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Chapter 1

Introduction

The Dirichlet problem or Boundary problem for the Laplace equation

consists of finding a harmonic function in a domain (open and connected)

Ω ⊆ Rn, with boundary conditions given by a continuous function ϕ(x).

For some domains as are the circle or the rectangle it is possible to build

a solution to the Dirichlet problem. In the first one, using the Poisson’s

representation for the ball. In the rectangle, we can write a series solution

by Fourier’s method.

What happens in an arbitrary domain Ω? Is it possible to solve a Dirichlet

problem for any continuous boundary data ϕ? In Chapter 2, we will answer

these questions and in addition we will present two methods for solving the
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Dirichlet problem: The first one, it was developed by O. Perron [15] known

as Perron’s method for subharmonic functions. This method consists in given

the family of functions

Sϕ = {v : v is subharmonic and v ≤ ϕ on ∂Ω}

taking the pointwise supremum over this family

u(x) = sup
v∈Sϕ

v(x)

and proving that u is harmonic in Ω. We will present as in [3] the definition

and properties of subharmonic functions, and also we will give geometric

conditions over the domain to guarantee that Perron’s solution solves the

boundary problem.

The second method that will be presented was devised by H. Schwarz in

1869-1870, known as the Schwarz Alternating Method [6], [5]. Its idea is to

solve a Dirichlet problem in a domain that can be decomposed as the union

of two or more domains for which the Dirichlet problem is solvable.

The idea was that given two domains with nonempty intersection, to

solve in the first domain. Then, with boundary data given by this result,

solving in the second domain. Preceeding in the same way with the first



domain, and doing this process to build an iterative method for solving the

Dirichlet problem in their union.

Figure 1.1: representation of the problem considered by H. A. Schwarz

The original problem considered by Schwarz was a Dirichlet problem on a

domain consisting of a circle and a rectangle [13], such that their intersection

was nonempty. The idea was to solve first in the circle, then, with boundary

conditions given by the previous solution to solve over the rectangle. We

return again over the circle and we solve with boundary conditions given

by the previous result over the rectangle. Thus, continuing of this form,

Schwarz proved that in the limit, this sequence converges to the solution of

the Dirichlet problem in the union of the circle and rectangle.

We will present this method for two arbitrary domains Ωi ⊆ Rn, i = {1, 2}

such that the Dirichlet problem is solvable in each domain and Ω1 ∩ Ω2 6= ∅.



Using the same recursive method described by Schwarz, we can build a

sequence of solutions in each domain Ωi, such that it converges to the

solution of the Dirichlet problem in the whole Ω.

Chapter 2 will be distributed in the following form. In Section 2.1 we

will present the maximum and minimum principle for subharmonic and

superharmonic functions, then we will give an important inequality known

as Harnack’s inequality in Section 2.2 that will be useful for proving the

Perron’s method in Section 2.3. In Section 2.4 we will submit a variation of

the Perron’s method known as the obstacle problem and in Section 2.5 we

will present the main theorem that will be the Schwarz’s method.

A variation of the previous methods for reconstructing a harmonic function

in a domain, from its values on the boundary was devised by H. Poincaré

[7], [8] known as balayage method. Let Ω be a bounded domain in Rn. Let

µ a measure with support contained in Ω. The balayage for the measure µ

is a measure ν, such that ν = 0 in Ω and Φµ = Φν outside Ω. Where Φµ

represents the Newtonian potential for the measure µ.

Since µ can be recovered by Φµ via −∆Φµ = µ, another way of construct-

ing the balayage measure is by solving a Dirichlet problem with boundary

data Φµ, and extend the solution by Φµ outside Ω. This procedure is called



balayage (from French "sweeping"), since the mass given by µ is "swept out"

from Ω onto the boundary.

In his original publication on the balayage method, Poincaré began the

construction of the balayage measure for a ball. Poincaré solved the following

Poisson’s problem. Given a measure µ in B, find u such that −∆u = µ in B

and u = 0 on the boundary of B. Then, define the potential V such that

u = Φµ − V , and so the measure given by ν = −∆V is the balayage for the

measure µ.

The idea of Poincaré for an arbitrary domain was covered Ω with a

numerable set of balls, and then apply the Schwarz’s method in such a way

that each ball gets visited an infinite number of times.

Balayage [11] is useful in different models as: Internal Diffusion Limits

Aggregation or Internal DLA, The Rotor-Router model and Divisible Sandpile.

On the first one, we take particles and these are repeatedly dropped at the

origin of the lattice Zd. Each successive particle, then performs independent

simple random walk in Zd until reaching an unoccupied site. The next model

was studied the first time by Priezzhev [4] under the name "Eurelian walkers".

In this model, at each site in the lattice Z2 is a rotor pointing toward one

of the four cardinal points. A particle starts at the origin; during each step,



the rotor at the particle’s current location is rotated clockwise by 90 degrees,

and the particle takes a step in the direction of the newly rotated rotor until

reaches an unoccupied site. For the divisible sandpile, suppose that at each

vertex, we have a certain amount of mass (or sand piles). We wish that at

each vertex the amount of mass is determined by a measure µ defined in

Zd. Thus, in this model, each site distributes its excess mass equally among

its neighbors if the amount of mass in the vertex is more than the measure

given by µ in the vertex.

The goal in Chapter 3 is to present two main theorems about classic and

partial balayage in graphs. In the first one, the idea will be, given a subset

D of a graph G, and a measure µ0 with support contained in the D, to build

a sequence of measures µi in such a way that in each iteration, we sweep the

masses given by the measure µ0 in each vertex, until cleaning completely the

subset D. The sequences µi converges to measure µ such that µ = 0 in D.

In partial balayage, the idea will be similar to the divisible sandpile.

Given a measure µ with support in D, or a sand among in each vertex,

redistribute the excess of sand in relation to other measure λ, in such a way

that if in a vertex, the initial amount of sand given by µ is more than the

given by λ, then this vertex redistributes the sand excess to adjacent vertices,

if the amount is less than λ, the amount remains equal. These results will



be proved in Section 3.7 where we will prove that the process for classic and

partial balayage converges.

Therefore, in Chapter 3 we will focus in to present analogue results to

those in Chapter 2, now over graphs. Thus, this chapter is distributed as

follows. In Section 3.2 we will introduce the divergence theorem in graphs

and the formula of integration by parts. In Sections 3.3 and 3.4 we will prove

the maximum principle in graphs and the Dirichlet problem respectively.

In Section 3.6 similarly as in the Dirichlet problem for the continuous case,

we will present the Perron’s method and we will prove that this defines a

harmonic function in the graph.





Chapter 2

Schwarz’s Method

Now, we will present the necessary definitions and theorems for proving

the main result of this chapter, which is the Schwarz’s Theorem. This result

can be enunciated as follows.

Theorem 1. Let Ω1,Ω2 ⊆ Rn be open and bounded domain with Ω1∩Ω2 6= ∅,

such that for each one of them the classical Dirichlet problem is solvable for

arbitrary continuous boundary values. Given Ω = Ω1 ∪ Ω2 and g ∈ C0(Ω) a

subharmonic function in Ω. Consider the sequence {ui} such that u0 = g,

and {vi} where vi is the unique solution for


∆vi = 0 in Ω1

vi = ui−1 on Ω \ Ω1
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and ui is the unique solution for


∆ui = 0 in Ω2

ui = vi on Ω \ Ω2

then, {ui} converges uniformly to u ∈ C2(Ω) ∩ C(Ω) the unique solution to


∆u = 0 in Ω

u = g on ∂Ω

(2.1)

Perron’s method will be the principal tool for proving Theorem 1. Before,

it is necessary to present some previous results.

In this chapter, we will study the main properties about subharmonic

(resp. superharmonic) functions in a domain Ω, that are C2-functions, such

that its Laplacian is nonnegative (resp. nonpositive) in Ω. We will present

a weak definition of subharmonic (resp. superharmonic) function, only

requesting continuity, and we will prove some equivalences between the two

definitions.

More specifically, we will prove the Mean Values Formula and the Maxi-

mum Principle, using similar ideas as in [12]. In Section 2.2 we will prove



the Harnack’s Inequality for harmonic functions, that will be fundamental in

the proof of Perron’s method.

In Section 3.3, we will present the Perron’s method, we will give the

notion of barrier function as in [3, Pag. 120 ], and we will show that if we can

build a barrier for all points ξ ∈ ∂Ω, that is a superharmonic function such

that is positive in Ω and zero in the point ξ, then the Dirichlet problem can

be solved by the Perron’s solution. In Section 3.4 we will give an analogue

form for solving the Dirichlet problem, formulating an obstacle problem.

The first important property of subharmonic (resp. superharmonic)

functions is the mean value property that we will mention in the following

lemma.

Lemma 1 (The Mean Values Inequalities). Let u ∈ C2(Ω) satisfying ∆u =

0 (≥ 0, ≤ 0 ) in Ω. Then, for any ball B = BR(y) ⊂⊂ Ω (compactly

contained), we have

u(y) = (≥,≤)
 
∂B

u(x)dS(x) (2.2)

u(y) = (≥,≤)
 
B

u(x)dx (2.3)



Proof. Let r ∈ (0, R) and define the function

φ(r) :=
 
∂Br(y)

u(x)dS(x)

taking x = y + rz we obtain

φ(r) :=
 
∂B1(0)

u(y + rz)dS(z)

thus

φ′(r) =
 
∂B1(0)

Du(y + rz) · zdS(z) =
 
∂Br(y)

Du(y) · x− y
r︸ ︷︷ ︸
ν

dS

therefore

φ′(r) =
 
∂Br(y)

Du · ν(x)dS(x) = r

n

 
Br(y)

∆udx

from the divergence theorem. Now, if ∆u = 0 we get φ′(r) = 0 hence, φ is

constant. In particular φ(R) = lim
r→0

φ(r) therefore

u(y) = lim
r→0

φ(r) = φ(R) =
 
∂BR(y)

udS.



In the case ∆u ≥ 0 it means that φ is increasing monotone therefore

u(y) = lim
r→0

φ(r) ≤ φ(R) =
 
∂BR(y)

udS

and similar for ∆u ≤ 0. Finally, For getting the mean value inequality, over

BR(y) we use polar coordinates

ˆ
BR(y)

udx =
ˆ R

0

(ˆ
∂Bs(y)

udS

)
ds = u(y)

ˆ R

0
nα(n)sn−1ds = α(n)Rnu(y)

and equivalently for subharmonic and superharmonic functions.

Example 1. Let f be a holomorphic function nonconstant in a domain

Ω ⊂ C. By the Cauchy -Riemann equations R(f) and Im(f) are harmonics.

Let B(z, r) be contained in the domain Ω, thereby

f(z) = 1
2π

ˆ 2π

0
f(z + reiθ)dθ

hence,

|f(z)| ≤ 1
2π

ˆ 2π

0
|f(z + reiθ)|dθ =

 

B(r,z)

|f(ζ)|dζ

this means that the function defined by u(x) = |f(x)| is subharmonic in Ω.

The previous result allows us to characterize the harmonic functions in



terms of the average in each ball contained in Ω.

Corollary 1. If u ∈ C2(Ω) satisfies

u(x) =
 

∂Br(x)

uds

for each ball Br(x) ⊂ Ω then, u is harmonic.

Proof. If ∆u 6≡ 0 there exist some a ball Br(x) ⊂ Ω such that, ∆u > 0 within

Br(x). Then, for φ as in Lemma 1

0 = φ′(r) = r

n

 

Br(x)

∆u(y)dy > 0

which is a contradiction.

2.1 Maximum and Minimun Principle

Another important property from subharmonic and superharmonic func-

tions, is the Maximum and Minimum Principle. It establishes that if Ω ⊆ Rn

is a domain, u is subharmonic in Ω and attains its maximum in a point in

the interior of Ω, then u is constant. In the case when u is superharmonic

we will obtain the same result if u attains its minimum in Ω. This principle



is equivalent to the maximum modulus principle for holomorphic functions.

Theorem 2. Let ∆u (≥, ≤) 0 in the domain Ω. Suppose there exists a point

y ∈ Ω for which u(y) = sup
Ω
u(inf

Ω
u). Then, u is constant.

Consequently, a harmonic function cannot assume an interior maximum

or minimum values unless it is constant.

Proof. Let ∆u ≥ 0 in Ω, M = sup
Ω
u and define ΩM = {x ∈ Ω |u(x) = M}.

By assumption ΩM is not empty. Furthermore, since u is continuous, ΩM is

closed relative to Ω.

Let z be any point in ΩM and apply the mean value inequality to the



subharmonic function u−M in the ball B = BR(z) ⊂⊂ Ω. We obtain

0 = u(z)−M ≤
 
B

(u−M)dx ≤ 0

thus, u = M in BR(z). Consequently, ΩM is also open relative to Ω. Since Ω

is connected we have that ΩM = Ω. The case of superharmonic functions

follows by replacement of u by −u.

The strong maximum principle implies a result of uniqueness.

Corollary 2. Let u, v ∈ C2(Ω) ∩ C0(Ω) satisfy ∆u = ∆v in Ω, and u = v

in ∂Ω. Then, u = v in Ω

Proof. Define h = u − v, then ∆h = 0 in Ω and h = 0 in ∂Ω. By the

Maximum Principle h ≡ 0 in Ω.

In the proof of Theorem 2 we only employ the mean value inequalities.

Thus, the maximum and minimum principle only depend on the mean value

inequalities, not in the second order differentiability of the function.

Now, we will give a new definition of subharmonic, superharmonic function

for u ∈ C0(Ω) such that, it implies one more time the mean value formula.

In addition, if u ∈ C2(Ω) then, ∆u ≤ 0, ∆u ≥ 0 respectively.



The simplest domain in which the Dirichlet problem could be represented

is the ball in Rn. S. Poisson [14] proved that

u(x) :=


R2−|x−z|2
nα(n)R

´
∂BR

u(y)
|x−y|ndS, if x ∈ B

u(x), if x ∈ ∂B

belong to C2(B) ∩ C0(B) and ∆u = 0 in B for u ∈ C0(∂B). This represen-

tation is known as Poisson’s integral.

Definition 1. A C0(Ω) function u will be called subharmonic (resp. super-

harmonic) in Ω, if for every ball B ⊂⊂ Ω and harmonic function h in B

satisfying u ≤ h (resp. u ≥ h) on ∂B, we also have u ≤ h (resp. u ≥ h) in

B.

The idea will be that this definition is consistent with the given when u

is twice differentiability, that is, if u is C2 and subharmonic, then ∆u ≥ 0.

Before proving the consistency, we need to introduce a new concept.

Let u ∈ C0(Ω) be a subharmonic function in Ω and B be a ball strictly

contained in Ω. Denoted by u the harmonic function in B (given by the

Poisson integral of u on ∂B) satisfying u = u on ∂B. We define in Ω the



Harmonic Lifting of u in B by

uB(x) :=


u(x) for all x ∈ B,

u(x) for all x ∈ Ω \B.

Lemma 2. The Harmonic Lifting of a subharmonic function in Ω is sub-

harmonic in Ω.

Proof. Let B′ ⊂⊂ Ω be an arbitrary ball and let h be a harmonic function

in B′ satisfying uB ≤ h on ∂B′. Since, u ≤ uB in Ω we have u ≤ h in ∂B′

thus, u ≤ h in B′ since u is subharmonic and hence, uB ≤ h in B′ \B.

Note that uB and h are harmonics in B ∩B′ and uB = u ≤ h on ∂B ∩B′.



Now, on ∂B′ ∩ B we have that uB ≤ h by assumption. Thus, uB ≤ h on

∂(B ∩B′) and by the maximum principle uB ≤ h in B ∩B′. Consequently,

uB ≤ h in B′ and therefore, uB is subharmonic in Ω.

Harmonic lifting will be the key to prove one of the main results in this

section, that is Perron’s method. Also, we will establish the connection

between the mean value formula and subharmonic functions in the weak

sense. The next lemma establishes this relationship.

Lemma 3. Let u ∈ C0(Ω) be bounded. Then, the following assertions are

equivalent:

(i) u is subharmonic in Ω.

(ii) u satisfies

u(x) ≤
 
∂Br(x)

u(y)dS

for all x ∈ Ω, r > 0 and Br(x) ⊂⊂ Ω.

In addition, if u ∈ C2(Ω) and satisfies (ii), then ∆u(x) ≥ 0 for all x in

Ω.

Proof. (i)⇒(ii)



Let u be the harmonic lifting of u in Br(x) ⊂⊂ Ω. Then

u(x) ≤ u(x) =
 
∂Br(x)

u(y)dS =
 
∂Br(x)

u(y)dS

(ii)⇒(i)

Note that u satisfies the mean value formula by assumption. Since ψ

is harmonic, then the function h = u− ψ satisfies the mean value formula.

Now, h ≤ 0 on ∂B, thus by the maximum principle h ≤ 0 in B.

If (ii) holds and u ∈ C2(Ω) assume there exists x0 ∈ Br(x) ⊂⊂ Ω such

that, ∆u(x0) < 0. Then, if u ∈ C2(Ω) we have ∆u is continuous in Ω and

there exists a radius r0 ∈ (0, dist(∂Br(x))) such that, ∆u < 0 in BR(x0)

for all R ∈ (0, r0). We compute as in Lemma 1 the function φ which is

decreasing and hence

u(x0) >
 
∂Br(x0)

udS

which shows that u cannot be subharmonic in Ω.

Example 2. Define the function

u(x, y) =
√
x2 + y2 in the ball B(0, R)

note that u is continuous in B, but is not differentiable. Now, u can be



written as

u(x, y) = f(z) = |z| in the complex plane,

the function h(z) = z is holomorphic in B, therefore satisfies the mean value

formula

z =
 
∂B(z,r)

ξdS(ξ)

and

|z| ≤
 
∂B(z,r)

|ξ|dS(ξ)

thereby

u(x, y) ≤
 
∂B(z,r)

u(ξ1, ξ2)dS(ξ)

or equivalently u is C0-subharmonic.

Corollary 3. A C0(Ω) function u is harmonic, if and only if, for every ball

B = BR(y) ⊂⊂ Ω it satisfies the mean value property

u(y) :=
 

∂B

udS =
 

B

udx

Proof. If u is harmonic we have already proved that it must satisfy the mean

value formula. We must focus on the opposite implication. Since, u ∈ C0(Ω),



for any ball B ⊂⊂ Ω there exists a harmonic function h in B such that h = u

on ∂B. We define f = u− h, since u satisfies the mean value property, then

f satisfies the same property. Using the same proof as in Theorem 2, we

see that f attains its maximum and minimum on ∂B. But, f = 0 on ∂B

therefore, f = 0 in B. This implies that u = h in B and u is harmonic in B

for any ball B ⊂⊂ Ω. Thus, u is harmonic in Ω.

For proving the Schwarz’s Theorem, we will need to prove that a sequence

of harmonic functions is convergent.

Corollary 4. The limit of a uniformly convergent sequence of harmonic

functions is harmonic.

Proof. Suppose {un}+∞
n=1 is a sequence of harmonic functions such that un → u

uniformly, since each un is harmonic it satisfies

un(x) =
 

∂Br(x)

un(y)dy

therefore

lim
n→+∞

un(x) =
 

∂BR(x)

lim
n→+∞

un(y)dy

thereby

u(x) =
 

∂Br(x)

u(y)dy



the previous is due to the limit uniformly of continuous functions is continuous.

Thus, u is continuous and satisfies the mean value property, therefore, u is

harmonic by Corollary 3.

If u is a C2-subharmonic function and v is a C2-superharmonic function,

such that u ≤ v on ∂Ω, we see that u ≤ v in Ω by the maximum principle,

but in the proof of the maximum principle, we only use the mean value

formulas, not requiring the C2 regularity, and by Lemma 3 the weak definition

of subharmonic (resp. superharmonic) function implies the mean value

formulas and therefore the maximum principle. We will present the analogous

comparison principle for C0-subharmonic and superharmonic functions.

Theorem 3 (Comparison). Let u be C0-subharmonic and v be C0-superharmonic

functions in Ω such that, u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. Define the function w := u− v, then for each Br(x) ⊂⊂ Ω w satisfies

w(x) ≤
 
∂Br(x)

wds

this implies that w is subharmonic. Thus, w satisfies the maximum principle,

since w ≤ 0 on ∂Ω, then w ≤ 0 in Ω therefore, u ≤ v in Ω.

The next lemma will be essentially for proving the Perron’s Theorem.



Lemma 4. Let u1, u2, ..., uN be subharmonic in Ω. Then, the function

u(x) := max{u1(x), ..., uN(x)} is also, subharmonic in Ω.

Proof. Let B ⊂⊂ Ω and let ψ be a harmonic function in B such that

max{u1(x), ..., uN(x)} ≤ ψ in ∂B. By definition of the maximum,

ui(x) ≤ ψ for all i = {1, 2, ..., N} on ∂B

since ui is subharmonic, then ui(x) ≤ ψ in B for each i ∈ {1, ..., N} therefore

max{u1(x), ..., uN(x)} ≤ ψ in Ω

2.2 Harnack’s Inequality

In this section we will see an important inequality introduced by A. Har-

nack [1] that will be essential for proving some results in uniform convergence

of harmonic functions.

Lemma 5. Suppose Ω be a bounded, open and connected set in Rn. Then,

for each A ⊂⊂ Ω there exists an open connected V such that A ⊂⊂ V ⊂⊂ Ω.



Proof. We will give an idea of the proof. Let us take a point x ∈ Ω \A. Due

to Ω is arch-connected, for each a ∈ A there exists a curve γ ⊂ Ω joining x

to a.

Since γ is compact there exist a finite family {Bi} of balls such that is a

finite cover of γ that is

γ ⊂
N⋃
i=1

Bi ⊂ Ω

the cover for γ is open and connected. We will name Ua the cover associated

to the curve γxa.

Thereby, if we consider the set

V =
⋃
a∈A

Ua

since x is a common point for each Ua this set is open and connected, and



A ⊂ V ⊂⊂ Ω.

Theorem 4. Let u be non-negative harmonic function in Ω. Then, for any

subset Ω′ ⊂⊂ Ω there exists a constant C depending only on n, Ω′ and Ω

such that

sup
Ω′
u ≤ C inf

Ω′
u

Proof. Without loss of generality, we will suppose that Ω′ is connected.

Indeed, by Lemma 5 for each subset A with A ⊂⊂ Ω there exists a domain

V such that, A ⊂⊂ V . If the result is valid for V that is connected, then

sup
A
u ≤ sup

V
u ≤ C inf

V
u ≤ C inf

A
u

thus, it is only necessary to make the proof in the case when Ω′ is connected.

Let y ∈ Ω and B4R(y) ⊂ Ω. Then, for any two points x1, x2 ∈ BR(y) we

have by the mean value inequalities

u(x1) = 1
α(n)Rn

ˆ

BR(x1)

udx ≤ 1
α(n)Rn

ˆ

B2R(y)

udx,

u(x2) = 1
α(n)(3R)n

ˆ

B3R(x2)

udx ≥ 1
α(n)(3R)n

ˆ

B2R(y)

udx,



consequently, we obtain

sup
BR(y)

u ≤ 3n inf
BR(y)

u. (2.4)

Let Ω′ ⊂⊂ Ω and choose x1, x2 ∈ Ω′ such that, u(x1) = sup
Ω′
u, u(x2) = inf

Ω′
u.

Let Γ ⊂ Ω′ be a curve joining x1 and x2 and choose R such that 4R <

dist(Γ, ∂Ω). By virtue of the Heine-Borel Theorem, Γ can be covered by a

finite number N (depending only on Ω′, Ω because Ω is compact, therefore,

has a finite cover, and the cover for Γ is contained in the cover of Ω) of balls

of radius R. Applying the estimative (2.4) in each ball and combining the

resulting inequalities, we get

u(x1) ≤ 3nNu(x2)



To see this, without loss of generality, suppose that x1 ∈ B1, x2 ∈ BN

and Bi ∩Bi+1 6= ∅ with Bi = BR(ζi) for ζi ∈ Γ. Note that

u(x1) ≤ sup
B1

u.

and by assumption

sup
B1

u ≤ 3n inf
B1
u

and it holds the inequalities

inf
B1
u ≤ inf

B1∩B2
u ≤ sup

B1∩B2

u ≤ sup
B2

u ≤ 3n inf
B2
u

thereby

u(x1) ≤ 3n(3n inf
B2
u) = 32n inf

B2
u,

making this process over each ball, we see that

u(x1) ≤ 3nN inf
BN

u

and inf
BN

u ≤ u(x2) because by assumption x2 ∈ BN hence,

u(x1) ≤ 3nNu(x2)



then, the estimate holds with C = 3nN .

Remark 1. The assumption Ω be connected is requisite because, if Ω is

disconnected then, taking for example

Ω = Br(x) ∪Br(y)

with the condition Br(x) ∩Br(y) = ∅. If we take A ⊂⊂ Ω as A = Br/2(x) ∪

Br/2(y) and define

u(z) = χBr(y)(z)

thus, if there exists a constant C such that

sup
A
u ≤ C inf

A
u

then, 1 ≤ C ∗ 0.

Lemma 6. Let {un} be a monotone increasing sequence of harmonic func-

tions in a domain Ω. Suppose that for some point y ∈ Ω the sequence



{un(y)} is bounded. Then, the sequence converges uniformly on any bounded

subdomain Ω′ ⊂⊂ Ω to a harmonic function.

Proof. The sequence {un(y)} will converge so that, for arbitrary ε > 0 there

is a number N such that, 0 ≤ um(y)− un(y) < ε for all m ≥ n > N . Now,

suppose that y ∈ Ω′. By the Harnack’s inequality we have

sup
Ω′
|um(x)− un(x)| ≤ C inf

Ω′
|um(x)− un(x)| < Cε

for some constant C depending on Ω′ and Ω. Consequently, {un} converges

uniformly to harmonic function in Ω′. If y /∈ Ω′, we take a connected set V

containing to Ω′ ∪ {y} and we apply the same proof.

2.3 The Dirichlet Problem: Perron’s Method

Let Ω be bounded and ϕ be a bounded function on ∂Ω. A C0(Ω)

subharmonic function u is called a subfunction relative to ϕ, if it satisfies

u ≤ ϕ on ∂Ω (The analogous definition for superfunction relative to ϕ).

By the maximum principle every subfunction is less than or equal to every

superfunction, because if u is a subfunction relative to ϕ and u superfunction



relative to ϕ, then

u ≤ ϕ ≤ u on ∂Ω

by maximum principle

u ≤ u in Ω.

In particular, constant functions less than inf
∂Ω
ϕ (resp. more than sup

∂Ω
ϕ) are

subfunctions (resp. superfunctions).

Let Sϕ denote the set of subfunctions relative to ϕ. The basic result of

Perron’s method is contained in the following theorem.

Theorem 5 (Perron’s Method). The function

u(x) = sup
v∈Sϕ

v(x)

is harmonic in Ω.

Proof. Given x0 ∈ Ω, by definition of u(x) there exists {vk} ⊂ Sϕ such that,

vk(x0)→ u(x0). The functions

wk = max{v1, ..., vk} k ≥ 1

are in Sϕ and wk ≤ wk+1.



By definition of u and wk we have that

vk(x0) ≤ wk(x0) ≤ u(x0)

therefore, lim
k→+∞

wk(x0) = u(x0). Let B be a ball such that B ⊂⊂ Ω. For

each k ≥ 1 we have that wk ≤ wBk ≤ u because wBk ∈ Sϕ and hence,

lim
k→+∞

wBk (x0) = u(x0)

since, each wBk is harmonic in B, increasing monotonic and bounded it

converges punctually. By Harnack’s inequality this convergence is uniform.

Thus, lim
k→+∞

wBk (x) = w(x) is harmonic in B and w(x0) = u(x0). We must

show that w = u in B.

By definition of u we have w ≤ u. Suppose that there exists x1 ∈ B

such that, w(x1) < u(x1). Let {βk} ⊂ Sϕ such that, βk(x1) → u(x1). We

define for k ≥ 1, zk = max{β1, ..., βk, wk} then, zBk ∈ Sϕ and wk ≤ zBk ≤ u,

vk ≤ zBk ≤ u in Ω thus,

lim zBk (x1) = u(x1) and lim zBk (x0) = u(x0)

again {zBk } converges in B to a harmonic function z with z(x1) = u(x1). By



construction w ≤ z in B and w(x0) = z(x0) = u(x0). Then, the function

z − w is harmonic nonnegative with an interior minimum equal to zero at

x0. The maximum principle establishes z − w ≡ 0 in B that leads to the

contradiction

w(x1) = z(x1) = u(x1) > w(x1)

Thus, u = w in B and u is harmonic in B and since x0 is arbitrary, we

conclude that u is harmonic in Ω.

In the preceding method still we have not guaranteed the existence of

a solution of the Dirichlet problem with boundary condition given by ϕ. It

is because in the Perron’s method the study of boundary behavior of the

solution is essentially separate from the existence problem. The assumption

of boundary values is connected to the geometric properties of the boundary

through the concept of barrier function.

Definition 2. Let ξ be a point in ∂Ω. Then, a C0(Ω)-function w = wξ is

called a barrier at ξ relative to Ω if

(i) w is superharmonic in Ω.

(ii) w > 0 in Ω \ {ξ} and w(ξ) = 0.



A more general definition of barrier requires only that the superharmonic

function w is continuous and positive in Ω and that

w(x)→ 0 as x→ ξ.

The barrier concept is a local property of the boundary ∂Ω. Let us define w

be a local barrier at ξ ∈ ∂Ω if there is a neighborhood N of ξ such that w

satisfies the Definition 2 in Ω ∩N .

Lemma 7. If ξ ∈ ∂Ω has a local barrier, then, there exists a global barrier

at ξ.

Proof. Let N a neighborhood of ξ and w a barrier in N ∩Ω. Let B be a ball

satisfying ξ ∈ B ⊂⊂ N and

m = inf
N\B

w > 0

the function

w(x) :=


min(m,w(x)) if x ∈ Ω ∩B

m if x ∈ Ω \B

is continuous andm,w(x) are superharmonic in Ω∩B. Therefore, min(m,w(x))



is superharmonic. Thus, w(x) satisfies the property (i). The property (ii) it

is obtained because w is a local barrier.

A boundary point will be called regular (with respect to the Laplacian)

if there exists a barrier at the point.

Theorem 6. Let u be the harmonic function defined in Ω by the Perron’s

method. If ξ is a regular boundary point of Ω and ϕ is continuous at ξ, then

u(x)→ ϕ(ξ) as x→ ξ

Proof. Choose ε > 0, and let M = sup |ϕ|. Since ξ is a regular boundary

point, there is a barrier w at ξ and by virtue of the continuity of ϕ, there

are constants δ and k such that

|ϕ(x)− ϕ(ξ)| < ε as |x− ξ| < δ

and

kw(x) ≥ 2M if |x− ξ| ≥ δ.

We can verify that the functions ϕ(ξ) + ε+kw, ϕ(ξ)− ε−kw are respectively

superfunction and subfunction relative to ϕ. Hence, from definition of u and

the fact that every superfunction dominates every subfunction we have in Ω



that

ϕ(ξ)− ε− kw(x) ≤ u(x) ≤ ϕ(ξ) + ε+ kw(x)

or equivalently

|u(x)− ϕ(ξ)| ≤ ε+ kw(x)

since w(x)→ 0 as x→ ξ, we obtain u(x)→ ϕ(ξ) as x→ ξ.

Theorem 7. The classical Dirichlet problem in a bounded domain is solvable

for arbitrary continuous boundary values if and only if the boundary points

are all regular.

Proof. If the boundary values ϕ are continuous and the boundary ∂Ω consists

of regular points, the preceding theorem states that the harmonic function

provided by the Perron’s method solves the Dirichlet problem. Conversely,

suppose that the Dirichlet problem can be solved for all continuous boundary

values. Let ξ ∈ ∂Ω then, the function

ϕ(x) = |x− ξ|

is continuous on ∂Ω and the harmonic function solving the Dirichlet problem

in Ω with boundary values ϕ is a barrier at ξ. Hence, ξ is regular as are all

points of ∂Ω.



Remark 2. A simple sufficient condition for solvability in a bounded domain

Ω ⊂ Rn is that Ω satisfies the exterior sphere condition, that is, for every

point ξ ∈ ∂Ω, there exist a ball B = BR(y) satisfying B ∩Ω = {ξ}. If such a

condition is fulfilled then, the function w given by

w(x) :=


R2−n − |x− y|2−n for n ≥ 3

log |x−y|
R

for n = 2

will be a barrier at ξ.

2.4 Obstacle Problem

One equivalent way to solve the Dirichlet problem is minimizing the

Dirichlet Energy

E[u] = 1
2

ˆ

Ω

|Du|2

over the set where u is equal to boundary data. The obstacle problem [10]

consists in studying the properties of minimizers of the Dirichlet energy under

the constraints that u less than ϕ on the boundary of Ω. It arises in the

mathematical study of variational inequalities and free boundary problems.

The idea is to find the largest subharmonic function that is less than the

obstacle ϕ.



Theorem 8. Let Ω ⊆ Rn, ϕ ∈ C(Ω) and Sϕ the collection of subharmonic

functions in C(Ω) that are below ϕ in Ω. Then, u : Ω→ R defined as

u(x) = sup
v∈Sϕ

v(x)

is continuous, subharmonic over Ω and harmonic over set {u < ϕ}.

Proof.

i) Define the function

u∗(x) = lim sup
y→x

u(y)

where u∗ is the upper semicontinous envelope of the function u. The

function u∗ is the smallest upper semicontinuous function that is point-

wise greater than or equal to u. Let us see that u∗ is a subsolution for

the problem


∆u = 0 in Ω

u = ϕ on ∂Ω

Let B ⊂⊂ Ω and h be harmonic in B such that u∗ ≤ h on ∂B. By

definition u ≤ u∗, thus u ≤ h on ∂B.

By definition of u, for each v ∈ Sϕ we have that v ≤ u thus, v ≤ h on



∂B but each v is subharmonic in Ω therefore, v ≤ h in B. By definition

of u for each δ ≥ 0 there exists v ∈ Sϕ such that

u(x)− δ ≤ v(x) for fix x ∈ B

hence, u(x)− δ ≤ v(x) ≤ h(x) but δ is arbitrary, therefore, u(x) ≤ h(x)

in B.

Using this fact, by contradiction we suppose that there exists x0 ∈ B

such that

u∗(x0) > h(x0)

by definition of u∗ there exists a sequence (xk)k such that, u(xk) →

u∗(x0) as xk → x0. Owing to that u ≤ h in B and xk → x0 there exists

a ball Bδ(x0) ⊂⊂ B such that xk ∈ Bδ(x0) for all k ≥M0 but,

u(xk) ≤ h(xk), k ≥M0

thus

u∗(x0) ≤ h(x0) as k → +∞

therefore, u∗ is subharmonic in Ω. Owing to u∗ is the smallest upper

semicontinuous function that is greater than or equal to u, and ϕ is



upper semicontinuous and ϕ ≤ u, then ϕ ≤ u∗ therefore u∗ ∈ Sϕ and

u∗ = u is subsolution.

ii) Let us see that u is harmonic in the set {u < ϕ}.

Let us suppose that u is not harmonic in {u < ϕ}. Then, by Corollary

3 there exists x0 ∈ {u < ϕ} and a sequence of radius ri → 0 such that

u(x0) 6=
 
Bri (x0)

udy

since u is subharmonic, we have

u(x0) <
 
Bri (x0)

udy =
 

Bri (x0)

uBi = uBi(x0)

thus, u(x0) < uBi(x0). Now, u ≤ ϕ, u(x0) < ϕ(x0) and since uBi = u

on Ω \Bi, then, uBi ≤ ϕ in Ω \Bi.

Owing to (ϕ − u)(x0) > 0 there exists δ > 0 with the property that

(ϕ− u)(x0) > δ and by virtue of the continuity of ϕ we have that there

exists rj such that

inf
Brj (x0)

ϕ ≥ ϕ(x0)− δ/2



also, by upper semicontinuity of u there exists rk such that

u(x0) ≥ sup
∂Brk (x0)

u− δ/2.

Taking r = min{rk, rj} we have that

inf
Br(x0)

ϕ ≥ ϕ(x0)− δ/2 > u(x0)− δ/2 + δ

≥ sup
∂Br(x0)

u− δ/2− δ/2 + δ = sup
∂Br(x0)

u

therefore

inf
Br(x0)

ϕ ≥ sup
∂Br(x0)

u = sup
Br(x0)

uBr

hence, uBr ≤ ϕ in Ω therefore, uBr ∈ Sϕ. This contradicts the fact

uBr(x0) > u(x0), thus, u is harmonic in the set {u < ϕ}.

iii) Finally, as u harmonic in {u < ϕ} then, support(∆u) ⊆ {u = ϕ}

and as ϕ is continuous then, u is continuous relative to set {u = ϕ}

therefore by Evans’ Lemma [10, Theorem 1] u is continuous in Ω.



2.5 Schwarz Method

We will present the main result of this chapter and we will discuss its

implementation.

Theorem 9 (Schwarz Method). Let Ω1,Ω2 ⊆ Rn open and bounded domains

with Ω1∩Ω2 6= ∅ such that, for each one of them the classical Dirichlet problem

is solvable for arbitrary continuous boundary values. Given Ω = Ω1 ∪ Ω2 and

g ∈ C0(Ω) be a subharmonic function in Ω, consider the sequences (ui)i∈N

such that, u0 = g and (vi)i∈N where vi is the unique solution for


∆vi = 0 in Ω1

vi = ui−1 on Ω \ Ω1

and ui is the unique solution for


∆ui = 0 in Ω2

ui = vi on Ω \ Ω2,

then (ui)i∈N converges uniformly to u ∈ C2(Ω) ∩ C(Ω) the unique solution to


∆u = 0 in Ω

u = g on ∂Ω.

(2.5)



Proof.

i) (un)n∈N is increasing monotone:

We will do the proof by induction. For n = 1 let us see that g = u0 ≤ u1

in Ω. In Ω1 \ Ω2 we have that u0 = g ≤ v1 = u1 (maximum principle)

and in Ω2, u1 is harmonic and u1 = v1 ≥ g on Ω\Ω2. Then, u0 = g ≤ u1

in Ω2 once more from the maximum principle. Thus, u0 ≤ u1 in Ω.

Suppose that

ui−1 ≤ ui in Ω.

Define the function h = ui − ui+1 then,


∆h = 0 in Ω2

h = vi − vi+1 on Ω \ Ω2.

Now, take k = vi − vi+1 hence, it satisfies


∆k = 0 in Ω1

k = ui−1 − ui ≤ 0 on Ω \ Ω1

by virtue of the maximum principle k = vi − vi+1 ≤ 0 in Ω therefore,

h ≤ 0 in Ω then, ui ≤ ui+1.

ii) Each un is subharmonic in Ω:



Note that u0 = g is subharmonic by assumption. Suppose that un−1

is subharmonic in Ω. Let B ⊂⊂ Ω and ψ be harmonic in B such

that un ≤ ψ in ∂B, as un−1 ≤ un then, un−1 ≤ un ≤ ψ on ∂B and so

un−1 ≤ ψ in B.

Now, in Ω1 ∩ Ω2 un, vn are harmonics, and if we define hn = un − vn,

then hn is harmonic in Ω1 ∩ Ω2. Also, hn = 0 on ∂Ω2 ∩ Ω1 and

hn = un − un−1 ≥ 0 on ∂Ω1 ∩ Ω2 therefore hn ≥ 0 on ∂(Ω1 ∩ Ω2) by

the maximum principle hn = un − vn ≥ 0 in Ω1 ∩ Ω2.

Using this fact, we see that vn ≤ un ≤ ψ on ∂B ∩ (Ω1 ∩ Ω2), on

∂B ∩ (Ω \Ω2) vn = un ≤ ψ and on B ∩ ∂Ω1 vn = un−1 ≤ ψ. Therefore,

vn ≤ ψ on ∂(B ∩ Ω1) but vn is harmonic in Ω1 thus, vn ≤ ψ in B ∩ Ω1.

In particular, un = vn ≤ ψ on ∂Ω2 ∩B then, un ≤ ψ on ∂(B ∩Ω2) and

un harmonic in B ∩ Ω2 therefore, un ≤ ψ in B ∩ Ω2 and un = vn ≤ ψ

in B ∩ (Ω1 \ Ω2) thus, un ≤ ψ in B.

iii) Finally, note that vn is harmonic in Ω1 and vn ≥ un−1 on Ω \Ω1. Since,

un−1 is subharmonic then, un−1 ≤ vn in Ω. Using this fact and the

same process as above for un, we show that vn is subharmonic in Ω

and again as un is harmonic in Ω2 and vn ≤ un on Ω \Ω2 we have that

vn ≤ un. Thus,

un−1 ≤ vn ≤ un



the previous estimate allows us to conclude

lim
n→+∞

un = lim
n→+∞

vn

and since un, vn ≤ max
Ω

g we have that un, vn converge pointwise and by

Harnack’s inequality and the fact un, vn are increasing monotone, then

un converges locally uniformly in Ω2, vn converges locally uniformly

in Ω1 and this limits are harmonics in Ω1,Ω2 respectively. Now, by

condition un−1 ≤ vn ≤ un

lim
n→+∞

un(x) = lim
n→+∞

vn(x) = u(x)

where u(x) is harmonic in Ω = Ω1 ∪ Ω2 and solves Problem 2.5. The

uniqueness is immediately from Theorem 2.

2.5.1 Implementation Schwarz Method

In this section, we will show an idea about the implementation of the

Schwarz’s method. The idea was take some region, that can be described as

the union of sets more simples for which the Dirichlet problem is solvable



and this solution can be gotten by an algorithm.

First, we will present as solving the Dirichlet problem over a rectangle

in R2, using the Fourier’s method. Based on these ideas, to build a discrete

version of the Fourier’s method in order to implement this algorithm.

Consider the set

Figure 2.1: R = {(x, y)| 0 ≤ x ≤ a, 0 ≤ y ≤ b}

and


∆u = f in R

u = g on ∂R

(2.6)

we know that the convolution p = Φ ∗ f with Φ fundamental solution for

∆u = 0 is a particular solution for ∆u = f thus, it is only necessary to solve




∆u = 0 in R

u = g − p on ∂R.

(2.7)

If h is solution for (2.7) then, u = h + p will be solution for the problem

(2.6). Now, we establish the conditions:

(C) :=


u(x, 0) = g∗1(x); u(x, b) = g∗2(x)

u(0, y) = g∗3(y); u(a, y) = g∗4(y)

where g∗i = gi − pi, gi, pi are the values that are taking g and p on ∂Ri and

∂Ri represent either side of R and g∗j = 0 if j 6= i.

Due to the lineality of the Laplace’s operator, it is possible to define the

problem:


∆ui = 0 in R

ui = g∗i on ∂R.

(2.8)

The solution for (2.7) can be written as

u =
4∑
1
ui



where each ui is the solution for (2.8). The general solution for (2.6) will be

u =
4∑
1
ui + p.

Hence, we will compute the solution for the problem



∆u = 0 in R

u(0, y) = u(a, y) = 0, u(x, b) = 0

u(x, 0) = g1.

(2.9)

Let us suppose that there exists a solution of the form u(x, y) = X(x)Y (y).

We will employ the method of separation of variables for finding X(x) and

Y (y) such that,

u(x, y) := X(x)Y (y)

be a solution for (2.9). The Laplacian for u will be

∆u = ∂2
xu+ ∂2

yu = X ′′(x)Y (y) +X(x)Y ′′(y) = 0

dividing by X(x)Y (y), we get



X ′′

X
+ Y ′′

Y
= 0 then X ′′

X
= −Y

′′

Y
= −λ2.

Or equivalently


X ′′ = −λ2X

X(0) = X(a) = 0,

(2.10)


Y ′′ = λ2Y

Y (b) = 0.

(2.11)

In the first problem, a simple computation shows that

X(x) = A1 sin(λx) + A2 cos(λx),

using the initial condition X(0) = 0 = A2 and X(a) = 0 = sin(λa) we can

get that

λn = nπ

a
,

then



Xn(x) = sin(nπ
a
x)

and using the identity

2 sin(mx) sin(nx) = cos((m− n)x)− cos((m+ n)x),

we can verify that < Xn, Xk >= 0. Furthermore, for the problem (2.11)

Y ′′ = λ2Y then Y ′′ =
(nπ
a

)2
Y,

hence

Yn(y) = An
sinh(nπ

a
(b− y))

sinh(nπb
a

)
.

Therefore

un(x, y) = Yn(y)Xn(x) =
[
An

sinh(nπ
a

(b− y))
sinh(nπb

b
)

] sin(nπ
a
x).

The family of functions {un(x, y)} is an orthogonal set, because of the inner



product

< un, um >=
ˆ b

a

ˆ b

a

Xn(x)Yn(y)Xm(x)Ym(y)dxdy =
(ˆ b

a

Xn(x)Xm(x)
)( ˆ b

a

Yn(y)Ym(y)
)

= 0

for n 6= m. Each function un is a solution of the Laplace’s equation in Ω which

satisfies the boundary conditions u(x, b) = 0, u(0, y) = 0, and u(a, y) = 0.

The Laplace’s equation is linear, therefore we can take any combination of

solutions {un} and get a solution of the Laplace’s equation which satisfies

these three boundary conditions. In this case

u(x, y) =
∞∑
n=1

un(x, y) =
∞∑
n=1

[
An

sinh(nπ
a

(b− y))
sinh(nπb

b
)

] sin(nπ
a
x)

will be a solution. This solution should satisfy the condition u(x, 0) = g1(x),

then

u(x, 0) =
∞∑
n=1

An sin(nπ
a
x) = g1(x)

that is, we want to be able to express g1 in terms of its Fourier sine series on

[0, a] hence, the coefficients An are given by

An =
〈g1| sin(nπ

a
x)〉

〈sin(nπ
a
x)| sin(nπ

a
x)〉 ,



where the 〈, 〉 is the inner product in L2(0, a), thus

〈sin(nπ
a
x)| sin(nπ

a
x)〉 :=

ˆ a

0
sin2(nπx/a)dx = a

2

therefore

An = 2
a
〈g1| sin(nπ

a
x)〉.

Suppose that we want to write a code to solve the problem


∆u = 0 in R

u = g on ∂R,

(2.12)

with R = {(x, y) | 0 < x < a, 0 < y < b}. In the first example we saw how to

solve this problem employing the method of separation of variables. In order

to do a numerical implementation we will proceed to give a discretization of

the problem and to present a discrete version of the Fourier’s method.

Define g in R and N ∈ Z+ such that, bN
a
∈ Z+ (N size of the discretiza-

tion). The discretization of g in R is

gij = g( ia
N
,
jb

N
) for i ∈ {0, ..., N}, j ∈ {0, ...,M = Nb

a
},



where gij satisfies

gij ≤
gi+1,j + gi−1,j + gi,j+1 + gi,j−1

4 .

The idea for solving 2.12 is the same as in the continuous case. We will

employ the method of separation of variables and we will solve in each side of

rectangle R with their respective boundary conditions. If we write uij = xiyj ,

then

0 = ∆uij = (xi+1 − 2xi + xi−1)yj + xi(yj+1 − 2yj + yj−1)
h2

where h = 1/N is the step. Dividing by uij we get

xi+1 − 2xi + xi−1 = −2λ2xi,

and

yi+1 − 2yi + yi−1 = 2λ2yj.

The first problem has conditions

x0 = 0, xN = 0,



and the second one problem yM = 0, in the case when we have boundary

data gi,0.

The solution for the first problem is

(xi)n = sin
(nπi
N

)
(n ∈ N),

with λ2
n = 2(1− cos

(
nπ
N

)
). For the second one problem the solution is

yj = An

(
rj+ −

(r+

r−

)M
rj−

)

where r+, r− are the roots of the characteristic polynomial associated to

yj+1 − (2 + 2λ2
n)yj + yj−1 = 0.

The solution uij can be written as

uij =
N−1∑
n=1

An
(
rj+ −

(r+

r−

)M
rj−
)

sin(nπi
N

)

where An it is the Fourier discrete coefficient given by



An =

N−1∑
i=1

gi,0 sin(nπi
N

)(
1−

(
r+
r−

)M N−1∑
i=1

sin2(nπi
N

)
)

uij solves when gi,M = g0,j = gN,j = 0. Note that if we change in the

coefficient An, gi,0 by gi,M then, ui,j = ui,M−j solves for gi,0 = g0,j = gN,j = 0

and the same for other sides of the boundary. Now, the superposition of

these solutions solves the problem 2.12.

Consider the problem


∆u = 0 in R

u = g on ∂R

(2.13)

for R = R1 ∪R2 where

R1 = {(x, y) | 0 < x < a, 0 < y < b}

,

R2 = {(x, y) | 0 < x < b, 0 < y < a}.

Note that R is a domain for which to build a solution is difficult, but if we

take each R1, R2 separately, using the discrete method described previously

it is possible to solve for each rectangle. But, we need a solution for R. Thus,



the idea is to employ the Iterarive Schwarz Method for calculating in a step

finite number an approximate solution in R.

Also, we can take other union of rectangles (or domains) more sophisti-

cated and employ the same idea.

Figure 2.2: Initial condition u0 = g

where

g(x, y) : =



1, if x = 1 and 1 ≤ y ≤ 2

3, if y = 1 and 1 ≤ x ≤ 2

0, In the rest of [0, 2]2.



Figure 2.3: First four iteration using the Schwarz’s method.

The figure above shows the first four iterations, using Schwarz’s method

on the region R = R1 ∪R2 where

R1 = {(x, y) | 0 < x < 2 and 0 < y < 1}

R2 = {(x, y) | 0 < x < 1 and 0 < y < 2}

with boundary data u0 = g. Note that between the third and fourth iteration

the difference is no longer noticeable.

Remark 3. If we take the discretization of g as a matrix "n × n", it is

necessary to solve n2 equations with n2 unknow variables. Therefore, This



requires a number of computations of order n6. But, through the Fourier’s

method we only need to compute n2 coefficients and it is only necessary n2

steps hence, the Fourier’s method is more efficient.



Chapter 3

Balayage In Graphs

In this chapter, we will introduce the concept of balayage (Classic and

Partial) and we will prove the main result about the balayage process.

We will present some important results about harmonic and subharmonic

functions as in Chapter 2, but in graphs. Principally, it will be related to the

maximum principle and Perron’s method. Also, we establish through some

examples the relationship between harmonic functions in graphs, electrical

networks and random walks as in [9].
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3.1 Preliminary definitions

A graph consists of a finite number of points (called vertices) and a finite

number of lines (called edges) joining some of them. We will denote a graph

by G = (V,E) where V denotes the vertices and E the edges, and assume

that our graph is oriented. In the notation, given an e ∈ E we denote by

e− ∈ V its starting point and by e+ ∈ V its final point. We also denote a

special vertex by ∞ (which is an analogue of a point at ∞ in Rn) such that,

every vertex can be reached from ∞ by a path that ignores the orientation

of the edges. Let x, y ∈ V , if there exist an edge e such that x = e− and

y = e+ we say that x and y are adjacent, and we denote it by x ∼ y.

For a subset D ⊆ V \ {∞}, we define ∂D = ∂+D ∪ ∂−D by

∂±D = {v ∈ V \D : There exists e ∈ E such that e± = v and e∓ ∈ D}

and ν : ∂D → R such that νD(e) = ±1, if e ∈ ∂±D analogue to the normal

vector.

We will introduce the basic definitions about subharmonic, superharmonic

and harmonic functions and their basic properties in networks.

Definition 3. Given a scalar field U : V → R, we define the gradient field



by

DU(e) = U(e+)− U(e−)

Definition 4. Given a measure µ in D ⊆ V , we define the measure of D

with respect to µ by

µ(D) =
∑
v∈D

µ(v)

and the integral of U with respect to the measure µ by

ˆ
Udµ =

∑
v∈V

U(v)µ(v).

For a vector field i : Rn → Rn

∇ · i(x) = lim
ε→0

1
|Bε(x)|

ˆ

Bε(x)

∇ · i(y)dy

= lim
ε→0

n

|∂Bε(x)|

ˆ

∂Bε(x)

i(y) · ν(y)dS(y),

where ν(y) = (y − x)/ε is the exterior normal vector at y ∈ ∂Bε(x). Thus,

for i : E → R we define

∇ · i(v) = 1
|{e ∈ E : v ∈ {e+, e−}|

( ∑
e∈E|e−=v

i(e)−
∑

e∈E|e+=v
i(e)

)
.



Under these constructions

∇ · i(v) = 1
#∂{v}

∑
e∈∂{v}

i(e)νv(e).

3.2 Divergence’s Theorem

Remember that for a field i : Rn → Rn and Ω ⊆ Rn, if i ∈ C1(Ω) and Ω

is simply connected with ∂Ω regular, then

ˆ

Ω

∇ · i =
ˆ

∂Ω

i · νdS.

It is known as the Divergence Theorem.

Theorem 10 (Divergence’s Theorem on graphs). Let i : E → R and D, ∂D

as above, then ˆ

D

∇ · i =
ˆ

∂D

i · νdS

Proof. We will define

ˆ

D

∇ · i(v)dv =
∑
v∈D
∇ · i(v)#∂{v}.

We will verify that if e ∈ E such that, e± ∈ D, then, the contribution of i(e)



in the integral
´
D

∇· i(v) is zero (i.e, the contribution is only by part of e ∈ E

such that if e± ∈ D, then e∓ ∈ ∂D). Let us see this. Let v, w ∈ D such that

v ∼ w (v is adjacent to w) and define the edge joining v with w by evw = ewv.

Without loss of generality, suppose that (evw)− = v and (evw)+ = w, then

∇ · i(v)#∂{v} =
∑

{e : e−=v}
i(e)−

∑
{e : e+=v}

i(e)

= i(evw) +
∑

{e : e−=v,}
e+ 6=w

i(e)−
∑

{e : e+=v}
i(e)

and

∇ · i(w)#∂{w} =
∑

{e : e−=w}
i(e)−

∑
{e : e+=w}

i(e)

=
∑

{e : e−=w}
i(e)−

∑
{e : e+=w,}
e− 6=v

i(e)− i(ewv).

Thus, in the term (∇ · i(v)#∂{v} + ∇ · i(w)#∂{w}) the contribution by

i(evw) = 0. This proves that the contribution is only by part of e ∈ E such



that if e± ∈ D then, e∓ ∈ ∂D. It means that

∑
x∈D
∇ · i(v)#∂{v} =

∑
{e:e−∈D,}
e+∈∂D

i(e)−
∑

{e:e+∈D,}
e−∈∂D

i(e)

=
∑
{e∈∂D}

i(e)ν(e)

=
ˆ

∂D

i · ν.

Definition 5. For i, j : E → R the product i · j(v) is defined by

i · j(v) := 1
2#∂{v}

∑
e∈∂{v}

i(e)j(e),

where #∂{v} denotes the number of elements that are adjacent to the vertex

v.

Now, we will prove an analogue result of the formula of integration by

parts in the graph which will be very useful.

Theorem 11 (Integration by Parts). Let U : V → R and i : E → R then,

for D ⊆ V \ {∞}, we have the identity

ˆ

D

U∇ · i =
ˆ

∂D

(Ui · ν)−
ˆ

D

i ·DU.



Proof. First, it is necessary to verify the product rule

∇ · (Ui)(v) = U(v)∇ · i(v) + (i ·DU)(v)

where

U : E → R, with U(e) = 1
2(U(e+) + U(e−)).

Note that

∇ · (Ui)(v) = 1
#∂{v}

( ∑
e−=v

(U(v) + U(e+))
2 i(e)−

∑
e+=v

(U(v) + U(e−))
2 i(e)

)

= 1
#∂{v}

U(v)
2

( ∑
e−=v

i(e)−
∑
e+=v

i(e)
)

+ 1
#∂{v}

( ∑
e−=v

U(e+)i(e)
2 −

∑
e+=v

U(e−)i(e)
2

)

= U(v)
2 ∇ · i(v) + 1

#∂{v}

( ∑
e−=v

U(e+)i(e)
2 −

∑
e+=v

U(e−)i(e)
2

)
.

Adding and substracting the term

U(v)∇ · i(v)
2 ,



in the above equation, we get

∇ · (Ui)(v) = U(v)∇ · i(v) + 1
#∂{v}

∑
e∈∂{v}

DU(e)i(e)
2

= U(v)∇ · i(v) + (i ·DU)(v).

Thus, applying the Gauss formula to the function (Ui) we get

ˆ

D

∇ · (Ui) =
ˆ

∂D

Ui · ν

and applying the product rule for ∇ · (Ui) we deduce

ˆ

D

U∇ · i =
ˆ

∂D

Ui · ν −
ˆ

D

i ·DU.

3.3 Maximum Principle

We will define the Laplacian in the graph and then we will prove analogues

for the mean value formula and the maximum principle.



Definition 6. Let G = (V,E) a graph, we define ∆U : V → R by

∆U(v) = 1
#∂{v}

∑
w∼v

(U(w)− U(v)).

Definition 7. We say that the function U is subharmonic (resp. superhar-

monic) if ∆U ≥ 0 (resp. ∆U ≤ 0).

Remark 4. If U be subharmonic in D ⊆ V \ {∞} then, for each v ∈ D we

have

U(v) ≤ 1
#∂{v}

∑
w∼v

U(w).

Now, we will present the main result in this section and then, we will

show a small relationship with other fields.

Theorem 12 (Maximum Principle). Let U be subharmonic in D. Then, U

attains its maximum in ∂D.

Proof. Suppose that there exists v ∈ D such that,

U(v) = M = max
D

U

since U subharmonic, then

U(v) ≤ 1
#∂{v}

∑
w∼v

U(w)



but U(v) ≥ U(w) for all w ∈ D. Thus, U(w) = M for w ∼ v. Continuing

in this form over any w ∼ v we can conclude that U(z) = M for z ∼ w and

proceeding similarly, we have that U = M on ∂D.

Remark 5. If U is superharmonic, the same argument for −U prove that

U attains its minimum on ∂D.

Example 3. Suppose that we have the next graph

with labels {0, 1, 2, ..., N} for each vertex. Suppose that the vertices 0, N

are fixed points in the sense that if we are in these points, we stay there

always.

The problem consist in to find the probability p(x) that if a walker, starting

a random walk at the vertex x 6= 0, N , will reach the vertex N before reaching

the vertex 0.

Suppose that, in each step the walker only can go to the right (vertex x+1)

or to the left (vertex x− 1), with the same probability. If we think the event

E as "the walker ends at the vertex N", F is the event "the first step is to the



left", and G the event "the first step is to the right", then, the walker starts in

the vertex x, p(E) = p(x), p(F ) = p(G) = 1/2 and p(E givenF ) = p(x− 1),

p(E given G) = p(x+ 1) so, by conditional probability we have that

p(x) = 1
2p(x− 1) + 1

2p(x+ 1)

that is, the function p is harmonic for x ∈ {1, ..., N − 1}.

Example 4. Now, let us considere the next electrical network

The idea is to determine the voltages v(x) for each x = 1, 2, ..., N − 1.

Similar as the previous example in the random walk, we suppose that we

connected the node x = 0 with x = N putting a unit voltage, and all resistances

are equal. By Ohm’s Law, if the nodes x and y are adjacent (x ∼ y) by a

resistance of magnitude R, then the current ixy that flows from x to y is

equal to

ixy = v(x)− v(y)
R



now, by Kirchhoff’s law, the current flowing into x must be equal to the

current flowing out, thus

ix−1,x = ix,x+1, that is

v(x− 1)− v(x)
R

=v(x)− v(x+ 1)
R

,

therefore

v(x) = 1
2(v(x− 1) + v(x+ 1)),

this implies that v(x) is harmonic for x = 1, ..., N − 1. Hence, both v(x) and

p(x) are harmonics.

3.4 Dirichlet Problem

Given a domain D ⊆ V \ {∞} and a function g : ∂D → R the Dirichlet

problem consists in finding a function u satisfying


∆u = 0 in D

u = g on ∂D



Note that if u and w satisfy this problem, and we define h = u− w, then h

satisfies 
∆h = 0 in D

h = 0 on ∂D

and by the maximum principle u = w in D. In the graph, it is equivalent

to solve a system of linear equations, but another method is to find the

minimum for the Dirichlet energy, that is to minimize

min
{
E[u] = 1

2
∑
v,w

(Du(evw))2 such that u = g on ∂D
}

where evw is the edge joining v with w.

Note that for us definition of Laplacian and Divergence in the graph, we

have

∇ ·Du(v) = 1
#∂{v}

( ∑
e−=v

Du(e)−
∑
e+=v

Du(e)
)

= 1
#∂{v}

( ∑
e−=v

(u(e+)− u(v))−
∑
e+=v

(u(v)− u(e−))
)

= 1
#∂{v}

∑
w∼v

(u(w)− u(v)) = ∆u(v).

Theorem 13. If u minimizes the energy E[u] such that, u = g on ∂D, then



u solves the Dirichlet problem


∆u = 0 in D,

u = g on ∂D.

Proof. Suppose that u minimizes the energy E, thus, for all ϕ such that,

ϕ|∂D = 0 the function

h(t) = E[u+ tϕ] it is minimized for t = 0

thus
d

dt
h(t) = 0 for t = 0,

therefore

d

dt
E[u+ tϕ]|t=0 =

∑
v,w

(Du+ tDϕ)Dϕ|t=0 =
∑
e∈D

Du(e)Dϕ(e),

now, remember that

1
2#∂{v}

∑
e±=v

Du(e)Dϕ(e) = Du ·Dϕ(v).



Therefore

∑
e∈D

Du(e)Dϕ(e) =
∑
v∈D

(Du ·Dϕ)(v)#∂{v}

ˆ

D

Du ·Dϕ =
ˆ
ϕDu · νdS −

ˆ

D

ϕ∇ · (Du)

by integration by parts. Thus

d

dt
h(0) = 0 =

ˆ

D

(∇ ·Du)ϕ =
ˆ

D

(∆u)ϕ

for each ϕ. Therefore, ∆u = 0 for u = g on ∂D.

Example 5. Recall the two functions p(x) and v(x) given in the examples

in the Section 3.3. Note that the function p(x) satisfies

p(0) = 0 and p(N) = 1

because if x = 0 the probability to reach x = N is zero. But, if we are in

the vertex N the probability to reach this vertex is one. Thus, p satisfies a

Dirichlet problem.

On the other hand, if we establish a unit voltage to the node x = N and

voltage zero to the node x = 0, we note that v(x) satisfies the same Dirichlet

problem that p(x). By the uniqueness result that we obtain by the maximum



principle, we can conclude that p(x) = v(x).

Finally, if we take the function f(x) = x/N note that

1
2(x+ 1

N
+ x− 1

N
) = x

N
,

that is

f(x) = 1
2(f(x+ 1) + f(x− 1))

and f(0) = 0, f(N) = 1. Thus, f also satisfies the same Dirichlet problem.

Therefore

p(x) = v(x) = x

N
.

3.5 Newtonian Potential

Remember that in Rn there exists a fundamental solution Φ for the

Laplace equation, such that

−∆Φx(y) = δ(y)

and satisfies that lim Φ(x) → 0 as |x| → +∞, where δ(y) is the Dirac

measure. We will define the analogues for the fundamental solution in the



graph.

Definition 8. The fundamental solution for the Laplacian in the graph, will

be the function Φx(v) such that,


−∆Φx(v) = 1x(v)

Φx(∞) = 0

where

1x(v) =


1 if v = x

0 if v 6= x

The vertex “∞” in the graph G is any vertex that we choose, and we

name it of this form, these vertex was analogue to infinity in Rn.

Now, to solve −∆Φx(v) = 1x(v) in the graph is equivalent to solve a system

of linear equations, which has solution if, in the homogeneous problem the

unique solution is the zero solution.

By the maximum principle −∆Φx(v) = 0 with boundary equal zero, the

unique solution will be zero. This guarantee that the fundamental solution

there exist.



Theorem 14. The fundamental solution Φx(v) satisfies

Φx(v) = Φv(x) for (x 6= v).

Proof. From the integration by parts formula, we have

ˆ

V

Φx(z)∆Φv(z) =
ˆ

∂V=∞

Φx(z)DΦv(z) · ν −
ˆ

V

DΦx(z) ·DΦv(z),

but Φx(∞) = 0 and Φv is harmonic for z 6= v, thus

ˆ

V

Φx(z)∆Φv(z) = −Φx(v) = −
∑
z

DΦx(z)DΦv(z),

similarly

ˆ

V

Φv(z)∆Φx(z) =
ˆ

∂V=∞

Φv(z)DΦx(z) · ν −
ˆ

V

DΦv(z) ·DΦx(z),

thus

−Φv(x) = −
∑
z

DΦx(z)DΦv(z).

Therefore

Φx(v) = Φv(x).



Note that in the continuous case the proof of this result is more compli-

cated, because we need to prove convergence for this integrals due to the

fundamental solution at the singularity is "∞".

Another important function is the Green’s function for some domain

Ω ⊆ Rn. The Green’s function is useful for building one representation’s

formula for Dirichlet’s problem. In the case of the graph, we say that Gx will

be the Green’s function for D ⊆ V \ {∞} if it satisfies:


−∆Gx(v) = 1x in D

G = 0 on ∂D

The same argument that in the construction for fundamental solution, is

applied for proving the existence of Green function.

If µ is a positive measure with compact support, we define its Newtonian

potential as the convolution

Φµ(x) = Φx ∗ µ =
∑
v∈D

Φx(v)µ(v).



Thus, for measures µ, σ we can define the inner product

(µ, σ)e =
∑
v

Φµ
x(v)σ(v)

=
∑
x

∑
v

Φx(v)µ(x)σ(v)

as Φx(v) = Φv(x) we see that (µ, σ)e = (σ, µ)e and we can define the energy

for µ by

||µ||2e =
∑
x

∑
v

Φx(v)µ(x)µ(v).

Definition 9. Let D ⊆ V \{∞} be a finite graph. Let g be a function defined

on the boundary of D. This function determines a unique harmonic function

ψg, such that solves the Dirichlet problem


−∆ψ = 0 in D,

ψ = g on ∂D.

We say that µx is the harmonic measure of the domain D with respect to the

point x ∈ D if satisfies

∑
v∈∂D

ψ(v)µx(v) = ψ(x).

In the probabilistic sense µx(S) for S ⊆ ∂D measure the probability that



if a brownian motion started inside the domain ,at the point x ∈ D hits S.

On the other hand, if we think in a conductive medium, µx(S) for S ⊆ ∂D

measure the amount of current passing through S.

3.6 Perron’s Method

We have seen that it is possible to solve the Dirichlet problem in alternative

ways. In Chapter 2, we showed a useful method that is known as Perron’s

method for subharmonic functions.

Let D ⊆ V \ {∞} be bounded and let g defined on ∂D. Set

Sg = {φ : φ subharmonic in D and φ ≤ g on ∂D}.

Theorem 15. The function defined by

u(x) = sup
φ∈Sg

φ(x)

is harmonic in D.

Proof.



i) Let us see that u is subharmonic. Fix x0 ∈ D. By definition of u for

all ε > 0 there exists φ ∈ Sg such that u(x0) ≤ φ(x0) + ε, thus

u(x0) ≤ 1
#∂{x0}

∑
v∼x0

φ(v) + ε.

but φ(v) ≤ u(v), therefore

u(x0) ≤ 1
#∂{x0}

∑
v∼x0

u(v) + ε

and since ε is arbitrary we have

u(x0) ≤ 1
#∂{x0}

∑
v∼x0

u(v)

implying that, u is subharmonic in D.

ii) Now, let us define uBx0 (x) by

uBx0 (x) =


1

#∂{x}
∑
v∼x0

u(v) if x = x0,

u(x), x 6= x0,

known as the "harmonic lifting" of u. This definition implies that



u(x) ≤ uBx0 (x) and

u(x) ≤ 1
#∂{x}

∑
v∼x

u(v)

≤ 1
#∂{x}

∑
v∼x

uBx0 (v).

Hence, for x 6= x0 we have u(x) = uBx0 (x), and then

uBx0 (x) ≤ 1
#∂{x}

∑
v∼x

uBx0 (v)

where the equality holds when x = x0. Thus, uBx0 (x) is subharmonic

in D, therefore, uBx0 ∈ Sg.

iii) Note that uBx0 (x0) ≥ u(x0) but by definition of u, u(x0) ≥ uBx0 (x0)

which implies that u(x0) = uBx0 (x0). The latter guarantees that u is

harmonic in x0 and since x0 is arbitrary we have that u is harmonic in

D.

Remark 6. Note that in the proof of Perron’s method in the continuous

case we had to be careful because the proof was more constructive, and we

needed to prove uniform convergence using Harnack’s inequality. However,

the proof in the graph is easier due to punctual and uniform convergence are



equivalent.

3.7 Balayage

In this section, we will build by a recursive method the balayage measure

for a domain D ⊆ V \{∞}. Also, we will prove that this sequence of measures

converges, and that this is equivalent to solve a Dirichlet problem. This

result, it will be presented in two cases. The first one, for classical balayage

and the second one for partial balayage.

3.7.1 Classical Balayage

Here, we will present the ideas about classical balayage as in [2]. Recall

that for a measure µ, we defined its Newtonian potential by Φµ. In the

classical potential theory it is studied the change that in some way happens

to the potential when the measure µ changes, because µ can be recovered

from Φµ via

−∆Φµ = µ.

The principal idea in the balayage process is that given a measure µ in a

domain D, to build a measure ν such that ν = 0 in D, and Φµ = Φν on Dc.



It is the process of cleaning D from any mass of µ in such a way that the

potential remains unchanged outside D. The process of to change (µ→ ν)

more explicit is the requirements

ν = 0 in D;

Φν =Φµ on Dc

we remark that it is allowed that µ has mass also outside D. Part of µ will

be unchanged, while µ|D will redistribute on ∂D.

The most intuitive way of producing ν from µ is by minimizing the energy

for the change:

min ||µ− ν||2e : ν = 0 in D.

Another way of constructing the balayage measure is by solving a Dirichlet

problem: let V be the solution of


−∆V = 0 in D,

V = Φµ on ∂D,

and extend V by V = Φµ outside D. Thus, V will be the potential of a

measure ν, V = Φν and this measure satisfies the required properties. Now,



in terms of the difference u = Φµ − V we have ∆u = ν − µ, hence


−∆u = µ in D,

u = 0 on Dc,

the notation for this process in general is

ν = Bal(µ,Dc) = µ+ ∆u.

Theorem 16. Let Ω ⊆ Rn and {Bi} a collection of balls such that, for every

N ∈ N
⋃
i≥N

Bi = Ω.

Let u0 be a subharmonic function in C(Ω) and define ui recursively by taking

the harmonic lifting of ui−1 over Bi. Then ui → u locally uniformly in Ω for

some u harmonic.

Proof. Similar to the proof of the Schwarz method we will prove that the

sequence (ui)i∈N is monotone and bounded. Let x ∈ Ω thus, there exists

Bj ∈ {Bi} such that, x ∈ Bj. Moreover, there exists ε > 0 such that,

B(x, ε) ⊂ Bj. Note that uj is harmonic in Bj thus, is harmonic in B(x, ε).

Now, uj+1 is harmonic in Bj+1 and uj+1 = uj on Ω \ Bj+1 thus, uj+1 is

harmonic in B(x, ε). Then, uk is harmonic in B(x, ε) for all k ≥ j. Since



{uk} is monotone and bounded, it converges puntually and by Harnack

inequality, this convergence is uniform, uk → u which is harmonic in B(x, ε)

thus, ui converges locally uniformly in Ω for some u harmonic.

Now, we will present the main result in the Classic Balayage Process for

graphs.

Theorem 17. Let D ⊆ V \{∞}, µ0 : V → [0,+∞) such that supportµ0 ⊆ D

and {xi} a collection of vertices such that for every N ∈ N

⋃
i≥N
{xi} = D.

Let u0 = 0 (the zero function) and define recursively

µi = µi−1 + µi−1(xi)∆δxi ,

ui = ui−1 + µi−1(xi)δxi ,

then, (ui)i∈N converges to the unique solution of


−∆u = µ0 in D,

u = 0 on ∂D.



Proof. By the definition of ui and µi, it is satisfied


−∆ui = µ0 − µi in D,

ui = 0 on ∂D.

(3.1)

Now, let us see that ui converges. First, note that ui = ui−1 + µi−1(xi)δxi

thus, ui ≥ ui−1 implying that, ui is increasing monotone. We just need to

prove that ui is bounded in D. To see this, since ui satisfies (3.1) we define

φi = Φµ0 − Φµi where Φ is the fundamental solution and Φµ0 , Φµi are the

Newtonian potential associated to µ0, µi respectively. Thus,

∆φi = µi − µ0.

By Perron’s method, we can solve


∆ψi = 0 in D,

ψi = −φi on ∂D,

and ui can be written as ui = φi + ψi. Now, it is only necessary to verify

that φi is bounded in D.

φi = Φµi − Φµ0 ≤ Φµ0 < +∞ in D therefore, ui → u for some u.



This implies that ∆ui → ∆u thus, µi converges. Note that for each x ∈ D

there exists xk1 ∈ {xi} such that, x = xk1 and µk1(x) = 0. By definition from

D

D =
⋃
i>k1

{xi},

therefore, there exists xk2 such that x = xk2 and µk2(x) = 0 for k1 > k2.

Continuining in the same way we build a subsequence of µi such that,

µik(x)→ 0.

therefore, µi(x)→ 0 and u satisfies


−∆u = µ0 in D

u = 0 on ∂D

In the continuous case minimizing the energy for the measures we can

build the balayage measure, in this sense of the graph will be

min ||ν − µ||2e : ν = 0 in D and
∑

ν =
∑

µ = 1



where

||µ||2e =
∑
x

∑
y

µ(x)µ(y)Φx(y)

hence,

||ν − µ||2e =
∑
x

∑
y

(ν − µ)(x)(ν − µ)(y)Φx(y)

=
∑
x∈D

∑
y∈D

(ν − µ)(x)(ν − µ)(y)Φx(y) +
∑
x/∈D

∑
y/∈D

(ν − µ)(x)(ν − µ)(y)Φx(y)

+2
∑
x∈D

∑
y/∈D

(ν − µ)(x)(ν − µ)(y)Φx(y)

= F1(ν) + F2(ν) + F3(ν)

note that DνF1(ν) = 0 because ν = 0 in D now,

DνF2(ν) = 2
∑
y∈V

Φx(y)(ν − µ)(y)

and F3 is linear in ν, so DνF3(ν) = 1, hence

2
∑
y∈V

Φx(y)(ν − µ)(y) = λ

or equivalently

Φν − Φµ = λ

2 if x /∈ D



but Φ(∞) = 0 because ∞ /∈) thus, λ = 0 therefore,

∑
y∈V

Φx(y)(ν − µ)(y) = 0

it defines Bal(µ,Dc) and satisfies Φν = Φµ on Dc.

3.7.2 Partial Balayage

In this section, analogous as in the classical balayage, we will see the

process for a "partial sweeping" of a domain D where the distribution of mass

depending to another measure. Thus, partial balayage means that we only

make some partial cleaning. The role of the domain D is then, taken over by

a measure λ which tells how much mass is allowed to be left.

Theorem 18. Let D ⊆ V \ {∞}

λ : V → [0,+∞]

µ0 : V → [0,+∞)

such that sptµ0 ⊆ D and λ(∞) = +∞. Let {xi} a collection of vertices such

that for every N ∈ N
⋃
i≥N
{xi} = D



define recursively µi and ui as:

µi = µi−1 + (µi−1 − λ)+(xi)∆δxi

ui = ui−1 + (µi−1 − λ)+(xi)δxi

for u0 = 0. Then, for every x ∈ V

lim ui(x) = u(x) = inf{v(x) : v ≥ 0 and ∆v ≤ λ− µ0}

moreover, u is the unique solution of


min(−∆u+ λ− µ0, u) = 0 in D

u = 0 on ∂D

Here, the idea unlike the classical balayage is to do a “partial sweeping”

of µ0, in which a certain density of measure is allowed to remain in D. The

amount or density of measure allowed is less than the density of measure

given by λ. Thus, the measure λ says how is sweeping the domain D, it is, λ

is an upper bound for the process.



Proof. Note that each ui satisfies


∆ui = µi − µ0 in D

ui = 0 on ∂D

Then, using the same argument as in Theorem 17, we can prove that the

sequence ui converges and let u this limit.

Now, let us see that u satisfies min(−∆u+ λ− µ0, u) = 0 in D.

Suppose that x ∈ {u > 0} since ui(x)→ u(x) > 0 then, there exists N

such that, ui(x) > 0 for all i ≥ N . This condition implies that µk1−1(x) >

λ(x) and x = xk1 for some k1 ∈ N therefore, µk1(x) = λ(x). By the fact that

⋃
i>k1

{xi} = D

there exists a k2 > k1 such that, x = xk2 and µk2(x) = λ(x). In the same

way we can obtain a subsequence {xkj} such that, µkj(x) → λ(x), but we

know µi converges thus, ui(x)→ λ(x).

This implies that for x ∈ {u > 0} we have that −∆u(x)+λ(x)−µ0(x) = 0

Thus, min(−∆u+ λ− µ0, u) = 0.

Now, let us see that u ≤ v for each v ∈ {w : w ≥ 0 and ∆w ≤ λ− µ0}.



• If x ∈ {u = 0} the inequality it holds by the fact that each v ≥ 0.

• Now, let us take D \ {u = 0} then, u > 0 and ∆u = λ − µ0 thus,

∆v ≤ ∆u for all v ∈ {w : w ≥ 0 and ∆w ≤ λ − µ0}. If we define

h = v − u then, h|∂(D\{u=0}) = v ≥ 0 and

∆h = ∆v −∆u ≤ 0 then, h is superharmonic

therefore, h ≥ 0 in D \ {u = 0} and u ≤ v in D. Moreover, u ∈ {w :

w ≥ 0 and ∆w ≤ λ− µ0} = A then,

u(x) = inf
v∈A

v(x) = u(x)
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