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Abstract
Department of Computer Science

Master of Science in Computer Science and Industrial Mathematics

Characterizing The Error Of The Gaussian Profile To Model Axon Bundles
Diffusivity

by Alfonso ROJAS-OAXACA

Diffusion Tensor Imaging (DTI) is one of the most widespread techniques for ob-
taining information about the underlying tissue geometry and integrity in brain white
matter. Despite its limitations and strong assumptions, it is a robust model, widely used
in clinical applications. Some examples include the detection of Ischemia; the study of
alteration produced by conditions, such as Multiple Sclerosis and Alzheimer’s. Two
important limitations of DTI are the impossibility of describing diffusion in substrates
with separations and compartments, and the high count of degrees of freedom. Never-
theless, the model can be expanded to represent the signal as the sum of contributions
from different tensors; the multi tensor model. Also, some constraints can be assumed
to decrease the number of free parameters.

In this thesis work, we test constrained multi tensor models (i.e Zeppelin and Stick)
through Montecarlo simulations in order to gain some insights on the limits of assum-
ing Gaussian diffusion in the description of neuroanatomy. Montecarlo simulation of
the diffusion process is performed in several substrates, which resemble white matter
microstructure. Physical parameters are obtained by fitting multi tensor models in one
fiber bundle, and crossings of two bundles. The MRI signal obtained by the simula-
tor is free of noise and artifacts to factor out any other source of variability, besides the
stochastic simulation itself. Finally, the fitted parameters of the model are compared to
the statistics of the spin trajectories of the simulator.

We observe low errors in the case of extracellular compartment diffusion. In the case
of a single complete bundle, simple Zeppelin diffusion underestimation worsens as the
volume fraction increases. Zeppelin + Stick model improves quality substantially, with
deviation also increasing proportional to volume fraction. Rotation angle does not seem
to play an important role in the estimation error. In the crossing case, the use of multiple
shells reduces error substantially.
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Chapter 1

Introduction

1.1 Motivation

Connectomics, also called Brain Hodology, is the study of anatomy of the communica-
tion pathways between regions of the brain which are relatively far away from each
other. Connectomics main goal is the production and study of extensive and com-
plex maps of neural circuits formed by function-related neurons connected by synapses.
Neurons reach to other distant neurons using elongations of its cellular body called ax-
ons. Axons are very large compared to the neuron body size. Most neurons exist in
the cortex, so electrical signals must travel between zones of the cortex, sometimes even
across brain hemispheres. The zones of the brain which are mainly composed of these
groups of axons are called white matter.

The white matter is a tissue which constitutes approximately half of the total volume
of the brain (Jones, 2010). It is conformed by bundles of myelinated axons called nerve
tracts. The function of this tissue is to relay signals generated and processed by neurons,
in the form of action potentials. It used to be considered an uninteresting, passive tissue
existing solely as the support of the gray matter. Now, it is know that white matter plays
a fundamental role on the neural inner workings, and it’s study is of great importance
for our clinical and functional knowledge of the brain (Irimia et al., 2012). There are
more than 100 known disorders in which a white matter alterations are the predominant
or unique factor involved. All of these disorders affect negatively the emotional and
cognitive function of the affected person (Filley, 2012). Because of this, Connectiomics
plays a fundamental role in our understanding of the brain.

The brain complexity is overwhelming. The human cortex, which constitutes 82%
of the total mass of the brain, has around 16 billion neurons (Herculano-Houzel, 2009).
Because of this, Connectomics has to study the brain at different scales. In this work,
we are focused on the main tool used to produce macroscale connectomes, which is
Diffusion-Weighted Nuclear Magnetic Resonance Imaging. More precisely, we are cen-
tered on some of the mathematical models used to translate the signals obtained by an
MRI machine to real physical measurements of the microstructure of white matter.

1.2 Objective

Magnetic Resonance Imaging with Diffusion Weighted Imaging (MRI-DWI) measures
the natural diffusive movement of water molecules inside the brain. Their displacement
is dictated by the surrounding medium. The medium inside the brain is not plain wa-
ter, as the molecules are restricted by the myelin sheaths of the axons, the walls of the
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FIGURE 1.1: Electron micrographs from a human brain’s White Matter,
a) from the superior longitudinal fascicle, b) from the uncinate/inferior
occipitofrontal fascicle. Left) left hemisphere, right) right hemisphere.

Adapted from Liewald et al., 2014.

nerve tracts, the cellular membranes, intra-cellular organelles and such. Because of this,
the information of water diffusion can be used to obtain insights about the underlying
microstructure of the brain, such as the fiber orientation, the intra-axonal volume ratio,
and the radii distribution of the axons. Nonetheless, the process of correlating the mea-
sures of the MRI device to these features is not trivial. In the first place, the acquisition
process introduces noise, artifacts and other sources of variance inherent in measuring
a live subject or patient. Even if engineers could solve all the limitations of technol-
ogy, the fundamental inverse problem remains. Given an MRI-DWI signal (in this case,
perfect), what are the causal factors that produced it? In this case, how the underlying
microstructure, which shapes the water diffusion inside the brain, looks like? To answer
this question, a plethora of models have been proposed. These models of the diffusion
process vary in complexity and number of parameters (Ferizi, Schneider, Witzel, et al.,
2015).

As any abstraction of a complex physical process, choosing a right model is a trade
off between simplicity and accuracy (Aragones et al., 2002). A model with more param-
eters could explain the process better, but become unstable and too sensitive to noise.
On the other hand, what a simpler model might lack in detail about the intricacies of the
phenomenon, it could compensate it in being more resilient, and have better accuracy
on the fewer parameters that predicts. For that reason, we characterize a simple and
widely used model; which is the diffusion tensor. More precisely, this work focuses on
special cases of the former, which characterize diffusion along a bundle of axons, and
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perpendicular to that directions. We also analyze a simple bi-compartment case to take
into account the water trapped inside the axons. Finally, we explore the case of a simple
crossing of two bundles of axons by fitting a per-bundle, intra-voxel, restricted diffusion
tensor.

The diffusion tensor model is simple, but makes strong assumptions about the na-
ture of the substrate in which water diffuses. So, the main interest of this work is to
quantify the bias of the model parameters against the real process, which does not nec-
essarily meet the conditions assumed by the model.

1.3 Summary

After this introduction, the next Chapter will introduce succinctly the physics behind
the diffusion process, how it is affected by the microstructure of the brain, and how the
Diffusion Tensor came to be. The third will present the theory of Diffusion-Weighted
Magnetic Resonance Imaging (DW-MRI), the obstacles in real life, and a discussion on
the limitations of the Diffusion Tensor. The fourth Chapter describes the materials and
methods we used to try to quantify the error between fitted models and the diffusion
inside various known, synthetic substrates using Montecarlo simulation. Finally, the
last two Chapters present our results in model fitting and our conclusions derived from
these experiments.
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Chapter 2

Diffusion Inside The Brain

Diffusion refers to the net movement of matter from a region of a system to other, from
a zone of higher concentration to another with less concentration. This process is the re-
sult of the erratic movement of atoms or molecules as result of the thermal energy and
collisions between them, a phenomenon known as Brownian motion, in honor of Robert
Brown (Brown, 1828). A liquid medium, such as inside the brain, is composed of an im-
mense amount of molecules moving by diffusion, or by blood flow. The movement of
water is modulated by obstacles such as membranes with varying degrees of perme-
ability, myelin sheaths, and such. In the next section, the physical models describing the
behavior of the diffusive movement are explained in further detail.

2.1 Physical Model

One should note that there is no direct underlying force pushing the molecules in the
negative direction of the concentration gradient, as diffusion is merely the macroscopic
manifestation of the statistical trend of the particle ensemble (a thermodynamic system)
to maximize its entropy. The apparent force behind this movement is called an entropic
force (Roos, 2014). The macroscopical behavior of this process was described by Frick.

2.1.1 Frick’s Laws

Diffusion is quantified as flux, which is a vector whose units are quantity/(time · area).
Frick laws describe the vector flux J(r) of a quantity of matter through an infinitesimal
area in certain point r at an instant t,

J = −D∇rn(r, t) (2.1)

∂n(r, t)
∂t

= D∇2
r n(r, t), (2.2)

where n(r, t) is the concentration of solute particles in r at time t, ∇ is the gradient
operator, and ∇2 = ∇ · ∇ is the Laplacian. D is the diffusion coefficient.

2.1.2 Einstein Formulation

These laws were originally formulated taking a macroscopic concentration gradient into
account, but they can also be applied in the case of self-diffusion in the absence of one.
Einstein took the concentration of a particle as the probability of finding a molecule.
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He inferred this probability in a medium with no macroscopic concentration gradient
should be macroscopically uniform, but locally structured due to Brownian Motion. He
rewrote the Frick equations using the notion that solute particles in a liquid behave like
an ideal gas. He did it in terms of diffusion under a probabilistic gradient (Einstein et
al., 1905).

Let P(r0|r′, t) be the probability density function of a particle walking from r0 to r′

in time t:
∂P(r0|r′, t)

∂t
= D∇2P(r|r′, t). (2.3)

The conditional probability P(r0|r′, t) is called the diffusion propagator. This reformu-
lation describes Brownian motion as a stochastic process in which probability densities
obey differential equations. A statistical ensemble is defined as a set of a very large
(sometimes infinite) number of copies of a system, where each one represents a state
the system may be in (Gibbs, 2014). Considering all of the possible states S a system
might take, this can be considered as the probability distribution of the state of a sys-
tem. In free autodiffusion, the propagator is independent of the starting point and can
be applied to the ensemble of all possible trajectories of a particle. It is possible then to
simplify the notation in terms of displacement vectors r = r′ − r0 (or considering the
initial condition of the system being r0 = 0 for all particles):

∂P(r, t)
∂t

= D∇2P(r, t). (2.4)

By solving (2.4) using the aforementioned initial condition, and assuming the absence
of obstacles that could interfere with the free diffusion of molecules, leads to a Gaussian
density form,

P(r, t) =
1√

(2πΣ)3
exp(− 1

2Σ
rTr), (2.5)

where Σ = 2tD.
The average of a given property A of the ensemble is defined as

〈A〉 := ∑
s∈S

P(s)A(s). (2.6)

Using this concept, the mean square displacement of the molecules can be computed,
taking into account the Gaussian nature of the distribution. This leads to the identity
known as Einstein-Smoluchowski relation for diffusion. For the n-dimensional case is
(Dill and Bromberg, 2012)

〈(r′ − r0)
2〉 = 〈r2〉 = 2nD∆. (2.7)

Here, ∆ has the same use as t. However, there is a conceptual difference. We call ∆ the
diffusion time of our experiment, so the experiment ends at the instant t = ∆.

2.1.3 Anisotropy

All this reasoning was done assuming an homogeneous, isotropic substrate, which
means the Apparent Diffusion Coefficient is the same in any part of the substrate, and
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in any direction. However, the later case is not valid when the substrate diffusivity
changes in function of the chosen direction. So, we generalize (2.3) to change the shape
of the diffusion propagator depending on the direction. The Diffusion Tensor D(r) de-
scribes how the particle flux is related to the temporal derivative of the Diffusion Prop-
agator at any starting point r. Generally, a Cartesian frame of reference can be found
where D is diagonal. For the 3-dimensional case, the tensor has the form

D =

Dx 0 0
0 Dy 0
0 0 Dz

 . (2.8)

Of course, the tensor can be rotated to any frame, where all the elements of the ma-
trix might be greater than zero. Thus, (2.3) is expanded to account for anisotropy and
heterogeneity.

∂P(r0|r′, t)
∂t

= ∇r′ · [D(r′)∇r′P(r0|r′, t)]. (2.9)

In the special case where diffusion is Gaussian and anisotropic, the propagator has
the following form (Price, 1997):

p(r, ∆) = (4π∆)3(
√

det D) exp

(
−rTD−1r

4∆

)
. (2.10)

2.2 Neuroanatomy for diffusion: a crash course

The Central Nervous System (CNS) is essentially built around neuronal cells intercon-
nected to each other through axons, which function as transmission lines for electrical
action potentials. Such axons can reach distant neuroanatomical regions. Bundles of
axons interconnect clusters of neurons with similar functions. Gray matter, which is
compromised mostly of neuron bodies and short range interconnections, the measured
diffusivity, diffusion is largely isotropic, independent of the measuring direction, so a
single scalar can describe the diffusion profile. In contrast; the diffusion in structurally
oriented media, such as in the nerve tracts of white matter, is anisotropic. Water can
move freely along the fiber orientation, but is restricted by the axon walls to move per-
pendicular to it, meaning the diffusion is dependent on the direction (Moseley et al.,
1990) (Henkelman et al., 1994).

2.2.1 What can be found inside White Matter?

The human brain is one of the most complex objects known. Its intricacies and functions
are still being discovered. Several structures and cells have been found and character-
ized using microscopy techniques. The brain can be divided in two types of tissue which
can be macroscopically differentiated, the gray and white matter. Gray matter is mainly
made of neurons, unmyelinated axons and glial cells. White matter is formed by myeli-
nated axons grouped in nerve tracts, oligodendrocytes and also glial cells. Glial cells are
divided in microglia and macroglia. Some cells that can be found in the white matter,
and that may influence water diffusion, are:
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FIGURE 2.1: Simulation of how the substrate is seen by the diffusing
molecules. Novikov et al. used a Gaussian filter with a bandwidth of L/2
to represent the coarse graining that occurs when the timescale changes.

Adapted from Novikov, Fieremans, et al., 2019.

• Oligodendrocytes, which produce the myelin sheath of the axons and support
axonal structure.

• Astrocytes, which play numerous supporting roles, such as metabolic support and
ion concentration regulation.

• NG2-positive cells, being the precursors of the former glia.

• Microglia small phagotic cells part of the inmunne system.

• Ependymal, endothelial, pericytes and fibroblasts cells make the vascular system
inside the brain.

For more details on the anatomy of white matter, refer to Edgar and Griffiths, 2014.

2.2.2 Coarse to fine

One can see from (2.5) that the shape of the diffusion propagator in heterogeneous me-
dia depends of the starting point r, and diffusion time. This happens because the aver-
age diffusion length L =

√
2D∆, which comes from the Einstein equation, is dependent

of time. A good intuitive example of the scale dependence of the diffusion parameters
can be found on Figure 2.1 taken from Novikov, Fieremans, et al., 2019. Imagine a 2D
substrate with a known diffusion coefficient D0. The substrate has randomly distributed
disks of two different radius; a small radius and a big radius, 20 times larger than the
small. At the beginning, the molecules only react to their immediate local environment,
so the apparent diffusion coefficient is D|t=0 = D0. After some small lapse of time,
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the molecules are mostly hindered by the smaller disks. If we let more time pass, long
enough for the diffusion length to widely surpass the small disk size, their microscopic
effect will become averaged, and diffusion would look as if only the larger disks remain,
and the diffusion coefficient of the medium decreased. If we were unable to look at the
shorter diffusion time, it would be impossible to know the existence of the smaller disks.
After a longer time, the contribution of all the microstructure becomes coarse-grained,
and the measure would look as if it came from a uniform isotropic medium with an even
smaller global diffusion coefficient. This is the reason MRI measures apparent diffusion
coefficients, because they vary depending on how much time the spins have to interact
with their surroundings.

2.3 Fiber tracts: the main contributor to diffusion anisotropy

The complete biophysics of diffusion anisotropy in brain tissue are not completely un-
derstood currently. Most researchers ascribe it to ordered, heterogeneous structure, such
as oriented macromolecules, supramolecular structures, organelles and membranes.
This section lists briefly the known relevant effects on diffusivity caused by the inner
microstructure of the human brain. For a much more in-depth review of how neu-
roanatomy affects diffusion, refer to Beaulieu, 2002; Beaulieu, 2014.

The axonal cytoeskeleton is made of actin filaments, microtubule-associated proteins
and neurofilaments (Nixon, 1998). Neurofilaments provide structure and are the mains
determinant of the diameter of the fibre. Both neurofilaments and microtubules lie par-
allel to the direction of the axon. The intra-axonal cytoplasm contains organelles such
as mitochondria, multivesicular bodies, endosomes, lysosomes, vesicles and axoplas-
mic reticulum. Mitochondria can move along the microtubules, and Non-myelinated
and dysmyelinated axons tend to have a higher density of them (Campbell, Smith, and
Mahad, 2012). The axon diameter remains relatively constant throughout the axon’s
length (Friede and Samorajski, 1970). In the CNS, the majority of axons greater than 0.2
µm in diameter are myelinated (Hirano and Llena, 2009). Axonal packing densities are
influenced by axonal diameters and the proportion of axons that are myelinated. Conse-
quently, densities can vary greatly from one white matter tract to another. Myelin is the
membranous, lipid-rich structure generated by the compaction of concentric lamellae of
individual oligodendrocyte processes around an axonal segment. Myelin increases the
rate of electrical conduction of an axon of a given diameter by 10 to 100 times (Trapp
and Kidd, 2004). The myelin sheath is not continuous along the length of the axon. It
is interrupted at regular distances by small unmyelinated regions called nodes of Ran-
vier. The axon and the oligodendrocyte are intimately related and interdependent. The
proliferation of one means the proliferation of the other.

2.3.1 Quantifying anisotropy

The water diffusion along to the fiber is subject to less restriction than across it, because
of membranes and myelin wrapping. As will be detailed in Chapter 3, it is possible to
infer the diffusion tensor under some assumptions. The mean diffusivity (MD) is de-
fined as the average of the tensor’s eigenvalues, or one third of the trace of the matrix
(Basser and Pierpaoli, 1996). This is a measure of the bulk diffusivity without consider-
ing diffusion direction. The tensor’s greatest eigenvalue λ1 corresponds to the apparent
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FIGURE 2.2: Cartoon illustrating that structural damage to axons and
myelin that result in alterations to the directional barriers of water diffu-
sion will reduce the degree of anisotropy. Adapted from Johansen-Berg

and Behrens, 2013.

diffusion coefficient in the direction with less restriction, i.e. the parallel diffusivity D‖
to the fiber. This, of course, assumes the case of regions of the human brain with no
crossing fibers. Because of the properties of the diffusion tensor, the other eigenvectors
are orthogonal to the parallel direction. If we assume radial symmetry, λ2 = λ3. This
is called the radial, or orthogonal diffusivity D⊥. The degree of anisotropy is defined
as the deviation between D⊥ and D‖. There are different anisotropy measures, being
Fractional Anisotropy (FA) (Basser and Pierpaoli, 1996) the most used in DTI studies.

2.3.2 Anisotropy and White Matter tissue microstrucutre

The ordered axonal architecture is thought to be the main factor behind directionality
and anisotropy on the diffusion of water. Most of the nerve tracts in white matter are
aligned in parallel. They may me coherently directed in one direction, such in the optic
nerve relaying signals from the eye, or different fibers may traverse the tract in in op-
posite directions forming a bidirectional connection, such as in parts of the spinal cord
or in the corpus callosum. While diffusion anisotropy is not unique of the brain, as has
been observed in crystals, muscles, and even fruits and vegetables. However, the de-
gree of anisotropy in healthy white matter is greater than other tissues (Cleveland et al.,
1976; Garrido et al., 1994; Henkelman et al., 1994). The overarching objective of cur-
rent research on diffusion MRI is to answer if it is possible to directly map the diffusion
measured parameters to specific microstructural components. Nonetheless, the com-
plexity of the aforementioned structures; complex water transport trough membranes
and ion-related cotransport mechanisms; variable inter-axonal space, diameter, myelin
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thickness; and irregular, complex geometry with undulations deviating from an ideal
cylinder are reasons why this question is unlikely to have a straightforward answer.

There is no direct relation between anisotropy observed and an specific microstruc-
ture characteristic. This is because axon density, packing, diameter, myelin thickness,
and such, vary from tract to tract (Pierpaoli et al., 1996). Nevertheless, the degree of
anisotropy is used as a biomarker of integrity of the white matter. Now, the questions
are what components of the white matter influence this measure, and to what extent.
Theoretically, the dense axonal cytoskeleton could impart a physical barrier to water
diffusion perpendicular to axons, and generate magnetic susceptibility gradients affect-
ing diffusivity measures. However, several studies in giant axons from animals (mainly
marine life) have ruled out a role for neurofilaments and microtubules in the observed
anisotropy in ordered axonal systems (Lian, Williams, and Lowe, 1994; Clark, Barker,
and Tofts, 1999; Beaulieu and Allen, 1994a; Beaulieu and Allen, 1994b; Takahashi et al.,
2002). Axonal Transport can affect directional diffusivity (Brangwynne et al., 2008), but
the differential between D‖ and D⊥ remains constant. The remaining factors are the
myelin coating of the axons, and the axonal membranes per se. Myelin sheaths in axons
are not the only cause of anisotropic diffusion, as studies in newborn human and rat
babies, in vitro unmyelinated nerves, and mutant demyelination animal models, have
shown anisotropy can be measured even before myelin is deposited, or not deposited
at all (Wimberger et al., 1995; Aung, Mar, and Benzinger, 2013; Bar-Shir, Duncan, and
Cohen, 2009; Kasprian et al., 2008; Liu et al., 2011). These are important results, as
they mean diffusion anisotropy cannot be used as a quantitative marker of myelin con-
tent. Myelin has a supporting role on diffusion anisotropy, and modulates the degree of
anisotropy. While myelin does correlate with reduced perpendicular diffusion, so does
axon packing, so distinguishing which of the two factors contributed to the measured
change is difficult. It is then the axonal membrane the main contributor to the degree of
anisotropy, while myelin has a secondary role.

There have been multiple studies which detected correlation with diffusivity and
microstructural features; such as anisotropy, mean diffusivity, parallel and orthogonal
changes, with axon count and density, and myelin count and density, in multiple sclero-
sis patients post mortem (Mottershead et al., 2003; Klaus Schmierer et al., 2008; Seewann
et al., 2009; Klawiter et al., 2011; Kolasinski et al., 2012; Moll et al., 2011); anisotropy with
myelin in the development of fetuses (Saksena et al., 2008); axonal density in Alzheimer
patients post mortem (Gouw et al., 2008); various changes in diffusivity with free radical
injury in elderly (Back et al., 2011); and axonal membrane circumference and others in
patients with temporal lobe epilepsy (Concha et al., 2010).

2.3.3 Compartments

Another factor affecting the diffusion is the compartmentalization of the white matter
and crossing fibers. The axonal membrane has a finite permeability, and hinders the wa-
ter movement across it. As discussed earlier in the first section, and will be expanded
later on Chapter 3, the signal measured corresponds to a sample of the Ensemble Aver-
age Propagator (EAP), so the propagator of the intra-axonal and intra-cellular compart-
ments is mixed and averaged with the one of the extra-axonal space. Thus, it could be
a problem if, for example, an anomaly in tissue generates an increment of diffusion in a
intra-axonal compartment, and an decrement of the same magnitude in the extra-axonal



12 Chapter 2. Diffusion Inside The Brain

compartment. This would effectively results in an unchanged net diffusion measured,
even if there has been a change in the microstructure. One should take into account this
structural segregation of water to model diffusion precisely.

2.3.4 Side note: anomalous diffusion

For all this to work, the main condition is to assume there is no strange conditions that
affect the diffusion in ways that the Brownian motion model stops working. However,
there are very specific cases where the coarse grained diffusion coefficient does not con-
verge to a positive value. There are two cases, when D∆→∞ = 0 (subdiffusive behavior),
and when D∆→∞ = ∞ (superdiffusive behavior). This means that anomalous diffusion
means the macroscopic diffusion coefficient does not exist. This can happen in inhomo-
geneous media, where it can be modelled as quenched disorder in local hopping rates
(Bouchaud and Georges, 1990). One trivial case is where there are compartments that
completely confine water movement, where this is considered subdiffusive behavior.
Anomalous diffusion can occur when there is a fractal like structure, which means the
statistics of the structural fluctuations are similar at different scales. Thus, the substrate
never looks homogeneous, even when increasing the graining scale. Another cause
is the existence of a macroscopic active random flow (Kravtsov, Lerner, and Yudson,
1985). Anomalous diffusion do not seem to exist in the brain (Mussel, Inzelberg, and
Nevo, 2017; Novikov, Fieremans, et al., 2019).
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Chapter 3

MRI And Its Quirks

Nuclear Magnetic Resonance Imaging is a very powerful tool in medical diagnosis and
research. Is a non invasive imaging technique that exploits the atomic magnetic struc-
ture of an object to obtain the image of various properties from inside the object, without
the necessity to dissect it.

3.1 MRI In A Nutshell

Water molecules are made of two atoms of hydrogen and one of oxygen. In its more
abundant isotope, hydrogen atom nuclei are solely constituted of one proton. Letting
quantum effects aside, one can say the spinning nucleus with an electrical charge (com-
monly called spin) will induce a small magnetic field, and the particle will become a
magnetic dipole. When a uniform and strong magnetic field is applied to a subject, two
important phenomena will happen. The first is that the spins will align to the direction
of the field, some aligning directly, and some pointing opposite, depending on their en-
ergy state (one low and one high). The second is that the spins will not simply align
toward or against the field, but actually precess along that direction. More importantly,
the frequency ωP of precession is proportional to the local magnetic field strength Bl ,
described by the Larmor equation,

ωP = γBl . (3.1)

An MRI machine is capable of modulating the local strength of the magnetic field
through the subject, by using a powerful permanent superconducting magnet and coils
inducing homogeneous gradients. This changes the precessing frequency of the spins
and its phase in a predictable way. The machine also has an antenna capable of transmit-
ting and receiving radio frequency pulses. If a pulse of an arbitrary frequency is emitted
in the vicinity of a set of spins precessing at the same frequency, the spins will resonate
and become excited by absorbing the energy of the pulse. This excitation causes the flip-
ping of more spins to align to the direction of the higher energy state, and will align their
precession phase. In a normal state, all spins point to random directions and precess in
different frequencies. Thus, the magnetic moment of the dipoles will mainly cancel each
other. In the other hand, if the spins are precessing at the same frequency and in-phase,
their contributions will add up to a net rotating magnetization vector. This magnetiza-
tion can be measured by the same antenna. The speed of relaxation (the dissipation of
the energy absorbed from the radiofrequency pulse) will depend on the properties and
microestructure of the tissue being excited. Furthermore, the exact location where the



14 Chapter 3. MRI And Its Quirks

FIGURE 3.1: Effect of field gradient on nuclei. (a) B0 (permanent magnet
field) only, all nuclei precess at the same frequency. (b) B0 plus homo-
geneous gradient Gx. Precession frequency now depends upon position.

Adapted from McRobbie et al., 2017.

signal is being generated can be inferred by using the gradient coils. The directional
magnetic gradients will slightly change the phase and frequency of precession depend-
ing on the position of the tissue (Figure 3.1). Finally, the position of the signal can be
recovered by transforming back from the frequency space to the spatial space.

This is a very superficial explanation of the process. For a more in-depth explanation
please refer to Grover et al., 2015 and Klioze, 2013.

3.2 Diffusion Weighted Imaging

As discussed in Chapter 2, the diffusion propagator describes the probability of dis-
placement of spins, and is dependent of the chosen diffusion length. The propagator
form is the result of autodiffusion hindered by white matter microstructure. It is then
evident that one should be able to obtain information of the brain microstructure by
computing this propagator. Diffusion Weighted Imaging (DWI) works indirectly sam-
pling the diffusion propagator. This is done by means of MRI and cleverly crafted mag-
netic pulse sequences to measure the displacement of the set of diffusing spins being
observed.

3.2.1 The Bloch-Torrey equation

Remember that the magnetization vector is the property the MRI machine is capable of
measuring. In the stricter sense, the machine is only capable of measuring the projection
of this vector in the plane orthogonal to the main static field B0. This is called the trans-
verse magnetization, while the component parallel to the field is called the longitudinal
magnetization.
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The Bloch-Torrey equations model the change of the magnetization of a continuum
of spins in a strong magnetic field, considering the effects of diffusion movement,

∂M
∂t

= γM × B0 −
Mxei + Myej

T2
− Mz −M0

T1
ek −∇ · (D∇M), (3.2)

where ei, ej, ek are the canonical basis of the 3-dimensional Cartesian space, M is the
magnetization vector of the continuum, γ is the gyromagnetic constant of the medium,
T1, T2 are the relaxation times of transversal and longitudinal magnetization, and M0
is the steady state magnetization of the system as t → ∞ (Torrey, 1956) (Hall, 2016).
A common simplification only takes into account the transverse magnetization, repre-
sented as a 2-dimensional vector, which in turn is represented as a complex number
(Bloembergen, Purcell, and Pound, 1948) (Abragam, 1961).

∂m(t, r)
∂t

= ∇r′ · [D(r′)∇r′m(t, r)]− [T−1
2 (r) + iωO(t, r)]m(t, r). (3.3)

Here, ωO = ω(r) + G(t)r is the Larmor Frequency offset. The term G(t)r comes from
the diffusion sensitizing magnetic gradients generated by the machine, and ω(r) comes
from the intrinsic magnetic microstructure of the underlying tissue.

3.2.2 qt Imaging

The fundamental link between the diffusion propagator in (2.4) and the MRI signal lays
in the gradient-dependent phase. The main technique used to exploit this is the Pulsed
Gradient Spin Echo (PGSE) sequence. The PGSE was first demonstrated by Stejskal and
Tanner, 1965; based on the ideas of McCall, Douglass, and Anderson, 1963. It consists in
a sequence of radio frequency pulses of 90◦ an 180◦, and spatially homogeneous gradi-
ent pulses of different directions to dephase diffusing spins, and attenuate the resulting
signal as a result of this dephasement. A more thorough explanation can be found in
Rios-Carrillo, 2017 (in Spanish). An important detail is the definition of the q vector,
which condenses various experimental parameters of the MRI sequence. Also known
as the wavevector, q is defined as

q = γδG. (3.4)

Here, γ is the gyromagnetic ratio, δ is the gradient pulse duration. Here we drop the
time dependence of gradient G.

Stejskal and Tanner described the analytic expression of the MRI signal attenuation
in the PGSE experiment when very narrow rectangular gradient are used, so δ → 0.
This is called the narrow gradient approximation. While the approximation is impossible
to realize in a real machine, it brings very important insights on the behavior of the
signal when δ << ∆. Let S(t, q) be the signal acquired using the sequence parameters
represented by q along diffusion time t, and V the voxel being measured. S(∆, 0) is the
signal not weighted to diffusion along time ∆, so the effect of T2 relaxation is removed
from the normalized signal. Being the MRI signal the net magnetization

∫
m(t, r)dr, the

normalized signal attenuation under these conditions is

S(∆, q)
S(∆, 0)

=
∫

V
P(r0)

∫
P(r0|r′, ∆) exp(−iqT[r′ − r0])dr′dr0. (3.5)
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The dephasement terms are only dependent on the displacement vectors, and (3.5) can
be transformed similarly as in (2.4),

S(∆, q)
S(∆, 0)

=
∫

Gr,∆ exp(−iqTr)dr, (3.6)

where
Gr,∆ =

∫
V

P(r0)P(r0|r0 + r, ∆)dr0. (3.7)

Doing this, we discover that the signal in (3.6) is the Fourier transform of Gr,∆ at q. Also
important, (3.7) is the averaging, as in (2.6), of the local ensemble propagators 〈P(r0|r0 +
r, ∆)〉r0 over all starting positions. This is called the Ensemble Average Propagator, or EAP
(Kärger and Heink, 1983). One should note the EAP is invariant to the starting point,
and quantifies the probability that a spin displaced r from their starting point after a
time ∆.

In summary, the parameters of the Diffusion MRI consists in the diffusion time ∆
and the vector q.

3.3 Diffusion Tensor Imaging

We mentioned earlier the effects of diffusion time in the scale of the information of
microstructure that can be extrapolated from the retrieved signal. In this work, we focus
on the coarse regime, when the difussion time is long enough to average out the fine-
grain details of the microstructure, and simplify the model to near-gaussian difussion.
When the difussion length L is considerably greater than any of the distances of the
microscopic features, the parameter space of the measures can be simplified.

3.3.1 Enter the b-value

The b-value (Le Bihan, Breton, et al., 1986) is a condensation of the parameters in qt
imaging when the diffusion in every compartment in the voxel is Gaussian. This can
happen if the substrate is guaranteed to have a Gaussian diffusion profile, or if one
attains the coarse graining regime with a long enough diffusion time. The white matter
is a very complex substrate with rich details, with highly non Gaussian diffusion. This
means the second approach needs to be used.

b = qTq∆. (3.8)

The actual form of the diffusion time here is ∆ − δ/3 instead of just ∆, however, we
neglect δ on the assumption that δ << ∆.

3.3.2 Signal from Gaussian diffusion.

The form of the Ensemble Average propagator when diffusion is Gaussian was dis-
cussed on Chapter 2. If we substitute the multivariate Gaussian distribution form of
(2.4) in the signal expression, we obtain the tensor model.

S(∆, q)
S(∆, 0)

=
S(b, g)

S0
= exp(−bgTDg). (3.9)
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This is the fundamental model of Diffusion Tensor Imaging. Now on, we refer the un-
weighted signal S(∆, 0) as S0 for convenience. We can normalize the gradient direction
g, as the magnitude information is already in b.

3.3.3 Multiple compartments and crossing fibers

The most important limitation of DTI is that is unable to describe diffusion on sub-
strates with multiple compartments, in which water is restricted to travel between them
(Panagiotaki et al., 2012). As was discussed on the anatomy section of Chapter 2, this is
the case of the diffusion on white matter. Each compartment has a Gaussian diffusion
profile in the coarse graining regime. The multitensor model overcomes some of the
limitations by modeling the EAP of a voxel with compartments as a mixture of Gaus-
sian densities,

Gvoxel
r,∆ =

n

∑
i

fiGr(Di, ∆), (3.10)

where G is a multivariate Gaussian density with mean µ = 0 and covariance matrix
Σ = 2∆D evaluated at r. The model consists in n bundles of fibers, each one using a
part of the volume of the whole voxel. There is no water exchange between different
bundles. The fraction of the volume used by each bundle is denoted by 0 < fi < 1. Each
value of f is the volume fraction of the compartment. In the context of brain MRI, this
is called Intra Cellular Volume Fraction, Intra Axonal Volume Fraction, or just Volume
Fraction depending if the compartment is a neuronal axon, or water inside glia or other
cells. The sum of all weights of each compartment must add to 1, including hindered
diffusion outside any compartment. Thus, the normalized signal has form

S(b, g)
S0

=
n

∑
i

fi exp(−bgTDig). (3.11)

One problem of the multitensor model is the high count of degrees of freedom. Each
fiber bundle has its own diffusion tensor and volume fraction, meaning 7n− 1 param-
eters. This might cause instability. However, one can restrict the number of parameters
by assuming constraints like radial symmetry and negligible orthogonal diffusion. In
this work, we use models with these characteristics, as will be discussed on Chapter 4.

The number of compartments n is assumed to be known. Practical handicaps, which
will be discussed on the next section, limit the number of orientations the method can
resolve reliably and most applications consider a maximum of 2 (Alexander and Seu-
narine, 2010).

3.4 Diffusion MRI outside the blackboard

The MRI Diffusion weighted image analysis is not only limited by their intrinsic sam-
pling method. The models formerly described do not take all the real world intricacies
of the measuring process. There are a variety of phenomena that obfuscate scanning
the medium. MRI has several such as Rician-distributed background noise (Edelstein,
Bottomley, and Pfeifer, 1984) (Basser and Pajevic, 2000), magnetic disturbances caused
by tissue susceptibility or air-tissue interfaces, frequency and sampling related artifacts.
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In addition to all of this, there are problems particular to Diffusion Weighted Imaging
(Le Bihan, Poupon, et al., 2006), which are listed below.

• Limitations of the dephasing gradients. The electronics and coils needed to gen-
erate the strong gradients needed are physically limited. Gradient pulses are not
perfectly sharp, and they have limited intensity. This is sometimes compensated
by using longer gradient pulses. However, this deviates from the small-δ assump-
tion, and makes the signal more difficult to treat and interpret.

• Eddy currents induced by the switching magnetic fields. The alternating magnetic
field induces electric currents in conductive surfaces of the MRI scanner machine,
which in turn create magnetic which contaminate the main field and gradients.
These artifacts could lead to dilation and shear of the image. The b-value induced
to the spins differs from the expected value, leading to over- or underestimation of
the diffusivity. This is an important issue, as the b-value is related to the gradient
magnitude squared.

• Motion artifacts related to in vivo measures. A human or animal subject cannot
stay perfectly static. The dephasing induced by macroscopic movement is up to
100 time larger than those induced by diffusion. These will induce ghosting, typi-
cally in the phase-encoded direction of MRI. Breathing an blood circulation. This
can lead to the overestimation of the Apparent Diffusion Coefficient. Some ways
of controlling this are gated acquisitions with EKG or breathing signals, navigator
echoes and sedation.

• Echo Planar Imaging (EPI) artifacts. EPI is widely used for DW-MRI because it
practically solves the movement artifacts. An EPI image takes 100ms to be taken.
However, EPI has limited spatial resolution, which in turn generates ghosting.
Also, T2 decaying is a concern.

• The real diffusion time is not known. The theory in PGSE says the diffusion time
should be ∆− δ/3, however, its physical significance is not so clear. as diffusion
effects during gradient pulses and in between do not scale the same way with time
(Jones, 2010). Lori, Conturo, and Le Bihan, 2003 say ∆ + δ is a better option. If δ is
neglected, underestimation of diffusivity might occur (Mitra and Halperin, 1995).

• The choice of b is a tradeoff between high signal at low b and more detailed angu-
lar structure at high b (Basser, 2002).

3.5 Modeling Diffusion inside White Matter

Imagine a car for a moment, and the individual parts that make it. There is a very com-
plex engine which converts chemical energy to mechanical energy by means of combus-
tion or electromagnetism, a transmission which converts the torque of the motor, wheels
specially designed to optimize traction, a chassis designed to protect the passengers in
an accident, a plethora of electronics controlling everything, etc. Notwithstanding such
degree of complexity, one does not need to have advanced degrees in mechanical and
electrical engineering to drive a car. Even if one person completely ignores the under-
lying mechanisms that make the car move, it is absolutely possible for this person to
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drive it, given that such person knows the relevant dynamics and parts of the system. In this
example, the important variables would be the switch, brake, accelerator, clutch (if there
is one), steering wheel and gear stick. The dynamics are the mental representations of
the start sequence, how the car steering would respond at a given speed, the braking
process, and such. This, of course, does not imply the driver knows the whole physics
of the moving car, but just an effective abstraction of it.

An effective theory proposes to describe a certain set of observations without ex-
plicitly implicating that the mechanism employed in the theory corresponds directly to
the actual causes of the observed phenomena the theory is being fitted to. As discussed
in Chapter 2, coarse graining is very important in Diffusion MRI. The quantum me-
chanics of the nanometre scale are averaged out and become negligible for most of the
imaging techniques. In the same way, microscopic jittering of the water molecules on
the micrometre scale acquires a Gaussian diffusion profile at the coarse grained regime
on the millimetre scale. At this scale, only some of the plethora of physical degrees of
freedom characterizing diffusivity remain relevant (Novikov and Kiselev, 2010). This
coarse graining in MRI arises very naturally, as diffusion by itself is a coarse graining of
the Brownian movement in the form of the mean squared displacement and the EAP.

3.5.1 Model versus Representation

The mere concept of what is a model still is debated, and varies between discipline. One
of such interpretations defines the model as a particular case of a physical theory, an
instance of this theory with only conserves relevant degrees of freedom, and normally
is expressed in terms that make comparison with real life measures of the modelled
phenomena easy (Novikov, Kiselev, and Jespersen, 2018). Ergo, a crucial point is that
a model is derived from a sketch of reality, a pictorial representation of the phenomena.
Depending on the scale of averaging used, there may be different models which predict
measurements on that resolution in particular. Nonetheless, all those models are unified
under a common theory. When a mathematical expression merely fits the observations
well, but lacks this theoretical framework, it becomes a representation.

In a theory of axons as cylinders of finite radius, one can use strong gradients and
short diffusion times to capture this microstructure information. However, another
model is better suited to the coarse grained regime. When diffusion length is signifi-
cantly greater than the axon radii, the effective theory becomes that of zero radius chan-
nels, or sticks. This means axonal diameter becomes an irrelevant parameter when using
long temporal scales and low diffusion weighting.

The division between model and representation can be subtle, and it is important
to know what is being used in any given situation. Novikov, Kiselev, and Jespersen,
2018 provide an interesting example about bi-exponential fitting as a two compartment
model, and that justifying the model assumptions is much less trivial and more impact-
ful than doing the fitting per se.

3.5.2 DTI beyond Gaussianity

By establishing this semantic delimitation, it happens to be that DTI is not a model per se,
but a signal representation. DTI can be seen as a special case of the so-called cumulant
expansion, which is a Taylor expansion of the diffusion signal around q = 0 (Kiselev,
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2010). DTI makes no assumptions on the underlying tissue microstructure. Contrary
to what is still often stated in the literature, DTI is not based on the Gaussian diffu-
sion assumption either. Rather, it captures only the lowest-order term in the cumulant
expansion. Any reasonable biophysical model of diffusion has a DTI representation to
which it reduces in the limit of b→ 0. However, this same logic classifies DTI as a model
of the absence of any microstructure at the micrometer scale. It is not the anisotropy, but
the absence of higher-order terms in the cumulant expansion that constitutes a model
of this. Recognizing DTI as a representation at low diffusion weighting rationalizes its
widespread clinical applicability in the face of unfair criticism, given that diffusion is
almost always non Gaussian in the brain.
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Chapter 4

Methodology

4.1 Synthesis of Spin Trajectories

The measurement process in a MRI machine introduces noise and artifacts. To find
the theoretical limit that can be inferred from these signals, one would need to be able
to measure the physical process directly. This implies knowing the exact position of
each magnetic dipole, currently an intractable task. A more practical approach is the
use of simulation. Each spin trajectory is the product of collisions and thermal energy.
Trying to model and simulate these interactions for a realistically large number of spins
would be computationally intractable, as the number of spins in White Matter is roughly
2.4× 1010 per µm3 (Filo and Mezer, 2018). Fortunately, one can rely on the probabilistic
formulation of the problem. The phenomenon can be approximated by simulating the
random behavior of a relatively large ensemble of particles; a Montecarlo simulation of
the diffusive process. In that way, we are sampling the process with a reasonable degree
of accuracy.

The simulation of the spin dynamics works by displacing each of the molecules at
equidistant discrete time steps, and computes the elastic collision between them and
the substrate. The displacement has a random direction and a fixed step length. The
step length is calculated as a function of the diffusion coefficient of the medium and
the duration of each time step. For an in-depth explanation of the simulation algorithm
used and convergence constraints refer to Hall and Alexander, 2009.

Along with exactly determining the trajectory of the particles, another benefit is the
quality of the obtained signal. The synthetic signal is completely free of noise and com-
mon measurement artifacts, such as movement of the subject and eddy currents. Ergo,
we are capable of obtaining just the modeling error by factoring out every other source
of variability without further post processing. Consequently, we can establish a lower
bound of the expected error using this technique.

We synthesized the walks of large set of simulated particles using CAMINO Monte-
carlo diffusion simulator (Cook et al., 2006). We simulated water diffusion on idealized
substrates based in histology, which resembles some characteristics of real white matter
(Figure 4.1). The substrate is formed by a set of parallel, non abutting cylinders (simpli-
fied axon model) randomly packed, whose diameter has a gamma distribution derived
from electron microscopy of the corpus callosum (Aboitiz et al., 1992) (Assaf et al., 2008).
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4.1.1 Rotated Bundles

CAMINO is capable of simulating a crossing between two fiber bundles. However,
the software has two main drawbacks. Their crossing fiber implementation is limited
to lesser complexity substrates; parallel cylinders equidistantly packed, and of equal
diameter. Also, the spins position cannot be initialized separately to guarantee the same
number of spins in both compartments. This restriction is important because the quality
of the signal is dependent of the number of spins, so we need to use the same number
for both of the compartments to attain comparable quality. A solution we implemented
in this thesis work to tackle these problems is to take the same spin walks in complex
substrates we already have, and then rotate the ensemble trajectory for all the simulation
history. Then, it is possible to add the signals of both of the bundles to simulate the
signal of a crossing. It is still disputable whether fibers interdigitate at axon or bundle
level. Nevertheless, literature generally assume crossings of separated whole bundles,
and models of such fashion have corresponded with known fiber anatomy (Tuch et al.,
2002). We assumed bundle level interdigitation to simplify the signal generation, and to
allow the use of the somewhat realistic substrate used.

4.1.2 Simulation Parameters

TABLE 4.1: Parameters used in simulation.

Parameter Value

N Number of spins 500,000
T Number of time steps 4,000
tsim Duration of the simulation 0.0359 s
Dsim Diffusion coefficient of the medium 2.1× 10−9

lvoxel Cubic voxel side length 35 µm
Random Seed 60,476,047

The simulation parameters, such as number of molecules and time steps were chosen
to have good convergence of the simulation (see table 4.1). The voxel size and substrate
need to be taken into account. For our main dataset, we choose Dsim; the free diffusion
coefficient of the medium, as the estimated intra-axonal infinite time diffusion coeffi-
cient measured in vivo inside the brain (Dhital et al., 2019). The number of cylinders is
chosen to generate six substrates of different intra-axonal volume fraction f (also called
Intra Cellular Volume Fraction or ICVF) separated approximately by increments of 0.1
(see table 4.2). The substrate is periodic in the simulation, so if a spin exits the voxel, it
will find another identical substrate layout.

The spins initial position was randomly distributed along the substrate in an uni-
form fashion. Two positions sets are generated with the same number of spins. One
set is initialized just inside the axons (the intracellular or intra axonal space), the other
set, outside the axons (also called the extracellular or extra axonal space). Both sets
are simulated separately. In this way, we guarantee the signal of both of the the two
compartments has the same quality and same S0 weighting.



4.1. Synthesis of Spin Trajectories 23

TABLE 4.2: Intra-axonal Volume Fraction levels with its respective labels
and number of cylinders used.

Level Ncyl f

lvl2 170 0.2028451907672634
lvl3 260 0.3081223234273966
lvl4 330 0.4014456195874796
lvl5 412 0.5016271405754553
lvl6 490 0.6076080511924874
lvl7 580 0.7064550523980454
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FIGURE 4.1: Transversal cut of low, medium and high f substrates. This
synthetic substrate tries to imitate the axon distribution of real white mat-

ter, like in Figure 1.1.

4.1.3 MRI Signal Measurement

We use the CAMINO toolkit to compute MRI signals from the synthesized spin trajecto-
ries. We simulate Stejskal-Tanner standard PGSE sequences (Stejskal and Tanner, 1965)
in order to be able to perform experiments on the signal space of the simulations. Two
protocols are used. One has 4 shells (b-values), each one with 90 directions (see figure
4.2 and appendix A). The other is a subset of the former which contains only the first
shell b = 1000 with 90 directions. These protocols are crafted with parameters to reduce
δ to a very small value (See table 4.3). We chose ∆ long enough to achieve the coarse
grain regime discussed on Chapter 2 (assuming it is equal to the diffusion time, given
that the small δ approximation holds). It has been shown this is a reasonably long time
for substrates of similar size (Burcaw, Fieremans, and Novikov, 2015).

TABLE 4.3: Parameters of used pulse sequence.

Parameter Value

b b-value {1000, 1500, 2000, 2500} × 106

|G| Gradient magnitude {1.259, 1.543, 1.781, 1.991}
∆ Delay between gradient pulses 0.0354
δ Duration of the gradient pulses 0.0005
TE Echo Time 0.0359
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FIGURE 4.2: Directions in PGSE scheme used.

4.1.4 Displacement Set and Ground Truth Computation

For each of the simulations, the set of displacement vectors is computed by subtracting
the final position of each spin from its initial. Let ri|t be the position of the i-th spin at
time t. Thus, we define

P = {ri ∈ R3 : ri = ri|tsim − ri|0}. (4.1)

Then, we compute the Mean Squared Displacement of the set by averaging all the dis-
placement vectors squared elementwise.

〈r2〉 = 1
N ∑

ri∈P

ri
2. (4.2)

The apparent diffusion coefficients along the axis can be computed using (2.7). We
define the ground truth apparent parallel diffusion coefficient D‖ as the diffusion along
the y axis. We assume the orthogonal diffusion is equal in any direction perpendicular
to z, so we average the diffusion along x and y to obtain the orthogonal ground truth
D⊥. The ground truths are computed as

D‖ =
〈r2〉z
2tsim

(4.3)

and

D⊥ =
1
2
〈r2〉x + 〈r2〉y

2tsim
.

However, the diffusion time we are measuring with the MRI diffusion protocol is not the
whole time of the simulation, but the effective time ∆. To account for the difference in
the calculation of the ground truths, we model the effect of the active pulsed gradients
on a spin as an averaging of the walking along all the time the gradient is on. To do this,
we generate a new pseudo displacement vector set by taking the beginning and end of
the displacement of each spin as the centroid of its location history for 0 ≤ t ≤ δ and
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(tsim − δ) ≤ t ≤ tsim respectively.

Pδ = {µi ∈ R3 : µi = µi|0,δ − µi|(tsim−δ),tsim
}, (4.4)

where µi|a,b is the average of all the position history of the i-th spin from time a to b. We
use (4.3) to recompute the ground truths, but now using time ∆ instead of tsim. They
are very similar (less than 2% difference ) to the ones obtained originally, meaning the
estimation works well because of our assumption that ∆ << δ.

Finally the complete bundle diffusion coefficients are computed as the weighing of
the intra-axonal and extra-axonal compartments by the ICVF.

D⊥,bundle = f D⊥,intra + (1− f )D⊥,extra (4.5)
D‖,bundle = f D‖,intra + (1− f )D‖,extra.

TABLE 4.4: Ground truth values of the synthetic dataset. Computed from
the pseudo displacement set with δ = 0.0005.

D⊥ D‖
Compartment extra intra extra intra
f

lvl2 1.676e-09 3.094e-12 2.093e-09 2.085e-09
lvl3 1.481e-09 2.647e-12 2.085e-09 2.096e-09
lvl4 1.335e-09 2.606e-12 2.098e-09 2.092e-09
lvl5 1.162e-09 2.464e-12 2.089e-09 2.094e-09
lvl6 9.930e-10 2.559e-12 2.089e-09 2.090e-09
lvl7 7.948e-10 2.433e-12 2.092e-09 2.095e-09

4.2 Tensor Fitting to MRI Simulated Signal

Histograms are a conceptually interesting approach to observe the structure of the dif-
fusion movement. However, the main task is to assess this structure using the data
from an MRI machine; a limited set of samples from indirect measurement of the phe-
nomenon.

A diffusion tensor is fitted by finding the set of parameters p which minimize the
difference between the simulation signal vector Ssim, and the ideal signal generated by
a model of the process,

argmin
p
‖Ssim − Smodel(p)‖1 , (4.6)

where ‖v‖1 = ∑i |vi| is the Taxicab or L1 norm of vector v.

4.2.1 Zeppelin Model

The main idea in DTI is to assume the shape of the propagator is entirely Gaussian. The
first model comes from the solution of the Bloch-Torrey equation in a PGSE experiment
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in heterogeneous gaussian diffusion (Basser, Mattiello, and LeBihan, 1994).

Sbundle,i = S0 exp(−bigT
i Dgi), (4.7)

where D ∈ R3×3 is the diffusion tensor, and gi ∈ R3 is an unitary vector; the i-th direc-
tion of the magnetic gradient specified in the MRI protocol. Each direction can have a
different bi depending on the MRI sequence. One special case is where the tensor has the
same apparent orthogonal diffusion coefficients D⊥ along x, y and one apparent parallel
diffusion coefficient D‖ along z. This model is known as the zeppelin, because the level
plot of the quadratic form gTDg forms an ellipsoid with radial symmetry (Alexander,
2008). The zeppelin is restricted so

D = diag(D⊥, D⊥, D‖). (4.8)

In this case, the eigenvectors form an orthogonal basis parallel to the x, y, z axis. We de-
note Dθ,φ as the same diffusion tensor whose eigenvectors had been rotated in spherical
coordinates angles θ, φ with the transformation R(θ, φ) ∈ R3×3. Because D is a real sym-
metric matrix, it can be decomposed as ΦΛΦT, where Φ is an orthogonal matrix whose
columns are the eigenvectors of D, and Λ is a diagonal matrix with its eigenvalues.
Thus, it follows that

Dθ,φ = RDRT = R(ΦΛΦT)RT = (RΦ)Λ(RΦ)T. (4.9)

In this manner, we have a way of describing diffusion in terms of angles, the orthog-
onal and parallel coefficients. This model is useful in the case of a single unidirectional
bundle of axons. However, it will not be able to describe the case in which there are a
crossing of two or more bundles. The model can be easily generalized to take a crossing
into account, by adding the contribution of the other bundle. This means weighting
both of the signals by a mixing factor 0 ≤ α ≤ 1.

Sm = αSbundle1 + (1− α)Sbundle2. (4.10)

FIGURE 4.3: Graphical representation of the diffusion tensor and its spe-
cial cases; the stick and zeppelin models. Adapted from Ferizi, Schneider,

Panagiotaki, et al., 2014.
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4.2.2 Stick + Zeppelin Model

The next logical generalization is to use two different compartments to model the prop-
agator. In our substrate, radial diffusion inside the axons is highly restricted, because of
impermeability and radii size. Therefore, it is reasonable to neglect the radial diffusion
and assume the spins diffuse freely along the dθ axis parallel to the cylinders. Thus, we
can assume a degenerated case of (4.7) with D⊥ = 0,

Sintra,i = S0 exp(−biD‖(g
T
i dθ,φ)

2), (4.11)

where dθ,φ is the canonical vector ez (an unit vector parallel to the z axis) with the rota-
tion Rθ,φ applied. This part of the model is called the stick, because the level plot of the
function would be just a line in a 3D space (Behrens et al., 2003). The extracellular space
is fitted with the same approach as the zeppelin model,

Sextra,i = S0 exp(−bigT
i Dθ,φgi). (4.12)

To form the complete signal of a bundle, the signals are added, weighted by the intra-
axonal fraction f .

Sbundle = f Sintra + (1− f )Sextra. (4.13)

In the case of one crossing, two bundles are added weighted by the mix factor α, exactly
like in (4.10).

4.3 Local Grid Search

Formulations (4.23) - (4.24) and (4.6) are nonlinear optimization problems that can be
solved in a variety of ways. However, we are interested in isolating the error of the
model, so we want to characterize the search space near the correct solution.

We solve previously stated optimization problems by searching in a grid of the dis-
cretized parameters. Each discretization has two parameters. The first one is the size
of the neighborhood ε, that represent a percentage of the ground truth value p. As an
example, a value of ε = 0.999 means that the partition spans ±99.9% of the nominal
ground truth value (i.e from (0.001)p to (1.999)p). The second parameter is the number
of points Ngrid in the partition. We have Ngrid + 1 equidistant points from (1− ε)p to
(1 + ε)p.

Ωp = {Pi = i
2εp
Ngrid

+ (1− ε)p , i ∈ {0, 1, · · · , Ngrid}}. (4.14)

The complete search space Ω is an n-dimensional grid result of the Cartesian product
of all parameter discretizations for each of the free parameters depending of the search.
Supposing we are using n parameters, all with the same Ngrid, the search space looks
like this:

Ω = Ωp1 ×Ωp2 × · · · ×Ωpn , Ω ∈ (RNgrid+1)n. (4.15)

An exhaustive search is done, and we select the point in this grid (i.e. the combina-
tion of parameters) that has the minimum norm.
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4.4 Overview of Experiments and their Degrees Of Freedom

Leaving details of microstructure aside, one can parametrize a pair of fiber bundles
crossing by their respective pair of diffusion coefficients, their pair of angles in spherical
coordinates, the ICVF f , and the mixing factor α. Using our methodology on all of these
parameters is computationally intractable, for a meaningful resolution. The Grid Search
complexity grows O(N#p

grid), so we simplify the search in a number of ways:

• One of the bundles is always parallel to the z axis.

• The other bundle rotates just around the y axis in the xz plane. We call this rotation
angle θ, and is measured starting from the z axis.

• Both of the bundles share the same simulation parameters, so they will have the
same f , D‖ and D⊥.

• The mixing factor α is always 0.5.

There are two sets of experiments; the experiments of one bundle, and the crossing
of two bundles.

In the case of single bundle tests with MRI signals, we take the same approach as the
histogram framework. We fix all the parameters of (4.7) but D⊥.

For the crossing bundles, we begin by doing two Zeppelin fittings by fixing first θ
and then α. We do the same using a Zeppelin + Stick model, but fixing f on the two
searches. Finally, we do a Zeppelin + Stick search just fixing D‖.

TABLE 4.5: Degrees of freedom of each model.

Model Degrees of Freedom

Zeppelin for each compartment D⊥
Zeppelin for one bundle D⊥
Zeppelin + Stick for one bundle D⊥
Zeppelin for two bundles D‖ , D⊥ , θ , α

Zeppelin + Stick for two bundles D‖ , D⊥ , θ , α , f

4.5 Modelling error in the coarse graining regime

This section will analyze the theoretical behavior of the error deviation in some special
cases.

4.5.1 Fitting a single tensor to a two-compartment substrate signal

In a bi-compartment Gaussian model, the EAP can be viewed as a mixture of two zero-
mean multivariate normal distributions, each one characterized by their ICVF weight,
and their covariance matrix (directly related to the diffusion tensor by Σ = 2∆D). If one
were to fit this mixture model to the bicompartment substrate, comparison between the
parameters would be direct. However, in the case which one were to use classic DTI



4.5. Modelling error in the coarse graining regime 29

with only one tensor, this comparison would not be as straightforward as the previous
case. To compare the ground truth propagator between to the proposed single tensor
model, we propose the Kullback-Liebler Divergence (KLD). Unfortunately, the KLD is
analytically intractable for Gaussian Mixtures (Hershey and Olsen, 2007). Instead, we
propose to calculate a lower bound based on the work of Durrieu, Thiran, and Kelly,
2012.

Let GGT be the propagator of the ground truth model, which is a multicompartment
model in the form of a mixture of two Gaussian zero mean GGT,Intra,GGT,Extra; covariance
matrices ΣGT,Intra, ΣGT,Extra; and ICVF wGT,Intra = f and wGT,Intra = 1− f . Let Ĝ be the
estimated propagator, in the form a single Gaussian distribution with zero mean Ĝ, and
covariance matrix Σ̂. The distribution has no ICVF weighting, so the weight ŵ of Ĝ
would be just 1. We propose the following form,

DKL(GGT||Ĝ) ≥
{Intra,Extra}

∑
C1

wGT,C1 log
∑{Intra,Extra}

C2
wGT,C2 exp[−DKL(GGT,C1 ||GGT,C2)]

tC1,Ĝ

− wGT,C1

2
H(GGT,C1), (4.16)

were DKL(a||b) is the KLD between distributions a and b, H(a) is the entropy of distri-
bution a, and tC1,Ĝ is a normalization constant (refer to Durrieu, Thiran, and Kelly, 2012).
By removing the two cases of the denominator in which the divergence is calculated for
equal distributions (in which case the result is 0), the expression becomes

DKL(GGT||Ĝ) ≥
{Intra,Extra}

∑
C1

wGT,C1 log
wGT,¬C1 exp[− 1

2 log
ΣGT,¬C1
ΣGT,C1

− 1
2 Tr(Σ−1

GT,¬C1
ΣGT,C1) +

3
2 ]

exp[− 3
2 log(2π)− 1

2 log det(ΣGT,C1 + Σ̂)]

− wGT,C1

2
log[(2πe)3 det(ΣGT,C1)]. (4.17)

Here, ¬C1 denotes the opposite compartment of C1. So, if C1 references to the Intra
compartment, ¬C1 will reference to Extra, and vice versa.

4.5.2 Orthogonal diffusion using Zeppelin-Stick

The MRI signals are additive, which means the diffusion contribution of two compart-
ments is also additive. Imagine a fitting experiment in a substrate with two compart-
ments. We want to estimate the orthogonal diffusion. For the sake of consistence, lets
define the diffusion coefficient of one restricted compartment as D⊥,Intra and the outer
compartment as D⊥,Extra. The volume fraction between them is f . This means the sub-
strate orthogonal diffusion is the sum of both coefficients weighed by the ICVF. Let D⊥
be

D⊥ = f D⊥,Intra + (1− f )D⊥,Extra. (4.18)

We call this the ground truth. Now, imagine we obtained estimated measures of these
parameters. Let the estimated parameters be D̂⊥,Intra, D̂⊥,Extra and f̂ . The total estimated
diffusion D̂⊥ is computed as formerly. Now, lets define the relative error between the
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predicted and the real total orthogonal diffusion,

ε(D̂⊥) =
D̂⊥ − D⊥

D⊥
. (4.19)

Normally, ε is expressed as a percentage by multiplying it by 100%, which means, for
example, a value of 0.5 means 50% of deviation form the real value. Note that the error
can also be negative, implying a negative deviation from the ground truth. Assume a
perfect estimation of the ICVF and Extra orthogonal diffusion, so D̂⊥,Extra = D⊥,Extra
and f̂ = f . In the case of Zeppelin-Stick, the Intra orthogonal diffusion is neglected, so
assume D̂⊥,Intra = 0. The substitution of (4.18) for both the estimated and real diffusion
in (4.19), and dividing both parts of the fraction by D⊥,Intra yields

ε(D̂⊥) =
− f

f + (1− f )D⊥,Extra
D⊥,Intra

. (4.20)

The first insight is on the sign of the numerator. All parameters are positive, which
means the model will exclusively underestimate, not overestimate. Zeppelin-Stick model
assumption of negligible D⊥,Intra means that D⊥,Intra << D⊥,Extra, so the ratio between
D⊥,Extra and D⊥,Intra in the denominator of (4.20) should be significantly greater than 1,
the maximum value f could take. For low values of f , the part weighted by (1− f ),
the ratio of coefficients, dominates. This means the error stays very low, because the
ratio is significantly bigger than any value the numerator of (4.20). As f grows, the
error depends on how big is D⊥,Extra compared to D⊥,Intra. If is orders of magnitude
bigger, there should be no worries, as an ICVF greater than 0.9 is very rare. If it is not
big enough, a notable error could arise. When f → 1, the error will tend to 1. This is ob-
vious, as an ICVF of 1 means there is no Extra diffusivity, and estimating an orthogonal
diffusion of zero for a non-zero ground truth means we have a 100% error.

4.6 Histogram Fitting: An Intuition On Orthogonal Diffusivity

Our first proposed approach is to directly fit a normal distribution to the pseudo dis-
placement vector set in (4.4), in order to obtain insights on the shape of the diffusion
propagator (assuming the normality of DTI). We did this in one dimension. While the
next approach is generalizable to 3 dimensions, we found results do not explain further
than a one dimensional case.

We opted to do histogramming because is the simplest method to estimate the den-
sity, having to set just one parameter, the bin size. Other methods, such as Kernel Den-
sity Estimation, have more parameters to tune. Another idea is the use of a multivariate
normality test, such as Mardia, Henze-Zirkler, Shapiro-Wilk, graphical methods, and
others (Korkmaz, Goksuluk, and Zararsiz, 2014) (Porras-Cerron, 2016). However, this is
not directly applicable to the whole bundle, because we have the same number of spins
for extra and intra-axonal. In a real substrate, the proportion of molecules is weighted
by the ICVF. As previously stated, taking a varying proportion of spins from each com-
partment would also affect the quality of the signal proportional to the spins in a given
compartment.
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TABLE 4.6: Parameters of the histogram.

Parameter Value

Nbin Number of bins 224
∆h Width of bin 1/3 µm

Lower limit of the first bin −74.6 µm
Upper limit of the last bin 74.6 µm

We define the histogram hc
i as the binning of the projection of the 3-dimensional dis-

placement in the x axis. The superindex c denotes the compartment, intra-axonal or
extra-axonal. The subindex i denotes the value at the i-th bin. We choose this direction
because we assume radial symmetry, which means the orthogonal diffusion is the same
along any direction on the xy plane. We choose heuristically the resolution of the his-
togram, the number of bins Nbin, as a trade-off between size complexity and resolution.
The size of the histogram is set in such way we only discard at most 1% of the spins to
preserve statistical power.

Next, the histogram is converted to a Discrete Probability Distribution (DPD), in
which the value at each bins maps directly to the probability of having a displacement
of that magnitude and direction. This is done by dividing each bin height by the sum
of all elements in the histogram. Let C be a random binary variable. It takes the value
of 1 when a given spin is located in intra-axonal space, and 0 when is in extra-axonal
space. It follows that Pr(C = 1) = f and Pr(C = 0) = 1− f . We define the operator
[·] as a function which discretizes the position along the x axis and returns the indices
for hi. We define the DPD as a conditional discrete probability distribution, taking the
discretization of x as a random variable.

Pr([x] | C) =
hC
[x]

∑i hC
i

. (4.21)

Thus, it is possible to define the probability density function of the complete bundle (i.e.
the density function of the intra and extra-axonal compartments together) by the law of
total probability.

Pr([x]) = Pr(C = 1)Pr([x] | C = 1) + Pr(C = 0)Pr([x] | C = 0) (4.22)

= f
hintra
[x]

∑i hintra
i

+ (1− f )
hextra
[x]

∑i hextra
i

.

4.6.1 Fitting Procedure

A zero-centered Gaussian distribution is fitted to the discrete distributions of the dis-
tribution of the two compartments and the whole bundle using two norms. Let ∆h be
the bin width and h be the vector of the centers of all the bins. Let ‖v‖2 =

√
vTv be the

Euclidean or L2 norm of vector v.

argmin
σ2

∥∥∥Pr(h)/∆h− p(h, σ2)
∥∥∥

1
(4.23)
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argmin
σ2

∥∥∥Pr(h)/∆h− p(h, σ2)
∥∥∥

2
(4.24)

The probability is divided by the bin width to rescale the histogram, so we reinterpret
it as a piece-wise continuous probability density. In this way, we are able to compare it
with other continuous densities.∫ hNbin+∆h/2

h1−∆h/2

Pr([x])
∆h

dx = 1.

The function p(h, σ2) computes the probability value for each of the bins by integrating
along its limits. For this experiment, a simple trapezoidal approximation is used,

pi =
∆h
2
[g0,σ2(hi − ∆h/2) + g0,σ2(hi + ∆h/2)], (4.25)

where gµ,σ2(x) is the density of a Gaussian with mean µ and variance σ2 evaluated at x.

4.6.2 Variance Fitting in Histograms

For each simulation of interest, four histograms are computed for intra-axonal, extra-
axonal, the whole bundle, and the smoothed whole bundle. We smoothed out the whole
bundle histogram in an attempt to compensate for the low resolution in the intra-axonal
part. We believe the intra-axonal histograms concentrates most of the variance informa-
tion near the center, so smoothing could compensate for this. The smoothing was done
convolving the original histogram with a Gaussian kernel with bandwitdh of 6.6 bins.
This was chosen heuristically, as it was the best in terms of accuracy in prediction. We
histogrammed the projections of the displacement vectors along an orthogonal direc-
tion to the main diffusion axis. We assume the diffusion is equal along any direction in
the xy plane, so we arbitrarily chose the x axis. We are particularly interested in this di-
rection because non Gaussianity is visible the most on the radial diffusion component of
the total bundle. This is because the highly restricted orthogonal diffusion of the intra-
axonal compartment has a "spike" of spins with very small displacement afar from the
origin in the orthogonal directions. In order to solve (4.23) and (4.24), a local grid search
is performed along the variance σ2 with Ngrid = 1000 and ε = 99.9%. Then, we compare
the relative error between the fitted σ̂2 and the variance of the histogram. The variance
should correspond directly with the mean squared displacement in one dimension (2.7),
so it is possible to infer the diffusion coefficient from σ2. We fitted the distribution to the
intra-axonal, extra-axonal and total displacement histograms.

The extra-axonal diffusion is anisotropic, but is majorly Gaussian, just as can be seen
with small estimation errors in table 4.7. The intra-axonal histogram looks like a spike,
and fitting has a limited success with an error between 25%− 30%. The most interesting
case is when the histograms are mixed to form the total diffusion probability estimation.
Different overall behaviors can be distinguished between L1 (4.23) and L2 (4.24) experi-
ments. For low f values, the Gaussian tends to fit the extra-axonal contribution better,
which would correspond with the tails of the histogram. The fitted distribution becomes
nearer to the peak of the intra-axonal displacement as the ICVF f grows. The difference
between the two metrics is more notorious in the smoothed out histogram. The solution
of the problem with L2 norm prefers to fit the peak, while L1 norm has a better balance
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FIGURE 4.4: One dimension fitting for problem (4.23) (L1 norm) for whole
bundles with different levels of f . Blue points correspond to the his-

togram, the red corresponds with the fitted distribution.

between intra and extra. Another fact is the smoothing of the histogram improved the
estimation quality. This is a good technique to deal with the low resolution of the peak.
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TABLE 4.7: Results of one-dimensional Histogram Fitting Experiment for
problem (4.23) (L1 norm), and (4.24) (L2 norm). The table shows the
relative errors between the fitted σ̂2 for each bundle and the respective

ground truth.

Extra Intra Bundle Smoothed
Metric L1 L2 L1 L2 L1 L2 L1 L2
f

lvl2 0.10% 0.10% -33.30% -30.90% 11.90% -37.70% -0.58% -32.08%
lvl3 -0.30% -0.50% -29.70% -27.50% 21.70% -68.70% -17.62% -51.51%
lvl4 -0.50% -1.10% -27.90% -25.30% 26.10% -92.70% -57.23% -65.27%

lvl5 -0.90% -1.10% -26.50% -24.10% -97.10% -96.50% -75.14% -74.47%
lvl6 -0.50% -1.10% -26.70% -24.30% -96.70% -95.90% -72.80% -72.12%
lvl7 -0.70% -1.70% -26.10% -23.50% -96.30% -96.50% -78.88% -79.39%

Mean -0.47% -0.90% -28.37% -25.93% -38.40% -81.33% -50.37% -62.47%
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Chapter 5

Results And Discussion

5.1 One Dimensional Fitting

We solve (4.6) fitting for a single non-crossing bundle aligned to z. We are interested in
the non-Gaussian diffusion direction, so we fixed all the parameters of the model, but
D⊥. A local grid search was performed along this parameter using Ngrid = 200, 000 and
ε = 99.9%. This follows the same logic as the 1-d histogram search, by only sweeping
the parameter responsible of the non Gaussian part of the diffusion. The search is done
in the two compartments, as well as the whole bundle. The two separated compart-
ments are fitted just using the zeppelin model, while the whole bundle is fitted with the
zeppelin and zeppelin-stick variants.

As can be observed in table 5.1, the extra-axonal part of the diffusion is easy to esti-
mate, and the search underestimates with small error. As for the intra-axonal diffusion,
it looks like the search cannot reach a minimum within the neighborhood (see figure
5.1). The distance function keeps decreasing for smaller values of the estimated diffu-
sion coefficient D̂⊥. It is possible the model cannot represent very low diffusivity, and
the best option is actually D̂⊥ = 0 (a stick). In the case of the total signal, we can see an
important underestimation fitting the zeppelin.

There is a clear underestimation for all ICVF levels in the case of the whole bundle
fitting using just the zeppelin. The underestimation deviates further away as the ICVF
increases for almost all levels of f . However, the substrate with the greatest ICVF (lvl7)
is estimated with better accuracy than the next smaller one. This might find an expla-
nation based on the same mechanics of the histogram fitting. We hypothesize this is
because the very low D⊥,intra (refer to table 4.4) starts to dominate. A similar trend is
seen in the results of the normal total bundle histogram fitting at table 4.7.

The Zeppelin + Stick model is superior to the simple zeppelin by a notable margin,
as the estimation error never surpasses 7% of the nominal value. The error follows
a decreasing trend in the same manner as the simple zeppelin. By taking the off the
burden of explaining the restricted intra-axonal diffusion from the zeppelin part of the
model, the part is free to fit just the extra-axonal part of the bundle, which is almost
Gaussian. One important distinction should be noted in the case of the stick-zeppelin
experiment. The estimated coefficient D̂⊥ is plugged in (4.12) and then, its contribution
is weighted by (1− f ) in (4.13). This means the correct ground truth to compare with is
the D⊥ of just the extra-axonal diffusion, not of the total bundle as computed in (4.5).
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TABLE 5.1: Results of MRI Model Fitting Experiment. The table shows
the relative error between the predicted D̂⊥ for each bundle and the re-

spective ground truth.

f Extra (Zeppelin) Intra (Zeppelin) Bundle (Zeppelin) Bundle (Zeppelin + Stick)

lvl2 -4.85% -99.90% -22.62% -5.28%
lvl3 -4.88% -99.90% -26.07% -5.22%
lvl4 -5.12% -99.90% -27.79% -5.87%

lvl5 -4.94% -99.90% -28.85% -5.80%
lvl6 -5.17% -99.90% -29.20% -6.29%
lvl7 -5.04% -99.90% -27.61% -6.95%

5.2 One Crossing with 3 Degrees Of Freedom

For each f dataset, we create 4 extra bundles rotated 60, 70, 80 and 90 degrees from z,
thus, we have 24 crossings in total. A grid search is performed to fit a Zeppelin (4.7) and
a Zeppelin-Stick (4.13) using (4.6) for 3 degrees of freedom to characterize the effect of
knowing beforehand a subset of the parameters. We try to do the fitting by using the
acquisition obtained with the one shell scheme.

5.2.1 3 degrees of freedom: α, D‖, D⊥

We fix the value of θ and search along D‖, D⊥ and α using Ngrid = 100 for all the param-
eters. The mixing factor estimation for the two models, as well as the parallel diffusion
estimation, is very near to the ground truth. This can be seen in table 5.2. In the case
of the predicted orthogonal coefficient fitting the zeppelin, we note a increasing trend
in the underestimation magnitude in figure 5.2 dependent of the ICVF of the substrate.
The underestimation does not appear to be correlated to the angle of rotation in the
ground truth, as can be seen in the same figure. This behavior is predicted by the fitting
in one dimension, as the one compartment model cannot represent the diffusion in a
whole bundle. This changes when the zeppelin + stick model is fitted. We have perfect
α estimation, and small subestimation of D‖ and D⊥. Curiously, the subestimation error
is similar for all the levels of f and rotation angles. It looks like the model is almost
enough to represent the signal to a high degree, and this bias is inherent to the model.
We could do further statistical validation with other substrates in order to verify if it is
feasible to compensate for this error, and obtain a perfect prediction.

5.2.2 3 degrees of freedom: θ, D‖, D⊥

Now, we fix the value of α instead of θ, and search along D‖, D⊥ and θ using Ngrid = 100
for all the parameters, in the same fashion as the former search. The prediction error of
θ̂ is zero for the majority of cases. The mix factor α is fixed, which means it has zero
deviation. The former implies both of the 3 DOF searches have very low errors on the
prediction of θ̂ and α̂. Therefore, the results for the rest of the predicted variables are
practically the same, for the exception of some values (refer to table 5.3 an figure 5.3).
The same conclusions of the former experiment apply for the two models.
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TABLE 5.2: Results of first 3 DOF search fitting α, D‖, D⊥. The table shows
the relative error between the predicted parameters of the fiber cross and

their respective ground truth.

Zeppelin

f θ ε(D̂‖) ε(D̂⊥) ε(α̂)

lvl2 60.00 2.00% -23.98% 0.00%
70.00 2.00% -23.98% 0.00%
80.00 4.00% -23.98% 0.00%
90.00 4.00% -23.98% 0.00%

lvl3 60.00 0.00% -25.97% 0.00%
70.00 0.00% -25.97% 0.00%
80.00 0.00% -25.97% 0.00%
90.00 0.00% -25.97% 0.00%

lvl4 60.00 0.00% -27.97% 0.00%
70.00 0.00% -27.97% 0.00%
80.00 0.00% -27.97% 0.00%
90.00 0.00% -27.97% 0.00%

lvl5 60.00 -2.00% -27.97% 0.00%
70.00 -2.00% -27.97% 0.00%
80.00 -2.00% -27.97% 0.00%
90.00 0.00% -29.97% 0.00%

lvl6 60.00 -2.00% -27.97% 0.00%
70.00 -2.00% -27.97% 0.00%
80.00 0.00% -29.97% 0.00%
90.00 0.00% -29.97% 0.00%

lvl7 60.00 -2.00% -25.97% 0.00%
70.00 -2.00% -25.97% 0.00%
80.00 -2.00% -27.97% 0.00%
90.00 -2.00% -27.97% 0.00%

Zeppelin + Stick

f θ ε(D̂‖) ε(D̂⊥) ε(α̂)

lvl2 60.00 -4.00% -4.00% 0.00%
70.00 -4.00% -4.00% 0.00%
80.00 -4.00% -4.00% 0.00%
90.00 -4.00% -4.00% 0.00%

lvl3 60.00 -4.00% -4.00% 0.00%
70.00 -4.00% -4.00% 0.00%
80.00 -4.00% -4.00% 0.00%
90.00 -4.00% -4.00% 0.00%

lvl4 60.00 -4.00% -2.00% 0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -4.00% -2.00% 0.00%
90.00 -4.00% -2.00% 0.00%

lvl5 60.00 -4.00% -2.00% 0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -4.00% -2.00% 0.00%
90.00 -4.00% -2.00% 0.00%

lvl6 60.00 -4.00% -2.00% 0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -2.00% -5.99% 0.00%
90.00 -2.00% -5.99% 0.00%

lvl7 60.00 -4.00% 0.00% 0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -4.00% -2.00% 0.00%
90.00 -4.00% -2.00% 0.00%
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TABLE 5.3: Results of first 3 DOF search fitting θ, D‖, D⊥. The table shows
the relative error between the predicted parameters of the fiber cross and

their respective ground truth.

Zeppelin

f θ ε(D̂‖) ε(D̂⊥) ε(θ̂)

lvl2 60.00 2.00% -23.98% 2.00%
70.00 4.00% -23.98% 2.00%
80.00 4.00% -23.98% 2.00%
90.00 4.00% -23.98% 0.00%

lvl3 60.00 0.00% -25.97% -0.00%
70.00 0.00% -25.97% 0.00%
80.00 0.00% -25.97% 0.00%
90.00 0.00% -25.97% 0.00%

lvl4 60.00 0.00% -27.97% -0.00%
70.00 0.00% -27.97% 0.00%
80.00 0.00% -27.97% 0.00%
90.00 0.00% -27.97% 0.00%

lvl5 60.00 -2.00% -27.97% -0.00%
70.00 -2.00% -27.97% 0.00%
80.00 -2.00% -27.97% 0.00%
90.00 0.00% -29.97% 0.00%

lvl6 60.00 -2.00% -27.97% -0.00%
70.00 -2.00% -27.97% 0.00%
80.00 0.00% -29.97% 0.00%
90.00 0.00% -29.97% 0.00%

lvl7 60.00 -2.00% -25.97% -0.00%
70.00 -2.00% -25.97% 0.00%
80.00 -2.00% -27.97% 0.00%
90.00 -2.00% -27.97% 0.00%

Zeppelin + Stick

f θ ε(D̂‖) ε(D̂⊥) ε(θ̂)

lvl2 60.00 -4.00% -4.00% -0.00%
70.00 -4.00% -4.00% 0.00%
80.00 -4.00% -4.00% 0.00%
90.00 -4.00% -4.00% 0.00%

lvl3 60.00 -4.00% -4.00% -0.00%
70.00 -4.00% -4.00% 0.00%
80.00 -4.00% -4.00% 0.00%
90.00 -4.00% -4.00% 0.00%

lvl4 60.00 -4.00% -2.00% -0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -4.00% -2.00% 0.00%
90.00 -4.00% -2.00% 0.00%

lvl5 60.00 -4.00% -2.00% -0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -4.00% -2.00% 0.00%
90.00 -4.00% -2.00% 0.00%

lvl6 60.00 -4.00% -2.00% -0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -2.00% -5.99% 0.00%
90.00 -2.00% -5.99% 0.00%

lvl7 60.00 -4.00% 0.00% -0.00%
70.00 -4.00% -2.00% 0.00%
80.00 -4.00% -2.00% 0.00%
90.00 -4.00% -2.00% 0.00%
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FIGURE 5.1: Example of one-dimension fitting DTI zeppelin and zeppelin
stick models with relative prediction error ε against ground truth. The top
plot is the normalized measured signal, ordered by orthogonality to the z
axis. The second one is the norm as a function of the estimated parameter.

Red line on the middle shows ground truth.

5.3 One crossing with 4 Degrees Of Freedom

This is the most challenging test for the stick and zeppelin model. There is an important
problem in the contribution of the Zeppelin in the fitting of the extra-axonal compart-
ment. When using only a single non zero b-value, a decrease in the signal on one of the
compartments in a bundle can be compensated by the other varying f and D⊥. In fact,
this makes the problem ill-posed in the sense of Hadamard if the MRI protocol has just
one shell (Scherrer and Warfield, 2010) (Scherrer and Warfield, 2012) (Jelescu, Veraart,
et al., 2016). We demonstrate this by doing a grid search on α, θ, D⊥, f with Ngrid = 50
for all parameters. Figure 5.4 shows the countour plot of the normalized distance func-
tion (4.6). We did the search and fixed α̂ and θ̂ to their ground truths. The function has
a valley, so there is not an unique solution. The algorithm tends to choose a small ICVF
f . In this way, all the orthogonal diffusion is mostly controlled by the extra-axonal part
because is weighted by 1− f (see table 5.4). Consequently, the quality of the estimation
worsens as the ground truth f increases, because the intra-axonal contribution begins
to dominate (see figure 5.5).
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FIGURE 5.3: Orthogonal Coefficient error in 3 DOF Search using
θ, D‖, D⊥.

Finally, we repeat the same 4 DOF experiment, now, but now using the 4-shell sig-
nals. The accuracy of prediction improves dramatically, as the mix factor α, the rotation
angle θ, and the ICVF f are retrieved perfectly in most of the cases. The only factor pre-
senting a bias is the orthogonal diffusion coefficient D⊥. The underestimation error is
constant for the first 4 levels of ICVF, and increases for the last two. There is a worsening
effect mediated by f , but it does not have a clear pattern such as in the last experiment.
In comparison to Figure 5.4, the contour plots of the distance surface in this experiment
have a defined minimum, but a similar shape (Figure 5.7).
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TABLE 5.4: Results of 4DOF search using Zeppelin + Stick with one shell.
The table shows the relative error between the predicted parameters for

each bundle and the respective ground truth.

f θ ε( f̂ ) ε(D̂⊥) ε(α̂) ε(θ̂)

lvl2 60.00 -31.97% -19.98% 4.00% 4.00%
70.00 -31.97% -19.98% 0.00% 0.00%
80.00 -31.97% -19.98% 0.00% 0.00%
90.00 -31.97% -19.98% 0.00% 0.00%

lvl3 60.00 -35.96% -27.97% 0.00% -0.00%
70.00 -35.96% -27.97% 0.00% 0.00%
80.00 -35.96% -27.97% 0.00% 0.00%
90.00 -35.96% -27.97% 0.00% 0.00%

lvl4 60.00 -67.93% -47.95% 0.00% -0.00%
70.00 -67.93% -47.95% 0.00% 0.00%
80.00 -67.93% -47.95% 0.00% 0.00%
90.00 -67.93% -47.95% 0.00% 0.00%

lvl5 60.00 -67.93% -55.94% 0.00% -0.00%
70.00 -67.93% -55.94% 0.00% 0.00%
80.00 -67.93% -55.94% 0.00% 0.00%
90.00 -67.93% -55.94% 0.00% 0.00%

lvl6 60.00 -79.92% -67.93% 0.00% -0.00%
70.00 -95.90% -71.93% 0.00% 0.00%
80.00 -95.90% -71.93% 0.00% 0.00%
90.00 -95.90% -71.93% 0.00% 0.00%

lvl7 60.00 -79.92% -75.92% 0.00% -0.00%
70.00 -79.92% -75.92% 0.00% 0.00%
80.00 -79.92% -75.92% 0.00% 0.00%
90.00 -79.92% -75.92% 0.00% 0.00%
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FIGURE 5.7: Contour plots of 4DOF ‖Ssim − Smodel‖1 / ‖Ssim‖1 with
D‖, α, θ fixed to ground truth. Experiment with four shells.



5.3. One crossing with 4 Degrees Of Freedom 43

TABLE 5.5: Results of 4DOF search using Zeppelin + Stick with four
shells. The table shows the relative error between the predicted parame-

ters for each bundle and the respective ground truth.

f θ ε( f̂ ) ε(D̂⊥) ε(α̂) ε(θ̂)

lvl2 60.00 4.00% -4.00% 0.00% -0.00%
70.00 -0.00% -7.99% 0.00% 0.00%
80.00 -0.00% -7.99% 0.00% 0.00%
90.00 -0.00% -7.99% 0.00% 0.00%

lvl3 60.00 0.00% -7.99% 0.00% -0.00%
70.00 0.00% -7.99% 0.00% 0.00%
80.00 0.00% -7.99% 0.00% 0.00%
90.00 0.00% -7.99% 0.00% 0.00%

lvl4 60.00 0.00% -7.99% 0.00% -0.00%
70.00 0.00% -7.99% 0.00% 0.00%
80.00 0.00% -7.99% 0.00% 0.00%
90.00 0.00% -7.99% 0.00% 0.00%

lvl5 60.00 0.00% -7.99% 0.00% -0.00%
70.00 0.00% -7.99% 0.00% 0.00%
80.00 0.00% -7.99% 0.00% 0.00%
90.00 0.00% -7.99% 0.00% 0.00%

lvl6 60.00 0.00% -7.99% 0.00% -0.00%
70.00 0.00% -11.99% 0.00% 0.00%
80.00 0.00% -11.99% 0.00% 0.00%
90.00 0.00% -11.99% 0.00% 0.00%

lvl7 60.00 0.00% -11.99% 0.00% -0.00%
70.00 0.00% -11.99% 0.00% 0.00%
80.00 0.00% -11.99% 0.00% 0.00%
90.00 0.00% -11.99% 0.00% 0.00%
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Chapter 6

Conclusion

We have explored the effects of non Gaussianity of hindered diffusion on some DTI-
based models of white matter. The used substrate grossly simplifies the complexity of
microstructure inside the brain. Real axons are partially permeable; have intricate struc-
ture, such as Ranvier nodes and interactions with glia. They also have undulations and
discontinuities. And all of this do not take into account all the abnormalities a patho-
logical sample of white matter might have. By doing these experiments on a simplified
model with several strong assumptions and simplifications, we have bounded the devi-
ation of the estimated parameters from the real ones. Using the same methodology on
real acquisitions from machines scanning real brains will not improve the fitting error.

Resuming the previously discussed results, low errors are observed in the case of
diffusion expected to be approximately Gaussian; extracellular compartment diffusion
in this case. Strongly restricted intracellular diffusion is poorly represented because its
highly non-Gaussian. In the case of a single complete bundle, simple Zeppelin consis-
tently underestimates orthogonal diffusion, and the deviation worsens when the vol-
ume fraction of the substrate increases. The histogram experiments might help under-
standing why this happens, as the non Gaussianity of the intracellular part of the diffu-
sion tends to dominate when f increases. When f is known beforehand, the zeppelin +
stick model improves quality substantially. The deviation also increases proportional to
f , but in a quite less steep fashion. The estimation error is almost the same for all used
rotation angles of the crossings, so low variability mean it might be possible to compen-
sate for it. Finally, in the more realistic experiment of 4 degrees of freedom search, the
problem is impossible to solve when the acquisition protocol is limited to one b-value.
Nevertheless, in the 1 shell experiment, the angle θ and mix factor α are correctly in-
ferred. When 4 shells are used, the results are of very high quality, surpassing even the
one bundle results. There is no worsening trend in the predictions of the orthogonal
coefficient D‖ or f . We speculate this is caused by effects of another bundle with the
exact same characteristics.

6.1 Limitations

We limited the scope of this work to widely used bi-compartment models with a low
count of parameters in order to do a local exhaustive search. However, there is evidence
that 3 compartments or more, plus the addition of isotropically restricted models, attain
better results for real data, at the expense of increasing model complexity (Panagiotaki
et al., 2012). By the intrinsic nature of the models used (statistical models that describe
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the averaged ensemble characteristics), we focused only in recovering apparent diffu-
sion coefficients, volume fraction and crossing angles (one of them). There are various
biophysical, statistical and models proposed to associate patterns in the acquired sig-
nal to microstructural features, such as axon diameter and fiber density (Daducci, Erick
Jorge Canales-Rodríguez, et al., 2013) (Daducci, Erick J Canales-Rodríguez, et al., 2015).
One difference between some of them and DTI based models is they require a specific
measuring scheme with a specific set of directions and shells (Jelescu and Budde, 2017).
In terms of our framework, comparison is possible as one would only need to repeat the
signal acquisition step with the same synthetic data.

6.2 Future Work

We could not characterize the search space near the ground truth neighborhood, along
all the possible degrees of freedom, because of time constraints. Another immediate
followup is to augment the substrate complexity. It is possible to simulate the diffu-
sion process on arbitrary 3D meshes, which can be modelled based on real electron mi-
croscopy observation of axons with rich geometrical features, undulations and so forth.
It would be interesting to create various types of realistic substrates based on different
regions of the brain to assess if the modelling error could depend on the place where the
signal was retrieved. We might also adapt the methodology to characterize the error of
the more sophisticated biophysical presented discussed in the former section. Study the
effects of multiple unknown number of crossing fibers on the fitting could be interest-
ing, as we could fit iteratively an increasing number of models (Zhu et al., 2013). A kind
of binary search could be done to decrease the time complexity on the intuition that the
nearer the number of models to the real number of crossing fibers, the better the used
distance metrics are.
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Appendix A

Details Of The Used MRI Protocols

A.1 Directions used in each shell

gx gy gz

1 0.8764 -0.1992 0.4385
2 0.2555 -0.0611 0.9649
3 0.1437 -0.2180 -0.9653
4 -0.1045 -0.9930 -0.0543
5 0.1661 0.8334 0.5271
6 -0.1898 -0.9454 0.2649
7 -0.9580 -0.1768 0.2258
8 0.0147 -0.8923 0.4512
9 -0.0167 0.7328 -0.6803
10 -0.6404 -0.6879 -0.3416
11 0.5072 0.8471 0.1586
12 0.0000 0.0000 1.0000
13 0.7739 0.6134 -0.1578
14 -0.6163 0.0309 0.7869
15 0.2732 -0.5706 0.7744
16 -0.9652 0.0183 -0.2607
17 0.8528 0.1893 -0.4868
18 0.0377 -0.2773 0.9601
19 -0.3470 -0.9367 0.0470
20 0.0208 -0.5218 0.8528
21 -0.0010 0.4615 0.8871
22 0.2936 -0.8873 -0.3556
23 0.9356 -0.0624 -0.3476
24 0.5790 0.5645 0.5884
25 -0.9424 0.2840 0.1769
26 -0.5745 0.7387 0.3525
27 0.4970 -0.1175 0.8597
28 0.6388 0.1032 0.7624
29 0.7791 0.4736 0.4107
30 -0.8035 0.0570 0.5926

gx gy gz

31 0.1489 0.2300 0.9617
32 -0.1683 0.9780 0.1232
33 -0.2740 0.4232 0.8636
34 -0.7120 0.1554 -0.6847
35 0.9617 -0.2468 0.1194
36 0.0537 -0.9854 0.1614
37 0.4046 0.1656 0.8994
38 -0.3969 0.7317 0.5541
39 -0.7354 -0.3011 -0.6071
40 0.8756 -0.4829 -0.0080
41 0.9048 0.2331 0.3565
42 0.7475 -0.6453 0.1578
43 -0.1120 0.8232 0.5566
44 0.8377 0.0492 0.5439
45 -0.4818 0.5252 0.7015
46 0.6925 -0.7138 -0.1046
47 -0.6893 0.3032 0.6580
48 0.8754 0.4539 0.1663
49 0.6799 -0.6075 0.4107
50 -0.4628 -0.6678 0.5830
51 -0.6679 0.5420 0.5100
52 -0.2015 0.6447 0.7374
53 0.8019 -0.5316 -0.2728
54 0.6429 0.6636 -0.3826
55 -0.5543 0.8221 -0.1297
56 -0.0004 -0.9438 -0.3305
57 -0.4664 -0.2006 0.8615
58 -0.4294 -0.8377 0.3375
59 0.5250 -0.3770 0.7631
60 0.5172 0.3766 0.7686

gx gy gz

61 0.9977 -0.0401 -0.0546
62 0.2694 0.9270 0.2610
63 0.4888 -0.2728 -0.8286
64 -0.2558 0.9044 -0.3416
65 -0.4751 -0.4502 0.7561
66 0.3421 0.6470 0.6814
67 -0.6850 -0.2197 0.6946
68 0.8579 -0.4226 0.2924
69 0.4605 -0.8762 -0.1424
70 -0.9126 -0.3990 0.0887
71 -0.2148 -0.1504 0.9650
72 0.4853 -0.7836 0.3878
73 0.4202 0.7878 0.4503
74 0.2668 -0.7681 0.5821
75 0.0763 0.6728 0.7359
76 0.7221 -0.3972 0.5664
77 0.2919 -0.3321 0.8970
78 -0.8438 0.3110 0.4374
79 -0.4988 0.6057 -0.6199
80 0.2720 0.4502 0.8505
81 -0.5803 -0.8063 0.1146
82 0.3234 -0.9421 0.0887
83 -0.2323 -0.4026 0.8854
84 0.7339 0.6725 0.0958
85 0.9778 0.1923 0.0833
86 -0.6777 -0.4597 0.5739
87 -0.2307 -0.8152 0.5312
88 0.8321 0.4232 -0.3585
89 -0.3628 0.0647 0.9296
90 -0.2348 -0.6297 0.7406

A.2 Complete protocol

The two used protocols in CAMINO textfile format can be downloaded.
1-shell protocol: https://gitlab.com/ponco0e/tesis-cimat/blob/56a0949bc0bfe3cab5c8a87730023776eb901856/

recorrersimuladormc/schemes/moddedDyrby_1shell_b1000.0.txt

https://gitlab.com/ponco0e/tesis-cimat/blob/56a0949bc0bfe3cab5c8a87730023776eb901856/recorrersimuladormc/schemes/moddedDyrby_1shell_b1000.0.txt
https://gitlab.com/ponco0e/tesis-cimat/blob/56a0949bc0bfe3cab5c8a87730023776eb901856/recorrersimuladormc/schemes/moddedDyrby_1shell_b1000.0.txt
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4 shell protocol: https://gitlab.com/ponco0e/tesis-cimat/blob/56a0949bc0bfe3cab5c8a87730023776eb901856/
recorrersimuladormc/schemes/moddedDyrby_3shell.txt.

https://gitlab.com/ponco0e/tesis-cimat/blob/56a0949bc0bfe3cab5c8a87730023776eb901856/recorrersimuladormc/schemes/moddedDyrby_3shell.txt
https://gitlab.com/ponco0e/tesis-cimat/blob/56a0949bc0bfe3cab5c8a87730023776eb901856/recorrersimuladormc/schemes/moddedDyrby_3shell.txt
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Appendix B

Complete Experimental Results
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TABLE B.1: Complete Results of MRI Model Fitting Experiment. The
table shows the relative error between the predicted D⊥for each bundle

and the respective ground truth.

bundle bundleStick extra intra
Label D̂⊥ D⊥ ε(D̂⊥) D̂⊥ D⊥ ε(D̂⊥) D̂⊥ D⊥ ε(D̂⊥) D̂⊥ D⊥ ε(D̂⊥)

lvl2 1.034140e-09 1.336526e-09 -22.62% 1.587379e-09 1.675833e-09 -5.28% 1.594544e-09 1.675833e-09 -4.85% 3.093961e-15 3.093961e-12 -99.90%
lvl3 7.583010e-10 1.025719e-09 -26.07% 1.404051e-09 1.481336e-09 -5.22% 1.409023e-09 1.481336e-09 -4.88% 2.646827e-15 2.646827e-12 -99.90%
lvl4 5.776136e-10 7.998587e-10 -27.79% 1.256263e-09 1.334570e-09 -5.87% 1.266288e-09 1.334570e-09 -5.12% 2.605884e-15 2.605884e-12 -99.90%

lvl5 4.127837e-10 5.801882e-10 -28.85% 1.094264e-09 1.161685e-09 -5.80% 1.104268e-09 1.161685e-09 -4.94% 2.464086e-15 2.464086e-12 -99.90%
lvl6 2.769669e-10 3.912025e-10 -29.20% 9.305449e-10 9.930067e-10 -6.29% 9.417050e-10 9.930067e-10 -5.17% 2.558570e-15 2.558570e-12 -99.90%
lvl7 1.701321e-10 2.350369e-10 -27.61% 7.395612e-10 7.948297e-10 -6.95% 7.547828e-10 7.948297e-10 -5.04% 2.432815e-15 2.432815e-12 -99.90%

TABLE B.2: Complete results of 3DOF search fitting θ, D‖, D⊥ using Zep-
pelin. The table shows the relative error between the predicted parame-

ters for each bundle and the respective ground truth.

Level D‖ D⊥ θ α D̂‖ D̂⊥ θ̂ ε(D̂‖) ε(D̂⊥) ε(θ̂)

lvl2 2.100000e-09 1.336526e-09 60.0 0.5 2.141958e-09 1.016080e-09 61.1988 2.00% -23.98% 2.00%
2.100000e-09 1.336526e-09 70.0 0.5 2.183916e-09 1.016080e-09 71.3986 4.00% -23.98% 2.00%
2.100000e-09 1.336526e-09 80.0 0.5 2.183916e-09 1.016080e-09 81.5984 4.00% -23.98% 2.00%
2.100000e-09 1.336526e-09 90.0 0.5 2.183916e-09 1.016080e-09 90.0000 4.00% -23.98% 0.00%

lvl3 2.100000e-09 1.025719e-09 60.0 0.5 2.100000e-09 7.592987e-10 60.0000 0.00% -25.97% -0.00%
2.100000e-09 1.025719e-09 70.0 0.5 2.100000e-09 7.592987e-10 70.0000 0.00% -25.97% 0.00%
2.100000e-09 1.025719e-09 80.0 0.5 2.100000e-09 7.592987e-10 80.0000 0.00% -25.97% 0.00%
2.100000e-09 1.025719e-09 90.0 0.5 2.100000e-09 7.592987e-10 90.0000 0.00% -25.97% 0.00%

lvl4 2.100000e-09 7.998587e-10 60.0 0.5 2.100000e-09 5.761222e-10 60.0000 0.00% -27.97% -0.00%
2.100000e-09 7.998587e-10 70.0 0.5 2.100000e-09 5.761222e-10 70.0000 0.00% -27.97% 0.00%
2.100000e-09 7.998587e-10 80.0 0.5 2.100000e-09 5.761222e-10 80.0000 0.00% -27.97% 0.00%
2.100000e-09 7.998587e-10 90.0 0.5 2.100000e-09 5.761222e-10 90.0000 0.00% -27.97% 0.00%

lvl5 2.100000e-09 5.801882e-10 60.0 0.5 2.058042e-09 4.178980e-10 60.0000 -2.00% -27.97% -0.00%
2.100000e-09 5.801882e-10 70.0 0.5 2.058042e-09 4.178980e-10 70.0000 -2.00% -27.97% 0.00%
2.100000e-09 5.801882e-10 80.0 0.5 2.058042e-09 4.178980e-10 80.0000 -2.00% -27.97% 0.00%
2.100000e-09 5.801882e-10 90.0 0.5 2.100000e-09 4.063058e-10 90.0000 0.00% -29.97% 0.00%

lvl6 2.100000e-09 3.912025e-10 60.0 0.5 2.058042e-09 2.817753e-10 60.0000 -2.00% -27.97% -0.00%
2.100000e-09 3.912025e-10 70.0 0.5 2.058042e-09 2.817753e-10 70.0000 -2.00% -27.97% 0.00%
2.100000e-09 3.912025e-10 80.0 0.5 2.100000e-09 2.739591e-10 80.0000 0.00% -29.97% 0.00%
2.100000e-09 3.912025e-10 90.0 0.5 2.100000e-09 2.739591e-10 90.0000 0.00% -29.97% 0.00%

lvl7 2.100000e-09 2.350369e-10 60.0 0.5 2.058042e-09 1.739884e-10 60.0000 -2.00% -25.97% -0.00%
2.100000e-09 2.350369e-10 70.0 0.5 2.058042e-09 1.739884e-10 70.0000 -2.00% -25.97% 0.00%
2.100000e-09 2.350369e-10 80.0 0.5 2.058042e-09 1.692924e-10 80.0000 -2.00% -27.97% 0.00%
2.100000e-09 2.350369e-10 90.0 0.5 2.058042e-09 1.692924e-10 90.0000 -2.00% -27.97% 0.00%
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TABLE B.3: Complete results of 3DOF search fitting θ, D‖, D⊥ using
Zeppelin-Stick. The table shows the relative error between the predicted

parameters for each bundle and the respective ground truth.

Level D‖ D⊥ θ α D̂‖ D̂⊥ θ̂ ε(D̂‖) ε(D̂⊥) ε(θ̂)

lvl2 2.100000e-09 1.675833e-09 60.0 0.5 2.016084e-09 1.608866e-09 60.0 -4.00% -4.00% -0.00%
2.100000e-09 1.675833e-09 70.0 0.5 2.016084e-09 1.608866e-09 70.0 -4.00% -4.00% 0.00%
2.100000e-09 1.675833e-09 80.0 0.5 2.016084e-09 1.608866e-09 80.0 -4.00% -4.00% 0.00%
2.100000e-09 1.675833e-09 90.0 0.5 2.016084e-09 1.608866e-09 90.0 -4.00% -4.00% 0.00%

lvl3 2.100000e-09 1.481336e-09 60.0 0.5 2.016084e-09 1.422142e-09 60.0 -4.00% -4.00% -0.00%
2.100000e-09 1.481336e-09 70.0 0.5 2.016084e-09 1.422142e-09 70.0 -4.00% -4.00% 0.00%
2.100000e-09 1.481336e-09 80.0 0.5 2.016084e-09 1.422142e-09 80.0 -4.00% -4.00% 0.00%
2.100000e-09 1.481336e-09 90.0 0.5 2.016084e-09 1.422142e-09 90.0 -4.00% -4.00% 0.00%

lvl4 2.100000e-09 1.334570e-09 60.0 0.5 2.016084e-09 1.307905e-09 60.0 -4.00% -2.00% -0.00%
2.100000e-09 1.334570e-09 70.0 0.5 2.016084e-09 1.307905e-09 70.0 -4.00% -2.00% 0.00%
2.100000e-09 1.334570e-09 80.0 0.5 2.016084e-09 1.307905e-09 80.0 -4.00% -2.00% 0.00%
2.100000e-09 1.334570e-09 90.0 0.5 2.016084e-09 1.307905e-09 90.0 -4.00% -2.00% 0.00%

lvl5 2.100000e-09 1.161685e-09 60.0 0.5 2.016084e-09 1.138474e-09 60.0 -4.00% -2.00% -0.00%
2.100000e-09 1.161685e-09 70.0 0.5 2.016084e-09 1.138474e-09 70.0 -4.00% -2.00% 0.00%
2.100000e-09 1.161685e-09 80.0 0.5 2.016084e-09 1.138474e-09 80.0 -4.00% -2.00% 0.00%
2.100000e-09 1.161685e-09 90.0 0.5 2.016084e-09 1.138474e-09 90.0 -4.00% -2.00% 0.00%

lvl6 2.100000e-09 9.930067e-10 60.0 0.5 2.016084e-09 9.731665e-10 60.0 -4.00% -2.00% -0.00%
2.100000e-09 9.930067e-10 70.0 0.5 2.016084e-09 9.731665e-10 70.0 -4.00% -2.00% 0.00%
2.100000e-09 9.930067e-10 80.0 0.5 2.058042e-09 9.334859e-10 80.0 -2.00% -5.99% 0.00%
2.100000e-09 9.930067e-10 90.0 0.5 2.058042e-09 9.334859e-10 90.0 -2.00% -5.99% 0.00%

lvl7 2.100000e-09 7.948297e-10 60.0 0.5 2.016084e-09 7.948297e-10 60.0 -4.00% 0.00% -0.00%
2.100000e-09 7.948297e-10 70.0 0.5 2.016084e-09 7.789490e-10 70.0 -4.00% -2.00% 0.00%
2.100000e-09 7.948297e-10 80.0 0.5 2.016084e-09 7.789490e-10 80.0 -4.00% -2.00% 0.00%
2.100000e-09 7.948297e-10 90.0 0.5 2.016084e-09 7.789490e-10 90.0 -4.00% -2.00% 0.00%



52 Appendix B. Complete Experimental Results

TABLE B.4: Complete results of 3DOF search fitting α, D‖, D⊥ using Zep-
pelin. The table shows the relative error between the predicted parame-

ters for each bundle and the respective ground truth.

Level D‖ D⊥ θ α D̂‖ D̂⊥ α̂ ε(D̂‖) ε(D̂⊥) ε(α̂)

lvl2 2.100000e-09 1.336526e-09 60.0 0.5 2.141958e-09 1.016080e-09 0.5 2.00% -23.98% 0.00%
2.100000e-09 1.336526e-09 70.0 0.5 2.141958e-09 1.016080e-09 0.5 2.00% -23.98% 0.00%
2.100000e-09 1.336526e-09 80.0 0.5 2.183916e-09 1.016080e-09 0.5 4.00% -23.98% 0.00%
2.100000e-09 1.336526e-09 90.0 0.5 2.183916e-09 1.016080e-09 0.5 4.00% -23.98% 0.00%

lvl3 2.100000e-09 1.025719e-09 60.0 0.5 2.100000e-09 7.592987e-10 0.5 0.00% -25.97% 0.00%
2.100000e-09 1.025719e-09 70.0 0.5 2.100000e-09 7.592987e-10 0.5 0.00% -25.97% 0.00%
2.100000e-09 1.025719e-09 80.0 0.5 2.100000e-09 7.592987e-10 0.5 0.00% -25.97% 0.00%
2.100000e-09 1.025719e-09 90.0 0.5 2.100000e-09 7.592987e-10 0.5 0.00% -25.97% 0.00%

lvl4 2.100000e-09 7.998587e-10 60.0 0.5 2.100000e-09 5.761222e-10 0.5 0.00% -27.97% 0.00%
2.100000e-09 7.998587e-10 70.0 0.5 2.100000e-09 5.761222e-10 0.5 0.00% -27.97% 0.00%
2.100000e-09 7.998587e-10 80.0 0.5 2.100000e-09 5.761222e-10 0.5 0.00% -27.97% 0.00%
2.100000e-09 7.998587e-10 90.0 0.5 2.100000e-09 5.761222e-10 0.5 0.00% -27.97% 0.00%

lvl5 2.100000e-09 5.801882e-10 60.0 0.5 2.058042e-09 4.178980e-10 0.5 -2.00% -27.97% 0.00%
2.100000e-09 5.801882e-10 70.0 0.5 2.058042e-09 4.178980e-10 0.5 -2.00% -27.97% 0.00%
2.100000e-09 5.801882e-10 80.0 0.5 2.058042e-09 4.178980e-10 0.5 -2.00% -27.97% 0.00%
2.100000e-09 5.801882e-10 90.0 0.5 2.100000e-09 4.063058e-10 0.5 0.00% -29.97% 0.00%

lvl6 2.100000e-09 3.912025e-10 60.0 0.5 2.058042e-09 2.817753e-10 0.5 -2.00% -27.97% 0.00%
2.100000e-09 3.912025e-10 70.0 0.5 2.058042e-09 2.817753e-10 0.5 -2.00% -27.97% 0.00%
2.100000e-09 3.912025e-10 80.0 0.5 2.100000e-09 2.739591e-10 0.5 0.00% -29.97% 0.00%
2.100000e-09 3.912025e-10 90.0 0.5 2.100000e-09 2.739591e-10 0.5 0.00% -29.97% 0.00%

lvl7 2.100000e-09 2.350369e-10 60.0 0.5 2.058042e-09 1.739884e-10 0.5 -2.00% -25.97% 0.00%
2.100000e-09 2.350369e-10 70.0 0.5 2.058042e-09 1.739884e-10 0.5 -2.00% -25.97% 0.00%
2.100000e-09 2.350369e-10 80.0 0.5 2.058042e-09 1.692924e-10 0.5 -2.00% -27.97% 0.00%
2.100000e-09 2.350369e-10 90.0 0.5 2.058042e-09 1.692924e-10 0.5 -2.00% -27.97% 0.00%



Appendix B. Complete Experimental Results 53

TABLE B.5: Complete results of 3DOF search fitting α, D‖, D⊥ using
Zeppelin-Stick. The table shows the relative error between the predicted

parameters for each bundle and the respective ground truth.

Level D‖ D⊥ θ α D̂‖ D̂⊥ α̂ ε(D̂‖) ε(D̂⊥) ε(α̂)

lvl2 2.100000e-09 1.675833e-09 60.0 0.5 2.016084e-09 1.608866e-09 0.5 -4.00% -4.00% 0.00%
2.100000e-09 1.675833e-09 70.0 0.5 2.016084e-09 1.608866e-09 0.5 -4.00% -4.00% 0.00%
2.100000e-09 1.675833e-09 80.0 0.5 2.016084e-09 1.608866e-09 0.5 -4.00% -4.00% 0.00%
2.100000e-09 1.675833e-09 90.0 0.5 2.016084e-09 1.608866e-09 0.5 -4.00% -4.00% 0.00%

lvl3 2.100000e-09 1.481336e-09 60.0 0.5 2.016084e-09 1.422142e-09 0.5 -4.00% -4.00% 0.00%
2.100000e-09 1.481336e-09 70.0 0.5 2.016084e-09 1.422142e-09 0.5 -4.00% -4.00% 0.00%
2.100000e-09 1.481336e-09 80.0 0.5 2.016084e-09 1.422142e-09 0.5 -4.00% -4.00% 0.00%
2.100000e-09 1.481336e-09 90.0 0.5 2.016084e-09 1.422142e-09 0.5 -4.00% -4.00% 0.00%

lvl4 2.100000e-09 1.334570e-09 60.0 0.5 2.016084e-09 1.307905e-09 0.5 -4.00% -2.00% 0.00%
2.100000e-09 1.334570e-09 70.0 0.5 2.016084e-09 1.307905e-09 0.5 -4.00% -2.00% 0.00%
2.100000e-09 1.334570e-09 80.0 0.5 2.016084e-09 1.307905e-09 0.5 -4.00% -2.00% 0.00%
2.100000e-09 1.334570e-09 90.0 0.5 2.016084e-09 1.307905e-09 0.5 -4.00% -2.00% 0.00%

lvl5 2.100000e-09 1.161685e-09 60.0 0.5 2.016084e-09 1.138474e-09 0.5 -4.00% -2.00% 0.00%
2.100000e-09 1.161685e-09 70.0 0.5 2.016084e-09 1.138474e-09 0.5 -4.00% -2.00% 0.00%
2.100000e-09 1.161685e-09 80.0 0.5 2.016084e-09 1.138474e-09 0.5 -4.00% -2.00% 0.00%
2.100000e-09 1.161685e-09 90.0 0.5 2.016084e-09 1.138474e-09 0.5 -4.00% -2.00% 0.00%

lvl6 2.100000e-09 9.930067e-10 60.0 0.5 2.016084e-09 9.731665e-10 0.5 -4.00% -2.00% 0.00%
2.100000e-09 9.930067e-10 70.0 0.5 2.016084e-09 9.731665e-10 0.5 -4.00% -2.00% 0.00%
2.100000e-09 9.930067e-10 80.0 0.5 2.058042e-09 9.334859e-10 0.5 -2.00% -5.99% 0.00%
2.100000e-09 9.930067e-10 90.0 0.5 2.058042e-09 9.334859e-10 0.5 -2.00% -5.99% 0.00%

lvl7 2.100000e-09 7.948297e-10 60.0 0.5 2.016084e-09 7.948297e-10 0.5 -4.00% 0.00% 0.00%
2.100000e-09 7.948297e-10 70.0 0.5 2.016084e-09 7.789490e-10 0.5 -4.00% -2.00% 0.00%
2.100000e-09 7.948297e-10 80.0 0.5 2.016084e-09 7.789490e-10 0.5 -4.00% -2.00% 0.00%
2.100000e-09 7.948297e-10 90.0 0.5 2.016084e-09 7.789490e-10 0.5 -4.00% -2.00% 0.00%
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TABLE B.6: Complete results of 4DOF search using Zeppelin + Stick with
one shell. The table shows the relative error between the predicted pa-

rameters for each bundle and the respective ground truth.

Label D⊥ f θ α D̂⊥ α̂ θ̂ f̂ ε(θ̂) ε(D̂⊥) ε( f̂ ) ε(α̂)

lvl2 1.675833e-09 0.202845 60.0 0.5 1.341001e-09 0.51998 62.3976 0.138000 4.00% -19.98% -31.97% 4.00%
1.675833e-09 0.202845 70.0 0.5 1.341001e-09 0.50000 70.0000 0.138000 0.00% -19.98% -31.97% 0.00%
1.675833e-09 0.202845 80.0 0.5 1.341001e-09 0.50000 80.0000 0.138000 0.00% -19.98% -31.97% 0.00%
1.675833e-09 0.202845 90.0 0.5 1.341001e-09 0.50000 90.0000 0.138000 0.00% -19.98% -31.97% 0.00%

lvl3 1.481336e-09 0.308122 60.0 0.5 1.066977e-09 0.50000 60.0000 0.197309 -0.00% -27.97% -35.96% 0.00%
1.481336e-09 0.308122 70.0 0.5 1.066977e-09 0.50000 70.0000 0.197309 0.00% -27.97% -35.96% 0.00%
1.481336e-09 0.308122 80.0 0.5 1.066977e-09 0.50000 80.0000 0.197309 0.00% -27.97% -35.96% 0.00%
1.481336e-09 0.308122 90.0 0.5 1.066977e-09 0.50000 90.0000 0.197309 0.00% -27.97% -35.96% 0.00%

lvl4 1.334570e-09 0.401446 60.0 0.5 6.946169e-10 0.50000 60.0000 0.128736 -0.00% -47.95% -67.93% 0.00%
1.334570e-09 0.401446 70.0 0.5 6.946169e-10 0.50000 70.0000 0.128736 0.00% -47.95% -67.93% 0.00%
1.334570e-09 0.401446 80.0 0.5 6.946169e-10 0.50000 80.0000 0.128736 0.00% -47.95% -67.93% 0.00%
1.334570e-09 0.401446 90.0 0.5 6.946169e-10 0.50000 90.0000 0.128736 0.00% -47.95% -67.93% 0.00%

lvl5 1.161685e-09 0.501627 60.0 0.5 5.117918e-10 0.50000 60.0000 0.160862 -0.00% -55.94% -67.93% 0.00%
1.161685e-09 0.501627 70.0 0.5 5.117918e-10 0.50000 70.0000 0.160862 0.00% -55.94% -67.93% 0.00%
1.161685e-09 0.501627 80.0 0.5 5.117918e-10 0.50000 80.0000 0.160862 0.00% -55.94% -67.93% 0.00%
1.161685e-09 0.501627 90.0 0.5 5.117918e-10 0.50000 90.0000 0.160862 0.00% -55.94% -67.93% 0.00%

lvl6 9.930067e-10 0.607608 60.0 0.5 3.184374e-10 0.50000 60.0000 0.122008 -0.00% -67.93% -79.92% 0.00%
9.930067e-10 0.607608 70.0 0.5 2.787568e-10 0.50000 70.0000 0.024888 0.00% -71.93% -95.90% 0.00%
9.930067e-10 0.607608 80.0 0.5 2.787568e-10 0.50000 80.0000 0.024888 0.00% -71.93% -95.90% 0.00%
9.930067e-10 0.607608 90.0 0.5 2.787568e-10 0.50000 90.0000 0.024888 0.00% -71.93% -95.90% 0.00%

lvl7 7.948297e-10 0.706455 60.0 0.5 1.913632e-10 0.50000 60.0000 0.141856 -0.00% -75.92% -79.92% 0.00%
7.948297e-10 0.706455 70.0 0.5 1.913632e-10 0.50000 70.0000 0.141856 0.00% -75.92% -79.92% 0.00%
7.948297e-10 0.706455 80.0 0.5 1.913632e-10 0.50000 80.0000 0.141856 0.00% -75.92% -79.92% 0.00%
7.948297e-10 0.706455 90.0 0.5 1.913632e-10 0.50000 90.0000 0.141856 0.00% -75.92% -79.92% 0.00%

TABLE B.7: Complete results of 4DOF search using Zeppelin + Stick with
four shells. The table shows the relative error between the predicted pa-

rameters for each bundle and the respective ground truth.

Label D⊥ f θ α D̂⊥ α̂ θ̂ f̂ ε(θ̂) ε(D̂⊥) ε( f̂ ) ε(α̂)

lvl2 1.675833e-09 0.202845 60.0 0.5 1.608866e-09 0.5 60.0 0.210951 -0.00% -4.00% 4.00% 0.00%
1.675833e-09 0.202845 70.0 0.5 1.541900e-09 0.5 70.0 0.202845 0.00% -7.99% -0.00% 0.00%
1.675833e-09 0.202845 80.0 0.5 1.541900e-09 0.5 80.0 0.202845 0.00% -7.99% -0.00% 0.00%
1.675833e-09 0.202845 90.0 0.5 1.541900e-09 0.5 90.0 0.202845 0.00% -7.99% -0.00% 0.00%

lvl3 1.481336e-09 0.308122 60.0 0.5 1.362948e-09 0.5 60.0 0.308122 -0.00% -7.99% 0.00% 0.00%
1.481336e-09 0.308122 70.0 0.5 1.362948e-09 0.5 70.0 0.308122 0.00% -7.99% 0.00% 0.00%
1.481336e-09 0.308122 80.0 0.5 1.362948e-09 0.5 80.0 0.308122 0.00% -7.99% 0.00% 0.00%
1.481336e-09 0.308122 90.0 0.5 1.362948e-09 0.5 90.0 0.308122 0.00% -7.99% 0.00% 0.00%

lvl4 1.334570e-09 0.401446 60.0 0.5 1.227911e-09 0.5 60.0 0.401446 -0.00% -7.99% 0.00% 0.00%
1.334570e-09 0.401446 70.0 0.5 1.227911e-09 0.5 70.0 0.401446 0.00% -7.99% 0.00% 0.00%
1.334570e-09 0.401446 80.0 0.5 1.227911e-09 0.5 80.0 0.401446 0.00% -7.99% 0.00% 0.00%
1.334570e-09 0.401446 90.0 0.5 1.227911e-09 0.5 90.0 0.401446 0.00% -7.99% 0.00% 0.00%

lvl5 1.161685e-09 0.501627 60.0 0.5 1.068843e-09 0.5 60.0 0.501627 -0.00% -7.99% 0.00% 0.00%
1.161685e-09 0.501627 70.0 0.5 1.068843e-09 0.5 70.0 0.501627 0.00% -7.99% 0.00% 0.00%
1.161685e-09 0.501627 80.0 0.5 1.068843e-09 0.5 80.0 0.501627 0.00% -7.99% 0.00% 0.00%
1.161685e-09 0.501627 90.0 0.5 1.068843e-09 0.5 90.0 0.501627 0.00% -7.99% 0.00% 0.00%

lvl6 9.930067e-10 0.607608 60.0 0.5 9.136456e-10 0.5 60.0 0.607608 -0.00% -7.99% 0.00% 0.00%
9.930067e-10 0.607608 70.0 0.5 8.739651e-10 0.5 70.0 0.607608 0.00% -11.99% 0.00% 0.00%
9.930067e-10 0.607608 80.0 0.5 8.739651e-10 0.5 80.0 0.607608 0.00% -11.99% 0.00% 0.00%
9.930067e-10 0.607608 90.0 0.5 8.739651e-10 0.5 90.0 0.607608 0.00% -11.99% 0.00% 0.00%

lvl7 7.948297e-10 0.706455 60.0 0.5 6.995455e-10 0.5 60.0 0.706455 -0.00% -11.99% 0.00% 0.00%
7.948297e-10 0.706455 70.0 0.5 6.995455e-10 0.5 70.0 0.706455 0.00% -11.99% 0.00% 0.00%
7.948297e-10 0.706455 80.0 0.5 6.995455e-10 0.5 80.0 0.706455 0.00% -11.99% 0.00% 0.00%
7.948297e-10 0.706455 90.0 0.5 6.995455e-10 0.5 90.0 0.706455 0.00% -11.99% 0.00% 0.00%
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