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Introduction

The Monge-Ampère (M-A) equation is an important fully nonlinear el-
liptic equation. Its study is motivated from problems in di�erent areas of
knowledge. Research on the subject is vast, and we shall not list the exten-
sive literature. We just refer the reader to [3] and references therein.

We study the M-A equation motivated by shape optimization. In partic-
ular, the Newton problem of minimal resistance. In 1685 Newton studied the
problem of �nding the shape of a body which moves in a �uid with minimal
resistance to motion. A solution in his words (from Principia Mathematica):

If in a rare medium, consisting of equal particles freely disposed at equal
distances from each other, a globe and a cylinder described on equal diameter
move with equal velocities in the direction of the axis of the cylinder, (then)
the resistance of the globe will be half as great as that of the cylinder. . . . I
reckon that this proposition will be not without application in the building of
ships.

The problem is still open and of great interest, see the survey in [2]. A
more recent work is [6].

A �rst objective of this work, it to present the modern Variational Anal-
ysis version of the Newton problem. The underlying model is based, essen-
tially, on the same assumptions that Newton made. It is shown that the
problem corresponds to the minimization of a functional. Remarkably, in
subdomains where the solution is smooth, the Monge Ampere equation must
be satis�ed as a necessary condition of optimality.

The M-A is a fully nonlinear elliptic equation, the well posedness of the
Dirichlet Problem is a natural and nontrivial problem to be addressed. Al-
though, the Newton problem leads to smooth solutions of the M-A equation,
here we are content with establishing existence and uniqueness of general-
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ized, as well as, viscosity solutions. We follow the presentation of [5].

With the Newton problem in perspective, we explore in the smooth case,
the numerical solution of the M-A equation. In [1], a meshless approach is
developed with polynomials a basis functions. Alternatively, we propose the
classic Radial Basis Functions (RBF) interpolation. We develop a scheme
using the Gaussian RBF as basis for approximation. Our results are prelim-
inary but satisfactory. The potential will become apparent.

The outline of this multidisciplinary presentation of the M-A equation is
as follows.

In Chapter 1, we present the modern analysis of the Newton Problem as
in [3] or [5]. We revisit the problem in the jargon of �uid mechanics to derive
the mathematical model. We are led to a variational problem, namely, the
minimization of the functional of minimal resistance. The latter is evaluated
on the half sphere and cylinder, obtaining Newton's conclusion.

Next, we introduce an admissible class of functions to study the minimal
resistance functional. The variational analysis is carried out next. We show
that the minimization problem is solvable, and smooth solutions on open
subsets, necessarily satisfy the Monge-Ampere equation therein.

The well posedness of the Dirichlet problem for the Monge-Ampere equa-
tion is the content of Chapter 2.

In Chapter 3 we develop a numerical method to solve the M-A equation
with Dirichlet conditions. We review the basics of RBF interpolation to
develop a meshless scheme for approximation.

Conclusions and future work are described in the last chapter.
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Chapter 1

The Newton problem of minimal

resistance

In 1685 Newton studied the problem of �nding the shape of a body which
moves in a �uid with minimal resistance to motion. A solution in his words
(from Principia Mathematica):

If in a rare medium, consisting of equal particles freely disposed at equal
distances from each other, a globe and a cylinder described on equal diameter
move with equal velocities in the direction of the axis of the cylinder, (then)
the resistance of the globe will be half as great as that of the cylinder. . . . I
reckon that this proposition will be not without application in the building of
ships.

This chapter presents the modern analysis as in [3] or [5]. We revisit
the problem in the jargon of �uid mechanics to derive the mathematical
model. We are led to a variational problem, namely, the minimization of the
functional of minimal resistance. The latter is evaluated on the half sphere
and cylinder, obtaining Newton's conclusion.

Next, we introduce an admissible class of functions to study the minimal
resistance functional. The variational analysis is carried out next. We show
that the minimization problem is solvable, and smooth solutions on open
subsets, necessarily satisfy the Monge-Ampere equation therein.
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1.1 Mathematical Modeling

Let us start with an introduction to the Newton problem of aerodynam-
ical pro�les. Finding the pro�le of a body with minimal resistance (either
aerodynamical or hydrodynamical) to movement is one of the �rst problems
in variational calculus.

In 1685 Sir Isaac Newton studied this problem presenting a model to study
the resistance of a pro�le to the motion in an inviscid and incompressible
medium. The assumptions used by Newton to simplify his model are the
following:

� the body is imbedded in a particle �ow of uniform velocity v0;

� the resistance comes as result of particles hitting the surface, and the
particles hit with a perfect elastic collision;

� other e�ects like vorticity and turbulence are not considered.

We consider our surface as the graph of a function u = u(x, y) de�ned in
a domain D ⊂ R2.

Let us start deducing a functional J based on the previous hypothesis.
This funcional should be such that minimizing J is equivalent to �nding a
surface generated by u that minimizes motion resistance.

In order to �nd J we start studying the impact of a particle with a surface.
Consider a particle of an inviscid �uid hitting the surface with perfect elastic
collision.

The momentum before the hit is given by

M− = mv0, (1.1)

where v0 is the velocity vector. Then, if ν is the normal vector to the surface
at the hitting point, we have that

M− = mv0 = m((v0 · ν)ν + (v0 · τ)τ). (1.2)

Here τ is the tangential component at the hitting point.
Perfect elastic collision means that the direction of the velocity changes,

while the modulus of the velocity (the kinetic energy) is preserved. The
direction of the velocity changes by preserving its tangential component and
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re�ecting its normal component. Consequently, the momentum after the hit
is given by

M+ = m(−(v0 · ν)ν + (v0 · τ)τ). (1.3)

Then the di�erence is
∆M = −2m(v0 · ν)ν. (1.4)

Also, by Newton's second law, the derivative of the momentum is the
force

F (x, t) =
d

dt
M(x, t), (1.5)

where

M(x, t) =

{
M− if t < t0,
M+ if t > t0.

(1.6)

Since the M is discontinuous on t0, we take the derivative in the general-
ized sense.

So, if ϕ is a C∞0 function

〈Ṁ, ϕ〉 = −
∫
R
Mϕ′

= −M−
∫ t0

−∞
ϕ′ −M+

∫ ∞
t0

ϕ′

= −M−ϕ(t0) +M+ϕ(t0)

= (M+ −M−)ϕ(t0)

= 〈(M+ −M−)δt0 , ϕ〉.

Consequently,
Ṁ = (M+ −M−)δt0 ≡ ∆Mδt0 .

Let us consider v0 = (0, 0,−z0) a velocity vector, u = u(x, y) a surface in
R3, with u de�ned on D ⊂ R2, and ν an orthogonal vector to u, given by

ν =
1√

(∂u
∂x

)2 + (∂u
∂y

)2 + 1

(
− ∂u

∂x
,−∂u

∂y
, 1

)
.

Then, the force is

F = −2mv0 · νδt0ν =
2mz0√
|Ou|2 + 1

δt0ν. (1.7)
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The resistance is given by the third coordinate of F , that is

Fres =
2mz0

|Ou|2 + 1
. (1.8)

The total resistance can be expressed as

2mz0

∫
D

1

|Ou|2 + 1
dxdy. (1.9)

Hence, the functional to minimize is

J(u) =

∫
D

1

|Ou|2 + 1
dxdy. (1.10)

Unless otherwise stated, J is always the Newton functional obtained
above.

In the book Principia Mathematica, Newton claims that, under the men-
tioned hypothesis, if a globe and a cylinder described on equal diameter move
with equal velocities in the direction of the axis of the cylinder, the resistance
of the globe will be half as great as that of the cylinder.

Indeed, if D is the disc of radius R with center in the origin, then

u(x, y) = ϕ(r) =
√
R2 − r2 (1.11)

and
∂u

∂x
= ϕ′(r)

∂r

∂x
= ϕ′(r)

x

r
. (1.12)
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Then

J(u) = 2π

∫ R

0

1(
ϕ′(r)

((
x2

r2

)
+
(
y2

r2

)))2
+ 1

rdr

= 2π

∫ R

0

r

ϕ′(r)2 + 1

= 2π

∫ R

0

r

( −r
ϕ(r)

)2 + 1

= 2π

∫ R

0

(R2 − r2)r

R2
dr

= 2π

(
r2

2
− 1

R2

r4

4

)∣∣∣∣R
0

=
πR2

2
.

On the other hand, in the cylinder case, for ũ(x, y) = 1 we have that

J(ũ) =

∫
D

1

1
dA

= πR2.

Notheworthy, the result claimed by Newton is obtained.

1.2 The M-A equation as a constraint in the

Newton Problem

This section relies heavily on Analysis. We use results from Real and
Variational Analysis as in [4] and [3], [7]. Some of these results are listed in
the appendix. We only provide some proofs to illustrate the �avour of the
theory.

1.2.1 An admissible class of functions

We are led to study the resistance functional. As customary, a class of
admissible functions needs to be determined.
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In the next examples we show that, the class of admissible functions con-
tains concave and bounded functions. Otherwise, solutions for the Newton
problem need not exist.

First let us see that boundedness is a necessary condition.

Example 1 Let us consider the sequence {un} de�ned as

un(x) = nd(x, ∂D),

where d(x, ∂D) is the distance function.
Letting n→∞ we have that J(un)→ 0. But J(u) > 0 for every function

u, which means that it is not possible to �nd an optimal function.

Now let us see that concaveness is a necessary condition.

Example 2 Lets consider a sequence of functions {un} with 0 ≤ un ≤ M ,
de�ned as

un(x) = M sin2(n|x|2).

Then

Oun(x) = 4Mn cos(n|x|2) sin(n|x|2) · x.

Notice that the set

S = {x : cos(n|x|2) = 0 or sin(n|x|2) = 0 for some n ∈ N}

has measure zero. Then

J(un) =

∫
D

1

1 + |Oun(x)|2
dx

=

∫
D\S

1

1 + |Oun(x)|2
dx+

∫
S

1

1 + |Oun(x)|2
dx

=

∫
D\S

1

1 + |Oun(x)|2
dx,

and then J(un)→ 0 when n→∞.
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Lets choose then a set of admissible functions where we can guarantee
the existence of solutions for the Newton problem.

De�nition 3 For every M > 0, we de�ne CM the set

{u: u is concave in D and 0 ≤ u ≤M}.

Let us consider the general case of cost functionals of the form

F (u) =

∫
D

f(x, u,Ou)dx,

where D is a given subset of RN , and the integrand f satis�es the next
hypothesis:

H1 the function f : D × R× RN → R is nonnegative and measurable in
the σ-algebra LN ⊗ B ⊗ BN ;

H2 for all x ∈ D the function f(x, ·, ·) is lower-semicontinuous in R×RN .

The resistance Newton functional is described by the integrand

f(z) =
1

1 + |z|2
.

The set of admissible functions is CM , for a givenM > 0. Then, the minimum
problem to consider is

min{F (u) : u ∈ CM}.

1.2.2 The Newton functional and the M-A equation

As the functions on CM are continuous and bounded, they are locally
Lipschitz, and then measurable.

Lets �rst remember the de�nition of Sobolev spaces.

De�nition 4 The Sobolev space

W k,p(U)

consists of all summable functions u : U → R such that for each multi-index
α with |α| ≤ k, Dαu exist in the weak sense and belongs to LP (U). We say
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that u ∈ W k,p
loc (U) if for every V ⊂⊂ U , u ∈ W k,p(V ).

We need the next lemma to show that our minimization problem is solv-
able.

Lema 5 For every M > 0 and p < ∞, the class CM is compact respect to
the strong topology of W 1,p

loc (D).

The next theorem says that our minimization problem has a solution on
CM .

Theorem 6 Under the hypothesis H1 and H2, for every M > 0, the mini-
mum problem

min{F (u) : u ∈ CM}

has at least one solution.

In particular, the Newton problem has a solution for every M > 0.

If u is a solution of the previous minimum problem and, in an open set
ω we have that:

1. u is of class C2;

2. u does not attain the maximal value M ;

3. u is strictly concave in the sense that its Hessian matrix is negative
de�nite,

then, it can be proven that the second variation is given by,

δ2J(u, φ, φ) =

∫
ω

2

(1 + |Ou|2)3
(4(OuOφ)2 − (1 + |Ou|2)|Oφ|2)dx ≥ 0. (1.13)

For the following two theorems, we included a brief appendix on varia-
tional calculus. In particular, using the notation from the appendix, U = CM
and V = W 1,p

loc (D).

From the expression (1.13) we get the following theorem.
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Theorem 7 Let D be a disc. Then, a solution of the Newton problem

min

{∫
D

1

1 + |Ou|2
dx : u ∈ CM

}
cannot be radial.

Proof Let us proceed by contradiction and assume that u is a radial solution.
It can be proven that, outside of a circle of radius r0 where u ≡ M , the
function u is smooth, strictly concave and does not attain its maximum M .
Then, we can use (1.13). We can take a function φ such that φ(r, θ) =
η(r) sin(kθ) for some k ∈ N with supp(η) ⊂ (r0, R) where R is the radius of
D. Then, from (1.13) and using the change of variable theorem, and since u
is a radial function

0 ≤
∫ R

r0

r

(1 + u2
r)

3

[
− (1 + u2

r)

(
η2
r(r)

∫ 2π

0

sin2(kθ)dθ

+ 2ηr(r)
η(r)

r
k

∫ 2π

0

sin(kθ) cos(kθ)dθ +
k2η2(r)

r2

∫ 2π

0

cos2(kθ)dθ

)
+ 4u2

rφ
2
r

]
dr

=

∫ R

r0

r

(1 + u2
r)

3

[
− (1 + u2

r)

(
η2
r(r)π +

k2η2(r)

r2
π

)
+ 4u2

rφ
2
r

]
dr.

Then, for k big enough, the integrand becomes negative, which is a contra-
diction. �

Lets notice that the function u ± εφ is in CM for a suitable ε < ε0.
Indeed, lets de�ne K = supp(η). Since u is strictly concave on (r0, R), then
the eigenvalues of it's Hessian matrix are both negative. We will show that it
is possible to �nd ε such that the eigenvalues of the Hessian of the function
v(x, y) := u(x, y)± εη(r) sin(kθ) are negative too. First lets notice that

φx = ηr(r) sin(kθ)
x√

x2 + yy
− η(r) cos(kθ)k

y

x2 + y2
,

φy = ηr(r) sin(kθ)
y√

x2 + yy
+ η(r) cos(kθ)k

x

x2 + y2
.
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Then,

vxx = uxx ± ε
(
ηrr(r) sin(kθ)

x2

x2 + y2
− η(r) sin(kθ)k2 y2

(x2 + y2)2

)
,

vyy = uyy ± ε
(
ηrr(r) sin(kθ)

y2

x2 + y2
+ η(r) sin(kθ)k2 x2

(x2 + y2)2

)
.

The eigenvalues of the Hessian matrix are both negative if and only if

uxx + uyy < 0 and uxxuyy > 0.

We have that

vxxvyy = uxxuyy ± εuxx
(
ηrr(r) sin(kθ)

y2

x2 + y2
+ η(r) sin(kθ)k2 x2

(x2 + y2)2

)
± εuyy

(
ηrr(r) sin(kθ)

x2

x2 + y2
− η(r) sin(kθ)k2 y2

(x2 + y2)2

)
+ ε2

(
η2
rr(r) sin2(kθ)

x2y2

(x2 + y2)2
− η2(r) sin2(kθ)k4 x2y2

(x2 + y2)4

)
.

We are looking for ε1 > 0 such that

vxxvyy > 0

which happens if

uxxuyy > ε1||uxx||(||ηrr||+ ||η||k2) + ε1||uyy||(||ηrr||+ ||η||k2) + ε2
1||ηrr||2

for every (x, y) in sopp(φ). Since sopp(φ) is compact and uxxuyy > 0 on this
set, then such ε1 exists. On the other hand,

vxx + vyy = uxx + uyy ± ε
(
ηrr(r) sin(kθ) + η(r) sin(kθ)k2 x2 − y2

(x2 + y2)2

)
.

We are looking for ε2 > 0 such that

vxx + vyy < 0.

This happens if

−(uxx + uyy) > ε2(||ηrr||+ ||η||k2)
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for every (x, y) in sopp(φ). Since sopp(φ) is compact and uxx + uyy < 0 on
this set, then such ε2 exists.

Let r1, r2 be such that sopp(η) = [r1, r2]. We know that r0 < r1 < r2 < R.
Lets de�ne M1 = u(r1) and M2 = u(r2). First notice that u is a decreacing
function of r. Then, for every r ∈ [r1, r2] we can �nd εr > 0 such that

M1 > u(r)± εr||η|| > M2.

Using compacity we can �nd ε3 > 0 such that

M1 > u(r)± ε3||η|| > M2.

for every r ∈ [r1, r2]. Finally we can de�ne ε0 = min{ε1, ε2, ε3}.
With the last theorem we can conclude that the Newton problem has no

unique solution. This is because we can always take a solution, rotate it and
get a new one.

The next theorem give us a necessary condition for a function u, in order
to solve the Newton problem.

Theorem 8 Let D be a convex domain and u a solution of the Newton
problem. Assume that in an open set ω the function u is of class C2 and
does not attain its maximum M . Then

detD2u = 0 in ω. (1.14)

Proof Let us proceed by contradiction. Fix x0 ∈ ω and let a be a unit vector
orthogonal to Ou(x0). Assume that the equation (1.14) is not satis�ed. Then,
D2u is negative de�nite, so we can use the inequality (1.13) for every function
φ with support in a small neighborhood of x0. Take

φ(x) = η(x) sin(ka · x),

where the support of η is in a small neighborhood of x0. Then

Oφ(x) = sin(ka · x)Oη(x) + cos(ka · x)η(x)ka.

Notice that

(Ou(x)Oφ(x))2 = sin2(ka · x)(Oη(x)Ou(x))2

+ 2k sin(ka · x) cos(ka · x)η(x)(Ou(x)Oη(x))(Ou(x) · a)

+ k2(Ou(x) · a)2 cos2(ka · x)η2(x)
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and

|Oφ(x)|2 = sin2(ka · x)|Oη(x)|2

+ 2k sin(ka · x) cos(ka · x)η(x)(Oη(x) · a)

+ k2|a|2 cos2(ka · x)η2(x).

Then, for k large enough, using (1.13) we have

δ2J(u, φ, φ) =

∫
ω

2 cos2(ka · x)η2(x)

(1 + |Ou(x)|2)3
(4(a · Ou(x))2 − (1 + |Ou(x)|2))dx+ o(

1

k
)

≥ 0

As cos2(ka · x) ∈ [0, 1] for every x, then∫
ω

2η2(x)

(1 + |Ou(x)|2)3
(4(a · Ou(x))2 − (1 + |Ou(x)|2))dx+ o(

1

k
) ≥ δ2J(u, φ, φ)

≥ 0.

Making the support of η tend to x0 then

η(x)(Ou(x) · a)→ 0,

and so

4(a · Ou(x))2 − (1 + |Ou(x)|2) < 0

then

δ2J(u, φ, φ) < 0,

which is a contradiction. �
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Chapter 2

The Dirichlet problem for the

Monge-Ampere equation

In the previous chapter we saw that a required optimality condition is the
existence of a subset ω ⊂ Ω where the Monge-Ampère equation is satis�ed.
This motivates the study of this equation that we carry out in this chapter.
Here we are content with establishing existence and uniqueness of generalized,
as well as, viscosity solutions for the Dirichlet problem. Most of the theorems
in this chapter can be found in [5].

2.1 Generalized solutions

Lets start with a couple of de�nitions.

De�nition 9 Let Ω ⊂ RN be open and u : Ω → R. Given x0, a supporting
hyperplane to the function u at the point (x0, u(x0)) is an a�ne function
l(x) = u(x0) + p · (x− x0) such that u(x) ≥ l(x) for every x ∈ Ω.

De�nition 10 The normal mapping of u, or subdi�erential is the set-valued
function ∂ : Ω→ P(Rn) de�ned by

∂u(x0) = {p : u(x) ≥ u(x0) + p · (x− x0), for every x ∈ Ω}.

Given E ⊂ Ω, we de�ne ∂u(E) = ∪x∈E∂u(x).
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Lets note that the set ∂u(x0) may be empty.

The normal mapping has the following properties.

Proposition 11 Let S = {x ∈ Ω : ∂u(x) 6= ∅}.
(a) If u ∈ C1(Ω) and x ∈ S then ∂u(x) = Du(x), in other words, when

u is di�erentiable the normal mapping is the gradient.
(b) If u ∈ C2(Ω) and x ∈ S, the Hessian of u is positive semi-de�nite,

that is D2u(x) ≥ 0. This means that if u ∈ C2(Ω), S is the set where the
graph of u is concave up.

The following lemma is useful to proof some of the results in this chapter.

Lemma 12 If Ω ⊂ RN is open, u ∈ C(Ω) and K ⊂ Ω is compact, then
∂u(K) is compact.

Proof Let {pm} ⊂ ∂u(K) a sequence. We claim that {pm} is bounded. For
every m there exist xm ∈ K such that pm ∈ ∂u(xm), that is

u(x) ≥ u(xm) + pm · (x− xm)

for every x ∈ Ω. Since K is compact, the set Kδ = {x : dist(x,K) ≤ δ} is
compact, and it is contained in Ω for δ small. Without loss of generality we
can assume that there exist x0 ∈ K such that xm → x0. Then xm + δw ∈ Kδ

and

u(xm + δw) ≥ u(xm) + δpm · w

for every |w| = 1 and m. If pm 6= 0 and w = pm/|pm|, then

max
Kδ

u(x) ≥ min
K

u(x) + δ|pm|

for every m. Since u is locally bonded, the claim is proved. Consequently
there exist p0 and a sequence {pmk} such that pmk → p0. We claim that
p0 ∈ ∂u(K). We shall prove that p0 ∈ ∂u(x0). We have

u(x) ≥ u(xmk) + pmk · (x− xmk)

for every x ∈ Ω, and since u is continuous, by letting m→∞ we obtain

u(x) ≥ u(x0) + p0 · (x− x0)
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for all x ∈ Ω. �

The following lemmas are used in the proofs of following results.

Lemma 13 If u is a convex function in Ω and K ⊂ Ω is compact, then u is
uniformly Lipschitz on K, that is, there exists a constant c = c(u,K) such
that |u(x)− u(y)| ≤ c|x− y| for every x, y ∈ K.

Lemma 14 If Ω is open and u is Lipschitz in Ω, then u is di�erentiable a.e.
in Ω.

Lemma 15 If u is concave up (concave down) in Ω, then u is di�erentiable
in all Ω.

De�nition 16 The Legendre transform of the function u : Ω → R is the
function u∗ : RN → R de�ned as

u∗(p) = sup
x∈Ω
{x · p− u(x)}.

Remark If Ω is bounded and u is bounded in Ω then u∗ is �nite. Also, u∗

is convex in RN .

The next lemma helps us to show some properties of the Monge-Ampère
measure, which is introduced in the following theorem.

Lemma 17 If Ω is open and u is continuous in Ω, then the set of points in
RN that belong to the image by the normal mapping of more than one point
of Ω has Lebesgue measure zero. That is, the set

S = {p ∈ RN : there exist x, y ∈ Ω, x 6= y and p ∈ ∂u(x) ∩ ∂u(y)}

has measure zero. This also means that the set of supporting hyperplanes
that touch the graph of u at more than one point has measure zero.

In the following theorem we de�ne the Monge-Ampère measure and show
some of its properties.

Theorem 18 If Ω is open and u ∈ C(Ω), then the class

S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable}
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is a Borel σ-algebra. The set function Mu : S → R de�ned by

Mu(E) = |∂u(E)|,

is a measure, �nite on compacts, that is called the Monge-Ampére measure
associated with the function u.

Proof By lemma 12, S contains every compact subset of Ω. By de�nition,
for every E ⊂ Ω,

∂u(E) = ∪x∈E∂u(x).

Then, if {Em} is a sequence of subsets in Ω,

∂u(∪mEm) = ∪m ∪x∈Em u(x) = ∪m∂u(Em).

Hence, if Em ∈ S for m = 1, 2, ..., then ∪mEm ∈ S. In particular, we can
write Ω = ∪mKm with Km compact, and then Ω ∈ S.To show that S is a
σ-algebra, it remains to show that if E ∈ S then Ω\E ∈ S. For every E ⊂ Ω
we have that

∂u(Ω\E) = (∂u(Ω)\∂u(E)) ∪ (∂u(Ω\E) ∩ ∂u(E)). (2.1)

By lemma 17, |∂u(Ω\E)∩∂u(E)| = 0 for every E. Then, from (2.1), Ω\E ∈ S
if E ∈ S.
We now show that Mu is σ-additive. Let {Ei}∞i=1 be a sequence of disjoint
sets in S and set ∂u(Ei) = Hi. We must show that

|∂u(∪∞i=1Ei)| =
∞∑
i=1

|Hi|.

Since ∂u(∪∞i=1Ei) = ∪∞i=1Hi, we shall show that

| ∪∞i=1 Hi| =
∞∑
i=1

|Hi|. (2.2)

We have Ei ∩ Ej for i 6= j. Then, by lemma 17 |Hi ∩Hj| = 0 for i 6= j. Let
us write

∪∞i=1Hi = H1 ∪ (H2\H1) ∪ (H3\(H1 ∪H2)) ∪ (H4\(H1 ∪H2 ∪H3)) ∪ ...,

20



where the sets on the right-hand side are disjoint. Now

Hn = [Hn ∩ (H1 ∪H2 ∪ ... ∪Hn)] ∪ [Hn\(H1 ∪H2 ∪ ... ∪Hn)].

Then by lemma 17 |Hn ∩ (H1 ∪H2 ∪ ... ∪Hn)| = 0 and we obtain

Hn = [Hn\(H1 ∪H2 ∪ ... ∪Hn)].

Consequently (2.2) follows, and the proof of the theorem is complete. �

The next theorem is useful to proof an important property of the Monge-
Ampère measure.

Sard's Theorem 19 Let Ω ⊂ RN be an open set and g : Ω → RN a C1

function in Ω. If S0 = {x ∈ Ω : det g′(x) = 0}, then |g(S0)| = 0.

Proposition 20 Let u ∈ C2(Ω) be a convex function, then the Monge-
Ampère measure Mu associated with u satis�es

Mu(E) =

∫
E

detD2u(x)dx, (2.3)

for every Borel set E ⊂ Ω.

Proof First lets notice that since u is convex and u ∈ C2(Ω), then Du is
1-1 in the set A = {x ∈ Ω : D2u(x) > 0}. Indeed, let x1, x2 ∈ A with
Du(x1) = Du(x2). By convexity

u(z) ≥ u(xi) +Du(xi) · (z − xi), z ∈ Ω, i = 1, 2.

Hence

u(x1)− u(x2) = Du(x1) · (x1 − x2) = Du(x2) · (x1 − x2).

By the Taylor formula we can write

u(x1) = u(x2) +Du(x2) · (x1 − x2) +

∫ 1

0

t < D2u(x2 + t(x1 − x2))(x1 − x2), x1 − x2 > dt.

Therefore the integral is zero and the interand must vanish for 0 ≤ t ≤ 1
because D2u is positive de�nite and t ≥ 0. Since x2 ∈ A, we have that
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x2 + t(x1 − x2) ∈ A for t small. Then x1 = x2. If u ∈ C2(Ω), then g = Du ∈
C1(Ω). We have Mu(E) = |Du(E)| and

Du(E) = Du(E ∩ S0) ∪Du(E\S0).

Since E ⊂ Rn is a Borel set, E ∩ S0 and E\S0 are also Borel sets. Then, by
the formula of change of variables and Sard's theorem,

Mu(E) = Mu(E ∩ S0) +Mu(E\S0) =

∫
E\S0

detD2u(x)dx =

∫
E

detD2u(x)dx

which shows (2.3). �

Now we can introduce the notion of generalized solutions for the Monge-
Ampère equation.

De�nition 21 Let ν a Borel measure de�ned in Ω, an open and convex
subset of Rn. The convex function u ∈ C(Ω) is a generalized solution to the
Monge-Ampère equation

detD2u = ν

if the Monge-Ampère measure Mu associated with u equals ν.

Remark In the above de�nition, the equality detD2u = ν means that, for
every Borel set E ⊂ Ω, Mu(E) = v(E).

Next we have a few properties of the normal mapping.

Lemma 22 Let un ∈ C(Ω) be convex functions such that un → u uniformly
on compact subsets of Ω. Then,

(i) If K ⊂ Ω is compact, then

lim ∂un(K) ⊂ ∂u(K),

and by Fatou's lemma

lim |∂un(K)| ≤ |∂u(K)|,

(ii) If A ⊂ Ω is open, then

lim ∂un(A) ⊂ ∂u(A),
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and by Fatou's lemma

lim |∂un(A)| ≤ |∂u(A)|.

Lemma 23 If un are convex functions in Ω such that un → u on compact
subsets of Ω, then the Monge-Ampère measure Mun tend to Mu weakly, that
is, ∫

Ω

f(x)dMun(x)→
∫

Ω

f(x)dMu(x)

for every f continuous with compact support in Ω.

2.1.1 Viscosity solutions

Generalized solutions are not the only kind of solutions that we can study.
The viscosity solutions are de�ned as follows.

De�nition Let u ∈ C(Ω) be convex and f ∈ C(Ω), f ≥ 0. The function u
is a viscosity subsolution (supersolution) of the equation detD2u = f in Ω if
for every φ ∈ C2(Ω) convex and x0 ∈ Ω such that

(u− φ)(x) ≤ (≥)(u− φ)(x0)

for every x in a neighborhood of x0, then we must have

detD2φ(x0) ≥ (≤)f(x0).

The next proposition relates viscosity solutions with generalized solutions.

Proposition 24 If u is a generalized solution to Mu = f with f continuous,
then u is a viscosity solution.

2.2 Maximum principles

In order to prove uniqueness of solutions we want to get �rst a maximum
principle.
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Lemma 25 Let Ω ⊂ RN be open and bounded, u, v ⊂ C(Ω). If u = v in ∂Ω
and v ≥ u in Ω, then

∂v(Ω) ⊂ ∂u(Ω).

Proof Let p ∈ ∂v(Ω). There exist x0 ∈ Ω such that

v(x) ≥ v(x0 + p · (x− x0)), x ∈ Ω.

Let

a = sup
c∈Ω
{v(x0 + p · (x− x0))− u(x)}.

Since v(x0) ≥ u(x0), it follows that a ≥ 0. We claim that v(x0)+p·(x−x0)−a
is a supporting hyperplane to the function u at some point in Ω. Since Ω is
bounded, there exist x1 ∈ Ω such that a = v(x0) + p · (x1 − x0)− u(x1) and
then

u(x) ≥ v(x0 + p · (x− x0)) = u(x1) + p · (x− x1), x ∈ Ω.

We have

v(x1) ≥ v(x0) + p · (x1 − x0) = u(x1) + a.

Then, if a > 0, x1 /∈ Ω and so the claim holds in this case. If a = 0 then

u(x) ≥ v(x0) + p · (x− x0) ≥ u(x0) + p · (x− x0)

and Consequently u(x0)+p·(x−x0) is a supporting hyperplane for u at x0. �

Theorem (Aleksandrov's maximum principle)26 If Ω ⊂ RN is open,
bounded and convex with diameter ∆, and u ∈ C(Ω) is convex with u = 0
in ∂Ω, then

|u(x0)|n ≤ cN∆N−1d(x0, ∂Ω)|∂u(Ω)|,

for every x0 ∈ Ω where cN is a constant depending only on the dimension N .
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2.3 Well-posedness of the Dirichlet Problem

In this section we proof a uniqueness theorem for generalized solutions of
the Monge-Ampère equation.

Lets start with a few results about the subdi�erential and the Monge-
Ampère measure.

Theorem 27 Let u, v ∈ C(Ω), with v convex, such that

|∂u(E)| ≤ |∂v(E)| for every Borel set E ⊂ Ω.

Then

min
x∈Ω
{u(x)− v(x)} = min

x∈∂Ω
{u(x)− v(x)}.

Lemma 28 If v and φ are convex functions in Ω, then

M(v+φ)(E) ≥Mv(E) +Mφ(E)

for each Borel set E ⊂ Ω.

Corollary 29 If u, v ∈ C(Ω) are convex functions such that |∂u(E)| =
|∂v(E)| for every Borel set E ⊂ Ω and u = v in ∂Ω, then u = v in Ω.

De�nition 30 The open set Ω ⊂ Rn is strictly convex if for all x, y ∈ Ω, the
open segment joining x and y lies in Ω.

We can �nally state a uniqueness theorem for the Monge-Ampère equa-
tion.

Theorem 31 Let Ω ⊂ Rn be bounded and strictly convex, and g : ∂Ω →
R a continuous function. There exist a unique convex function u ∈ C(Ω)
generalized solution of the problem

detD2u = 0 in Ω,

u = g in ∂Ω.

Proof Let F = {a : a is an a�ne function and a ≤ g on ∂Ω}. As g is
continuous, F 6= ∅. Lets de�ne

u(x) = sup{a(x) : a ∈ F}.
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As a�ne functions are convex and u is the supremum of convex functions, u
is also convex and u(x) ≤ g(x) for every x ∈ ∂Ω.
The �rst step is to show that u = g on ∂Ω. Let ξ ∈ ∂Ω; we show that
u(ξ) ≥ g(ξ). Given ε > 0 there exist δ > 0 such that |g(x) − g(ξ)| < ε for
|x−ξ| < δ, x ∈ Ω. Let P (x) = 0 be the equation of the supporting hyperplane
to Ω at the point ξ, and assume that Ω ⊂ {x : P (x) ≥ 0}. Since Ω is strictly
convex, there exist η > 0 such that S = {x ∈ Ω : P (x) ≤ η} ⊂ Bδ(ξ). Let

M = min{g(x) : x ∈ ∂Ω, P (x) ≥ η}

and consider

a(x) = g(ξ)− ε− AP (x)

where A is a constant such that

A ≥ max

{
g(ξ)− ε−M

η
, 0

}
.

We have a(ξ) = g(ξ) − ε − AP (ξ) = g(ξ) − ε, and if x ∈ ∂Ω we claim that
a(x) ≤ g(x). Indeed, if x ∈ ∂Ω ∩ S, then g(ξ) − ε ≤ g(x) ≤ g(ξ) + ε, so
g(x) ≥ g(ξ)−ε−AP (x)+AP (x) ≥ g(ξ)−ε−AP (x) = a(x). If x ∈ ∂Ω∩Sc,
then P (x) > η and by de�nition of M and A we have

g(x) ≥M = a(x) +M − g(ξ) + ε+ AP (x)

≥M = a(x) +M − g(ξ) + ε+ Aη

≥ a.

Therefore a ∈ F , and in particular u(ξ) ≥ a(ξ) = g(ξ) − ε for every ε > 0
and therefore u(ξ) ≥ g(ξ).

The second step is to show that u is continuous in Ω. Since u is convex, in
Ω, u is continuous in Ω. To proof the continuity on ∂Ω, let ξ ∈ ∂Ω, {xn} ⊂ Ω
with xn → ξ. We show that u(xn) → g(ξ). If a is the function constructed
before, then u(x) ≥ a(x), in particular u(xn) ≥ a(xn) and then

lim inf u(xn) ≥ lim inf a(xn) = lim inf(g(ξ)− ε− AP (x)) = g(ξ)− ε,

for all ε > 0. Then lim inf u(xn) ≥ g(ξ). We now proof that lim supu(xn) ≤
g(ξ). Since Ω is convex, there exist h harmonic in Ω such that h ∈ C(Ω)
and and h

∣∣
∂Ω

= g. If a is any a�ne function so that a ≤ g on ∂Ω, then a is
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harmonic and by the maximum principle a ≤ h in Ω. By taking supremum
over a we obtain u(x) ≤ h(x) for x ∈ Ω. In particular, u(xn) ≤ h(xn) and
therefore lim supu(xn) ≤ lim suph(xn) = g(ξ).

The third step is to proof that

∂u(Ω) ⊂ {p ∈ Rn : there exist x, y ∈ Ω, x 6= y and p ∈ ∂u(x) ∩ ∂u(y)},
(2.4)

and by lemma 17 |∂u(Ω)| = 0.
If p ∈ ∂u(Ω), then there exist x0 ∈ Ω such that u(x) ≥ u(x0)+p·(x−x0) =

a(x) for all x ∈ Ω. Since u = g on ∂Ω, we have g(x) ≥ a(x) for all x ∈ ∂Ω.
There exist ξ ∈ ∂Ω such that g(ξ) = a(ξ). Otherwise, there exist some ε > 0
such that g(x) > a(x) + ε for all x ∈ ∂Ω and then u(x) ≥ a(x) + ε for all
x ∈ Ω, and in particular u(x0) ≥ a(x0) + ε = u(x0) + ε, a contradiction.
Since Ω is convex, the segment I joining x0 and ξ is contained in Ω. Now
u(x0) = a(x0) and u(ξ) = a(ξ). If z ∈ I, then z = tx0 + (1 − t)ξ and by
convexity,

u(z) ≤ tu(x0) + (1− t)u(ξ) = ta(x0) + (1− t)a(ξ) = a(z).

But u(x) ≥ a(x) for all x ∈ Ω so a is a supporting hyperplane to u at any
point of the segment I, therefore p ∈ ∂u(z) for all z ∈ I and (2.4) is then
proved. Uniqueness follows from Corollary 29. �
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Chapter 3

Numerical solution of the M-A

equation

In this chapter we develop a numerical method to solve the M-A equation
with Dirichlet conditions. Research on this subject is very active. Since
we seek smooth solutions as required in the Newton problem of minimal
resistance, we follow the meshless approach in [1]. therein a polynomial basis
is used. Alternatively, we explore the classic Radial Basis Functions (RBF)
interpolation. We remark that this is a preliminary, albeit satisfactory, study.

3.1 Computational Model

Let us consider the problem

uxxuuyy − u2
xy = g in Ω,

u = f en ∂Ω,

in a domain Ω.

The solution scheme is as follows:

1. Choose a trial space that should approximate the true solution u∗ well,

2. Select sets of test points on which the di�erential operator and the
boundary conditions are directly sampled,
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3. Form a nonlinear system of collocation equations, possibly overdeter-
mined,

4. Apply a nonlinear optimizer to minimize residuals of the system.

With this method, the consistency is guaranteed by choosing a su�ciently
rich trial space. Stability requires choosing su�ciently many well-posed col-
location points. It is also important to be able to easily compute up to second
derivatives of the trial functions.

In order to solve the Dirichlet Problem, we de�ne a functional (Res(c,x,y,n,f,g))
as

1: sum = 0
2: for i=0 to n do
3: sum+ = (Ψ(xi, yi, c, x, y)− f(xi, yi))

2

4: end for
5: for i=n to x.shape do
6: sum+ = (Ψxx(xi, yi, c, x, y) ·Ψyy(xi, yi, c, x, y)−Ψxy(xi, yi, c, x, y)2)−
g(xi, yi))

2

7: end for
8: sum = sum/x.shape
9: sum = sqrt(sum)

10: return sum,

where n is the number of points in the boundary of the domain. With this
process we get a non-negative functional, which minimal value is reached by
solving the Monge-Ampère problem. The function scipy.optimize.minimize
of Python is used to minimize the previous functional, and the method used
is BFGS.

For the trial space, we consider a set of functions ψi for i = 1, ..., n in
C∞(D) such that the function ψi is centered on (xi, yi). The objective is,
given a function f de�ned on D, �nd a set of coe�cients ci for i = 1, ..., n
such that the function Ψ :=

∑
ciψi approaches well enough to the function

f . Our results are illustrated with trial spaces formed by Radial Basis Func-
tions (RBF).
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3.1.1 Radial Basis Functions interpolation

The ideal numerical method for PDE problems should be high-order ac-
curate, �exible with respect to the geometry, computationally e�cient, and
easy to implement. The methods that are commonly used usually ful�ll
one or two of the criteria, but not all. Finite di�erence methods can be
made high-order accurate, but require a structured grid (or a collection of
structured grids). Spectral methods are even more accurate, but have severe
restrictions on geometry. Finite element methods are highly �exible, but it
is hard to achieve high-order accuracy, and both coding and mesh genera-
tion become increasingly di�cult when the number of the space dimensions
increases.

A fairly new approach to solving PDEs is through radial basis functions.
An RBF depends only on the distance to a center point xj and is of the form
φ(||x − xj||). The RBF may also have a shape parameter ε, in which case
φ(r) is replaced with φ(r, ε).

In this section we review interpolation by radial basis functions, see [8].
Later on next section we display some results of solving the M-A equation
by RBF.

Our Objective is to approximate a function f using a given set of points
in a domain Ω ⊂ Rn, using a �nite number of evaluations of f . More formaly,
let X ⊂ Ω be the set of points X = {x1, x2, ..., xN} and let {y1, y2, ..., yN} be
such that f(xi) = yi for i = 1, ..., N . We look for a function Φf,X such that
Φf,X(xi) = yi, which will be an approximation for our unknown function f .

By a function φ : Rn → R, we form the interpolant

Φf,X(x) =
N∑
j=1

αjφ(x− xj),

where the coe�cients αj are determined by the interpolation conditions

Φf,X(xj) = yj, 1 ≤ j ≤ N.

Aφ,Xα = y.

[Aφ,X ]j,k = φ(xj − xk).

The solution of the linear system depends on some technical properties
of the trial function. Let us recall the basics.
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De�nition 32 A continuous function φ : Rn → C is called positive semi-
de�nite if, for everyN ∈ N and every pairwise distinct centersX = {x1, x2, ..., xN} ⊂
Rn and every α ∈ CN , the cuadratic form

N∑
j=1

N∑
k=1

αjαkφ(xj − xk)

is nonnegative. The function φ is called positive de�nite if the cuadratic form
is positive for every α ∈ CN\{0}.

For positive de�nite functions, the interpolating system is uniquely solv-
able.

Examples 33

1. The Gaussian φ(x) = exp(−α|x|2), α > 0, is positive on Rn.

2. The inverse multiquadrics φ(x) = (c2 + |x|2)−β, x ∈ Rn, with c > 0 and
β > n/2.

De�nition 34 We say that a function φ : Rn → R is radial if there exist a
function ψ : [0,∞) → R such that φ(x) = ψ(|x|), for every x ∈ Rn. We say
that ψ is positive de�nite on Rn if φ(x) = ψ(|x|) is positive de�nite.

Examples 35

1. The Gaussian ψ(r) = exp(−αr2), α > 0.

2. The inverse multiquadrics φ(r) = (c2 + r2)−β, with c > 0 and β > n/2.

3. The truncated power function

ψl(r) = (1− r)l+
is positive de�nite on Rn if l ∈ N satis�es l ≥ bn/2c+ 1.

De�nition 36 We say that a continuous function φ : Rn → C is Condition-
ally positive semi-de�nite of order m if, for every N ∈ N, for every set of
pairwise distinct centers X = {x1, x2, ..., xn} ⊂ Rn and every α ∈ CN , such
that

N∑
j=1

ajp(xj) = 0

31



for every complex-valued polynomial of degree less than m, the cuadratic
form

N∑
j=1

N∑
k

αjαkφ(xj − xk)

is nonnegative. The function φ is called Conditionally positive de�nite if the
cuadratic form is positive for every α ∈ C\{0}.

The conditional positive de�niteness of order m of a function φ can also
be interpreted as the positive de�niteness of the matrix Aφ,X on the space of
vectors α such that

N∑
j=1

αjpl(xj) = 0, 1 ≤ l ≤ Q = dimπm−1(Rn).

Thus, in this case, Aφ,X is positive de�nite on the space of vectors α �per-
pendicular" to polynomials.

Examples 37 For φ(x) = ψ(|x|)

1. The multiquadrics ψ(r) = (−1)dβe(c2 + r2)β with c, β > 0, and β /∈ N,
are conditionally positive de�nite of order m = dβe on Rd.

2. The Thin-plate splines ψ(r) = (−1)k+1r2k log(r) are positive de�nite of
order m = k + 1 on Rn.

3. The function ψ(r) = (−1)dβ/2erβ β > 0, β /∈ 2N is conditionally posi-
tive de�nite of order m = dβ/2e on Rn.

Here we only work with positive de�nite functions.
In the set displayed on �gure 3.1.1 we show an interpolation using the

Gaussian functions and the truncated power functions and as we can see in
�gure 3.1, both approximations �t the function u∗(x, y) = (x2 + y2)3/2.

3.1.2 Estimates for basis functions

In this subsection we will brie�y study the estimates for the Gaussians
and the truncated power functions. The theory on this subsection can be
found in [8].
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Figure 3.1: The blue graphs are the approximations and the red graph is the
graph of u∗.

De�nition 38 Let F be a real Hilbert space of functions f : Ω → R. A
function Φ : Ω× Ω→ R is called a reproducing kernel for F if

1. Φ(·, y) ∈ F for all y ∈ Ω,

2. f(y) = (f,Φ(·, y))F for all f ∈ F and all y ∈ Ω.

We de�ne the R-linear space

FΦ(Ω) :={Φ(·, y) : y ∈ Ω}

and equip this space with the bilinear form(
N∑
j=1

αjΦ(·, xj),
M∑
k=1

βkΦ(·, yk)

)
Φ

:=
N∑
j=1

M∑
k=1

αjβkΦ(xj, yk).
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Theorem 39 If Φ : Ω × Ω → R is a symmetric positive de�nite kernel
then (·, ·)Φ de�nes an inner product on FΦ(Ω). Furthermore, FΦ(Ω) is a pre-
Hilbert space with reproducing kernel Φ.

We de�ne the completion FΦ(Ω) of this pre-Hilbert space with respect to
the || · ||Φ-norm. We also de�ne a linear mapping

R : FΦ(Ω)→ C(Ω), R(f)(x) := (f,Φ(·, x))Φ.

De�nition 40 The native Hilbert function space corresponding to the sym-
metric positive de�nite kernel Φ : Ω× Ω→ R is de�ned by

NΦ(Ω) := R(FΦ(Ω)).

It carries the inner product

(f, g)NΦ(Ω) := (R−1f,R−1g)Φ.

Theorem 41 Let Φ be the Gaussians. Suppose that Ω ⊂ Rd is bounded
and satis�es an interior cone condition. Denote the radial basis function
interpolant to f ∈ NΦ(Ω) based on Φ and X = {x1, ..., xN} by Sf,X . Fix
α ∈ Nd

0. For every ∈ N with l ≥ α there exist constants h0(l), Cl > 0 such
that

|Dαf(x)−DαSf,X(x)| ≤ Clh
l−|α|
X,Ω |f |NΦ(Ω)

for all x ∈ Ω, provided that hX,Ω ≤ h0(l).

De�nition 42 With φl(r) = (1− r)l+ we de�ne

φd,k = (I)kφbd/2c+k+1.

Theorem 43 Within its support [0, 1] the function φd,k has the representa-
tion

pd,k(r) =
l+2k∑
j=0

d
(l)
j,kr

j

with l = bd/2c+ k + 1.
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Theorem 44 The functions φd,k are positive de�nite on Rd and are of the
form

φd,k(r) =

{
pd,k(r), if 0 ≤ r ≤ 1,
0, if r > 1,

with a univariable polynomial pd,k of degree bd/2c+ 3k + 1.

Theorem 45 Let Φd,k = φd,k(|| · ||2) be the functions from the previous
theorem. Suppose that Ω ⊂ Rd is bounded and satis�es an interior cone
condition. Denote the radial basis function interpolant of f ∈ NΦd,k(Ω)
based on Φd,k and X?{x1, ..., xN} ⊂ Ω by Sf,X . Then there exist constants
C, h0 > 0 such that

|Dαf(x)−DαSf,X(x)| ≤ Ch
k+1/2−|α|
X,Ω ||f ||NΦ(Ω)

for every α ∈ Nd
0 with |α| ≤ k and every x ∈ Ω, provided that hX,Ω ≤ h0.

Theorem 46 Let Ω be a cube in Rd. Suppose that Φ = φ(|| · ||2) is
a conditionally positive de�nite function such that f := φ(

√
·) satis�es

|f (l)(r)| ≤ l!M l for all integers l ≤ l0 and all r ∈ [0,∞), where M > 0
is a �xed constant. Then there exist a constant c > 0 such that the error
between a function f ∈ NΦ(Ω) and its interpolant Sf,X can be bounded by

||f − Sf,X ||L∞(Ω) ≤ e−c/hX,Ω|f |NΦ(Ω)

for all data sites X with su�ciently small hX,Ω.

From theorem 45 we get that the truncatec power functions have algebraic
convergence. On the other hand, from theorem 46 we get that the Gaussian
functions have spectral convergence.

3.2 A Dirichlet Problem in the disk

Here we consider the unit disc centered on the origin, as motivated by
the Newton Problem.

As trial space, consider the radial basis functions (RBF) of the form
ψ(r) = exp(−εr2).
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3.2.1 Numerical Results

In this thesis we are not following the typical process of making a sample
of points with uniform distribution on the domain. The goal is to show that
it is possible to solve the M-A equation with a meshfree method.

The nonlinear system of equations generated by this method is

Ψ(xi) = f(xi), 1 ≤ i ≤ n

Ψxx(xi)Ψyy(xi)−Ψxy(xi)
2 = g(xi), n+ 1 ≤ i ≤ x.shape

where n is the number of points in the boundary.
The following graphs are obtained with the next set of points

The graphs on �gure 3.2 are the results after solving the M-A equation
given by detD2u = 18(x2 +y2). On the left side we have the graphs for y = 0
and then x = 0 for the Gaussian functions. On the right side we have the
graphs for y = 0 and then x = 0 for the truncated power functions.

It is shown in �gure 3.1 that accurate interpolation can be achieved with
both RBF but, as we can see in �gure 3.2, the numerical solution of PDE is
a di�erent matter.

In our numerical experiments, the same conclusion is reached, the Gaus-
sian function outperforms other choices. This makes sense because, as we
said in the previous section, the Gaussians have an exponential convergence.
In what follows we only show the satisfactory results obtained with the Gaus-
sian functions.

In �gure 3.3 we choose a di�erent initial guess to run the iteration. We
also obtain a close approximation to the real solution.
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Figure 3.2: The yellow dots represent the initial guess, obtained doubling the
coe�cients from the interpolations. The red graph is the real solution and
the blue graph is the approximation.

We also have an example in �gure 3.4 where the real solution is the
function u∗(x, y) = exp((x2 + y2)/2).

3.3 A Dirichlet Problem in the unit square

Here we solve the examples in [1]. Consider the real solution u∗(x, y) =
exp((x2 + y2)/2) in the unit square. We get the results on �gure 3.5.
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Figure 3.3: Graphs for the solutions on y = 0 and x = 0 using the Gaussian
functions on two di�erent initial guess. The value of the error function is
respectively 5.53e− 07 and 0.00016.
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Figure 3.4: Set of points, interpolation and graphs for the solutions on y = 0
and x = 0 using the Gaussian functions. The value of the error function is
0.011.
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Figure 3.5: Set of points, interpolation and graphs for the solutions on y = 0
and x = 0 using the Gaussian functions. The value of the error function is
0.0706.
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Chapter 4

Conclusions and future work

In this work we have presented several aspects of the Monge-Ampère
equation. In the Newton problem of minimal resistance, it is shown that an
optimal function is a smooth local solution of the M-A equation.

Once the M-A equation is introduced, the classical question of well posed-
ness is addressed. Existence and uniqueness are established for generalized
and viscosity solutions.

In applications, the numerical solution of the M-A equation is required.
Motivated by the meshless approach of [1] with polynomial basis, an alter-
native is developed using Gaussian Radial Basis Functions. The benchmark
problems in [1] are solved in both the unit disc and the unit square. The
former in line with the Newton problem of minimal resistance in its original
formulation.

These three problems are of intensive research activity. In the case of
the minimal resistance problem, appropiate admissible sets are sought for
minimization. The geometry of the domain is also a topic of interest, see
[6]. Actual solutions of the Newton problem are of practical interest, and
numerical methods are being developed to solve the minimization problem.

The numerical solution of the Monge-Ampère equation is an unresolved
issue. From our preliminary numerical explorations, meshfree methods seem
promising.

In practice, the M-A equation is descretized leading to a nonlinear high
dimensional algebraic problem. As in [1], we have used a general use imple-
mentation of quasi-Newton methods. For improvement, a speci�c modi�ca-
tion needs to be developed.

41



Appendix

The results on this appendix can be found on [7].

De�nition 47 We say that J is strongly continuous (we say simply contin-
uous if there is no ambiguity), if

vk → v (strongly) ⇒ J(vk)→ J(v) (in R).

Similarly, we say that J is weakly continuous if

vk → v (weakly) ⇒ J(vk)→ J(v) (in R).

Lets notice that

J weakly continuous ⇒ J strongly continuous.

Recall that a set U ⊂ V is strongly (respectively weakly) compact if from
every sequence {vk} of elements of U we can extract a sub-sequence which
converges strongly (respectively weakly) in U.

The following theorem gives a su�cient condition for the minimization
problem

min
v∈U⊂V

{J(v)} (4.1)

to have an optimal solution in U .

Theorem (Weierstrass) 48 If the subset U ⊂ V is strongly (respectively
weakly) compact, and if J is strongly (respectively weakly) continuous on U ,
then the problem (4.1) has an optimal solution in U .

Let V be a normed vector space and let J be a functional on V .
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De�nition 49 We say that J has a directional derivative (or a diferential in
the sense of Gateaux) at v ∈ V in the direction ϕ ∈ V , if

J(v + θϕ)− J(v)

θ

has a limit when θ → 0 (in R). This limit is denoted δJ(v, ϕ).
If ∀ϕ ∈ V : δJ(v, ϕ) exists, then J is said to be di�erentiable in the sense of
Gateaux (G-di�erentiable) at v ∈ V .

De�nition 50 Let V be a Hilbert space with the scalar product < ·, · >. If
J is G-di�erentiable at v ∈ V , and if δJ(v, ϕ) is a continuous linear form w.r.
to ϕ, then (by the representation theorem of Riesz), there exist an element
J ′(v) ∈ V such that

∀ϕ ∈ V : δJ(v, ϕ) =< J ′(v), ϕ >

J ′(v) is called the gradient of J at v.

Proposition 51 If J is G-di�erentiable at v+ αϕ whatever α ∈ [0, 1] in the
direction ϕ, then there exist θ ∈ (0, 1) such that

J(v + ϕ) = J(v) + J(v + θϕ, ϕ).

De�nition 52We say that J has a second derivative in the sense of Gateaux
at the point v in the directions ϕ and ψ if the ratio

δJ(v + θψ, ϕ)− δJ(v, ϕ)

θ

has a limit when θ → 0 in R. This limit is denoted δ2J(v, ϕ, ψ). If δ2J(v, ϕ, ψ)
exist ∀ϕ ∈ V , ∀ψ ∈ V , then we say that J is twice G-di�erentiable at the
point v ∈ V .
If, moreover, for v ∈ V , δ2J(v, ϕ, ψ) is continuous and linear in ϕ and ψ,
then there exist a linear operator κ(v) : V → V such that

δ2J(v, ϕ, ψ) =< κ(v) · ψ, ϕ >

κ(v) is called the Hessian of J at v.

43



Proposition 53 If, for all α ∈ [0, 1], J is twice G-di�erentiable at v in the
directions ϕ and ψ = ϕ, then there exist θ ∈ (0, 1) such that

J(v + ϕ) = J(v) + δJ(v, ϕ) +
1

2
δ2J(v + θϕ, ϕ, ϕ).

Theorem 54 Let J(v) be a functional on V , G-di�erentiable at v0 ∈ V . A
necessary condition for v0 to be an optimum of J is to have

δJ(v0, ϕ) = 0 (∀ϕ ∈ V ).

Theorem 55 Let J(v) be a functional on V , twice G-di�erentiable at v0 ∈ V .
A necessary condition for v0 to be an optimum of J is that for all ϕ ∈ V we
have {

δJ(v0, ϕ) = 0
δ2J(v0, ϕ) ≥ 0.
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