
RGB-D NEAR ONLINE MULTI-OBJECT
TRACKING

THESIS
Submitted in partial fulfillment of the
Requirements for the degree of

Master of Science
with orientation in

Computer Science and Industrial
Mathematics

by

Orlando García Álvarez

Thesis supervisor:
Jean-Bernard Hayet, PhD.

Thesis examiners:
Héctor Manuel Becerra Fermín, PhD.
Rafael De La Guardia González, PhD.

Guanajuato, Gto., December 15, 2018

Guanajuato, Gto., December 15, 2018

RGB-D NEAR ONLINE MULTI-OBJECT
TRACKING

THESIS
Submitted in partial fulfillment of the
Requirements for the degree of

Master of Science
with orientation in

Computer Science and Industrial
Mathematics

by
Orlando García Álvarez

Thesis supervisor:
Jean-Bernard Hayet, PhD.

Thesis examiners:
Héctor Manuel Becerra Fermín, PhD.
Rafael De La Guardia González, PhD.

1

Abstract

RGB-D Near Online Multi-Object Tracking (NOMT)

by

Orlando García Alvarez

Maestría en Ciencias in Ciencias de la Computación y Matemáticas Industriales

Centro de Investigación en Matemáticas A. C., Guanajuato

Dr. Hector Becerra, Chair
Dr. Rafael de la Guardia, Co-chair

Tracking pedestrians and other moving objectives over RGB-D data is increasing in popularity,
due to the access of cheaper and more precise depth devices. Keeping a consistent identity of these
objectives over time is a combinatorial problem that, just like detection itself, is susceptible to
occlusions, non-smooth movement, and even more so when the nature of a target so dynamic as
a human being makes it difficult to maintain a consistent appearance measurement without using
modern GPU-based techniques.

In the literature, few tracking strategies have been designed to fully exploit 3D data and keep
operation in real-time performance. In this thesis, we present a tracking pipeline that manages to
quickly solve data-association on targets through a graphical model inspired by W. Choi’s Near-
Online Multiple Tracking (NOMT) [CVPR15], with a redesigned energy optimization model for
better usage of depth and color data and with the use of a simple histogram-based descriptor which
is low cost for the processor and copes well with non-static targets.

Along with this strategy, we present a new easy-to-use tracking software library that is com-
patible with ROS, providing code for faster RGB-D based tracker development. We also present
an implementation and evaluation of our RGB-D NOMT with tests made over ground-truth data
taken with Kinect sensors.

i

To my mother, for her unconditional love and support.
To my grandmother, for she lovingly raised me, always so proud of me.

ii

Contents

Contents ii

1 Motivation and Theoretical Background 1
1.1 Introduction . 1
1.2 Related Work . 4

1.2.1 People detection . 4
1.2.2 Pose estimation and body part recognition 4
1.2.3 Target Matching . 5
1.2.4 Tracking strategies . 6

1.3 Contributions and overall description of our approach 7

2 Near-Online Multi Object Tracking 9
2.1 Useful definitions . 9

2.1.1 Handling time . 9
2.1.2 Input from RGB-D Sensors . 10
2.1.3 Detections . 11
2.1.4 Trajectories and Tracklets . 12
2.1.5 Tracking . 12

2.2 Data Association . 13
2.2.1 Overview . 14
2.2.2 Tracklet Generation . 15
2.2.3 Non-Maximal Suppression . 16
2.2.4 Hypotheses Generation . 17
2.2.5 Data Association and Target Augmentation 19

3 Inference with CRF and Application to Tracking 21
3.1 Inference over Graphical Models . 21

3.1.1 Probability theory . 21
3.1.1.1 Bayes Theorem . 22
3.1.1.2 Chain Rule . 23

3.1.2 Graphical Models . 23
3.1.3 Bayesian Networks . 24

3.2 Markov Networks . 25
3.2.1 Parametrization and factors . 27

iii

3.2.2 Factor Graphs . 27
3.3 Variable Elimination . 28
3.4 Efficient inference . 30

3.4.1 Cluster graph . 30
3.4.2 Junction Tree . 30
3.4.3 Clique Tree . 31

3.4.3.1 Initialization . 32
3.4.3.2 Message Passing . 32
3.4.3.3 Calibration . 33

3.4.4 Junction Tree Algorithm . 34
3.5 Building the Junction Tree . 35
3.6 Conditional Random Fields . 36
3.7 Inference on NOMT . 37

3.7.1 Model representation . 37
3.7.2 Clique potentials as energy functions . 39
3.7.3 Choi’s energy function . 39

3.8 Our proposed Energy for RGB-D NOMT . 42
3.8.1 Data association term . 42
3.8.2 Hypothesis consistency term . 43
3.8.3 Changes . 43
3.8.4 Occlusion Potential . 44
3.8.5 Interpretation of our RGB-D NOMT energy function 46

4 RGB-D Similarity 48
4.1 Point-Cloud Descriptor . 48
4.2 Geometry and surface estimation . 49

4.2.1 Point Feature Histogram (PFH) . 51
4.2.2 Fast Point Feature Histogram (FPFH) . 54

4.3 Measuring color and appearance . 56
4.3.1 HSV Color space . 56
4.3.2 Color Histogram . 57

4.4 Histogram Comparison and Metrics . 57
4.4.1 Descriptor design . 59

5 Developed Software 60
5.1 Overview . 60
5.2 About ROS . 61
5.3 Simulating RGB-D Detections . 62
5.4 Multiple Sensor Support . 63
5.5 Tracking Pipeline . 64
5.6 The NOMT Library . 66
5.7 ROS Interface . 67
5.8 Implementing Trackers . 68
5.9 Execution & Visualization . 69

iv

6 Obtained Results 71
6.1 Evaluation Methodology . 71

6.1.1 CLEAR MOT . 72
6.2 Tested datasets . 74

6.2.1 EPFL-LAB . 74
6.2.2 SPINELLO-UNIHALL . 75

6.3 Experimental results . 75

7 Future Work and Conclusions 81
7.1 Future Work . 81
7.2 Conclusions . 82

Bibliography 84

v

Acknowledgments

I would like to express my very great appreciation to Dr. Jean-Bernard Hayet, for giving me so
many chances and believing in me. For his valuable direction and time invested in this research,
for which I have my highest regards. Also thanks to Dr. Hector Becerra and Dr. Rafael de la
Guardia, for their interest and valuable feedback on integrating this work.

Thanks to CIMAT for all resources made available to me, facilities, library, digital resources,
food service and closeness to all fellow researchers that provided helpful tips and advice. Also
thanks to Concejo Nacional de Ciencia y Tecnología (CONACYT), for the two year financial sup-
port during master’s degree program. And many thanks to INTEL Labs for the scholarship given
during my participation on the “Move and let Move” project.

To my mom, brothers and sisters, whom are always in touch, checking on me, looking up to
my achievements and cheering me up, for whom I push myself the furthest I can, my most sincere
thanks and love belongs to them. I also thank my close friends back home, Reyna Ovalle, Myriam
Olalde, Lucero Zertuche, whom are always happy to know about my progress and misadventures.

To all laboratory colleagues, particularly to Edgar Martínez, Noe “Pity” Aldana, Emmanuelle
Ovalle, Giselle Megchun and all those who stayed for a little while, which made the whole experience
much more enjoyable, and most importantly to Andrei Raya and Yuriria Acuña, which were always
willing to keep me company when I most needed it.

1

Chapter 1

Motivation and Theoretical Background

1.1 Introduction
In our everyday life, we are instantaneously able to identify ourselves, family members, friends and
colleagues at simple sight. Even more, we are able to identify strangers on the streets and keep
track of them along time by memorizing in some way their body type, their haircut, their clothing
and the accessories they are wearing. Also, we have a sense of how far they are relative to ourselves.
If we track a person and see the same person moments later, for example, when we turn our head
back and forth, or right after blinking, we can keep on tracking and estimating his trajectory at
some extent.

Computer vision and robotics aim to emulate, ease and outperform human beings in such activ-
ities, those that we do everyday, or to allow robots to do what we cannot do, like keeping track of
hundreds of people at the same time. This objective of surpassing human capabilities is shared with
many other disciplines that end up providing us with better and more sophisticated hardware and
tools like smaller devices, more powerful processors and better cameras. An easy access to these
technologies permits for new uses and applications for them, individually or combined in what we
call a system or robot.

These words are commonly used interchangeably. In an abstract sense, both are the combina-
tion of computers that perform reasoning and problem solving on data collected by sensors. They
perceive the world with sensors such as cameras, lasers, contact bumpers, heat/light and capacitive
sensors, etc. and use them to determine actions, like navigating, changing the robot configuration,
making sounds or showing a response on screen. When consistently solving a high-level problem, we
call it intelligent system, e.g., camera systems that perform face recognition or pedestrian tracking
for the sake of security. An autonomous car that employs mounted cameras, proximity sensors
and specialized software for driving is another example. Flying drones with attached cameras that
stream video for performing terrain classification also belong to this class of systems.

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 2

The use of cameras on these systems is one of the easiest ways to collect data from the world.
Cameras can take pictures or a series of them in the form of video, and in this case the pictures are
called frames. Computer Vision is the discipline that works with this type of input data and tries to
extract as much information as possible from pictures/frames. This information may be the robot
current pose, the relative distance to the objects in sight, and their identification/classification,
among other.

One of the most challenging application is identifying persons in a single frame of a video se-
quence. It is by itself a difficult task for a computer whereas it is a skill taken for granted among
humans as, without apparent effort, we can tell the difference between a person that is physically
standing in front of us and a person in a photograph, a painting, a mirror or a reflection. We
can differentiate a human from any other human-like entities, even though we can fail at this task
under certain circumstances.

For a robot, the software component that identifies the presence of a person on every single
frame is simply called detector, and every found person is called detection. Ensuring that detectors
give accurate enough results is critical for a tracker, so that a target can be identified/recognized
individually the whole time the person is in sight, in a succession of consecutive frames.

A tracking algorithm attempts to associate detections that correspond to the same person, that
is now referred to as a target in this context. This problem of maintaining the identity of several
targets along a sequence of multiple detections is what is called a data-association problem, and it
is at the core of all the tracking algorithms. It may become extremely complicated when dealing
with occlusions among targets or with clutter, with strong changes in the video acquisition con-
ditions, etc. It may be solved, as in this thesis, through optimization algorithms that attempt to
keep a reliable estimation and prediction on the motion of the tracked objects, since a single target
is associated with a unique trajectory, composed by every detection belonging to this target.

Once the aforementioned problem is solved, it could be said that the robot has gained “con-
sciousness” of the presence of other humans surrounding it and of their motion. As a result, it
is not only able to identify a target but also to keep track of its position relative to some coor-
dinate system, which allows for many applications. With this information, a service robot can
plan its movement and navigate, predict the motion of every person that is being tracked, move
while avoiding collision, or approach a group of persons to greet and give support for any given task.

However, there are many general challenges to this problem, even though robots become more
and more well suited with powerful sensors and processing capabilities:

• Sensors like cameras and lasers are susceptible to occlusions, meaning that some objectives
may become hidden by others, by obstacles, or be just too far to be sensed with data accurate
enough to be used by the system.

• Sensors have specific frame rates, frequencies and formats in which collected data can be read.
This creates synchronization issues, incomplete segments of data and a big load of information
to process when the sensor produces dense sampling on the real world, like HD cameras.

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 3

• The way to represent the identity of a target is critical. Measuring similarity between observa-
tions of targets is still an open problem that has many interpretations on different approaches.
It can be tackled by considering the geometry, the observed trajectory, the color, or the re-
sult of a more complex analysis like face recognition, limb dynamics and pose estimation.
All these approaches require more and more processing power. However, failing to identify
the same individual in a sequence of frames could mean that either it went out of sight or it
got occluded. In case of error, an “identity switch” may happen, meaning that the similarity
measure resulted in a confusion on the tracking system.

Much work has been done on pedestrian tracking over video sequences, and the idea of using
a measure of how far is a target from the observer, called depth, is nothing new. Its combination
with color information from the frames has shown to perform much better as it provides more
information on the scene and reduces mistakes in data association.

Now, with the presence of relatively new devices such as the XBox Kinect, the ASUS Xtion
or the Intel RealSense, which are called RGB-D Sensors, it is more plausible for a robot to collect
tracking observations with such mounted devices, obtaining both color and depth, and allowing for
3D point-clouds to be constructed and new techniques to be used.

With the new paradigm of RGB-D data comes also new challenges:

• RGB data and depth data usually come in different streams of data, and though the frequency
is similar, often synchronization errors show up on some frames, making a lot of pixels miss-
ing their real depth information, which varies a lot, especially when depth nears maximum
operation ranges.

• No depth sensor is capable of measuring infinite depth, due to unavoidable discretization
both on image pixel sizes and depth perception techniques. Higher resolutions allow for
longer depth-ranges that can be accurately perceived, still with loss of density in re-projected
points near the horizon that are physically further away from the sensor.

• RGB-D sensors are now recovering huge amounts of pixels, resulting in large 3D point-clouds
with redundant information that are often down-sampled to reduce the burden of processing
time at each iteration.

• The access to 3D point-clouds allows for more geometric analysis and better understanding on
the pose of the target. Exploiting this amount of information and also maintaining real-time
performance is difficult and requires faster ways to measure similarity. Also, the problem
grows when attempting to track non-rigid objects which have limbs that occlude themselves.
This makes it necessary1 to encode somehow their dynamics when in search of optimal ap-
pearance extraction: to compare localized qualitative data that should be repeatedly matched
over future instances of the same target in different positions.

1Such precise similarity measuring for dynamic targets is beyond the scope of this work, as we settle with a cheap
yet robust enough strategy that can be applied without too much computing power as will be presented on Chapter
4

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 4

1.2 Related Work
Many modern person detectors are now working with RGB-D sensors, as they allow better depth
ranges, and they are more precise and cheaper, and many works have been done on people detec-
tion on RGB-D data. Taking into account the depth information, one can perform more geometric
evaluations for the pose and the body part detection, through the 3D point-cloud that can be
re-constructed or that may be given directly by the sensor, reducing some of the processing burden
and allowing for more complex high-level algorithms to be designed.

On the other hand, recent tracking systems are able to perform detection over RGB-D data
to identify persons or various objects, but the tracking is done using many other geometric and
similarity measurements that tend to dismiss much of the data collected and used by the detector,
for the sake of performance.

There are still few RGB-D based trackers in the literature. In the following, we review works
that have been published in this area.

1.2.1 People detection
Techniques for detecting a human being in a photograph have been developed by considering only
color information, and with great success even on recent years, so it makes sense that the same ideas
could still be useful for RGB-D systems, though techniques that also take advantage of depth data
are expected to operate better and faster. Classic strategies have reached a point of modernization
that copes with real-time performance, like the usage of classification for detection candidates us-
ing Support Vector Machines (SVM) on block-based Histogram of Gradients (HOG) descriptors as
done by [10, Rodriguez], which yields fast detection latency and takes advantage of both the RGB
and depth channels.

Other state-of-the-art techniques like contour and template matching on anthropomorphic fig-
ures such as those from [14, Jafari] are able to perform detection in RGB-D images and they
approximate the target orientation through the training of orientation-based templates for the
human upper-body silhouette while dealing with targets that are further away from the sensor,
meaning imprecise depth information.

Still, these classic or ad-hoc approaches suffer from the same problems as their 2D versions, in
that they need to make special considerations for detecting targets that are partially shown in the
image and in positions other than standing. This problem has given rise to more complex state-of-
the-art machine-learning and neural-network based techniques, as in the works of [37, Tian], [40,
Zhou], [18, Liu] and [24, Ophoff], among others.

1.2.2 Pose estimation and body part recognition
These approaches tend to be more greedy on resources but with far better precision, since they take
detections further, into more details on the target within a point-cloud, extracting more knowledge
on the target identity. Works like the classic Kinect algorithm from [31, Shotton] are able to cluster

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 5

the body parts through Randomized Decision Forests to give an optimal classification of the joints
found in each person point-cloud for their individual tracking to be made efficiently on GPU, also
requiring the training of the classifier.

Another approach is to fit a skeleton model directly on the clustered point-clouds, minimizing
the error through Expectation Maximization (EM) between the model and the observed limbs as
in the work from [2, Barros]. Hence, the knowledge on real pose is more accurate. It is also worth
mentioning recent works from [5, Cao] which operates by using RGB data only and still manages to
estimate with high accuracy the 2D human skeleton pose of almost every person in an image. It out-
performs the techniques mentioned earlier, as it accurately detects people at non-standing positions,
which is a major problem for most detectors. Operating without prior knowledge about human
detections, it trains instead a Convolutional Neural Networks (CNN) that finds loose body-parts
in the image and a corresponding degree of association between parts is found. Using confidence
maps and affinity fields fed to a greedy inference process, 2D key-points for all people in the image
are found and they could be projected to 3D if depth data is made available. Body part recognition
and pose estimation has boomed in recent years as in works like [9], [7], [12], [13],[16] and [39], due
to all the possibilities and benefits in many areas, specially for tracking.

Let us note that most of these methods are accurate, though expensive for the processor and
with low frame-rate on most consumer hardware. If the detected pose is made available for a
tracking system, measuring and comparing a pair of detections over time can be done even more
accurately and ensure almost no mistake when keeping the identity of the target. This gives a
chance to establish possible anticipations and to handle model occlusions, orientation, position,
geometry and information about the target dynamics, making it harder for the software to fall into
identity switches and make mistakes when re-identifying an already seen target.

1.2.3 Target Matching
Re-identification is important since we need to be able to recognize an already seen target and
recollect our knowledge on it. Though more importantly, tracking needs to do this also at a smaller
scale, by recognizing the same target across frames, in a process called data-association. In the
work of [22, Munaro], a tracking module receives detections as an input and solves the data asso-
ciation problem as the maximization of a joint likelihood encoding the probability of ground plane
motion and color appearance, using the RGB color histograms of the points corresponding to a set
of parallelepipeds overlaid on the target body, meaning that a rough match is done by matching
color distributions across the target limbs over each frame, though not taking as much advantage
of the depth data as it could be possible.

Other approaches are similar to patch based matching, just like in [23, Nascimiento], where
they find interest points in a pair of targets and each patch around the point is combined with
depth data to turn it into a voxelized key-point that is described by a binary vector, allowing for
a matching of the objective across different frames.

In the work of [8, do Monte], a more global description of the target, rather than a piece-
wise approach, is achieved by using point-cloud descriptors. This descriptor is what they called

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 6

a Globally Aligned Spatial Distribution, which takes the 3D point-cloud from the partial view of
a given object, by estimating a reference frame for the point-cloud and making it pose-invariant.
It describes the shape and the spatial distribution of color along an aligned binning. Though this
will result more helpful on static objectives, it could be used as another option when measuring
short-term similarity.

Once a detection and a matching strategy is defined, only the tracking strategy is missing. The
simplest is maybe the nearest-neighbors approach, that just matches the most similar detection to
the closest most similar detection. However, many difficulties arise regarding the nature of persons
being tracked.

1.2.4 Tracking strategies
Among the many approaches that have been designed to implement solutions to the problem of
visual tracking, we can distinguish at least three paradigms:

• Global optimization: This approach uses all the information obtained since the beginning
of the execution up to the current time to solve a global problem, making it more precise
but expensive when the sequence gets longer. Most of the time, this approach is preferred
when the result is not needed in real-time, but it is used more like an offline evaluation or a
post-processing step that is done as part of a bigger component.

• Real-time optimization: When it is critical that the result has to be obtained at the same
frame-rate as the sensors of the robot, this kind of techniques use typically the last available
frame to update the optimization result. It allows for navigation and decision making to
avoid dangerous configurations. Examples of these approaches are Bayesian filtering-based
methods (Kalman filter, particle filter…).

• Near-online or semi real-time optimization: It is a compromise between the two previous
approaches, as it allows a small delay for obtaining the results. This design is also known as
sliding window, as it defines a time lapse of duration τ where any information within this lapse
permits the tracker to solve the optimization problem with a subset of the old data and the
set of newest detections. This allows for potential corrections on previous data associations
when new data could help in taking better decisions, depending on the size of this sliding
window. Since trackers based on sliding windows are allowed to solve within this time lapse
and need to be sure of observed trajectories when data fall outside of it, they are said to
perform almost in real-time, hence the name near-online.

In recent years, many works on real time optimization have thrived. In the work of [4, Bibi],
they handle synchronization and registration problems that occur when working with RGB-D sen-
sors of different lenses, stream frequencies that does affect tracking, along with the problems of
occlusions, and a 3D tracking software is presented with these issues taken into account. This is
a part-based sparse tracker in a particle filter framework, where both motion and appearance are
formulated in 3D, under the idea that an objective can still be tracked when at least some of its
parts are visible. This makes the tracker more resistant to partial occlusions. A particle filter is
a Bayesian filter defined in terms of the distribution of the state of the target. More particles are

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 7

sampled from a state that has been observed with a higher probability. For handling occlusions,
their representation of the targets consist of cuboids that contain a certain number of 3D points.
Since the number of points may decrease significantly in all particles at once, they keep track of
the density of these points to find whether it drops from a certain threshold.

Work from [35, Spinello] presents an Extended Kallman Filter-based tracking algorithm that
obtains trajectories of detected persons while considering various motion models for each tracked
person and then making data association using a nearest-neighbor approach. It also uses an inte-
grated detection system based on laser data mounted on a car and classifies detections with a SVM.
Advantages of coupling tightly the detector and the tracker systems are performance-related, since
both benefit from the parsing of the appearance data into descriptors.

Sliding windows cut down the problem of tracking by just considering the latest received data
and a fraction of the previous results, hence making it possible for the tracker to operate almost in
real-time. Any software that obtains results at the same rate of incoming data samples is said to
perform in real-time or online.

The newest state-of-the art techniques found newer niches on sliding window designs such as
[33], [36] and [30], which are based on the training of Neural Networks, that have also been gaining
more and more interest, despite the difficulties that hamper the use of deep learning techniques for
multi-object tracking, like the lack of training-data and the novelty of the usage of this technique
specifically on tracking, in spite of its success on other problems such as detection and matching.

With this strategy, we pick all the incoming detections and decide which ones belong to the
same objective, by considering only those within a fixed duration of seconds. Decisions made on the
groupings among detections older than this duration are considered final and are treated as “exist-
ing targets” in the following iterations. Detections grouped together are given a label or target ID.
After each grouping is done, we obtain a growing coherent set of targets identified by a label and
their observed trajectories. Details on the full decision process are presented in depth on Chapter 2.

In this work we take a probabilistic approach by measuring the selection of different group-
ings through an energy function and by designing the data association as an energy minimization
problem which requires testing various combinations and picking the one with lowest energy.

1.3 Contributions and overall description of our approach
In the work presented in this thesis, we propose a tracking pipeline that operates naturally on top
of the Robotics Operative System (ROS) platform. It works on a near-online basis and it uses a
fast similarity measurement to define the proximity of two detections with RGB-D images.

We solve the tracking problem on a near real-time fashion using the sliding window paradigm
mentioned above. The goal is to automatically identify objects of interest and to reliably estimate
the motion of the corresponding targets over time. The challenge is to accurately group the detec-
tions into individual targets with high accuracy (i.e., solve the data association problem). Mistakes

CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND 8

made in the identity maintenance could result in a catastrophic failure in many high level reasoning
tasks, such as future motion prediction, target behaviour analysis, etc.

Inspired by Wongun Choi’s Near-Online Multi-Object Tracking (NOMT) framework [6], we
add a new RGB-D occlusion measurement and solve the data association problem as a Condi-
tional Random Field (CRF). We achieve robustness by integrating multiple cues, including fast
orientation-invariant RGB-D descriptor metric, target dynamics, appearance similarity, and a long
term occlusion-aware trajectory regularization into the model, in addition of the possibility given by
Choi’s approach to revisit the previous data association decisions: the algorithm behaves like one
of real time performance since it is capable of giving results at every frame, with the key difference
that any decision made in the past is subject to change once more observations are available, since
it solves the problem within sliding window.

In Chapter 2, we present an in-depth description of our tracking strategy, also mentioning a
step-by-step description of the system. Later on, in Chapter 3, we tackle the design of the method
used to solve the data-association problem and the graphical model that results when using the
proposed potentials for our CRF. Chapter 4 explains the fast measurement type we associate to
detections in the 3D Point Cloud. Chapter 5 presents the code we have developed for testing and
experimenting our tracking software. Inspired by the software architecture of the Spencer People
Tracking [17] available in the ROS platform, our components re-utilizes the ROS Interface design
created by this project to create a non-ROS dependant library. Finally, Chapter 6 gives evaluations
of our algorithm on challenging data-sets.

9

Chapter 2

Near-Online Multi Object Tracking

2.1 Useful definitions
2.1.1 Handling time
Managing time in a software can be difficult: processors operate on different speeds and, depending
on the workload, shared memory, number of simultaneous operations per second and time invested
on a single program, iterations are not always the same. Data acquisition frequencies are never
guaranteed on real systems, and when many sources of information flow at their own frequencies,
it is necessary for any software to know, at any given time, the age of incoming data by recovering
a time-stamp, which uniquely identifies a nanosecond. This is critical since time is a measure that
affects estimations on speed of moving objects, for example. Failing to measure varying times could
lead to undesired results, hence propagating them to later components that use the tracker output.

We will consider time as a discrete ordered collection of timestamps {T1,T2, ...,Tt−1,Tt}, which
for simplicity will be referred to by the set of indexes T = {1, 2, . . . , t− 1, t}. An abuse of notation
allows us to use indices and write the integer i ∈ T to actually point to the corresponding time-
stamp Ti. With this notation, 1 is the oldest time-stamp to be given since the whole tracking began,
and t indicates the current instant, at the present time. We can now define the sliding window as
a time-stamp set of size τ that spans the time interval [t− τ, t] and distinguish detections done by
a detector over this interval by checking whether they fall in frames with time-stamps inside the
sliding window or not1. In practice, τ is chosen depending on the frame-rate and the time-lapse
we allow the algorithm to correct on its decisions. Its value is proportional to the size of data that
is processed at each iteration. If we had a sliding window as large as the total number of observed
frames, we would be performing global optimization each time, going increasingly further away
from real-time performance.

1Each distinct time-stamp will define a frame. We use the term frame to refer to the set of all detections that
share the same time-stamp as the frame. When referring to the fth frame, we mean that f ∈ T corresponds to a
time-stamp indexed by f .

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 10

Figure 2.1: Sample data obtained with an XBox 360 Kinect. The image on the left is obtained by using an infrared
sensor and a camera that triangulates depth. We present it as an intensity, here colored, where the nearest objects are
red. Black regions represent blind spots, caused by out-of-range depths and reflections like on mirrors and polished
surfaces. This is the case of the table, where the infrared is not perceived by the other camera.

2.1.2 Input from RGB-D Sensors
Let It be an image received at time-stamp t within the incoming video sequence It

1 = {I1, I2, ..., It}.
This image consists in a set of pixels I = {(u, v) | 1 ≤ u ≤W ∧ 1 ≤ v ≤ H} arranged in the form of
a rectangle with width W and height H over the plane Z2. This means that a pixel intensity can
be reached by querying its 2D coordinates and it is represented as It(u, v), which may be a scalar
or a vectorial value and may be encoded in a color system, i.e., gray-scale, RGB, HSV, etc. In the
case of RGB-D sensors, we may consider that for any given color image there is also an associated
depth image Dt, with values Dt(u, v), from a set of images Dt

1 = {D1, D2, ..., Dt}.

More specifically, RGB-D sensors provide two separate streams It
1 and Dt

1 which are supposed
to be registered, i.e., the color at any pixel (u, v) of the RGB image corresponds geometrically to
the depth at the same pixel of the depth image. By re-projecting color pixels with their associated
depth in a 3D space with (u, v) giving the direction and Dt(u, v) giving the depth along this di-
rection, assuming that the calibration parameters of the camera are known, we can obtain a 3D
point-cloud with color information of the whole scene at any time-stamp (see Figure 2.1 (b)).

However, the following problems occur with the usage of 3D point-cloud data:

• Saturation. RGB-D sensors provide H ×W pixels, and even with low resolution images like
240×320, we get 76800 points that are produced at each iteration. Though modern processors
are capable of working quite fast with much more data, the burden is high and reduces the
processors availability for later operations. To deal with this, we perform down-sampling of
the point-cloud by keeping only points separated by 5cm. More details are given in Chapter 5.

• Self-occlusions. Since the resulting point-clouds are surfaces on objects in the scene, human-
like movements and limbs tend to produce surfaces that vary a lot between consecutive frames,
which makes it more difficult to design robust measures on appearance. We propose a strategy
to cope with the problem in Chapter 4.

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 11

• Range. RGB-D sensors nowadays are limited on their depth range, having a minimum and
maximum distance of sight. Even if our detector software does not rely on depth to perform
identification of targets, the point cloud to be extracted could contain incomplete data or even
no data at all. Our NOMT algorithm is designed to be robust on these situations, making
use of geometric information on the target position instead of its appearance when the latter
is unavailable.

2.1.3 Detections
In the previous chapter, we have introduced the concept of detection as a detected human being
in a frame. Each detection is enclosed by a bounding-box centered on its position in the world,
a rectangle (in 2D) or a parallelepiped (in 3D) now depicted on Figure 2.2. The detector returns
a collection of detections Dt

1 = {d1, d2, ..., dN} which is the list of all N detections made over
the sequence of frames from time-stamp 1 to time-stamp t. In this proposed tracking system,
we use bounding-cylinders since our current approach does not account for target’s orientation2

when building detection descriptors for matching since it simplifies calculations: pixels inside the
bounding-cylinder form a reduced point-cloud that can be extracted by just a distance comparison
from the center of a circle rather than a rotated square. Such cloud can be used to account for
target’s geometry, color and motion information, hence exploiting most of the data collected by the
RGB-D sensor. More details on its usage are presented on Chapter 4.

To summarize we make the formal definition:

Definition 2.1.1 A Detection di is parameterized by a unique index i within Dt
1, its frame number

or time-stamp ti ∈ T, its bounding-cylinder < di[x], di[y], di[z], di[r], di[h] > (in 3D, the center
point (x, y, z) of a circumference of radius r and its height, respectively) and a detection score

2A persons could be said to be oriented as its own motion’s direction, most usually aligned to the front or chest
of the human body, though this could be debatable.

(a) Bounding boxes on RGB data (b) Bounding boxes on RGB-D data

Figure 2.2: (a) A detection is modeled as a bounding box over the position of the person (here in 2D). (b) Since
we have RGB-D data, it is easy to find the (x, y, z) position of the person and extract the corresponding person
point-cloud inside a 3D bounding-box, as depicted in the simulation. Internally, a bounding cylinder is utilized for
all calculations, though a bounding-box is displayed.

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 12

si that measures how confident the detector is about that detection. di also keeps a reference to
a point-cloud Pi which is extracted from the scene by considering only points that lie inside this
bounding-cylinder. Let it be noted that di itself is not given a membership to any particular target.

A detection by itself is just an indication on where there could be an objective, without consid-
ering the frame in which it was found and its appearance. We use the term Track when referring to
a single detection within an ordered sequence of similar detections that could belong to the same
objective at different, ordered timestamps. Both track and detection can be used interchangeably
here since most usages further are in a grouped manner.

2.1.4 Trajectories and Tracklets
Detections can be grouped together to form a sequence of them between different frames, not
necessarily contiguous. Such ordered sets of detections are what we call a Trajectory, which, if
correctly gathered, should belong to an unique objective. The tracker keeps a list of targets and
their observed trajectories, past the sliding window and inside of it. We introduce the following
definition for those trajectories that are strictly included within the sliding window:

Definition 2.1.2 A Tracklet T is a trajectory that is conformed by a set of detections di ∈ Dt
t−τ and

that is associated to a particular target, new or existing. Tracklets are temporary objects since they
represent partial trajectories that are built by considering only detections in the latest τ frames
and are re-generated at each iteration. Tracklets must conform with the following characteristics:

• T has a minimum length of one detection, and has a maximum length of τ detections.

• T has at most one detection of a particular time-stamp. Hence, two detections inside the
same frame cannot belong to the same tracklet. Frame skips are allowed.

• The detections in T are ordered in time, meaning that the chain cannot involve decreasing
time-stamps.

We make the distinction from regular trajectories that are not inside the sliding window, as
those will keep growing as long as the target remains detected on the scene, whilst Tracklets are
volatile candidates for extending new or existing trajectories up to frame t until new frames and
detections are received.

2.1.5 Tracking
Given a video sequence It

1 and a set of detections Dt
1 done by a detector during this same interval

[1, t], we want to find a coherent set of targets, identified by At = {At1, At2, ..., AtM} where each
target Atm is composed of a unique target identifier and a set of detections in different frames that
represent the trajectory followed.

The convention of using the symbol Atm comes from the term Association, since we are consid-
ering a pairing between the set of detections inside the sliding window and the existing trajectories
past the window, associated by the common membership to the same objective. This problem is
what is usually known as a data association problem. Formally:

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 13

Definition 2.1.3 A tracked target is called Association Atm and is parametrized by a unique identifier
m ∈M and by an observed trajectory {dp | p ∈ Pm} where Pm ⊂ N is a subset of indices of Dt

1.

We can then make a distinction between the detections involved in an Association by their
temporal position:

• When the detections in Atm belong to Dt−τ−1
1 i.e. past the sliding window, we use the

expression “final detections” or clean detections. They form a trajectory for which we in-
troduce the notation A∗t

m, which excludes all the detections in Dt
t−τ . Hence, when writing

A∗t−1 = {A∗t−1
1 , A∗t−1

2 , . . . }, we mean all the clean detections that can be found in tar-
get’s trajectories, while excluding all the associated detections in the interval [t − τ, t], with
A∗t−1
m = {di ∈ At−1

m | ti /∈ [t− τ, t]}.

• Otherwise, detections inside the sliding window are referred to as loose detections, and they
are susceptible to move from an association to another. Since each iteration brings new
detections and since those detections that get past the sliding window become clean detections,
this operation of associating loose detections to clean detections is called augmentation.

Summing up, we want to find sub-sets of Dt
1 that coherently correspond to single targets and

that are as large as possible. Hence, the tracking task is defined as to solve the following problem

({It
1 ,D

t
1},Dt

t−τ ,A
t−1)→ At (2.1)

at each time frame t, where At represents the set of tracked targets, or objectives, up to t. As it
appears in this formulation, we make use of the previous associations, made at t − 1, to infer the
new ones at t.

The tracking algorithm needs to solve the data association problem between the existing targets
and all the detections found in the sliding window [t− τ, t], associating them to existing targets or
forming new ones.

2.2 Data Association
The data association problem is applied only over loose detections Dt

t−τ that are not yet associated
to existing targets, hence the gain on performance over a global optimization approach: the set of
detections to be processed is kept rather small and manageable, just like the simple case shown on
Figure 2.3. In order to solve problem (2.1), we use the same strategy proposed by Wongun Choi,
using efficient inference with a Conditional Random Field that evaluates many different groupings
or combinations through the minimization of an energy function E(A∗t−1,H) that evaluates how
good is a specific partitioning “H” on Dt

t−1 to be associated to the current set of clean detections
A∗t−1.

Here, we will present the steps needed prior to the inference itself: building a selection of
partitions without testing every possible combination. Details behind the energy function and the
inference process are deeply studied on Chapter 3.

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 14

...

Figure 2.3: Visual depiction of the incoming detections D8
1 over a frame sequence with t = 8 and τ = 4, and the

tracking output. Here, we depict one association A8
1 = {d1, d3, d5, d8} in blue and another At

2 = {d2, d4, d6, d7, d10, d12}
in green. Dotted lines connect loose detections, whilst solid color lines connect clean detections. Hence, A∗8

1 =
{d1, d3, d5} and A∗8

2 = {d2, d4, d6}, which are augmented by Tracklets T7 and T3, respectively. Note that the Tracklets
shown here belong to the set T which is populated with many possible partial trajectories, which could belong to
targets 1, 2 or to newer targets appearing during the interval [t− τ, t]. Here tracklets without any common detections
with existing trajectories, such as T6, could be good candidates for new targets.

2.2.1 Overview
Our NOMT Tracker performs the steps defined on Algorithm 2, which will be briefly described on
what remains of this chapter. As input data, the algorithm receives:

• {It
1 ,D

t
1}: The pair of color and depth image sequences from which detections were extracted.

Through 3D re-projection, we can form a point cloud that belongs to a single bounding-box
for each detection. To simplify the notation, we omit these vectors representing the point
clouds, as they are implicitly referenced by the set of detections.

• Dt
1: The set of all N detections from time-stamp 1 to t. The total number of frames is also

size(T), since we mentioned on Section 2.1.1 that we use the integer t as a reference to the
most recent time-stamp.

• At−1: The set of M existing associations created in the previous iteration. Each of them will
contain an ordered list of detections associated to a unique target in Dt−τ−1

1 , along with the
ordered list of detections that are bound to change their memberships as they lie in Dt

t−τ .
Note that M may vary from an iteration to the following one.

As output data, the algorithm gives the new set of associations At. Data association needs to
build a partitioning H on detections inside the sliding window and to make sure that the partitions
do not share any detection, as it would not make sense to associate a detection with more than one
target. Naively, we could build every possible partitioning and test each combination of detections,
considering that they are fixed on their frames (ordering by time-stamp) and that partitioning is
the same as assigning a label to each of them (with a unique target identifier: new or existing).
Each time, we have M existing labels and N new detections and, in the worst case, all the N
detections are considered not to belong to already observed targets and coming from separate tra-
jectories. Then, we have a maximum of N +M labels to assign to this set of N detections of fixed
orderings. Since labels can be repeated between different frames but not within the same frame

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 15

(two detections cannot belong to the same target at the same time-stamp), we would need to test
a total of

∏t
i=t−τ P (N + M, size(Di

i)) cases, where this number is the product of permutations
without repetition on a single frame, with Di

i the number of detections in frame i.

This is a huge space: imagine a case with 2 detections in each frame, and a sliding window
of size 10. This makes N = 20. Also suppose that we have 2 existing targets, hence M = 2,
and the number of all possible partitions is exactly 10 · P (22, 2) = 4620. Yet, most of them are
very unlikely. If we have a way to measure how similar each detection is from one to another in a
different frame, we could favor partitions in which consecutive detections should be similar. This
intuition leads us to find better ways to test fewer combinations for data association.

2.2.2 Tracklet Generation
The proposed way of partitioning detections in Dt

t−τ is to build tracklets containing detections
similar enough, up to a threshold, using a measure function a(di, dj) that indicates how compatible
is a pair of RGB-D detections. This similarity measure is presented in depth on Chapter 4 and
is designed to return a real value r ∈ [−1, 1] where r = 1 when detections are very likely to
correspond to the same objective. Then we test if resulting chains are all compatible enough with
existing targets for them to be associated with, or are more likely new targets. This results in a
tracklet set : a set of grouped loose detections that comply with the rules presented in Section
2.1.2.

In order to group detections in a Tracklet, we sample the configuration space of associations and
pick the best in terms of overall similarity. To do this, the approach is to greedily build Tracklets
as depicted on Algorithm 2, from lines 1 to 18, by picking frames [t− τ, t] one by one, in increasing
order, and then, for each safe detection (∀di ∈ Dt

t−τ s.t. si > 0), it creates a new tracklet Ti = {di}
and proceeds to find a detection dk in the following frames through greedy maximization such that
the index k maximizes an inner tracklet similarity:

k = argmax
k ∈ timestamps{Dt

t−τ\Ti}
tk > tj = max(timestamps{Ti})

a(dj , dk) (2.2)

The algorithm goes on by repeatedly choosing the most similar detection up to a minimum
threshold ρ of similarity, until frame t is reached. The selection of this threshold depends on how
good and accurate is the similarity measurement: even though it is expected that all measurements
in the range (0, 1] are an indication of similarity, sometimes yields between detections of the same
target end up not in this range3, even to the point of getting better similarity against another
target’s detections. A bad choice of ρ makes this step prone to introduction of mistakes by not
trimming correctly the configuration space of associations since this greedy approach relies only on
similarity, but copes well enough for cases when detections of a particular target are not distributed
consecutively over frames. In practice, we use ρ = 0.1 as it works well with our measuring strategy.

3due to the target’s dynamic pose, occlusions and changing observable surface.

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 16

2.2.3 Non-Maximal Suppression
Most detection mechanisms are susceptible to finding the same target more than once in a given
frame due to searches and different image scales used when performing object detection algorithms.
Hence a technique called Non-Maximal Suppression (NMS) is performed to keep the best detection
in terms of its score si when referring to a single target di. This process is simple: having a set of
detections at frame ti, it picks a detection with the highest score and tests how much overlap it has
with every other detection. When the intersection area is big enough, this detection is discarded.
This process is repeated by taking the second highest scored detection and so on until all redundant
detections with lower scores are purged. Such process is assumed to have been applied on detections
Dt
t−1 when supplied to the Tracking pipeline.

This same premise applies to Tracklets generated using the previous greedy algorithm, as it
tends to generate many Tracklets that are just smaller pieces of larger ones. A NMS on T is
performed similarly to [38], using track bounding-cylinders of radius r to evaluate intersection
areas instead.

Here we define the overlap between two single detections through Intersection over Union, a
ratio defined as:

IoU(di, dj) =
Aint(di, dj)

(π di[r]2 + π dj [r]2 −Aint(di, dj))
(2.3)

where

Aint(di, dj) =


0 l ≥ di[r] + dj [r]

π dj [r]
2 di[r] ≥ dj [r] and l ≤ di[r]− dj [r]

π di[r]
2 dj [r] ≥ di[r] and l ≤ dj [r]− di[r]

1
2

[
dj [r]

2[θ − sin θ] + di[r]
2[−ϕ− cosϕ]

]
otherwise

(2.4)

ϕ = 2arccos

[
l2 + di[r]

2 − dj [r]2

2ldi[r]

]
θ = 2arccos

[
l2 + dj [r]

2 − di[r]2

2ldj [r]

]
and l =

√
(di[x]− dj [x])2 + (di[y]− dj [y])2 is the distance between the centers. All these equations

are deduced from the geometry of two intersecting circles of different radius di[r] and dj [r], with
centers < di[x], di[y] > and < dj [x], dj [y] >, respectively.

Since Tracklets are a collection of detections, we generalize IoU to Tracklets by evaluating:

overlap(Ti, Tj) =
∑t

f=t−τ Aint(d(Ti, f), d(Tj , f))∑t
f=t−τ πr

2
1 + πr22 −Aint(d(Ti, f), d(Tj , f))

, (2.5)

where d(T , f) indicates a Tracklet detection at time-stamp f , considering that such detection
could not exist for shorter Tracklets and those with frame-skips. It reads as the total area of disk
intersection divided by the total area, considering all detections in Tracklet Ti and Tj . Intersection
areas are then evaluated using equation (2.4).

To apply NMS on Tracklets, we still need to define a sorting other than a detection score. Here
we consider the aforementioned similarity function a(di, dj) to find how good is the inner similarity

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 17

in a Tracklet. Formally, the score is now:

s(T) =
F∑
fk

a(d(T , fk), d(T , fk+1)), (2.6)

where F is the ordered set of time-stamp frame indices where T has a detection. Frame fk+1

indicates the next nearest detection inside T after frame fk (up to k+1 ≤ τ), to allow frame-skips.
This inner Tracklet similarity score favors longer tracklets. In the case of T having all its τ tracks
and with all its contiguous detections perfectly similar, the result of (2.6) would be τ−1, as it is also
the number of detection pairs that can be evaluated, and as the similarity score of a(di, dj) ∈ [−1, 1].

All being defined, NMS is summarized in Algorithm 1.

Algorithm 1 Tracklet Non-Maximal Suppression (NMS)
Input: T sorted by decreasing score using (2.6). ν overlap threshold.
Output: T′

1: T′ = ∅
2: for all Ti in T do
3: T′ = T′ ∪ Ti
4: for all Tj in T \T′ do
5: if overlap(Ti, Tj) > ν then
6: T = T \ Tj
7: return T′ purged of redundant Tracklets.

2.2.4 Hypotheses Generation
Tracklets provide plausible partitions since they keep a minimum similarity constraint on their inner
detections but they do not exclude overlapping partitions i.e.,

∩
k Tk ̸= ∅. Even after Non-Maximal

Suppression, some Tracklets could share one or more detections. Yet, by construction, we do ob-
tain groupings for every detection in the sliding window i.e.,

∪
k Tk = Dt

t−τ , meaning that there
is a subset in T where partitions do not share detections. Still, we do not make any assertion on
whether a Tracklet Tk belongs to an existing target’s trajectory or is a new target entering the scene.

To tackle the association problem, we need a fast way to check whether a Tracklet is simi-
lar enough to existing targets. For each clean trajectory in A∗t−1, the algorithm first generates
candidate hypothetical trajectories through spatial prediction over those detections from frames
[1, t − τ − 1] using Linear Least-Squares Fitting (LLSQ) to find a polynomial with coefficients β̂
that best fits the world’s XY position of the detected targets4. Considering that trajectories in
A∗t−1 tend to be either linear or parabolic, we fit them using a quadratic polynomial and since a
moving target tends to change its direction and speed, we only use κ = 10, 20 or 30 and detections
in those last κ frames {di ∈ A∗t−1

m |ti ∈ [t− τ − κ, t− τ]}).

4which is simpler than fitting 3D coordinates, as the Z coordinate tends to stay constant in the context of human
tracking.

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 18

A 2-degree polynomial y(x) = β1x
0+β2x

1+β3x
2 can be estimated using those κ = size(A∗t−1

m)
detections as input data. If we wanted to find coefficients βm, such that the curve passed through
all pairs {(di[x], di[y])}κ1 , the following would need to be true

Xβm = Y, (2.7)

where:

XT =


1 d1[x] d1[x]

2

1 d2[x] d2[x]
2

...
...

...
1 dκ[x] dκ[x]

2

 βm =

β1β2
β3

 Y =


d1[y]
d2[y]

...
dκ[y]

 ,
which provides a system of κ equation with 3 unknowns, rendering the system over-determined,
and not having a solution in general. LSQ attempts to find a coefficient vector β̂ that minimizes
∥Y −Xβm∥2 in (2.7).

By defining a residual r = Y−Xβm that is to be minimized, the least squared error minimization
is done on ∥r∥2 =

√∑κ
p=1(rp)

2. With rp = Yp − β1X0 − β2X1 − β3X2, it turns Yp into a linear
combination of the columns in X, and to minimize the norm of r, an orthogonal projection of Y over
the span{X0,X1,X2} would be a solution. By conditioning the residual to r ⊥ span{X0,X1,X2},
the same is expressed as XT r = 0. By substituting the residual r with its expression, the fitting
problem becomes:

XT (Y −Xβ̂m) = XTY −XTXβ̂m = 0.

Hence the best approximation of the optimal linear least squares coefficients for any set of points
given by a target’s trajectory is obtained by solving:

β̂m = (XTX)−1XTY. (2.8)

Once β̂m of A∗t−1
m is known, the full tracklet set T is tested against predicted positions to make a se-

lection of candidates, creating in the process multiple target hypotheses5 Ht
m = {∅,Ht

m,2,H
t
m,3, . . . }

where ∅ (empty hypothesis) represents the termination of target’s trajectory and each Ht
m,k indi-

cates a candidate set of detections in [t− τ, t] that can be associated to a target. Every tracklet in
T is considered as a possible new entering target, associated or not, so that the inference process is
capable of deciding on whether a particular track is from a new target or from an existing target.
For hypotheses on newly entering targets, we define their clean trajectory as an empty set A∗t−1

m = ∅
until the time window passes it, through augmentations.

Each Ht
m,k may contain from 0 to τ detections (in one single frame, there can be 0 or 1

detection associated to target m). Given the set of hypotheses for all the existing and new targets,
the algorithm finds the most consistent set of hypotheses for each target using a graphical model
that will be described in the next chapter.

5Note that earlier we introduced H as an undefined partitioning over Dt
t−τ . Later we built many partitions

through a selection of Tracklets, now referred to as hypotheses, which are in essence a better defined partitioning.

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 19

Algorithm 2 NOMT: Single iteration over sliding window [t− τ, t]
Input: {It

1 ,D
t
1}, Dt

1, At−1, γ = 0.4, ω = 0.1
Output: At

1: define clean targets A∗t−1 = {di ∈ At−1 | ti /∈ [t− τ, t]}
2: for all A∗t−1

m in A∗t−1 do
3: for all di ∈ Dt

t−τ , s.t. si > 0 do
4: Set Ti = {di}
5: repeat
6: s∗ = 0
7: k∗ = 0
8: for all dk ∈ Dt

t−τ\Ti do
9: for all dj ∈ Ti do

10: s = a(dj , dk)
11: if s > s∗ then
12: k∗ = k and s∗ = s
13: Ti = Ti ∪ dk∗
14: until s∗ < γ or size(Ti) = τ
15: T = T ∪ Ti
16: Apply Non-Maximal Suppression on T.
17: for all Ti in T do
18: Create NEW target m+ 1 with A∗t−1

m+1 = ∅
19: At−1 = At−1 ∪A∗t−1

m+1

20: for all A∗t−1
m in {A∗t−1|A∗t−1

i ̸= ∅} do
21: Initialize Ht

m with null hypothesis {∅}
22: Using LLSQ obtain β̂m for k-degree polynomial fit and predict positions in [t− τ, t].
23: for all Ti in T do
24: if IoU > ω between any predicted positions and those in Ti at any frame then
25: Add Ht

m = Ht
m ∪Ht

i where Ht
i = Ti.

26: Solve x̂ = argminxE(A∗t−1,Ht(x),Dt
t−τ , {It

1 ,D
t
1})

27: for all A∗t−1
m in A∗t−1 do

28: Augment Atm ← A∗t−1
m ∪Ht

m(x̂m)
29: if Atm is NEW and did not augment i.e., Atm = ∅ then
30: drop target m
31: return augmented clean targets as At

2.2.5 Data Association and Target Augmentation
Having a set of clean trajectories A∗t−1, the set of hypotheses Ht describing configurations of detec-
tions Dt

t−τ within the time window with their corresponding RGB-D frames, the data association
introduced in equation (2.1) is reformulated as the following energy minimization

x̂ = argmin
x

E(A∗t−1,Ht(x),Dt
t−τ , {It

1 ,D
t
1}). (2.9)

The variable x is an integer state vector indicating which hypothesis (i.e., which index in Ht
m)

CHAPTER 2. NEAR-ONLINE MULTI OBJECT TRACKING 20

is chosen for each target m. Ht is the union set of all hypotheses sets per target {Ht
1,H

t
2, . . . } and

Ht(x) is a subset of selected hypothesis {Ht
1,x1

,Ht
2,x2

, . . . } where xm is the index of a particular
hypothesis in Ht

m.

After finding the solution x̂, we get the set of selected hypothesis Ht(x̂) which provides an opti-
mal configuration or partitioning on detections Dt

t−τ that can be used to augment clean trajectories
A∗t−1. New trajectories are obtained from existing targets by connecting detections in the chosen
hypothesis and previous clean trajectories6:

Atm = A∗t−1
m ∪Ht

m(x̂m). (2.10)

In practice, all the targets managed by the tracker keep a label indicating whether they are
NEW, DELETED, OCCLUDED or just OBSERVED, which is taken into consideration when clean-
ing targets that were created during step 20 of Algorithm 2, as all Tracklets are treated as if they
could belong to a newly entering target. If after the process of inference these temporary targets
did not get augmented (still inside the sliding window) they are discarded as shown on step 30.

Details on the aforementioned energy minimization framework and its solution are now pre-
sented in Chapter 3 which dives into the process of efficient inference and how it fits our problem.

6Note that at the next iteration, depending on how many frames the window moved, some detections in Ht
m(x̂m)

become clean tracks in At
m whilst the rest are required to be recalculated, hence, susceptible to change as new

detections are available, causing possibly new partitioning in Dt+ϵ
t−τ+ϵ.

21

Chapter 3

Inference with CRF and Application to Tracking

The data association problem in Near-Online Multiple Object Tracking is handled as an inference
problem in a Conditional Random Field (CRF). Hence, we will first do a brief review of concepts
of probability and inference in graphical models. Readers familiar with this topic can skip the first
sections of this chapter up to Section 3.7..

3.1 Inference over Graphical Models
Inference is the process of reasoning and making decisions by taking into account prior knowledge
(evidence) and uncertainty inside a probabilistic model. A mechanism is required so that we
can perform analysis over evidence and quantify our choices to reach an optimal solution for our
interests.

3.1.1 Probability theory
The term probability is used to imply a certain degree of confidence that an event of uncertain
nature could happen. When all possible outcomes for this event are known (hence finite) and if we
can assign to them a probability, we refer to such event as a discrete random variable.

Capitalized letters are used in this document to denote random variables i.e. X, whilst lower
case letters represent possible mutually exclusive outcomes or states of a variable i.e. x1, . . . , xn.
To indicate that a random variable has been observed, evaluated, or resulted in one of its possible
states we write X = x. Since a random variable is not precisely a set of states, we will refer to the
set of all its possible sates as V al(X) = {x1, ..., xn}.

A set of random variables will be represented by bold capital letters, i.e. X = {X1, . . . , Xn}.
Along with this, we introduce the concept of an assignment of X which is the same as indicating
that every random variable in X resulted in a specific state {X1 = x1, . . . , Xn = xn}. For short, we
use a bold lowercase letter x = {x1, . . . , xn}, hence used here as X = x. Again, we will reutilize
function V al to refer to the set of all possible assignments: V al(X) = {x1, . . . ,xm} where it should

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 22

be noted that m =
∏
Xi∈X#V al(Xi) i.e. the product of all the number of possible states of each

random variable in X.

Formally, probability is defined as a function P (X) : V al(X) → R+. Therefore, the proba-
bility of a state is represented by a positive real number P (X = x) = c ∈ R+, abbreviated as
P (x). When writing P (X), we represent the distribution of X, which is the set of probabilities
P (X) = {P (x1), . . . , P (xn)} = {c1, . . . , cn} which must satisfy

∑
i ci = 1. This constraint indicates

the certainty we have that X will always take one of its possible states.

Summarizing, our certainty is “distributed” over each state, and this is the basis of most studies
in a system of reasoning commonly known as theory of probability that considers uncertainty
following this set of rules:

• If A is a random variable, P (a) is a real number in the interval [0, 1].

• If a ∈ A is certain, then P (a) = 1.

• If A and B are mutually exclusive, then P (A or B) = P (A) + P (B).

The last rule presents two different random variables whose probabilities are summed depending
on the relationship between them.

When A and B are independent (i.e. A ⊥⊥ B), the outcome of A does not affect the probability
of occurrence of any outcome of B. On the opposite case, when there is dependency, the evaluation
is modelled with the help of conditional probabilities; which are expressed as P (A = a | B = b) = x
and can be read as: “given the evidence of B resulting in b and if any other information to handle
is irrelevant to A, the probability of A resulting in a is x”. This means that P (A | B) = P (A) when
A ⊥⊥ B, since no evidence or outcome of B will change the odds of the result of A.

When working with two random variables, we may also want to calculate their joint probabilities
i.e., the measurement of the odds of A resulting in a and B resulting in b at the same time, denoted
as P (A = a,B = b). In the case of independent variables, since A and B share no conditional
probabilities, the following equality holds:

P (A,B) = P (A) P (B). (3.1)

For the evaluation in the non-independent case, we introduce the fundamental rule for probability
calculus, which is the product rule:

P (A,B) = P (A | B) P (B), (3.2)

which combines conditional probabilities for individual variables to define joint probabilities.

3.1.1.1 Bayes Theorem

It is easy to find that the joint probability of variables A and B is equal to:

P (A,B) = P (A | B) P (B) = P (B | A) P (A), (3.3)

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 23

from which the Bayes Theorem can be easily deduced:

P (A|B) =
P (B|A)P (A)

P (B)
. (3.4)

Typically, we are interested in A, and we begin with a prior knowledge P (A) for our belief about
A, and then we observe B. The Bayes theorem tells us that our revised belief for A, the posterior
probability P (A | B), is obtained by multiplying the prior P (A) by the ratio P (B | A)

P (B) , which is a
function of varying values of A for a fixed value for B, called likelihood of A. This relationship is
sometimes expressed as P (A|B) ∝ P (A)P (B|A), by omitting the constant P (B), which normalizes
the resulting probability.

3.1.1.2 Chain Rule

The previous theorem is actually a special case of the chain rule or general product rule which
allows the calculation of a joint distribution over a set X = {X1, . . . , Xn} of random variables. It
is expressed as:

P (X1, . . . , Xn) = P (X1)P (X2 | X1) . . . P (Xn | X1, . . . , Xn−1). (3.5)

The main challenge in the inference process is to evaluate efficiently the joint probability of a
selection of values in a complex set of random variables. Evaluating this distribution of probabili-
ties by programmatically applying the Bayes rule can quickly become intractable for many real-life
applications, even more when response times are critical and when the calculus needs to be done
instantly.

As we have seen, concepts introduced so far can be translated to larger sets of random variables
and are the foundation for most techniques used to ease the computation of the probabilities.

3.1.2 Graphical Models
Graphical models provide an intuitive way to understand conditional probabilities and dependen-
cies in a set of random variables. Graph theory provides a data structure called graph defined as
G = (V,E) where V is a set of vertices and E is a set of edges. A graphical model uses such
a structure to encode the nature of the relationships among a set of variables X by associating a
random variable from X to each vertex, and by drawing edges between them to indicate a depen-
dence. Note that X is a special case of a set of random variables, as it represents the complete set
of variables of a graphical model. Often, most definitions use X which is assumed to be X ⊆ X
unless stated otherwise.

More properties are given to graphs allowing for many useful contraptions, such as the directed
graph (DG), which has its edges associated to a direction. The direction is implied by the order
of vertices in the edge i.e. ea = (vi, vj), meaning that it begins on vi and ends on vj . With this
definition, the edges ea and eb = (vj , vi) are distinct and both valid.

DGs give a notion of cause-effect between random variables, as their edges and orientations
represent influence (although not always of a causal nature). Take edge an e = (vi, vj) for instance,

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 24

then vi is the parent of vj , and vj is the child of vi. By grouping all adjacent edges for a vertex
v, its parent set is denoted by pa(v) and the children set is denoted by ch(v). A vertex is then
generated by its parents, as any evidence or observation made in any of those random variables in
its parent set will change the odds of the child vertex. Any other vertex that is not a parent in any
level of depth will thereby be independent from v, as dictated by the model. Graphical models are
built by design, to represent such relationships.

3.1.3 Bayesian Networks
Bayesian networks are instances of graphical models that facilitate the calculation of conditional
probabilities, giving a way to compute them over variables of interest, given data or evidence at
hand. They provide:

• a data structure that represents the joint distribution of a variable set in a compact way and
factorized in terms of conditional and prior probabilities,

• a compact representation for a set of conditional independence assumptions about a distri-
bution.

A Bayesian network is a Directed Acyclic Graph (DAG) whose structure defines a set of conditional
independence properties. To each vertex is associated a conditional probability distribution over
a single random variable, the conditioning being done on the parents of the node in the graph,
P (X|pa(X)). The joint density over the set of all variables X in the graph is then given by the
product of such terms over all nodes:

P (X) =
∏
Xi∈X

P (Xi|pa(Xi)). (3.6)

This is called a recursive factorization, simplifying the joint distribution calculation by applying
independence assumptions depicted according to the DAG. At this point, part of the process of
inference must take into account the data observed on some of the random variables, if any. This
involves calculating marginal probabilities conditioned on the observed data, using the Bayes theo-
rem, which is diagrammatically equivalent to reversing one or more of the Bayesian network arrows.

Figure 3.1: On this simple Bayesian network with random variables A, B and C, the relationship modeled here is the
dependence between C to its parents A and B, whilst these two are independent of each other. By the chain rule, we
could calculate the joint distribution as P (A,B,C) = P (A) P (B | A) P (C | A,B). Since A and B are independent,
it becomes P (A,B,C) = P (A) P (B) P (C | A,B), which is also the result of applying formula 3.6 on the graph.

Many real-world problems can be represented with Bayesian networks, as there is an intuition
of the relationship between entities, and as the outcomes of these may affect the outcomes of other

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 25

components, meaning that the models can be generative and also have independent variables.
However, sometimes, real-world relationships do not behave this way, they are less parent-child-
like, meaning that the dependence between two random variables is bi-directional: observing either
of the outcomes may affect the outcome of the other. This situation is impossible to represent with
a Bayesian network, and requires for a different kind of graphical model.

3.2 Markov Networks
As Bayesian Networks are represented by Directed Graphs, Markov Networks are represented by
Undirected Graphs. Many problems involve entities that do not influence directly others, as some-
times a change on either side might results in an alteration of the other. Markov Network models
are useful in describing these interactions between variables.

Nodes in a Markov Network also represent random variables, and edges indicate now a notion
of direct interaction between neighboring variables that is not mediated by any other variable in
the network. This means that one cannot represent the distribution over one node given others.
Rather, we use a more symmetric parametrization by representing the affinities between related
variables.

With this in mind, we introduce the concept of factor, a.k.a potential, which is a function
ϕ(U) : V al(U)→ R+ where U ⊂ X is a subset of variables which are being affected by each other,
called the scope of ϕ. The value associated to a particular assignment of U denotes an affinity: the
higher the value, the higher the compatibility of the single assignments embedded in u.

When designing the Markov Network, we create a set of factors Φ = {ϕ1, . . . , ϕf} to explain
all the relationships between variables in X. Each factor works with its corresponding scope:
Scope[ϕi] = Ui. The number of subsets and factors f depends on the modeled dependencies, hence
one can play with the scopes of factors and still obtain the same distribution, but with a different
modelling. Some models may be easier to parametrize than others and this is a problem that will
be addressed later in this section.

After establishing a way to measure dependent variables, we need to join their local interac-
tions into a global model. Just like in Bayesian Networks, factors are multiplied to combine their
contributions and estimate a probability distribution. Formally, the factor product is defined as:

Definition 3.2.1 Let X, Y, and Z be three disjoint sets of variables, and let ϕi(X,Y) and ϕj(Y,Z)
be two factors. The product of ϕi × ϕj results in a new factor ψ : V al(X,Y,Z)→ R,

ψ(X,Y,Z) = ϕi(X,Y)× ϕj(Y,Z). (3.7)

So it can be derived that the full joint distribution is the product of all factors over the subsets:

P̃Φ(X) =
∏
ϕi∈Φ

ϕi(Ui). (3.8)

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 26

The function P̃Φ gives values that are not necessarily normalized, as it is not a probability1,
and just weights all possible selections of the variables involved. This means that we could obtain
a constant Z known as the partition function to define a legal distribution by normalizing P̃Φ

Z =
∑

x∈V al(X)

P̃Φ(x). (3.9)

This finally gives the joint distribution of the Markov Network as:

PΦ(X) =
1

Z
P̃Φ(X), (3.10)

where PΦ(X) is a probability distribution, hence satisfying that the sum of all probabilities must
be 1. Then again, being a “legal” distribution, this parametrization is not as intuitive as that of
Bayesian Networks, since factors do not correspond to either probabilities or conditional proba-
bilities. Parameters are not intuitively understandable, since the representation is undirected by
nature and the influences of variables over others might not be symmetrical. However, thanks
to factors, we achieve the flexibility to have both the notion of a distribution and a conditional
probability distribution.

Figure 3.2: This simple Markov network with variables A, B and C presents two undirected edges between C and
its parents. To model their interactions we would define factors ϕ1(A,C) and ϕ2(B,C). To measure the potential
or affinity of a particular selection in this set we multiply the factors: P̃Φ(a, b, c) = ϕ1(a, c) ϕ2(b, c). This way, the
distribution of P̃Φ(A,B,C) complies with equation 3.8.

When defining the factors, we mentioned the set of variables U as a set of random variables from
which we want to model their relationships, as they are a subgraph in the Markov Network. We
would connect the variables in U with the corresponding undirected edges. Any edge implies the
need of a factor. Consider Figure 3.2 where two factors where created. They both share variable C
but if A and B had a direct relationship (i.e. connected) we could have defined yet another factor.
The distribution could have been Φ(A,B,C) = ϕ1(A,C)ϕ2(B,C)ϕ3(A,B) in that case.

Remember that we are multiplying the factors to join their contributions, hence joining the
common parts. In this case, the contributions of A, B and C. This is actually a special case of
pairwise Markov network where factors are over single variables or pairs of variables only.

1Since we are no longer working with such random variables in which the outcome is uncontrollable, rather we
don’t fully understand the effects of selections in a complex model. Otherwise we could sample a large number
of times and get a result with some frequency to obtain a statistical probability, but now the focus is more about
measuring the affinity of a selection as if it was a probability.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 27

3.2.1 Parametrization and factors
We defined a factor as a function ϕ(U) : V al(U) → R+. To define a factor, we need to assign a
real value to each element of V al(U). How many parameters are needed? It equals the product of
how many choices each random variable in U has, i.e. m =

∏
Xi∈U #V al(Xi), as presented at the

beginning of this chapter.

When defining factors, the selection of their scopes is important. Take this example: If A, B
and C were random variables, with connections A−B − C but none between A and C, each with
3 possible states. We could come up with one factor ϕ(A,B,C) that would have 3 ∗ 3 ∗ 3 = 27
parameters to be evaluated, whilst if we had only two factors, ϕ(A,B) and ϕ(B,C) then it would
have only (3 ∗ 3) + (3 ∗ 3) = 18 parameters to assign. In this case, if A and C had been connected,
any choice of factors and scopes would need 27 parameters to be assigned.

Without losing generality, we could reduce the number of factors by defining clique potentials.
A clique C is a complete subgraph2 found in the graphical model over X. This can be interpreted
as a group of fully related random variables, and a single factor could be designed to consider the
affinity of all the assignments in C and would require heavier parametrization for every possible
assignment. Since in practice most cliques end up being of a very small scope due to the full
connectedness requirement, the size of m ends up smaller, which is what happened on the scenario
A− C −B where the only valid cliques are A− C and C −B.

If we associate a factor only to a clique, we are not violating the independence assumptions intro-
duced by the network structure. So we get a reduced number of evaluations in our parametrization
if we only allow factors for maximal cliques3.

In the context of computer vision, Markov networks are typically referred to as Markov Random
Fields (MRF) and are widely used for many visual processing tasks such as image segmentation,
removal of blur and noise, stereo reconstruction, object recognition and many more.

3.2.2 Factor Graphs
A Markov Network structure might not reveal all the information on the nature of some dependen-
cies, as it can actually be used to emulate those relationships as depicted on a Bayes Network. One
cannot tell from the graph structure whether the factors in the parametrization involve maximal
cliques or subsets. Though Markov Networks are not redundant in terms of conditional indepen-
dences, since no matter how small are factors scopes, no additional independences are implied in
the distribution; yet this grouping is significant on the number of parameters needed.

A factor graph F provides an alternative and richer representation that makes the structure of
factors in the network explicit. F is an undirected graph with two types of nodes: one type is the
usual random variables, denoted by ovals, and the other corresponds to factors over the variables,
denoted by squares. There are only edges between variable nodes and factor nodes. Thus F is
parametrized by a set of factors, where each factor node Vϕ is associated with precisely one factor

2i.e. all nodes are connected directly to all the other nodes, meaning the subgraph is fully connected.
3cliques that can’t be augmented by including another adjacent vertex, hence the name maximal.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 28

ϕ, whose scope is the set of variables neighbors of Vϕ in the graph. A distribution P factorizes over
F if it can be represented as a set of factors of this form.

Figure 3.3: A factor graph for A − C − B where factors are explicitly drawn as square nodes Vϕ1 and Vϕ2 This
representation of a Markov Network is very useful when working on a programming language: factor nodes can be
associated with its neighboring variable vertices and probability tables with evaluations on all possible assignments,
encoding everything that conforms the model in a single structure.

Factor graphs might not change the independence assertions made by the model, but are very
useful in the context of inference, both for hand-coded models and learning.

3.3 Variable Elimination
Up to this point, we have introduced the main tools used for tackling large sets of random variables
and their relationships in a model. Each graphical tool we have described permits for the repre-
sentation of different types of dependencies in their variables and gives a way to calculate the joint
density. Yet, typically we require to perform inference over a set of random variables X given the
joint density formula. We want to make a query for inferring the distribution of a subset XQ ⊂ X,
called the query variables, whilst considering an observed assignment: the evidence e from a subset
of variables XE ⊂ X, called the evidence assignment. Thus the objective is to evaluate the following
distribution, called conditional probability query:

P (XQ|XE = e) =
P (XQ, e)

P (e)
. (3.11)

Focusing on the numerator P (XQ, e), remember that e is a fixed assignment of outcomes in the
set XE. Then we need to evaluate all possible assignments of the query variables i.e. V al(XQ) =
{q1, . . . ,qn}, which can be computed by summing out all entries for the joint distribution that
correspond to assignments consistent with q and e. Let XY = X − XQ − XE be the remaining
random variables, that are neither query nor evidence. Then for each q (a possible value for XQ),

P (q, e) =
∑

y∈XY

P (q, e,y). (3.12)

Note that the 3-tuple q, e, y is actually a set of assignments in the full set of random variables and
so it is an entry in the joint distribution. P (e) could be evaluated likewise afterwards, to save up

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 29

Figure 3.4: Consider an undirected graph containing nodes A to G and a set of factors: Φ =
{ϕ1(A,C), ϕ2(B,C), ϕ3(D,C,E), ϕ4(D,F), ϕ5(F,G)}. If we queried for the distribution of F, i.e. P (F), we could
choose to eliminate variables in the order A,B,C,D,E,G by applying the formulas (3.14) and (3.15) repeatedly and
normalizing the final factor ψ7(F) = τ5(F) · τ6(F).

some calculations as
P (e) =

∑
q

P (q, e). (3.13)

This way, equation 3.11 is calculable. In the end, we search for the most likely assignment and that
is the output of inference by variable elimination, called this way since the effect of summation that
removes first the set of assignments of the variables in XY and later, by Bayes rule, the variables
in XE .

Note that this translates likewise to factors on Markov Networks. Remember that the set of
factors Φ over a set of variables X are calculated as in equation (3.10) to build the joint distribution,
and normalized to give the notion of a legal distribution. We name the variable elimination as factor
marginalization. It is formally defined as:

Definition 3.3.1 Let X be a set of variables, and Y /∈ X a single variable to be eliminated. First
we compile every factor where the variable Y belongs to their scope. This is a set Φ′ = {ϕ | Y ∈
Scope[ϕ]}. Define:

ψ(X, Y) =
∏
ϕ∈Φ′

ϕ(X, Y). (3.14)

Then ψ(X, Y) is a new factor (also called potential) where Y has been completely compiled. Factor
marginalization of Y in ψ, denoted

∑
Y ψ, then becomes a factor τ over X only, such that:

τ(X) =
∑
Y

ψ(X, Y). (3.15)

Variable elimination works by performing factor manipulation directly. Each step of the process
creates a potential ψ by multiplying existing factors, and then marginalizing it to create a new factor
τ in which a variable has been “eliminated”. This process, though not studied in depth here, is
illustrated in Fig. 3.4 and is the basis for designing better inference algorithms.

The problem of selecting the best order to perform variable elimination is NP -hard. Also, if we
should change the query variable set to ask for something different, we shall re-evaluate products
and summations. To make this more affordable, dynamic programming is possible to introduce
thanks to the fact that many evaluations appear repeatedly and can be stored in memory to reduce
the computational burden.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 30

3.4 Efficient inference
Variable elimination requires to be re-computed entirely whenever there is a different query, and
the ordering in which we go eliminating variables also changes the effort needed. Each time we
eliminate successfully a variable, a factor τi is generated. So this gives the intuition of a “message”
being passed for another elimination that creates a new ψj and then another τj .

Junction Tree Algorithms are a generalization of the Variable Elimination technique that avoids
the multiple computations problem by compiling the density into a data structure that is capable
of supporting many types of queries. To reach such a convenient graphical model, we study the
evolution of graphs used in the inference process.

3.4.1 Cluster graph
Cluster graphs U are undirected graphs that allow the visualization of the process of factor-
manipulation, just like a flowchart. It works with a set of factors Φ over the set of random variables
X. Each node in U is associated with a subset Ci ⊆ X called cluster4, which are connected when
their intersections is non-empty, much like factor graphs of section 3.2.2. An illustration is given
in Fig. 3.5.

The key difference relies in the association of each factor ϕ ∈ Φ to a cluster Ci, expressed as
α(ϕ) : Φ→ C in which a factor works, such that Scope[ϕ] ⊆ Ci. As we said, each undirected edge
between a pair of clusters Ci and Cj is associated with a shared set of variables called separate set
or sepset Si,j ⊆ Ci ∩Cj . This expression Si,j is interpreted as the set of variables that are passed
from cluster i to cluster j, giving the sense of direction.

The usefulness of this contraption arises when performing variable elimination, as the whole ex-
ecution can be described with a cluster graph: We have a cluster for each factor ψi that is created in
the computation of equation (3.14). Then ψi is associated with the set of variables Ci = Scope[ψi].
We have an edge between Ci and Cj if the marginalized variable message τi from ψi is used in the
computation of τj .

In summary, for a determined elimination order, it depicts the order in which the contributions
of variables are compiled until reaching the distribution of query variables.

3.4.2 Junction Tree
When variable elimination is executed and a cluster graph is obtained as a consequence, one must
note that each intermediate factor τi is used at most once to create ψj , and so the factor ϕi used
when marginalizing a variable is left aside and never used again for any calculation. This means
that a factor generates another, giving a sense of directionality.

Even if the cluster graph U is defined as undirected, the process of variable elimination that
it represents behaves necessarily as a tree, as it shows the passing of messages τi up until a last

4Not to be confused with a single random variable C or a clique C. As it is a set, we use a bold C, but with its
items being associated to one or more factors we give it the name of cluster.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 31

Figure 3.5: The cluster graph induced by the process of variable elimination presented in the previous section. Nodes
contain the clusters of scopes of each ψi generated and edges present the sepset that is passed as a message for the
next operation, meaning that the edges contain the scopes of τi. The graph will change its structure when choosing
a different order of elimination.

node where the final result is obtained, which we can call the root of such tree. We can conclude
that variable elimination also induces a junction tree with a cluster graph as a basis. Although not
demonstrated here, it can be studied in depth in [15].

We introduce junction trees, which are able of caching computations, allowing multiple execu-
tions of variable elimination to be performed much more efficiently than by simply performing each
one separately. Formally:

Definition 3.4.1 A junction tree T = {VT,ET}, sometimes called join tree or cluster tree, is a tree
over the set of factors Φ over X composed of a set of vertices and edges that satisfy the running
intersection property, which implies that whenever there is a variable X such that X ∈ Ci and
X ∈ Cj , then X is also present in every cluster of the (unique) path in T between Ci and Cj .

This property holds in general for any cluster tree derived from variable elimination, since any
variable that is not in the query variable set X /∈ XQ appears in every factor from the moment it
is introduced when compiling for ψi until it is summed out. The query variables remain part of the
message τj generated, as their scope is precisely Ci ∩Cj .

3.4.3 Clique Tree
Up to this moment, the junction tree clusters do not involve any restriction on the factors associated
to them. When a junction tree involves operations over clusters that are cliques only, it is called
clique tree. We have introduced the concept of clique in section 3.2. We reach this data structure
to obtain a solid tool for the process of variable elimination, and a model that maintains a shorter
set of factors Φ by keeping maximal cliques only and a smaller footprint on parametrization. The
following analysis on the steps of variable elimination over clique trees is also true for junction trees
in general, but we will drop the term cluster in favor of clique.

After this long exploration on the tools needed to perform inference, we are ready to make the
following summary:

If C1, . . . ,Ck are the cliques in a Markov Network, we can parametrize its corresponding joint
distribution PΦ using a set of clique potentials ψ1(C1), . . . , ψk(Ck) and do inference using the
variable elimination process and model it using a clique tree.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 32

Now, we proceed to describe the steps involved in the basic usage of a clique tree.

3.4.3.1 Initialization

In general, any junction tree whose factors do not scope a whole clique can be converted into this
form simply by assigning each factor to a clique (a(ϕ)→ C) that contains its scope Scope[ϕ] ⊆ Ca(ϕ)

and multiplying all of the factors assigned to each clique to produce a clique potential (also referred
to as initial potential)

ψi(Ci) =
∏

ϕ : a(ϕ)=i

ϕ. (3.16)

Note that this is formula achieves the same as equation (3.14), by concentrating clusters in the
clique Ci, which has variables XY that will be eliminated by applying (3.15).

τj(Ci\XY) =
∑
XY

ψi(Ci). (3.17)

Hence this initializes our first sepset as Si,j = Ci\XY for leaf nodes.

3.4.3.2 Message Passing

We create a clique potential ψ to isolate the contributions of a certain variable for its elimination,
resulting in a message τ . If a particular clique C′ requires a message from a neighbor C, it must
wait until the computation of C is finished. On a clique tree, messages are passed through all clique
nodes, until reaching a root node that contains query variables. Messages move through the tree,
and since the root is the last element, it needs the messages from its neighbors to be ready.

Definition 3.4.2 Let T be a clique tree. We say that Ci is ready to transmit to a neighbor Cj when
Ci has messages from all its neighbors except from Cj .

The same happens for its neighbors as they too need other messages from their neighboring
nodes, excluding the one that asked first. We note that the first messages to be actually sent are
those from leaf nodes in the tree.

We define the following concepts:

• The root clique is referred to as Cr, where r is the index of such clique, and it is included in
the set of all cliques.

• The neighbors of any clique Ci are represented as nb[i] and they form the set of all indices
that have an edge with Ci.

• Any Ci|i ̸=r necessarily shares a unique path to the root element (thanks to definition 3.4.1)
and that particular neighbor that sends its message to the root is called the upstream neighbor
of i, represented as pr[i]. Note that when any clique node Ci has received all the incoming
messages, it can send its message to Cpr[i], until the root is reached.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 33

First we have the tree initialized by running equations (3.16) and (3.17) to create the first clique
potentials on leaf cliques.

The passing of messages from a node to another can be represented with a recursive formula.
We introduce the following function:

δi→j =
∑

Ci\Si,j

[
ψi ·

∏
k∈(nb[i]\{j})

δk→i

]
, (3.18)

where δi,j is the sum-product message passing, that reads as “the marginal contribution sent from
cliques i to j”. It compiles all the messages received from neighboring ready cliques5. All contribu-
tions are multiplied just like we did before with Bayesian Networks and Markov Networks. Then
all variables are summed out with the exception of those in the sepset

τ(Si,j) =
∑

Ci\Si,j

ψi(Ci). (3.19)

This gives a marginal clique potential τ(Si,j) where every sepset that is passed to a non-leaf node
is Si,j = Ci ∩ Cj , advancing messages through the cluster tree until the root node is reached.

All contributions are combined with the initial potential at the root ψr(Cr). So to begin
all calculations in the clique tree, we run the following equation until Cr is ready by evaluating
δi→pr[i](Si,pr[i]) on all ready cliques6, recursively until reaching the root.

The result of this is a last potential on the root called belief and denoted as:

βr(Cr) = ψr ·
∏

k∈nb[Cr]

δk→r. (3.20)

Note that this is the same as the unnormalized distribution of the root clique P̃Φ(Cr) =∑
X−Cr

∏
ϕ ϕ, which contains our query variables.

3.4.3.3 Calibration

To perform inference on a clique tree is to perform a query, consider evidence, choose a root node
and calculate its belief using equation (3.20). We mentioned that clique trees have the convenience
of performing multiple queries, so if we evaluate belief over all nodes in the clique tree, we can
achieve this goal.

This task has many redundant calculations, as we mentioned in section 3.3 on the variable
elimination process. The reason is simple: Consider two neighboring cliques Ci and Cj . When
evaluating the belief on any other node7 of the clique tree, the passing of messages can only occur
either on Ci side or on Cj side. Messages sent from a particular direction will always be the same,

5with the exception of leaf nodes, where the recursion ends by returning δi→j = τj(Ci −XY)
6All leaf nodes are always ready to pass their initial potential.
7including i and j.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 34

Figure 3.6: The junction tree formed with previous cluster graph has nodes for the corresponding sepset, storing
generated messages on both directions to allow for many different queries. Note this tree has 6 cliques, meaning there
are 2(6 − 1) = 10 possible messages, which only 5 of them are shown as those are the ones used to obtain query
variable F . If we needed to query for G, we would use the same set of messages except for δ6→5, using δ5→6 instead,
which would have been computed already.

just like the sepset doesn’t change. Thus, for any clique tree, each edge has two messages associ-
ated: δi→j and δj→i.

The advantage of the clique tree is that all posterior probabilities are calculated for all variables
in the graphical model using only twice the computation of the upward pass in the same tree. If the
clique tree has c cliques, there are c−1 edges in the tree, and therefore 2(c−1) messages to compute.

When we are done calculating all messages, the clique tree is said to be calibrated. As a
consequence, the following definition holds:

Definition 3.4.3 Two adjacent cliques Ci and Cj are said to be calibrated if∑
Ci\Si,j

βi(Ci) =
∑

Ci\Si,j

βj(Cj) := µi,j(Si,j). (3.21)

A clique tree T is calibrated if all pairs of adjacent cliques are calibrated. We use the term clique
belief for the term µi,j(Si,j).

3.4.4 Junction Tree Algorithm
As we have seen all the basic elements involved in the nature of the clique tree, we present one
algorithm to summarize all the steps for performing inference.

Algorithm 3 begins with the initialization of each clique in the tree, obtaining clique potentials.
Then it propagates all the messages between pairs of clusters in both directions. Note that the
loop is finite as leaf nodes are always ready to send their message, which consequently makes their
neighbors ready, hence evaluating 2(c − 1) messages δi,j . Finally, all messages are used to build
clique beliefs for every node in the tree T, which makes it calibrated.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 35

Algorithm 3 Upward pass of variable elimination in clique tree
Input: Φ, T, a, Cr

Output: βr
1: for all Ci ∈ T do
2: Calculate initial potentials using (3.16)
3: while there exists i, j such that i is ready to transmit to j do
4: Evaluate δi,j(Si,j) using (3.18).
5: for all clique Ci do
6: Calculate belief βi using (3.20).
7: return Set of clique beliefs µi,j(Si,j) that satisfy equation (3.21)

Better and more efficient algorithms exist for the evaluation of a junction trees. Though not
studied here, they are designed considering all the basic theory that we have presented on proba-
bility and graphical models to perform inference.

We can finally go back to the problem of Tracking, which is modeled and solved with these
tools.

3.5 Building the Junction Tree
We have been working with clique trees by taking for granted that this structure was obtained
through variable elimination. But now we will study a method called the Hugin Algorithm, that
performs the following steps to turn a graphical model, be it a Bayesian or Markovian Network,
into a clique tree.

Given a graphical model H, with a set of modeled dependencies (edges) and random variables
(nodes), we do the following:

• Moralization. We only apply this step when H is a Bayesian Network (or a DAG). First
we add undirected edges to all co-parents (nodes sharing a common child) which are not
currently joined, thus marrying them. Then we drop all directions in the graph obtained.
The resulting graph is called a moral graph. The moral graph is undirected, and the addition
of extra edges in the moralization (and triangulation in the following step) processes makes
it impossible to keep all of the conditional independences of the original network.

• Triangulation. Once we have a Markov Network (undirected graph), we want to build a
chordal graph H∗ through triangulation. Here is why.
Whilst the moralization of a graph is unique, triangulation might result in many alternative
graphs. For optimal computation, we would like to have a graph where the largest clique has
a minimal size to facilitate its parametrization, as the state space will be smaller. Finding
such triangulation is not easy and is also an NP -hard problem. In practice, we use heuristic
algorithms, because available exact methods have a computational cost exponential in the
size of the largest clique in the graph and end up being too costly.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 36

Since a chordal graph is one in which links between nodes have no cycle (i.e. closed paths)
of length 4 or more distinct nodes without a short-cut through any other node, it is good for
clique assignation.
The point is that, after moralization and triangulation, there exists for each node-parent set
at least one clique which contains it, and thus a clique potential can be formed on the cliques
of the triangulated graph.
The addition of edges to the moral graph does not stop a clique from being a complete
subgraph, then for each clique in the graph there is at least one clique in the triangulated
graph which contains it, meaning that the original model is still true after the additional
edges.

• Clique extraction. Identify maximal cliques of the triangulated graph and join them together
to form a set of cliques and build factor functions over them, hence constructing a cluster
graph.
Finding a set of cliques on chordal graphs is quite easy. One can perform a maximum
cardinality search over the resulting chordal graph and collect maximal cliques generated in
the process.

• Build the clique tree. We only need to find the edges between clique nodes to complete
the cluster graph. We can achieve decent results and somewhat efficiently via a maximum
spanning tree like one obtained with the Kruskal algorithm. The resulting cluster graph can
be treated as a clique tree.

3.6 Conditional Random Fields
Markov Networks are a great tool for encoding the joint distribution over the set X. As we have
seen above, we can also use it to encode a conditional distribution P (Y | X), where Y is a set of
target variables and X is a disjoint set of observed variables (evidence).

A Conditional Random Field is an undirected graph H whose nodes correspond to Y ∪ X.
Parametrized the same way as a Markov Network by a set of factors, the key difference lies in the
distribution it represents, since it encodes P (Y | X) rather than P (Y,X). To do so, it disallows
factors that involve only variables in the observed set X, hence the factors are ϕ1(U1), . . . , ϕf (Uf)
such that each Ui ⊈ X. This makes the encoded distribution as:

P (Y | X) =
1

Z(X)
P̂ (Y,X) (3.22)

P̂ (Y,X) =
∏
ϕi∈Φ

ϕi(Ui) (3.23)

Z(X) =
∑
Y

P̂ (Y,X). (3.24)

Any pair of variables will be connected by an undirected edge whenever they appear together
in the scope of some factor. The only difference to the standard Markov network definition is

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 37

the normalization used in the partition function Z(X) which now is not constant, as it induces a
different value for every assignment x to X.

3.7 Inference on NOMT
We are ready to tackle the problem of data association on tracking presented in Eq. (2.9). To
reduce the size of equations from now on, we omit the terms Dt

t−τ and {It
1 ,D

t
t−τ}. This leaves us

with:
x̂ = argmin

x
E(A∗t−1,Ht(x)), (3.25)

where

• the set of clean tracks is A∗t−1 = {A∗t−1
1 , . . . , A∗t−1

m }, with A∗t−1
i representing a single target

whose trajectory is being tracked, with a sliding-window of size τ that is used to separate
detections into “finalized partitions” (or clean tracks) A∗t−1

k and unassigned (or loose) tracks,

• the built set of hypotheses is Ht = {Ht
1,H

t
2, . . . }, where each Ht

k is the set of hypotheses for
the k-th target, denoted by Ht

k = {∅,Ht
k,1,H

t
k,2, . . . }. The null hypothesis ∅ represents the

termination of said target due to occlusion or because it is leaving the scene.

Summing up, we describe the data association problem as the problem of associating each
existing target At−1

k to a single hypothesis Ht
k,xk

, where xk is the index of the hypothesis in Ht−1
k .

We search for the overall hypothesis assignation which is the most likely to form the real trajectories.
Hence, the notation Ht(x) indicates a potential solution (or inferred partitioning) for detections in
Dt
t−τ , where the indexing is given by x. The optimal solution is x̂ and it will be used to augment

A∗t−1
k and create the new trajectory A∗t

k . This problem can be solved using a graphical model.

3.7.1 Model representation
We can build an undirected graphical model, namely a Markov Network H, where each node
represents a single target. The set X corresponds to A∗t−1 (the clean tracks that we will not
revise from now), and the states associated to each k-th variable will be a (discrete) value for their
corresponding possible hypotheses, to be chosen within Ht

k. Edges connecting the nodes will be
added between dependent variables. Among the strongest dependencies: Any hypothesis inside a
set Ht

k contains a set of detections that can never be shared with another target. Hence, if any
hypothesis in Ht

i shares a single detection with another hypothesis in Ht
j , the value that A∗t−1

i can
take depends on the value that A∗t−1

j can take (as some pairs of values are incompatible). Then,
their corresponding targets (variables within the graphical model) are considered as dependent
random variables.

When building the graphical model as described above, we end up with some nodes being
disconnected and others rather connected together, or forming cliques, depending on how much
their hypothesis overlap and share tracks (see for example Fig. 3.7). To take advantage of this
graphical model with possibly many independent nodes, first, a Connected Component Analysis
is applied to find and separate the original model into smaller and more manageable problems, as
depicted on Algorithm 4, which can be done as a breadth-first search, such as shown in [11].

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 38

Figure 3.7: Consider an example of 3 objectives, two of them are dependent since their trajectories are similar enough
for the tracker to have hypothesis sharing some tracks. Choosing any outcome for the node At

3 will not affect any
other targets, hence it is not connected and can be evaluated independently from targets At

1 and At
2.

Algorithm 4 Connected Component Analysis
Input: Graph H with each node marked with “visited” flag as false.
Output: Set of components or sub-graphs [C]C1

1: Add an empty component C0 without nodes and edges.
2: Set the current component C′ = C0.
3: Create an empty queue of nodes Q = ∅.
4: for all node A∗t−1

k in H do
5: if A∗t−1

k not visited then
6: Mark A∗t−1

k as visited.
7: Push A∗t−1

k to Q.
8: while Q ̸= ∅ do
9: for all edge out of node in front(Q) do

10: Remove edge from H and add to C′.
11: Move to node A∗t−1

j connected by edge.
12: if A∗t−1

j not visited then
13: Mark A∗t−1

j as visited.
14: En-queue A∗t−1

j to Q.
15: Remove front node from Q and add it to C′.
16: Create new component Cc and set as current C′ = Cc
17: return [Cc]

C
1

For sub-graphs consisting of a single node A∗t−1
k that end up being independent, the “best”

hypothesis can be directly picked in Ht
k, whilst for nodes that depend on others, and to make sure

that the best solution is chosen jointly for all of them, we pick the Maximum A Posteriori (MAP)
using the junction tree algorithm presented in the previous sections, which turns the problem into
a factor product of smaller configuration sets.

Note that the evaluation of the energy function E(A∗t−1,Ht(x)) results in real numbers, with
large positive values for bad choices in the assignments of x and moderate negative values for
plausible choices. In order for this to be used as a probability distribution, data is normalized as in
equation (3.10) to obtain a Gibbs distribution, though this is done per-component and considering
the following conventions.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 39

3.7.2 Clique potentials as energy functions
In many fields of sciences such as thermodynamics and statistical mechanics, energy minimization
is applied like in our formulated problem (3.25), and the function E(x) is interpreted as the energy
of a configuration x. Often, clique potentials are chosen with the form ϕ(x) = exp(−E(x)), which
is called a Gibbs distribution.

The energy assigned by E is an indicator of the likelihood of corresponding relationships within
the clique, with higher energy corresponding to lower probabilities and vice-versa. Rewriting our
function and considering the partitioning done on the original graph, we evaluate per component:

Ẽ(C,Ht(xC)) =
1

Z
exp[−E(C,Ht(xC))] (3.26)

Z =
∑
x∈X

exp[−E(C,Ht(x))] (3.27)

E(C,Ht(xC)) =
∏

C∈C
E(C,Ht(xC)) (3.28)

where each target in the clique C = {A∗t−1
i | i ∈ C} in the component C compiles the contribu-

tions of the states xC involved. Finding such cliques is done as explained in section (3.5) about the
process of building a junction tree.

After calculating Ẽ(·) we simply pick the configuration or hypothesis set that gave the MAP.
Solving this for every component gives the final best configuration, hence, solving the data asso-
ciation problem. Of course, this inferred solution is completely dependent on how well the energy
function reflects good/bad assignments. As we made adjustments to the original proposal, we ob-
tained good results for RGB-D data that will be presented on Chapter 6.

All we need now is a formal definition for how such dependencies in the clique components apply
and for measuring how good is the compatibility of any given assignment for variables X = x. The
model for this should encode an evaluation similar to what a human takes into account when
keeping track of a person or of an objective within sight, by considering its appearance and its
motion to decide on the objective identity.

3.7.3 Choi’s energy function
The definition of factors formulated by Choi [6] describes the joint distribution of the (in-)compatibility
of x as an energy:

E(A∗t−1,Ht(x)) =
∑
m

Ψ(A∗t−1
m,xm ,H

t
m,xm) +

∑
m,l

Φ(Ht
m,xm ,H

t
l,xl

). (3.29)

This original formulation considered a similarity measure called the Aggregated Local Flow De-
scriptor (ALFD), which operates over the 2D image, finding interest point color patches on detected
rigid bodies. We first revisit potentials that are involved on the evaluation of E and re-interpret
their calculation for the domain of RGB-D data:

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 40

• The function Ψ(.) is the Single Target Consistency that measures the likelihood of assigning
Ht
m,xm to a target A∗t−1

m :

Ψ(A∗t−1
m,xm ,H

t
m,xm) =

∑
i∈Ht

m,xm

ψu(A
∗t−1
m , di) +

∑
(i,j)∈Ht

m,xm
i ̸=j

ψp(di, dj) + ψh(A
∗t−1
m ,Ht

m,xm)

(3.30)
which is the sum of three terms:

- ψu is an Unary Potential which takes every detection di in the target hypothesis Ht
m,xm

and tests its compatibility/similarity with A∗t−1
m as denoted by the use of the min func-

tion:
ψu(A

∗t−1
m , di) = min

(
µA(A

∗t−1
m , di) , µT (A

∗t−1
m , di)

)
− si. (3.31)

The min will mainly choose the term of appearance similarity µA < 0, unless we are
certain of its membership to the trajectory by a dynamics prediction test µT < 0. This
potential will result in −si (si being the score of detection di), whenever A∗t−1

m = ∅,
hence favoring assignments to trajectories that have a history past the sliding window,
and giving the smallest sway to new targets.

∗ µA is an Affinity Metric:

µA(A
∗t−1
m , di) = −

∑
∆t∈N

aA(d(A
∗t−1
m , ti −∆t), di), (3.32)

where N = {1, 2, 3, 4, 5, 10, 20} is a fixed set of frame distances, defining a time
neighborhood from the current detection di to the previous detections in A∗t−1

m ,
d(A∗t−1

m , ti), which gives the associated detection of A∗t−1
m at time step ti. The

function aA is the similarity measure whose evaluation will be studied in depth on
Chapter 4. This measure is designed to tell us how similar are two detections, by
considering geometry and appearance, resulting in a value between [−1, 1], respec-
tively indicating mismatch or match. In the most optimistic case in which every
single detection in the clean track A∗t−1

m exists in the neighborhood at time ti for
di and they are perfectly similar, the sum results in −size(N) and +size(N) on the
worst case. This means that the selection on how big the neighborhood should be
impacts the contributions of this potential and that longer tracks are favored.

∗ µT is a Target Dynamics function:

µT (A
∗t−1
m , di) =

{
∞ if o2(p(A∗t−1

m , ti), di) < 0.5

−ηti−f(A
∗t−1
m)o2(p(A∗t−1

m , ti), di) otherwise,
(3.33)

where o is an overlapping measure and p(A, t) a predictor for the position at t of
the target corresponding to clean track A. The output that takes an infinite value
(first case above) will never happen because of the aforementioned min whenever
the overlap between track di and its predicted position p(A∗t−1

m , ti) using LSQ as
presented in 2.2.4, is inferior to a threshold. We make mostly use of the appearance,

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 41

unless the overlap indicates a very good match. The function f(A∗t−1
m) denotes the

last associated frame of the target and the scalar η = 0.98 is a decay factor that
discounts long term prediction. Hence, the further frames separate ti from the clean
track, the less contribution to µT from these frames.
In the context of 3D Point Clouds, since we use bounding-cylinders to represent
targets, we evaluate o2 as the squared IoU by measuring the area of intersection
between circumferences using the formula (2.3), requiring an IoU of 0.7 to pass the
threshold.

Note that this potential translates to the intuition that “whenever we are unsure of
the appearance being good enough, we give a chance of still minimizing with a negative
weighted overlap value rather than penalizing with a positive value due to low similarity...
only if said overlap is very large.”

- ψp is a Pairwise Potential that measures the inner appearance consistency of hypothesis
Ht
m,xm through:

ψp(di, dj) =

{
−aA(di, dj), if |di − dj | ∈N

0 otherwise
(3.34)

with the same set N of allowed frame distances. It is very similar in nature to Equation
(3.32), which measures the similarity between clean tracks with respect to loose tracks.
This potential intends to measure how good is the similarity between pairs of detections,
but inside the hypothesis itself. Again, this potential scales with the number of possible
pairs, favoring long trajectories in hypothesis Ht

m,xm with high similarity, and vice versa.
Although not mentioned by Choi’s paper on NOMT, this potential should also not be
giving a sway whenever A∗t−1

m = ∅, which gave better experimental results, specially on
cases in which an entering target is evaluated against another one with non-null history.
Both end up getting the same pairwise potential, whilst having no history should not be
as important as an observed trajectory that has been tracked for a while. Summing up,
this potential allows to “prefer long self-similar trajectories for an existing target with a
past, rather than shorter or dissimilar trajectories with no past.”.

- ψh is a High Order Potential that penalizes abrupt motion and low similarity over time:

ψh(A
∗t−1
m ,Ht

m,xm) = γ
∑

i∈Ht
m,xm

ξ(p(A∗t−1
m , ti) , di) + ϵ

∑
(i,j)∈A∗t−1

m ∪Ht
m,xm

i ̸=j

θ −K(di, dj).

(3.35)
where γ, ϵ and θ are constant values. Differently from Choi, we operate with 3D coor-
dinates rather than 2D bounding boxes, hence, here, ξ simply measures the normalized
euclidean distance between predicted positions with p(A∗t−1

m , ti). We use only clean
tracks rather than A∗t−1

m ∪ Ht
m,xm , as that could lead to wrong fittings when the hy-

pothesis is nowhere near the target. Using only clean tracks helps giving out higher
penalization for such cases in which the hypothesis is not near A∗t−1

m , and this potential
will not give sway whenever A∗t−1

m = ∅. The second term considers every pair in the
whole trajectory augmented with the considered hypothesis, adding up K(di, dj) ∈ [0, 1]
which is the intersection kernel between histograms of di and dj , giving 1 if the his-
tograms are identical, 0 otherwise. More details on the calculation of these histograms

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 42

will be given in Chapter 4. The constant values we used are (γ, ϵ, θ) = (20, 1, 0.8). The
high order potential could be interpreted as “preferring assigning hypothesis that fall
right inside the predicted or extrapolated path of existing long target trajectories, also,
favoring high similarity. Otherwise, penalties are high”.

• Φ(.) is a Mutual Exclusion term that gives huge penalties when two targets try to use a pair
of hypothesis that have any overlap or that share common tracks:

Φ(Ht
m,xm ,H

t
l,xl

) =
t∑

f=t−τ
α·o2(d(Ht

m,xm , f), d(H
t
l,xl
, f))+β ·I(d(Ht

m,xm , f), d(H
t
l,xl
, f)), (3.36)

where α and β are constant parameters and d(Ht
m,xm , f) gives the associated detection of

Ht
m,xm at time f (if none, ∅ is returned), o2(di, dj) = IoU(di, dj)

2 and I(di, dj) is an indicator
function that results in 1 whenever Ht

m,xm and Ht
l,xl

share any common track (i.e., same detec-
tion and frame). This potential is a key for avoiding undesirable configurations by penalizing
too much overlap between hypotheses and having duplicate assignments of detections, which
will overshadow any good sway on Single Target Consistency. We use (α, β) = (0.5, 100).
Hence, this potential kind of forces a “probability” of almost 0 on the conditional random
field for inconsistent assignments x.

3.8 Our proposed Energy for RGB-D NOMT
After studying how the energy function was designed and after having experimentally tested and
observed the behavior of the previously presented energy, we realized that the original model might
suffer from scaling problems in data and does not make it clear on what happens when certain
configurations occur. Though it has provided good results on the adaptation to RGB-D data as is,
we noticed some issues that can be dealt with differently.

3.8.1 Data association term
To begin explaining our proposed changes, we re-organize each term in Single Target Consistency
function for an overview as follows:

Ψ(A∗t−1
m ,Ht

m,xm) =∑
i∈Ht

m,xm

min
([
−

∑
∆t∈N

aA(d(A
∗t−1
m , ti −∆t), di)

]
,
[
− ηti−f(A

∗t−1
m) · o2(p(A∗t−1

m , ti), di)
]
o2<0.5?o2:∞

)
− si+

∑
(i,j)∈Ht

m,xm
|i−j|∈N

−aA(di, dj) + γ
∑

i∈Ht
m,xm

ξ(p(A∗t−1
m ∪Ht

m,xm , ti), di) + ϵ ·
∑

(i,j)∈A∗t−1
m ∪Ht

m,xm

θ −K (di, dj).

(3.37)

We make the following observations:

1. On the first line, the first term in the min operator is a detection-to-detection similarity score
accumulated over the target’s existing trajectory (indices ∆t) and over the candidate tracklet

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 43

detections (indices i); the second term is a spatial likelihood term that measures the closeness
(overlap) of the detection considered in the tracklets to the predicted position p of the target
for the detection timestamp ti; this term importance is weighted by a factor −ηti−f(A∗t−1

m)

that exponentially decreases with the time span between the last timestamp present in the
target and the detection timestamp. The scalar si is the detector confidence (score) in the
detection di. This whole line remains unchanged for our design.

2. The terms in the second line measure the appearance consistency within the hypothesis (terms
in aA(di, dj)), the spatial consistency (by measuring the distance between the detections and
the interpolated trajectory using both the target and the tracklet data) and, finally, another
appearance consistency K(di, dj).

3. aA was the ALFD evaluation from Choi, i.e. an appearance similarity score. It works by
training some model weights that encode ’overlap’ with GT data. What it measures, is a
voting or consensus on whether a pair of Interest Points (FAST patches inside the bounding
box) match within a particular pyramidal grid. It is said to measure “local flow” and give
values in the interval [−1, 1]. It just accounts for color patches that were found on the same
places, but not the general appearance of the target.

This energy function relies heavily on aA for the Single Target Consistency (3.37). However,
the last term (θ − K(·, ·)) seems to be included in a ad-hoc way to appeal for measuring what
ALFD does not use: the pyramidal LAB histograms between detection di and dj . In some way, it
appears a bit redundant since we made our similarity measure to encode this information already
from point-cloud processing.

3.8.2 Hypothesis consistency term
Mutual exclusion (3.36) is the only part of the potential function that encodes a relationship be-
tween a pair of “outcomes” in the network, resulting in an edge between targets whenever hypotheses
share any track. This potential has proven to correctly avoid such decisions that are impossible in
the context of tracking, and does not seem to require any adjustment. As said above, it acts as a
prior on the distribution of possible assignments.

The left term penalizes the overlap between detections made in a pair of different target-tracklet
pair, at the same time instant, while the right term adds a huge penalization if two detections are
the same and are both associated to different targets.

3.8.3 Changes
• Considering what is mentioned above, and since our own similarity function already encodes

geometry and color appearance rather than a local flow of patches, we think that the last
term in Equation (3.37) could be discarded, as it will just be kind of redundant with the first
term of the min operator and with the second term (pairwise-potential). Hence:

ϵ ·
∑

(i,j)∈A∗t−1
m ∪Ht

m,xm

θ −K (di, dj) =⇒ ∅. (3.38)

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 44

• We observe that the third term in equation (3.37), or high order potential, uses a polynomial
fitting over the set of detections in the union A∗t−1

m ∪ Ht
m,xm . We found that this choice

artificially penalizes those targets with A∗t−1
m = ∅. For the targets with non-empty clean

tracks, the fitting with the hypothesis, when the tracks are quite distant or far from the
actual trajectory, tends to minimize the adjustment error on the overall tracks but does
not measure the real error on the observed trajectory and the tested hypothesis. Hence we
changed the term to just:

γ
∑

i∈Ht
m,xm

ξ(p(A∗t−1
m ∪Ht

m,xm , ti), di) =⇒ γ
∑

i∈Ht
m,xm

ξ(p(A∗t−1
m , ti), di). (3.39)

• Trough experimentation, we observed that some situations such as occlusions are not directly
well encoded in the formulation and it is noted that ALFD is vulnerable to them since the
absence of some interest points does not help in the voting that it uses for similarity. Also,
the original NOMT, even if it does fix bad associations when the occlusion occurs inside
the sliding window, does not perform well when the occlusion lasts longer8 and when the
predicted movement now does not fit the missing target’s new real trajectory.

– We could think of an occlusion as a situation where a target or whatever 3D object
affects the outcomes of other targets. In front of a RGB-D sensor, targets nearer to the
sensor retain most re-projected points and those behind get occluded, losing density in
their points. Should we make a counter-weight for the High Order Potential, such that
when similarity is good enough but movement was not so smooth, it is less penalizing
(remember that it will not do anything other than penalizing, even when normalized).

– We should make our similarity function better and more resistant to the loss of points
and to the partial view of the detection, also so that configurations with detections from
the same objective will stand out, no matter the separation in time provoked by the
occlusion (non-smooth movement).

3.8.4 Occlusion Potential
We attempt to encode the following statements:
- “If an observed trajectory appears to be under occlusion, we should penalize less a movement that
was not too smooth.”
- “Otherwise, when no occlusion is evident, we let non-smooth movement to be completely penal-
ized.”
- “Also, as a safeguard, when occlusion is possible for the first case, we require that, though non
smooth movement is allowed, appearance similarity must be good enough, meaning that when
Ht
m,xm is not similar enough to A∗t−1

m , then it is more likely for this tracklet to be a new target.”
8Though the original energy function could be capable of correctly re-activating again a target that went missing

as long as Tactive holds, when the occlusion lasts longer than the size of the sliding window, the target movement
and the appearance might not be good enough for it to beat the bet of starting a new tracked target rather than
continuing the old trajectory. This could have been achieved by Single Target Consistency, but only if aA was really
good to match two detections separated by the time the occlusion occurred.

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 45

We designed the following equation to be a representation of the above (to replace Choi’s High
Order Potential):

γ
∑

i∈Ht
m,xm

ξ(p(A∗t−1
m , ti), di) =⇒ Ω

∑
i∈Ht

m,xm

ω(A∗t−1
m , di) · ξ(p(A∗t−1

m , ti), di) (3.40)

where

ω(A∗t−1
m , di) =

{
1− ω̇(A∗t−1

m , di) if µ̄A(A∗t−1
m , di) ≥ γ ≥ 0

1 otherwise.
(3.41)

It encodes the idea that when similar, we penalize less, proportionally to the occlusion, and when
not similar, we penalize as usual. The term µ̄A(A

∗t−1
m , di) is the average original unary potential

(average similarity toward the observed trajectory):

µ̄A(A
∗t−1
m , di) = −

1

size(N)

∑
∆t∈N

aA(d(A
∗t−1
m , ti −∆t), di). (3.42)

It yields a value between γ ≤ µ̄A ≤ 1, where 1 means that di is very similar. So, being similar im-
plies a chance to reduce penalization when occluded. We also use the notation ω̇(A∗t−1

m , ti) ∈ [0, 1],
with ω̇ti = 1 when occlusion is sure and ω̇ti = 0 when there is a priori no reason to think the target
A∗t−1
m is undergoing an occlusion at time ti.

Still, this is not a so simple problem of deciding whether a target is occluded or not at time
ti. The idea of using depth points in the person cloud makes a lot of sense, even more after down-
sampling is performed. Indeed, nearer in the range of depth sensors, points are more saturated,
and further, the density of points per surface is inferior. Our down-sampling is made by limiting
a single point per sphere of a given radii. This makes Dti keep an almost consistent number of
3D points, no matter whether the target is further or nearer. What may influence this number of
points are self occlusions, self-enlargement of the target (not by getting closer but rather by having
more surface) and other target occlusions, even by disappearing from the frame. Intuitively, we
think of a target having a number of points in time to behave like a normal distribution, having
a mean amount of points over time and a variance indicating how much self-occlusions occur or
changes in its surface. So, a significant reduction or increase in the number of observed points will
be an indication of occlusion by another target / obstacle or bigger target, even disappearance. So
we define:

ω̇(A∗t−1
m , di) =

e
−

(nd(Pi)−µnd
)2

2σ2
nd if nd(Pi) < µnd

0 otherwise
(3.43)

µnd
=

∑
i nd(Pi)
#A∗t−1

m
(3.44)

σ2nd
=

∑
i nd(Pi)2

#A∗t−1
m − 1

− µ2nd
. (3.45)

This will consider observed points in the clean tracks, and make a valuation of how occluded is the
given detection, that already needs to be similar thanks to definition of ω. This is for it to make it

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 46

more sensitive to how much changes in the number of points are perceived over time for a target.

This would allow for targets that show sudden non-smooth changes in their movement, in
direction or even speed, and avoid the need of thinking a trajectory belongs to a new target rather
than an already observed target, as long as they are similar in appearance.

3.8.5 Interpretation of our RGB-D NOMT energy function
Rewriting the updated energy function, and changing the ALFD descriptor aA(di, dj) by our own
point-cloud descriptor, aR(di, dj), we move around some terms for a convenient study of what is
’encoded’:

E′(A∗t−1,Ht(x)) =
∑
m

Ψ(A∗t−1
m ,Ht

m,xm) +
∑
m,l

Φ(Ht
m,xm ,H

t
l,xl

) (3.46)

∑
m

Ψ(A∗t−1
m ,Ht

m,xm) =

−
∑
m

∑
i∈Ht

m,xm

si −
∑
m

∑
(i,j)∈Ht

m,xm
|i−j|∈N

aR(di, dj) + Ω
∑
m

∑
i∈Ht

m,xm

ω(A∗t−1
m , di) · ξ(p(A∗t−1

m , ti), di)+

∑
m

∑
i∈Ht

m,xm

min
([
−

∑
∆t∈N

aR(d(A
∗t−1
m , ti −∆t), di)

]
,
[
− ηti−f(A

∗t−1
m) · o2(p(A∗t−1

m , ti), di)
]
o2<0.5?o2:∞

)
(3.47)

∑
m,l

Φ(Ht
m,xm ,H

t
l,xl

) =
∑
m,l

t∑
f=t−τ

α · o2(d(Ht
m,xm , f), d(H

t
l,xl
, f)) + β · I(d(Ht

m,xm , f), d(H
t
l,xl
, f))

(3.48)

Remember that xm is what varies in this sum for m, meaning that it “toggles” a certain selection
of Ht

m,xm for A∗t−1
m . This means that in a “simple” case with 3 targets, each with two hypothesis,

then 32 = 9 combinations of x exist, some of which are easily discarded by mutual exclusion. But
some plausible assignments are differentiated with this potential Ψ, and it is the key for choosing
the best configuration.

• The first term in (3.47) is simply the sum of all the detection scores inside the active hy-
pothesis. It means that null hypotheses do not contribute. Supposing that every detection is
perfect, the highest value that can be obtained here is when the configuration to be chosen
actually gives, for all targets, a non-null hypothesis that covers the whole interval [t − τ, t].
Also, longer hypothetical trajectories are favored, which is actually what we want. It does
not make any assertion on the appearance nor on the kind of movement.

• The second term in (3.47) is a pairwise potential that only applies to tracklets. It does not
even consider the history or the observed trajectory. Again, null hypotheses do not help and
longer hypothesis are better. This potential is just the sum of similarities between neighboring
detections in the hypothesis. It can be said to consider appearance since it solely depends on

CHAPTER 3. INFERENCE WITH CRF AND APPLICATION TO TRACKING 47

what aR encodes. It introduces a penalization whenever aR is good enough to indicate that
two different targets are dissimilar, giving negative values.

• The third term in (3.47) is the occlusion-friendly high order potential, and is a “penalize only”
potential, since it is the sum of distance errors between a predicted position in time and the
observed position at that time. So, any hypothesis that follows/falls in the predicted path
will give minimal errors, tending to be at best 0. Here, a special case occurs with the null
hypothesis, which are benefited, as they cannot be tested here and obtain zero penalization.
This potential will now penalize less strongly when the appearance of the hypothesis and the
observed trajectory is good enough and when there is a possibility that the target is being
occluded (i.e., when it has fewer points in its cloud than usual).

• The last term in (3.47) is a bit tricky, as the min function works as a switch for choosing
between two potentials: One is similar to the pairwise potential but using also A∗t−1

m (it
seems to clash with second term, or at least duplicate contributions), which is used most of
the times and the other potential that is only used when the overlap between predicted and
seen detection is really high (it seems to complement the third term). It encodes the sense of
a last chance for a favorable potential: if similarity was not good enough, but if the movement
is just fitting very well, it allows a contribution instead of a penalization for not being similar
enough.

Mutual exclusion (3.48) remains the same. Now with this we are ready to use (3.46) as our
factor definition for individual cliques in our sub-graphical models obtained with Algorithm 4. The
energy from each independent clique is combined per component, using Algorithm 3, and finally
each component’s joint distribution is combined as explained in equation (3.28). After the full
joint distribution of the entire model is available, we can just choose the x that is the best overall
association of trajectories for each target.

Having fully defined the efficient inference process with a model that takes advantage of RGB-
D data for better occlusion resistance, we now present our formulation of aR(di, dj) to appeal for
geometry and color on non-rigid objectives.

48

Chapter 4

RGB-D Similarity

4.1 Point-Cloud Descriptor
A key difference between the context in which W. Choi proposed his original ALFD descriptor [6]
and the needs in our approach is that a RGB-D descriptor for our system needs to encode the
motion of the detected person and to track its changing geometry, form and color, since a walking
human is by essence not a rigid object and is hence very different from a car that gets closer to the
camera as in the aforementioned work.

Most approaches, including Choi’s one [6], extract interest points on the 2D space of the image,
inside the rigid body’s bounding box, whilst we wish to track a person that could be walking,
moving its limbs and occluding itself, making the extraction of image interest points less useful a
priori.

To get a better grasp on each person’s geometry and position, we work on the full 3D point-cloud
information rather than on 2D interest points. The cloud data gives the possibility of applying
more interesting 3D techniques such as body part segmentation, pose estimation (skeleton) and
estimation of the local surface orientations, to give a few examples.

However, let us recall that RGB-D sensors provide very dense point-clouds of the observed
scenes, which may produce a large overhead in the processing pipeline. To alleviate this burden,
we consider that any detection di lives in a vertically-oriented 3D “bounding-cylinder”, centered on
3D coordinates < di[x], di[y], di[z] > and with a circumference of diameter di[r] and a height di[h].
At this point, we do not take into account the scenario in which the target moves, and we are only
interested in the point-cloud data inside this bounding-cylinder. Using down-sampled RGB-D data
{It

1 ,D
t
1} and said bounding cylinder, we extract individual point-clouds for each detection, which

will be referred to as Pi. An example of Pi is given in fig. 4.1.

Even after downsampling, the raw point-cloud data is still full of redundant information and

CHAPTER 4. RGB-D SIMILARITY 49

Figure 4.1: Using the Point Cloud Library (PCL) [28] and our simulation software, we are able to extract and down-
sample each person’s point cloud Pi, and to perform an analysis on its geometry and color content. In this picture,
we show the estimation of the normal vectors on the surface of the point cloud. These normal vectors are used to
create a descriptor associated to each detection.

needs to be converted into a more compact representation, easier to process and to compare to
others. This is what we call a descriptor. There are many approaches and choices to compose a
descriptor from raw data: histograms, bit strings and bag of words models, among others.

4.2 Geometry and surface estimation
Most descriptors over point-clouds require to make an analysis over the neighborhood of a point
to find geometric parameters such as the local curvature or the surface normal at this point. This
needs to be done while avoiding the problems caused by outlier points. This is why many descrip-
tors are local features, as they characterize a single point by considering its k closest neighbors,
including noisy data. Many feature descriptors have been designed to be translation-, rotation-,
moment- and volume-invariant, and as least sensitive to noise as possible. The selection on how
big the neighborhood should be is very important, since the descriptor will describe the underly-
ing surface along which this neighborhood is positioned. A small k could result in large errors in
the feature estimation, whilst a large k might suppress small details that could have been helpful
for characterization (as a low-pass filter would do). An illustration is given in Fig. 4.2. Once
a particular point and its neighbors are picked, then in order to find the surface normal, an ap-
proximation using Principal Component Analysis (PCA) is common and performs rather efficiently.

PCA is a statistical technique used to describe multidimensional data in terms of a new set of,
if possible, non-correlated variables called components, which are focused on capturing the variance
of the original data. PCA results naturally in a projection process, which leads to a reduction on
the data dimension and on the complexity of the data. It may also allow a better understanding
on which are the most informative variables in the sample, down to the least. In the context of
point-clouds, PCA applies a linear transformation over the set of the k nearest neighbors [pi]k1 ⊂ Pi

of a query point pq, each of which described with m = 3 dimensions < x, y, z >. Intuitively, since

CHAPTER 4. RGB-D SIMILARITY 50

Figure 4.2: Influence region diagram for a query point pq (in green) with its k neighbors, within a 3D sphere of radius
r (in blue). All the points inside the neighborhood are turned into a fully connected mesh, that is used to describe
all the point pair relationships between normal orientations. This process has a complexity of O(k2).

points [pi]
k
1 are distributed roughly as a surface due to their origination from a RGB-D sensor

observing objects, they will tend to be mostly varying along two directions, corresponding to their
common surface, with the least variance along the normal of such surface. Hence, PCA should
output a base of 3 vectors, the first two (largest components) capturing the variations on the sur-
face, while the smallest component will most likely be similar in direction to the real surface normal.

Formally, PCA takes input data gathered as D ∈ Rk×3, i.e. a matrix such as

D =


d1[x] d1[y] d1[z]
d2[x] d2[y] d2[z]

...
...

...
dk[x] dk[y] dk[z]

 , (4.1)

where each column can be considered as a set of samples of random variables [DX , DY , DZ], respec-
tively. A simple method for calculating the principal components is to build a correlation matrix
C = [rij] ∈ R3×3 where:

rij = corr(Di, Dj) =
cov(Di, Dj)√

var(Di)var(Dj)
≡

∑
k(dk[i]− µi)(dk[j]− µj)√∑

k(dk[i]− µi)2
∑

k(dk[j]− µj)2
, (4.2)

where µj gives the mean of the data contained in column j.
C is a symmetrical matrix that, in general, can be diagonalized: C = PΛP−1 with Λ being a

diagonal matrix whose elements are the variances or eigenvalues:

σ(C) = {λi | Cv = λiv ∀i = 1, 2, 3}, (4.3)

and P is the matrix whose columns are the eigen-vectors of C, that span the eigen-space associated
to each λi in the same order established by Λ. Hence, they form a kernel of the matrix (C− λiI):

P = [v1, v2, v3], vi ∈ ker(C− λiI) ∀i = 1, 2, 3. (4.4)

CHAPTER 4. RGB-D SIMILARITY 51

86420-2
X

-4-6-8

-8

-6

-4

-2

0

2

4

6

8

Y

-50

X
5

5

Y

0
-5

0

-8

-6

-4

-2

8

6

4

2

Z

Figure 4.3: As a demonstrative exercise, we sampled values X,Y ∼ U(−8, 8) and Z = 1
40
[X2+Y 2] to create a curved

surface similar to what RGB-D data could provide. Applying PCA over 100 samples, we obtained the eigen-vectors
drawn in the figure, with the length of their corresponding eigen-value. In this controlled case, the largest eigen-
vectors tend to align and live in the XY plane as the data has bigger variance along those dimensions. The smallest
variance occurs along Z, which results in the smallest eigen-vector as our approximation of the normal in the origin.

Up to this point, we take the smallest eigen-vector in terms of its eigen-value, here identified with
v0, which can be either v1, v2 or v3 when PCA is applied. This smallest eigen-vector will correspond
to our approximation of the surface normal. An illustration is given in Fig. 4.3.

A potential problem is the direction in which the normal should point. An easy test for verifying
and correcting these directions in Pi is to use the angle θ formed between the camera view-point
zc, translated to point pi, and the estimated normal npi . This angle must be between [π/2, π] for
it to be correctly oriented, since the camera should be in principle located in the exterior of the
shape. Hence, we can simply rely on the vectors inner product formula to calculate the value of
cos θ. We evaluate:

⟨zc − pi, npi⟩
∥zc − pi∥∥npi∥

= cos θ. (4.5)

If cos θ ≥ 0, we make npi = −npi . Otherwise, the normal npi is pointing towards the viewpoint,
which is correct. This test is done over all points pi ∈ Pi. In Fig. 4.4, we give an illustration of
this process.

Summing up, the computation of surface normals in the point-cloud is shown in Algorithm 5.

4.2.1 Point Feature Histogram (PFH)
Histogram-based descriptors are easy to compute and encode the neighborhood geometrical prop-
erties much better than other representations. Moreover, they are invariant to scale and pose
changes. In this section, we focus on the descriptor FPH as presented in [27] and [29].

Having the cloud Pi and its associated surface normals, we can obtain a generalization of the
mean surface curvature at a given point p using histograms: We make a count of the occurrences
of specific normal values, with the goal of providing an informative signature, invariant to the pose

CHAPTER 4. RGB-D SIMILARITY 52

Figure 4.4: Suppose that the surface in the previous figure belongs to a sphere that is being observed by a RGB-D
sensor right on its front. Hence, its viewpoint is aligned to the real normal illustrated as npA . The smallest eigen-
vector v0 (in pink) of the previous solution is oriented backwards. Using (4.5), we can correct the orientation of
this vector and repeat this process for every normal in the observed surface, up to every perpendicular such as npB ,
npD , npE , npF , which marks the end of observable surfaces. Any real surface whose normal is faced on the opposite
orientation up to perpendicular normals is considered as non-observable, such as npC .

Algorithm 5 Estimation of Surface Normals
Input: k - neighborhood size

zc - current view-point
r - sphere radius for neighbor search
Pi - set of 3D points within a detection di.

Output: [npi] ∀pi ∈ Pi.
1: for all pi in [pi]

k
1 do

2: if pi is missing its surface normal npi then
3: Find a k−neighborhood [pi]

k
1 of pi enclosed by a sphere of radius r around pi.

4: npi = v0 where v0 is the eigen-vector corresponding to the smallest eigen-value using PCA
over the k-neighborhood coordinates.

5: if ⟨zc−pi,npi ⟩
∥zc−pi∥ < 0 then

6: npi = −npi
7: return [npi] ∀pi ∈ Pi.

of the underlying surface and resistant to resolution loss during down-sampling.

A Point Feature Histogram (PFH) intends to encode local geometrical properties between a
point and its k-neighborhood and their estimated surface normals and mean curvature around the
point, using a multidimensional histogram of values. The idea is to take into account all the inter-
actions between the directions of the estimated normals.

For every pair of points pi and pj where j < i in the k-neighborhood of the query point pq,
with their estimated normals ni and nj , we select among them a source ps and a target pt, with
the source being the one having the smaller angle between the associated normal and the line

CHAPTER 4. RGB-D SIMILARITY 53

Figure 4.5: The coordinates systems around ns and nt allow to evaluate their relative orientation transform.

connecting the points:

IF
[
acos(⟨ni, pj−pi⟩) ≤ acos(⟨nj , pi−pj⟩)

]
THEN ps = pi, pt = pj ELSE ps = pj , pt = pi. (4.6)

Then, we define a fixed coordinate frame u, v, w with the origin at source point as shown in Figure
4.5 to compute the relative difference between their associated normals ns and nt. Using this
coordinate system, the difference between both neighborhoods can be expressed as a set of angular
features as follows:

d = ∥pt − ps∥2, (4.7)
fα = v · nt, (4.8)

fϕ = u · pt − ps
d

, (4.9)

fθ = arctan(w · nt , u · nt). (4.10)

The four features are a measure of the angles between the points normals and the distance vector
between them. Because fα and fϕ are dot products between normalized vectors, they are in fact
the cosines of the angles α and ϕ between the 3D vectors, thus their value is between −1 and 1,
and 0 if they are perpendicular. Similarly, θ is the arctangent of the angle that nt forms with w if
projected on the plane defined by u = nt and w, so its value is between −π and +π, and 0 if they
are parallel.

The 4-uple < fα, fψ, fθ, d > is computed for each pair of points in the k-neighborhood (hence,
for a total of k(k−1)

2 pairs), hence reducing the 12 (= 4 × 3) values of 3D positions with normal
information of any pair to only 4. The set of all quadruplets is then binned into a histogram spe-
cific for the query point. The binning process divides each feature value range into b subdivisions
and counts the number of occurrences in each sub-interval. Since three out of the four features
presented above are a measure of the angles between normals (or their cosines), their values can be
easily normalized within the same interval. In Fig. 4.5, we depict the angles defined above.

A binning example is to divide each feature interval into the same number of equal parts, and
therefore create a histogram with b4 bins in a fully correlated space. In this space, an histogram
bit increment corresponds to a point having certain values for all its 4 features. In some cases,
the fourth feature d does not have an extreme significance for 2.5D data-sets, usually acquired

CHAPTER 4. RGB-D SIMILARITY 54

in robotics, as the distance between neighboring points increases with the viewpoint (it is not an
invariant feature). Therefore, omitting d has proven to be beneficial, and this lets us with b3-bins
histograms.

Most implementations of PFH use a histogram of b3 bins. The PFH descriptor uses b = 5,
which gives a histogram of 125 bins.

Figure 4.6: On the left, evaluation of the normalized FPFH histogram for the query point (in green) in the sample
point-cloud on the right, using 33 bins to encode a fingerprint of the orientations of normals around the query point.

4.2.2 Fast Point Feature Histogram (FPFH)
The main disadvantage of using PFH lies on its complexity: theoretically, for a given point-cloud
Pi with nd = size(Pi) points and when considering all the possible pairs, the complexity is O(ndk

2),
where k is the number of neighbors for each point pi in Pi. The computation of PFH in real-time
or near real-time applications with dense neighborhoods turns into a notorious bottleneck.

A simplification of PFH, called Fast Point Feature Histograms [26], illustrated in Fig. 4.6,
reduces the computational complexity to O(ndk), while keeping the discriminative qualities of
PFH. To evaluate a FPFH, we follow the steps:

1. For each query point pq, a set of tuples fα, fψ, fθ between pq and its direct neighbors are
computed as in Equation (4.7). As opposed to using a fully connected graph (all pairs),
here only k pairs values are considered. Creating a histogram with these data is called the
Simplified Point Feature Histogram (SPFH).

CHAPTER 4. RGB-D SIMILARITY 55

2. Then, for each point in the previous step, the k neighborhood is re-determined, and the
neighboring SPFH values are used to weight the final FPFH histogram of pq as follows:

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

1

ωi
· SPFH(pi), (4.11)

where ωi represents a distance between the query point pq and a neighbor point pi in some
given metric space, thus scoring the (pq, pi) pair, but it could just as well be selected as
a different measure, if necessary. Figure 4.7 illustrates the influence region diagram for a
k-neighborhood set centered at pq.

2

2
2

2

2 2 2

2

Figure 4.7: Influence region diagram for a query point pq with connections only to its direct k neighbors (gray edges),
within a 3D sphere of radius r. Each direct neighbor is connected to its own neighbors and the resulting SFPH
histograms are weighted together with the histogram of the query point to form the FPFH. Connections in gray get
a weight of 2 as they contribute twice as much in the final histogram.

Another important difference between PFH and FPFH is the binning, since PFH was using b3
bins. The problem of this is that many of the bins end up being empty as this cube in 3 dimensions
is a fully correlated feature space, leading to redundancy in the histogram space and not helping
in differentiating histograms. To avoid this, each feature is processed on separate histograms and
then concatenated in a single one. Here we use 33 bins, where the first 11 bins belong to α, the
next 11 to ψ and the last 11 to θ.

Note that the classic PFH models a precisely determined surface around pq, while FPFH in-
cludes additional point pairs outside the sphere of radius r, though at most 2r, and due to the
re-weighting scheme, FPFH recaptures some of the neighboring value pairs.

Just as PFH, Fast Feature Histograms are unaffected by the surface orientation, and they form
a local descriptor for points in Pi. Considering a person in movement, the captured geometry by
this descriptor will tend to indicate surfaces to be mostly shaped as cylinders, and by itself, it may

CHAPTER 4. RGB-D SIMILARITY 56

not help that much in differentiating humans, unless they have uncommon body shapes or are even
carrying specific objects. To make the FPFH descriptor less local, we also evaluate an average,
overall histogram as will be explained later.

4.3 Measuring color and appearance
Settling with FPFH for describing the local geometry of our targets, we still need to take into
account the colors observed on these targets, which should be our best bet for differentiating
detections of a same target from another one, as geometry alone won’t be enough. Considering
that our input data is a point-cloud Pi and that we need a cheap strategy in terms of computing,
we will be using color histograms. Thanks to depth data combined with detections, we do not need
to worry about background removal as in classic 2D histogram evaluation, for all the points inside
the bounding cylinder should be already free1 of pixels that do not belong to the target, thanks to
depth data used during re-projection.

4.3.1 HSV Color space
Working directly with RGB data is usually not a good idea in terms of comparing how a color
is similar to another. In the field of computer vision, color representations such as HSV and
CIELAB are preferred for they are designed to make more sense of the distance when comparing
two different colors. We chose the HSV color representation for its simplicity and easy calculation.
HSV stands for hue (in degrees), saturation and value (both from 0 to 1, and re-scaled depending
on the application), and the color transformation from RGB is performed as:

MAX = max(R,G,B) (4.12)
MIN = min(R,G,B) (4.13)

H =



60◦ × G−B
MAX−MIN + 0◦ if MAX=MIN

MAX=R
G≥R

60◦ × G−B
MAX−MIN + 360◦ if MAX=R

G<B

60◦ × B−R
MAX−MIN + 120◦ if MAX=G

60◦ × R−G
MAX−MIN + 240◦ if MAX=B

undefined otherwise

(4.14)

S =

{
0 if MAX = 0

1− MIN
MAX otherwise.

(4.15)

V =MAX. (4.16)

Using the HSV color-space, comparing a pair of color values yields a distance that is more related
on how similar are the colors to human vision, which does not happen with the RGB color space,
where the jump in the values are in general not proportional to the eye perception.

1This is true up to some extent, since depth sensors provide certain precision, when taking color and depth
images, removing distortion and registering images for a perfect match of RGB and D pairs still leaves some pixels
incorrectly falling on the wrong 3D position in the world, specially for pixels further from the center of the image.

CHAPTER 4. RGB-D SIMILARITY 57

4.3.2 Color Histogram
Color histograms are maybe the most classic and easiest technique used for object classification
and identification in computer vision. However, they are not so reliable for such applications, as
color by itself is just used as a frequency and many objects could get the same color histogram,
since they do not account for how colors are physically located.

0

1

2

3

4

5

6

7

Figure 4.8: Hue and Saturation histograms using the color information stored at points that fall inside bin #3 (green
highlight). The binning is done by partitioning the point-cloud Pi by its detection height, dividing it into 8 equally-
sized bins along the z axis. For points inside each bin, the color histograms are extracted and each point FPFH
histogram is averaged.

In spite of its drawbacks, a motivation for using this weak appearance measure, apart of its low
computing complexity, is the advantage given by RGB-D data, as background elimination in targets
is freely granted and as classification with color histograms typically assumes the background to be
constant or previously removed for an efficient enough classification. We are able to use RGB data
in our point-cloud, turn them to HSV values and build a histogram, though, for making it more
useful, we also introduce some information about the spatial distribution of the colors by using a
binning in Pi as will be explained below.

4.4 Histogram Comparison and Metrics
It is clear now how the geometry in point-clouds is encoded within the histograms that are built.
For geometry, we have a FPFH per p ∈ Pi and we have seen that they describe only a small patch
(p’s neighborhood). Also, for color, we have explained how color histograms are a rather global de-
scriptor that could fail because color positioning does not play part in making the descriptor more

CHAPTER 4. RGB-D SIMILARITY 58

discriminant. Note that both types of histograms are agnostic of the target orientation and posi-
tion, so we decided to build average histograms that are spatially restricted to a binning that did
not require knowledge on the target actual orientation or position of its limbs. We use a horizontal
binning along the z axis of the target, since human movement occurs more on the plane rather
than along its height. We are able to restrict the position of the points in the target to a disk, as
shown in Figure 4.8, hence dividing the point-cloud into 8 pieces: {P0

i ,P1
i , · · · ,P7

i }. Each bin b will
then have a µ−FPFH[Pbi], a H-hist(Pbi) and S-hist(Pbi) histogram, to encode global information of
the point-cloud into 24 histograms so that we can describe the whole target detection di at frame ti.

Finally, we need to define a way to evaluate how similar are two detection’s point-clouds. Hav-
ing them described by 24 histograms each, we need a way to measure the distance between any pair
of histograms. We review different distance metrics for histograms. For simplicity we will refer to
a pair of histograms G and H, with bin values [gi]

b
1 and [hi]

b
1 in the following formulas.

The most common distances are the Manhattan (L1) and Euclidean (L2) norms:

Manhattan(L1) =
b∑
i=1

|gi − hi| Euclidean(L2) =

√√√√ b∑
i=1

(gi − hi)2. (4.17)

Another distance that is similar to the L2 norm, but more sensitive to differences in smaller
bins, is the Jeffries-Matusita(JM) metric, also known as Hellinger distance:

Jeffries-Matusita (JM) =

√√√√ b∑
i=1

(
√
gi −

√
hi)2. (4.18)

The Bhattacharyya distance is widely used in statistics to measure the statistical separability
of spectral classes:

Battacharyya (B) = − ln
b∑
i=1

√
gi − hi. (4.19)

Other popular measures for histogram matching in literature are Chi-Square(χ2) divergence and
the Kullback-Leibler (KL) divergence:

Chi-Square(χ2) =
b∑
i=1

(gi − hi)2

gi + hi
KL divergence =

b∑
i=1

(gi − hi) ln
gi
hi
. (4.20)

Findings from [29] indicate that the KL divergence gives good results for computing differences
between histograms. To make use of the KL-divergence, denoted as DKL(G,H), we first need to
apply a strategy since it gets undefined when hi = 0.

KL measures the divergence between probability distributions. If we think of histograms as
discrete distributions then

∑b
i=1 gi = 1 and

∑b
i=1 hi = 1. Both P and Q have the same “outcomes”

which are the binning and frequencies obtained, but some end up being 0, which could be inter-
preted as an “impossible” outcome. If for any gi to be measured against a corresponding hi, the

CHAPTER 4. RGB-D SIMILARITY 59

first is possible and the second is impossible, it means that the distributions are different, hence
the divergence is infinite.

To avoid these statistical interpretations to occur in our context, and since it is valid for a
histogram to have many zeroes, we derive a valid probability distribution by smoothing the his-
tograms. An easy technique we use is called absolute discounting, that gives every impossible event
a small chance proportional to how many events like this need to become possible, and removing
those odds from events that weren’t impossible. Details can be seen on Algorithm 6.

Algorithm 6 Absolute discounting

Input: G = {gi}b1 - discrete distribution (histogram)
ϵ - a small constant, like 0.00001.

Output: G′ - smoothed distribution (histogram).
1: G′ = G
2: z = size({gi | gi = 0}b1)
3: if z > 0 then
4: for all gi in {gi}b1 do
5: if gi = 0 then
6: g′i = ϵ
7: else
8: g′i = gi − ϵ

z
9: return G′.

4.4.1 Descriptor design
For each bin in the 8-binned bounding cylinder, we calculate the average FPFH histogram, the
H-histogram and the S-histogram. Our overall appearance descriptor is a set of 24 histograms
that will be the numeric representation of our original point-cloud. Using the Kullback-Leibler
divergence, we measure the distances between each histogram, which results in a value from 0 to
infinity, where 0 indicates a total match and big numbers indicate a mismatch. This results in a
set of 24 distances, which are finally weighted and averaged into a single value:

a′R(di, dj) = ρ
∑7

b=0DKL(µ− FPFH(Pbi), µ− FPFH(Pbj))+
λ
∑7

b=0DKL(H-hist(Pbi),H-hist(Pbj))+
ν
∑7

b=0DKL(S-hist(Pbi),S-hist(Pbj))
.

The parameters (ρ, λ, ν) are constants that sum 1.0 for us to weight the importance of the param-
eters. In practice, we use the values (0.3, 0.3, 0.3). Do note that a′R takes its values in the range
[0,∞). Hence, to change its range to [1,−1] for using it in our RGB-D NOMT framework, we just
evaluate:

aR(di, dj) = 2 ∗ exp{−a′R(di, dj)} − 1, (4.21)

which we use instead of aA.

60

Chapter 5

Developed Software

In this chapter, we give technical details about the implementation of the algorithms we described
in the previous chapters.

5.1 Overview
A tracking system, on its simplest form and core, consists on the following elements:

• INPUT: A set of detections in time. A detection is modelled as a data structure containing
an id, a time-stamp, and since we work with RGB-D data, we also include the 3D coordi-
nates of the points inside the detected bounding-box, with their corresponding colors. This
information is provided by a Detector software module, which might work with a different
data structure for detections, so we might need to perform some extra pre-processing for its
translation into a format compatible with the tracker.

• TRACKER: As the main component of the system, for each set of detections at a given
time-stamp, it performs data association to generate the output by using the algorithms we
have described in this thesis.

• OUTPUT: A set of labels assigned to the detections. This way, each detection that belongs
to the same individual has the same tracked target label. This information could be used
in many applications, which most commonly is the process of predicting trajectories, the
analysis of group motion and the generation of subsequent actions.

All of these elements have been built to operate on top of the Robotics Operative System [25]
using the C++ Programming Language. Software in the form of ROS modules are able to work
independently of the detections provider and of the tracking consumer software.

CHAPTER 5. DEVELOPED SOFTWARE 61

5.2 About ROS
The Robotics Operative System (ROS) [25] is a collection of open-source C++ and Python imple-
mentations of the most popular robotics algorithms, libraries and tools. Its aim is to ease the task of
creating complex and robust robot behaviors and platforms. Achieving such a construction is hard,
even for “simple” things like a single camera acquisition module, as it needs to send the images to
a computer and this data transfer by itself brings difficulties like maintaining the camera models,
firmwares, networking properties and formats needed to receive and to understand the data. Also
the data load, the varying frequencies at which the camera produces images and the rate at which
the computer can process incoming images are variables to deal with. Now, most systems require
more than one camera and involve more than one computer (they work as distributed networks).
Modern systems must be capable to cope with these heterogeneous schemes and pipeline the results
to perform actions such as detection, tracking, prediction and navigation.

ROS operates just like an operative system, with nodes (processes) and topics (exchange of data
through ports and sockets). This design allows for realistic simulations since the nodes work in a
standalone fashion and operate at their own frequencies, meaning that data consumption and gen-
eration might occur completely asynchronously. The ROS robustness comes from the possibility of
running independent nodes that wait for incoming data, even if the node responsible of producing
such data is down, has not been initiated yet or fails during its execution. This way, the system
can keep working and can restart its modules in case of failure.

For further understanding of the concepts used in this chapter, we give the following definitions,
which are important in the context of ROS:

• roscore: As the main process of ROS, it represents the kernel of the operative system, since
it manages the ports and the running processes and handles the topics and data exchange
through local and remote sockets. It keeps a set of global parameters and must always be
running for the correct execution of the other processes.

• nodes: A term used for any executable program that runs under the control of roscore. It
can consume and output data through topics.

• topic: A buffer or pool of data that is referred by this name or “topic”. Nodes might consume
this queue of data by a process called subscription, and might post data into it by a process
called publishing. Data is formatted as a text, called a message.

• messages: It is a common name for any data structure that defines a text representation for
the data, with an automatic conversion to object code in C++ or Python. It allows for an
easy exchange of data between nodes and topics.

• launch: Since most of the time, we need to run multiple nodes and set up a pipeline of topics
for data exchange, launch files are YAML-formatted files that give an easy way to define a
set of calls, run-time parameters and variables for initializing and running a whole system.
In this thesis, we have written launch files for easy testing of experiments and data-sets.

CHAPTER 5. DEVELOPED SOFTWARE 62

• modules & packages: A ROS code project that provides definitions of messages, executable
nodes, launch files, libraries and dependencies. It can be compiled using the ROS compiler:
“catkin”.

5.3 Simulating RGB-D Detections
In order to evaluate our tracking algorithms, we need to process the RGB-D data within a dataset
and read its ground-truth detections so that we can create repeatable experiments and evaluate
numerically the performance of these algorithms.

We have built ROS utilities to process pairs of RGB and depth images, to perform the rec-
tification of these images (i.e. to be able to unambiguously associate a depth pixel with a RGB
pixel), to perform registration and point-cloud reconstruction, along with reading and displaying
ground-truth detections stored in datasets in the form of image sequences and annotations.

In order to turn datasets into what the actual Kinect Sensor provides under the ROS System,
we have created a ROS node that we called dataset_publisher, with its corresponding launch files
for testing both the EPFL and the Spinello datasets. To come to an understanding of what is
needed for the construction of the INPUT of our Tracking system, we need to publish the following
topics:

• /depth_registered/points: The set of 3D points expressed in the world frame, with their
associated RGB information. Corresponding with Dti at time ti, this is the complete observed
scene, with a desired level of density of points, through down-sampling. If many depth sensors
are used, this should correspond to the merged views of all points now on a single coordinate
system.

• /rgbd/detections: The 3D locations at which the targets were detected, also expressed in
the world frame, corresponding to the set Dti . Agnostic of how detections were made, we
place our bounding box using this information. Again, when many sensors are involved, the
detections made in their respective viewpoints are combined to match the newly given depth
images, so we can successfully obtain each di target cloud Pi.

• /tf: Transforms topic. This is a special topic in ROS, which is used for defining every
coordinate system in the form of a tree: a root coordinate frame would be tf_world, and every
sensor has a tf_optical_frame from which the z axis is oriented as the camera’s viewpoint
direction. At first, every detection and re-projected points will live in the 3D world of the
camera frame, and the tf tool library provides an easy way to transform coordinates from a
coordinate system to another.

In order to obtain the point cloud and detections input streams, depending on how much pre-
processed is the data, coming either from read data-sets or from direct sensor output, ROS provides
many pre-build “nodelets” that help in turning the information to the following steps needed to
get world frame data as we need it. Mainly, these are:

CHAPTER 5. DEVELOPED SOFTWARE 63

• image_proc. The ROS module that removes the geometrical distortion from the raw camera
stream, and that is also able to apply rectification, resizing and other color transformations,
if needed.

• depth_image_proc. The ROS module that provides the basic processing for depth images,
such as registration, re-projection, to create the 3D RGB point clouds.

• camera_info topics. This message contains the calibration matrix data, the camera distortion
model and the projection matrices. It is a key element at each step in the pre-processing of
the images and is used with the detector and the tracking software.

A representation of this pipeline is shown in Figure 5.1

Figure 5.1: A ROS Graph with nodes as ovals and topics as rectangles. It shows two situations in which data can be
collected. First, using a physical depth sensor which has its own data output formats and its corresponding software
drivers. Most sensors are supported on the ROS platform through specialized nodes. Another case is when the
data is read from files, with annotations on detections, used camera configurations and coordinate systems involved.
Sometimes the data is stored without any kind of needed pre-processing such as the images un-distortion, rectification
or registration, which are key steps for most computer vision applications.

5.4 Multiple Sensor Support
There is an ever growing need for using more than one sensor. Single sensors have limitations
in their range that make it more useful to use data collected with several RGB-D sensors, each
providing depth and color info, in the coordinate system around the sensor. Also, consider the
fact that for each sensor, the stream of data is broadcast at certain frequencies and generates a
large load of incoming data that may easily saturate the receiver host hardware. Having more than
one sensor rises the need to perform aggregation of incoming data to prepare it for the Tracking
software.

CHAPTER 5. DEVELOPED SOFTWARE 64

Figure 5.2: A ROS Graph with nodes as ovals and topics as rectangles, considering the input of N sensors,
each providing data in terms of their optical frame and each with their own resolutions and frequencies. The
ros_pcl_merger_node subscribes to each of their outputs: point clouds and detections, and by transforming them
on to a common world frame, the point-cloud is sub-sampled to reduce the computing burden. Then, detections
are synchronized by approximate time to match the point clouds and the positions in which persons where de-
tected. rgbd_nomt_tracker is the tracking process that matches detections to consistent trajectories in the 3D space,
outputting a special type of message that is visualized on RViz, the ROS data visualization tool.

ROS allows an easy integration of many models and brands of sensors, and a transparent
reception of the input RGB-D data through ROS topics. We have built a simple ROS node that
depends on the usage of the PCL Library [28] for usage with incoming point-clouds. This node
down-samples and transforms points from their original sensor coordinate system to a main world
frame in which the tracker operates. The ros_pcl_merger_node node requires a subscription to
the corresponding camera coordinate systems in order to calculate the transformation of the points
into the world frame. A depiction of this pipeline is shown on Figure 5.2. The Tracker runs here
under the name rgbd_nomt_tracker and outputs its results in the form of associated trajectories
and the current target point-cloud for visualization and possible further operations.

5.5 Tracking Pipeline
For inspiration on the design of our system and pipeline, we took a look at the Spencer Multi-Modal
People Detection & Tracking Framework from [17]. It also contains visualization tools as plug-ins
for ROS’s RViz that are helpful for passing data between the ROS nodes and for visualizing the
tracking experiments. Particularly, we use the following items:

• spencer_tracking_msgs. A Ros module that contains definitions of messages DetectedPerson,
which contain a detection id, its score or confidence and its 3D pose, and TrackedPerson, which
has a target id, flags for current status, age and 3D pose history (observed trajectory).

• spencer_tracking_rviz_plugin. It has meshes and models for the visualization of the Detect-
edPerson objects, in the form of bounding boxes, even if in the actual processing of the tracker,

CHAPTER 5. DEVELOPED SOFTWARE 65

detections are treated as bounding cylinders, as explained in Chapter 2. Also, TrackedPerson
messages can be visualized as a human figure positioned on the latest position of a tracked
target, and their pose history can be used to visualize trajectories.

Our tracking software operates on a sliding window and begins its execution with a set value
for the window size τ , in seconds, which is used to separate incoming detections in the form of
DetectedPersons messages over frames, by looking at their timestamps. It receives the first set
of detections Dt1

t0
= {d1, d2, ..., dk}. The Tracker assumes that detections within this set might

not have the exact same time-stamp, only that they lie in the temporal range [t0, t1]. Also, on
subsequent calls or iterations, the tracker keeps receiving detection sets Dt2

t1
, ..., D

tj
ti
, Dtk

tj
. These

detection sets are stored in memory using an internal format PCLDetections that, in addition to
pose, score and id, keeps a reference to the extracted point-cloud inside the bounding-cylinder and
to other PCL related structures.

It should be noted that, sometimes, due to problems in the communication channels between
the Detection process and the Tracking process, like network latency and bandwidth saturation,
the received messages may arrive un-sorted along their time-stamp. By essence, window-based
trackers can be more resistant to this situation: if messages arrive late but within the time window
period, they can be still used for generating new hypothesis and can be then integrated with the
final trajectory.

(
((

((
((

(((

((((
((

((

Figure 5.3: Depiction of a possible set of the first 9 iterations, showing the incoming detections given as groups of
varying size. Each message is represented by parentheses, sometimes received with older timestamps. The Tracker
automatically manages frames by sorting distinct time-stamps and assigning detections with the exact same t. The
Tracker also keeps the record of which frames fall inside or outside the sliding window (grayed out). By design, older
detections are only taken into account by the tracking as long as they fall inside the sliding window. Any trajectory
outside it is considered as final and untouchable.

The Tracker does not begin the data association process until the sliding window is full (i.e., τ
seconds have passed). Once this is accomplished, the Tracker begins with Tracklet and Hypotheses
generation, Data Association and lastly Target Augmentation and clean up for the next iteration.

Particularly for Data Association, as mentioned in Chapter 3, we build a graph model and
perform its connected component analysis using the C++ Boost Graph Library [32]. Then, we
solve the inference problem using the Joint Tree algorithm over all the components with more than
one node, for which we also used the libDAI C++ library [21].

CHAPTER 5. DEVELOPED SOFTWARE 66

Detector

Reprojection

RGB-D Sensor
Color Image Depth Image

Detections

nomt::Tracker

ROSInterface

nomt::PCLDetections

Trajectories

3D Point Cloud

nomt::Associations
ROSConversions

sensor_msgs::PointCloud2spencer_tracking_msgs::DetectedPersons

spencer_tracking_msgs::TrackedPersons

ROSConversions

Figure 5.4: Our NOMT Library is used on top of the ROSInterface, as a node. Using the reprojections of 3D point
clouds and the detections 3D positions, it translates them into instances of the Detection class, as an input. Each
iteration of the Tracker outputs a group of Associations, which contains the resulting Targets labels and the observed
trajectories.

5.6 The NOMT Library
We have created an easy-to-use general purpose tracking software designed as a ROS Package called
nomt. It can be used either as a dependence for other ROS Packages or as a standalone shared
library called libnomt.so. It includes the following classes:

• nomt::Tracker: The main object, designed using the singleton and factory programming pat-
tern. This object is designed to be the only one responsible of creating each instance of the
other mentioned classes. Each of them are stored as a list of pointers:

– Dt
t0 (m_tracks) is a list of pointers to each Track, from t0 to t.

– T t (m_T) is the list of all Tracklets created at time t. These objects will be destroyed
and recreated at every iteration, except for the Tracklets referenced by Associations.

– Ht
1 (m_H) is the list of all Hypotheses created at time t. These objects will be destroyed

and recreated at every iteration.
– AM1 (m_A) is the list of all Associations, which are the output of the Tracking software:

associations between tracks in the trajectory [t0, t− τ] and Tracklet [t− τ, t].

CHAPTER 5. DEVELOPED SOFTWARE 67

This class is intended to be used, through inheritance, to define new Tracking strategies,
without worrying too much about frame and detection management, sliding window control
and target augmentation. This leaves developers with the sole task of implementing the Data
Association step. We provide our own implementation, named RGBDTracker, as a class that
performs data association as presented in this document.

• nomt::Detection: This is the representation of a detection made by the detector. For RGB-D
data, it includes its 3D coordinates, the down-sampled point-cloud inside the bounding box
and any other useful information that could be given by the Detector that could help to
differentiate a Detection from another and measure their similarity.

• nomt::Track: This is the smallest item in the Tracking software, intended to keep a smart
pointer to its associated Detection and keep a unique id. There is only one track for each
Detection, i.e., this it is a one-to-one relationship. Most operations are done through this
structure in order to avoid the movement of the huge load of memory that a Detection could
represent. A Track represents one point with its associated info, and, when grouped in an
ordered sequence, it becomes a trajectory.

• nomt::Tracklet: A Tracklet is a list of ordered Tracks, much similar to the concept of trajec-
tory. The difference is that, whilst we call trajectory the final path that a tracked target has
been walking on in the frames [t0, t − τ), a Tracklet is still bound to modify its ordered set
of Tracks since they are still in the frames [t − τ, t]. This allows for the Tracker to correct
mistakes. The length of the Tracklets is limited to the size (in seconds) of the sliding window.
Also, a Tracklet keeps a count on how many times it is referenced by a Hypothesis.

• nomt::Hypothesis: This structure keeps a reference to a Tracklet, and this reference might
be shared among other Hypotheses. The difference is that a Hypotheses might belong to
different objectives or targets, meaning that it has not been decided to which Target the
Tracklet will be assigned to.

• nomt::Association: A representation of the Target, that keeps the unique ID and the final
trajectory of the same individual. Also, it keeps a pointer to the last associated Tracklet,
completing the trajectory from t0 to t.

5.7 ROS Interface
This is a package that allows the separation of the nomt library and the ROS framework, as it joins
and converts the ROS messages and initiates ROS publishers and subscribers that send data in the
right format to the Tracker class.

It comes with the following classes:

• nomt::ROSInterface: The main program or ROS executable node, that initializes and reads
ROS Params from the ROS Parameter Server, creates subscriptions to the input topics and
to the publishers for output topics. Then, it performs calls on the nomt::ROSConversions
instance to translate ROS Messages to feed the Tracker and it gets the results for their
publishing.

CHAPTER 5. DEVELOPED SOFTWARE 68

• nomt::ROSConversions: A class dedicated solely to the transformation of formats between
ROS Messages and the classes of the NOMT Library. It does mainly the following transforms:

– spencer_tracking_msgs::DetectedPersons, which are mainly the detections 3D coordi-
nates, and sensor_msgs::PointCloud2, which are the RGB-D data collected, to nomt::-
RGBDDetections for generating the input at each cycle of the Tracker instance.

– nomt::Associations to spencer_tracking_msgs::TrackedPersons, which is the main out-
put of the Tracker instance.

– tf::TransformListener, to collect information about the coordinate systems world and
odom. Our current implementation assumes that the data comes already represented in
the world frame, as given by the ros_pcl_merger_node.

– Many ROS Publishers for visualization on RViz like Tracklets, Downsampled Point
Clouds and statistics for benchmarking.

• nomt::Params: a small utility class for handling data from the ROS Parameter Server or
those given on launch files.

• nomt::Config: All the constants needed for publishers, subscribers and for the operation of
the software, like topic names and queue sizes are hard-coded inside this class to provide
default values that can be overridden easily through ROS Parameters on launch.

5.8 Implementing Trackers
The Tracker class was designed to be used with inheritance since it already manages the tasks
of processing Detections, arranging Frames and managing common global variables in the Sliding
Window. The code is well documented and structured as a ROS Module, containing the structure
shown in Figure 5.5.

When creating a new Tracker, the following steps should be taken care of:

1. Extending from the Tracker class. Trackers are intended to be placed under the trackers
folder, for other implementations. This grants access to factory methods needed to create
Tracks, Tracklets, Hypotheses and Associations. Tracklets and Hypotheses are cleaned up
automatically on each call of the processCycle method.

2. Overriding the dataAssociation method: when in this task, the programmer has access to
most elements of the NOMT Library. What should be explicitly done at the end of this
method is to populate the x_state variable, which indicates the final optimal selection of
hypothesis H(xm)

t per target A∗t−1
m , because the Tracker will use it to automatically perform

Target Augmentation.

• Though the Tracker does not care on how the Data Association is made, it will manage
automatically any Tracklet, Hypothesis and Association created using the corresponding
factory creation methods. If, for instance, you choose to solve the data association
problem using an approach agnostic of the concept of Tracklet and Hypothesis, you could
just create a single Tracklet, a single Hypothesis and the x_state variable indicating to
pick the only hypothesis, which is the one your method came up with.

CHAPTER 5. DEVELOPED SOFTWARE 69

Figure 5.5: Project folder cimat_people_tracking contains every ROS module used for the NOMT Tracking System.
In particular, the nomt module contains all the class definitions inside the src/nomt/base directory. It is designed
to be used as a dependency or also as a standalone library (libnomt.so) for other modules, such as the ros_nomt
module, which has the interfacing classes described earlier for receiving incoming data and publishing results.

3. Create the main ROS executable node like the one provided in ros_nomt_node.cpp, which
instantiates a ROSInterface and the custom Tracker objects. To correctly start the cycle, it
is needed to call the connect and spin methods.

5.9 Execution & Visualization
An in-depth guide on how to install ROS, create a workspace and check out code for testing
cimat_people_tracking package is given. We provide documentation on a README.md at project’s
root folder. After the code and the environment are set up in place, we make sure the ROS master
is up by running:

$ roscore

For the quick execution of an experiment, we created in the folder cimat_people_tracking_launch/-
launch/datasets/ the files publish_epfl_lab.launch and publish_spinello_mensa.launch. Both files
start the execution of the required nodes depicted in Figures 5.1 and 5.2, so that simulated input
data is ready to be used by the RGBDTracker. Launch files can be ran by using:

$ roslaunch cimat_people_tracking [des i red dataset] . launch

CHAPTER 5. DEVELOPED SOFTWARE 70

The dataset files need to be uncompressed in the folder cimat_people_tracking/datasets/ to be
found by the provided launch files, though changing to absolute paths is also possible. Files can
be downloaded from either from the official web-sites or as backup files at our code repository.

A successful execution of the launch files will pop up ROS’s Vizualization Tool (RViz), a GUI
with visual objects already set up, including the Spencer People Tracking RViz Plugins. The latter
provides a way to visualize ROS messages from the spencer_people_tracking package, which is the
format used for detections and results.

Note that executing directly from datasets requires expensive operations for the processor, even
for keeping a low frame-rate of 15Hz. Both launch files also run the ros_pcl_merger_node to
transform point-clouds and detections into the world frame and perform down-sampling, which
reduces burden for the tracker node. For testing purposes, we have also included additional launch
files that operate by playing a ROS bag file, which is a compacted version of all the data streams
that were generated using the previous launch files. This allows for already processed data to be
used instead of live re-projection of the points.

Once the Tracker input topics /rgbd/detections and /depth_registered/points are getting data
published by the pcl_merger_node, we can begin the execution of the tracker itself by using:

$ roslaunch cimat_people_tracking pcl_tracker_simulation . launch

Doing this begins the recollection of DetectedPersons and downsampled-aggregated depth images,
up to τ seconds defined for the sliding window, which begins by creating and publishing Tracked-
Persons, now visible on RViz. We have also included some PCL Viewers for histogram and point
normal visualization that will be re-drawn on each iteration, for us to visually confirm what the
Tracker is taking in for its processing.

For consumption of the Tracker results, a conversion between TrackedPersons and the desired
format needs to be provided. Again, if the topic name needs to be changed from /rgbd/tracks, a
remap of Topic names is always possible, for existing and further piping of the nodes.

71

Chapter 6

Obtained Results

In this chapter, we perform an evaluation of our tracking system. We first describe the methodology
we followed for the evaluation and then we present results we obtained on standard datasets.

6.1 Evaluation Methodology
In [20], an extensive discussion is presented on how to measure and compare the results of any
tracker against the ones of another. This is a very challenging task that should contemplate a lot
of aspects:

• Tracking approach: the multiple parameters and considerations that are taken by the tracker
itself, requiring training or not, adjusting some models and parameters depending on the
situation it is getting tested under, etc. In short, everything that could lead to better or
worse results. Also, tracking-by-detection methods rely on the output of an object detector,
meaning that a better detector will most likely yield better tracking results. So it is important
that the same precise input is given to different trackers if we want to compare them.

• Dataset composition: there is not always a consensus on what the “correct” solution should
look like and, for some applications, a rough estimate is enough to release datasets for testing
and some goals are achieved more easily than others. This leads to problems like erroneous
and ambiguous ground truth annotations. Also, in our specific case, due to the relative
novelty of RGB-D sensors, we have observed a lack of standard datasets and we did not find
many trackers to compare with.

• Standards and bench-marking: Over the years, new metrics, standards, evaluation protocols
and many possible benchmark strategies have been proposed. Each one has been designed to
fairly compare tracking implementations, even with the already mentioned problems.

When evaluating the performance of multi-person tracker systems, the most widely used eval-
uation system is the standard named CLEAR MOT [3], which provides the definitions of some
metrics that can measure how good is the tracking when applied to a known public dataset. These
metrics are designed to make it fair to compare an implementation to another.

CHAPTER 6. OBTAINED RESULTS 72

6.1.1 CLEAR MOT
To understand this standard, an over-generalization of what any tracker is expected to do, regardless
of its approach, is done by defining the following:

• An object oi is any real target that appears in the video sequence and that should be subject
to tracking, like a ground-truth. This means that, during its lifespan, the tracker should be
yielding a result for it at every moment. In our context, this corresponds to the set of all
ground truth detections with their track ids.

• For every oi, the tracker should have an hypothesis hi (with position, and track id, which
is the label given to that particular object), making a mapping (oi, hi). In our context, this
corresponds to tracks grouped by the association set At.

• At any frame in time t, for every visible object, a ground-truth mapping set Mt = {(oi, hi)}
should be given by the tracker as a result if the tracking is perfectly performed. When the
tracker yields a different mapping than the ground truth, it is said that errors have occurred.

CLEAR MOT makes the following measurements, which we have described along with our consid-
erations in the context of our approach:

• False Positives (FP). When the tracker yields a hypothesis hi for an oi that is not present
in the ground truth. The pairings (oi, hi) are done by checking whether the location of hi is
close enough to an oi, up to a distance threshold. FP occur when no oi is found under these
criteria. Due to the design of our RGB-D NOMT which operates by just assigning labels to
safe detections, without predicting or creating additional positions, we expect zero mistake
of this kind. The lower this count, the better.

• False Negatives (FN). Also called misses, it corresponds to cases when the tracker yields no
hi for an oi present in the ground truth data, i.e. when it returned a mapping (oi, ∅). In
our tracking strategy, we may get FNs on detections as long as they remain inside the sliding
window and have not yet been associated with clean tracks outside the sliding window. Once
a trajectory gets past the sliding window, the tracker associates all tracks oi that were false
negatives to some hypothesis hi, fixing the mistake and getting the FN count down.

• Identity Switches (IDS). When the tracker sees the same oi in consecutive frames, but changes
its identity from hi to hj , indicating that the identity was discarded in favor of another. This
could happen immediately in consecutive frames or could also occur when there is a separation
in time provoked by false positives and negatives.

• Mostly Tracked (MT). The ratio of trajectories that have been given an hypothesis hi for at
least 80% of their objects oi in their lifespan. For instance, if a sequence of detections has 100
ground truth detections for oi, and 80 of them get an hypothesis, regardless of the identity
switches, it is considered to be mostly tracked. Hence MT = #mostly tracked trajectories

#ground truth trajectories . The
higher, the better.

• Mostly Lost (ML). The ratio of trajectories that have been given an hypothesis hi for at
most 20% of their objects oi in their lifespan. For instance, if a sequence of detections has

CHAPTER 6. OBTAINED RESULTS 73

100 ground truth detections for oi, and just 20 of them get an hypothesis, regardless of the
identity switches, it is considered to be mostly lost. Hence ML = #mostly lost trajectories

#ground truth trajectories . The
lower, the better.

• Fragmentation (FM) is a count of how many times the tracking got interrupted, breaking a
smooth trajectory or sequence of tracked objects into fragments. This is a count of each time
the object oi went from being tracked to un-tracked, regardless of it being assigned the same
or another identity. In our system, this will just be the number of times a mapping went from
(oi, hi) to (oi, ∅) and then back to (oi, hj), no matter if the hi is the same or not as hj . The
lower, the better.

• Multiple Object Tracking Accuracy (MOTA). It combines false positives (FP), false negatives
(FN) and identity switches (IDS):

MOTA = 1−
∑

t(FPt + FNt + IDSt)∑
t GTt

(6.1)

where t indicates a particular moment in time since the tracking began and
∑

t GTt is the
total number of objects present in all the frames. The best score is MOTA = 1, meaning that
no mistake happens. However, MOTA could get negative values if there are more errors than
there are ground truth objects.

• Multiple Object Tracking Precision (MOTP). This measures the total error between the
estimated positions for the matched object-hypothesis pairs over all the frames, and averages
it by the total number of matches. A perfect score is a MOTP = 0, meaning that the ground
truth is obtained precisely all the time. This value is dependent on the scale in the data.
For instance, it could measure the distance between 2D bounding box detections in pixels or
centimetres. In our context, since we work with point-clouds, we are able to find the centroid
of cloud Pi and use it instead of the original position given by the dataset. We believe that
this is a better and smoother position of the target for its usage in tracking, but still we
make the search of points inside the bounding-cylinders, using a radio of 0.3 meters from the
ground truth position, hence we expect our MOTP ≤ 0.3 at all times.

As we have mentioned it, the usage of these metrics allows to have a fair comparison of a
tracking technique to another. However, the MOTChallenge, from which these metrics originated,
and which is the group in charge of defining which data-sets are to be used by anyone interested in
comparing its method with every other contestant, has yet not given a place for RGB-D trackers
to prove their capabilities. At MotChallenge’s 3D MOT 2015, they have provided data-sets with
camera calibration parameters to allow for 3D tracking, but still using RGB images only, meaning
that there is no way to exploit the full scene depth information as we require. We will still use these
metrics to have a way to compare two tracking strategies based on different inference processes,
the first one using our proposed energy model (3.46), referred to as NOMT+Ω and the second one
being Choi’s vanilla NOMT model (3.29) adapted for RGB-D. This allows us to observe the effects
of considering an occlusion model in the evaluation.

CHAPTER 6. OBTAINED RESULTS 74

6.2 Tested datasets
Needing RGB-D data with annotated ground-truth detections, we found a couple of interesting
data-sets, both with particular data structures and circumstances that will help us get an idea
of the effects of our proposed occlusion model and also observe the strengths and weaknesses of
NOMT’s approach.

6.2.1 EPFL-LAB
A first dataset we have used is the EPFL-LAB dataset, presented in [1]. It contains around 1000
pairs of color and depth images with 3000 annotated people instances, both through “camera”
coordinates and 2D bounding-boxes in each frame. In this dataset, there are at most 4 persons
walking in front of a single sensor, with occlusions that last in general less than a couple of seconds.
The difficulty lies on the agents trajectories, which are far from linear, as they tend to make circular
and zigzagging movements, which make predictions less accurate.

Be noted that the EPFL-LAB dataset was originally designed for testing detector software,
meaning that it is rather unused for tracking purposes and that no MOTA results are available for
comparison. Yet, it resulted in a good challenge for evaluating the robustness of our proposed model,
since many occlusions occur and since these 4 targets remain close to the sensor and performing
motions rather difficult to predict. We observe situations such as:

• Annotations are given in a world coordinate system and very few of them are done incorrectly,
meaning that most detections are reliable and it is easy to filter out detections: when extract-
ing a Pi from di, we obtain an empty cloud, then the annotation or ground-truth detection is
discarded. Also, we only work with detections that have a minimum number of points, just
to obtain a reliable normal estimation and hence a descriptor of what is observable in the
detection.

• On playback, we have one target disappearing from the camera FOV and later returning from
a different entry point. We expect the tracker to be able to re-identify the same target.

• Another pair of targets move a little bit more around the same area, but they get very close
and perform circular movements. This gives a challenge for the tracker as they get occluded
in this motion and also have their point-clouds mixed, since the targets hold hands and hug.

• One target remains behind the other aforementioned targets, but shares a rather similar
clothing and appearance with respect to another objective. This means that identity switches
here have a considerable chance of occurrence.

• Finally, since all the targets remain close and inside the sensor FOV, the depth measure-
ments are very accurate, so we expect little to no incorrect point-cloud extractions from the
detections world coordinates.

Figure 6.1a presents ground-truth trajectories of these four targets, with the original label shown
as a number in white, indicating the very last position in the playback.

CHAPTER 6. OBTAINED RESULTS 75

6.2.2 SPINELLO-UNIHALL
Another tested dataset was Spinello’s [19, 34], which contains more than 3000 RGB-D frames
acquired in a university hall from 3 vertically-mounted Kinect v2 sensors. This data-set contains
mostly upright walking and standing persons, seen from different orientations and with different
levels of occlusions. Also, since we have three sensors, the input processing burden and the point-
cloud + detection synchronization is challenging by itself, as tackled in Section 5.4. In this data-set,
we have the following situations:

• A limitation is that only 2D bounding-box annotations are provided, making it necessary to
re-project points in 3D and find the actual coordinates of the persons in the camera frame of
each Kinect sensor, which in turn renders a lot of noisy detections1.

• Bad transformations of 2D bounding-boxes using depth occur often when the objective is too
far away from the sensors. This happens particularly a lot on the Kinect that is facing the
entrance of the hall: depth that is perceived on more than 5 meters away is quadratically less
accurate, meaning that the depth is not detailed enough for geometry analysis.

• Also, we do not obtain so many points from 3D coordinates at around 6 meters or more, due
to the weakness of the Kinect’s measuring when exposed to strong sources of lights, affecting
its infra-red sensor. We expect a lot of mistakes here in the identity, since the effect of having
strong light behind opaque objects is that the colors are poorly perceived as they all appear
darkened.

• Most trajectories in this data-set are easy to fit, but many detections are heavily occluded by
other targets, and for longer intervals of time. we expect good tracking results for detections
within the Kinect’s optimal range of 0.5 meters to 5 meters. Detections further from 7 meters
will be discarded as they are too noisy for point-cloud extraction from the bounding-box.

Filtered ground-truth data that will be used can be seen in Figure 6.2a, where white labels indicate
the last position of the target owning the trajectory. Just like in the previous dataset, this filtering
is done only for comparative purposes and with the intention of keeping the tracking process easy
to interpret, both mistakes and successes.

6.3 Experimental results
Using the software presented in Chapter 5, we are able to play both data-sets stored in a ROS Bag
file, to reduce the burden of the processor. As we have mentioned it, the sole task of making re-
projection of dense point-clouds, applying down-sampling and merging and transforming all sensors
into a common world frame is expensive. Playback from the ROS bag file publishes ROS topics
for synchronized pairs of point-cloud and corresponding detections in the world coordinate system.
These topics are consumed by the tracking node and put inside a queue or cache of messages, in
order to permit the capture of all the detections and to extract the corresponding point-clouds as

1We do not make a deep analysis of any detection di that is partially visible, hence if there is another object dj
that is close, taking this depth may move detection di on top of dj .

CHAPTER 6. OBTAINED RESULTS 76

Tracking Benchmark
Dataset Model MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FM↓ Hz↑

EPFL-LAB NOMT 96% 0.2147 100% 0% 0 1 31 32 5
NOMT+Ω 99% 0.2143 100% 0% 0 2 2 4 5

SPINELLO NOMT 88.8% 0.1294 89.2% 3.5% 0 60 62 122 5
NOMT+Ω 93.5% 0.1294 96.4% 3.5% 0 28 54 82 5

Table 6.1: CLEAR MOT Metrics obtained using our implementation of NOMT using RGB-D adapted model and our
extended model for occlusions NOMT+Ω, using a shared code for fairness. The synchronized input of point-cloud
with their corresponding detections is being published at around 5Hz. The tracker manages to process all the frames
and output its solutions also at 5Hz. On average, 1000 ± 100 detections are received and processed during the full
tracking experiment repetition, allowing to evaluate these CLEAR MOT average results. The upper arrow indicates
that higher values are better. The lower arrow indicates that lower values are better.

far as possible.2

The experiments here consist of detections getting published at a frame-rate of 5Hz with their
corresponding down-sampled point-clouds, paired by timestamp. We concede that higher frame-
rates would be more interesting to test the near-online claim right now, but since we want to be
able to catch as many ground-truth detections as possible on all the tests, we allow the tracker
node to solve and catch the incoming data in the best possible way.

Experiments were done with a low-tier laptop with an old Intel Core i3-3110M and 8GB of
RAM. Using a sliding window of τ = 1 second and the default parameters as mentioned in Chapter
2 for NOMT. The tracker successfully solves the problem at the same frame-rate as the incoming
data. We could go as fast as 30Hz, though a different ROS Bag file should be recorded to make
the tracking go at that speed (for a correct ROS timestamp management).

Table 6.1 presents our evaluations of CLEAR MOT metrics at the end of all cycles needed to
process the full sequences. We make the following observations:

• MOTA indicates that almost every detection was given a correct label when compared to the
total amount of detections that were processed. The accounted mistakes were only false posi-
tives and identity switches, which, depending on the application, could still lead to problems
with decision making stages.

• MOTP indicates an average separation from the ground-truth 3D coordinates of just 21cm at
EPFL-LAB and 12cm at SPINELLO-UNIHALL data-sets, which, as expected, is the average
bias from the point-cloud centroid to the detections bounding-cylinder center.

2ROS does its best to maintain a frame-rate and frequency in which the data is passed to the tracking node.
However, diverse priorities in the host processor could cause some messages not getting sent by the ROS Bag Playback,
meaning that sometimes we work with more or less than the real amount of detections inside the data-set. This is
good in the sense that real systems will behave like this, but it makes it difficult to repeat the same experiments
exactly.

CHAPTER 6. OBTAINED RESULTS 77

• As we expected, the false positives indicator is always 0, as our tracker does not propose
additional hypothesis from those that correspond to a given target, and every hypotheses hi
stays near to some oi with a very high precision, as reflected by MOTP.

• In both cases, MT and ML are really good and indicate that the targets were still processed
for more than 80% of the total number of detections provided. Since we count so few misses,
these indicators support what is observed.

• The comparison of the NOMT and NOMT+Ω models for the EPFL-LAB dataset shows a
huge reduction on Identity Switches, which supports our claim that in an environment where
targets get often occluded, we should allow non-smooth movement in the scene as long as the
similarity indicates that it is the same target. Figure 6.1b shows the output trajectories when
using the RGB-D NOMT+Ω model. We can visually appreciate a very fair match, so we did
observe trajectories as they were happening, but we failed at maintaining target 1 identity
right at the moment when he left the scene, changing its label to 1432 and color to cyan.

• In the SPINELLO-UNIHALL data-set, we made a considerable reduction on the false nega-
tives count, meaning that less detections were unintentionally discarded, having many solid
trajectories as shown in Figure 6.3. In our tracking system, we identify that most misses occur
specifically when the identity of the target is not maintained right after the sliding window
passes the trajectory: if a group of detections turn into an association with just one or two
clean tracks (i.e. detections past t − τ) they will still not have enough time of existence to
overtake the Trackers decision that they are rather a different target (since new information
arrived and the similarity was not good enough). The tracker has too few detections to mea-
sure the previous appearance and the trajectory history as can be seen in Figure 6.4. Other
times, when the target has a good history and the latest detections begin to drop in quality
as it goes away, identity switches also occur, as seen in Figure 6.5.

Observing the output trajectories from our RGB-D NOMT+Ω model in Figure 6.2b, we note
that some detections on the top right area ended up getting assigned just once an identity
that immediately got discarded since the closer the target got to the sensor, the point-cloud
data was clearer, and the appearance measures in the model indicated that the previously
observed detections were not similar enough to the closer detections, so the tracker decided
to start a new trajectory. This is a problem related to the drastic changes in the depth cloud
when a far target approaches the sensor.

Both problems happen much less for detections closer to the sensors inside their optimal
depth ranges. Though mostly all the trajectories are tracked, the system does not reduce the
total number of identity switches, as seen on Table 6.1, due to the quality of detections in
the 3D plane, rendering the sliding window weak to trajectories without enough clear tracks
or those cases the target still in sight moves away from the optimal ranges.

CHAPTER 6. OBTAINED RESULTS 78

(a) Ground truth trajectories of targets 1, 2, 3 and 4 from direct 3D
annotations.

(b) Resulting trajectories obtained by the RGB-D NOMT+Ω ap-
proach.

Figure 6.1: EPFL-LAB dataset: This data-set’s challenge lies on the difficulty to predict direction changes for the
objectives, as we can observe many circular movements, many short and long occlusions with very sudden changes in
direction. In the classic NOMT, this makes it difficult for the Tracklet generator to link a decent Hypothesis, hence
incurring in the creation of new targets, losing the original identities. We note that NOMT had in average 30 identity
switches out of many executions.

CHAPTER 6. OBTAINED RESULTS 79

(a) re-projected 2D ground-truth annotations into 3D trajectories.

(b) RGB-D NOMT+Ω Tracker’s output trajectories.

Figure 6.2: SPINELLO-UNIHALL dataset: Resulting trajectories that were tracked by RGB-D NOMT with ground-
truth projected detections. Note that only trajectories with tracks in the trusted depth-range of the Kinect sensors
are considered. Most trajectories end up looking smoothed out thanks to the use of point-cloud centroids instead
of the bounding-box projected location. Straight lines indicate the lack of detections for short time lapses due to
occlusions with other targets. There are lots of identity switches still occurring due to the low quality from the sensor
further of the 5 meter mark, specially on third Kinect located at the right, where targets get shadowed by lots of
background light and where max-depth is reached.

CHAPTER 6. OBTAINED RESULTS 80

(a) Not tracked, as all
detections are behind
t− τ

(b) Past t−τ , an iden-
tity is given, and tar-
gets are tracked.

(c) Loose and clean
tracks are shown as a
colored line.

(d) History of posi-
tions are included in
the association.

(e) Tracking is main-
tained in spite of loss
in the cloud quality.

Figure 6.3: On trajectories 1 and 2 of SPINELLO UNIHALL data-set, the detections lie inside the optimal depth
ranges of Kinect sensor. Good color and depth registration, along with a good cloud reconstruction, allow for
a great consistency in the similarity measures between detections. We observe at (e) how, as they go further, the
reconstruction is still good enough to perceive a person with a big backpack. However, a level-curve-like segmentation
occurs parallel to the camera view-port due to the infra-red scattering around the 5 meter mark.

(a) The first time the
target appears, the
furthest from the sen-
sor, a bad point cloud
is formed.

(b) Tracker fails to
maintain identity
twice due to bad
cloud similarity
inside the window.

(c) Identity is now
well maintained as
the target approaches
the sensor.

(d) Denser clouds
along the camera
view-port axis.
Better geometry
extraction.

(e) Sometimes large
jumps occur due to
lack of detections in
short periods of time.

Figure 6.4: In the SPINELLO UNIHALL data-set, we have ground-truth detection 8 coming from the hall entrance
where the right Kinect is observing. Light sources and target 8 being too far to make good enough reconstructions,
we show the mentioned effect: many identity switches may occur on these targets until they get close enough to the
sensor, since we require RGB-D information to measure similarity and since the 3D detections positions can only be
obtained through re-projection, as the original data-set annotations are in the 2D images.

(a) Target begins
to leave the optimal
depth ranges.

(b) Tracking is good
until the last good de-
tection arrives.

(c) Detector failed to
give a detection at
this frame.

(d) Target appears
again, but gives low
similarity.

(e) Identity switch
given to disappeared
target.

Figure 6.5: Again in SPINELLO UNIHALL, the same ground-truth detection 8 is leaving the scene from the stairs
area, on the middle Kinect. The tracking is good until the detection appears too far away within the range and the
last detection of a partially observable target ends up reconstructing a wall, as RGB and depth registration were too
bad.

81

Chapter 7

Future Work and Conclusions

7.1 Future Work
As we have explained it in the previous chapters about the techniques and the motivations for their
use, we have tried to stick to defining inference processes and target similarity measures that have
a low cost on the processor. If we consider an upgrade of hardware in order to have room for more
expensive techniques, here is a list of improvements that could be done to make the current work
even better:

• Coupling the detector mechanism with the tracker. It is clear that the tracking requires a
way to measure the similarity between detections and that it turns out to be a process of
further reducing the point-cloud data to smaller packets of information, in this case, histogram
distances per pair of detections. Building histograms requires passing on every point in the
cloud and in its neighborhood. Yet, on the first place, to get this person point-cloud, we
have required the detector to tell us its position in the 3D space, and to give us the dense
point-cloud of the subscene inside. Opportunities of tuning the whole tracking-by-detection
pipeline lie in the possibility of parsing and evaluating all the knowledge on detected targets in
the fewest pixel-passes and without requiring additional ROS message passes, which translate
to bulk data to be bottle-necked on port-to-port communication.

• Re-design a multi-thread version of RGB-D NOMT. In our current implementation, only
some processes are paralalellized, particularly, some point-cloud pre-implemented methods
such as the normal estimation. The original Choi’s NOMT software is said to take advantage
of multi-threads, as each target could be evaluated in its own thread, solving data-association
by giving each At−1

m its optimal Ht−1
m . It also could benefit from having the detector coupled

with tracking, since each detection could begin with its association once the descriptors are
available for their usage by the tracker.

• Mobile design. Fixed camera systems are very useful. However, mobile cameras could allow
for a localization system to be consumed by the ROS platform and this could theoretically
be done transparently without further changes on the tracking software, allowing a robot to

CHAPTER 7. FUTURE WORK AND CONCLUSIONS 82

take advantage of the moving targets. Of course, if we consider that now they are prone to
be lost from sight by the robot movement once it turns or gets past an individual, just like
humans do, this is the minimal we need to just move around in a crowded place.

• Upgrading the tracking strategy. Along with neural-network-based-detectors, it is foreseen
a rise of tracking techniques based on deep neural networks techniques. Their promising
advances could lead to top-notch intelligent systems that make the most of cheaper GPU
devices.

• Dealing with the model weaknesses. As we have seen during the experiments, when depth
information is not available for re-projection, the detections end up discarded and this in-
troduces a lot of noise for tracklet and hypotheses generation. This translates into highly
fragmented associations due to identity switches. A re-identification step for new target de-
cisions or some short-term training in the tracked objectives appearance could alleviate this
problem. A reduction of the number of manually-tuned-parameters involved in the current
model should also be done by upgrading particular steps in the tracking process for attaining
more robustness. Also, the current model depends a lot on similarity measures, and we still
could end up having situations when both the geometry and color histograms indicate high
similarity between detections that could not belong to the same target. The introduction of
heavier techniques like body-part and facial recognition could make it more robust in most
cases, whilst compromising real-time performance. Even today, it is hard to point out to
what extent a person is similar enough to another to make a fair decision on how “distant”
are they in terms of appearance.

7.2 Conclusions
Most human activities are dependent in their ability to see and keep track of their workplace, team
and other entities around them. As humans, we are limited in what we can perceive and account
for decision making: observation, prediction and identification. Industries around the globe make
use of specialized hardware, reducing intervention, personnel, costs and failures through automated
computers and robots, hence the importance of intelligent camera systems, since most industrial
and critical tasks nowadays are focused on detecting static and “simple” objects under controlled
environments for simpler decisions to be made, fast and repeatedly.

The increasing interest in tracking-by-detection schemes for humans tracking gives a chance for
better business strategies to be designed and exploited. With the introduction of cheap and pow-
erful cameras and faster wireless coverage, we have been able to observe, react, communicate and
interact faster, opening doors for new paradigms and a world of applications that can be created
to make our lives better.

We have presented an updated version of an inference-based tracking approach that now takes
advantage of 3D information for considering the possibility of occlusions between targets and that
uses a target matching strategy based on a simple point-cloud and color descriptor. This strategy
allows to attain a good performance and uses the best practices available for comparing descrip-
tors, maintaining a near-online speed in spite of the processing overhead caused by the sole usage of

CHAPTER 7. FUTURE WORK AND CONCLUSIONS 83

dense multi-source RGB-D information. A modular separation of both tasks has been implemented
thanks to the Robotics Operative System platform.

We empirically obtained indicators that supported our claim of improved performance from the
vanilla NOMT tracker. We have also described the problem of associating and tracking a set of
targets in a RGB-D video sequence, which we believe will become a more popular paradigm, as
RGB-D sensors may replace plain cameras in future hand-held devices, smart phones and even,
industrial security systems.

Along with the RGB-D NOMT implementation, the code provided allows for easier development
of new RGB-D based tracking strategies, since all the problems associated to varying frequencies
among the sensors and data synchronization, time and frame management are covered up by the
NOMT library plus the ROS interfacing and visualization utilities.

Our results are based on sole ground-truth detections and considering a static camera system.
However, mobile sensors paired with localization systems could also use our presented tracking
system, since it assumes that all detections are represented on a fixed world coordinate system.
Plans for a mobile design are on the works.

84

Bibliography

[1] Timur Bagautdinov, Francois Fleuret, and Pascal Fua. Probability occupancy maps for oc-
cluded depth images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2829–2837, 2015.

[2] Jilliam María Díaz Barros, Frederic Garcia, and Désiré Sidibé. Real-time human pose estima-
tion from body-scanned point clouds. In VISAPP (1), pages 553–560, 2015.

[3] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance:
the clear mot metrics. Journal on Image and Video Processing, 2008:1, 2008.

[4] Adel Bibi, Tianzhu Zhang, and Bernard Ghanem. 3d part-based sparse tracker with automatic
synchronization and registration. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1439–1448, 2016.

[5] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. arXiv preprint arXiv:1611.08050, 2016.

[6] Wongun Choi. Near-online multi-target tracking with aggregated local flow descriptor. In
Proc. of Int. Conf. on Computer Vision (ICCV), December 2015.

[7] Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L Yuille, and Xiaogang Wang. Multi-
context attention for human pose estimation. arXiv preprint arXiv:1702.07432, 1(2), 2017.

[8] Joao Paulo Silva do Monte Lima and Veronica Teichrieb. An efficient global point cloud
descriptor for object recognition and pose estimation. In Graphics, Patterns and Images
(SIBGRAPI), 2016 29th SIBGRAPI Conference on, pages 56–63. IEEE, 2016.

[9] Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen, and Liang Lin. Look into person: Self-
supervised structure-sensitive learning and a new benchmark for human parsing. In CVPR,
volume 2, page 6, 2017.

BIBLIOGRAPHY 85

[10] Domingo Iván Rodríguez González and Jean-Bernard Hayet. Fast human detection in rgb-d
images with progressive svm-classification. In Pacific-Rim Symposium on Image and Video
Technology, pages 337–348. Springer, 2013.

[11] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, 1973.

[12] Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang, Evgeny Levinkov,
Bjoern Andres, and Bernt Schiele. Arttrack: Articulated multi-person tracking in the wild. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 4327. IEEE,
2017.

[13] Umar Iqbal, Anton Milan, and Juergen Gall. Posetrack: Joint multi-person pose estimation
and tracking. arXiv preprint arXiv:1611.07727, 2016.

[14] Omid Hosseini Jafari and Michael Ying Yang. Real-time rgb-d based template matching pedes-
trian detection. In Robotics and Automation (ICRA), 2016 IEEE International Conference
on, pages 5520–5527. IEEE, 2016.

[15] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[16] Mude Lin, Liang Lin, Xiaodan Liang, Keze Wang, and Hui Cheng. Recurrent 3d pose sequence
machines. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,
pages 5543–5552. IEEE, 2017.

[17] Timm Linder, Stefan Breuers, Bastian Leibe, and Kai O Arras. On multi-modal people track-
ing from mobile platforms in very crowded and dynamic environments. In Robotics and
Automation (ICRA), 2016 IEEE International Conference on, pages 5512–5519. IEEE, 2016.

[18] Xiao Liu, Ling Mei, Dakun Yang, Jianhuang Lai, and Xiaohua Xie. Feature visualization based
stacked convolutional neural network for human body detection in a depth image. In Chinese
Conference on Pattern Recognition and Computer Vision (PRCV), pages 87–98. Springer,
2018.

[19] Matthias Luber, Luciano Spinello, and Kai O Arras. People tracking in rgb-d data with
on-line boosted target models. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 3844–3849. IEEE, 2011.

[20] Anton Milan, Konrad Schindler, and Stefan Roth. Challenges of ground truth evaluation of
multi-target tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 735–742, 2013.

[21] Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference
in graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

[22] Matteo Munaro, Filippo Basso, and Emanuele Menegatti. Tracking people within groups
with rgb-d data. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 2101–2107. IEEE, 2012.

BIBLIOGRAPHY 86

[23] Erickson R Nascimento, Gabriel L Oliveira, Mario FM Campos, Antônio W Vieira, and
William Robson Schwartz. Brand: A robust appearance and depth descriptor for rgb-d im-
ages. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 1720–1726. IEEE, 2012.

[24] Tanguy Ophoff, Kristof Van Beeck, Toon Goedemé, and KU EAVISE-Campus De Nayer.
Improving real-time pedestrian detectors with rgb+ depth fusion.

[25] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop
on Open Source Software, 2009.

[26] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh) for
3d registration. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on, pages 3212–3217. Citeseer, 2009.

[27] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. Aligning point
cloud views using persistent feature histograms. In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pages 3384–3391. IEEE, 2008.

[28] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011.

[29] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael Beetz. Persistent point
feature histograms for 3d point clouds. In Proc 10th Int Conf Intel Autonomous Syst (IAS-10),
Baden-Baden, Germany, pages 119–128, 2008.

[30] Samuel Schulter, Paul Vernaza, Wongun Choi, and Manmohan Chandraker. Deep network
flow for multi-object tracking. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pages 2730–2739. IEEE, 2017.

[31] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore,
Alex Kipman, and Andrew Blake. Real-time human pose recognition in parts from single
depth images. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on, pages 1297–1304. Ieee, 2011.

[32] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. The boost graph library: user guide and
reference manual. Addison-Wesley, 2002.

[33] Jeany Son, Mooyeol Baek, Minsu Cho, and Bohyung Han. Multi-object tracking with quadru-
plet convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5620–5629, 2017.

[34] Luciano Spinello and Kai O Arras. People detection in rgb-d data. In Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 3838–3843. IEEE, 2011.

[35] Luciano Spinello, Rudolph Triebel, and Roland Siegwart. Multimodal people detection and
tracking in crowded scenes. In AAAI, pages 1409–1414, 2008.

BIBLIOGRAPHY 87

[36] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt Schiele. Multiple people tracking
by lifted multicut and person reidentification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3539–3548, 2017.

[37] Luchao Tian, Mingchen Li, Guyue Zhang, Jingwen Zhao, and Yan Qiu Chen. Robust human
detection with super-pixel segmentation and random ferns classification using rgb-d camera.
In Multimedia and Expo (ICME), 2017 IEEE International Conference on, pages 1542–1547.
IEEE, 2017.

[38] Dong Zhang, Omar Javed, and Mubarak Shah. Video object co-segmentation by regulated
maximum weight cliques. In European Conference on Computer Vision, pages 551–566.
Springer, 2014.

[39] Haiyu Zhao, Maoqing Tian, Shuyang Sun, Jing Shao, Junjie Yan, Shuai Yi, Xiaogang Wang,
and Xiaoou Tang. Spindle net: Person re-identification with human body region guided feature
decomposition and fusion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1077–1085, 2017.

[40] Kaiyang Zhou, Adeline Paiement, and Majid Mirmehdi. Detecting humans in rgb-d data with
cnns. In Machine Vision Applications (MVA), 2017 Fifteenth IAPR International Conference
on, pages 306–309. IEEE, 2017.

	Contents
	Motivation and Theoretical Background
	Introduction
	Related Work
	People detection
	Pose estimation and body part recognition
	Target Matching
	Tracking strategies

	Contributions and overall description of our approach

	Near-Online Multi Object Tracking
	Useful definitions
	Handling time
	Input from RGB-D Sensors
	Detections
	Trajectories and Tracklets
	Tracking

	Data Association
	Overview
	Tracklet Generation
	Non-Maximal Suppression
	Hypotheses Generation
	Data Association and Target Augmentation

	Inference with CRF and Application to Tracking
	Inference over Graphical Models
	Probability theory
	Bayes Theorem
	Chain Rule

	Graphical Models
	Bayesian Networks

	Markov Networks
	Parametrization and factors
	Factor Graphs

	Variable Elimination
	Efficient inference
	Cluster graph
	Junction Tree
	Clique Tree
	Initialization
	Message Passing
	Calibration

	Junction Tree Algorithm

	Building the Junction Tree
	Conditional Random Fields
	Inference on NOMT
	Model representation
	Clique potentials as energy functions
	Choi's energy function

	Our proposed Energy for RGB-D NOMT
	Data association term
	Hypothesis consistency term
	Changes
	Occlusion Potential
	Interpretation of our RGB-D NOMT energy function

	RGB-D Similarity
	Point-Cloud Descriptor
	Geometry and surface estimation
	Point Feature Histogram (PFH)
	Fast Point Feature Histogram (FPFH)

	Measuring color and appearance
	HSV Color space
	Color Histogram

	Histogram Comparison and Metrics
	Descriptor design

	Developed Software
	Overview
	About ROS
	Simulating RGB-D Detections
	Multiple Sensor Support
	Tracking Pipeline
	The NOMT Library
	ROS Interface
	Implementing Trackers
	Execution & Visualization

	Obtained Results
	Evaluation Methodology
	CLEAR MOT

	Tested datasets
	EPFL-LAB
	SPINELLO-UNIHALL

	Experimental results

	Future Work and Conclusions
	Future Work
	Conclusions

	Bibliography

