

CENTRO DE INVESTIGACION EN MATEMÁTICAS,

A.C.

SOFTWARE PRODUCT LINES

Reporte Técnico de Investigación
que para obtener el grado de

Maestro en Ingeniería de Software

presenta

María Karen Cortés Verdín

Director:

Dr. Cuauhtémoc Lemus Olalde

Guanajuato, Gto. a 22 de julio de 2005.

Research Technical Report

 Page 2

CONTENTS

1 INTRODUCTION.. 3
2 SOFTWARE PRODUCT LINES .. 5

2.1 SEI’S FRAMEWORK FOR PRODUCT LINE PRACTICE .. 5
2.2 ESAPS AND CAFÉ PRODUCT FAMILY ENGINEERING PROCESS 8

3 RESEARCH OPPORTUNITIES... 11
3.1 SOFTWARE PRODUCT LINE SCOPING .. 11

3.1.1 SEI’s Framework for Product Line Practice 12
3.1.2 ESAPS and CAFÉ ... 13
3.1.3 PuLSE-ECO V2.0 .. 17

3.2 MEASURES FOR SOFTWARE PRODUCT LINES... 19
3.3 OPPORTUNITIES .. 25

4 CONCLUSIONS... 27
5 REFERENCES... 28

Research Technical Report

 Page 3

ABSTRACT

Software Product Lines has emerged as a new, promising engineering
approach to resolve common problems in software development: reduced time to
market, increased productivity, improved quality, managed complexity and
customer satisfaction. Software Product Line Engineering or product Family
Engineering encompasses, in addition to the traditional software engineering and
management practices, additional challenges for those adopting this new approach.
Therefore, despite the fact that there are a number of organizations actually
operating under this new engineering approach, there are still a good number of
areas of opportunities for research. Therefore, the purpose of this technical report
is to review and investigate some of the main activities encompassed within
Software Product Line Engineering, in order to identify research opportunities. An
introduction to the main process frameworks for Software Product Line Engineering
currently available is given. Next, a description of the activities so far investigated is
presented: software product line scoping and measures, along with the research
opportunities identified. Finally, conclusions are given.

1 Introduction

A Software Product Line is a “set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way”1. A software product line (or software product family)
approach promotes planned and proactive reuse of core assets and architecture-
centric development, achieving a substantial increment in product quality and a
reduced time to market. Because of this, Software Product Line Engineering has
received a lot of attention in recent years.

The keys to success for a software product line (SPL) effort are: exploring
commonalities among products to proactively reuse software artifacts (core assets),
encouraging architecture-centric development, and having a two-tiered
organizational structure (core asset development and product development).

The definition of a framework for adopting, institutionalizing, managing and
maintaining a software product line approach has been addressed by several
organizations within the Software Engineering community. The Software
Engineering Institute (SEI) at Carnegie Mellon University has developed his own
framework (Framework for Software Product Line Practice11), while european
organizations have decided to collaborate, integrating their own methods,
processes and frameworks in a catalogue of methods supporting their own product

Research Technical Report

 Page 4

line engineering process. In this way, they offer a variety of solutions for some
areas or activities of SPL Engineering.

SPL Engineering is a young discipline. As such, there is plenty of
opportunities for research. Therefore, the purpose of this report is to present the
initial investigation done in the area of SPL Engineering such that opportunities of
future research are identified. In order to this, the report is organized as follows:

The second section corresponds to an introduction to SPL as well as a
description of the main approaches for Software Product Line Engineering.

The third section presents research opportunities so far identified. This
mainly corresponds to the areas of product line scoping and measurement.

Finally, conclusions are presented.

Research Technical Report

 Page 5

2 Software Product Lines

A Software Product Line or Software Product Family was defined for the first

time by David Parnas: “We consider a set of programs to constitute a family
whenever it is worthwhile to study programs from the set by first studying the
common properties of the set and then determining the special properties of the
individual family members.”2 In more recent years the Software Engineering
Institute defined a software product line as a “set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common set of
core assets in a prescribed way”1. A software product line or family approach
promotes proactive and planned reuse, seeking to construct high quality products
with an improvment in productivity, time to market and reduced product costs.

There have been several efforts, from different organizations, in trying to
define a process or framework for software product line engineering (SPLE). Among
them, the Software Engineering Institute at Carnegie Mellon University has
developed a Framework for Software Product Line Practice. This framework will be
described in further detail in section 2.1

Other efforts worth mentioning are those from european organizations,
which, since 1995, have been cooperating in a series of projects from ITEA7

(Information Technology for European Advancement). From these projects, the
most outstanding are ESAPS6 and CAFÉ8. They allowed to obtain a series of
methods, processes, and work packages aimed at several activities or tasks within
Product Family Engineering (PFE). These products have been integrated in a
Catalogue of Methods and Processes for System-Family Engineering20. The
framework for PFE will be described n section 2.2.

2.1 SEI’s Framework for Product Line Practice

SEI’s Product Line Practice Initiative10 has developed the Framework for
Software Product Line Practice11. SEI identifies three essential activities:

1. Core asset development. The goal of this activity is to establish the
software product line production capability. Core assets are the basis for
the production capability, among these assets there usually are: reusable
software components, domain models, requirements, performance
models, test plans, budgets, schedules, process descriptions and the
architecture. The architecture is a key core asset for the production
capability. Inputs to core asset development are: product constraints,
styles, patterns and frameworks, production constraints, production
strategy and inventory of preexisting assets. Outputs of this activity are:
the product line scope, the core asset base and the production plan.

Research Technical Report

 Page 6

2. Product development. The development of products within the product
line. The inputs to this activity are the product line scope, the core assets
and their production plan and the specific product requirements.

3. Management. Two levels of management should be considered for the
software product line (SPL) approach: organizational and technical. Both
levels should be committed to the software product line approach in order
for it to be successsful. Organizational management is defined as “the
authority that is responsible for the ultimate success or failure of the
product line effort.”1 Organizational management must set the proper
organizational structure for the product line effort and determine a funding
model that ensures core asset evolution. Technical management, on the
other hand “oversees the core asset development and the product
development activities by ensuring that the groups that build core assets
and the groups that build products are engaged in the required activities,
follow the processes defined for the product line, and collect data
sufficient to track progress.”1

The relationship among these essential activities is depicted in Fig. 2.1.

Fig. 2.1. Three essential activities for Software Product Lines taken from 24.

Each rotating circle represents one of the essential activities. The three

activities are linked together in perpetual motion. This figure shows that all three

Research Technical Report

 Page 7

lanning
ement

 Organizational management practice areas enable and orchestrate software

uilding a Business Case
ement

and Institutionalizing

nning
l Risk Management

activities are essential, are inextricably linked, can occur in any order, and are
highly iterative. The rotating arrows indicate that core assets are used to develop
products, and that revisions of existing core assets or new core assets evolve out of
product development.

These essential activities are supported by specific practice areas which are
categorized in: software engineering, technical management and organizational
management. These areas are:

 Software engineering practice areas deal with “the application of the
appropriate technology to create and evolve core assets and products.”1.
The specific practice areas are:

• Architecture Definition
• Architecture Evaluation
• Component Development
• COTS utilization
• Mining Existing Assets
• Requirements Engineering
• Software Systems Integration
• Testing
• Understanding Relevant Domains

 Technical management practice areas manage and support the software
engineering practice areas.The specific practice areas are:

• Configuration Management
• Data Collection, Metrics and Tracking
• Make/Buy/Mine/Comission Analysis
• Process Definition
• Scoping
• Technical P
• Technical Risk Manag
• Tool Support

engineering and technical management practice areas. The specific practice
areas are:

• B
• Customer Interface Manag
• Developing an Acquisition Strategy
• Funding
• Launching
• Market Analysis
• Operations

l Pla• Organizationa
• Organizationa

Research Technical Report

 Page 8

n

2.2 ESAPS and CAFÉ Product

rms for
ystem-Families), as mentioned before, was developed through ITEA framework.
he p

separate concepts of
ESAP

• Structuring the Organizatio
• Technology Forecasting
• Training

Family Engineering Process

ESAPS6 (Engineering Software Architectures, Processes and Platfo
S
T urpose of ESAPS was to provide the technologies to help companies in
successfully adopting a product family approach. It builds upon the results of two
previous projects: PRAISE9 and ARES4. PRAISE was focused on domain and
application engineering while ARES was architecture-centric.

CAFÉ8 (Concepts to Application in System-Family Engineering), on the other
hand, extended the work done in ESAPS, integrating the

S in a unified whole covering product family’s entire life cycle4. The focus of
CAFÉ was the introduction of a product family approach in an organization.

The process for Product Family Engineering is defined as follows:

Fig. 2.2. The Product Family Engineering Process taken from 20.

As shown by Fig 2.2. the PFE process

engineering, domain engineering and system family engineering. Application
engineering refers to the process of developing products within a product family

comprises three big areas: application

Research Technical Report

 Page 9

where

ished three kinds of scoping4:

 requirements and the

•

method a
2. Syste

approach.

3.

 with the purpose of making it reusable

4.

 there is no

as domain engineering is the process of developing reusable assets (or core
assets) that serve as the basis for developing the individual products in a family.
System Family engineering encompasses both, application and domain
engineering, that is to say, the whole PFE approach. For each one of the activities
in the process, the activities of the PFE process and related outputs obtained by
projects’ participants are20:

1. Software Family Scoping, is the process of identifying and bounding the
focus of development for reuse in product line development. ESAPS
participants distingu

• Product line scoping. “Is the process of systematically developing a
Product Portfolio Definition. A Product Portfolio Definition is in turn
defined as a description of the specific
individual products that should be part of the product line.”16
Domain scoping. “Is the process of identifying appropriate
boundaries for a domain which are relevant for implementing
systems in the product line.” 16

• Asset scoping. “Is the process of identifying the various elements
that should be made reusable.” 16
ddressing this activity will be es d scribed in section 3.1.2.

m Family Economical Analysis. Adopting a SPL approach involves
significant investments for the organization. Therefore, there is a need for an
economic model to determine the costs and benefits of such an
Among the methods for this activity are: Fraunhofer IESE PuLSE-ECO,
Ivorium’s lightweight approach and Product-Line Action Plan from the
European Software Institute (ESI).
Domain System Analysis/Design. Domain analysis is the process by which
information used in developing software systems within the domain is
identified, captured, and organized
(to create assets) when building new products. In this way, domain analysis
serves to identify commonalities and variabilities in requirements and
capture decisions on the ranges and interdependencies of variabilities.
Domain design is the process of developing a design model from the
products of domain analysis and the knowledge gained from the study of
software requirement/design reuse and generic architectures.21
Domain Analysis. Outcomes for this activity are related to domain
engineering methods and techniques. Among them, Conceptual domain
analysis is the process which is specifically covered although
general notation used for it. FODA15, UML23, and mind maps are some of
the methods and techniques that can be employed.

Research Technical Report

 Page 10

5.
re those from Siemens

6.
l and generic

7.
 the product must be elicited

8.
ethods,

9.
iques for

10.
rchitectural

11.
ember of the family. It encompasses the instantiation

Domain Design. Domain engineering methods are also used. Specific
process frameworks that address domain design a
(MoVE), ALCATEL (SPLIT), and Fraunhofer IESE (PuLSE).
Domain Implementation. It is the process of implementing reusable
components (core assets) based on the domain mode
architecture. Using the domain knowledge gathered during domain analysis,
and the generic architecture developed during domain design, domain
engineers acquire and, where necessary, create reusable assets. Creation,
management, and maintenance of a repository of reusable assets are also
important parts of domain implementation.22
System Definition. It is the first activity in product development within a
product family. Specialized requirements for
and specified, ensuring compatibility with the product family scope.
System Economical Analysis. Outcomes obtained are: Process for reverse
architecting, Method for Aspect-driven development, Traceability m
Scoping methods, and the Software Product Family Engineering process
frameworks developed by each one of the projects’ participants.
Application Analysis. Methods for the application analysis phase, such as:
Model-driven requirements engineering, Natural language techn
Product Families Software requirements, Feature trees, Development by
means of scenarios, Feature analysis, and Asset management.
 Application Design. Methods for the application design phase, such as:
Architecture recovery, Software architecture assessment, A
mismatches analysis, Architecture evolution, Platform Independent
Modeling, Platform Specific Modeling, and configuration and derivation of
product architectures.
 Application Implementation. This activity refers to the construction or
implementation of a m
of the reference architecture and the product family model, the creation or
reuse of core assets and the validation of the resulting application or
product. Among the related methods are: Agile product line engineering,
Code generation, Behavior modeling, Interface evolution, Transition
process, Design management, and Configuration management process.

Research Technical Report

 Page 11

3 Research Opportunities

As stated in the introduction of this technical report, the main objective of the

present work is to identify research opportunities in the field of Software Product
Line Engineering. The purpose of this section is to present research areas in which
such opportunities exist. First, a review of Software Product Line Scoping status is
given. This is one of the initial activities to be performed for adopting a SPL
approach. SPL scoping has a strong relationship to business objectives and drives
the whole asset and product development processes.

Next, a description of Measures for SPL is given. The information here
presented is basically based on the SEI’s Framework for Software Product Line
Practice and on the work done by Zubrow et al25. Investigation still remains to be
done in ESAPS and CAFÉ projects.

3.1 Software Product Line Scoping

Basically, the adoption of a SPL approach, includes the following2 major

phases:
 Determine stakeholders
 Create business cases
 Create adoption plan
 Launch and institutionalize

As the first step, the stakeholders of the SPL effort must be determined.
Stakeholders will have different interests in product line adoption, therefore
business cases will depend on such interests. The business cases will help
stakeholders in achieving the product line goals. Next, an adoption plan must be
elaborated. The adoption plan establishes goals, strategies and acivities to be
perfomed to make the transition to a product line approach. This plan serves to
decide about the product line adoption. If adoption is chosen, the product line is
launched. It is important that once launched, the product line effort is
institutionalized: managers and staff should consider it as part of their working
culture.2

A key activity or practice area in product line planning is scoping.5 Product
line scoping is the activity that “bounds a system or set of systems by defining those
behaviors or aspects that are in and those behaviors that are out”1 the product line.
In other words, scoping helps to identify those products that will be within the
product line in such a way that the product line is profitable.

Research Technical Report

 Page 12

Product line scoping helps to clarify which requirements will be
implemented in the core assets and which in the products, focusing the reuse
investment where it will pay. When the scope is too large, the core assets will be
too general to be properly used. When the scope is too small, there won’t be a
market for the product line. Therefore, the importance of product line scoping.

Scoping identifies commonalities and variabilities among members, it is
essential to determine whether a proposed system can be built within the product
line and from product line assets1. A product line scope, should derive from the
product line objectives. Product line objectives themselves, are built upon a
business case of the organization. Due to this, the product line scope pervades
along the product line effort, becoming in this way, a valuable core asset.

In this section, current approaches to Software Product Line Scoping are
described. Several approaches can be identified: the one proposed by the SEI’s
Framework for Product Line Practice and those resulting from european projects
ESAPS and CAFÉ.

3.1.1 SEI’s Framework for Product Line Practice
SEI’s Product Line Practice Initiative10 has developed the Framework for

Software Product Line Practice. As mentioned in the previous section, SEI identifies
three essential activities: core asset development, product development and
management. These essential activities are supported by specific practice areas
(software engineering, technical management, and organizational management).
Scoping is an activity belonging to technical management practice area.

According to this framework, product line scoping involves the following
specific practices:

 Examining existing products. To conduct a study of existing products to
identify commonality and types of differences across a potential product line.

 Conducting a workshop to understand product line goals and products. To
gather potential product line stakeholders and establish the direction for the
product line.

 Context diagramming. Developing a context diagram allows to place the
product line in the context of other systems and of product users. This eases
the identification of elements affecting and affected by the product line.

 Developing an attribute/product matrix. To develop an attribute/product
matrix to sort, in order of priority, the attributes that differentiate the products
in the product line.

 Developing product line scenarios. Scenarios are very useful in defining a
product line’s scope since they identify user or system interactions with
product line products.

Research Technical Report

 Page 13

In addition to these specific practices, SEI’s framework does not propose a
particular method for product line scoping. However, it suggests domain
engineering methods which can be applied to domain scoping, like Organization
Domain Engineering (ODM)14 and Feature-Oriented Domain Analysis (FODA).

3.1.2 ESAPS and CAFÉ
As mentioned before, ESAPS participants distinguished three kinds of

scoping:
 Product line scoping.
 Domain scoping.
 Asset scoping.

ESAPS only covered domain and asset scoping. Strategies for domain
scoping are related to domain analysis techniques whereas strategies for asset
scoping are related to feature analysys. Approaches for product line scoping pertain
to market science and only two organizations among the participants of ESAPS
provide some way to address this kind of scoping. These organizations are
Fraunhofer IESE and Siemens.

CAFÉ outcomes of this project related to scoping are the following:
 Scoping in the presence of Multiple Domains and Product Populations. A

product population is a product family with great diversity, or a set of product
families that share a common (sub)domain. Multiple domains refer to
converging domains. That is to say, domains that can converge on various
levels12: technical or realization, functionality or application, and/or
marketing. In this situation, the presence of more stakeholders from different
domains is needed. This can be a problem due to the fact that because the
stakeholders come from different domains, they speak different languages.
So, the purpose of this method is a scoping approach based on user
scenarios, that enables the cooperation of stakeholders with different
expertise and knowledge.The outcome is a rough product family scope from
which more formal scoping approaches can start. This method was
developed by Philips.

 PuLSE-ECO. After CAFÉ finished, this method has continued to evolve, and
nowadays the 2.0 version is available. The method belongs to a complete
Software Product Line Engineering process, known as PuLSETM (Product
Line Software Engineering). This method, and the process, were developed
by Fraunhofer IESE13 and is described in more detail in section 2.3.

 Siemens. The approach proposed by Siemens for scoping is based on
PuLSE-ECO V2.0 with its own scoping decision information model. This
approach is called MoVE (Model-based Value Engineering). In MoVE a
decision consists of two parts: the decision maker and the decision problem.

Research Technical Report

 Page 14

The decision maker has a value system consisting of a number of raw
objectives, which in turn are ordered according to the decision maker’s
preferences. A decision problem consists of several classes of decision
elements16:

• Requirements.
• Importance measure.
• Alternative product definition.
• Performance measure.
• Objective function

MoVE supports decision making by assessing different configurations
of requirements, features or products in a product line. Each product is
defined by a set of requirements and a set of realization concepts that
realize the requirements. One or more configurations of different
realization alternatives fulfill each requirement. Each configuration is
assessed in relation to cost, benefit, synergies and other parameters,
and the resulting assessment supports the choice of a certain
requirement, feature or product within the product line.
During product line scoping, the requirements for each candidate
product are prioritized. The requirements should be allocated to
features and their realization concepts. Then, this concepts should be
parameterized and configurations fullfilling the specific product
requirements should be identified. The configurations should then be
assessed acording to the importance measure. This assessment is
the basis for deciding if the product should belong to the product line.
For domain scoping, MoVE assesses and measures the goodness of
realization concepts and configurations, determining in this way, the
number of features and products in a domain.
In asset scoping, the decision refers to whether an element such as a
feature, function or component, should belong to the product line, or
should be application-specific. This is done by calculating the costs of
making this element reusable and the benefits obtained by this
reusable element. Then, the criteria for an assessment of this decision
have to be determined.
It is important to note that the packaging of requirements (the
allocation of requirements to a product line member) is a major
problem, that in MoVE is addressed by identifying market segments. A
market segment maximizes homogeneity of the requirements. In this
way, a product definition is obtained for each segment.

Research Technical Report

 Page 15

 Specification for a Product Family Scoping Approach and its integration with
a Tool Workbench. The method was developed by Ivorium17 and is focused
on lightweight methods. This approach looks for the determination, in
advance, with certain level of certainty, of the return on investment that
adopting a product family approach would bring to the organization. In order
to this, the approach seeks to integrate ROI analysis with scoping analysis
since they feed each other. The dimensions of the approach are17:

• Enterprise goals: goal definition as the articulation of what the
enterprise hopes to achieve by adopting a product family
approach.

• Product Family definition: The concept of a product map is
used and augmented to define what will belong to the product
family.

• Family scoping and ROI: by leveraging a concrete goal
decomposition and product maps, a product family scope and
ROI can be computed.

• Risk evaluation: Given the scoping and ROI results, an analysis
is done to evaluate risks.

Ivorium identifies the following scoping types:
1. Top down. Analysis in which different products must be

evaluated to determine the best scope for the product platform
and the best products to be actually developed (best meaning
highest ROI given the organization’s goals).

2. Top down with competition. It is the same as top down with the
addition of one or more base products from which the reusable
platform can (and will) originate.

3. Bottom-up. When the organization does not have a clear
product strategy and management wants to adopt a product
family approach, the most valuable direction in terms of
marketing and engineering must be chosen.

4. Product policy. It is a top-down effort based on actual
construction with an orientation towards structuring a product
policy.

This approach allows an organization to:
• Concrete definition of the product family options are in terms of

its possible features and products.
• Definition of quantitative goals, and their alignment to the

organization’s goals.

Research Technical Report

 Page 16

• Scoping of the best product family feature and/or product
platform, easing in this way product family adoption since the
potential efficiencies are defined in terms relevant to the
organization’s projects and in terms of goals and valuations.

 Scoping Software Product Lines for the Business Context – Agility,
developed by Nokia18. A software product line approach increases
complexity and therefore it is managed by adding more formal
procedures. Considering that nowadays organizations are operating in
a dynamic market, the bureaucracy imposed by SPL management
methods can slow the organization’s reaction to such an environment.
Nokia’s approach takes these factors into consideration and proposes
a model for software product line scoping such that it allows an
organization to choose a software development approach in
accordance to this kind of environment. This model includes the
concept of agility within the context of software product line and
provides an insight on how agile methods can be related to a software
product line approach. The need for agility comes from the chosen
business strategy. The model consists of two dimension or axes, as
shown in Fig. 3.1. The vertical axis can be named as “Size &
Complexity of the Software” and it corresponds to the challenge that
managing software assets is putting to the organization. The
horizontal axis corresponds to the business challenge that the
organization is facing. This axis can be named “Volatility of the
business environment”. Reasons for this volatility can be immature
technology, and the competitive situation, for example. The two
dimensions are measured by three scales. For business volatility,
organizations can be operating in low volatility, medium volatility or
high volatility environments. In the case of size and complexity of
software, organizations can be classified in small size & complexity,
medium size & complexity or large size & complexity. These
measures help to determine an organization’s current situation and
the software development approach to be chosen in order for it to
adapt to its business environment. The traditional software
development approach is recommended when an organization is
heading towards large size & complexity of the software whereas agile
methods are better towards high volatility of the business
environment. Therefore, a combination of the two approaches is
possible depending on the organization’s position in relation of both
dimensions.

Research Technical Report

 Page 17

Fig. 3.1 Software development approaches and their applicability taken from.8

3.1.3 PuLSE-ECO V2.0
This approach, developed at the IESE, had as its main drivers or

requirements5:
1. A base on products to be built rather than on.
2. To provide basis for communication among stakeholders.
3. Coverage of product line scoping activities: analysis of product line

potential (risks and benefits) and identification of specific reusable
assets.

4. The evaluation of the product line potential is performed on the level of
the business domain as well as on the level of the contributing
technical subdomains. The output of the asset scoping activity should
be useful to identify reusable assets.

5. To be repeatable.
There are three main components in PuLSE-ECO V2.0: product line

mapping, domain potential assessment and reuse infrastructure scoping.
Product line mapping (PLM) provides the means for communication along

the process. It is a high level domain analysis which is the basis for the remainder
of the process. Based on information from domain experts, the planned portfolio,
product plans, and existing systems, PLM derives a standardized description of the
product line using features as the common language for describing products as well
as domains. Features correspond to functionality and therefore, non-functional

Research Technical Report

 Page 18

requirementos or qualitiy attributes are not considered since they cannot be scoped
from components5.

Domain Potential Assssment (DPA) deals with the identification of risks and
benefits pertaining to he domains considered in the product line. This component is
based on process capability assessments (CMM, Bootstrap and ISO 15504). There
are four process assessment concepts and DPA maps to each one of them:

Process Assessment Concept Domain Potential Assessment Concept

A standardzed process for performing
assessments is used.

A variant of the FAME-process is used for
performing the assessment.

Process framework + process existence
indicators.

The product line mapping method is usedfor
developing a reference description of the domains
relevant to the product line.

Stabdardized capability indicators are
provided.

Assesment indicators have been specifically
developed for this approach.

Rating Scheme. A specialized rating scheme was developed along
with the capability indicators.

Table 2.1 Mapping of Assessment Concepts taken from 5 .

FAME-process is a variant of the ISO 15504 adapted for the DPA. It uses a

new evaluation framework which invoves the following key criteria5:
Viablity dimensions:
 Maturity
 Sability
 Resource constraints

Organizatioal constraints
Benefit dimensions:
 Market potential – external
 Market potential – internal
 Commonality and variability
 Coupling and cohesion

Existing assets
Reuse Infrastructure Scoping (RIS) determines which assets develop to

reuse and which assets develop as specific to the product. RIS builds on the PLM
since the latter obtained a product line breakdown structure in terms of domains
and features. And RIS builds on the DPA because it has properly assessed the
reuse potential. RIS is based on a quantitative analysis of the benefits that can be
expected from reuse. Therefore, the combination of all the features that provide
benefit constitutes the asset scope. RIS includes an operationalization of the

Research Technical Report

 Page 19

business ojectives based on the Goal-Question-Metric(GQM) approach5, and the
construction of the corresponding model(s).

3.2 Measures for Software Product Lines

The responsibilities associated with each managerial role within a SPL
approach, help to identify goals and issues to be addressed with information
derived from software measures. These responsibilities are depicted by the
following figure:

Figure 3.2 Product Line Management Roles taken from25.

The product line manager is responsible for the overall business enterprise

and is concerned with the entire set of past, current, and future products within the
product line. The product line manager has the need to demonstrate the benefits
associated with the SPL approach.

The asset development manager is responsible for the core assets and
associated infrastructure. The asset development manager needs to provide high
quality assets on a timely basis to product development.

Research Technical Report

 Page 20

The product development manager is responsible for a product within the
SPL and is concerned with providing high quality products, on time and within
budget, while conforming to SPL processes and contributing to the achievement of
the SPL goals.

According to Zubrow26 aspects related to a SPL approach that should be
informed with software measurement and analysis are:

 The decision to adopt a SPL approach.
 The ongoing operation and the overall performance of the SPL.

A fundamental input to the decision to adopt is the economy of scope that
might be realized. Economy of scope is “the extent an organization can leverage
commonality across its software products to reduce costs while increasing the
variety of products produced and supported.”27 The organization’s investment in a
SPL approach is large relative to traditional software development, therefore it
needs to know the point on which there will be a return on its investment. This area
is not well established or validated in terms of measurement and analysis. Some
work has been done by participants of ESAPS and CAFÉ projects20, but research is
still on its way.

The ongoing operation and overall performance aspects are closely related
to the following dimensions:

 Performance of development projects in relation to cost, schedule and
quality objectives as compared to traditional software development.

 Compliance. The extent to which development projects utilize the
processes, practices and standards designed to leverage and reuse
large-grained, common assets.

 Effectiveness. The extent to which the SPL meets its goals and those
of the organization.

The purpose of this section is to describe current approaches to Measures
for Software Product Line. So far, only the SEI’s Framework for Product Line
Practice approach has been investigated as well as the work done by Zubrow et
al25. The related results are presented in the following paragraphs.

Within the SEI’s Framework, Data Collection, Metrics and Tracking is a
specific practice area under the category of Technical Management. This practice
area recognizes the need of measures for the adoption and the ongoing operation
and performance of a SPL approach. The specific practices are:

 Choosing metrics. SEI’s framework is not specific on how to determine
the metrics. It suggests the GQM approach, as well as the one
proposed by Zubrow26.

Research Technical Report

 Page 21

 Collecting data. Different types of metrics require different data
collection techniques, among the most common techniques are:

• Direct measurement of observable attributes of a process or
product.

• Indirect measurement of objective attributes.
• The derivation of implicit attribute measures as computations

from other measures.
 Reuse metrics. Reuse is a strategy for achieving the SPL goals, not a

goal itself. However, it is useful to have metrics of what the reuse is
giving to the organizations in terms, for example, of costs and return
on investment.

It is important to note that the organization’s maturity in data collection and
measurement practices is a key aspect in the success of this practice area.

In relation to Zubrow et al25 work, propose the following measures:

Table 3.1 Product Line Indicators and Measures taken from25.

Research Technical Report

 Page 22

The authors explain that this measures set is not an exhaustive one, and

should therefore be taken as an initial proposal, leaving to the organization the
evolution of those measures that closely fulfill their needs for its own SPL approach.
A brief description of each one of the measures is given in the following paragraphs.

 Measures for Software Product Line Management.
Many of these measures are derived from enterprise and project

management:
 Total product development cost. “It measures the engineering costs

incurred by the product line organization to create new software
products.”25 This measure includes both, the direct product
development cost and the prorated share of the asset development
cost.

 Productivity. It is the ratio of the amount of product or ouput relative to
the resources consumed to produce it.”25 The output can be measured
as the number of products fielded, number of features, LOC or
function points. The resources are expressed as effort expended.
Over time, the productivity should increase as the investment in core
assets and infrastructure is spread across an increasing number of
fielded products, and as the cost of products development decreases
(due to the use of core assets and infrastructure).

 Schedule deviation. This measure consists of the sum of the variance
of all product schedules. As the product line matures, it should be able
to meet its schedules in a more reliable fashion.

 Time to market. This measure represents an organization’s capability
to deliver products and features faster. This measure is based on the
functionality delivered by the projects and on the projects’ duration.

 Number of products. This measure characterizes the scope of the SPL
and its contribution to return on investment.

 Trends in defect density. Defects in delivered products reflect their
quality. All defects in delivered products should be tracked in order to
determine if quality is improving. This measure is calculated as the
ratio of defects relative to the size of the product.

 Mission focus. This measure evaluates “the degree to which the
products produced by the product line organization fit within its defined
scope.”25 Since the product line scope is defined according to the
organization’s mission and objectives, this measure helps to track
mission fulfillment.

Research Technical Report

 Page 23

 Architectural conformance. This measure helps to preserve the
integrity of the product line and facilitates an efficient use of the core
assets in product development. For evaluating architectual
conformance, measures of software architecture should be used. So
far, measures in this area are just emerging.

 Process compliance. “Captures the degree to which products are
produced using the product line process.”25 If a software quality
assurance function is in place within the organization, data for this
measure could come from process audits performed by this function.

 Return on Investment. It is the ratio of estimated savings for each
dollar invested. The challenge for this measure is to clearly and
objectively estimate the savings on investment, the costs to transition
to a SPL approach, and the costs to develop products using the SPL
approach.

 Market satisfaction. It is the customer satisfaction when purchasing
products. This measure is generally obtained through a survey.

 Market feature coverage. It is the extent to which features in the
product cover those features related to the target market. The goal of
this measure is the identification of features relevant to the market.

 Measures for Asset Development Management:
 Cost (Effort) to produce Core Assets. These costs are similar to those

in typical software development. These measures should track the
development of software components as well as non-code assets
such as requirements, architectures, and user documentation.

 Asset development Schedule deviation. Core assets’ availability is
extremely important for the operation of the entire product line.
Therefore, asset development should be tracked against its planned
schedule. Schedule deviation is computed as the duration between
the planned and delivered dates, where planned dates are based on
projected needs of product development projects.

 Defect Density of Core Assets. Since the quality of the core assets will
influence the quality of the final product, it is important to measure the
quality of the core assets as well as the capabilities they offer. To
obtain this measure, the defects reported are divided by the size of the
corresponding core asset.

 Core Asset Quality. As SPL have additional quality requirements to
those of a single product, so do core assets. Core assets must comply
various standards, specifications, architecture and there may be
quality attributes to fulfill as well. The practical application and
validation of measures in this area is unknown.

Research Technical Report

 Page 24

 Number and Type of Assets Available. This measure helps the asset
development manager to monitor the development of core assets.
This measure helps also to know about the growth of the SPL
reusable base.

 Process compliance. This measure captures the degree to which core
assets and tools are being produced in accordance with the
organizational product line standards.

 Core Assets Utility. Core assets should provide value to product
development. This value or utility gives an insight into the extent to
which core assets are satisfying the goals of the SPL as well as helps
determine whether the assets in the asset library are actually used to
create products. One approach to the measure core asset utility is the
effect their use has on product development project performance. This
can be measured in terms or cycle time, costs and quality. If the data
required for this measure are not available, percent reuse could be
used instead. Or a count of the number of used of each core assert
divided by the number of products in the product line can give an
insight of which assets are more commonly used.

 Core Assets Cost-of-Use. Thos measure corresponds to the costs
incurred by product development projects in order to use core assets
effectively. If the core assets are too expensive to use, product
development will seek other ways to fulfill product requirements.
Typically, these costs are associated with:

• Identifying appropriate core assets
• Understanding now to apply and adapt the core assets
• Integrating and testing

 Measures for Asset Development Management:
Measures for this area of management are the same as for traditional

software development projects plus only a few specific measures for product lines.
It must be taken into account that the setting for application project is the source of
much of the data on performance of the product line, therefore, there should be a
measurement system that provides for the collection of the needed data.

 Direct product cost. These costs should include all direct labor costs
incurred while producing the product. Product development
management should monitor the relative proportion of project costs
going to produce application-specific code. Over time, it is expected
that these costs will decline as the proportion of the core assets
integrated into the products will increase and the quality of such core
assets improves.

Research Technical Report

 Page 25

 Defect Density of Application-Specific Code. To compute this
measure, defects reported by customers are divided by the size of the
application-specific code in the product.

 Process compliance. Product development must comply with
processes associated with the operation of the product line. This
measure captures the degree to which product development complies
such processes.

 Percent reuse. Tracking this measure is important sinc reuse is the
principal strategy for product line success. Failure to achieve planned
reuse levels may signal performance trouble for product development
and may also trigger a causal analysis by core asset management.
This measure can be computed as the ratio of the size of core assets
used in relation to the size of new and modified application artifacts
plus the size of core assets used

 Customer satisfaction. It is important to know how well products
satisfy customers’ needs. This information can be obtained via a
customer satisfaction survey. These data should be retained and
analyzed cumulatively as more products are produced.

Zubrow et al state that the utility of the above measures still remains to be
validated. In addition, SPL organizations demand ways to assess the scope,
features, variants, and software architecture from a business perspective.

3.3 Opportunities

The research opportunities identified in relation to Product Line scooping and
measures are the following:

1. Product Line scope assessment
2. Product Line scope tracking and management along the SPL

engineering process.
3. Architectural conformance of products with respect to the Product Line

Architecture.
4. Measures for Product Line Software Architecture cost of use and utility

(effectiveness).
5. Product Line evolution.
6. Product Line requirements engineering and scoping management.
7. Integration of SPL approach with upfront processes, such as

marketing, requirements management and portfolio management.

Research Technical Report

 Page 26

8. Establishing a SPL engineering measurement program.
9. Implementation of a SPL measurement program that covers adoption

and managing practice areas:
a. Organization and support practices.
b. Practices that balance platform versus client interests.
c. Requirements engineering practices.
d. Architectural practices.

10. Process for SPL architecture development .
11. Measurements for the transition process to SPL.
12. SPL measurement program for small and medium enterprises.

Research Technical Report

 Page 27

4 Conclusions

This technical report presented the research done so far in the area of
Software Product Line Engineering. SPL Engineering is a relatively new field and its
promises of reduced costs and time to market as well as improved productivity and
quality have made organizations turn to it as an approach for software
development.

Most important frameworks for SPL approach were presented: SEI’s
Framework for Product Line Practice and ESAPS & CAFÉ Product Family
Engineering Process. Although different in their approach to SPL Engineering, both
frameworks address important SPL practices and give or propose solutions at
different levels for them.

The main activities practices so far investigated and presented in this work
were Product Line Scoping and Measures. Approaches and methods from SEI’s
framework and ESAPS & CAFÉ PFE were presented. This investigation is just in its
initial phases, there remains more investigation to be done and the research
opportunities here presented must still be elaborated and validated. Among the
areas still to be investigated are:

Architecture definition and evaluation
Product Family process frameworks such as SPLIT, PuLSE, and QUEST
Asset mining
Feature oriented engineering
Variation mechanisms
Reuse in the context of SPL
Risk management
SPL launching and institutionalizing

Research Technical Report

 Page 28

5 References
1. P. Clements, and L. Northrop, Software Product Lines: Practices and

Patterns, Addison-Wesley, USA, 2001
2. G. Blöcke, J. Bermejo Muñoz, P.Krauber, C.Krueger, J.C. Sampaio, F. van

der Linden, Linda M.Northrop, M. Stark, D.M. Weiss, “Adopting and
institutionalizing a Product Line Culture“, Proceedings of the 5th
International Workshop on Product Family Engineering, 2003.

3. C., Krueger, Eliminating the Adoption Barrier, IEEE Software, vol. 19, no. 4,
July/August 2002, pp.28-31.

4. F. van der Linden, “Software Product Families in Europe: The Esaps & Café
Projects”, IEEE Software, vol. 19, no. 4, July/August 2002, pp. 41-49.

5. K. Schmid, “A comprehensive Product Line Scoping Approach and Its
Validation,” IEEE International Conference on Software Engineering,
ICSE’02, ACM, USA, 2002.

6. http://www.esi.es/en/Projects/esaps/esaps.html
7. http://www.itea-office.org
8. http://www.esi.es/en/Projects/Cafe/cafe.html
9. http://www.esi.es/en/Projects/Praise/praiseProject.html
10. http://www.sei.cmu.edu/productlines/plp_init.html
11. http://www.sei.cmu.edu/productlines/framework.html
12. http://www.esi.es/en/Projects/Families/E1.4b-Method-

Catalogue/CAFE/Details1-v0.1.html
13. http://www.iese.fhg.de/
14. http://www.sei.cmu.edu/str/descriptions/odm_body.html
15. http://www.sei.cmu.edu/domain-engineering/FODA.html
16. J. Bosch, M. Jaring, S. Johnsson, K. Schmid, S. Thiel, B. Thomé, S. Trosch;

K. Schmid (Ed.). Task 1.2: Domain Analysis: Consortium-wide deliverable on
Scoping. Deliverable of ESAPS project, Eureka ∑! 2023 Programme, ITEA
Project 99005, 2001.

17. J. M. DeBaud, X. Vaisson; J. M. DeBaud (Ed.). Task 1.2: Specification for a
Product Famly Scoping Approach and its integration in a Tool Workbench:
Consortium-wide deliverable on Product Line Scoping. Deliverable of CAFÉ
project, Eureka ∑! 2023 Programme, ITEA Project ip00004, 2003.

18. T. KähKönen; J. M. DeBaud (Ed.). Task 1.2: Scoping Software Product Lines
for the Business Context – Agility: Consortium-wide deliverable on Product
Line Scoping. Deliverable of CAFÉ project, Eureka ∑! 2023 Programme,
ITEA Project 99005, 2003.

19. D. L. Parnas, “On the Design and Development Of Program Families,” IEEE
Trans. Software Eng., vol. SE2, no. 1, Mar. 1976, pp. 1-9.

20. http://www.esi.es/en/Projects/Families/E1.4b-Method-
Catalogue/Start_SFE_Catalogue.htm

http://www.esi.es/en/Projects/esaps/esaps.html
http://www.itea-office.org/
http://www.esi.es/en/Projects/Cafe/cafe.html
http://www.esi.es/en/Projects/Praise/praiseProject.html
http://www.sei.cmu.edu/productlines/plp_init.html
http://www.sei.cmu.edu/productlines/framework.html
http://www.esi.es/en/Projects/Families/E1.4b-Method-Catalogue/CAFE/Details1-v0.1.html
http://www.esi.es/en/Projects/Families/E1.4b-Method-Catalogue/CAFE/Details1-v0.1.html
http://www.iese.fhg.de/
http://www.sei.cmu.edu/str/descriptions/odm_body.html
http://www.sei.cmu.edu/domain-engineering/FODA.html
http://www.esi.es/en/Projects/Families/E1.4b-Method-Catalogue/Start_SFE_Catalogue.htm
http://www.esi.es/en/Projects/Families/E1.4b-Method-Catalogue/Start_SFE_Catalogue.htm

Research Technical Report

 Page 29

21. http://www.sei.cmu.edu/domain-engineering/domain_design.html
22. http://www.sei.cmu.edu/domain-engineering/domain_imp.html
23. http://www.uml.org
24. http://www.sei.cmu.edu/productlines/frame_report/PL.essential.act.htm
25. D. Zubrow, G. Chastek, Measures for Software Product Lines (CMU/SEI-

2003-TN.031). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2003.

26. D. Zubrow, Measures for Software Product Lines: A White paper for the
Office of the Undersecretary of Defense, Science and Technology, Software
Engineering. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2001.

27. J. Whitey, Investment Analysis of Software Assets for Product Lines,
(CMU/SEI-96-TR-010, ADA 315653). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996.

http://www.sei.cmu.edu/domain-engineering/domain_design.html
http://www.sei.cmu.edu/domain-engineering/domain_imp.html
http://www.uml.org/
http://www.sei.cmu.edu/productlines/frame_report/PL.essential.act.htm

	
	
	SOFTWARE PRODUCT LINES
	1 Introduction
	2 Software Product Lines
	2.1 SEI’s Framework for Product Line Practice
	2.2 ESAPS and CAFÉ Product Family Engineering Process
	3 Research Opportunities
	3.1 Software Product Line Scoping
	3.1.1 SEI’s Framework for Product Line Practice
	3.1.2 ESAPS and CAFÉ
	3.1.3 PuLSE-ECO V2.0

	3.2 Measures for Software Product Lines
	3.3 Opportunities

	4 Conclusions
	5 References

