify the uncertainty of the predictions given by the
model, which is important if the aim is to predict based on previous observations.

3.1.1 Proposed algorithm

To study the behavior of the (supra-)level sets of a conditional Gaussian process, we will
use the following algorithm, referring to Figure 3.1.

1. Sample n points X = {x1, x2, . . . , xn} uniformly on the square [−k, k]× [−k, k], for
some k > 0 natural number.

2. Sample n′ points uniformly that belongs to a known boundary B.
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(a) Square Boundary. (b) Circular Boundary

Figure 3.1: Two different boundary conditions

3. Calculate the covariance matrix K using the points in X and the boundary B with
a kernel function K.

4. Let Y be the response vector for the observations in the vector X conditioned over
B, f(B). We know, for our normality prior assumption, that {Y |B, f(B),X} ∼
N (µ′,Σ′). Where µ′,Σ′ are the conditional vector mean and covariance matrix, re-
spectively, given by equations (1.6).

5. Generate a posterior Gaussian process with parameters µ′,Σ′. Note that this new
process will be conditioned on the values in the boundary B , f(B) (blue points in
Figure 3.1), and X (black points in Figure 3.1).

6. Study the level sets of this newly generated conditional Gaussian process. For this
new process, fix a threshold value L ∈ R and approximate the level set topology
of the points whose response value is greater or equal than L. That is, we want to
study the topology of the set

DL := {x ∈ [−k, k]2 : f(x) ≥ L},

where f(x) is the density of our conditional Gaussian process.

3.1.2 Construction of a conditional Gaussian process

To simulate an unconditional Gaussian process, we employ the (fixed continuous) radial
basis function kernel to construct the covariance matrix:

K(x, x′) = exp
(
−‖x− x

′‖2

2h2

)
, (3.1)

with bandwidth value h2 > 0, which is a fixed positive real number.
Remember that we sampled n points from the square, see Figure 3.1(a); that is, X =
{x1, x2, . . . , xn} ∈ [−k, k]×[−k, k], with xi a 2-dimensional vector, and k a natural number.
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To construct the covariance matrix, we use the kernel function (3.1) as follows

µ =


0
...
0


n×1

, K =


K(x1, x1) · · · K(x1, xn)

... . . . ...
K(x1, xn) · · · K(xn, xn)

 .

Here, we have fixed value of h = median(dist(X)), the median of the distances between
the uniform points in the square. We take this value for the bandwidth heuristically.
As a default in Machine Learning, when using Gaussian process for regression with the
Gaussian kernel, it is common to use the median of observation distances as the bandwidth
choose. This is a way how to normalize the spread of the data points.

Now, given that this kernel is continuous, the conditional Gaussian process is also con-
tinuous. Therefore, we fix the response value of the boundary points to be zero; that
is, f(B) = 0. For continuity, the process {Y |B, f(B),X} is going to be zero near the
boundary.

In this work, we take as boundary B the circle centered at zero with radius R − ε, for
some given 0 < ε < R. Another possible boundary is the square with end points A,B,C,
and D, which is defined as (see Figure 1.3(b))

A = (−R+ ε, R− ε), B = (R,R), C = (R− ε,−R+ ε), D = (−R,R).

We work with a circular boundary because of the mathematical facility and the bet-
ter behavior of the simulations1. Then, sample n′ points uniformly distributed on the
boundary B := {x ∈ [−k, k]2 : x2 = (R− ε)2} (blue points in Figure 3.1). The boundary
points are going to be our known points, whose response vector is f(B) = 0n×1. Note
that fixing the response vector to be zero is not a wild assumption. We simply require
that f(B) to be known. Then, we can do a re-scaling of the dataset by subtracting this
vector. Geometrically, this is a translation of the data points on the ambient space.
We want to conditioned a Gaussian process over the given boundary points B and

their corresponding response variable f(B). In other words, we want the distribution of
{Y |B, f(B),X}, where Y is the response vector of X; see Figure 3.3.

As we saw in Chapter 1, we know that {Y |B, f(B),X} ∼ N (µ′,Σ′), and then we can
sample from this new conditioned process. We wish to study the level sets of this new
process.

3.1.3 Level sets approximation

By making use of the radial basis function kernel (3.1), and the procedure described
earlier, we can generate a conditional Gaussian process. To study the behavior of its level
sets, we fix different threshold values L, and the same radius r = 0.4 for the Vietoris-
Rips complexes. We calculate the Betti numbers of the points whose response variable
surpasses the threshold value L. Figure 3.2 shows an example of what this looks like.

1We have tried both boundary conditions.
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Figure 3.2: VR complex approximation of a level set.

Given a threshold value L ∈ R (fixed), we follow the next procedure to simulate the
topology of the level sets of the conditional Gaussian process.

1. Among all the points in X, select only those points X′ ⊆ X whose response or height
value are greater or equal than the given threshold value L.

2. Construct a Vietoris-Rips (VR) complex using the points in X′. In other words,
given a fixed value r ≥ 0, the VR complex is given by

VR(X′, r) = {σ ⊂ X′ : diam{σ} ≤ 2r},

where
diam(σ) = sup

xi,xj∈σ
{d(xi, xj)},

for some arbitrary distance d : R2 ×R2 → R+. In our case, we will use the standard
Euclidean distance d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2, for 2-dimensional real vectors

x = (x1, x2), y = (y1, y2), and xi, yi ∈ R.

3. Find the first two Betti numbers of X′ using the Ripser algorithm.

To calculate the Betti numbers of a simplicial complex, we have a variety of computa-
tional algorithms that were developed in the area of topological data analysis via matrix
reductions. Note that our procedure turns the problem of studying the level sets of Gaus-
sian process conditioned over a fixed boundary to a linear algebra problem. This new
problem is one that is computationally realizable on a computer, which was our goal.

3.2 Known tools

In this section, we present some of the recently discovered tools that we use in this simu-
lation study. These tools are robust estimators of the Betti numbers of a given data cloud
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Figure 3.3: Discretization example of a conditional GP.

embedded in a finite-dimensional space.

3.2.1 Naive estimator

Given a function f : Rd → R, the objects that we analyze here are the level sets of f ,

DL := {x ∈ Rd : f(x) ≥ L}. (3.2)

A common way to estimate the homology of an unknown space S from a random sample
X ⊆ S is to compute the homology of a union of closed balls around the sample points

U(X , r) :=
⋃
x∈X

Br(x),

for some fixed r ∈ R+. Where Br(x) denotes the closed d-dimensional ball with radius r
and centered at the point x. This estimator is known as the naive estimator. A similar
idea can be employed to estimate DL. This is summarized in the following procedure:

1. Use the entire data to construct an estimator f̂ .

2. Using this estimator f̂ , define:

XL := {Xi : f̂(Xi) ≥ L},

We can use kernel estimators to get a f̂ in both the regression and density estimation
case.

3. Consider the set U(XL, r) as an estimate of DL. So we could use H∗(U(XL, r)) as
an estimator for H∗(DL).

The drawback of this estimator is that it is very sensitive to small changes in X . Note
that because homology is a discrete descriptor, even tiny errors in the filtering step can
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introduce large errors in the homology estimates. For example, even a single point incor-
rectly included in the level set assignment can form an extra connected component, and
increase the zeroth Betti number by one.

3.2.2 Robust homology estimator

In Bobrowski et al. (2017), the authors provided a consistent method for recovering the
homology of the level sets DL of functions f : Rd → R, where f is either a probability
density function or a regression function. They suggest a robust homology estimator for
the level sets of both density and regression functions that overcome the drawbacks of the
naive estimator. Showing that instead of using DL as an estimate, one should consider the
inclusion map between the nested pairs DL+ε ⊆ DL−ε (for a properly chosen ε > 0). The
key object of interest is then the following induced map between the homology groups of
the two level sets:

ı∗ : H∗(DL+ε)→ H∗(DL−ε),

where * is a standard notation for an arbitrary degree.

Now, denote the Vietoris-Rips complex constructed from the filtered sample as the set
RL(n, r) := V R(XL

n , r) and define the following inclusion map for any ε ∈ (0, L/2)

ı : RL+ε(n, r) ↪→ RL−ε(n, r).

This inclusion induces a map in homology

ı∗ : H∗
(
RL+ε(n, r)

)
→ H∗

(
RL−ε(n, r)

)
,

and we denote by
ĤR
∗ (L, ε;n) := im(ı∗).

Note that the Nerve lemma Munkres (2000) applies only to the Čech complex and not
the Vietoris-Rips complex. Nevertheless, the following theorem states that we can also
compute the homology of DL using the Vietoris-Rips complex. Providing a consistent
estimator for H∗(DL) that uses the Vietoris-Rips complex is important because of its
computational efficiency.

Theorem 3.1, 3.2, and 3.3 are very important because they provide the theoretical basis
for our simulation study. We refer the reader to the papers where they were originally
stated for their respective proofs. There is a jump in complexity between them and the
naive estimator. Before we state them, we need to introduce another topological definition.

Definition 4.1. Nerve Let X be a topological space covered by a collection of subsets
U = {U1, . . . , Um}, that is X =

m⋃
i=1

Ui. The simplicial complex

KU := {(i1, . . . , ik) ⊆ [m] : Ui1 ∩ . . . ∩ Uik 6= ∅},

is called the never of U . Here, we are the notation [m] := {1, 2, . . . ,m}.
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The next theorem presents a robust alternative to the Naive estimator. This gain in
robusticity does not comes for free, more advanced topological tools are needed to prove
it. We refer the reader to the original research articles for a more detail explanation.

Theorem 3.1. (4.3 in Bobrowski et al. (2017)) Let L > 0 and ε ∈ (0, L/2) be such that
the function f(x) has no critical values in the range [L−2ε, L+2ε]. If r → 0 and nrd →∞,
then for n large enough we have

P(ĤR
∗ (L, ε;n) ∼= H∗(DL)) ≥ 1− 6ne−C

∗
ε/2nr

d

.

In particular, if nrd ≥ D log(n), with D > (C∗ε/2)−1, then

lim
n→∞

P(ĤR
∗ (L, ε;n) ∼= H∗(DL)) = 1.

Remark: On our simulations we approximate the topology of the set DL directly via VR
complexes, NOT using im(ı∗). As im(ı∗) ⊆ DL−ε, we can take ε = 10−100 and work with
the set DL itself as it is.

One of the main tools used to prove Theorems 3.2 and 3.3 is the Nerve Theorem, which
state the following.

Proposition 3.1. (Nerve Theorem of P. S. Alexandrov) Let U be a covering of X and
KU its nerve. Suppose that all sets Ui are open subsets of a paracompact space. If the
covering U is contractible, then KU is homotopy equivalent to X.

For the rest of this chapter, we assume thatM⊆ Rd is a closed, smooth, compact and
without boundary m-dimensional manifold, with m < d.
The next results, which we state without proves, are valid for Čech complexes.

Theorem 3.2. (4.1 in Bobrowski and Mukherjee (2013)) If nrmn → 0, then for all values
1 ≤ k ≤ m− 1,

lim
n→∞

E(βk,n)
nk+2r

m(k+1)
n

= Var(βk,n)
nk+2r

m(k+1)
n

= µbk,

and
lim
n→∞

E(β0,n)
n

= 1.

Where

µbk = 1
(k + 2)!

∫
M
fk+2(x)dx

∫
(Rm)k+1

hb1(0,y)dy.

The function hbε is an indicator function on subsets Y of size k + 2, testing that a subset
forms a non-trivial k-cycle; that is,

hbε(Y) := 1{βk(U(Y, ε)) = 1}. (3.3)
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Theorem 3.3. (4.2 in Bobrowski and Mukherjee (2013)) Let nrmn → 0, and 1 ≤ k ≤ m,

1. If limn→∞ n
k+1rkn = 0, then

βk,n
L2
−→ 0.

If, in addition,
∑∞
n=1 n

k+1rmkn <∞, then

βk,n
a.s.−−→ 0.

2. If limn→∞ n
k+2r

m(k+1)
n = α ∈ (0,∞), then

βk,n
L−→ Poisson(αµbk).

3. If limn→∞ n
k+2r

m(k+1)
n =∞, then

βk,n − E(βk,n)
(nk+1rmkn )1/2

L−→ N (0, µbk).

On the articles Bobrowski et al. (2017), Bobrowski and Mukherjee (2013) the authors
proved the theorems here presented using Čech complexes. We want to test if we can
use the fact that V R(X, r) ⊆ C(X,

√
2r) ⊆ V R(X,

√
2r) to approximate those results

employing Vietoris-Rips complexes instead, which are easier to calculate on a computer.
We show the results of the approximation at the end of the next chapter.
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4 Empirical study of level sets

Introduction

In this chapter, we report the results of our analysis of the statistical distribution of the
first two Betti numbers β0, β1 of the level sets of a particular conditional Gaussian process,
via an empirical study. The method that we used for this analysis is the one that was
described in Chapter 3. Using our method, we have observed that the distribution of β0

and β1 is similar to a Poisson distribution, whose parameters depend on the threshold
value considered. We tested this asseveration using the graphical goodness of fit test that
was presented in Chapter 1. We also present some results about an asymptotic exploration
of β0, and β1. We also employ the outcomes obtained by our method to approximate to the
theoretical results presented in Bobrowski et al. (2017), whose conclusions were obtained
for unconditional regression and density functions.

4.1 Connected components

4.1.1 Method description

Definition (Discretization of the plane). We define Dn,k as the collection of n uni-
form random points in the square [−k, k]× [−k, k], for n ∈ N, and k some natural number.
We take k to be natural to have a square of odd length, as the total amount of integer
points from k to −k is 2k + 1.

To analyze the distribution of β0, β1 of the conditional Gaussian process of interest, we
follow the next procedure:

1. Fix a threshold value L ∈ R. Then, proceed to calculate β0, the number of connected
components, of the level set

DL := {x ∈ Dn,k : f(x) ≥ L},

where f(·) is the density of our conditional multivariate normal distribution.

2. Generate m simulations of DL and calculate for each of them the number of con-
nected components β0; call SLk the k−th simulation generated by our method with
threshold value L. We write Sk when there is no risk of confusion.

3. For each threshold value L, let XL
k = β0(SLk ); that is, XL

k is the number of connected
components in the k − th simulation, among the m simulations of DL, for every
1 ≤ k ≤ m.
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4. If the dataset B0 := {XL
1 , X

L
2 , . . . , X

L
m} comes from a Poisson distribution distribu-

tion with parameter µ, then we can approximate it using the maximum likelihood
estimator (MLE) of the sample: µ̂ = 1

m

∑m
i=1X

L
i .

One particular characteristic of a Poisson distributed random variable is that its theoret-
ical mean and variance coincide. The first test to check if a dataset comes from a Poisson
distribution is to examine if its sample mean and variance are numerically similar. Tables
4.1, 4.2, and 4.3 contain a collection of sample mean and variance for different threshold
values. For every threshold value L, we generate m ∈ N independent simulations of a
conditional Gaussian process.

After observing the geometrical structure of our simulations, we have decided to explore
three different cases individually, which we call: Above, Below, and Double. Whose
definitions follow, for some fixed real value L ≥ 0:

1. Above: The threshold value is a positive number,

{x ∈ Dn,k : f(x) ≥ L}.

2. Below: The threshold value is a negative number,

{x ∈ Dn,k : f(x) ≤ −L}.

3. Double: We take, at the same time, both positive and negative threshold values.
This means we are taking the union of the Above and Below sets; that is,

{x ∈ Dn,k : f(x) ≥ L}
⋃
{x ∈ Dn,k : f(x) ≤ −L}.

4.1.2 Simulation results

Tables

In the following tables, we have included the variable: Cnts, which represents the number
of simulations, among the m that we have done in total, whose height surpasses the fixed
threshold value L. For those simulations that did not surpass the threshold value L, we
agree that β0 = β1 = 0 because we did not see any point above the given threshold value.
Individually for each threshold value L—say for example L = 0.6—, we generate m

simulations of the set DL. For each of these m simulations, we calculate the number of
connected components on the set DL;, obtaining the sample B0 = {XL

1 , X
L
2 , . . . , X

L
m},

with XL
i the random variable that counts the number of connected components of the

i−th simulation of the set DL, for 1 ≤ i ≤ m. We denote by µ̂, and σ̂2 the empirical mean
and variance, respectively, of the sample set B0. For all of the simulations in this chapter,
we take the values of m = 1000, and k = 5.

35



β0: Above. n = 500
L µ̂ σ̂2 Cnts

0.60 0.24 0.35 183
0.62 0.21 0.27 169
0.63 0.16 0.23 124
0.64 0.15 0.18 128
0.66 0.11 0.15 91
0.68 0.08 0.09 72
0.70 0.06 0.08 55
0.72 0.06 0.07 51

Table 4.1: Positive threshold value.

β0: Below. n = 500
−L µ̂ σ̂2 Cnts
0.60 0.245 0.319 198
0.62 0.223 0.324 172
0.63 0.173 0.267 133
0.64 0.188 0.319 139
0.66 0.115 0.169 92
0.68 0.087 0.115 73
0.70 0.062 0.082 53
0.72 0.052 0.063 46

Table 4.2: Negative threshold value.

β0: Double. n = 500
L µ̂ σ̂2 Cnts

0.60 0.555 0.848 376
0.62 0.409 0.568 297
0.63 0.381 0.590 264
0.64 0.319 0.498 236
0.66 0.266 0.414 193
0.68 0.186 0.277 150
0.70 0.151 0.188 127
0.72 0.104 0.135 88

Table 4.3: Double threshold value.

β0: Above. n = 1, 000
L µ̂ σ̂2 Cnts

0.60 0.341 0.457 257
0.62 0.259 0.398 188
0.63 0.238 0.334 185
0.64 0.201 0.251 167
0.66 0.170 0.203 142
0.68 0.134 0.184 110
0.70 0.105 0.152 84
0.72 0.102 0.139 84

Table 4.4: Positive threshold value.

β0: Below. n = 1, 000
−L µ̂ σ̂2 Cnts
0.60 0.299 0.353 242
0.62 0.248 0.262 214
0.63 0.210 0.264 171
0.64 0.206 0.283 164
0.66 0.162 0.199 135
0.68 0.131 0.166 111
0.70 0.140 0.208 110
0.72 0.068 0.079 61

Table 4.5: Negative threshold value.

β0: Double. n = 1, 000
L µ̂ σ̂2 Cnts

0.60 0.637 0.876 427
0.62 0.538 0.749 380
0.63 0.458 0.618 331
0.64 0.430 0.583 314
0.66 0.343 0.457 255
0.68 0.242 0.323 190
0.70 0.164 0.195 139
0.72 0.158 0.221 126

Table 4.6: Double threshold value.

More data points

We want to consistently simulate n data points inside the square [−5, 5]2, and n′ of them
on the boundary B. In addition, we want to maintain the same ratio of points in the
square and the boundary as the values of n, and n′ are increased. To do this, we follow
the next rule for the number of points:

n := is the number of points inside the square[−5, 5]2;

n′ := 0.8× n be the number of points sampled from the boundary B;

r := 0.4 is the constant radius value for all the Vietoris-Rips simplicial complexes.
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β0: Above. n = 1, 500
L µ̂ σ̂2 Cnts

0.60 0.346 0.444 262
0.62 0.313 0.389 241
0.63 0.238 0.297 191
0.64 0.230 0.281 189
0.66 0.180 0.243 141
0.68 0.148 0.182 123
0.70 0.116 0.132 103
0.72 0.070 0.080 62

Table 4.7: Positive threshold value.

β0: Above. n = 2, 000
L µ̂ σ̂2 Cnts

0.60 0.410 0.558 306
0.62 0.293 0.361 229
0.63 0.281 0.374 212
0.64 0.246 0.283 203
0.66 0.180 0.203 153
0.68 0.141 0.185 117
0.70 0.139 0.171 118
0.72 0.090 0.108 81

Table 4.8: Positive threshold value.

For the values of n = 500, n′ = 400, and r = 0.4, we show in Tables 4.1, 4.2, and 4.3
the sample mean and variance for different threshold values.
Similarly, we have in Tables 4.4, 4.5, and 4.6 the respective sample mean and variance

for n = 1000, n′ = 800, and r = 0.4, for different threshold values.
In Tables 4.7, and 4.8 we show sample mean and variance for n = 1500, n′ = 1200, and

n = 2000, n′ = 1600 points, respectively.

Remark 1: For all of the n uniformly sampled points inside the square [−5, 5]2, we have
generated m = 1, 000 simulations for every set DL. The variable Cnts counts the number
of simulations, among the m = 1, 000 done in total, with at least one point whose height
surpasses the threshold value L.

Remark 2: Note that Theorems 3.2 and 3.3 are not directly applicable in this case. We
are working in a completely different regime. Our goal is to find a regime that provides
similar results to the ones in those theorems; for a fixed finite squared, and a fixed radius
for the complexes.

Empirical graphical tool

In Section 1.4, we presented a test for a Poisson distribution that does not require indepen-
dence among the observations, only equal distribution. Points that come from the same
level set are not independents, but those from different simulations are independents. The
main reason why we have decided to use this Poisson goodness of fit test is that it allows
us to quickly check visually a Poisson behavior.

In Figures 4.1, 4.2, and 4.3 we show a set of such plots. We can see that they all suggest
that we are in the presence of a straight line, which supports our believe that the counting
sets of connected components may come from a Poisson distribution. Figures 4.1, 4.2, and
4.3 were created by sampling a number of n = 1000 points inside the square and n′ = 800
on a circular boundary.

4.1.3 Conclusions

Observation 1: For the case n = 500, we see that sample mean and variance are fairly
similar. A Poisson behavior is plausible. Note that the parameter (remember that for a
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Figure 4.1: β0 for the case: Above.

Figure 4.2: β0 for the case: Below.

Poisson distribution an estimator for this value in the sample mean) is different for each
threshold value, which suggests that the process is not homogeneous.

Observation 2: By increasing the number of points proportionally for n = 1000, some-
thing similar happens as in the last case. Note that the variance is slightly higher in some
cases, see the remark below for a possible interpretation of this. We can proceed and test
if it is plausible that these points come from a Poisson distribution.
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Figure 4.3: β0 for the case: Double.

Observation 3: For n = 1500, 2000, we again see that mean and variance are fairly
similar in both tables. Note that for the cases where there is a difference, the variance
is always the one that is slightly greater than the mean. This could be caused by the
Binomial approximation to the Poisson distribution (see the following remark).

Remark: We can approximate a random variable with Poisson distribution by taking the
limit on the size number of a Binomial distributed random variable. For the last one, the
theoretical variance is greater than the mean. Note also that for the Binomial distribution,
the graphs of the empirical probability generating function are concave upwards.

4.2 One-dimensional holes

4.2.1 Method description

Similarly, using the 4-steps method that we introduced for the number of connected com-
ponents, defined as Y L

k = β1(SLk ), where SLk is the k−th simulations of the set DL for the
conditional Gaussian process of interest. In other words, Y L

k is the random variable that
counts the number of one-dimensional holes of the k−th simulation of the set DL, for a
fixed given threshold value L, with 1 ≤ k ≤ m.

Let B1 be the collection of the number of holes in every simulation; that is, B1 :=
{Y L

1 , Y
L

2 , . . . , Y
L
m}. If this set comes from a Poisson distribution with parameter µ, then

we know that the MLE is µ̂ = 1
m

∑m
i=1 Y

L
i . As shown in the last section for the number of

connected component, in Tables 4.9, 4.10, and 4.11 we show a collection of sample variances
and means for different threshold values. For every threshold value L, we generate m
(independent) simulations of a conditional Gaussian process.
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Tables 4.9, 4.10, and 4.11 show sample mean and variance for our β1’s for the case when
the number of points inside the square is n = 500. We see that µ̂ and σ̂2 are numerically
similar, as we saw previously for β0. Note that a zero value for both mean and variance
implies that we have not seen holes in all the simulations above the given (and fixed)
threshold value L.

Figures 4.4, 4.5, and 4.6 show the empirical generating function for some of our threshold
values when n = 1000. Note that most of the plots suggest that we are in the presence of
a straight line. This means that a Poisson distribution behavior is reasonable for our data.
A horizontal line means that the value for mean and variance are both zero, which tells us
that we have not seen any holes in any of the simulations above that given threshold value.
For consistency, we will present the empirical probability generating functions (e.p.g.f)
with the same threshold values for both, β0 and β1, including those non-informative ones
with horizontal lines.

4.2.2 Simulation results

Tables

In this section, we present the corresponding tables for β1 and the number of holes.

In Tables 4.9, 4.10, and 4.11 we show the sample mean and variance for the number of
holes. Observe that mean and variance are both zero for some of the threshold values,
which implies that we have not observed any one-dimensional holes for those respective
threshold values.

Tables 4.12, 4.13, and 4.14 contain the information for the case where n = 1, 000.

Tables 4.15, and 4.16 show, for the Above case, the sample mean and variance for the case
where n = 1, 500, and n = 2, 000, respectively.

Remark: For all of the n uniformly sampled points inside the square [−5, 5]2, we have
generated m = 1, 000 simulations for every set DL. The variable Cnts counts the number
of simulations, among the m = 1, 000 done in total, with at least one point whose height
surpasses the threshold value L.

Empirical graphical tool

The following graphs, Figures 4.4, 4.5, and 4.6 were created by sampling a number of
n = 1000 uniform points inside the [−5, 5]2 square.

4.2.3 Conclusions

Observation 4: For β1, the statistical distribution is similar as for β0 when we increase
the number of points. Therefore, a Poisson behaviour may be plausible.

Observation 5: Sample and mean variance are very similar in both cases, n = 1500, 2000.
We can proceed and test if these points come form a Poisson distribution.
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β1: Above. n = 500
L µ̂ σ̂2 Cnts

0.60 0.005 0.011 183
0.62 0.001 0.001 169
0.63 0.003 0.003 124
0.64 0.002 0.002 128
0.66 0.003 0.003 91
0.68 0.000 0.000 72
0.70 0.000 0.000 55
0.72 0.000 0.000 51

Table 4.9: Positive threshold value

β1: Below. n = 500
−L µ̂ σ̂2 Cnts
0.60 0.005 0.007 198
0.62 0.001 0.001 172
0.63 0.002 0.002 133
0.64 0.004 0.006 139
0.66 0.004 0.010 92
0.68 0.001 0.001 73
0.70 0.000 0.000 53
0.72 0.000 0.000 46

Table 4.10: Negative threshold value

β1: Double. n = 500
L µ̂ σ̂2 Cnts

0.60 0.008 0.008 376
0.62 0.011 0.024 297
0.63 0.002 0.002 264
0.64 0.001 0.001 236
0.66 0.003 0.005 193
0.68 0.000 0.000 150
0.70 0.000 0.000 127
0.72 0.000 0.000 88

Table 4.11: Double threshold value

β1: Above. n = 1, 000
L µ̂ σ̂2 Cnts

0.60 0.004 0.009 257
0.62 0.003 0.004 188
0.63 0.003 0.004 185
0.64 0.003 0.003 167
0.66 0.002 0.002 142
0.68 0.001 0.001 110
0.70 0.000 0.000 84
0.72 0.001 0.001 84

Table 4.12: Positive threshold value.

β1: Below. n = 1, 000
−L µ̂ σ̂2 Cnts
0.60 0.003 0.003 242
0.62 0.003 0.003 214
0.63 0.003 0.003 171
0.64 0.002 0.002 164
0.66 0.000 0.000 135
0.68 0.001 0.001 111
0.70 0.000 0.000 110
0.72 0.000 0.000 61

Table 4.13: Negative threshold value.

β1: Double. n = 1, 000
L µ̂ σ̂2 Cnts

0.60 0.012 0.019 427
0.62 0.007 0.008 380
0.63 0.001 0.001 331
0.64 0.007 0.006 314
0.66 0.001 0.001 255
0.68 0.003 0.004 190
0.70 0.000 0.000 139
0.72 0.002 0.002 126

Table 4.14: Double threshold value.

Observation 6: In Figure 4.4 we see that the first two are not straight lines at all but
they get more straight as we increase the threshold. Figure 4.5 suggest that they are all
straight lines. Figure 4.6 suggest that the majority are also straight lines. This implies
that a Poisson distribution may explain these datasets.
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β1: Above. n = 1, 500
L µ̂ σ̂2 Cnts

0.60 0.002 0.002 262
0.62 0.002 0.002 241
0.63 0.000 0.000 191
0.64 0.000 0.000 189
0.66 0.001 0.001 141
0.68 0.000 0.000 123
0.70 0.001 0.001 103
0.72 0.002 0.004 62

Table 4.15: Positive threshold value.

β1: Above. n = 2, 000
L µ̂ σ̂2 Cnts

0.60 0.002 0.002 306
0.62 0.004 0.005 229
0.63 0.000 0.000 212
0.64 0.002 0.004 203
0.66 0.002 0.002 153
0.68 0.000 0.000 117
0.70 0.000 0.000 118
0.72 0.000 0.000 81

Table 4.16: Positive threshold value.

Figure 4.4: β1 for the case: Above.
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Figure 4.5: β1 for the case: Below.

Figure 4.6: β1 for the case: Double.
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Fixed bandwidth

In this section, we have fixed the bandwidth to be h2 = 0.5 for all of the simulations. Here
we only take into consideration the case Above because the constant bandwidth value
makes the simulations more symmetric with respect to the plane z = 0, thus there is no
longer a need to consider different cases. The threshold has been modified, the new tables
that are obtained follow.

β0: Above. n = 1, 000
L µ̂ σ̂2 Cnts

1.38 11.326 8.938 1000
1.40 10.944 8.587 1000
1.42 10.765 8.035 1000
1.44 10.314 9.480 1000
1.46 10.104 8.567 1000
1.48 9.820 7.857 1000
1.50 9.522 8.584 1000
1.52 9.372 8.343 1000

Table 4.17: Positive threshold value.

β0: Above. n = 1, 000
L µ̂ σ̂2 Cnts

2.00 4.072 4.451 981
2.02 3.700 4.402 970
2.04 3.547 3.907 965
2.06 3.545 4.376 958
2.08 3.231 4.293 953
2.10 3.185 3.912 955
2.12 2.980 3.629 943
2.14 2.994 3.675 947

Table 4.18: Positive threshold value.

β0: Positive. n = 1, 000
L µ̂ σ̂2 Cnts

2.20 2.495 3.111 912
2.22 2.381 3.146 878
2.24 2.262 2.914 884
2.26 2.230 2.920 879
2.28 2.131 2.700 866
2.30 2.029 2.608 843
2.32 1.961 2.495 849
2.34 1.786 2.216 819

Table 4.19: Positive threshold value.

β0: Above. n = 1, 000
L µ̂ σ̂2 Cnts

2.50 1.190 1.494 687
2.60 0.894 0.999 599
2.70 0.677 0.807 471
2.80 0.550 0.602 416
2.90 0.356 0.359 307
3.00 0.265 0.271 235
3.10 0.205 0.217 183
3.20 0.158 0.167 145

Table 4.20: Positive threshold value.

Observation 7: For Tables 4.17, 4.21 we still do not have a Poisson behaviour. Con-
sequently, we need to increase the threshold value to start seeing a Poisson distribu-
tion behaviour. Currently, the amount of connected components is Xk ≥ 1 for all
k ∈ {1, 2, . . . , 1000}.

Observation 8: As the threshold is increased, see Tables 4.19 and 4.20, the sample mean
and variance start to look more similar, especially the last one.

Observation 9: For β1, we see that Tables 4.22 and 4.23 show the more similar sample
mean and variance. In table 4.24, zero mean and variance implies that none of the simu-
lated conditional Gaussian processes surpasses the given threshold value; that is, we did
not observe a one-dimensional hole.

Remark: For all of the n uniformly sampled points inside the square [−5, 5]2, we have
generated m = 1, 000 simulations for every set DL. The variable Cnts counts the number
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β1: Above. n = 1, 000
L µ̂ σ̂2 Cnts

1.38 0.177 0.225 1000
1.40 0.177 0.251 1000
1.42 0.147 0.189 1000
1.44 0.147 0.175 1000
1.46 0.128 0.169 1000
1.48 0.135 0.182 1000
1.50 0.108 0.124 1000
1.52 0.101 0.128 1000

Table 4.21: Positive threshold value.

β1: Above. n = 1, 000
L µ̂ σ̂2 Cnts

2.00 0.023 0.024 981
2.02 0.011 0.016 970
2.04 0.012 0.013 965
2.06 0.013 0.013 958
2.08 0.008 0.008 953
2.10 0.008 0.008 955
2.12 0.010 0.010 943
2.14 0.013 0.014 947

Table 4.22: Positive threshold value.

β1: Positive. n = 1, 000
L µ̂ σ̂2 Cnts

2.20 0.003 0.003 912
2.22 0.013 0.014 878
2.24 0.008 0.008 884
2.26 0.004 0.004 879
2.28 0.007 0.007 866
2.30 0.008 0.009 843
2.32 0.004 0.004 849
2.34 0.003 0.003 819

Table 4.23: Positive threshold value.

β1: Above. n = 1, 000
L µ̂ σ̂2 Cnts

2.50 0.000 0.000 687
2.60 0.002 0.004 599
2.70 0.001 0.001 471
2.80 0.000 0.000 416
2.90 0.000 0.000 307
3.00 0.000 0.000 235
3.10 0.000 0.000 183
3.20 0.000 0.000 145

Table 4.24: Positive threshold value.

of simulations, among the m = 1, 000 done in total, with at least one point whose height
surpasses the threshold value L.

Remark: To avoid any critical point, we have not fixed the threshold value L ≥ 0.
One of the assumptions in Theorem 3.1 is that there are no critical points in the range
[L− 2ε, L+ 2ε].
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4.3 Asymptotic exploration of connected components

In this section, we study the asymptotic behavior of Theorem 3.2 using the simulations
generated by our method. Theorem 3.2 employs Čech complexes for its results, while our
method utilizes Vietoris-Rips complexes. With this asymptotic study, we aim to test if we
can approximate the theorem’s results with Vietoris-Rips complexes. Our motivation to
do this comes from the fact that for any radius value r > 0, we can approximate a Čech
complex from above and below using the following fact from algebraic topology Silva and
Ghrist (2007):

V R(X, r) ⊆ C(X,
√

2r) ⊆ V R(X,
√

2r).

If our method is successful, then we will be able to approximate the value of µbk, for
the cases k = 0, 1, from Theorem 3.2, using Vietoris-Rips complexes instead of Čech
complexes. This is convenient because the calculation of Čech complexes is not computa-
tionally tractable in an efficient way.
For all of the graphs that we will present next, on the vertical axis we have y =
E(βk)

nk+2r
z(k+1)
n

, while on the horizontal axis we have the number of uniformly sampled points
n = 500, 1000, 1500, and 2000 from the square [−5, 5]2. For these simulations, we have
fixed the constant radius rn = 0.4, for every n. We take k = 0, 1, and z represents the
dimension where the points are embedded. Because we are simulating points in the plane,
we have that z = 2.

Median of the distances as bandwidth

In this subsection, we present the plot for theAbove case, with bandwidth h =median(dist(X)).
We only study this case because calculating these graphs for different sample sizes is com-
putationally expensive.

Figure 4.7: β0: Asymptotic behaviour of Theorem 3.2, h=median(dist(X)).
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Figure 4.8: β1: Asymptotic behaviour of Theorem 3.2, h=median(dist(X)).

In Figures 4.7, and 4.8 we have the asymptotic behaviour of E(β0)/n2r2
n, and E(β1)/n3r4

n,
respectively, for the sample size n = 500, 1000, 1500, 2000. Note that all of the graphs tend
to be contained in the same interval. However, it may be possible to use Vietoris-Rips
complexes to approximate µb0 instead of Čech complexes.

Remark: Note the graphs decay exponentially as the number of points n, and the thresh-
old value L increase (independently from each other); that is, y ≈ e−θ·n, where θ = θ(L)
(we believe) only depends on the threshold value L.

Constant bandwidth

Now, taking a constant value for the bandwidth on the kernel function 3.1, with h2 = 0.5,
we see in Figures in Figures 4.9, and 4.10 a similar behaviour as for the non-constant
bandwidth value for h that we took before.

Figure 4.9: β0: Asymptotic behaviour of Theorem 3.2 (fixed h).
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Figure 4.10: β1: Asymptotic behaviour of Theorem 3.2 (fixed h).

Figure 4.9 shows the asymptotic behaviour of E(β0)/n3r4
n for the different sample values.

Similarly, in Figure 4.10 we show the same for E(β1)/n3r4
n.

Remark: Note that it seems that the convergence is faster for β1 than for β0 in both
cases. Take into account that for β1 we are dividing by n3r4

n and for β0 we divide by
n2r2

n. It may be possible to use Vietoris-Rips complexes instead of Čech complexes to
approximate the value of µbk from Theorem 4.3 using our simulation method.
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5 Conclusions and pending work

We have observed that the first two Betti numbers of the particular conditional Gaussian
process that we are considering in this work seem to be distributed as Poisson, whose
parameters depend on the threshold value selected.
We have seen that it may be possible to approximate the results in Theorems 3.2 and

3.3 by using Vietoris-Rips complexes instead of the Čech complexes. This opens up the
possibility to study the asymptotic behavior of these theorems via an empirical study
through simulation. However, proving these results using Vietoris-Rips complexes is still
pending.

5.1 Open questions

Some open questions have arisen from this simulation study, as follows:

1. Fix a threshold value L ∈ R. Given a conditional Gaussian process of interest
{Y |B, f(B),X}, then take all the points whose response variable value is greater
or equal to L. However, what is the behavior of its Betti numbers β0, β1 above the
threshold? This is the question that is studied in this thesis.

2. Continuous kernel.

a. How far from the boundary do we have to go to see an unconditional Gaussian
process in the interior (or something similar)? Here, by interior we mean the
Gaussian process that is in the middle of the square, such as in Figure 3.1. We
believe that the conditional process is close to zero near the boundary, while it
should behave similarly to an unconditional Gaussian process in the interior.

b. How near or far from the boundary do we have to go to observe this?

3. In Thoppe and Krishnan (2018), the authors take the length of the sides of the
square k = 2n + 1, for some n ∈ N. They do this because they want the length of
the square to be an even number around the origin. They study the relationship of
k and L because they let these values tend to infinity (L, k → ∞). Can we find or
prove something similar in the conditional case?

4. Until now we have used a circle as the conditional boundary curve. However, what
would happen if we change this curve to another smooth one? At first we used a
square, but the behavior of the random field was more chaotic than if we used a
circular boundary.
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