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Abstract

In prime characteristic there are important numerical invariants that allow us to detect
and measure singularities. For certain cases, it is known that they are rational numbers.
In the �rst part of this work, we show that certain F -thresholds, F -pure thresholds, and
Cartier thresholds are rational numbers for Stanley-Reisner rings. In addition, we give
conditions of the regularity in Stanley-Reisner rings modulo Frobenius power of ideals.
The methods obtain these results rely in singularity theory in prime characteristic and
the combinatorial structure of Stanley-Reisner rings.

In the second part of this work, we introduce a numerical invariant called F -volume.
This is motivated by the mixed test ideals associated to a sequence of ideals, and
their constancy regions. The F -volume extends the de�nition of F -threshold of an
ideal to a sequence of ideals. We obtain several properties that emulate those of the
F -threshold. In particular, the F -volume detects F -pure complete intersections. In
addition, we relate this invariant to the Hilbert-Kunz multiplicity, and provide support
for a conjecture of Núñez-Betancourt and Smirnov.

Key Words

Stanley-Reisner rings, F -thresholds, F -pure thresholds, Cartier thresholds, a-invariants,
Castelnuovo-Mumford regularity, F -volumes, F -pure complete intersections, Hilbert-
Kunz multiplicity.
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Resumen

En característica prima existen invariantes numéricos importantes que nos permiten
detectar y medir singularidades. Para ciertos casos, es conocido que ellos son números
racionales. En la primera parte de este trabajo, mostramos que ciertos F -umbrales,
umbrales F -puros y umbrales de Cartier son números racionales para anillos de Stanley-
Reisner. Además, damos condiciones de la regularidad en anillos de Stanley-Reisner
modulo potencias de Frobenius de ideales. Los métodos que obtienen estos resultados se
basan en la teoría de la singularidad en característica prima y la estructura combinatoria
de los anillos de Stanley-Reisner.

En la segunda parte de este trabajo, introducimos un invariante numérico llamado
F -volumen. Este es motivado por los ideales de prueba mixtos asociados a una sucesión
de ideales y sus regiones de constancia. El F -volumen extiende la de�nición de F -
umbral de un ideal a una sucesión de ideales. Obtenemos varias propiedades que emulan
las del F -umbral. En particular, el F -volumen detecta intersecciones completas F -
puras. Además, relacionamos este invariante a la multiplicidad de Hilbert-Kunz y
proporcionamos soporte para una conjetura de Núñez-Betancourt and Smirnov.

Palabras Claves

Anillos de Stanley-Reisner, F -umbrales, umbrales F -puros, umbrales de Cartier, a-
invariantes, regularidad de Castelnuovo-Mumford, F -volúmenes, intersecciones com-
pletas F -puras, multiplicidad de Hilbert-Kunz.
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CHAPTER 1

Introduction

In prime characteristic there are important numerical invariants that allow us to mea-
sure singularities. Among them are F -thresholds, F -pure thresholds, F -signature, and
Hilbert-Kunz multiplicity. The main goal in this thesis is to study these invariants.
This thesis is divided in two parts. In the �rst part, we show that the F -thresholds
and F -pure thresholds are rational numbers in several cases for Stanley-Reisner rings.
These results are contained in a paper by the author [BC20]. For the second part, we
take the general case, extend the concept of F -threshold to a sequence of ideals, and
called it F -volume. We also give the relation between this number with the F -pure
complete intersections and Hilbert-Kunz multiplicity. This part contains results ob-
tained in a joint work with Luis Núñez-Betancourt and Sandra Rodríguez-Villalobos
[BCNnBRV19]. Throughout this work, all rings are Noetherian and commutative with
one.

1.1 Invariants in Characteristic Zero

Throughout this work we study the mixed generalized test ideals, F -jumping numbers,
F -thresholds, and F -pure thresholds. Our motivation comes from birational geometry
in characteristic zero.

Given an ideal a on a smooth variety X and a real positive number c, the multiplier
ideal J (ac) is described via a log resolution π : X ′ −→ X of the pair (X, a), that is, a
proper birational map with X ′ smooth and such that aOX′ = OX′(−E), where E is a
simple normal crossing divisor. The multiplier ideal is de�ned as

J (ac) := π∗OX′(KX′/X − dcEe),

1



2 Chapter 1. Introduction

where KX′/X is the relative canonical divisor. These ideals help us to describe and
measure the singularities of the algebraic variety V (a) de�ned by the ideal a.

The de�nition can be extended to a sequence of ideals. For ideals a1, . . . , an and
positive real numbers c1, . . . , cn we take a log resolution for the pair (X, a1 · · · an). The
mixed multiplier ideal is de�ned as

J (ac11 · · · acnn ) := π∗OX′(KX′/X − dc1E1 + · · ·+ cnEne),

with aiOX′ = OX′(−Ei).
A constancy region for J (ac11 · · · acnn ) is the set of c′ ∈ Rn≥0 where J (ac11 · · · acnn ) =

J (a
c′1
1 · · · a

c′n
n ). If we take the exponent c in a cube, then the number of constancy regions

is �nite.
A jumping number of a is a positive real number c such that J (ac) 6= J (ac−ε) for

every ε > 0. For each a the set of jumping numbers is a discrete subset of the rational
numbers.

In characteristic zero, the log canonical threshold, lct(f), of a polynomial f with
coe�cients in a �eld, is an important invariant in birational geometry [BFS13]. From an
analytical point of view, we take f ∈ C[x1, . . . , xn] with f(0) = 0 and with a singularity
at zero, we have the function

1

|f |
: Cn\V (f) −→ R

z −→ 1

|f(z)|
.

The log canonical threshold of f is de�ned as

lct(f) = sup

{
λ ∈ R+ | there exist ε > 0 such that

∫
Bε(0)

1

|f(z)|2λ
<∞

}
.

It turns out that lct(f) = sup{λ ∈ R+ | J (fλ) = (1)}. Therefore, the lct(f) is the
�rst jumping number of f . This number measures the singularities of f near to zero.

1.2 Invariants in Characteristic p > 0

In this manuscript, we discuss the analogous to the mixed multiplier ideals in prime
characteristic, denoted by τ(ac11 · · · acnn ). These ideals are called the mixed generalized
test ideals. They were originally introduced by Hochster and Huneke [HH90], and later
generalized by Hara and Yoshida [HY03]. The mixed generalized test ideal of a sequence
of ideals a1, . . . , an in R, with exponents c1, . . . , cn, is de�ned as

τ(ac) =
⋃
e>0

(adcp
ee)[1/pe],
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where ac = ac11 · · · acnn .
The region where τ(ac) is constant is called the constancy region of the mixed test

ideal [HY03, BMS08]. In a regular ring, it has been an object of interest [Tak04, Pér13].
It is a natural and still open question whether the number of constancy regions of a
mixed test ideal (n > 1) in the cube is �nite. We discuss a few of their properties,
speci�cally the conditions to have a �nite number of constancy regions.

We also have an analogous for the jumping numbers, which are called F -jumping
exponents. These also form a discrete set of rational numbers for F -�nite regular rings
[BMS08].

In positive characteristic, the F -pure threshold of an ideal a ⊆ R, denoted fpt(a),
was de�ned by Takagi and Watanabe [TW04]. Roughly speaking, this measures the
splitting order of a. It is de�ned as

fpt(f) = sup

{
a

pe
| the inclusion Rf

a
pe ⊆ R1/pe is a split

}
for f ∈ R.

The F -pure threshold is considered the analogue to the log canonical threshold, and
they share similar properties [TW04, MTW05]. In particular, if f is an element in
Z[x1, . . . , xn], then lim

p→∞
fpt(f mod p) = lct(fQ) [HY03, MTW05], where fQ is seen in

the set of the rational numbers.
In this work, we study a general form of the F -pure threshold called the Cartier

threshold of a with respect to J . This is de�ned as ctJ(a) = lim
e→∞

bJa (pe)
pe

, where

bJa (pe) = max{t ∈ N | at 6⊆ Je}

and
Je = {f ∈ R | ϕ(f 1/pe) ∈ J, for all ϕ ∈ HomR(R1/pe , R)}.

These numbers are studied in more depth in an upcoming work [DSHNnBW]. If we
consider (R,m, K) a local ring or a standard graded K-algebra which is F -�nite and
F -pure, the ctm(a) = fpt(a).

We now recall the de�nition of the F -thresholds. They are numbers obtained by
comparing ordinary powers with Frobenius powers. The F -thresholds were introduced
in regular rings by Mustaµ , Takagi and Watanabe [MTW05], and their existence, in
the general case, was proved by De Stefani, Núñez-Betancourt and Pérez [DSNnBP18].
These are de�ned as cJ(a) = lim

e→∞
νJa (pe)
pe

, where νJa (pe) = max{m ∈ N | am 6⊆ J [pe]}, and
a, J ⊆ R are ideals.

A recent line of research consists in understanding under which conditions the set of
F -thresholds is a discrete subset of the rational numbers. This was proved by Blickle,
Mustaµ , and Smith [BMS08] for an F -�nite regular ring. Although the F -threshold
is a rational number in regular case, this situation is unknown in general Noetherian
rings. Trivedi [Vij18] showed that, in general, the F -thresholds of the a maximal ideal
are not necessarily discrete.
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Let I, J ⊆ R be ideals such that I ⊆
√
J . For regular rings, the F -thresholds are

related to test ideals. Speci�cally, the F -thresholds measure the length of a region
where test ideal are contained in a given ideal. Then, the set of F -thresholds of I is the
same as the set of F -jumping numbers of the test ideals of I [BMS08]. If the ring is not
regular, these two sets of invariants di�er (e.g. [MOY10]). However, the F -thresholds
give extra information about I, J , and R. For instance, one can use F -thresholds to
study integral closure, tight closure, Hilbert-Samuel multiplicities [HMTW08], and a-
invariants [DSNnB18, DSNnBP18].

1.3 Stanley-Reisner

In this section, we focus on Stanley-Reisner rings. The combinatorial nature of these
rings has been useful to study their structures in prime characteristic. For instance, in
this case one can describe their algebras of Frobenius and Cartier operators [ÀlMBZ12,
BZ19]. In this work, we show that the Cartier threshold of a with respect to J in
Stanley-Reisner is a rational number in certain cases.

Theorem A (see Theorem 3.4.14 and Corollaries 3.4.15, 3.4.16). Let a, J be two ideals
in a Stanley-Reisner ring R, such that a ⊆ J , and J is a radical ideal. Then, the Cartier
threshold of a with respect to J is a rational number.

In order to obtain Theorem A, we need to reduce the computation of ctJ(a) to the
case where J is a monomial ideal. For this trick, we need to replace R by the completion
of a suitable localization. Then, the problem is reduced to the regular case by taking a
quotient with respect to the Cartier core (see De�nition 3.3.10).

In this work, we study the rationality of F -thresholds for Stanley-Reisner rings.

Theorem B (see Theorem 3.2.1). Let a, J two ideals in a Stanley-Reisner ring R,
such that a ⊆

√
J , and J is a monomial ideal. Then, the F -threshold of a with respect

to J is a rational number.

The key idea to prove Theorem B is to work modulo the minimal primes, which
yields a regular ring. The result follows from comparing the F -thresholds of R with
these quotients. We point out that Theorem B is a key component of the proof of
Theorem A.

The Castelnuovo-Mumford regularity is an invariant that measures the complex-
ity of the free resolution of a standard graded K-algebra (R,m, K). The growth of
reg(R/J [pe]) has been intensively studied due to its relation to discreteness of F - jump-
ing coe�cients [KZ14, KSSZ14, Zha15], localization of tight closure [Kat98, Hun00],
and existence of the generalized Hilbert-Kunz multiplicity [DS13, Vra16]. We recall
that the Castelnuovo-Mumford regularity can be computed in terms of the a-invariants
introduced by Goto and Watanabe [GW78]. In this manuscript, we provide a formula
for the limits of reg(R/J [pe]).
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Theorem C (see Theorem 3.5.3). Let J be a homogeneous ideal in a Stanley-Reisner
ring R. Then,

lim
e→∞

reg(R/J [pe])

pe
= max

1≤i≤d
α∈A′
{ai(S/(Jα + J)) + |α|},

where A′ = {α ∈ Nn | 0 ≤ αi ≤ 1 for i = 1, . . . , n}, Jα = (I : xα), and d =
max{dim(S/(Jα + J)) | α ∈ A′}. In particular, this limit is an integer number.

1.4 F -Volumes

In this section R denotes a ring, not necessarily a Stanley-Reisner ring. Motivated by
the mixed test ideals associated to a sequence of ideals I1, . . . , It and their constancy
regions, we de�ne an analogue of the F -threshold for a sequence of ideals. In our main
result, we describe this invariant as a limit of a convergent sequence.

Theorem D (see Theorem 4.1.13 and De�nition 4.1.2). Let I = I1, . . . , It ⊆ R be a
sequence of ideals, and J ⊆ R be an ideal such that I1, . . . , It ⊆

√
J . Let

VJ
I (pe) = {(a1, . . . , at) ∈ Nt | Ia11 · · · Iatt 6⊆ J [pe]}.

Then,

lim
e→∞

|VJ
I (pe)|
pet

converges. This limit is called the F -volume of I with respect to J , and it is denoted by
VolJF (I).

In the regular case, this limit is the sum of the volumes of the constancy regions
where τ(Ia11 · · · Iatt ) 6⊆ J .

The proof of Theorem D is based on a technical extension of the case of a single
ideal [DSNnBP18]. However, the case of multiple ideals is not a simple consequence of
this case. We devote Section 4.1 to this proof. We also show a few properties of the
F -volume that extend those of the F -thresholds.

If R is an F -pure ring, the F -volume is the measure of a set in R` (see Propositions
4.2.5 and 4.3.5). In Section 4.3, we present this and other results for F -pure rings. In
particular, we show that F -volumes detect F -pure complete intersections.

Theorem E (see Theorem 4.3.13). Suppose that (R,m, K) is a local regular ring. Let
I ⊆ m be an ideal in R, and f = f1, . . . , ft be minimal generators of I. Then, VolmF (f) =
1 if and only if I is an F -pure complete intersection.

In Section 4.4, we relate the F -volume and the Hilbert-Kunz multiplicity. Speci�-
cally, we obtain the following result.
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Theorem F (see Theorem 4.4.1). Suppose that (R,m, K) is a local ring. Let f =
f1, . . . , ft be part of a system of parameters for R, I = (f), and S = R/I. Then,

eHK(JS;S) ≥ eHK(J ;R)

VolJF (f)

for any m-primary ideal J , such that I ⊆ J .

In Remark 4.4.3, we relate Theorem F with a conjecture regarding the F -thresholds
and the Hilbert-Kunz multiplicity [NnBS20]. In particular, we improve an estimate
given in previous results [NnBS20].



CHAPTER 2

Background

In this chapter we introduce basic properties regarding the local cohomology, integral
closure of ideals, Frobenius map, test ideals, F -thresholds, F -purity, standard graded
K-algebras, F -pure thresholds, a-invariants, and Hilbert-Kunz multiplicity. These are
concepts and tools that play an important role in this work.

2.1 Local Cohomology

Suppose that R is a ring. Let I ⊆ R be an ideal generated by the elements f1, . . . , f` ∈
R. Consider the following complex that is called Čech complex, and it denoted by
Č
•
(f ;R)

0→ R→
⊕
i

Rfi →
⊕
i<j

Rfifj → . . .→ Rf1···f` → 0,

where Č
i
(f ;R) =

⊕
1≤j1<···<ji≤`Rfj1 ···fji and the homomorphism in each summand is

a localization map with an appropriate sign. For an R-module M , we consider the
complex Č

•
(f ;R) ⊗ M , and we de�ne the i-th local cohomology module of M with

support in I H i
I(M) as H i(Č

•
(f ;R)⊗M). The local cohomology module H i

I(M) does
not depend on the choice of generators of I.

These modules capture several algebraic and geometric properties of the ring R,
ideal I, and R-module M ; for instance, Cohen-Macaulayness of R, depth of I, and
dimension of M . In addition, there are strong connections between local cohomology
of modules and cohomology of sheaves. Let V (I) be the algebraic set de�ned by the
vanishing of elements in I. Then elements of H1

I (M) give the obstruction to extending

7



8 Chapter 2. Background

sections ofM supported o� V (I) to all Spec(R). The study of the structure of the local
cohomology modules gives us an understanding of R, I and M .

2.2 Integral Closure of Ideals

In this section, we introduce properties about integral closure. For details we refer to
the book of Huneke and Swanson [HS06].

De�nition 2.2.1. Let I be an ideal in R. An element r ∈ R is integral over I if there
exist a positive integer n and elements ai ∈ I i, i = 1, . . . , n such that

rn + a1r
n−1 + a2r

n−2 + · · ·+ an−1r + an = 0.

The set of all elements of R that are integral over I is called the integral closure of I,
and it is denoted by I. Then, we say that I is integrally closed if I = I.

Remark 2.2.2. Let I, J be two ideals in R. Then,

(1) I ⊆ I ⊆
√
I.

(2) If I ⊆ J , then I ⊆ J .

De�nition 2.2.3. Let J ⊆ I be two ideals in R. We say that J is a reduction of I if
there exists a nonnegative integer n such that In+1 = JIn.

The following propositions give relations between the integral closure of an ideal
and its reductions.

Proposition 2.2.4. Let J ⊆ I be two ideals in R. Then, J is a reduction of I if and
only if I = J .

Proposition 2.2.5. Let I be an ideal in R. Then, I is also an ideal of R, and I = I.

Proposition 2.2.6. Let (R,m, K) be a local ring, and I be an m-primary ideal of R.
The following sentences hold.

(1) There exists an integer n such that In has a reduction generated by a system of
parameters.

(2) If K is in�nite, then I has a reduction generated by a system of parameters.
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2.3 Frobenius Morphism

In this section we review concepts and properties that are needed in our study of rings
in prime characteristic. We omit details and refer to Huneke's book [Hun96] to the
interested reader.

Given a ring R of prime characteristic p, the Frobenius map is the function F :
R −→ R given by F (x) = xp for x ∈ R. The Frobenius map is a ring homomorphism.
For a nonnegative integer e, we can consider the iterated Frobenius map F e : R −→ R
given by F e(x) = xp

e
for x ∈ R. In this way, R has an R-module structure by restriction

of scalars via F e, and we denoted this module action on R by F e
∗R. Equivalently, R is

an Rpe-module, with Rpe = F e(R).
Suppose that R is a reduced ring. We take Frac(R) the total ring of fractions of R.

We note that Frac(R) =
⊕t

iKi, where each Ki is a �eld. Let K =
⊕t

iKi with Ki the
algebraic closure of Ki. Then, there are inclusions R ⊆ Frac(R) ⊆ K and we let

R1/pe = {s ∈ K | spe ∈ R}.

In other words, R1/pe is the ring of pe-th roots of elements of R. Again R1/pe is a
ring abstractly isomorphic to R via the map R1/pe −→ R which sends x −→ xp

e
. In

particular, the map F e can be identi�ed with the R-module inclusion R ⊆ R1/pe . Hence,
there is an R-module isomorphism between F e

∗R and R1/pe .
We take q = pe for some integer e > 0 and an ideal I in R, we denote the extension of

I through F e by I [q]. The ideal I [q] is called the Frobenius power of I. If I = (r1, . . . , rs),
then I [q] = (ri

q | i = 1, . . . , s). Furthermore, we note that

IR1/pe = (I [pe])1/pe , and IF e
∗R = F e

∗ I
[pe].

De�nition 2.3.1. The ring R is called F -�nite if the Frobenius morphism F e is �nite
for some (equivalently, for all) integer e ≥ 1.

Most of the rings we encounter in algebraic geometry are F -�nite.

Remark 2.3.2. Let R be an F -�nite ring. Then, the following hold.

(1) Any homomorphic image of R is F -�nite.

(2) Given an ideal I in R, we have that R/I is F -�nite.

(3) The polynomial ring R[x1, . . . , xn] is F -�nite.

(4) The power series ring R[[x1, . . . , xn]] is F -�nite.

(5) Any �nitely generated R-algebra is F -�nite.

(6) If S is a multiplicative system in R, then S−1R is also an F -�nite ring.

(7) If R is a local ring, then R̂ is F -�nite.
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Remark 2.3.3. Given (R,m, K) complete local ring, R is F -�nite is equivalent to that
K is F -�nite.

We now state a result that characterizes regularity in terms Frobenius morphism.

Theorem 2.3.4 ([Kun69]). Let R be a ring of prime characteristic p. Then, R is a
regular ring if and only if F is faithfully �at.

The previous result motivates the study of singularities in prime characteristic via
the Frobenius morphism.

Corollary 2.3.5. Let R be an F -�nite ring of prime characteristic p. Then, R is a
regular ring if and only if R is a projective Rp-module.

Suppose that R is an F -�nite regular ring of prime characteristic p. By Theorem
2.3.4 the Frobenius map F is faithfully �at. If I is an ideal in R and x ∈ R, then
xq ∈ I [q] if and only if x ∈ I.

Regular rings correspond to smooth varieties. In order to discuss this, we recall a
few de�nitions.

De�nition 2.3.6. Let X ⊆ An be an irreducible a�ne variety, and f1, . . . , ft ∈
K[x1, . . . , xn] be such that I(X) = (f1, . . . , ft). Then, X is nonsingular at a point
x0 if the rank of the Jacobian matrix (∂fi/∂xj(x0)) is n− r, where r = dim(X).

We now see a characterization of nonsingular points in terms of regular rings.

Theorem 2.3.7. Let X ⊆ An be an irreducible a�ne variety, and let x0 be a point in
X. Then, X is nonsingular at x0 if and only if the local ring OX,x0 is a regular local
ring.

2.4 Mixed Generalized Test Ideals

Through this section R denotes an F -�nite regular ring of prime characteristic p.

2.4.1 The Ideal b[1/q]

We introduce the de�nition of ideals b[1/q], which can be seen with more detail in the
work of Bickle, Mustaµ , and Smith [BMS08]. These ideals are the building blocks in
the de�nition of test ideals.

De�nition 2.4.1 ([BMS08, De�nition 2.2]). If b is an ideal of R and q = pe, where e
is a positive integer, we de�ne b[1/q] as the unique and smallest ideal I of R such that
b ⊆ I [q].

The ideal b[1/q] is well de�ned. By Corollary 2.3.5, R is a proyective Rq-module.
Therefore, we have (

⋂
i Ii)

[q] =
⋂
i I

[q]
i for every family of ideals {Ii}i in R.

If R is free over Rq, we can �nd an explicit description of the ideal b[1/q].
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Theorem 2.4.2 ([BMS08, Proposition 2.5]). Suppose that R is free module over Rq,
and let e1, . . . , eN be a basis of R over Rq. Let h1, . . . , hs be generators of an ideal b of
R, and for every i = 1, . . . , s we write

hi =
N∑
j=1

aqi,jej,

with ai,j ∈ R. Then, b[1/q] = (ai,j | i ≤ s, j ≤ N).

2.4.2 Test Ideals

Test ideals were introduced and studied by Hochster and Huneke [HH90, HH94], and
were later generalized to the context of pairs by Hara and Yoshida [HY03]. In this
subsection we follow the concrete description of these ideals given by Bickle, Mustaµ ,
and Smith [BMS08].

De�nition 2.4.3. Let x be a real number. We de�ne

dxe = min{m ∈ Z | x ≤ m}.

Notation 2.4.4. Let a1, . . . , an be ideals in R, and c = (c1, . . . , cn) ∈ Rn≥0. We denote
ac11 · · · acnn by ac. If r = (r1, . . . , rn) ∈ Rn≥0, we denote (dr1e, . . . , drne) by dre.

Given c ∈ Rn≥0, and e ∈ N>0, we have dcipee/pe ≥ dcipe+1e/pe+1. Then, it follows
that

(adcp
ee)[1/pe] ⊆ (adcp

e+1e)[1/pe+1].

Now, we de�ne the mixed generalized test ideals.

De�nition 2.4.5. Given a1, . . . , an ideals in R and c = (c1, . . . , cn) ∈ Rn≥0, we de�ne
the mixed generalized test ideal with exponents c1, . . . , cn as

τ(ac) =
⋃
e>0

(adcp
ee)[1/pe].

Since R is a Noetherian ring, the family of ideals {(adcpee)[1/pe]}e>0 stabilizes. There-
fore, τ(ac) = (adcp

ee)[1/pe] for all e� 0. When n = 1, τ(ac) is called the generalized test
ideal of a with exponent c.

Theorem 2.4.6 ([Pér13, Theorem 3.10]). Let a1, . . . , an be ideals inside R, and c =
(c1, . . . , cn) ∈ Rn≥0. There exists ε = (ε1, . . . , εn) ∈ Rn>0 such that for every r =
(r1, . . . , rn), with 0 < ri < εi, we have τ(ac) = τ(ac+r).

By Theorem 2.4.6, we obtain the following de�nition in the case n = 1.
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De�nition 2.4.7. Let a be an ideal in R, and c be a positive real number. We say
that c is an F -jumping exponent (F -jumping number) for a if τ(ac) 6= τ(ac−ε) for every
positive ε. We also consider 0 as an F -jumping exponent.

Theorem 2.4.8 ([BMS08]). The set of F -jumping exponent of all ideals in R is discrete,
and is contained in the set of rational numbers.

This implies that, the set of test ideals with exponents in a bounded interval is
�nite. Our goal is to study the points in Rn where the mixed test ideals change. Give
l = (l1, . . . , ln) ∈ Rn, we denote [0, l] by the set [0, l1]× . . .× [0, ln]. If n > 1, one can not
expect discreteness. However, the regions where τ(ac) is constant are �nite in speci�c
cases.

Theorem 2.4.9 ([Pér13, Theorem 3.16]). Given nonzero ideals a1, . . . , an in R, where
R is essentially of �nite type over a �nite �eld K, with K of prime characteristic p,
then {τ(ac) | c ∈ [0, l]} is �nite.

If we omit the condition of �nite �eld, it is still an open problem.

Conjecture 2.4.10. Given nonzero ideals a1, . . . , an in R, where R is essentially of
�nite type over any �eld K, with K of prime characteristic p, then {τ(ac) | c ∈ [0, l]}
is �nite.

The analogous problem is known for mixed multiplier ideals. In particular, if
a1, . . . , an are nonzero ideals, the set {J (ac) | c ∈ [0, l]} is �nite. Furthermore, the
constancy region in [0, l] can be decomposed into a �nite set of rational polytopes with
nonoverlapping interiors such that on the interior of each face of such a polytope.

We end this subsection giving a proposition, which says that the test ideal of a
depend only on its integral closure.

Proposition 2.4.11 ( [HY03, HT04]). Let R be a regular ring of prime characteristic
p, a1, . . . , an be ideals in R, and c = (c1, . . . , cn) ∈ Rn≥0. Then, τ(ac) = τ(ac), where
ac = a1

c1 · · · ancn.

2.5 F -Thresholds

The F -thresholds were introduced by Mustaµ , Takagi and Watanabe [MTW05] for
F -�nite regular local rings of prime characteristic. In a subsequent work together
with Huneke [HMTW08], they de�ned the F -thresholds in general rings of positive
characteristic, through upper limits and lower limits, provided they exist. The existence
of these invariants in the general case is described in the work of De Stefani, Núñez-
Betancourt and Pérez [DSNnBP18].
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2.5.1 De�nition and First Properties

In this subsection R denotes a ring of prime characteristic p. We discuss properties
related to F -thresholds.

De�nition 2.5.1. Let R be a ring. Given a, J ideals in R such that a ⊆
√
J , we de�ne

νJa (pe) = max{m ∈ N | am 6⊆ J [pe]}.

Notation 2.5.2. Let R be a ring, and a be an ideal in R. The minimal number of
generators of a is denoted by µ(a).

Lemma 2.5.3 ([DSNnBP18, Lemma 3.3]). Let R be a ring, and a, J be two ideals in
R such that a ⊆

√
J . Then,

νJa (pe1+e2)

pe1+e2
− νJa (pe1)

pe1
≤ µ(a)

pe1

for every e1, e2 ∈ N.

We now state a key theorem regarding F -thresholds.

Theorem 2.5.4 ([DSNnBP18, Theorem 3.4]). Let R be a ring, and a, J be two ideals

in R such that a ⊆
√
J . Then, lim

e→∞
νJa (pe)
pe

exists.

The previous theorem gives existence to the F -thresholds and we may de�ne them.

De�nition 2.5.5 ([DSNnBP18]). Let R be a ring. Given a, J ideals of R such that
a ⊆
√
J , we de�ne the F -threshold of a with respect to J by

cJ(a) = lim
e→∞

νJa (pe)

pe
.

Proposition 2.5.6 ([MTW05, Proposition 2.7] & [HMTW08, Proposition 2.2]). Let R
be a ring, and let a, I, J be ideals in R. Then, the following statements hold.

(1) If J ⊆ I, and a ⊆
√
J , then cI(a) ≤ cJ(a).

(2) If a ⊆
√
J , then cJ

[p]
(a) = p · cJ(a).

The following proposition describes the behavior of F -thresholds under integral
closure.

Proposition 2.5.7 ([MTW05, HMTW08]). Let R be ring of prime characteristic p,
and a, J be two ideals of R such that a ⊆

√
J . Then, cJ(a) = cJ(a).
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2.5.2 F -Thresholds in Regular Rings

In this subsection we give a few properties of the F -thresholds in the case of a regular
ring. In particular, we assume that R is an F -�nite regular ring.

The next theorem gives the relation between the test ideals and F -thresholds. It
also is a key result for the comparison of the F -thresholds and the F -jumping numbers.

Theorem 2.5.8 ([BMS08, Proposition 2.29]). Let a, J be two ideals of R. Then, the
following statements hold.

(1) If a ⊆
√
J , then τ(ac

J (a)) ⊆ J .

(2) If c is a nonnegative real number, then a ⊆
√
τ(ac) and cτ(ac)(a) ≤ c.

Corollary 2.5.9. For any ideal a in R, the set of F -jumping numbers of a is equal to
the set of F -thresholds for a.

Since R is an F -�nite regular ring, by Theorem 2.4.8 and Corollary 2.5.9, we know
that the set of F -thresholds is contained in the set of rational numbers. This gets us
to the next question.

Question 2.5.10. Let R be any Noetherian ring, not necessarily regular. Is it true
that cJ(a) ∈ Q for all ideals a, J in R, such that a ⊆

√
J?

2.6 Frobenius Splitting and F -Purity

The theory of F -purity was introduced by Hochster and Roberts [HR76]. This plays a
pivotal role in the theory of singularities of rings of positive characteristic. Throughout
this section we work with rings of prime characteristic p.

De�nition 2.6.1. A ring R is called F -pure if the Frobenius endomorphism F is a
pure morphism, that is, F ⊗ 1 : R⊗M −→ R⊗M is injective for every R-module M .

If R is F -pure, then R is reduced. Then, for every e ∈ N, we identify the map F e

with the R-module inclusion R ⊆ R1/pe , where R1/pe denotes the ring of pe-th roots of
R.

Remark 2.6.2. As a consequence of the Kunz' Theorem, all regular rings are F -pure.

The following well known proposition relates F -pure rings and Frobenius powers.

Proposition 2.6.3. Let R be an F -pure ring, and e be a nonnegative integer. Let I be
an ideal in R, and x ∈ R. Then, x ∈ I if and only if xp

e ∈ I [pe].

We now de�ne another F -singularity called Frobenius splitting.

De�nition 2.6.4. A ring R is called F -split if F is a split monomorphism.
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Frobenius splitting is related with F -purity. In general, every F -split ring is F -pure.
However, the reciprocal is not necessarily true. And so, F -purity can be viewed as a
weakening of Frobenius splitting. Remark 2.6.5 gives us the condition where these two
concepts are equivalent.

Remark 2.6.5 ([HR76, Corollary 5.3]). Let R be an F -�nite ring. Then, R is F -split
if and only if R is F -pure. Consequently, the natural inclusion R ⊆ R1/pe of R-modules
splits for some (equivalently, for all) e ≥ 1.

In Remark 2.6.5, the characterization is still true if we substitute the condition of
F -�nite by (R,m, K) complete local ring.

Another test for Frobenius splitting is given in the work of Fedder [Fed83]. This
is called Fedder's Criterion, which characterizes F -purity rings that are quotients of
regular rings.

Theorem 2.6.6 ([Fed83, Theorem 1.12]). Let (S,m) be a regular local ring of prime
characteristic p, and let R = S/I. Then, R is F -pure if and only if (I [p] : I) 6⊆ m[p].

Fedder's Criterion reduces the F -purity of complete intersection to the case of hy-
persurfaces.

Proposition 2.6.7 ([Fed83, Proposition 2.1]). If (S,m) is a regular local ring of prime
characteristic p, f1, . . . , ft is a regular sequence, and f = f1 · · · ft, then the following
are equivalent:

(1) S/(f1, . . . , ft) is F -pure,

(2) S/(f) is F -pure,

(3) fp−1 6∈ m[p].

2.7 Standard Graded K-Algebras

We begin this section de�ning standard graded K-algebras. Given a �eld K, a K-
algebra R is N-graded if there exist vector subspaces Ri ⊆ R such that R =

⊕
i∈NRi,

and Ri · Rj ⊆ Ri+j for every i and j. We say that R is a standard graded K-algebra
if it is an N-graded ring such that R0 = K, and R is a �nitely generated K-algebra,
generated in degree one. We use (R,m, K) to denote a standard graded K-algebra,
where m =

⊕
i≥1Ri is the irrelevant maximal ideal.

Let R be a standard graded K-algebra. A graded module is an R-module M =⊕
i∈ZMi such that RiMj ⊆ Mi+j. In addition, an R-homomorphism ϕ : M −→ N

between graded R-modules is called homogeneous of degree c if ϕ(Mi) ⊆ Ni+c for every
i ∈ Z.

Suppose that R is a standard graded K-algebra. Let I ⊆ R be homogeneous ideal,
and M be graded R-module. Then, the i-th local cohomology H i

I(M) is graded as well.
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Moreover, if ϕ : M −→ N is a homogeneous R-module homomorphism of degree c, the
induced map H i

I(M) −→ H i
I(N) is also homogeneous of degree c.

Let (R,m, K) be a reduced standard graded K-algebra of positive characteristic p.
We view R1/pe as a 1

pe
N-graded R-module. In fact, if r1/pe ∈ R1/pe , then r ∈ R and

we can write r = rd1 + · · · + rdn , with rdj ∈ Rdj . Then, r1/pe = r
1/pe

d1
+ · · · + r

1/pe

dn
,

and each r1/pe

dj
has degree dj/pe. In the same way, let M be a Z-graded R-module. We

have that M1/pe is a 1
pe
Z-graded R-module, where M1/pe denotes the R-module which

has the same additive structure of abelian group as M , and multiplication de�ned by
r ·m1/pe = (rp

e
m)1/pe for all r ∈ R and m1/pe ∈M1/pe .

Remark 2.7.1. As a submodule of R1/pe , R inherits a natural 1
pe
N grading, which is

compatible with the standard grading.

2.8 F -Pure Thresholds

In this section we focus on working with R an F -�nite F -pure ring. The F -pure
threshold of an ideal a ⊆ R was introduced by Takagi and Watanabe [TW04]. In
positive characteristic this is considered as analogous to the log canonical threshold, an
important invariant of singularities of hypersurfaces in characteristic zero. In particular,
the log canonical threshold is the �rst jumping number of J (f c). The study of the F -
pure threshold is motivated by the log canonical threshold, because both have similar
proprieties. Roughly speaking, the F -pure threshold measures the splitting order of a.

Now, let us introduce an ideal that allows the study of homomorphisms that do not
give splittings.

De�nition 2.8.1 ([AE05]). Let (R,m, K) be a local ring or a standard graded K-
algebra, which is F -�nite and F -pure. We de�ne

Ie(R) = {f ∈ R | ϕ(f 1/pe) ∈ m, for all ϕ ∈ HomR(R1/pe , R)},

where e ∈ N.

Remark 2.8.2. The set Ie(R) is an ideal of R, and is called the e-th splitting ideal of
R. Then, f 6∈ Ie(R) if and only if ϕ(f 1/pe) = 1 for some map ϕ ∈ HomR(R1/pe , R).

The ideal Ie(R) is used to de�ne the F -signature. Smith and Van den Bergh in
their work [SVdB97] showed the existence of this invariant when the ring R is strongly
F -regular and has �nite Frobenius representation type. Later, in the work of Huneke
and Leuschke [HL02], they showed that this invariant exists if R is a complete local
Gorenstein domain. For Gorenstein Rings on the punctured spectrum, its existence
was given by Yao [Yao06]. Subsequently, Tucker [Tuc12], showed existence of the F -
signature in R with full generality.

Finally, let us state Tucker's Theorem.
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Theorem 2.8.3 ([Tuc12, Theorem 4.9]). Let (R,m, K) be a d-dimensional F -�nite
F -pure local ring. Then,

lim
e→∞

λ(R/Ie(R))

ped

exists, where λ(−) denotes the length of an R-module.

The previous theorem motivates the following de�nition.

De�nition 2.8.4. Suppose that (R,m, K) is a F -�nite F -pure local ring of dimension
d. The F -signature of R is de�ned by

s(R) = lim
e→∞

λ(R/Ie(R))

ped
,

where λ(−) denotes the length of an R-module.

We now concentrate on properties of Ie(R).

Proposition 2.8.5 ([AE05]). Let (R,m, K) be a local ring or a standard graded K-
algebra, which is F -�nite and F -pure. Then, the following statements hold.

(1) If f 6∈ Ie(R), then f is a nonzerodivisor;

(2) m[pe] ⊆ Ie(R).

Proposition 2.8.6 ([AE05]). Let (R,m, K) be a local ring or a standard graded K-
algebra, which is F -�nite and F -pure. Then,

⋂
e∈N Ie(R) is a prime ideal of R.

De�nition 2.8.7 ([AE05]). Let (R,m, K) be a local ring or a standard graded K-
algebra, which is F -�nite and F -pure. We de�ne the splitting prime of R as P(R) =⋂
e∈N Ie(R).

With the help of the splitting ideal, we can de�ne the F -pure threshold.

De�nition-Theorem 2.8.8 ([DSNnB18]). Let (R,m, K) be either a local ring or a
standard graded K-algebra, which is F -�nite and F -pure ring. Given a a proper ideal
in R, we de�ne

ba(p
e) = max{t ∈ N | at 6⊆ Ie(R)}.

We de�ne the F -pure threshold of a in R as

fpt(a) = lim
e→∞

ba(p
e)

pe
.

When a = m, the F -pure threshold fpt(m) is denoted by fpt(R).

The next proposition gives us a relation of the F -pure threshold and the height of
an ideal.
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Proposition 2.8.9 ([TW04, Proposition 2.6]). Let (R,m, K) be an F -�nite F -pure
local ring with in�nite residue �eld, and let a  R be a proper ideal of positive height.
Then, fpt(a) ≤ ht(a)

We end this section with a property of the F -pure thresholds that is similar to the
log canonical thresholds.

Remark 2.8.10 ([BMS08]). Suppose that (R,m, K) is an F -�nite regular local ring.
Let f ∈ R\{0}. Then, fpt(f) = sup{c > 0 | τ(f c) = R}. We note that the fpt(f) is the
�rst F -jumping number of f .

2.9 a-Invariants and Regularity

In this section we focus on standard graded K-algebras. We study the a-invariants and
regularity in rings modulo Frobenius powers of an ideal.

Suppose that (R,m, K) is a standard graded K-algebra. Let I be a homogeneous
ideal of R. We recall that ifM is a graded R-module, its i-th local cohomologyH i

I(M) is
a graded module. Moreover, if M is �nitely generated, the module H i

m(M) is Artinian.
Therefore, one can de�ne the following number.

De�nition 2.9.1 ([GW78]). Let (R,m, K) be a standard graded K-algebra. Let M
be an 1

pe
N-graded �nitely generated R-module. If H i

m(M) 6= 0, we de�ne the i-th
a-invariant of M by

ai(M) = max

{
s ∈ 1

pe
Z | H i

m(M)s 6= 0

}
.

If H i
m(M) = 0, we set ai(M) = −∞.

Remark 2.9.2. Suppose thatM is a �nitely generated graded R-module. Since (−)1/pe

is exact, then H i
m(M1/pe) ∼= H i

m(M)1/pe . As a consequence, ai(M1/pe) = ai(M)
pe

.

De�nition 2.9.3. Let (R,m, K) be a standard graded K-algebra. Let M be an 1
pe
N-

graded �nitely generated R-module. We de�ne the regularity of M by

reg(M) = max
i∈Z
{ai(M) + i}.

Next theorem gives us conditions for the regularity in rings modulo Frobenius power
of ideals.

Theorem 2.9.4 ([DSNnBP18, Theorem 5.4]). Let (R,m, K) be a standard graded K-
algebra that is F -�nite and F -pure. Suppose that J is a homogeneous ideal of R. If
there exists a constant C such that reg(R/J [pe]) ≤ Cpe for all e� 0, then

lim
e→∞

reg(R/J [pe])

pe

exists, and it is bounded below by maxi∈N{ai(R/J)}+ fpt(R).
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2.10 Hilbert-Kunz Multiplicity

In this section we give an abbreviated collection of properties of the Hilbert-Kunz
multiplicity that are necessary to study Theorem F. For details we refer to the work of
Huneke [Hun13].

Throughout this section (R,m, K) denotes a local ring of prime characteristic p. We
use λ(−) to denote the length of a R-module. We focus on an important numerical
invariant that measures the failure of �atness for the iterated Frobenius, the Hilbert-
Kunz multiplicity [Mon83, PT18].

Let M be an R-module, I ⊆ R be an ideal, e be nonnegative integer, and q = pe.
The study of the behavior of λ(M/I [q]M) as a function on q was introduced by Kunz
[Kun69], as a way to measure how close the ring R is to being regular.

Theorem 2.10.1 ([Kun69, Proposition 3.2]). Let (R,m, K) be a local ring of dimension
d. For every e ∈ N, and q = pe, λ(R/m[q]) ≥ qd. If R is a regular ring and I is an
m-primary ideal of R, then λ(R/I [q]) = qdλ(R/I).

Next result was proved by Monsky [Mon83], and shows the existence of the main
invariant of this section.

Theorem 2.10.2 ([Mon83, Theorem 1.8]). Let (R,m, K) be a local ring of dimension
d. Let M be a �nitely generated R-module, and I be an m-primary ideal of R. Then,

lim
e→∞

λ(M/I [pe]M)

ped

exists.

The previous theorem motivates the following de�nition.

De�nition 2.10.3. Suppose that (R,m, K) is a local ring of dimension d. Let M be
a �nitely generated R-module, and I be an m-primary ideal of R. The Hilbert-Kunz
multiplicity of M along I is de�ned by

eHK(I,M) = lim
e→∞

λ(M/I [pe]M)

ped
.

We often remove the R in eHK(I, R) and write eHK(I). When I = m, we set eHK(M) =
eHK(I,M), and refer to this value as the Hilbert-Kunz multiplicity of M along m.

The following proposition presents properties of the Hilbert-Kunz multiplicity that
are also satis�ed by the Hilbert-Samuel multiplicity.

Proposition 2.10.4. Let (R,m, K) be a local ring, M be a �nitely generated R-module,
and I be an m-primary ideal of R. The following sentences hold.
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(1) Let Λ be the set of minimal prime ideals P of R such that dim(R/P ) = dim(R).
Then,

eHK(I,M) =
∑
P∈Λ

eHK(I, R/P )λ(MP ).

(2) If R is a domain, then eHK(I,M) = eHK(I, R) rankR(M).

(3) If R is equidimensional and eHK(R) = 1, then R is a domain.

(4) If f is a nonzerodivisor of R, then eHK(R/fR) ≥ eHK(R).

We end this section with a result on the relation between Hilbert-Kunz multiplicity
and regular rings.

De�nition 2.10.5. Let (R,m, K) be a local ring. We say thatR is unmixed if dim(R̂) =

dim(R̂/P ) for every associated prime P of R̂.

Theorem 2.10.6 ([WY00, Theorem 1.5]). Let (R,m, K) be an unmixed local ring.
Then, eHK(R) = 1 if and only if R is regular.

Remark 2.10.7. In Theorem 2.10.6, the direction R regular implies eHK(R) = 1, does
not need the condition unmixed.



CHAPTER 3

F -Invariants of Stanley-Reisner Rings

In this chapter we study a general form of the F -pure thresholds, called the Cartier
thresholds. These and the F -thresholds are important invariants in prime characteristic.
In certain cases, it is known that they are rational numbers. We show this property for
Stanley-Reisner rings in several cases (see Theorems A and B). Moreover, we conclude
this chapter with conditions of the regularity in Stanley-Reisner rings modulo Frobenius
power of ideals (see Theorem C).

The results presented in this chapter are contained in a paper by the author [BC20].

3.1 Stanley-Reisner Rings

Throughout this section we use the following notation.

Notation 3.1.1. We denote S = K[x1, . . . , xn] with K an F -�nite �eld of prime char-
acteristic p. Let I be a squarefree monomial ideal of S. Let I =

⋂l
i=1 pi such that

pi 6⊆ pj for i 6= j and p1, . . . , pl are generated by variables. We take R = S/I.

These rings have mild singularities, for instance, they are F -pure. They also have
combinatorial structure given by simplicial complexes.

Suppose that a ⊆ R is an ideal. We abuse the notation and denote the inverse
image of a ⊆ R under the natural projection S −→ S/I by a ⊆ S.

We now characterize the ring of p-th roots of R in terms of quotient ideals.

Proposition 3.1.2. If q = pe, where e is a nonnegative integer, then

R1/q = S1/q/I1/q ∼=
⊕

1≤i≤s
α∈A

S/Ji,α(aix
α)1/q

21
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as R-modules, with A = {α ∈ Nn | 0 ≤ αi ≤ q − 1 for i = 1, . . . , n}, B = {ai1/q | i =
1, . . . , s} is a base of K1/q as K-vector space, and Ji,α = (I : aix

α).

Proof. Each element r1/q ∈ S1/q can be written uniquely as

r1/q =
⊕

1≤i≤s
α∈A

ri,α(aix
α)1/q,

where ri,α ∈ S. We take

ϕ : S1/q −→
⊕

1≤i≤s
α∈A

S/Ji,α(aix
α)1/q,

de�ned by
ϕ(r1/q) =

⊕
1≤i≤s
α∈A

(ri,α + Ji,α)(aix
α)1/q.

We have that ϕ is a surjective S-linear morphism.
We claim that kerϕ = I1/q. Let r1/q ∈ kerϕ. It is su�cient to consider r a

monomial. Then, r1/q = xθ(aix
α)1/q for some θ ∈ Nn, α ∈ A, and i ∈ {1, . . . , s}.

Hence, 0 = ϕ(r1/q) = (xθ+Ji,α)(aix
α)1/q. Thus, xθ ∈ Ji,α. This implies that aixα+θ ∈ I,

and so, xθ/q(aixα)1/q ∈ I1/q. It follows that r1/q = xθ(aix
α)1/q = (xθ/q)q(aix

α)1/q ∈ I1/q.
To show the other inclusion, it is enough to consider r1/q = xθ(aix

α)1/qxβ/q ∈ I1/q

with θ ∈ Nn, α ∈ A, i ∈ {1, . . . , s}, and xβ a generator of I. Since 0 ≤ αj ≤ q − 1
and 0 ≤ βj ≤ 1 for every 1 ≤ j ≤ n, there exists γ ∈ Nn with 0 ≤ γj ≤ 1 such
that α + β − qγ ∈ A. Let α′ = α + β − qγ. We note that xθ+γ(aixα

′
) ∈ I. As a

consequence, xθ+γ ∈ Ji,α′ . Furthermore, r1/q = xθ+γ(aix
α′)1/q. Subsequently, ϕ(r1/q) =

(xθ+γ + Ji,α′)(aix
α′)1/q = 0. Thus, r1/q ∈ kerϕ.

It follows that

R1/q ∼=
⊕

1≤i≤s
α∈A

S/Ji,α(aix
α)1/q

as S-module. Therefore, they are isomorphic as R-modules.

Remark 3.1.3. As in Notation 3.1.1, let q be a prime ideal of S. Suppose that
p1, . . . , pr ⊆ q with r ≤ l, pj 6⊆ q for r < j, and (x1, . . . , xu) =

∑r
i=1 pi.

Let q̃0, . . . , q̃t ∈ SpecSq be such that (x1, . . . , xu)Sq = q̃0 & q̃1 & . . . & q̃t. There
exist q0, . . . , qt ∈ SpecS, where qi ⊆ q and qi = q̃i ∩ S. We have that

(0) & (x1) & (x1, x2) &, . . . ,& (x1, . . . , xu) = q0 & q1 & . . . & qt ⊆ q

is a chain of prime ideals in S with length u+t, thus u+t ≤ ht(q). Hence, t ≤ ht(q)−u.
Then, dimSq/(x1, . . . , xu)Sq ≤ ht(q)− u. Therefore,

ht(q)− u = dimSq/(x1, . . . , xu)Sq.
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In particular, if we take A = Ŝq, we have that

dimA− u = dimA/(x1, . . . , xu)A.

Since A is a complete local regular ring, A ∼= K[[x1, . . . , xu, y1, . . . , yt]]. Moreover, we
have that IA =

⋂l
i=1 piA is squarefree monomial ideal of A in variables x1, . . . , xu. We

denote xθ = x1
θ1 · · ·xuθuy1

θu+1 · · · ytθu+t . We take B = A/IA and m its maximal ideal.

Proposition 3.1.4. If q = pe, where e is a nonnegative integer, then

B1/q ∼=
⊕

1≤i≤s
α∈A

A/Ji,α(aix
α)1/q

as B-modules, with A = {α ∈ Nu+t | 0 ≤ αi ≤ q − 1 for i = 1, . . . , u + t}, B =
{ai1/q | i = 1, . . . , s} is a base of K1/q as K-vector space, and Ji,α = (IA : aix

α).

Proof. The proof is analogous to Proposition 3.1.2.

3.2 F -Thresholds in Stanley-Reisner Rings

In this section, we focus on Stanley-Reisner rings. We denote S = K[x1, . . . , xn] with
K an F -�nite �eld of prime characteristic p. Let I be a squarefree monomial ideal of
S, and R = S/I.

The following proposition is one of the main results of this work, Theorem B. Using
the fact that the quotient of R with each of its minimal prime ideals is a regular ring,
we obtain a case where the F -threshold is a rational number.

Theorem 3.2.1. Let a, J be two ideals of R, with a ⊆
√
J , and J monomial. Let

p1, . . . , pl be the minimal prime ideals of R. Then,

cJR(a) = max
{
cJS/pi(a)

}
.

In particular, cJR(a) ∈ Q.

Proof. We know that I =
⋂l
i=1 pi. Moreover, each pi is generated by variables. We claim

that cJR(a) ≥ max
{
cJS/pi(a)

}
. Let e be a nonnegative integer. We take ti = νJS/pi(a, p

e).

Then, ati/pi 6⊆ J [pe]/pi. Hence, there exists r ∈ ati such that r − c 6∈ pi for every
c ∈ J [pe]. Thus, r − c 6∈ I, and so r 6∈ J [pe]. As a consequence ati 6⊆ J [pe].

We have that ti ≤ νJR(a, pe) for all i. Then,
νJ
S/pi

(a,pe)

pe
≤ νJR(a,pe)

pe
. Thus, cJS/pi(a) ≤

cJR(a). Therefore, cJR(a) ≥ max
{
cJS/pi(a)

}
.

We now show that
⋂l
i=1(J [pe] + pi) ⊆ J [pe] + I. We proceed by contradiction. Let

s be a generator of
⋂l
i=1(J [pe] + pi) such that s 6∈ J [pe] + I. Since J [pe] and each pi

are monomial ideals, we have that every J [pe] + pi is a monomial ideal too. Hence,
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⋂l
i=1(J [pe] + pi) is a monomial ideal. We can take s as a monomial. Furthermore,

s 6∈ J [pe] and s 6∈ I. Thus, there exists an i such that s 6∈ pi. However, s ∈ J [pe] + pi.
Since s is a monomial and pi is generated by variables, we conclude that s ∈ J [pe], we
get a contradiction. Thus, s ∈ J [pe] + I.

We prove that cJR(a) ≤ max
{
cJS/pi(a)

}
. Let e be a nonnegative integer. We take

t = νJR(a, pe). Then, at 6⊆ J [pe]. Hence, there exists r ∈ at such that r − c 6∈ I for
every c ∈ J [pe]. As a consequence, r 6∈ J [pe] + I, and so r 6∈

⋂l
i=1(J [pe] + pi). Hence,

r 6∈ J [pe] + pi for some i. It follows that at/pi 6⊆ J [pe]/pi.

Consequently, we have t ≤ νJS/pi(a, p
e) for some i. Then, ν

J
R(a,pe)

pe
≤ max

{
νJ
S/pi

(a,pe)

pe

}
.

Therefore, cJR(a) ≤ max
{
cJS/pi(a)

}
.

Now, each S/pi is a regular ring, then cJS/pi(a) is a rational number by Theorem
2.4.8 and Corollary 2.5.9. Since

cJR(a) = max
{
cJS/pi(a)

}
,

cJR(a) is a rational number.

Remark 3.2.2. Given S̃ = K[[x1, . . . , xn]] with K an F -�nite �eld of prime charac-
teristic p. We take Ĩ as a squarefree monomial ideal of S̃, and R̃ = S̃/Ĩ, same as in

Theorem 3.2.1. Let ã, J̃ be two ideals of R̃, with ã ⊆
√
J̃ , and J̃ monomial. Then,

cJ̃
R̃

(ã) ∈ Q.

3.3 The Ideal Je

In this section we present an ideal, which is related to the Cartier operators. We study
the Cartier core and we give properties of both ideals. We also see the behavior of them
in the Stanley-Reisner rings for monomial prime ideals.

3.3.1 Cartier Contraction

We begin this subsection with a de�nition given by De Stefani, Hernández, Núñez-
Betancourt and Witt [DSHNnBW].

De�nition 3.3.1 ([DSHNnBW]). Let R be an F -�nite F -pure ring, and J be an ideal
in R. We de�ne

Je = {f ∈ R | ϕ(f 1/pe) ∈ J, for all ϕ ∈ HomR(R1/pe , R)},

for e ∈ N.

Remark 3.3.2. The set Je is an ideal of R. If (R,m, K) is a local ring or a standard
graded K-algebra, and m = J , we have Ie(R) = Je.
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Proposition 3.3.3. Let R be an F -�nite F -pure ring, and J be an ideal of R. Then,
for every e nonnegative integer J [pe] ⊆ Je ⊆ J .

Proof. First, we show the inclusion J [pe] ⊆ Je. Let x be an element of J . For every
ϕ ∈ HomR(R1/pe , R), ϕ((xp

e
)1/pe) = ϕ(x · 1) = xϕ(1) ∈ J . Therefore, xpe ∈ Je.

To show the other inclusion, we proceed by contrapositive. We suppose that there
exists r 6∈ J . Since R ⊆ R1/pe is an R-module split, we can take β ∈ HomR(R1/pe , R)
such that β|R = 1R. It follows that β((rp

e
)1/pe) = β(r) = r 6∈ J . Hence, rpe 6∈ Je, and

so, r 6∈ Je.

The equality Je = J holds under certain conditions. This is done in Proposition
3.3.7 below.

The following proposition shows that the formation of the ideals Je commutes with
arbitrary intersections.

Proposition 3.3.4. Let R be an F -�nite F -pure ring, and {Ji}i be a family of ideals
in R. Then, (

⋂
i Ji)e =

⋂
i(Ji)e for every e nonnegative integer.

Proof. For every ϕ ∈ HomR(R1/pe , R), we have that

x ∈

(⋂
i

Ji

)
e

⇔ ϕ(x1/pe) ∈
⋂
i

Ji

⇔ ϕ(x1/pe) ∈ Ji for every i

⇔ x ∈ (Ji)e for every i

⇔ x ∈
⋂
i

(Ji)e.

Proposition 3.3.5. Let R be an F -�nite F -pure ring, and q be a prime ideal of R.
Then, qe is a q-primary ideal for every e ∈ N.

Proof. We show that
√
qe = q. By Proposition 3.3.3, q[pe] ⊆ qe ⊆ q, and so,

q =
√
q =

√
q[pe] ⊆

√
qe ⊆

√
q = q.

We now show that qe is primary. Suppose that there exist a, b ∈ R such that a 6∈ qe
and b 6∈ q. There is ϕ ∈ HomR(R1/pe , R) satisfying ϕ(a1/pe) 6∈ q. As q is a prime ideal,
ϕ((bp

e
a)1/pe) = ϕ(ba1/pe) = bϕ(a1/pe) 6∈ q. Hence, bp

e
a 6∈ qe, and so, ab 6∈ qe. Therefore,

qe is a q-primary ideal of R.

We now recall the de�nition of uniformly compatible. Our goal is to study the
biggest uniformly compatible ideal contained in other given ideal.

De�nition 3.3.6 ([Sch10]). Let R be an F -�nite ring, and J be an ideal of R. We
say that J is uniformly F -compatible if ϕ(J1/pe) ⊆ J for every e > 0 and every ϕ ∈
HomR(R1/pe , R).
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Proposition 3.3.7. Let R be an F -�nite F -pure ring. Let J be an ideal of R. Then,
Je = J for every e nonnegative integer if and only if J is uniformly F -compatible.

Proof. We suppose that Je = J for every e ≥ 0. We have that ϕ(J1/pe) ⊆ J for every
ϕ ∈ HomR(R1/pe , R) by De�nition 3.3.1.

For the other direction, it is enough to see that J ⊆ Je for every e > 0. In fact, by
De�nition 3.3.6, ϕ(J1/pe) ⊆ J for all ϕ ∈ HomR(R1/pe , R). Therefore, J ⊆ Je.

Lemma 3.3.8. Let R be an F -�nite F -pure ring. Let J be an ideal of R. Then,
⋂
s∈N Js

is uniformly F -compatible.

Proof. We proceed by contradiction. We suppose that ϕ
((⋂

s∈N Js
)1/pe

)
6⊆
⋂
s∈N Js

for some e > 0 and ϕ ∈ HomR(R1/pe , R), and so, we have an f ∈
⋂
s∈N Js such that

ϕ(f 1/pe) 6∈
⋂
s∈N Js. Thus, ϕ(f 1/pe) 6∈ Js for some s ∈ N. Consequently, there exists

φ ∈ HomR(R1/ps , R) such that φ(ϕ(f 1/pe)1/ps) 6∈ J .
If we take ψ : R1/pe+s −→ R1/ps such that ψ(r1/pe+s

) = ϕ(r1/pe)1/ps , we have that ψ
is R-linear. As a consequence, σ = φ ◦ ψ ∈ HomR(R1/pe+s

, R). Then,

σ(f 1/pe+s

) = φ ◦ ψ(f 1/pe+s

) = φ(ϕ(f 1/pe)1/ps) 6∈ J.

Therefore, f 6∈ Je+s, and we reach a contradiction.

Proposition 3.3.9. Let R be an F -�nite F -pure ring. Let J be an ideal of R. Then,⋂
s∈N Js is the biggest uniformly F -compatible ideal contained in J .

Proof. Let I ⊆ J be an uniformly F -compatible ideal. By Proposition 3.3.7, I = Ie ⊆ Je
for every e ≥ 0. Therefore, I ⊆

⋂
s∈N Js.

Motivated by the splitting prime ideal [AE05] and di�erential core [BJNnB19], we
introduce the Cartier core.

De�nition 3.3.10. Let R be an F -�nite F -pure ring. Given J an ideal of R, we de�ne
the Cartier core of J as P(J) =

⋂
s∈N Js.

Remark 3.3.11. Let (R,m, K) be a local ring or a standard graded K-algebra, and
m = J . Then, the ideal P(J) coincides with the splitting prime of R, denoted P(R),
and introduced by Aberbach and Enescu [AE05].

In Proposition 3.3.13, we see a characterization of the Cartier core. This plays an
important role in Subsection 3.3.2 to describe the ideal qe for Stanley-Reisner rings.

Remark 3.3.12. Let R be an F -�nite F -pure ring, and J be an ideal of R. For every
r ∈

√
P(J), rp

e ∈ P(J) for some e ∈ N. Since R ⊆ R1/pe is an R-module split, there
exists β ∈ HomR(R1/pe , R) such that β|R = 1R. Moreover, r = (rp

e
)1/pe ∈ (P(J))1/pe ,

thus r = β(r) ∈ P(J) by Lemma 3.3.8. Therefore, the Cartier core of J is a radical
ideal.
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Since Js+1 is not necessarily contained in Js, we need to show that
⋂
s≥e Js is the

Cartier core for any e.

Proposition 3.3.13. Let R be an F -�nite F -pure ring, and J be an ideal of R. Then,
P(J) =

⋂
s≥e Js for every nonnegative integer e.

Proof. We must show that
⋂
s≥e Js ⊆ P(J). Let x ∈

⋂
s≥e Js. Thus x ∈ J by Propo-

sition 3.3.3. Hence, xp
s ∈ J [ps] for every s ≤ e. As a consequence, xp

e ∈ J [ps]. As
xp

e ∈
⋂
s≥e Js, we have that x

pe ∈ P(J). Thus, x ∈
√
P(J). Therefore, x ∈ P(J) by

Remark 3.3.12.

3.3.2 The Ideal qe in Stanley-Reisner Rings

Throughout this subsection, we denote S = K[x1, . . . , xn] with K an F -�nite �eld of
prime characteristic p. Let I be a squarefree monomial ideal of S, R = S/I, and
p1, . . . , pl are the minimal prime ideals of R. We want to compute the ideal qe, when q
is a monomial prime ideal of R.

Lemma 3.3.14. Let J be a monomial ideal in R, and e be a nonnegative integer. Then,
Je and P(J) are monomial ideals.

Proof. We note that R1/pe and R are Nn-graded. To show that Je is a monomial
ideal, it su�ces to prove that Je is a homogeneous ideal with the Nn grading. Let
r = rα1 + · · · + rαt ∈ Je, with rαi

of degree αi. Let ϕ ∈ HomR(R1/pe , R). Since R1/pe

is a �nitely generated R-module, every homomorphism R1/pe −→ R is a sum of graded
homomorphisms. Thus, we can take ϕ homogeneous of degree β. Then,

ϕ(r) = ϕ(r1/pe

α1
) + · · ·+ ϕ(r1/pe

αt
) ∈ J,

and each ϕ(r
1/pe

αi ) has degree αi + β. As J is homogeneous, we get ϕ(r
1/pe

αi ) ∈ J for all
i ∈ {1, . . . , t}, showing that rαi

∈ Je. Then, Je is a homogeneous ideal.
Since Je is a monomial ideal, P(J) is a monomial ideal by its de�nition.

Proposition 3.3.15. Given q a monomial prime ideal of R, then for e ∈ N, and q = pe,
qe = q[q] + P(q).

Proof. We must show qe ⊆ q[q] + P(q). We proceed by contradiction. Let r be an
element in qe. We suppose that r 6∈ q[q] + P(q). From Lemma 3.3.14, qe is a monomial
ideal of R. Then, we can take r = xβ, with β ∈ Nn.

Thus, xβ 6∈ q[q], and xβ 6∈ P(q). By Proposition 3.3.13, xβ 6∈
⋂
s≥e qs, and so, there

exists e′ ≥ e such that xβ 6∈ qe′ .
Let A = {α ∈ Nn | 0 ≤ αi ≤ q − 1 for i = 1, . . . , n}, A′ = {α′ ∈ Nn | 0 ≤ α′i ≤

pe
′ − 1 for i = 1, . . . , n}, B = {ai1/q | i = 1, . . . , s} be a base of K1/q as K-vector space,

and B′ = {(a′i)1/pe
′
| i = 1, . . . , s′} be a base of K1/pe

′
as K-vector space. We may

suppose that a1 = a′1 = 1.



28 Chapter 3. F -Invariants of Stanley-Reisner Rings

Moreover, xβ/p
e

= xθxα/p
e
and xβ/p

e′
= xθ

′
xα
′/pe

′
, with θ, θ′ ∈ Nn, α ∈ A, and

α′ ∈ A′. As pe
′ ≥ pe, then αi ≤ α′i and θi ≥ θ′i for every i. Thus, there exists τi ∈ N

such that θi = θ′i + τi.
Furthermore, J1,α = (I : xα) ⊆ (I : xα

′
) = J1,α′ . Hence, we take a morphism

φ ∈ HomR((S/J1,α)xα/p
e

, (S/J1,α′)x
α′/pe

′

)

such that φ(xα/p
e
) = xα

′/pe
′
.

Since xβ 6∈ qe′ , there exists ψ ∈ HomR((S/J1,α′)x
α′/pe

′
, R) such that ψ(xθ

′
xα
′/pe

′
) 6∈ q

by Proposition 3.1.2.
We have an R-linear map

ϕ : R1/q −→
⊕

1≤i≤s
α∈A

S/Ji,α(aix
α)1/q

such that
ϕ(r1/q) =

⊕
1≤i≤s
α∈A

(ri,α + Ji,α)(aix
α)1/q,

where
r1/q =

⊕
1≤i≤s
α∈A

ri,α(aix
α)1/q.

Taking γ = ψ ◦ φ ◦ π1,α ◦ ϕ, we have γ ∈ HomR(R1/q, R), and γ(xβ/p
e
) = ψ(xθxα

′/pe
′
) =

ψ(xτxθ
′
xα
′/pe

′
) = xτψ(xθ

′
xα
′/pe

′
).

In addition, xβ = xqθxα = xqτxqθ
′
xα. As xβ 6∈ q[q], we get that xτ 6∈ q. Since xβ ∈ qe,

it follows that xτψ(xθ
′
xα
′/pe

′
) = γ(xβ/p

e
) ∈ q. We get a contradiction, because q is a

prime ideal in R, and xτ , ψ(xθ
′
xα
′/pe

′
) 6∈ q.

Proposition 3.3.16. Let e be a nonnegative integer, q = pe, R = R/P(q) with q a
monomial prime ideal in R, and f ∈ R. Then, the following hold.

(1) If f ∈ qe, then f ∈ (q)e;

(2) f ∈ q[q] if and only if f ∈ qe.

Proof. We show Part (1). We can assume that f a monomial, because qe and (q)e are
monomial ideals by Lemma 3.3.14.

We have that f ∈ qe = q[q] + P(q) by Proposition 3.3.15. Since f is a monomial, it
follows that f ∈ q[q] or f ∈ P(q). If f ∈ P(q), then f = 0 ∈ (q)e. Moreover, if f ∈ q[q],
then f ∈ q[q] ⊆ (q)e.

Now, we show Part (2). From Proposition 3.3.15, we see that

f ∈ q[q] = q[q] ⇔ f − g ∈ P(q) for some g ∈ q[q]

⇔ f ∈ q[q] + P(q) = qe.
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Proposition 3.3.17. Suppose A as in Remark 3.1.3 and B = A/IA. Given q a
monomial prime ideal of B, then for e ∈ N, and q = pe, qe = q[q] + P(q).

Proof. The proof is analogous to Proposition 3.3.15.

Proposition 3.3.18. Suppose A as in Remark 3.1.3 and B = A/IA. Let e be a
nonnegative integer, q = pe, B = B/P(q) with q a monomial prime ideal in B, and
f ∈ B. Then, the following hold.

(1) If f ∈ qe, then f ∈ (q)e;

(2) f ∈ q[q] if and only if f ∈ qe.

Proof. The proof is analogous to Proposition 3.3.16.

3.4 Cartier Threshold of a with Respect to J

In this section we prove other of our main results, Theorem A. In order to obtain this,
we de�ne the Cartier threshold of a with respect to J . We give some properties of
this and show that it is preserved under localization and completion. We study its
relation with the F -thresholds. We also compare this number with its corresponding in
R = R/P(J).

De�nition-Theorem 3.4.1 ([DSHNnBW]). Let R be an F -�nite F -pure ring. Given
a, J two ideals in R such that a ⊆

√
J , we de�ne

bJa (pe) = max{t ∈ N | at 6⊆ Je}.

We de�ne the Cartier threshold of a in R with respect to J by

ctJ(a) = lim
e→∞

bJa (pe)

pe
.

If (R,m, K) is a local ring or a standard graded K-algebra and m = J , the Cartier
threshold ctJ(a) coincides with the F -pure threshold fpt(a). When a = m, fpt(m) is
denoted by fpt(R).

Using the Proposition 3.3.4, it follows that ctJ(a) also commutes with arbitrary
intersections.

Proposition 3.4.2. Let R be an F -�nite F -pure ring. Let {qi}i be a family of ideals
in R, and a, J be ideals inside R such that a ⊆

√
J , and J =

⋂
i qi. Then, ctJ(a) =

sup{ctqi(a)}.
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Proof. By Proposition 3.3.4, we have that Je =
⋂
i(qi)e for every nonnegative integer e.

Then,

t ≥ bJa (pe)⇔ at+1 ⊆ Je

⇔ at+1 ⊆ (qi)e for every i

⇔ t ≥ bqia (pe) for every i

⇔ t ≥ sup{bqia (pe)}.

Hence, b
J
a (pe)
pe

= sup
{
b
qi
a (pe)
pe

}
. Therefore, ctJ(a) = sup{ctqi(a)}.

Since qe is a q-primary ideal by Proposition 3.3.5, we have that ctJ(a) is preserved
under localization. This fact, we prove it in Proposition 3.4.4 below.

Lemma 3.4.3. Let R be an F -�nite F -pure ring, q be a prime ideal of R, and f ∈ R.
Then, f

1
∈ Ie(Rq) if and only if f ∈ qe.

Proof. We focus on the �rst direction. Let ψ ∈ HomR(R1/pe , R). Since (R1/pe)q ∼= Rq
1/pe

as Rq-module, ψq ∈ HomRq(Rq
1/pe , Rq), and so,

ψ(f1/p
e
)

1
= ψq(

f1/p
e

1
) = ψq((

f
1
)1/pe) ∈ qRq.

Hence, as q is a prime ideal, ψ(f 1/pe) ∈ q. Therefore, f ∈ qe.
We now show the other direction. Let ψ ∈ HomRq(Rq

1/pe , Rq). Since

HomRq(Rq
1/pe , Rq) ∼= HomR(R1/pe , R)q,

we have that ψ = ϕq for some ϕ ∈ HomR(R1/pe , R). As a consequence, ψ((f
1
)1/pe) =

ψ(f
1/pe

1
) = ϕ(f1/p

e
)

1
∈ qRq. Therefore,

f
1
∈ Ie(Rq).

Proposition 3.4.4. Let R be an F -�nite F -pure ring. Let a, q be two ideals of R with
q a prime ideal, and a ⊆ q. Then, ctq(a) = fpt(aRq).

Proof. By Lemma 3.4.3, we observe that,

bqa(p
e) = max{t ∈ N | at 6⊆ qe}

= max{t ∈ N | atRq 6⊆ Ie(Rq)}
= max{t ∈ N | (aRq)

t 6⊆ Ie(Rq)}
= b

qRq

aRq
(pe).

Therefore, ctq(a) = fpt(aRq).

Consider a local ring (R,m, K). Let a ⊆
√
J be two ideals of R. We claim that the

Cartier threshold of a with respect to J does not vary under completion. To show this,
we compare the ideal Je versus (JR̂)e.

Lemma 3.4.5. Let (R,m, K) be an F -�nite F -pure local ring, f ∈ R, and J be an

ideal in R. Then, f ∈ Je if and only if f ∈ (JR̂)e.
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Proof. We suppose that f ∈ Je. Let ϕ ∈ HomR̂(R̂1/pe , R̂). Since R is an F -�nite ring

and R̂1/pe ∼= R̂1/pe as R̂-module, we have

HomR̂(R̂1/pe , R̂) ∼= HomR(R1/pe , R)

∼= HomR(R1/pe , R)⊗R R̂.

Hence, ϕ =
∑n

i=1 ϕi ⊗ ri with ϕi ∈ HomR(R1/pe , R) and ri ∈ R̂. Then, ϕ(f 1/pe) =∑n
i=1 riϕi(f

1/pe). However, f ∈ Je, in consequence ϕi(f 1/pe) ∈ J , thus ϕ(f 1/pe) ∈ JR̂.
Therefore, f ∈ (JR̂)e.

We now suppose that f ∈ (JR̂)e. Let ϕ ∈ HomR(R1/pe , R). Since R̂1/pe ∼= R̂1/pe as
R̂-module, we have ϕ̂ ∈ HomR̂(R̂1/pe , R̂). Then, ϕ̂(f 1/pe) ∈ JR̂, and so, ϕ(f 1/pe) ∈ J .
Therefore, f ∈ Je.

Proposition 3.4.6. Suppose that (R,m, K) is an F -�nite F -pure local ring. Let a, J

be two ideals in R such that a ⊆
√
J . Then, ctJ(a) = ctJR̂(aR̂).

Proof. By Lemma 3.4.5, we observe that

bJa (pe) = max{t ∈ N | at 6⊆ Je}
= max{t ∈ N | atR̂ 6⊆ (JR̂)e}
= max{t ∈ N | (aR̂)t 6⊆ (JR̂)e}

= bJR̂
aR̂

(pe).

Therefore, ctJ(a) = ctJR̂(aR̂).

Given J an ideal in R, we consider the ring R = R/P(J). Let a be an ideal in R
such that a ⊆

√
J . Our goal is to compare the Cartier threshold of a with respect to J

versus the Cartier threshold of a with respect to J .

Lemma 3.4.7. Let R be an F -�nite F -pure ring, J be an ideal of R, R = R/P(J),
and f ∈ R. Then, f ∈ (J)e implies that f ∈ Je.

Proof. For every ϕ ∈ HomR(R1/pe , R), we take ϕ : R
1/pe −→ R such that ϕ(x1/pe) =

ϕ(x1/pe). By Lemma 3.3.8, it follows that ϕ is well de�ned.

Since ϕ ∈ HomR(R1/pe , R), it follows that ϕ ∈ HomR(R
1/pe

, R). As f ∈ (J)e, then

ϕ(f 1/pe) = ϕ(f
1/pe

) ∈ J . Hence, there exists y ∈ J such that ϕ(f 1/pe)− y ∈ P(J) ⊆ J ,
and so ϕ(f 1/pe) ∈ J . Therefore, f ∈ Je.

Proposition 3.4.8. Let R be an F -�nite F -pure ring. Let a, J be two ideals in R such
that a ⊆

√
J , and R = R/P(J). Then, ctJ(a) ≤ ctJ(a). In particular, if (R,m, K) is a

local ring or a standard graded K-algebra, then fpt(a) ≤ fpt(a).
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Proof. From Lemma 3.4.7, we have that

bJa (pe) = max{t ∈ N | at 6⊆ Je}
≤ max{t ∈ N | at 6⊆ (J)e}

= bJa (pe).

Therefore, ctJ(a) = lim
e→∞

bJa (pe)
pe
≤ lim

e→∞

bJa (pe)

pe
= ctJ(a).

3.4.1 Relation Between cJ(a) and ctJ(a)

In this subsection we give a characterization of ctJ(a) using F -thresholds.

Remark 3.4.9. Suppose that R is an F -�nite F -pure ring. Let a, J be two ideals in
R such that a ⊆

√
J . Since J [pe] ⊆ Je, we have that

bJa (pe) = max{t ∈ N | at 6⊆ Je}
≤ max{t ∈ N | at 6⊆ J [pe]}
= νJa (pe)

Therefore, ctJ(a) ≤ cJ(a).

The following propositions are an extension of the work done by De Stefani, Núñez-
Betancourt and Pérez [DSNnBP18, Theorem 4.6].

Proposition 3.4.10. Let R be an F -�nite F -pure ring. Let J be an ideal in R. Then,
J

[p]
e ⊆ Je+1 for every e ∈ N.

Proof. Let f be an element in Je. Let ϕ ∈ HomR(R1/pe+1
, R). As R1/pe ⊆ R1/pe+1

, we
have that ϕ|R1/pe ∈ HomR(R1/pe , R). Thus, ϕ((fp)1/pe+1

) = ϕ|R1/pe (f 1/pe) ∈ J . Hence,
fp ∈ Je+1, and so, J [p]

e ⊆ Je+1.

Proposition 3.4.11. Let R be an F -�nite F -pure ring, and a, J be two ideals in R

such that a ⊆
√
J . The sequence

{
cJe (a)
pe

}
e≥0

is decreasing and bounded by zero. In

particular, its limit exists.

Proof. Let e be nonnegative integer, J [p]
e ⊆ Je+1. Thus, cJe+1(a) ≤ cJ

[p]
e (a) = p · cJe(a)

by Proposition 2.5.6. Therefore, c
Je+1 (a)
pe+1 ≤ cJe (a)

pe
.

The following proposition gives us a relation between the Cartier thresholds and
F -thresholds. Speci�cally, we can obtain the Cartier threshold as a limit F -thresholds.

Proposition 3.4.12. Let R be an F -�nite F -pure ring. Let a, J be two ideals in R

such that a ⊆
√
J . Then, ctJ(a) = lim

e→∞
cJe (a)
pe

.
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Proof. Let e be nonnegative integer. We note that

bJa (pe) = max{t ∈ N | a 6⊆ Je}
= max{t ∈ N | a 6⊆ J [p0]

e }
= νJea (p0).

For every nonnegative integer s, we have

νJea (ps)

ps
− νJea (p0)

p0
≤ µ(a)

p0

by Lemma 2.5.3.

The sequence
{
νJea (ps)
ps

}
s≥0

is increasing, because R is a F -pure ring. As a conse-
quence,

0 ≤ νJea (ps)

ps
− νJea (p0) ≤ µ(a).

Thus,

0 ≤ νJea (ps)

ps
− bJa (pe) ≤ µ(a).

We take limit over s to get

0 ≤ cJe(a)− bJa (pe) ≤ µ(a),

dividing by pe gives

0 ≤ cJe(a)

pe
− bJa (pe)

pe
≤ µ(a)

pe
.

Taking limit over e we conclude that

ctJ(a) = lim
e→∞

cJe(a)

pe
.

Corollary 3.4.13. Let R be an F -�nite F -pure ring. Let a, J be two ideals in R such

that a ⊆
√
J . Then, ctJ(a) = cJ(a) if and only if cJe(a) = cJ

[pe]
(a) for every e ∈ N.

Proof. We focus on the �rst direction, it su�ces to show cJ
[pe]

(a) ≤ cJe(a). As the

sequence
{
cJe (a)
pe

}
e≥0

is decreasing and bounded below, it converges to its in�mum. By

Proposition 3.4.12, cJ(a) ≤ cJe (a)
pe

. As a consequence, cJ
[pe]

(a) = pe · cJ(a) ≤ cJe(a).

We now show the other direction, ctJ(a) = lim
e→∞

cJe (a)
pe

= lim
e→∞

cJ
[pe]

(a)
pe

= lim
e→∞

pe·cJ (a)
pe

=

cJ(a).
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3.4.2 Cartier Thresholds in Stanley-Reisner Rings

Throughout this subsection, we denote S = K[x1, . . . , xn] with K an F -�nite �eld of
prime characteristic p. Let I be a squarefree monomial ideal of S, R = S/I, and
p1, . . . , pl are the minimal prime ideals of R.

Theorem 3.4.14. Suppose A as in Remark 3.1.3 and B = A/IA. Let a, q be two
ideals in B with q a prime monomial ideal, such that a ⊆ q, and B = B/P(q). Then,
the following hold:

(1) ctq(a) = ctq(a);

(2) ctq(a) = cq(a);

(3) ctq(a) is a rational number.

In particular, fpt(a) is a rational number.

Proof. We show Part (1). From Proposition 3.3.18 and Lemma 3.4.7, we have

bqa(p
e) = max{t ∈ N | at 6⊆ qe}

= max{t ∈ N | at 6⊆ (q)e}
= bqa(p

e).

Therefore, ctq(a) = ctq(a).
Now, we show Part (2). We claim that cq(a) ≤ ctq(a). From Proposition 3.3.18, it

follows that

νqa(pe) = max{t ∈ N | at 6⊆ q[q]}
≤ max{t ∈ N | at 6⊆ qe}
= bqa(p

e).

Thus, cq(a) = lim
e→∞

νq
a
(pe)

pe
≤ lim

e→∞
bqa(pe)
pe

= ctq(a).

By Part (1) and Remark 3.4.9, we have cq(a) ≤ ctq(a) = ctq(a) ≤ cq(a). Therefore,
cq(a) = ctq(a).

We show Part (3). Since q is a monomial ideal, P(q) is also a monomial ideal by
Lemma 3.3.14. In addition, P(q) is a radical ideal by Remark 3.3.12. Thus, P(q) is
squarefree monomial ideal. Consequently, B is a power series ring modulo a squarefree
monomial ideal. Since q is a monomial ideal in B, cq(a) is a rational number by Remark
3.2.2. Therefore, ctq(a) is a rational number by Part (2).

The last statement follows, since ctm(a) = fpt(a) and m is a monomial prime ideal
in B.

Since ctJ(a) is preserved under localization and completion, Theorem 3.4.14 allows
us to obtain one of the main results of this work.
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Corollary 3.4.15. Let a, q be two ideals of R, where q is a prime ideal and a ⊆ q.
Then, ctq(a) is a rational number.

Proof. We have that ctq(a) = fpt(aR̂q) by Propositions 3.4.4 and 3.4.6. Therefore,
ctq(a) is a rational number by Theorem 3.4.14.

Corollary 3.4.16. Let a, J be two ideals in R with J radical ideal, such that a ⊆ J .
Then, ctJ(a) is a rational number. In particular, fpt(a) is a rational number.

Proof. Since J is a radical ideal, we have that J =
⋂m
i=1 qi where q1, . . . , qm are the

minimal prime ideals of J . From Proposition 3.4.2, ctJ(a) = max{ctqi(a)}. By Corollary
3.4.15, ctJ(a) is a rational number.

3.5 Regularity in Stanley-Reisner Rings

Throughout this section, we denote S = K[x1, . . . , xn] with K an F -�nite �eld of prime
characteristic p. Let I be a squarefree monomial ideal of S, R = S/I.

De�nition 3.5.1. Let α ∈ Nn. The support of α is de�ned by

Supp(α) = {i ∈ {1, . . . , n} | αi 6= 0}.

We also take

xSupp(α) =
∏

i∈Supp(α)

xi

Lemma 3.5.2. Given α ∈ Nn, then

(I : xα) = (xSupp(λ)\ Supp(α) | xλ minimal generator of I).

In particular, if α, β ∈ Nn are such that Supp(α) = Supp(β), then (I : xα) = (I : xβ).

Proof. Since I is a monomial ideal, it follows that (I : xα) is a monomial ideal as well.
We have (xSupp(λ)\Supp(α) | xλ minimal generator of I) ⊆ (I : xα). Indeed, for every xλ

minimal generator of I, xSupp(λ)\ Supp(α)xα ∈ I.
We show that (I : xα) ⊆ (xSupp(λ)\ Supp(α) | xλ minimal generator of I). Let xθ be a

generator of (I : xα). Thus xθxα ∈ I. Hence, xλ|xθxα for some xλ minimal generator
of I. Then, Supp(λ)\ Supp(α) ⊆ Supp(θ), and so, xSupp(λ)\ Supp(α)|xθ. Therefore, xθ ∈
(xSupp(λ)\ Supp(α) | xλ minimal generator of I).

Now, we prove Theorem C.

Theorem 3.5.3. Let J be a homogeneous ideal of R. Then,

lim
e→∞

reg(R/J [pe])

pe
= max

1≤i≤d
α∈A′
{ai(S/(Jα + J)) + |α|},

where A′ = {α ∈ Nn | 0 ≤ αi ≤ 1 for i = 1, . . . , n}, Jα = (I : xα), and d =
max{dim(S/(Jα + J)) | α ∈ A′}. In particular, this limit is an integer number.
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Proof. Without loss of generality, we can take K a perfect �eld. Let e be a nonnegative
integer and A = {α ∈ Nn | 0 ≤ αi ≤ pe − 1 for i = 1, . . . , n}. Then,

R1/pe ∼=
⊕
α∈A

(S/Jα)xα/p
e

,

where Jα = (I : xα) by Proposition 3.1.2. Applying −⊗R R/J , we obtain that

(R/J [pe])1/pe ∼= R1/pe/JR1/pe ∼=
⊕
α∈A

(S/(Jα + J))xα/p
e

,

and so

H i
m((R/J [pe])1/pe) ∼=

⊕
α∈A

H i
m((S/(Jα + J))xα/p

e

).

Hence, we have

ai(R/J
[pe])

pe
= ai((R/J

[pe])1/pe)

= max
α∈A
{ai((S/(Jα + J))xα/p

e

)}

= max
α∈A

{
ai(S/(Jα + J)) +

|α|
pe

}
.

For every α ∈ A and β ∈ A′, there exist γ ∈ A′ and ω ∈ A such that Supp(α) =
Supp(γ) and Supp(ω) = Supp(β). Then, Jα = Jγ and Jβ = Jω by Lemma 3.5.2. Hence,
we have

ai(R/J
[pe])

pe
= max

α∈A′

{
ai(S/(Jα + J)) +

|α|(pe − 1)

pe

}
.

Thus,

lim
e→∞

reg(R/J [pe])

pe
= lim

e→∞
max
i∈Z

{
ai(R/J

[pe])

pe
+

i

pe

}
= lim

e→∞
max
i∈Z

{
max
α∈A′
{ai(S/(Jα + J)) +

|α|(pe − 1)

pe
}+

i

pe

}
= lim

e→∞
max
1≤i≤d
α∈A′

{
ai(S/(Jα + J)) +

|α|(pe − 1)

pe
+

i

pe

}

= max
1≤i≤d
α∈A′

{
lim
e→∞

ai(S/(Jα + J)) +
|α|(pe − 1)

pe
+

i

pe

}
= max

1≤i≤d
α∈A′
{ai(S/(Jα + J)) + |α|}.



CHAPTER 4

F -Volumes

Motivated by the mixed test ideals associated to a sequence of ideals I1, . . . , It and their
constancy regions, in this chapter we de�ne a numerical invariant called F -volume (see
Theorem D). This number extends the de�nition of F -threshold of a pair of ideals I
and J , cJ(I) to a sequence of ideals J , I1, . . . , It. We obtain several properties that
emulate those of the F -threshold. In particular, the F -volume detects F -pure complete
intersections (see Theorem E). In addition, we relate this invariant to the Hilbert-Kunz
multiplicity (see Theorem F).

The results presented in this chapter are in joint work with Nún�ez-Betancourt and
Rodríguez-Villalobos [BCNnBRV19].

4.1 Existence and De�nition

In this section we prove a more general version of Theorem D. In order to do this, we
start by introducing a couple of de�nitions.

De�nition 4.1.1. A sequence J• = {Jpe}e∈N of ideals in R whose terms are indexed
by the powers of the characteristic is called a p-family if J [p]

pe ⊆ Jpe+1 for all e ∈ N.

An example of a p-family of ideals is the sequence J• = {J [pe]}e∈N of Frobenius
powers of an ideal J .

There are important p-families that relate to several limits in prime characteristic
that measure singularities [SVdB97, HL02, Yao06, Tuc12, HJ18].

37



38 Chapter 4. F -Volumes

De�nition 4.1.2. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N
be a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. For each e ∈ N, we de�ne

VJ•
I (pe) = {(a1, . . . , at) ∈ Nt | Ia11 · · · Iatt 6⊆ Jpe}.

If f = f1, . . . , ft is a sequence of elements of R such that f1, . . . , ft ∈
√
J1, we use VJ•

f (pe)

to denote VJ•
I (pe) where I = f1R, . . . , ftR. In case that the p-family is J• = {J [pe]}e∈N

with J an ideal in R, VJ•
I (pe) is denoted by VJ

I (pe).

Remark 4.1.3. Since I1, . . . , It ⊆
√
J1, for each i ∈ {1, . . . , t}, there exists `i ∈ N

such that I`ii ⊆ J1. Additionally, we have that Iµ(Ii)p
e

i ⊆ I
[pe]
i and, as a consequence,

I
µ(Ii)`ip

e

i ⊆ J
[pe]
1 ⊆ Jpe . Hence, if Ia11 · · · Iatt 6⊆ Jpe , then ai < µ(Ii)`ip

e for all i ∈
{1, . . . , t}. Thus, |VJ•

I (pe)| ≤ pet
∏t

i=1 µ(Ii)`i for every e ∈ N. Therefore, the sequence{
|VJ•

I (pe)|
pet

}
e∈N

is bounded.

We now recall a well-known lemma to the experts (see for instance [DSNnBP18,
Lemma 3.2]).

Lemma 4.1.4. Let a ⊆ R be an ideal. Then, for every r ≥ (µ(a) + s− 1)pe, we have
that ar = ar−sp

e
(a[pe])s.

Towards proving Theorem D, we need to introduce notation to describe di�erent
objects.

Notation 4.1.5. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and a = (a1, . . . , at) ∈
Nt. We denote (da1e, . . . , date) by dae. We write Ia to denote Ia11 · · · Iatt . Additionally,
for each x = (x1, . . . , xt) ∈ Rt, we write x̂i to denote (x1, . . . , xi−1, xi+1, . . . , xt). Let
e1, e2 ∈ N. Let C be a subset of 1

pe1
Nt. We denote the set

⋃
x=(x1,...,xt)∈C

{
y = (y1, . . . , yt) ∈

1

pe1+e2
Nt : xi −

1

pe1
< yi ≤ xi

}

by He1,e2(C). Finally, we use 1 to denote the element of Nt whose coordinates are all 1.

De�nition 4.1.6. Let e1 ∈ N. Let C be a subset of 1
pe1
Nt. We say that x ∈ C is a

border point of C if x+ 1
pe1

1 6∈ C. We denote by ∂C the set of all border points in C.

Notation 4.1.7. Let I = I1, . . . , It ⊆ R be a sequence of ideals, J• = {Jpe}e∈N be
a p-family of ideals in R such that I1, . . . , It ⊆

√
J1, and µ = max{µ(I1), . . . , µ(It)}.

Consider e1, e2 ∈ N. For each i ∈ {1, ..., t}, let `i = min{` | I`i ⊆ J1}. Then,

� Bn(I)e1 = 1
pe1
Nt−1∩

(∏n−1
i=1 [0, µ(Ii)`i]×

∏t
i=n+1[0, µ(Ii)`i]

)
for every n ∈ {1, . . . , t}.

� B(I)e1 = 1
pe1
Nt ∩

(⋃t
j=1

(∏j−1
i=1 [0, µ(Ii)`i]× {0} ×

∏t
i=j+1[0, µ(Ii)`i]

))
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� Re1,e2 = He1,e2(
1
pe1

VJ•
I (pe1)), and

� Le1,e2 = He1,e2

(
∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
+ 1

pe1
{0, . . . , µ}1

)
.

Roughly speaking, Re1,e2 is the result of �lling the set
1
pe1

VJ•
I (pe1) when considered

as a subset of 1
pe1+e2

Nt. Similarly we can think of Le1,e2 as the result of �lling the
subset of 1

pe1+e2
Nt consisting of points in 1

pe1
Nt that are in the line segments joining

x ∈ ∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
with x+ 1

pe1
µ1.

We now show an example that illustrates the regions previously described.

Example 4.1.8. Suppose that R = K[[x, y]] where K is a �eld of characteristic p = 2.
Consider m = (x, y), the maximal ideal of R. Let I = xR, (y2 + x)R. Then we have
that

Vm
I (pe1) =

((
[0, 2e1 − 1]×

[
0,

2e1 − 2

2

])
∪
([

0,
2e1 − 2

2

]
×
(

2e1 − 2

2
, 2e1 − 1

]))
∩N2.

Note that µ = 1 and `1 = `2 = 1. It follows that

∂

(
1

pe1
Vm
I (pe1) ∪ B(I)e1

)
=

1

2e1

(((
{2e1 − 1} ×

[
0,

2e1 − 2

2

])
∪
([

2e1 − 2

2
, 2e1 − 1

]
×
{

2e1 − 2

2

})
∪
({

2e1 − 2

2

}
×
(

2e1 − 2

2
, 2e1 − 1

])
∪
([

0,
2e1 − 2

2

]
× {2e1 − 1}

)
∪ {(2e1 , 0), (0, 2e1)}

)
∩ N2

)
.

Additionally, we have the following equalities

� Re1,e2 =
(⋃

x∈ 1
pe1

Vm
I (pe1 )[0, x1]× · · · × [0, xt]

)
∩ 1

pe1+e2
N2,

� Le1,e2 = He1,e2

(
∂
(

1
pe1

Vm
I (pe1) ∪ B(I)e1

)
+ 1

pe1
{0, 1}1

)
.

The following �gures show the regions of interest in the case e1 = 2, e2 = 1, µ = 1.
The blue circles represent 1

pe1
Vm
I (pe1). The blue circles together with the red squares

represent Re1,e2 . The border points of
1
pe1

Vm
I (pe1)∪B(I)e1 are represented by the green

triangles. The orange stars represent the elements of the set Le1,e2 .
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We explore this discussion further in Example 4.1.15.

Remark 4.1.9. Let e1 be a positive integer and let I = I1, . . . , It ⊆ R be a sequence

of ideals. Let φ : ∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
→
⋃t
j=1 (Bj(I)e1 × {j}) the map de�ned by

φ(x1, . . . ., xt) = (ŷs, s)

where
y = (x1, . . . ., xt)−min{xi : i ∈ {1, . . . , t}}1

and
s = min{i ∈ {1, . . . , t} : xi = min{xj : j ∈ {1, . . . , t}}}.

Notice that, if (x1, . . . , xt) ∈ 1
pe1

VJ•
I (pe1), we have that y ∈ 1

pe1
VJ•
I (pe1) and ŷs ∈ Bs(I)e1

by Remark 4.1.3. On the other hand, if x = (x1, . . . , xt) ∈ B(I)e1 , then min{xi : i ∈
{1, . . . , t}}) = 0 and y = x. Hence ŷs ∈ Bs(I)e1 . Thus φ is well-de�ned. Now suppose
φ(x1, . . . , xn) = φ(z1, . . . ., zn). It follows that (z1, . . . ., zt)−zs1 = (x1, . . . , xt)−xs1. We
can assume without loss of generality that zs ≥ xs. Then, we have that (z1, . . . , zt) =
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(x1, . . . , xt)+(zs−xs)1. If zs > xs, then zi ≥ xi+
1
pe1

and zi > 0 for every i ∈ {1, . . . , t}.
Consequently, (z1, . . . , zt) ∈ 1

pe1
VJ•
I (pe1) and (x1, . . . , xt) + 1

pe1
1 ∈ 1

pe1
VJ•
I (pe1)∪B(I)e1 ,

which contradicts that (x1, . . . , xt) ∈ ∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
. Hence, φ is injective.

Therefore, we have that∣∣∣∣∂ ( 1

pe1
VJ•
I (pe1) ∪ B(I)e1

)∣∣∣∣ ≤ pe1(t−1)

t∑
n=1

(
n−1∏
j=1

(µ(Ij)`j + 1)
t∏

j=n+1

(µ(Ij)`j + 1)

)
.

Remark 4.1.10. Let e1, e2 ∈ N, C be a subset of 1
pe1
Nt, and x be an element of 1

pe1+e2
Nt.

Suppose that 1
pe1
dpe1xe ∈ C. For every i ∈ {1, . . . , t} we have that

xi +
1

pe1
=

1

pe1
(pe1xi + 1) >

1

pe1
dpe1xie .

Thus,
1

pe1
dpe1xie −

1

pe1
< xi ≤

1

pe1
dpe1xie .

Therefore, x ∈ He1,e2(C).

We now start a series of lemmas towards proving Theorem D.

Lemma 4.1.11. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N be
a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. We have that

1

pe1+e2
VJ•
I (pe1+e2) ⊆ Re1,e2 ∪ Le1,e2

Proof. Let x = (x1, . . . , xt) ∈ 1
pe1+e2

VJ•
I (pe1+e2) be such that x 6∈ Re1,e2 . By Remark

4.1.3, pe1+e2xi ≤ µ(Ii)`ip
e1+e2 for each i ∈ {1, . . . , t}. Hence, pe1xi ≤ µ(Ii)`ip

e1 and
dpe1xie ≤ µ(Ii)`ip

e1 for each i ∈ {1, . . . , t}. Thus, if xj = min{x1, . . . , xt}, we have

1

pe1
(dpe1xe − dpe1xje1) ∈ B(I)e1 .

Hence,
{
y ∈ 1

pe1
Z | 1

pe1
dpe1xe − y1 ∈

(
1
pe1

VJ•
I (pe1) ∪ B(I)e1

)}
is not empty.

Since x 6∈ Re1,e2 , we have that
1
pe1
dpe1xe+y1 6∈ 1

pe1
VJ•
I (pe1) for every y ∈ 1

pe1
N by Re-

mark 4.1.10. As a consequence,
{
y ∈ 1

pe1
Z | 1

pe1
dpe1xe − y1 ∈

(
1
pe1

VJ•
I (pe1) ∪ B(I)e1

)}
is bounded below by 0.

We take a = 1
pe1
dpe1xe − r1, where

r = min

{
y ∈ 1

pe1
Z | 1

pe1
dpe1xe − y1 ∈

(
1

pe1
VJ•
I (pe1) ∪ B(I)e1

)}
.
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We note that a ∈ ∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
.

On the other hand, by Lemma 4.1.4 with s = pe1a1, . . . ., p
e1at, we have

Ip
e2 (pe1a+µ1) = I

pe2 (pe1a1+µ)
1 · · · Ip

e2 (pe1at+µ)
t

= Iµp
e2

1 (I
[pe2 ]
1 )p

e1a1 · · · Iµp
e2

t (I
[pe2 ]
t )p

e1at

⊆ I
[pe2 ]
1 (Ip

e1a1
1 )[pe2 ] · · · I [pe2 ]

t (Ip
e1at
t )[pe2 ]

= (Ip
e1a1+1

1 )[pe2 ] · · · (Ip
e1at+1
t )[pe2 ]

= (Ip
e1a+1)[pe2 ].

Since a ∈ ∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
, pe1a+ 1 6∈ VJ•

I (pe1). Then,

Ip
e2 (pe1a+µ1) = (Ip

e1a+1)[pe2 ]

⊆ J
[pe2 ]
pe1

⊆ Jpe1+e2 .

Thus, pe2(pe1a + µ1) 6∈ VJ•
I (pe1+e2). Hence, there exists k ∈ {1, . . . , t} such that

pe1+e2xk ≤ pe2(pe1ak + µ). This implies, pe1xk ≤ dpe1xke − pe1r + µ, and so dpe1xke ≤
dpe1xke − pe1r + µ. Then, we have that 0 ≤ r ≤ 1

pe1
µ.

Since 1
pe1
dpe1xe = a+r1 ∈ ∂

(
1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
+ 1

pe1
{0, . . . , µ}1, it follows that

x ∈ He1,e2

(
∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
+ 1

pe1
{0, . . . , µ}1

)
= Le1,e2 by Remark 4.1.10.

Lemma 4.1.12. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N be
a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. For each e1 ∈ N, there exists a

subset Ae1 of 1
pe1
Nt such that

(1) 1
pe1

VJ•
I (pe1) ⊆ Ae1,

(2) 1
pe1+e2

VJ•
I (pe1+e2) ⊆ He1,e2(A

e1) for all e2 ∈ N, and

(3) lime1→∞
|Ae1− 1

pe1
VJ•

I (pe1 )|
pe1t

= 0.

Proof. By Lemma 4.1.11, we have that 1
pe1+e2

VJ•
I (pe1+e2) ⊆ Re1,e2 ∪Le1,e2 . In addition,

the set Re1,e2 ∪ Le1,e2 is contained in

He1,e2

(
1

pe1
VJ•
I (pe1)

⋃(
∂

(
1

pe1
VJ•
I (pe1) ∪ B(I)e1

)
+

1

pe1
{0, . . . , µ}1

))
.

Let Ae1 = 1
pe1

VJ•
I (pe1)

⋃(
∂
(

1
pe1

VJ•
I (pe1) ∪ B(I)e1

)
+ 1

pe1
{0, . . . , µ}1

)
. Then,∣∣∣∣Ae1 − 1

pe1
VJ•
I (pe1)

∣∣∣∣ ≤ pe1(t−1)(µ+ 1)
t∑

n=1

(
n−1∏
j=1

(µ(Ij)`j + 1)
t∏

j=n+1

(µ(Ij)`j + 1)

)
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by Remark 4.1.9. Hence, we have that

0 ≤ lim inf
e1→∞

|Ae1 − 1
pe1

VJ•
I (pe1)|

pe1t

≤ lim sup
e1→∞

|Ae1 − 1
pe1

VJ•
I (pe1)|

pe1t

≤ lim sup
e1→∞

(µ+ 1)
∑t

n=1

(∏n−1
j=1 (µ(Ij)`j + 1)

∏t
j=n+1(µ(Ij)`j + 1)

)
pe1

= 0.

It follows that

lim
e1→∞

|Ae1 − 1
pe1

VJ•
I (pe1)|

pe1t
= 0.

We are now ready to prove the main result of this section which appears in the
introduction as Theorem D.

Theorem 4.1.13. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N be

a p-family of ideals in R such that I1, . . . , It ⊆
√
J1. Then, lime→∞

|VJ•
I (pe)|
pet

exists.

Proof. For each e1 ∈ N, let Ae1 be as in Lemma 4.1.12. Then, for each e1, e2 ∈ N, we
have

1

pe1+e2
VJ•
I (pe1+e2) ⊆ He1,e2(A

e1).

As a consequence,
|VJ•

I (pe1+e2)| ≤ |He1,e2(A
e1)| ≤ pe2t|Ae1|.

Since 1
pe1

VJ•
I (pe1) ⊆ Ae1 ,

Ae1 =
1

pe1
VJ•
I (pe1) ∪

(
Ae1 − 1

pe1
VJ•
I (pe1)

)
.

Hence,

|Ae1| =
(
|VJ•

I (pe1)|+
∣∣∣∣Ae1 − 1

pe1
VJ•
I (pe1)

∣∣∣∣) .
It follows that

|VJ•
I (pe1+e2)| ≤ pe2t

(
|VJ•

I (pe1)|+
∣∣∣∣Ae1 − 1

pe1
VJ•
I (pe1)

∣∣∣∣) .
Dividing by pe1t+e2t, we obtain

|VJ•
I (pe1+e2)|
pe1t+e2t

≤
|VJ•

I (pe1)|
pe1t

+
|Ae1 − 1

pe1t
VJ•
I (pe1)|

pe1t
.
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Thus, we have

lim sup
e→∞

|VJ•
I (pe)|
pet

= lim sup
e2→∞

|VJ•
I (pe1+e2)|
pe1t+e2t

≤
|VJ•

I (pe1)|
pe1t

+
|Ae1 − 1

pe1t
VJ•
I (pe1)|

pe1t
.

It follows that

lim sup
e→∞

|VJ•
I (pe)|
pet

≤ lim inf
e1→∞

|VJ•
I (pe1)|
pe1t

+ lim
e1→∞

|Ae1 − 1
pe1t

VJ•
I (pe1)|

pe1t
= lim inf

e1→∞

|VJ•
I (pe1)|
pe1t

.

Therefore, the lime→∞
|VJ•

I (pe)|
pet

exists.

Given Theorem 4.1.13, we are able to de�ne the F -volume of a sequence of ideals
with respect to a p-family. We justify the choice of this name in Section 4.3, where we
show that this number gives a volume of certain regions for F -pure rings.

De�nition 4.1.14. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N
be a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. We de�ne the F -volume of the

sequence I with respect to the p-family J• = {Jpe}e∈N by

VolJ•F (I) = lim
e→∞

1

pet
|VJ•

I (pe)|.

If f = f1, . . . , ft is a sequence of elements of R such that f1, . . . , ft ∈
√
J1, we use

VolJ•F (f) to denote VolJ•F (I) where I = f1R, . . . , ftR. In case that the p-family is
J• = {J [pe]}e∈N where J is an ideal in R, VolJ•F (I) is denoted by VolJF (I), and we call it
the F -volume of the sequence I with respect to J .

We end this section providing an example that shows that di�erent generators of
an ideal do not necessarily give equal volumes, that is, if we take two ideals I, J such
that I ⊆

√
J , and I = (f1, . . . , ft) = (g1, . . . , gs) with f 6= g, then it is possible to have

VolJF (f) 6= VolJF (g).

Example 4.1.15. We take R = K[[x, y]] with K an F -�nite �eld of characteristic
p = 2. Let I = (x, y2) = (x, y2 + x), m = (x, y), f = x, y2 and g = x, y2 + x.

Let us compute VolmF (f). We note that for a, b, e ∈ N,

xay2b 6∈ m[pe] ⇔ a ≤ pe − 1, 2b ≤ pe − 1

⇔ a ≤ pe − 1, b ≤ pe − 1

2

⇔ a ≤ pe − 1, b ≤
⌊
pe − 1

2

⌋
=
pe − 2

2
.
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Hence, Vm
f (pe) = [0, pe − 1]×

[
0, p

e−2
2

]
∩ N2. Thus, |Vm

f (pe)| = p2e

2
. Therefore,

VolmF (f) = lim
e→∞

|Vm
f (pe)|
p2e

= lim
e→∞

p2e

2p2e

=
1

2
.

Let us compute VolmF (g). We note that Vm
f (pe) ⊆ Vm

g (pe). We show that

Vm
g (pe) = Vm

f (pe) ∪
([

0,
pe − 2

2

]
×
(
pe − 2

2
, pe − 1

]
∩ N2

)
.

Since a, b ≤ pe− 1 if (a, b) ∈ Vm
g (pe), it is enough to show that (p

e−2
2
, pe− 1) ∈ Vm

g (pe),

and that (p
e

2
, p

e

2
) 6∈ Vm

g (pe).
We have that

x
pe−2

2 (x+ y2)p
e−1 =

pe−1∑
i=0

(
pe − 1

i

)
x

pe−2
2

+pe−1−iy2i.

But, 2 6 |
(pe−1

pe

2
−1

)
, then

(pe−1
pe

2
−1

)
xp

e−1yp
e−2 6∈ m[pe]. Therefore, (p

e−2
2
, pe − 1) ∈ Vm

g (pe).

Moreover, x
pe

2 (x+ y2)
pe

2 = x
pe

2 yp
e

+ xp
e ∈ m[pe]. Therefore, (p

e

2
, p

e

2
) 6∈ Vm

g (pe).
It follows that

|Vm
g (pe)| = |Vm

f (pe)|+ pe

2
· p

e

2

=
p2e

2
+
p2e

4

=
3

4
p2e.

Thus, we have

VolmF (g) = lim
e→∞

|Vm
g (pe)|
p2e

= lim
e→∞

3p2e

4p2e

=
3

4
.

4.2 First Properties

In this section we discuss basic properties of the F -volumes. In particular, we focus on
those properties that resemble the properties of the F -thresholds.
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Proposition 4.2.1. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and a, J ⊆ R be
two ideals such that I1, . . . , It ⊆

√
J . Then, the following statements hold.

(1) If J ⊆ a, then VolaF (I) ≤ VolJF (I);

(2) VolJ
[p]

F (I) = pt VolJF (I).

(3) If I t−1 = I1, . . . , It−1, then VolJF (I) ≤ VolJF (I t−1)cJ(It).

Proof.

(1) Since J ⊆ a, we have Va
I(p

e) ⊆ VJ
I (pe) for every e ∈ N. Thus, |Va

I(p
e)| ≤ |VJ

I (pe)|.
Therefore, VolaF (I) ≤ VolJF (I).

(2) We have that (J [p])[pe] = J [pe+1], then VJ [p]

I (pe) = VJ
I (pe+1). Hence

|VJ[p]

I (pe)|
pet

=
pt|VJ

I (pe+1)|
p(e+1)t . Therefore, VolJ

[p]

F (I) = pt VolJF (I).

(3) Let a ∈ VJ
I (pe). Then, Ia 6⊆ J [pe]. We have that at ≤ νJIt(p

e); otherwise, Ia ⊆ J [pe],
which is a contradiction. Then, VJ

I (pe) ⊆ VJ
It−1

(pe)× {0, . . . , νJIt(p
e)}. Thus,

VolJF (I) = lim
e→∞

|VJ
I (pe)|
pet

≤ lim
e→∞

|VJ
It−1

(pe)× {0, . . . , νJIt(p
e)}|

pet

= lim
e→∞

|VJ
It−1

(pe)|
pe(t−1)

lim
e→∞

νJIt(p
e) + 1

pe

= VolJF (I t−1)cJ(It).

We now show that F -volumes are not a�ected by integral closure.

Proposition 4.2.2. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N
be a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. Then,

VolJ•F (I) = VolJ•F (I1, I2, . . . , It),

where I1 denotes the integral closure of I1. As a consequence,

VolJ•F (I) = VolJ•F (I1, . . . , It).
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Proof. We have that I1 ⊆ I1 is a reduction by Propositions 2.2.4 and 2.2.5. Then, there
exists ` ∈ N>0 such that I1

n ⊆ In−`1 for every n ∈ N by De�nition 2.2.3. We consider
the set

H = {β ∈ Nt−1 | ∃β1 ∈ N such that (β1, β) ∈ VJ•
I1,I2,...,It

(pe)\VJ•
I (pe)}.

For all β ∈ H, we denote bβ as the largest nonnegative integer such that

(bβ, β) ∈ VJ•
I1,I2,...,It

(pe)\VJ•
I (pe).

We show that VJ•
I1,I2,...,It

(pe)\VJ•
I (pe) ⊆

⋃
β∈H(N∩ (bβ−`, bβ])×{β}. Let (a1, . . . , at)

be an element of VJ•
I1,I2,...,It

(pe)\VJ•
I (pe). Thus, a = (a2, . . . , at) ∈ H. We have

that I1
ba
Ia22 · · · Iatt ⊆ Iba−`1 Ia22 · · · Iatt . We deduce that Iba−`1 Ia22 · · · Iatt 6⊆ Jpe . But,

Ia11 I
a2
2 · · · Iatt ⊆ Jpe . As a consequence, ba − ` < a1 ≤ ba. Therefore, (a1, a) ∈⋃

β∈H(N ∩ (bβ − `, bβ])× {β}.
We note that VJ•

I (pe) ⊆ VJ•
I1,I2,...,It

(pe). Thus,

|VJ•
I1,I2,...,It

(pe)| − |VJ•
I (pe)| = |VJ•

I1,I2,...,It
(pe)\VJ•

I (pe)| ≤ `|H| ≤ `
t∏
i=2

|VJ•
Ii

(pe)|,

where the last inequality follows because H ⊆ VJ•
I2,...,It

(pe). Since

lim
e→∞

∏t
i=2 |V

J•
Ii

(pe)|
pe(t−1)

=
t∏
i=2

VolJ•F (Ii),

we obtain that

0 ≤ lim
e→∞

|VJ•
I1,I2,...,It

(pe)|
pet

−
|VJ•

I (pe)|
pet

≤ lim
e→∞

`
∏t

i=2 |V
J•
Ii

(pe)|
pet

= 0.

Therefore,

VolJ•F (I) = lim
e→∞

|VJ•
I (pe)|
pet

= lim
e→∞

|VJ•
I1,I2,...,It

(pe)|
pet

= VolJ•F (I1, I2, . . . , It).

We now start describing objects that give us an alternative description to F -volumes.
These descriptions will play an important role in the following sections.

De�nition 4.2.3. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N
be a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. We take

BJ•(I; pe) =
⋃

a∈VJ•
I (pe)

[0, a1/p
e]× . . .× [0, at/p

e].

If f = f1, . . . , ft is a sequence of elements of R such that f1, . . . , ft ∈
√
J1, we use

BJ•(f ; pe) to denote BJ•(I; pe) where I = f1R, . . . , ftR. In case that the p-family is
J• = {J [pe]}e∈N where J is an ideal in R, BJ•(I; pe) is denoted by BJ(I; pe).
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Remark 4.2.4. Analogous to De�nition 4.1.2, we take

Ṽ
J•

I (pe) = {(a1, . . . , at) ∈ Nt>0 | I
a1
1 · · · Iatt 6⊆ Jpe},

and

B̃J•(I; pe) =
⋃

a∈Ṽ
J•
I (pe)

[0, a1/p
e]× . . .× [0, an/p

e].

If the p-family is J• = {J [pe]}e∈N with J an ideal of R, we denote Ṽ
J•

I (pe) and B̃J•(I; pe)

by Ṽ
J

I (pe) and B̃J(I; pe) respectively.
We obtain

Vol(B̃J•(I; pe)) =
1

pet
|Ṽ

J•

I (pe)|,

by dividing B̃J•(I; pe) in t-cubes of volume 1/pet and counting the number of t-cubes.

Proposition 4.2.5. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N
be a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. Then,

VolJ•F (I) = lim
e→∞

|Ṽ
J•

I (pe)|
pet

.

Proof. We note that Ṽ
J•

I (pe) ⊆ VJ•
I (pe) and

VJ•
I (pe) \ Ṽ

J•

I (pe) = {(a1, . . . , at) ∈ Nt | Ia11 · · · Iatt 6⊆ Jpe & ∃i such that ai = 0}
⊆ {(a1, . . . , at) ∈ Nt | ∀i, ai ≤ |VJ•

Ii
(pe)| − 1 & ∃i such that ai = 0}.

Then,

|VJ•
I (pe)| − |Ṽ

J•

I (pe)| = |VJ•
I (pe) \ Ṽ

J•

I (pe)| ≤
t∑
i=1

(∏
i 6=j

|VJ•
Ij

(pe)|

)
.

We obtain that

0 ≤ lim
e→∞

|VJ•
I (pe)|
pet

−
|Ṽ

J•

I (pe)|
pet

≤ lim
e→∞

∑t
i=1

(∏
i 6=j |V

J•
Ij

(pe)|
)

pet

=
t∑
i=1

lim
e→∞

(∏
i 6=j |V

J•
Ij

(pe)|
)

pet
= 0,
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where the last equality follows from the fact that

lim
e→∞

∏
i 6=j |V

J•
Ij

(pe)|
pe(t−1)

=
∏
i 6=j

VolJ•F (Ij).

We conclude that

lim
e→∞

|VJ•
I (pe)|
pet

= lim
e→∞

|Ṽ
J•

I (pe)|
pet

.

We end this section with an upper bound for the F -volume in terms of the F -
threshold.

Proposition 4.2.6. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J ⊆ R be an
ideal such that I1, . . . , It ⊆

√
J . Let c = cJ(I1 + · · ·+ It). Then, VolJF (I) ≤ ct

t!
.

Proof. Let I = I1 + · · ·+ It. For α, e ∈ N, we have Iα 6⊆ J [pe] if and only if there exists
a = (a1, . . . , at) ∈ Nt with a1 + · · · + at = α such that Ia 6⊆ J [pe]. Hence, νJI (pe) =

max{|a| | a ∈ VJ
I (pe)}. Additionally, for every a ∈ B̃J(I; pe) there exists b ∈ V J

I (pe)

such that |pea| ≤ |b|. Consequently, we have that νJI (pe)

pe
≥ max{|a| | a ∈ B̃J(I; pe)}.

Let ν(pe) =
νJI (pe)

pe
. We use H(pe) to denote the set {(x1, . . . , xt) ∈ Rt≥0 | x1 +

. . . + xt ≤ ν(pe)}. Then we have that B̃J(I; pe) ⊆ H(pe). Thus, Vol(B̃J(I; pe)) ≤
Vol(H(pe)) = ν(pe)t

t!
. As a consequence, we have that

1

pet
|Ṽ

J

I (pe)| ≤ ν(pe)t

t!

by Remark 4.2.4. Since lim
e→∞

ν(pe) = c, it follows that VolJF (I) ≤ ct

t!
by Proposition

4.2.5.

4.3 Properties for F -Pure Rings

In this section we focus on F -pure rings. In particular, in Proposition 4.3.5 we prove
that the F -volume is in fact the volume of an object in a real space. We also provide
a few properties that hold only in this case.

Proposition 4.3.1. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J ⊆ R be an
ideal such that I1, . . . , It ⊆

√
J . If R is F -pure, then

BJ(I; pe) ⊆ BJ(I; pe+1)
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Proof. For every element a in VJ
I (pe), we have that Ia 6⊆ J [pe]. Since R is an F -pure

ring, (Ia)[p] 6⊆ J [pe+1]. As a consequence, Ipa 6⊆ J [pe+1], thus pa ∈ VJ
I (pe+1).

In addition, we have that[
0,
a1

pe

]
× · · · ×

[
0,
at
pe

]
⊆
[
0,
pa1

pe+1

]
× · · · ×

[
0,
pat
pe+1

]
.

Therefore,

BJ(I; pe) ⊆ BJ(I; pe+1).

Remark 4.3.2. Taking the same condition of Proposition 4.3.1, we have that

B̃J(I; pe) ⊆ B̃J(I; pe+1).

De�nition 4.3.3. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a
sequence of ideals, and J• = {Jpe}e∈N be a p-family of ideals in R such that I1, . . . , It ⊆√
J1. We take

BJ•(I) =
⋃
e∈N

BJ•(I; pe).

If f = f1, . . . , ft is a sequence of elements of R such that f1, . . . , ft ∈
√
J1, we use BJ•(f)

to denote BJ•(I) where I = f1R, . . . , ftR. In case that the p-family is J• = {J [pe]}e∈N
where J is an ideal in R, BJ•(I) is denoted by BJ(I).

Suppose that (R,m, K) is an F -�nite regular local ring. Let I = I1, . . . , It ⊆ R be a
sequence of ideals. The mixed test ideals τ(Ia11 · · · Iatt ) are important objects studied in
birational geometry [HY03, BMS08, Pér13]. The set Bm(I) is the �rst constancy region
for these ideals [Pér13]. Furthermore, BJ(I) is the union of the constancy regions whose
test ideal is not contained in J .

If the ring is not regular, then Bm(I) is no longer a constancy region. To see this, it
su�ces to look at the case where t = 1, and take any example where the F -threshold
cm(m) 6= fpt(m) (e.g. [MOY10]).

Remark 4.3.4. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a sequence
of nonzero ideals, and J ⊆ R be an ideal such that I1, . . . , It ⊆

√
J . We also have

BJ(I) =
⋃
e∈N

B̃J(I; pe).

The following result justi�es in part the name of F -volume.

Proposition 4.3.5. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a
sequence of ideals, and J ⊆ R be an ideal such that I1, . . . , It ⊆

√
J . Then, BJ(I) is a

measurable set. Furthermore,

Vol(BJ(I)) = lim
e→∞

1

pet
|Ṽ

J

I (pe)|.
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In particular,

VolJF (I) = Vol(BJ(I)).

Proof. Since B̃J(I; pe) is measurable for every e ∈ N, we conclude that BJ(I) is also
measurable.

We now focus on the measure of BJ(I). From Remark 4.2.4, we recall that

Vol(B̃J(I; pe)) =
1

pet
|Ṽ

J

I (pe))|.

Since B̃J(I; pe) ⊆ B̃J(I; pe+1) for every e ∈ N, we conclude that

Vol(BJ(I)) = lim
e→∞

1

pet
|Ṽ

J

I (pe)|.

Remark 4.3.6. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a sequence
of ideals, and let J be an ideal in R such that I1, . . . , It ⊆

√
J . From the Remarks 4.2.4

and 4.3.2, we have that the sequence

{
|ṼJ

I (pe)|
pet

}
e ∈N

is increasing.

Remark 4.3.7. Let I = I1, . . . , It ⊆ R be a sequence of ideals, and J• = {Jpe}e∈N be
a p-family of ideals in R such that I1, . . . , It ⊆

√
J1. For each e ∈ N and i ∈ {1, ..., t},

let `e,i = min{` | I`i ⊆ Jpe} and consider the sets

� B(I)ee1 = 1
pe1
Nt ∩

(⋃t
j=1

(∏j−1
i=1 [0, µ(Ii)`e,i]× {0} ×

∏t
i=j+1[0, µ(Ii)`e,i]

))
� Lee1,e2 = He1,e2

(
∂
(

1
pe1

V
Jpe

I (pe1) ∪ B(I)ee1

)
+ 1

pe1
{0, . . . , µ}1

)
where µ = max{µ(I1), . . . , µ(It)}.

We claim that

1

pe1+e2
Ṽ
Jpe

I (pe1+e2) ⊆ He1,e2

(
1

pe1
Ṽ
Jpe

I (pe1)

)
∪ Lee1,e2 .

Let x ∈ 1
pe1+e2

Ṽ
J•

I (pe1+e2). Suppose that x 6∈ Lee1,e2 . From Lemma 4.1.11, we have that

1

pe1+e2
V
Jpe

I (pe1+e2) ⊆ He1,e2

(
1

pe1
V
Jpe

I (pe1)

)
∪ Lee1,e2 .

We note that Ṽ
Jpe

I (pe1+e2) ⊆ V
Jpe

I (pe1+e2). Since x 6∈ Lee1,e2 , x ∈ He1,e2

(
1
pe1

V
Jpe

I (pe1)
)
.

Then, there exists y ∈ 1
pe1

V
Jpe

I (pe1) such that yi− 1
pe1

< xi ≤ yi for every i. Since xi > 0
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for every i, yi > 0 for every i. Hence y ∈ 1
pe1

Ṽ
Jpe

I (pe1) and x ∈ He1,e2

(
1
pe1

Ṽ
Jpe

I (pe1)
)
.

Therefore,
1

pe1+e2
Ṽ
Jpe

I (pe1+e2) ⊆ He1,e2

(
1

pe1
Ṽ
Jpe

I (pe1)

)
∪ Lee1,e2 .

Consequently, we have that

|Ṽ
Jpe

I (pe1+e2)|
p(e1+e2)t

≤
|Ṽ

Jpe

I (pe1)|
pe1t

+
(µ+ 1)

pe1

t∑
n=1

(
n−1∏
j=1

(µ(Ij)`e,j + 1)
t∏

j=n+1

(µ(Ij)`e,j + 1)

)
.

On the other hand, since Iµ(In)`0,npe

n ⊆ J
[pe]
1 ⊆ Jpe , we have that `e,n ≤ µ(In)`0,np

e.

Thus, if u = (µ+ 1)
∑t

n=1

(∏n−1
j=1 (µ(Ij)

2`0,j + 1)
∏t

j=n+1(µ(Ij)
2`0,j + 1)

)
, we obtain

|Ṽ
Jpe

I (pe1+e2)|
p(e1+e2)t

≤
|Ṽ

Jpe

I (pe1)|
pe1t

+
pe(t−1)u

pe1
.

We now introduce another basic property for F -volumes for F -pure rings.

Proposition 4.3.8. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a
sequence of ideals, and J• = {Jpe}e∈N be a p-family of ideals in R such that I1, . . . , It ⊆√
J1. Then,

VolJ•F (I) = lim
e→∞

Vol
Jpe

F (I)

pet
.

Proof. For every e ∈ N we have J [p]
pe ⊆ Jpe+1 . Thus, Vol

Jpe+1

F (I) ≤ Vol
J
[p]
pe

F (I) = pt ·
Vol

Jpe

F (I). Hence,

0 ≤ Vol
Jpe+1

F (I)

p(e+1)t
≤ Vol

Jpe

F (I)

pet
,

which shows the sequence

{
Vol

Jpe

F (I)

pet

}
e ∈N

is decreasing, and bounded below by zero.

As a consequence, it converges to a limit as e approaches in�nity.
Note that, for every nonnegative integer e, we have that

Ṽ
J•

I (pe) = {(a1, . . . , at) ∈ Nt>0 | I
a1
1 · · · Iatt 6⊆ Jpe}

= {(a1, . . . , at) ∈ Nt>0 | I
a1
1 · · · Iatt 6⊆ J

[p0]
pe }

= Ṽ
Jpe

I (p0).

By Remark 4.3.7, there exists u ∈ R≥0 (that does not depend on e) such that for every
nonnegative integer s, we have

|Ṽ
Jpe

I (ps)|
pst

−
|Ṽ

Jpe

I (p0)|
p0t

≤ pe(t−1)u

p0
.
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Since R is a F -pure ring, the sequence

{
|ṼJ

I (ps)|
pst

}
s≥0

is increasing by Remark 4.3.6.

As a consequence,

0 ≤
|Ṽ

Jpe

I (ps)|
pst

− |Ṽ
Jpe

I (p0)| ≤ pe(t−1)u.

Thus,

0 ≤
|Ṽ

Jpe

I (ps)|
pst

− |Ṽ
J•

I (pe)| ≤ pe(t−1)u.

We take limit over s to get

0 ≤ Vol
Jpe

F (I)− |Ṽ
J•

I (pe)| ≤ pe(t−1)u,

dividing by pet gives

0 ≤ Vol
Jpe

F (I)

pet
−
|Ṽ

J•

I (pe)|
pet

≤ u

pe
.

Taking limit over e we conclude that

lim
e→∞

Vol
Jpe

F (I)

pet
= VolJ•F (I).

Proposition 4.3.9. Suppose that R is an F -�nite regular ring. Let I = I1, . . . , It be
a sequence of ideals in R, J be an ideal of R, and {Ji}i be a family of ideals such that
J =

⋂
i Ji and I1, . . . , It ⊆

√
J . Then, BJ(I) =

⋃
iB

Ji(I). In particular, Vol(BJ(I)) =
Vol(

⋃
iB

Ji(I)).

Proof. We show that
⋃
i V

Ji
I (pe) = VJ

I (pe) for every nonnegative integer e. We claim

that
⋃
i V

Ji
I (pe) ⊆ VJ

I (pe). Indeed, let a ∈ VJi
I (pe) for some i, then Ia 6⊆ J

[pe]
i . Since

J ⊆ Ji, we have that I
a 6⊆ J [pe]. Thus, a ∈ VJ

I (pe).
We now prove the other inclusion. Let a ∈ VJ

I (pe), then we have that Ia 6⊆ J [pe] =

(
⋂
i Ji)

[pe] =
⋂
i J

[pe]
i . Consequently, there exists i such that Ia 6⊆ J

[pe]
i . Thus, a ∈

VJi
I (pe).
It follows that BJ(I; pe) =

⋃
iB

Ji(I; pe), thus BJ(I) =
⋃
iB

Ji(I). Therefore,

Vol(BJ(I)) = Vol

(⋃
i

BJi(I)

)
.
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Remark 4.3.10. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a
sequence, and J ⊆ R be an ideal such that I1, . . . , It ⊆

√
J . If we take α ∈ BJ(I; pe),

there exists β ∈ VJ
I (pe) such that each αi ≤ βi

pe
. Thus, bpeαic ≤ βi. Since Iβ 6⊆ J [pe],

Ibp
eαc 6⊆ J [pe]. Therefore, bpeαc ∈ VJ

I (pe).

Suppose that R is an F -�nite regular ring. Let I = I1, . . . , It ⊆ R be a sequence of
ideals, and I = I1 + · · ·+ It. The mixed test ideals satisfy the following equation

τ(Iλ) =
∑

α1+···+αt=λ

τ(Iα1
1 · · · Iαt

t ).

Motivated by this result, we obtain the following similar properties for F -thresholds.
This plays an important role to characterize F -pure complete intersections in terms of
F -volume.

Proposition 4.3.11. Suppose that R is an F -pure ring. Let I = I1, . . . , It ⊆ R be a
sequence, and J ⊆ R be an ideal such that I1, . . . , It ⊆

√
J . Then,

cJ(I1 + · · ·+ It) = sup{|θ| | θ ∈ BJ(I)}.

Proof. Let λ = sup{|θ| | θ ∈ BJ(I)} and I = I1 + · · ·+ It.
Since Iν

J
I (pe) 6⊆ J [pe], there exists α = (α1, . . . , αt) ∈ Nt such that Iα1

1 · · · Iαt
t 6⊆ J [pe]

and |α| = νJI (pe). Then, 1
pe
α ∈ BJ(I). We conclude that νJI (pe)

pe
≤ λ for every e. Then,

cJ(I) ≤ λ.
We now show the other inequality. Let α = (α1, . . . , αt) ∈ BJ(I). Then, α =

(α1, . . . , αt) ∈ BJ(I; pe) for e � 0. Then, (bpeα1c, . . . , bpeαtc) ∈ VJ
I (pe) for e � 0 by

Remark 4.3.10. We conclude that Ibp
eα1c

1 · · · Ibp
eαtc

t 6⊆ J [pe] Then, Ibp
eα1c+···+bpeαtc 6⊆ J [pe].

Thus, bpeα1c+ · · ·+ bpeαtc ≤ νJI (pe) for e� 0. We have that

|α| = lim
e→∞

bpeα1c+ · · ·+ bpeαtc
pe

≤ lim
e→∞

νJI (pe)

pe
= cJ(I).

We conclude that λ ≤ cJ(I).

The following result allows us to obtain the F -threshold under special circumstances.

Proposition 4.3.12. Suppose that R is an F -pure ring. Let I, J ⊆ R be two ideals
such that I ⊆ J . Let f = f1, . . . , ft be minimal generators of I. If VolJF (f) = 1, then

cJ(I) = t.

Proof. We show that BJ(f) = [0, 1)t. It is enough to prove that [0, 1)t ⊆ BJ(f). We
proceed by contradiction. We suppose that there exists a ∈ [0, 1)t such that a 6∈ BJ(f).
Thus, H ∩ BJ(f) = ∅, where H denotes the set [a1, 1] × · · · × [at, 1]. Hence, BJ(f) ⊆
[0, 1]t −H. It follows that VolJF (f) < 1, and we get a contradiction.
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In addition, from Proposition 4.3.11, we have that

cJ(I) = sup{|θ| | θ ∈ BJ(f)}
= sup{|θ| | θ ∈ [0, 1)t}
= t.

We now characterize F -pure complete intersections in terms of F -volumes. This is
along the same lines of how the F -pure threshold of a hypersurface characterizes, via
Fedder's Criterion [Fed83], when this variety if F -pure.

Theorem 4.3.13. Suppose that (R,m, K) is a local regular ring. Let I ⊆ m be an ideal
in R, and f = f1, . . . , ft be minimal generators of I. Then, VolmF (f) = 1 if and only if
I is an F -pure complete intersection.

Proof. We suppose that VolmF (f) = 1. Then cm(I) = t = µ(I) by Proposition 4.3.12.
Thus, µ(I) = cm(I) ≤ ht(I) ≤ µ(I). We conclude that ht(I) = µ(I). Hence, f1, . . . , ft
is a regular sequence in R. Therefore, I is an F -pure complete intersection.

For the other direction, we show that [0, 1)t = Bm(f). Let a ∈ [0, 1)t. Then,
max{ai} ≤ pe−1

pe
for some e ∈ N. Since I is an F -pure ideal, R/I is an F -pure ring.

Since f1, . . . , ft is a regular sequence in R, we have that fp
e−1 6∈ m[pe] by Proposition

2.6.7. Then, (pe − 1, . . . , pe − 1) ∈ VJ
f (pe). We conclude that a ∈ Bm(f ; pe) ⊆ Bm(f).

Therefore, VolmF (f) = 1 by Proposition 4.3.5.

4.4 Relations with Hilbert-Kunz Multiplicities

In this section we relate the F -volume with Hilbert-Kunz multiplicities. This is related
to previous work done for F -thresholds and these multiplicities [NnBS20]. We start
proving Theorem F.

Theorem 4.4.1. Suppose that (R,m, K) is a local ring. Let f = f1, . . . , ft be part of a

system of parameters for R, I = (f), and R = R/I. Then,

eHK(J ;R) ≤ eHK(JR;R) VolJF (f)

for any m-primary ideal J , such that I ⊆ J .

Proof. Let I = (f) and Ie = (fa11 · · · fatt | a 6∈ VJ
f (pe))R. Then, R/Ie has a �ltration

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nm = R/Ie where Nt+1/Nt is a homomorphic image of R/I and
m = |VJ

f (pe)|. Since J [pe] is m-primary, we have that

λ(Nt+1 ⊗R R/J [pe]) ≤ λ(Nt ⊗R R/J [pe]) + λ(Nt+1/Nt ⊗R R/J [pe]).
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As a consequence,

λ(R/Ie ⊗R R/J [pe]) ≤ |VJ
f (pe)|λ(R/I ⊗R R/J [pe]).

By the de�nition of Ie, we have that Ie ⊆ J [pe]. Then,

λ(R/J [pe]) = λ(R/Ie + J [pe])

= λ(R/Ie ⊗R R/J [pe])

≤ |VJ
f (pe)|λ(R/I ⊗R R/J [pe])

≤ |VJ
f (pe)|λ(R/(I + J [pe])).

After dividing by ped, where d = dim(R), we obtain that

λ(R/J [pe])

ped
≤
|VJ

f (pe)|λ(R/(I + J [pe]))

ped

=
|VJ

f (pe)|
pet

· λ(R/(I + J [pe]))

pe(d−t)

=
|VJ

f (pe)|
pet

· λ(R/J [pe])

pe(d−t)
.

After taking the limit as e→∞, we obtain the desired inequality.

We recall a conjecture that relates the Hilbert-Kunz multiplicity and F -thresholds.

Conjecture 4.4.2 ([NnBS20]). Let (R,m, K) be a local ring. Let I ⊆ R be an ideal
generated by a part of a system of parameters (f1, . . . , f`). Let R = R/I. Let J be an
m-primary ideal. Then,

eHK(J) ≤ eHK(JR)
(cJ(I))`

``
.

Remark 4.4.3. Related inequalities to Conjecture 4.4.2 that were previously obtained
[NnBS20] are the following

eHK(J) ≤ eHK(JR)
(cJ(I))`

`!
,

and
eHK(J) ≤ eHK(JR)cJ(f1) · · · cJ(f`).

By Proposition 4.2.6,

VolJF (f) ≤ (cJ(I))`

`!
.

By Proposition 4.2.1(3), we have that

VolJF (f) ≤ cJ(f1) · · · cJ(f`).

Therefore, Theorem 4.4.1 is a re�nement of the results previously mentioned.
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