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Abstract

Distribution Regression is about learning a relation between probability distributions and
real-valued response variables. Frequently, each distribution is only observed through a
sample. There are a wide variety of applications in which objects are represented as a
collection of its components. For example, an image can be represented as a set of local
descriptors, a 3D object as a set of coordinates and a text as a set of words.

In this thesis we will focus on a novel application of Distribution Regression to predict
voting behavior for demographic subgroups when we only have access to group level data
proposed by Flaxman et al.(Who supported Obama? Ecological Inference through Dis-
tribution Regression, KDD 2015). This problem is known as Ecological Inference. The
Ecological Inference problem has been subject to controversy since it is known about it
and there aren’t many sources of clear information about the methods to solve it. We
provide a historical review of the solutions that have been proposed, starting with the
classic solutions and including the most recent advances.

To present a solution to the Distribution Regression problem, we use a framework based
on kernel mean embeddings of distributions of the Gaussian kernel and Ridge regression
introduced by Szabo et al.(Two-stage sampled learning theory on distributions, AISTATS
2015). The objectives of this thesis are to understand the Gaussian kernel based similar-
ity, to propose alternative similarity measures in order to improve the prediction results
and to perform some experiments to compare these methods.

We propose three similarity functions: the pyramid match kernel, the marginal kernel
and the Wasserstein kernel. We also present an alternative to the kernel methods using
neural networks. We generate two synthetic datasets to compare these methods in quality
of prediction, computational time and parameter selection.

Finally, we selected two methods to perform Ecological Inference for the US 2016 Presi-
dential Elections and we show that Distribution Regression is a suitable approach to solve
the Ecological Inference problem.
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Chapter 1

Introduction

Distribution Regression is about learning a relation between a probability distribution P
and a response variable Y . Frequently, we don’t have access to P , instead we observe the
distribution through a sample.

P1 S1

P2 S2

P3 S3

P4 S4

Y1

Y2

Y3

Y4

f

f

f

f

Figure 1.1: Distribution Regression.

The problem of Distribution Regression is not as well known as its counterpart, classic
regression, in which we find a relation between a response variable and a predictor vari-
able. However, there are a wide variety of applications in which we would like to obtain
information about a data object that is represented with a collection of its components.
For example:

• Classifying images represented by local descriptors of interest points [1].

• Learning mass measurements of galaxy clusters using their velocity dispersion[2].

• Classifying documents, where each document is represented as a set of words [3].
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• Classifying 3D geometric data, where each object is represented as a point cloud [4].

• Predicting voting behavior for demographic subgroups of geographical regions, where
each region is represented as a set of individuals [5].

Motivated by [5], in this thesis we will focus on the last application mentioned, the prob-
lem of predicting voting behavior for demographic subgroups of geographical regions, also
known as Ecological Inference (EI).

The Ecological Inference problem can be explained with an example: suppose that we
have n regions, and for each region we have a contingency table with the total of votes
per category and per demographic subgroup, the quantities in the intersection are missing
and the problem is to infer them. To do this, it is assumed that regions have something
in common and we can learn a general model from all of them.

Democrats Republicans
Men ? ? 1500

Women ? ? 2000
2200 1300

Figure 1.2: Learn a general model from all the
regions.

1.1 Scope of the thesis

In this thesis we will use the following notation to describe our data:

{({x1}, y1), ..., ({xn}, yn)}

where {xk} is a sample with Nk elements from a distribution Xk and yk is its correspond-
ing response variable.

To walk through the problem and its possible solutions, we consider first the simplest
case. Let Xk ∼ Bernoulli(θk). Assume that we have n samples drawn from this group of
distributions {{x1}, {x2}, ...{xn}} and their response variables {y1, y2, ...yn}.

In order to model the relation between {xk} and the response yk we would like to find
ψ({xk}), a value that condenses all the information about the distribution and fit a re-
gression model afterwards.

In this particular example, we can intuitively propose ψ({xk}) = µ̂k =
∑Nk
j=1 x

j
k

Nk
, assuming

that Nk is sufficiently large and therefore its empirical mean will converge to its real mean
θk.

Extending the above to e.g. the continuous case is far from obvious, candidates for

ψ({xk}) could be based on Ê(Xk), Ê(X2
k), Ê(X3

k) or ̂V ar(Xk). In general, for any distri-
bution, ψ({xk}) should be a vector. If we are able to find a function ψ that transforms
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every distribution into a characteristic vector, then this problem would turn into a classic
regression problem:

yk = α + βTψ({xk}) + ε

Solving it in a linear way would require to specify ψ. On the contrary, if we use the kernel
formulation of regression it is sufficient to specify the kernel matrix [Kab]. As we will
explain later, Kab is a similarity measure between samples of distributions Xa and Xb.
We use the work presented in [5] as our starting point, in which Kab is defined through
the kernel mean embedding of the distributions.

We dedicate Chapter 2 to explain the solution to the Distribution Regression in the frame-
work of kernel mean embeddings and kernel Ridge regression. As we will see later, in [5]
they use a Gaussian kernel to calculate the mean embeddings. We develop an explicit
expression for the similarity between Gaussian distributions using Gaussian kernel mean
embeddings; this expression will allow us to understand the similarity in terms of the
mean and variance of the distributions.

In chapter 3 we explain the EI problem and give some historical context about it. Then,
we describe some of the classic solutions and discuss their limitations. Finally we explain
the solution using Distribution Regression and compare it with a more recent solution
based on Learning with Label Proportions.

In chapter 4 we explore alternatives to calculate similarity measures between samples of
distributions. We present an additive approach to calculate kernels for multidimensional
distribution and show that for kernels based on mean embeddings, adding the kernels
per dimension is equivalent to concatenating the explicit featurization. Then we describe
the procedure to build the Pyramid Match Kernel, a similarity measure based on multi
resolution histograms. We talk about Distance Substitution kernels and define a kernel
based on the Wasserstein distance. We analyze the behavior of these similarity measures
using Gaussian distributions.
In the second part of this chapter, we explore another framework to solve the Distribution
Regression problem using a neural network formulation.

In chapter 5 we compare the performance of the methods presented in Chapter 4. We
construct two synthetic datasets. The first one allows us to evaluate the methods in the
general context of Distribution Regression while the second one is useful for evaluating
the methods in the context of Ecological Inference. Finally, we use a neural networks for-
mulation to perform Ecological Inferences on the voting results for the 2016 US Elections.
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Chapter 2

Distribution Regression through
kernel based mean embeddings

In this chapter we explain the solution to the Distribution Regression problem in the
framework of mean embeddings and Ridge regression. We talk about general concepts of
kernel functions and we also explain how to find an explicit featurization to approximate a
kernel. Finally, we develop an expression for the similarity between Gaussian distributions
in terms of their mean and variance.

2.1 Solution using kernel mean embeddings

Suppose we have the dataset:

{({x1}, y1), ..., ({xn}, yn)}

where the bags {xk} are samples with Nk elements from a distribution Xk and yk is its
corresponding response variable.

We use the work presented in [5] as our starting point, in which they present a general
framework to solve the Distribution Regression problem. The solution can be explained
in two stages. First, build a similarity measure between samples of two distributions,
denoted by Kab. Second, fit a regression model using this similarity measure.

The first stage of the solution is to define Kab:

Kab =< ψ(Xa), ψ(Xb) >

where ψ(Xa) is of the form:
ψ(Xa) = Ex∼Xa [φ(x)]

ψ(Xa) is called the kernel mean embedding of distribution Xa and frequently denoted as
µa.
φ is known as a kernel map.

As we explained in the introduction, we would like that ψ(Xa) condenses all the infor-
mation about the distribution. The concept of characteristic kernel formally defines this
property. A kernel is called characteristic if the map µ : X → µX is injective, i.e. any
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two distributions with a difference will be mapped to different points.

In practice, the real distribution is unknown and it is only observed through a sample,
therefore, an empirical estimator for kernel mean embedding of the distribution is used.

ψ({xa}) =
1

Na

∑
j

φ(xja)

If we expand the equation for Kab using the empirical estimator for the kernel mean em-
bedding we obtain:

Kab =< ψ({xa}), ψ({xb}) >

=<
1

Na

∑
j

φ(xja),
1

Nb

∑
l

φ(xlb) >

=
1

NaNb

∑
j

∑
l

< φ(xja), φ(xlb) >

=
1

NaNb

∑
j

∑
l

k(xja, x
l
b)

k is a kernel function between individual observations.

In the next section we explain some general properties of kernel functions that will be
used in this thesis.

2.1.1 Properties of kernels

For x, y in Rd, there are some cases in which φ(x) can be explicitly defined. For example:
If we use a linear kernel map φ(x) = x then

k(x, y) =< x, y >

and

< ψ({xa}), ψ({xb}) >=
1

NaNb

∑
ij

< xia, x
j
b >

If we use the second moment φ(x) = x2 , where x2 = (x21, x
2
2, ..., x

2
d), then

k(x, y) =< x2, y2 >

and

< ψ({xa}), ψ({xb}) >=
1

NaNb

∑
ij

< (xia)
2, (xjb)

2 >

However, it is possible to work with k without defining φ, this is also known as the kernel
trick. As explained in [6], if k is symmetric and positive definite there always exists φ for
which k(x, y) =< φ(x), φ(y) >.
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A kernel function k : Rd × Rd → R is symmetric if

k(x, y) = k(y, x)

for any pairs x, y ∈ Rd

A symmetric kernel function k : Rd × Rd → R is positive definite if
n∑

i,j=1

cicjk(xi, xj) ≥ 0

for n ∈ N, any choice of x1, ..., xn ∈ Rd and c1, ..., cn ∈ R.

An important remark is that the kernel trick does not only apply for Euclidean data, it
can be used in any domain on which it is possible to define a positive definite kernel.

If k(x, y) = k(x − y) the kernel is called translation invariant. In the next section we
will see that this property is useful to find an explicit featurization that approximates the
kernel mean embedding.

An example of a kernel that is characteristic, positive definite and translation invariant
is the Gaussian kernel also known as radial basis function kernel (RBF), defined as:

k(x, y) = exp(−||x− y||
2

2σ2
)

Using the Gaussian kernel, the similarity measure between samples of distributions will
be:

Kab =
1

NaNb

∑
j

∑
l

exp(−||x
j
a − xlb||2

2σ2
)

we choose σ using the median heuristic. This heuristic consists in defining σ as the median
of the pairwise distance between elements of the sets.

Finally, the matrix formed with all the pairwise similarity measures Kab will be denoted
by K and is known as the Gram matrix.

2.1.2 Kernel Ridge regression

Once Kab is defined, the second stage of the solution is to fit a regression model. In
[5] they propose to use Gaussian Process Regression to incorporate spacial data to the
regression. For simplicity, in this thesis we will use Kernel Ridge Regression as presented
and analyzed in [7].

Given our training data:
{({x1}, y1), ..., ({xn}, yn)}

Define:

X =


ψ({x1})
ψ({x2})

...
ψ({xn})

 y =


y1
y2
...
yn
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The problem of Kernel Ridge Regression is to find β̂ such that:

β̂ = arg min(y −Xβ)T (y −Xβ) + λ||β||2

where λ is a regularization term that can be selected using a validation set.

According to [8], the solution is given by:

β̂ = (XTX + λId)
−1XTy

the elements of β̂ are known as the primal variables.

Using the primal variables, the prediction for a new sample {x∗} is:

ŷ∗ = ψ({x∗})β̂

In order to calculate the previous solution, it is necessary to know the explicit featurization
ψ. However, the solution can be rewritten so that it is only expressed in terms of the
similarity functions as follows:

β̂ = XT (XXT + λIn)−1y

where XXT = K is the Gram Matrix.

If we define:

k∗ = ψ({x∗})XT

= [< ψ({x∗}), ψ({x1}) >,< ψ({x∗})ψ({x2}) >, ..., < ψ({x∗}), ψ({xn}) >]

= [K∗1, ..., K∗n]

then the prediction for a new sample {x∗} will be:

ˆmathbfy
∗

= k∗(K + λIn)−1y

= k∗α

= [K∗1, ...K∗n][α1, ..., αn]T

the elements of α are known as the dual variables.

In chapter 4 we will explore different alternatives to define Kab and use this property to
fit our regression models.
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2.1.3 Approximating K

In order to find the solution in terms of similarity functions we need to calculate K. As we
explained before, we will use the Gaussian Kernel to calculate the entries of this matrix
as follows:

Kab =
1

NaNb

∑
j

∑
l

e−
||xja−x

l
b||

2

2σ2

Assuming that all the bags have the same number of elements Ni = N , computing each
of the n2 entries of K requires N2 operations. In our real data example, n ≈ 900 and
N ≈ 10, 000, this means that we require approximately 81×1012 operations to calculate K.

As described in [5], finding an explicit feature representation z : Rd → RD such that
z(x)T z(y) ≈ k(x, y) reduces the number of operations even if the representation is high
dimensional.

In [9] they present a technique to approximate a shift invariant positive definite kernel k
using an explicit low dimensional map by projecting the data into a randomly selected
line and then applying a cosine function and scaling.

This result is based on Bochner’s Theorem [10], which guarantees that if a shift invariant
kernel k(δ) is positive definite and properly scaled then its Fourier transform p(ω) is a
proper probability distribution. Defining: ζ(x) = eiω

T x

k(x− y) =

∫
Rd
p(ω)eiω

T (x−y)dω = E[ζ(x)ζ(y)]

Since p(ω) and k(δ) are real, the integral gives the same result when the exponentials are
replaced with cosines. It can be proved that setting zω(x) =

√
2cos(ωTx+ b)

k(x, y) = Eω[zω(x)zω(y)]

ω ∼ p(ω) y b ∼ U(0, 2π)

An approximation for the kernel is found by taking an empirical estimator of Eω[zω(x)zω(y)],
which in this case is the average over D samples.

k(x, y) ≈ 1

D

D∑
j=1

zωj(x)zωj(y)

= z(x)T z(y)

where z(x) = [zω1(x), ..., zωD(x)]

Putting all together, we can calculate the explicit featurization z as follows:
1. Choose a positive definite shift invariant kernel k, in our case the Gaussian kernel:

k(∆) = e−
||∆||2

2σ2

2. Compute the Fourier transform of k. For the Gaussian kernel:

p(ω) =
( σ√

2π

)D
e−

σ2||ω||2
2

9



3. Draw D iid samples w1, ..., wD from p.
4. Draw D iid samples b1, ..., bD from a uniform distribution in [0, 2π].
5. Calculate z(x) = [

√
2cos(ωT1 x+ b1), ...,

√
2cos(ωTDx+ bD)].

We can use this feature representation to calculate the mean embeddings and afterwards
the similarity function as:

Kab =
1

NaNb

∑
j

∑
l

k(xja, x
l
b)

≈ 1

NaNb

∑
j

∑
l

z(xja)
T z(xlb)

= [
∑
j

1

Na

z(xja)]
T
∑
l

1

Nb

z(xlb)

The complexity of calculating each z(x) is O(dD). For each x the feature representation
z(x) only has to be calculated once and for each region we calculate the mean embedding∑

j
1
N
z(xj) and store it in a vector. The complexity of calculating all the mean embed-

dings is O(nNDd). Once we have the mean embeddings for each region, we can compute
the Gram matrix using n2 dot products between D dimensional vectors. So the total
complexity of calculating K is O(n2D + nNDd).

For our real data example the number of real variables d is equal to 19 and we will set D
to be equal to 190. Then the approximate number of operations to compute K is reduced
to 33× 109.

Another advantage of having these explicit representations is that once we learn β̂ we can
find the prediction for a new bag using:

ŷ∗ = [
∑
j

1

N∗
z(xj∗)]

T β̂

Predicting using this equation requires approximately NDd operations to compute the
mean embedding for the new bag and D operations to compute the dot product. As
opposed to using the dual formulation in which it is necessary to calculate the similar-
ity between each point in the training set and the new point using approximately N2n
operations and then n operations to perform the dot product.

ŷ∗ = k∗(K + λIn)−1y

= k∗α

= [K∗1, ...K∗n][α1, ..., αn]T
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2.2 Gaussian kernel mean embedding

In order to understand the similarity measure defined through the mean embeddings of
a Gaussian kernel we calculate an explicit expression of K(X, Y ) for the case of normal
random variables.
Let X ∼ N(µX , σX) and Y ∼ N(µY , σY ), be independent random variables.

K(X, Y ) = E[e−
(X−Y )2

2σ2 ]

= E[e−
(X−Y )2

2σ2 ]

=

∫ ∫
e−

(x−y)2

2σ2 fX(x)fY (y)dxdy

=

∫ ∫
e−

(y−x)2

2σ2 fX(x)dxfY (y)dy

=

∫
σ
√

2π

∫
1

σ
√

2π
e−

(y−x)2

2σ2 fX(x)dxfY (y)dy

Define Z: Z ∼ N(0, σ2)

=

∫
σ
√

2π
[ ∫

fZ(y − x)fX(x)dx
]
fY (y)dy

= σ
√

2π

∫
fZ+X(y)fY (y)dy

Z +X ∼ N(µX , σ
2 + σ2

X)

= σ
√

2π

∫
1√

2π(σ2 + σ2
X)
e
− (y−µX )2

2(σ2+σ2
X

)fY (y)dy

= σ
√

2π

∫
1√

2π(σ2 + σ2
X)
e
− (µX−y)2

2(σ2+σ2
X

)fY (y)dy

Define W : W ∼ N(0, σ2 + σ2
X)

= σ
√

2π

∫
fW (µX − y)fY (y)dy

= σ
√

2πfW+Y (µX)

W + Y ∼ N(µY , σ
2 + σ2

X + σ2
Y )

= σ
√

2π
[ 1√

2π(σ2 + σ2
X + σ2

Y )
e
− (µX−µY )2

2(σ2+σ2
X

+σ2
Y

)
]

=
σ

σ2 + σ2
X + σ2

Y

e
− (µX−µY )2

2(σ2+σ2
X

+σ2
Y

)

This expression allows us to understand the similarity in terms of the variances and the
means.
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In the next plot we show K(X, Y ) for Gaussian distributions X and Y as a function of
µY and σY .
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Figure 2.1: Similarity between Gaussian distributions.

We notice that as the mean distance increases the similarity decreases, as expected. How-
ever the same doesn’t happen for the difference in sigma.

We made a similar exercise for the case of a Gaussian mixture:
Let X1 ∼ N(µX1, σX1), X2 ∼ N(µX2, σX2) and Y ∼ N(µY , σY ) be independent random
variables. Let X = αX1 + (1− α)X2.

E[e−
(X−Y )2

2σ2 ]

=

∫ ∫
e−

(x−y)2

2σ2 fX(x)fY (y)dxdy

=

∫ ∫
e−

(x−y)2

2σ2 (αfX1(x) + (1− α)fX2(x))fY (y)dxdy

= α

∫ ∫
e−

(x−y)2

2σ2 fX1(x)fY (y)dxdy

+(1− α)

∫ ∫
e−

(x−y)2

2σ2 fX2(x)fY (y)dxdy

Similar to the previous case, this equals:

= α
σ√

σ2 + σ2
X1 + σ2

Y

e
− (µX1−µY )2

2(σ2+σ2
X1

+σ2
Y

) + (1− α)
σ√

σ2 + σ2
X2 + σ2

Y

e
− (µX2−µY )2

2(σ2+σ2
X2

+σ2
Y

)
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In this plot we illustrate the behavior of the similarity of X and Y , where X is a Gaussian
Mixture and Y are Gaussians with variable means.
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Figure 2.2: X1 ∼ N(0, 1), X2 ∼ N(1, 1), Y ∼ N(µY , 1), α = 0.5.

As expected, we observe that the point in which X and Y are more similar is when
µY = 0.5.
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Chapter 3

Ecological Inference

As we explained in the introduction, in this thesis we will use Distribution Regression to
perform Ecological Inferences on the voting behavior for the 2016 Presidential Elections.
The EI problem has been present in the political science literature for many years and
despite the multiple attempts to solve it, it wasn’t until 2015 when it was formalized as a
machine learning problem in [5]. In this chapter we explain the EI problem and provide
the historical context about it. Then we explain some of the solutions that have been pro-
posed. First, we review some of the classic solutions, the method of bounds, Goodman’s
and King’s methods. Second, we explain the solutions presented in the machine learning
community, using Distribution Regression and using Learning with Label Proportions.

3.1 Problem statement

Ecological inference is the process of inferring individual behavior from grouped data. We
illustrate the problem with a particular example:

Given n regions, we have the total percentages of men Xi and women 1−Xi per region,
as well as the total percentages of people that voted for candidate A, Ti, and people that
voted for candidate B, 1 − Ti. We assume that we don’t know the joint distribution,
therefore we want to infer the quantities βMi and βWi for each region.

Candidate A Candidate B Total

Men βMi 1− βMi Xi

Women βWi 1− βWi 1−Xi

Total Ti 1 - Ti

3.2 Historical context

The EI problem emerged in political science and has been subject to controversy ever
since. According to King [11], one of the first appearances was in the 1919, in a study
of women voting behavior, when William Ogbutn and Inez Goltra wondered about the
possibility of counting the women’s votes using an indirect method. King mentions that
there were other early works in which ecological inferences were made, even without rec-
ognizing the complexity of the problem. However, in 1950 Robinson warned not to use
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aggregate correlations to deduce individual correlations and in 1958 the concept of Eco-
logical fallacy was introduced. The ecological fallacy occurs when using aggregate data
to draw conclusions about individual behavior.

Two of the first most widely used methods were Goodman’s method and the method of
bounds. As we will see in the next section, each of them has certain limitations. In 1997
King proposed a Bayesian approach to solve the EI problem. However, this method also
presents limitations and there were multiple criticisms about it which will be commented
in the next section too.

Finally, in 2005 [5] the problem was formalized and an assumption of access to individual
level data was added. This presented the opportunity to solve the problem using machine
learning techniques. In [5] it is solved as an application of Distribution Regression in
which each region is represented as a bag of individuals and the objective is to fit a model
to predict the aggregated vote. While in [12] it is presented as a Learning with Label
Proportions problem, in which each region is represented as a bag with a global label
formed by some aggregation function on individual labels that we want to infer.

3.3 Classic methods

3.3.1 Method of bounds

The problem formulation generates the following restrictions:

βMi ∈ [max(0,
Ti − (1−Xi)

Xi

),min(
Ti
Xi

, 1)]

βWi ∈ [max(0,
Ti −Xi

1−Xi

),min(
Ti

1−Xi

, 1)]

Reporting these intervals is known as the method of bounds and it was proposed by Dun-
can and Davis in 1953. Sometimes the intervals are narrow enough to provide meaningful
information, however, there is no guarantee that this will be the case.

3.3.2 Goodman’s method

Goodman’s method is based on the identity:

Ti = Xiβ
M
i + (1−Xi)β

W
i

The method consists in running a regression of Ti in Xi and 1 − Xi to estimate the
coefficients β, assuming that they are constant for all the regions. As a consequence, the
main disadvantage of this method is that it only produces two general estimators βM and
βW . Another problem is that there is no guarantee that the estimators will fall within
the bounds. Lastly, the method is based on the assumption that the parameters and the
Xi are not correlated, but this assumption is hardly verifiable.
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3.3.3 King’s method

King’s method is based on a Bayesian approach presented in multiple stages. There are
three observations and three assumptions that lead to the model. The first observation is
that the points (βMi , β

W
i ) are in [0, 1]× [0, 1]. The second observation is that Goodman’s

equation can be arranged as the equation of a line:

βWi =
Ti

1−Xi

− Xi

1−Xi

βMi

This means that when we know Ti and Xi the support of (βMi , β
W
i ) becomes a line in the

unit square. King represents these lines in what he calls a tomography plot. In this plot
each line corresponds to all the possible values of the parameters for a region.

Figure 3.1: Tomography plot. Image generated with [13].

The third observation is what is known as the method of bounds:

βMi ∈ [max(0,
Ti − (1−Xi)

Xi

),min(
Ti
Xi

, 1)]

βWi ∈ [max(0,
Ti −Xi

1−Xi

),min(
Ti

1−Xi

, 1)]

King makes the assumption that the parameters (βMi , β
W
i ) are drawn from a bivariate

normal distribution, conditional on Xi. Due to the first observation, this distribution is
truncated in the unit square.

(βMi , β
W
i ) ∼ TN(B,Σ)

where B =

[
BM

BW

]
, Σ =

[
σ2
M σMW

σWM σ2
W

]
.
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The truncated bivariate normal distribution can be represented with contours plots in the
same square as the data.

Figure 3.2: Tomography plot with contours. Image generated with [13].

The second assumption is that βMi and βWi are mean independent of Xi, i.e.

E(βMi |Xi) = E(βMi )

E(βWi |Xi) = E(βWi )

Finally, King assumes that the values of Ti are independent given Xi.

Using these observations and assumptions, the goal is to find a distribution of the param-
eters βMi and βWi conditioned to the Tis.

The first step is to estimate the parameters of the truncated bivariate normal distribution
ψ̂ = ˆ{BM , B̂W , σ̂M , σ̂W , ˆσMW} by the method of maximum likelihood using the function:

L(ψ̂|T ) ∝
∏

Xi∈(0,1)

N(Ti|µi, σ2
i )
S(B,Σ)

R(B,Σ)

where µi, σi, S and R are functions of B,Σ, Xi and Ti

Then King uses the multivariate normal as an approximation for the posterior distribution
of the parameters:

P (ψ|T ) ≈ N(ψ̂, V (ψ̂))

where V (ψ̂)) is the inverse of the matrix of second derivatives of the likelihood function.

An analytic expression is developed for the probability of βMi given Ti and ψ̂:

P (βMi |T, ψ̂) = N(βMi |BM +
wi
σ2
i

εi, σ
2
M −

wi
σ2
i

)
1(βMi )

S(B,Σ)
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where

wi = σ2
MXi + σMW (1−Xi)

εi = Ti−BMXi −BW (1−Xi)

S(B,Σ) =

∫ min(1,
Ti
Xi

)

max(0,
Ti−(1−Xi)

Xi)

N(βMi |BM +
wi
σ2
i

εi, σ
2
M −

wi
σ2
i

)dβM

To find the estimates, King uses a simulation procedure that consists in drawing K values
of ψ̂ and plugging each one into the equation of P (βMi |T, ψ̂) to draw K values of βMi . The
average of this sample will be used as an estimate of the parameter βMi . We can find an
estimate of the value βWi using the equation:

βWi =
Ti

1−Xi

− Xi

1−Xi

βMi

The resulting estimates can be represented in the tomography plot.

Figure 3.3: Tomography plot with estimated βis. Image generated with [13].

To calculate a general estimate of βM we calculate the weighted average of the βMi , con-
sidering the weights proportional to the size of the population per region.

Kings method can be generalized for RxC tables.

Output 1 Output 2 · · · Output C Total

Group 1 β11
i β12

i · · · β1C
i X1

i

Group 2 β21
i β22

i · · · β2C
i X2

i
...

...
...

. . .
...

...
Group R βR1

i βR2
i · · · βRCi XR

i

Total T 1
i T 2

i · · · TCi
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There are two strategies proposed in King’s book. The first strategy consists in decom-
posing the table into a set of 2x2 tables and solving the problem for each of them with
the procedure described before. This approach might be inconsistent, given that each
parameter can be calculated in two different ways and the results might not always be
similar. In the case of noticing the inconsistency another model should be applied.

The second strategy proposed in the book consists of following procedure analogue to
the one presented for 2x2 tables. Assume that the data are drawn from a truncated
multivariate normal distribution and find the generalized bounds for the parameters.

βrci ∈ [max(0,
T ci − (1−Xr

i )

Xr
i

),min(
T ci
Xr
i

, 1)]

Then calculate the parameters ψ of the distribution using maximum likelihood and ap-
proximate the conditional posterior distribution of the parameters. Develop an explicit
expression for P (βrci |T, ψ) and use it to draw K samples of βrci . The average over this
sample will be the estimate of βrci .

Comments on King’s method

King’s method is one of the most known methods in the ecological inference literature,
however, since its release there have been multiple criticisms about it. The main issue is
whether or not it is a solution to the ecological inference problem.

In 1998, Freedman, Klein, Ostland and Roberts made a review [14] that presented evidence
of datasets in which the method gave incorrect results after validating the assumptions.
It is important to mention that the methods proposed by King to evaluate the validity
of the assumptions are empirical and this can lead to inaccurate results. For example, to
verify the assumption of normality King proposes to observe what he calls tomography
plots. None of the datasets used by King or Freedman are available for replication.

In May 2001, another article was published. It criticizes the lack of criteria used in the
proposed method and points out some details in its development. They mention that
the book is very difficult to read and that the method doesn’t follow the formalism of a
statistical model. Also, they argue that the distribution of βi|Ti is miscalculated, King
assumes that βMi , β

W
i is bivariate normal then conditions and at the end truncates, with-

out considering that βMi , β
W
i follows a truncated bivariate normal distribution from the

beginning and inverting the truncation step won’t give the same result. For the global
estimator, there is no justification on why King uses the weighted average of the estimates
per region instead of the estimated BM of the truncated bivariate normal distribution.

For these reasons we won’t consider King’s method as a solution to the EI problem.
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3.4 Ecological inference through Distribution Regres-

sion

In this section we will explain the solution to the Inference problem using Distribution
Regression.

Given n regions, the available information can be expressed as:

• Samples of demographic data per region {x1}, ..., {xn}

• Results per region y1, y2, ..., yn.

The objective is to find a relation between the demographic data and the results per
region. Each demographic subgroup can be seen as a new region for which we want to
infer the quantities.

P1 S1

P2 S2

P3 S3

P4 S4

Y1

Y2

Y3

Y4

?

?

?

?
f

f

f

f

Región
1

Región
2

Región
3

Región
4

Figure 3.4: Ecological inference through Distribution Regression.

This method was presented in [5] using the framework based on kernel mean embeddings
and Ridge regression. However, it is important to notice that any Distribution Regression
method can be adapted to solve the Ecological Inference problem. The key idea is to fit a
model using the individual information and results for all the regions, then use this model
to generate predictions for the demographic subgroups of interest.

We will present the method using our base example in which we want to infer the per-
centage of women that voted for candidate A and the percentage of women that voted
for candidate B.
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First, we use the approximation method presented in section 2.1.3 to calculate explicit
feature maps z for the individuals of each region. Then, calculate the mean embedding
per region.

ψ(x) =

∑
j wjz(xj)∑

j wj

where wj are the weights reported in the census. These weights are reported for each
individual to correct in case of problems in the sample such as lack of representativity or
non-response.

Once we calculate ψ(x) for x in {{x1}, ..., {xn}}, we use a kernel method to find a function
f such that:

y = f(ψ(x))

In this work we used kernel Ridge regression to find f . We will see later that it is possible
to define similarity measures between two distributions without explicitly defining the
feature map z. In this case we will use the kernel formulation presented in section 2.1.2
to fit the model.

We use the parameters learned to make predictions for the demographic subgroup of
interest. In this example, the demographic group of interest are women per region.

µ̂i
W =

∑NW
i

j=1 wjz(xji )∑NW
i

j=1 wj

We calculate f(µ̂i
W ) using the parameters of the fitted model.

3.5 Learning with Label Proportions

One problem that is closely related to Ecological Inference is the problem of Learning
with Label proportions (LLP). As described in [16], the LLP problem arises when train-
ing instances are provided as sets or bags and for each bag only the proportions of the
labels are available. The objective is to infer the individual labels for each set.

To solve the LLP problem, there are different methods available in the literature, such as
Optimizing Cluster Model Selection [15], Alternating Mean Map [17] and ∝SVM [16].

In [12] they propose a method based on a probabilistic graphical model and the Expec-
tation Maximization (EM) algorithm. This model will be explained below.

We will use the following notation to describe the data:

{({x1}, z1), ..., ({xn}, zn)}

where zi =
∑Ni

j=0 yj is the number of positive labels in the bag i and yj is the label of the
jth observation.
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For simplicity, we will explain the case in which each yj is one dimensional binary variable.
However,the model can be extended for multidimensional binary variables. The task is
to infer the missing labels yj for each bag.

The EM algorithm is an iterative algorithm whose objective is to maximize a likelihood
function when there are missing values. In order to do so, two steps are performed alter-
nately. The E step in which the objective is to estimate the missing values and then the
M step in which the objective is to optimize the parameters to maximize the likelihood [8].

They formulate the problem in terms of finding θ that maximizes the likelihood:

p(y, z|x; θ) =
n∏
i=1

Ni∏
j=1

p(yj|xj; θ)p(zi|yi)

where yi = {y1, ..., yNi} will denote the set of labels in bag i and xi = {x1, ..., xNi} will
denote the set of feature vectors in bag i. They denote y, z and x to the concatenation
of yi, zi, and xi respectively. They set p(zi|yi) = 1[zi =

∑Ni
j=0 yj].

For p(yi = 1|xi, θ) they use a logistic regression model:

p(yi = 1|xi, θ) = σ(xTi θ)

where σ(u) = 1
1+e−u

In the tth iteration of the EM algorithm the following function will be maximized:

Qt(θ) = Ey|z,x[log(p(y, z|x; θ))]

=
n∑
i=0

Eyi|zi,xi

[
log(p(zi|yi) +

Ni∑
j=1

log(p(yj|xj; θ))
]

The term log(p(zi|yi)
]

is constant with respect to θ and can be ignored during the opti-
mization:

Qt(θ) =
n∑
i=0

Ni∑
j=1

Eyj |zi,xi
[log(p(yj|xj; θ))] + const

Dropping the constant term and substituting the logistic regression model, the function
that will be maximized is:

Qt(θ) =
n∑
i=0

Ni∑
j=1

qjlog(σ(xTj θ)) + (1− qj)log(1− σ(xTj θ))

where qj = p(yj = 1|zi,xi; θ)

The maximization (M step) is straightforward and can be computed with standard solvers.

Calculating the expectation (E step) is challenging. It requires calculating the qjs for all
the bags. This is done performing exact inference in a graphical model using cardinality
potentials. Exact inference consists in enumerating all the possible cases and calculating
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the exact value for the marginal probabilities qj, as opposed to using an approximation
method.

For a single bag, they propose the following model:

q(y1, ..., yn) ∝
∏
j

ψj(yj)φ(
∑
j

yj)

where ψj(yj) = σ(xTj θ) are called unary potentials and φ(
∑

j yj) = 1(zobs =
∑

j yj) is
known as a counting potential. This counting potential is introduced because the {yi} are
not independent, they are restricted to add up to a given value.

They propose to construct a factor graph (see Appendix A) by adding auxiliary variables
z that represent the sum of nested subsets and arranging them in a tree shape such that
the observed total becomes the root zobs =

∑
j yj. Between the variables there will be

factors ψ = 1[zp = zl+zr] that represent relation between the variables. For each yj there
will be factor with the unary potential ψj(yj). There will be a factor attached to the root
node with the counting potential φ(

∑
j yj).

In the next figure we illustrate the tree construction for four variables.

z3

z1  
z2

y3 y4y1 y2

ψ1

ϕ

ψ

ψ ψ

ψ2 ψ3 ψ4

Figure 3.5: Tree construction for inference. Image adapted from [12].
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In order to calculate the marginals they propose a recursive approach. First run a leaf to
root computation using the following equations:

αp(zp) =
∑

zl∈{0,...,2i}

∑
zr∈{0,...,2i}

al(zl)αr(zr)1[zp = zl + zr]

=
∑

zl∈{0,...,2i}

al(zl)αr(zp − zr)

where α0(yi) = ψi(yi)
Then run a root to leaf computation using the following equations:

βl(zl) =
∑

zp∈{0,...,2∗2i}

∑
zr∈{0,...,2i}

βp(zp)αr(zr)1[zp = zl + zr]

=
∑

zp∈{0,...,2∗2i}

βp(zp)αr(zp − zr)

βr(zr) =
∑

zp∈{0,...,2∗2i}

∑
zl∈{0,...,2i}

βp(zp)αl(zl)1[zp = zl + zr]

=
∑

zp∈{0,...,2∗2i}

βp(zp)αl(zp − zl)

where β0(z) = φ(z)
In the next figure we illustrate the message passing scheme.

Figure 3.6: Message passing scheme. Image taken from [12].

3.5.1 Comparison with Distribution Regression

They use this method to perform Ecological Inferences for the 2016 Presidential Election.
They mention that LLP is a more suitable approach to solve the EI problem than Dis-
tribution Regression. They argue that Distribution regression ignores known information
about the problem such as the aggregation mechanism: each individual has a vote and
these votes and the total proportion of votes per region is obtained through an addition.
Also they claim that Distribution Regression unnecessarily aggregates the individual in-
formation by constructing a mean embedding, however this aggregation is done with the
objective of finding a characteristic vector for each sample.
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In [5] they mention LLP and discard it. First because the interest is not really esti-
mating the vote for each individual but rather understand them as part of demographic
subgroups and second because there are so many individual records that calculating each
label is expensive and unnecessary. Instead of working with all the individuals, in [12]
they take a representative sample of size 1000 for each region using the population weights.

In the next figure we illustrate the two methods.

Figure 3.7: Comparison between LLP and Distribution Regression for EI. Image taken from
[12].

In [12] they provide exit poll estimates for different demographic subgroups and evaluate
the performance of LLP and Distribution Regression. Assuming that the exit poll esti-
mates are accurate, none of the methods appears significantly better than the other. We
will present these results in Chapter 5.
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Chapter 4

Alternative similarity functions

In this chapter we propose alternatives to calculate similarity measures between samples
of distributions for Distribution Regression. We present an additive approach to calcu-
late kernels for multidimensional distributions. We show that for kernels based on mean
embeddings, adding the kernels per dimension is equivalent to concatenating the explicit
featurization. We explain how to build the Pyramid Match Kernel, a similarity measure
based on multi resolution histograms. We define a kernel based on the Wasserstein dis-
tance, which we call the Wasserstein kernel. We analyze the behavior of these similarity
measures using our base example on Gaussian distributions. Once we have Kab we can
solve the problem using kernel ridge regression as explained in section (2.2).
Finally, we explore another framework to solve the Distribution Regression problem using
a neural network formulation.

4.1 Kernel based methods

4.1.1 Marginal kernel

Calculating similarity functions between multidimensional distributions is not straight-
forward. Some papers suggest defining similarity functions based on “signatures” of the
form {(x1, p1), ..., (xm, pm)} where xi is the center of cluster i and pi the number of points
in the cluster. In the one dimensional case, these signatures correspond to the counts in
histograms.

In this thesis we used a different method. For each dimension we calculated the similarity
between the two samples, then added them up. If each kernel is positive definite then the
sum will also be positive definite. We propose this method as an alternative to the method
presented in [5], in which each observation is treated a long vector without selecting a
specific kernel for the type of variable. A similar method is presented in [20].

Using this additive method, the similarity measure is defined as:

Kab =
d∑
i=1

K
(i)
ab

where d is the number of dimensions of the distributions.
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Defining the similarity measures using this method allowed us to use some libraries that
are designed only for one dimensional distributions.

In the case of kernels based on mean embeddings it is possible to show that adding
the kernels per dimension is equivalent to concatenating the explicit featurizations per
dimension.

Kab =
d∑
i=1

1

NaNb

∑
j

∑
l

k(xj(i)a , x
l(i)
b )

=
1

NaNb

∑
j

∑
l

d∑
i=1

k(xj(i)a , x
l(i)
b )

=
1

NaNb

∑
j

∑
l

d∑
i=1

< φi(x
j(i)
a ), φ(x

l(i)
b ) >

=
1

NaNb

∑
j

∑
l

< [φ1(x
j(1)
a ), φ2(x

j(2)
a ), ..., φd(x

j(d)
a )], [φ1(x

j(1)
b ), φ2(x

j(2)
b ), ..., φd(x

j(d)
b )] >

=<
1

Na

∑
j

[φ1(x
j(1)
a ), φ2(x

j(2)
a ), ..., φd(x

j(d)
a )],

1

Nb

∑
l

[φ1(x
j(1)
b ), φ2(x

j(2)
b ), ..., φd(x

j(d)
b )] >

This featurization is useful because it allows us to select the right kernel for each type of
variable. We propose to use a Gaussian kernel for continuous variables and a linear kernel
for categorical variables.

4.1.2 Pyramid match kernel

The Pyramid Match Kernel, introduced in [1] mainly for computer vision applications,
presents a similarity function based on histograms at different resolutions.
In order to build this similarity function, it is assumed that the data has a maximum
range D and that the minimum distance between two points is 1. This can be enforced
by scaling the data and truncating the values to integers.
The information for each sample {xk} is condensed in a pyramid of histograms of the form:

ψ({xk}) = [H0({xk}), ..., HL−1({xk})]
where L = dlog2De+ 1 and Hi({xk}) is a histogram with bins of side length 2i.

The pyramid is constructed in order to guaranty that the bins at the finest level H0 are
small enough that every observation falls into a single bin, the bins increase in size until
all the points fall into the same bin. The first time two points share a bin they are con-
sidered matched, the size of that bin is an indicator of the similarity between the points,
as it reflects the maximum distance between the points.

In order to find the total number of matched pairs at resolution i, an intersection function
is defined:

I(Hi({xa}), Hi({xb})) =
nBins∑
j=1

min(Hi({xa})(j), Hi({xb})(j))
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Figure 4.1: Intersection between histograms at the finest resolution. Image taken from [1].

Next, a measure of total matched points at level i is defined as:

Ni =

{
I(Hi({xa}), Hi({xb}))− I(Hi−1({xa}), Hi−1({xb})) if i > 0
I(H0({xa}), H0({xb})) if i = 0

Finally, the similarity between two samples {xa} and {xb} is defined as:

Kab =
L−1∑
i=0

wiNi

where wi = 1
2i

is a weight that reflects the similarity of points at each level. It intuitively
means that two points matched at finer resolutions are more similar than two points
matched at a higher resolution.

In the next plot we illustrate the Pyramid Match similarity between samples of size 10, 000
of Gaussian distributions X and Y as a function of µY and σY .

Figure 4.2: Pyramid match similarity on Gaussian distributions.

We observe that the Pyramid Match similarity has the same drawbacks as the similarity
using the Gaussian kernel mean embeddings, while it correctly reflects the similarity in
the mean it does not do the same for the variance.
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4.1.3 Wasserstein kernel

Following the work presented in [21], the Earth Mover’s Distance (EMD) is defined for
“signatures” of the form {(x1, p1), ...(xm, pm)} where xi is the center of cluster i and pi
the number of points in the cluster. The signatures are not normalized and their total
masses are allowed to be different.

As described in [22], the EMD is defined as the solution to a transportation problem. In
the transportation problem several suppliers are given a certain amount of goods and they
are required to transport a limited amount of units to several consumers with limited ca-
pacity. Associating this problem with signatures is done by defining one signature as the
supplier and the other signature as the consumer. There is a given cost to transport each
unit for each supplier to each consumer. In the case of signatures, this cost corresponds
to a measure of dissimilarity between elements in the first signature and elements in the
second signature. Intuitively, the solution is the minimum cost to transform one signature
into another.

Figure 4.3: Earth Mover’s Distance: the minimum cost to transform one signature into another.
Image taken from [23].

Formally, given two signatures P = {(x1, p1), ...(xm, pm)} andQ = {y1, q1), ...(yn, qn)}, and
a measure of dissimilarity, dij = d(xi, yj), between elements of P and Q. The objective is
to find the optimal flow f ∗ij that minimizes the cost:

m∑
i=1

n∑
j=1

fijdij

Subject to the following constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

n∑
j=1

fij ≤ pi, 1 ≤ i ≤ m

m∑
i=1

fij ≤ qj, 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

pi,
n∑
j=1

qj)
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The first constraint allows to interpret the fij as the number of elements transported
from P to Q. The second constraint limits the amount of elements that can be moved
from cluster i of P to the total number of elements pi. The third constraint limits the
amount of elements that can be received by cluster j in the transformed signature to the
total elements in cluster j of Q. The last constraint forces to move the maximum number
of elements possible. When the total masses of P and Q are different, the number of
elements that should be moved is the total of elements in the signature with minimum
mass. This is known as partial matching.

The EMD between P and Q is defined as:

EMD(P,Q) =

∑m
i=1

∑n
j=1 f

∗
ijdij∑m

i=1

∑n
j=1 f

∗
ij

When working with probability distributions, the Earth Mover’s Distance belongs to a
family of distances known as p-Wasserstein distance or Mallows distance. It is a particular
case when p = 1.

As described in [21], given two random variables X and Y with probability distributions P
and Q respectively, the p-Wasserstein distance is defined as the minimum of the expected
difference between X and Y , taken over all joint distributions F for (X, Y ) such that the
marginal distribution of X is P and the marginal of Y is Q:

Wp(P,Q) = min{(EF ||X − Y ||p)1/p : (X, Y ) ∼ F,X ∼ P, Y ∼ Q}

In the case of two discrete distributions P = {(x1, p1), ...(xm, pm)} andQ = {y1, q1), ...(yn, qn)},
the problem is to find F = (fij) that minimizes:

EF ||X − Y ||p =
m∑
i=1

n∑
j=1

fij||xi − yj||p =
m∑
i=1

n∑
j=1

fijdij

Subject to the following constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n
m∑
i=1

n∑
j=1

fij = 1

n∑
j=1

fij = pi, 1 ≤ i ≤ m

m∑
i=1

fij = qj, 1 ≤ j ≤ n

The first two restrictions guarantee that F is a probability distribution. While the last two
restrictions guarantee that the marginal distribution of X is P and the marginal of Y is Q.

The Wasserstein distance can calculated between signatures. In order to do this, signa-
tures should be converted to probability distributions by normalizing the weights to add
up to one.
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As described in [22], for two signatures with the same number of elements, normalizing
doesn’t affect the result and the EMD is exactly the same as the 1-Wasserstein distance.
However, when the total masses are different the EMD does something different from the
Wasserstein distance.

We will illustrate the difference between the EMD and the Wasserstein distance with an
example. Let P = {(1, 1), (2, 2), (3, 1)} and Q = {(1, 1), (2, 1), (3, 1)} be two signatures.
P has a total mass of 4 while Q has a total mass of 3. Because Q is a subset of P , the
EMD between them is 0.

If we convert these signatures to discrete probability distributions we obtain:
X = {(1, 1/4), (2, 1/2), (3, 1/4)} and Y = {(1, 1/3), (2, 1/3), (3, 1/3)}. The optimal flow
is given by:

F (x, y) =


1/12 if x = 2, y = 1
1/12 if x = 2, y = 3
0 otherwise

The Wasserstein distance between them is 1/6.

In the following figure we illustrate our example:

P Q
1 2 3 31 2

1

2

1

2

EMD

X Y
1 2 3 31 2

1/4

1/2

Wasserstein distance

1/3

Figure 4.4: Comparison between EMD and 1-Wasserstein distance.

With this example we observe the EMD property of partial matching. This property can
be useful for some computer vision applications such as image retrieval, however in the
context of comparing distributions it could be a shortcoming. As in the example, two
distributions could have EMD equal to 0 just because they share all the possible obser-
vations even if their shapes are completely different. For these reasons we will normalize
the signatures and calculate the Wasserstein distance.

In the next plot we illustrate the 1-Wasserstein distance between samples of size 10, 000
of Gaussian distributions X and Y as a function of µY and σY .
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Figure 4.5: 1-Wasserstein distance between Gaussians

we observe that the 1-Wasserstein distance behaves as expected, it increases as the mean
and variance of the distribution Y increase.

In the case of Gaussian Distributions there is an explicit expression of the 2-Wasserstein
distance [24]. Let X ∼ N(µX ,ΣX) and Y ∼ N(µY ,ΣY ). The 2-Wasserstein distance
between these distributions is given by:

W2(X, Y ) = ||µX − µY ||2 + trace(ΣX + ΣY − 2(Σ
1/2
Y ΣXΣ

1/2
Y )1/2)

In the next plot we illustrate the 2-Wasserstein distance between Gaussian distributions
X and Y as a function of µY and σY .
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Figure 4.6: 2-Wasserstein distance between Gaussians

The 2-Wasserstein distance behaves as expected for Gaussian distributions, it increases
as the mean and variance of the distribution Y increase.

We propose to define a similarity measure using the Wasserstein distance. In [25] they
formalize the problem of defining a kernel K through a distance function d(x, y). The
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call them Distance Substitution (DS) kernels and prove positive definiteness for some DS
kernels. In particular, we will use the rbf kernel, defined as:

K(x, y) = e−γd
2(x,y)

As we explained in section (3.1), when working with multivariate distributions we will
construct our kernel using an additive approach:

Kab =
d∑
i=1

e−γW1({x(i)
a },{x

(i)
b })

where W1({x(i)a }, {x(i)b } is the Earth Mover’s distance between two samples in dimension i.

To calculate the Wasserstein distance we used the function wasserstein distance provided
in the package scipy.stats of Python. The selection of the parameter γ plays a very
important role in the performance of this kernel. In our experiments, the median heuristic
didn’t perform well. Instead, we used a grid search to find λ and γ. This grid search makes
the training process slow given that we have to run the code as many times as parameters
we have to check.

4.2 Deep Sets

In [26] they propose another framework to solve the Distribution Regression problem.
Without making any assumptions about the data origin, they simply treat the {x1}, ..., {xn}
as sets. The objective then is transformed into finding a function f : {xk} → yk that is
well defined on sets.

They propose a way to characterize a function to be valid on sets: the output must be
indifferent to the ordering of the elements. Formally, this property is called permutation
invariance and it means that for every π

f({x1k, ...x
Nk
k }) = f({xπ(1)k , ...x

π(Nk)
k })

They provide a way to characterize the structure of a permutation invariant function
through the next theorem.

Theorem [26]: A function f(X) operating on a set X having elements from a countable
universe, is a valid set function, i.e invariant to the permutation of instances of X, if
and only if it can it can be decomposed in the form f(X) = ρ(

∑
x∈X φ(x)) for suitable

transformations ρ and φ.

They use neural networks to define φ and ρ leading to the following structure:
1. Each element of the set {xk}j is transformed into some representation φ({xk}j).
2. The representations φ({xk}j) are added up and the output is processed using ρ.

This framework to solve the problem is called Deep Sets. We illustrate it in the next
figure.
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Figure 4.7: Deep Sets. Image taken from [26].

We observe that this framework is not completely different from the model presented in
Chapter 2. In fact, the formulation using kernel mean embeddings lies under the structure
of the theorem.

Drawing an analogy between these two methods, ρ can be seen as an extension to linear
regression while φ represents an optimized featurization for the specific problem.

One of the main differences between the two frameworks is that when using kernel meth-
ods, a two step approach is used, while Deep Sets provides a one stage method. Having
a one stage method is convenient because once the model is trained, it is really fast to
generate predictions for a new set. Another advantage of the neural network formulation
is that it allows for online learning, i.e learning when the data becomes available in se-
quential order [27], as opposed to the kernel methods in which it is necessary to have all
the training set at a time to fit the model.

Another difference is that for the kernel methods there are usually one or two parameters
to be estimated while for the neural networks the training is more complex. The Deep Sets
model provides a family of functions that work to solve the general problem. However,
for a specific dataset, constructing the network requires to make a series of experiments
to select the parameters, such as number and size of layers, activation function, weight
initialization, learning rate, number of iterations, etc. In the following section we explain
the implementation details of the architecture that we used for our experiments.

4.2.1 Implementation details

We used three fully connected layers of size 250 for φ and three fully connected layers of
size 75 for ρ. For the hidden layers we used the RELU activation function, defined as:

RELU(x) = max(0, x)

We trained the model using the L2 loss function:

L2loss =
n∑
i=1

(ytrue − ypredicted)2

The neural networks were optimized using mini batch gradient descent with Adam Op-
timizer [28]. Each iteration of the mini batch gradient descent algorithm, also known as
epoch, consists in splitting the full training set into random mini batches and optimizing
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the parameters on these subsets. We used mini batches of size 10 (sets). It has been em-
pirically shown that the Adam optimizer makes the training faster. In the tth iteration,
the Adam update is [29]:

θt+1 = θt −
η√
v̂t + ε

µ̂t

where v̂t and µ̂t are unbiased estimates of the first and second momentum of the past
gradients and η is the learning rate.

We used a learning rate of 0.0001 and we trained the model for 100 epochs. To set these
parameters we performed multiple experiments on the validation set.

To initialize the weights we used the following heuristic, presented in [30].

Wij ∼ U
[
− 1√

n
,

1√
n

]
where U [−a, a] is the uniform distribution in the interval (−a, a) and n is the size of the
previous layer (the number of columns of W ).

We observed that the network performed better using the mean instead of the addition,
so we modified the function as:

f(X) = ρ
(∑

x∈X φ(x)

NX

)
where NX is the total of elements in X. This modification doesn’t change the permutation
invariance property of the function.

The network was implemented in TensorFlow, the code is available in Appendix B.
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Chapter 5

Experiments

In this chapter we use two synthetic experiments to compare the performance of the
methods presented before. We select the methods that show the best balance between ac-
curacy and execution time. With these methods we infer voting behavior of demographic
subgroups for the 2016 US Presidential Election.

5.1 Synthetic experiments

In this section we compare our methods using two different synthetic datasets. The first
dataset is generated with a hierarchical model using the Gamma distribution. This model
was presented in [31] and replicating it allows us to evaluate the methods in the general
context of Distribution Regression, as well as comparing our methods with the Bayesian
methods presented in [31]. The second dataset is constructed using a model based on
a multivariate Gaussian distribution and a linear probability model. We created this
model in order to simulate the Ecological Inference Problem. For both models we created
training, testing and validation sets. The procedure to generate these models will be
explained below.

5.1.1 Gamma model

This model is generated as follows:

First, generate yi ∼ Uniform(4, 8), the label for the ith bag. Next, draw xij ∈ R5 using
the following distribution:

xij
(d) ∼ 1

yi

[
Γ(
yi
2
,
1

2
)
]

+ ε

where j ∈ {1, ..., Ni}, d ∈ {1, ..., 5} and ε is an added noise term that will vary depending
on the experiment.

We used the code provided in https://github.com/hcllaw/bdr/blob/master/bdr/data/toy.py
to generate the data.

Following the experiments created in [31] we simulated two datasets. In the first ex-
periment we evaluate the methods when there are bags of fixed size and added noise
ε ∼ N(0, 1). In the second experiment we evaluate the performance when there are bags
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of variable size and no added noise. For both experiments we generate 1000 bags for
training, 500 bags for validation and 1000 bags for testing.

Fixed bag size

For this experiment, all the bags contain a fixed number of elements and normal noise is
added to each observation. We replicate the experiments in the paper and use Ni = 1000
for all i and ε ∼ N(0, 1).

In the next table we compare the methods based on the test mean squared error and
execution time. All the experiments were executed on a single threaded Intel R© CoreTM

i5-7200U CPU @ 2.50GHz 4.

Method Test MSE Execution time (seconds)

Gaussian kernel 0.7497 40
Marginal Gaussian kernel 0.5268 147

Pyramid match kernel 0.3698 300
Wasserstein kernel 0.2448 20623

Deep Sets 0.2433 9154

The most accurate results are given by Deep Sets and the Wasserstein kernel. The mean
squared error for both methods is very similar, however the execution time of the Wasser-
stein kernel is considerably longer than the one using Deep Sets.

Even though the marginal kernel improves the results of the Gaussian kernel, the mean
squared error for both methods is really high. We also notice that for these methods the
execution time is very low compared to the rest of methods. This is a consequence of two
factors. First, the only parameter that needs to be selected is σ and the selection of this
parameter is given by the median heuristic. Second, the dimension of the data is 5. As
we explained in section 2.1.3, we used an explicit featurization with the property that the
complexity of the computation depends on the dimension of the input data.

The Pyramid Match kernel error is not that far from the error obtained with the best
methods and its execution time is substantially shorter. The method indicates to rescale
the data in order to have one observation for each bin at the finest resolution. However,
for our experiments we noticed that rescaling the data didn’t improve the accuracy and
applied the method without without rescaling.

Our results using the Wasserstein kernel and the Deep Sets methods are competitive
with the results of the Bayesian methods presented in [31]. In contrast to the Bayesian
methods, the parameter selection for the Wasserstein kernel is straightforward. We only
need to select two parameters: γ and λ. This would be an advantage if we had an ef-
ficient method to automatically select the parameter γ, such as the median heuristic.
This heuristic didn’t give the expected results, instead we used a grid search to select the
parameters and this increased the time to fit the model.

Because the Bayesian methods are developed in a neural networks formulation as well as
the Deep Sets model they share some advantages and disadvantages. The first advantage
is the possibility of optimizing the parameters using backpropagation. The second advan-
tage is that both methods use a one stage approach and once the model is trained it is very
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easy and fast to generate predictions. A disadvantage of both methods is that selecting
the parameters of the neural network, such as the learning rate, number of iterations and
weight initialization require to perform multiple experiments.

We consider the simplicity of the Deep Sets formulation as an advantage over the Bayesian
methods. While the Bayesian methods fit certain parameters to quantify different types
of uncertainty, the Deep Sets method provides a general approach that can be adjusted
to fit any kind of dataset.

As we explained in section 3.5, any Distribution Regression method can be applied to
solve the Ecological Inference problem. For this reason, adapting the Bayesian methods
to solve this problem would take as much work as adapting any of our methods.

Variable bag size

This experiment is designed to evaluate the behavior of our methods when there are
variable bag sizes in the dataset and no added noise. We replicate the experiment
in the paper and use the following procedure to generate the data. We fix four sizes
Ni ∈ {5, 20, 100, 1000}. For each generated dataset, 25% of the bags have Ni = 20 and
25% of the bags have Ni = 100. For the other 50% of the data, we define s5 as the overall
percentage of bags with Ni = 5, the rest will be bags with Ni = 1000. We create datasets
in which we vary s5 from 0% to 50%. We use ε = 0.

In the next plot, we illustrate our results.
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Figure 5.1: Test mean squared error on datasets with variable bag size.
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For this experiments the most accurate methods are the Wasserstein kernel and Deep
Sets. Both methods provide similar errors when the percentage of bags with five elements
is less than 25%. However, when this percentage increases the Wasserstein kernel is the
only method that produces competitive results.

The marginal kernel slightly improves the results of the Gaussian kernel. We observe that
this improvement is consistent and doesn’t get affected by the amount of bags with few
elements.

On a different plot we observe the Pyramid Match Kernel, which underperforms compared
with the other methods. We attribute this behavior to the presence of bags with a
small number of observations. When there are few individuals per bag, the pyramid of
histograms doesn’t provide so much more information than a single histogram.
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Figure 5.2: Test mean squared error on datasets with variable bag size.

Even if the Wasserstein kernel and Deep sets don’t explicitly take into account the vari-
ability of the bag sizes, their accuracy is comparable with the Bayesian methods. As we
mentioned before, we consider this as an advantage of the Deep Sets and the Wasserstein
kernel methods over the Bayesian methods.
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5.1.2 Gaussian model

In order to compare the performance of the methods in the context of Ecological Infer-
ence, we created the following model:

First, we generate the population for the ith bag. This population will be formed by
two subgroups that we will call Category A and Category B. In a real life example these
categories correspond to demographic subgroups divided by certain characteristics, such
as sex, region type, income level, etc.

To generate the population for category A we generate a sample of the following distri-
bution:

[xji ]A ∼ N(0,ΣA
i ), j ∈ [NA

i ]

where ΣA
i = σAi ∗ Identity(10).

We generate the population for category B using an analogous procedure.

To distinguish the categories in our population we added a binary variable that will rep-
resent elements from category A and category B with zeros and ones respectively.

In the following table we show an example of the population for a region.

x
(1)
i , x

(2)
i . . . , x

(10)
i x

(11)
i = Category

0

N(0,ΣA
i )

...
0
1

N(0,ΣB
i )

...
1

To generate the labels we calculate a vector of probabilities πi using the following expres-
sion:

πji =
e([x

j
i ]
T β)

1 + e([x
j
i ]
T β)

where β is a random vector of dimension 10 drawn from a U(0, 1). This vector will be
generated once and we will use it to generate the labels for all the bags.

Next, we draw yji from Bernoulli(πji ). In a real life example, yji would be the vote of
person j

The label for region i will be the percentage of elements with vote 1.

ȳi =

∑N i

j=1 y
j
i

Ni

We generate different experiments varying the number of elements per bag Ni and relation
between populations over bags and categories using σAi and σBi .
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For all of our experiments we generated a training set and a validation set with 1000 and
500 bags respectively. The test set was obtained from the training set, subsetting all the
elements corresponding to category A per bag. We evaluated our experiments using the
mean squared error on the test set.

We created four experiments to evaluate our methods in different types of populations.

Experiment 1. All regions from the same distribution and size

In this experiment all the bags contain the same number of elements Ni = 1000, with
half of the elements of each category NA

i = NB
i = 500. The covariance matrix for both

categories is the identity, i. e. ΣA
i = ΣB

i = 1.

Experiment 2. All regions from the same distribution and random size

In this experiment we would like to evaluate the performance of the methods when the size
of the bags is generated randomly. We draw NA

i and NB
i random from U(250, 500). As in

experiment 1, the covariance matrix for both categories is the identity, i. e. ΣA
i = ΣB

i = 1.

Experiment 3. Distribution varies between categories and random size

In these experiment we evaluate the methods when the distribution between categories is
different. To do this, we use ΣA

i = 1 and ΣB
i = 10. We draw NA

i and NB
i random from

U(250, 500).

Experiment 4. Distribution varies between bags

Finally, in this experiment we want to evaluate the models when the distribution in ev-
ery region is different and the distribution between categories is the same. We vary the
covariance matrix per region. We use ΣA

i = ΣB
i = i. We draw NA

i and NB
i random from

U(250, 500).

In the next table we show the test mean squared error for our experiments.

Method 1 2 3 4

Gaussian Kernel 0.0037 0.0012 0.0053 0.0006
Gaussian Kernel Marginal 0.0038 0.0007 0.0006 0.0004

Pyramid match kernel 0.0468 0.0209 0.0268 0.0209
Wasserstein Kernel 0.0015 0.0004 0.0261 0.0078

Deep Sets 0.0023 0.0004 0.0005 0.0002

Our experiments were designed for two purposes. First, they allow us to perform Ecolog-
ical Inference and to compare the results of our methods in a controlled environment, i.e
we know the labels for each individual, in consequence we also know the proportions for
every subset. Second, they allow us to understand the influence of the type of population
on the performance of the methods.
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Experiments 1 and 2 are similar except for the size of the bags. As opposed to what we
would expect, the error for all of the methods is lower for experiment 2 than for exper-
iment 1. If we compare this result with the Gamma experiment, we can conclude that
having bags of variable bag size doesn’t affect the quality of the predictions as long as
these bags have a large amount of elements.

We observe that the highest errors overall the experiments are obtained in experiment 3,
in which the population for each region is divided in two categories.

In comparison with the Gamma datasets, for these experiments most of the methods are
very accurate. We observe that in all of our experiments, the method that consistently
performs well is Deep Sets. It also stands out that the Pyramid Match kernel underper-
forms in all the cases.

The Gaussian kernel and the marginal kernel are accurate. For most of the experiments
the marginal kernel improves the results of the Gaussian kernel.

The Wasserstein Kernel is the second best method, except for experiment 3 in which its
error is comparable with the Pyramid Match kernel error.

For our real data application we will discard the Wasserstein kernel for its computational
cost and the Pyramid Match kernel for its high prediction error. Therefore, we will cal-
culate our results using Deep Sets and the Marginal kernel.
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5.2 Ecological Inference for the US 2016 Elections

In this section we use the Deep Sets model to infer voting behavior for different demo-
graphic subgroups. We also present our results using the marginal kernel and Ridge
regression. To build the demographic subgroups we divide the regions by sex, race and
educational attainment.

5.2.1 Data

Following the work in [5], the individual level census data was obtained from the Ameri-
can Community Survey’s Public Use Microdata Sample files (ACS PUMS). ACS PUMS
are files containing records for a sample of housing units, with information about the
characteristics of the housing and the people that live in it. We are using a 5 % sample
of housing units in the United States. This sample is organized on Public Use Microdata
Areas (PUMAS), which are based on counties and may be single counties or group of
counties.

The elections results by county were taken from https://github.com/flaxter/us2016. In [?]
they report that this results were scraped from nbc.com on 9 November 2016.

Some of the PUMAS don’t coincide with the regions in which the elections results are
based. We used the Pummeler package to match the regions and merge the PUMS data
from 2012 to 2015. The Pummerler package was presented in [5] and can be downloaded
from https://github.com/dougalsutherland/pummeler.

We obtained a total of 979 regions after preprocessing. Each region has 19 real variables
and 101 discrete variables.1 Some examples of the real variables are age, travel time to
work in minutes and salary income in the past 12 months. While some examples of the
discrete variables are citizen status, sex, recorded detailed race and educational attain-
ment.

We normalize the real variables to have mean 0 and standard deviation 1. We transform
the discrete variables into dummy variables. As a result we obtain a total of 3877 variables.

The average number of individual records per region is 942, the maximum is 256,352
and the minimum is 2214. Each individual record includes a survey weight to correct for
oversampling and non response. These weights are taken in consideration as explained in
section 3.4.

1All the information about the variables is available in https://www2.census.gov/programs sur-
veys/acs/tech docs/pums/data dict/PUMSDataDict15.txt
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5.2.2 Results

We estimate the proportion of votes for Clinton using different demographic subgroups
formed by splitting by sex, race and educational attainment.

We consider only two categories for voting: Clinton and Trump. The proportion of voting
for Clinton is calculated as:

proportion Clinton =
votes Clinton

votes Trump+ votes Clinton

To train the Deep Sets model we use 60 % of our regions for training, 20 % for validation
and 20 % for testing. We trained our model using the architecture presented in 4.2.1.
Due to memory limitations we restricted the amount of individuals per region to 10,000,
taking a representative sample when the number of individuals exceeded this limit. For
the same reason we used batch size one, i.e we trained the model on a single region per
iteration. We used 10 epochs.

To train our marginal kernel we use 75 % of our regions for training and 25 % for testing.
The parameter λ is automatically selected using cross validation on the training set. To
calculate the mean embeddings we used all the individuals per region.

In the next plots we show the models predictions versus real proportions for the test
regions.

Figure 5.3: Fit using deep sets
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Figure 5.4: Fit using marginal kernel + Kernel
Ridge regression

To compare our results we use the explained variance score:

explained variance(y, ŷ) = 1− V ar(y − ŷ)

V ar(y)

Using the Deep Sets method we obtained an explained variance score 0.8772 and a test
mean squared error of 0.005. While using the Marginal kernel and Ridge regression we
obtained an explained variance score 0.7251 and a test mean squared error of 0.006.
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In the next table we show our predicted results for Clinton proportion for different de-
mographic subgroups. As a point of comparison we also present the results for the LLP
model using cardinality potentials and the exit poll results. These results were taken from
[12]. For the exit poll results they used collected by Edison Research and scraped from
the CNN website.

Variable Subgroup Marginal kernel Deep Sets LLP Exit Poll

SEX Men 0.34 0.43 0.41 0.44
Women 0.47 0.48 0.45 0.57

RACP1P White 0.37 0.37 0.31 0.39
Black 0.57 1.02 0.99 0.92
Asian 0.82 0.79 1 0.71

SCHL High school or less 0.34 0.38 0.18 0.47
Some college 0.49 0.44 0.26 0.46

College graduate 0.52 0.57 0.71 0.53
Postgraduate 0.55 0.64 0.68 0.61

We notice that for most of the categories, the results using Deep Sets are closer to the
exit poll than the results obtained with the marginal kernel and the LLP model.

Something that stands out is the 1.02 inference of Deep Sets for the category black on
race. Because we are using regression, there is no guarantee that the results will be in
the interval [0, 1]. In our experiments we observed that adding a sigmoid function to
restrict the interval really worsened the fit, for this reason we decided not to use it. Even
with this problem, the result is closer to the exit poll result than with the marginal kernel.

A special case is the category of women, in which the inferred percentages for all the
methods are very far from the exit poll results. The reason why the methods fail could
be that the population for each region was very different for men than for women. As we
saw in Experiment 3 of the Gaussian dataset, it is harder to predict when the population
for each region is divided.

We conclude that when the goal is to predict for demographic subgroups as opposed
to every individual label, Distribution Regression is a suitable approach to solve the
Ecological inference problem.
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Chapter 6

Conclusions

This thesis was motivated by [5], in which they present a method for Distribution Regres-
sion based on the Gaussian kernel and Ridge regression. In this paper they also present
a method to apply Distribution Regression to solve the Ecological Inference problem.

The objectives of this thesis were to understand the similarity measure defined with the
Gaussian kernel, to propose different similarity measures to improve the quality of the
predictions and to perform some experiments to compare these methods.

When searching for information about the Ecological Inference problem, we realized of the
lack of clear sources about the topic. We made a review of the problem and the solutions
that have been proposed until now. We expect this review to be a contribution for filling
the gap in the Ecological Inference literature.

We developed an explicit expression for the Gaussian based similarity on Gaussian distri-
butions and we observed that the difference in variance wasn’t reflected in the similarity.
With the objective of finding a similarity function that reflected the expected behavior
we proposed three different ways of calculating similarity: the pyramid match kernel, the
Wasserstein kernel and the marginal kernel.

The marginal kernel was proposed as a method to work with multi dimensional distribu-
tions. As opposed to the approach presented in [5] we proposed to select an individual
kernel for each dimension to take into account the type of variable and the scale. In most
of our synthetic experiments, we observed a slight improvement over the Gaussian kernel.

We implemented the pyramid match kernel as presented in [1]. In our experiments, the
results using this kernel were inferior to the Gaussian kernel in most of the cases. We used
this similarity for our example on Gaussian distributions and we noticed that it presented
the same problem as the Gaussian kernel.

We proposed to use the Wasserstein distance and defined a kernel using this distance.
The use of this similarity function considerably reduced the prediction error. However,
the parameter selection was done using a grid search and this really slowed down the
training. As a possible future work we propose to find an automated way to find the
parameter γ in order to reduce the computation time.
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We compared our kernel methods with a neural network formulation called Deep Sets.
In our experiments we observed a significant improvement in the prediction results when
using this method.

Finally, we used the marginal kernel and Deep Sets to perform EI on the US 2016 results.
We compared our results with the exit poll results and observed very accurate results for
certain demographic subgroups. Nevertheless, there were a few demographic subgroups
for which the predictions were far from the exit poll results. Further research about the in-
fluence of the population on the prediction results could be another option for future work.
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Appendix A

Marginal inference in factor graphs
with cardinality potentials

Given a function of the form

q(y1, ..., yn) ∝
∏
j

ψj(yj)φ(
∑
j

yj)

where y1, ...yn are binary random variables.

In [18] they show that it is possible to construct a tree structure factor graph and then
perform exact marginal inference using a message passing algorithm. Factor graphs are a
type of probabilistic graphical model that allow us to represent the product structure of
a function [19]. The message passing algorithm will be useful to efficiently calculate the
marginals of q(y1, ...yn), which are the quantities of interest.
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Appendix B

Deep Sets implementation

import numpy as np

import tensorflow as tf

#skl_groups was taken from https://pypi.org/project/skl-groups/

from skl_groups.features import Features

def init_weights(shape):

""" Weight initialization """

weights = tf.random_uniform(shape, minval= -1.0/np.sqrt(shape[0]), \

maxval = 1.0/np.sqrt(shape[0]))

return tf.Variable(weights)

def init_all_weights(dim):

h_size = 250

rho_size = 75

W1 = init_weights((dim, h_size))

b1 = init_weights((1, h_size))

W2 = init_weights((h_size, h_size))

b2 = init_weights((1, h_size))

W3 = init_weights((h_size, h_size))

b3 = init_weights((1, h_size))

W4 = init_weights((h_size, rho_size))

b4 = init_weights((1, rho_size))

W5 = init_weights((rho_size, rho_size))

b5 = init_weights((1, rho_size))

W6 = init_weights((rho_size, 1))

b6 = init_weights((1, 1))

weights = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2,

"W3": W3,

"b3": b3,

"W4": W4,

"b4": b4,

"W5": W5,
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"b5": b5,

"W6": W6,

"b6": b6}

return weights

def forwardprop(X, weights, segment_ids):

W1 = weights["W1"]

b1 = weights["b1"]

W2 = weights["W2"]

b2 = weights["b2"]

W3 = weights["W3"]

b3 = weights["b3"]

W4 = weights["W4"]

b4 = weights["b4"]

W5 = weights["W5"]

b5 = weights["b5"]

W6 = weights["W6"]

b6 = weights["b6"]

Z1 = tf.add(tf.matmul(X, W1), b1)

A1 = tf.nn.relu(Z1)

Z2 = tf.add(tf.matmul(A1, W2), b2)

A2 = tf.nn.relu(Z2)

Z3 = tf.add(tf.matmul(A2, W3), b3)

mean_emb = tf.segment_mean(Z3, segment_ids)

Z4 = tf.add(tf.matmul(mean_emb, W4), b4)

A4 = tf.nn.relu(Z4)

Z5 = tf.add(tf.matmul(A4, W5), b5)

A5 = tf.nn.relu(Z5)

Z6 = tf.add(tf.matmul(A5, W6), b6)

return tf.reshape(Z6, [-1])

def create_placeholders(dim):

X = tf.placeholder(tf.float32, shape=[None, dim])

y = tf.placeholder(tf.float32, shape=[None])

segment_ids = tf.placeholder(tf.int32, shape = [None])

return X, y, segment_ids

def shuffle(feats):

indexShuffle = np.random.permutation(len(feats))

feats_shuffled = [feats[i] for i in indexShuffle]

labels_shuffled = [feats.labels[i] for i in indexShuffle]

return Features(feats_shuffled, labels = labels_shuffled)

def model(train, validation, test, learning_rate = 0.0001,

num_epochs = 100, minibatch_size = 10, seed = 0):

tf.set_random_seed(seed)

#Read dimensions
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dim = train[0].shape[1]

num_bags_train = len(train)

num_bags_validation = len(validation)

num_bags_test = len(test)

#Create placeholders

X, y, segment_ids = create_placeholders(dim)

#Weight initializations

weights = init_all_weights(dim)

# Forward propagation

yhat = forwardprop(X, weights, segment_ids)

loss = tf.reduce_sum(tf.square(tf.subtract(y, yhat)))

mse = tf.reduce_mean(tf.square(tf.subtract(y, yhat)))

updates = tf.train.AdamOptimizer(learning_rate).minimize(loss)

variables = tf.global_variables()

#Tensorboard

saver = tf.train.Saver(variables, max_to_keep = 1)

# Run SGD

sess =tf.Session()

#Restore model

try:

saver.restore(sess, "./model.ckpt")

print("Model restored")

except:

init = tf.global_variables_initializer()

sess.run(init)

print("init variables")

#Training

loss_vec = []

validation_vec = []

for epoch in range(num_epochs):

train = shuffle(train)

num_batches = int(num_bags_train/minibatch_size)

for i in range(num_batches):

ini = minibatch_size*i

end = minibatch_size*(i+1)

if i==(num_batches-1):

end = num_bags_train

batch_X = train[ini:end]

batch_y = train.labels[ini:end]

segment_id_train = np.hstack([x*np.ones(batch_X[x].shape[0]) \

for x in range(len(batch_X))])

batch_X_stacked = np.vstack(batch_X)

sess.run(updates, feed_dict={X: batch_X_stacked, y: batch_y, \

segment_ids: segment_id_train})
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if i==0:

loss_value = sess.run(loss, feed_dict = {X: batch_X_stacked, \

y: batch_y, segment_ids: segment_id_train})

print("Epoch %d ,loss: %0.4f" % (epoch + 1, loss_value))

loss_vec.append(loss_value)

#Validation

segment_id_val = np.hstack([x*np.ones(validation[x].shape[0]) \

for x in range(num_bags_validation)])

mean_squared_error = sess.run(mse, feed_dict = {X:np.vstack(validation),\

y: validation.labels, segment_ids:segment_id_val})

validation_vec.append(mean_squared_error)

print("val MSE = %0.4f" % mean_squared_error)

#Test

segment_id_test = np.hstack([x*np.ones(test[x].shape[0]) \

for x in range(num_bags_test)])

mean_squared_error = sess.run(mse, feed_dict = {X:np.vstack(test), \

y: test.labels, segment_ids:segment_id_test})

print("Test MSE = %0.4f" % mean_squared_error)

weights = sess.run(weights)

return(weights, mean_squared_error)
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