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Abstract
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Metaheuristics in the Optimization of Cryptographic Boolean Functions

by Isaac López López

The aim of the research presented in this thesis is to proof that
diversity-based metaheuristics are able to generate Boolean Functions (BFs)
with high nonlinearity. The best results known for 10-variable BFs
correspond to algebraic constructions and the metaheuristics have never
been successful generating such BFs. Metaheuristics have obtained BFs with
suboptimal nonlinearity and this thesis shows that by incorporating a
proper control of diversity and adequately designed cost function, results
are improved further. We have proposed a new cost function to guide the
search based on considering more information from the Walsh Hadamard
Transform (WHT). Instead of using only one value of the WHT, we employ
the two maximum absolute values that appear and their number of
appearances. It is also proposed a diversity-based metaheuristic that allows
us to explore a large amount of regions in the search space.

The thesis focuses on the design of a novel evolutionary memetic algorithm
that incorporates a clustering technique coupled with a diversity-based
replacement strategy. Typical diversity management techniques force to all
the BFs to contribute to the diversity, however, in the technique designed for
the thesis is allowed that some BFs form clusters to promote both
exploration and exploitation at each phase of the algorithm. We call this
algorithm as: Memetic Algorithm with Clusters coupled with a
Replacement with Elite based Dynamic Diversity Control with Clustering
(MAC-REDDCC). The MAC-REDDCC algorithm is the first of its kind
according to the best of our knowledge.

The MAC-REDDCC method proposed is able to overcome all the existing
results found by traditional metaheuristics and is able to reach the results
obtained with algebraic constructions by incorporating a simple algebraic
technique such as initialization. This implies that a diversity-based method
is able to generate BFs with high nonlinearity. The MAC-REDDCC method
is even better than all traditional methods to generate BFs with high
nonlinearity and has a successful performance when comparing with
algebraic constructions.
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Chapter 1

Introduction

1.1 Introduction

Cryptography is a fundamental issue for the attainment of secure
communications in the presence of third parties that might have access to
the communication channel. For instance, in the case of Internet,
cryptography is specially important because public channels that might be
accessed by many parties are used and important information is transferred.
In this sense, the basic principle of cryptography is that instead of sending
the original message — which is called the plaintext — through the channel,
a different message that might be used to recover the original one is sent.
The message that is sent over the channel is called the ciphertext. In order to
convert the ciphertext into the plaintext, a secret code which is called the key
is used. The aim of cryptography in this sense is to avoid that any party that
is not involved in the communication might recover the plaintext even if the
ciphertext is accessed. The transformation of plaintext to ciphertext is called
encryption and the opposite step is called decryption. Encryption-
decryption is considered the most ancient cryptographic activity. As an
example we can consider the Caesar cipher, which is a simple system used
and developed by Julius Caesar to send secure information to his troops. It
was all about substituting certain letters for others [27]. This algorithm is
what we would call a cipher. Nowadays, there are more sophisticated
cipher algorithms that allow a higher level of security. In recent years, since
the access to computation power and the amount of important information
transferred through public channels have dramatically increased, the use of
secure channels with advanced encryption-decryption schemes has been
specially important. As a result, a lot of research on this topic have been
performed in the last decades and the nature of encryption-decryption
schemes has deeply changed.

The concept of power has changed along the years. Once it was said that
who has the land has the power. Then, it changed to who has the
information has the power. Currently, it is said that who knows how to
handle information has the power. Many companies and people save
important information in digital devices, so in order to avoid information
leakage, cryptography is used. Obviously, with the proper decryption key
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such an information might be accessed. Cryptanalysis is a power tool to
analyze cryptographic systems. One of the main aims of cryptanalysis is to
find weaknesses of cryptographic systems so that the plaintext can be
recovered even if the decryption key is unknown. Thus, it is used to violate
authentication schemes, to break cryptographic protocols, and, more
benignly, to find and correct weaknesses of encryption algorithms. Finally,
another objective related to cryptography is to enable digital
communications over noisy channel in such a way that the errors in the
information transmission can be detected and corrected by the
receiver [7].

In many cryptographic systems and in the use of noisy channels, Boolean
Functions (BFs) play an important role. Specifically, BFs are used in the
internal operation of many cryptographic algorithms and it is known that in
order to avoid the success of cryptanalysis on such systems, increasing the
degree of nonlinearity of BFs is really important. The research in
Cryptographic Boolean Functions (CBFs) has increased significantly in the
last few decades. Particularly, the cryptographic community has been
working widely in the problem of generating BFs with good cryptographic
properties. One of the first authors on studying this topic showed the
important implication of the feature called correlation immunity using
algebraic procedures [54]. CBFs are currently used in symmetric-key
cryptography (used to encrypt and decrypt data with the same key) both in
block and stream ciphers [20]. In block ciphers, algorithms encrypt and
decrypt data in blocks of certain size whereas in stream ciphers this is done
bitwise. The common feature is that in both of these types of ciphers, the
only nonlinear element are usually the BFs applied for the stream ciphers
and the vectorial BFs (better known as substitution boxes or s-boxes) for
block ciphers. Without the use of BFs in stream ciphers or s-boxes in block
ciphers, it would be trivial to break the cryptographic systems. As a result,
designing proper BFs is a crucial step.

Since many years ago, efforts were concentrated in the problem of finding
proper CBFs to avoid cryptanalytic attacks [31]. Thus, cryptographers
studied which were the desired properties for CBFs. Particularly, some
desired features are the high nonlinearity, balancedness, algebraic degree
and low autocorrelation. Among the previous ones, attaining a high
nonlinearity for a balanced BF is one of the most challenging tasks [25]. BFs
with these properties hinder the application of linear and differential
cryptanalysis. In fact, when BFs with proper properties are used, these
kinds of cryptanalysis do not succeed faster than exhaustive key search.
Currently, many ways to generate CBFs with proper features have been
designed. The three main approaches that are currently used are the
following [40]: algebraic constructions, random generation and
metaheuristic constructions. Algebraic constructions use mathematical
procedures based on algebraic properties to create BFs with good
cryptographic properties. Random generation is easy and fast, but the
resulting BFs usually have suboptimal properties for cryptographic
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applications, so many BFs must be checked and even if a large
computational effort is used, the probability to attain proper BFs is low.
Finally, metaheuristic constructions are heuristic techniques that have
attained quite promising BFs and are easier to design than algebraic
methods. However, up to now, metaheuristic techniques have not been able
to attain so good results as the algebraic techniques. For instance, attending
to the nonlinearity for balanced CBFs, metaheuristics attain CBFs with
lower nonlinearity than the best-known CBFs that have been generated with
algebraic constructions. It is also important to note that several general
metaheuristics have been used. Among them, Genetic Algorithms, Hill
Climbing, Simulated Annealing and Cartesian Genetic Programming are
quite popular.

Regarding metaheuristics, its application for solving optimization problems
dates back to the 1960 with the design of the firsts Evolutionary Algorithms
(EAs). The history of metaheuristics is briefly described in [49]. The word
"metaheuristic" is used to denote a high-level framework (a set of concepts
and strategies that blend together offering a perspective on the development
of optimization algorithms) and for referring to a specific implementation of
an algorithm based on such a framework designed to solve a specific
optimization problem. At least since two decades ago, the firsts researchers
started to study the design of CBFs from the metaheuristics point of view.
The first Genetic Algorithm that maximizes the nonlinearity of BFs was
proposed in [30]. A smart version of a hill climbing method to find proper
BFs [33] was also proposed. Subsequently, nonlinearity was optimized for
balanced BFs with 8 variables by proposing a novel crossover operator and
realizing that small population are good enough to find BFs with high
nonlinearity [32]. More recently, it was noted that the applied fitness
function significantly affects the performance of the optimization
methods [11]. This last study was developed by applying the
trajectory-based method called Simulated Annealing. This work was
extended by designing a more sophisticated search technique of Simulated
Annealing called "vanilla" [13] in order to obtain CBFs with some additional
properties such as resilience. Authors note that the huge search space
hinders the attainment of better results. Obviously, this is not a drawback
specific to this technique. In order to partially avoid this drawback some
authors consider some of the advances performed with algebraic
constructions. Particularly, [5, 19] proposed trajectory-based search methods
that operate with a kind of functions that are called the bent BFs. They
randomly adjust the bent BF to convert it on a balanced BF. In this way they
decrease the nonlinearity of a bent BF instead of increasing the nonlinearity
of a randomly created BF. First, a bent BF is constructed with the method
given in [28]. Then, a trajectory-based heuristic is used to attain a balanced
BF. These methods show really good results. In fact, at the starting point of
this thesis, these methods were the state-of-the-art in the generation of BFs
with high nonlinearity by applying metaheuristics. A different alternative to
deal with the so large search space in the case of maximizing the
nonlinearity for balanced BFs is to take into account the symmetries that
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appear in the fitness landscape when using the bit string representation [41].
Some other recent works [39] include comparisons among different
metaheuristics such as Genetic Algorithms (GAs), Evolution Strategies (ESs)
and Cartesian Genetic Programming (CGP). Among the tested approaches
CGP was the best one to generate 8-variable CBFs with high nonlinearity. In
fact, it is the EA with best performance among those that do not apply the
concept of bent BFs. Another contribution of this paper is to compare three
different fitness functions with the aim of increasing the nonlinearity.
Finally, some notions on the difficulty of generating balanced functions with
high nonlinearity are discussed in [37]. This last study is developed using
Estimation of Distribution Algorithms (EDAs). They note some undesired
properties of the basic fitness function that is usually applied and prove that
the problem is not order-1 deceptive.

Taking into account the difference among the best-known BFs and the ones
attained by state-of-the-art metaheuristics, the main aim of this thesis has
been to advance further on the development of metaheuristic construction
techniques. Particularly, the thesis focuses on the development of novel
memetic algorithms incorporating explicit control of diversity.

1.2 Motivation

The main motivation of this dissertation is to improve further the quality of
metaheuristic techniques for the construction of CBFs with high
nonlinearity. Particularly, the desire was to design techniques that were able
to generate BFs with a quality similar to the ones that have been found with
algebraic methods. Another motivation of this paper has been to test the
generality of a set of metaheuristics design principles that have provided
important advances recently [45]. The principle is based on modifying the
internal operation of metaheuristics by taking into account the stopping
criterion and diversity with the aim of properly balancing the exploration
and exploitation capabilities. Diversity-based algorithms have shown its
superiority only in executions with long time, but taking into account the
increase of technological capabilities in the last decades it has become an
interesting topic. Since the search space considered in the problem
addressed in this paper is huge, it is important to avoid fast convergence to
a reduced region of the search space, so using such a principle might be
beneficial. Note that this idea might be incorporated in several ways. In [46]
a proposal that follows this principle was designed. Particularly, the
Replacement with Multiobjective based Dynamic Diversity Control (RMDDC)
strategy was devised. RMDDC is a novel diversity-based replacement
strategy to avoid premature convergence in EAs. RMDDC is simple and it
allowed the attainment of high-quality results. In fact, RMDDC has
obtained the best-known results for several instances of the Frequency
Assignment Problem (FAP) and the Two-dimensional Packing Problem
(2DPP). Additionally, it was able to solve the most difficult Sudoku puzzles
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known to date with a 100% of success rate. In order to study this principle,
RMDDC method was modified in this thesis with some specific methods
designed for the generation of CBFs with high nonlinearity.

Note that methods developed for the generation of CBFs with high
nonlinearity have not considered the diversity in an explicit way. Overall,
this thesis pretends to show the viability and utility of considering a
diversity-based scheme motivated by the RMDDC method for the
generation of CBFs with high nonlinearity. This can be viewed as an
extension of the work presented in [45] and will serve as a validation with
more complex combinatorial problems.

1.3 Problem Description and Hypothesis

The generation of CBFs with high nonlinearity is not an easy problem. One
of the main difficulties to handle is that the search space Fn is immensely
large: |Fn| = 22n

. In fact, for problems with more than five variables it is
not possible to do an exhaustive search nowadays. Furthermore, for larger
sizes of BFs, not only the search space grows, but also the computational
cost of calculating the various important properties increases. Specifically
the calculus of the nonlinearity is based on the usage of the Walsh Hadamard
Transform, so there are more BFs and estimating the quality of each BF is
more costly. Table 1.1 shows the number of n-variable BFs for n ranging
between 4 and 12.

TABLE 1.1: Number of n-variable BF

n 4 5 6 7 8 9 10 11 12
|Fn| 216 232 264 2128 2256 2512 21024 22048 24096

≈ 104 109 1019 1038 1077 10154 10308 10616 101233

Suppose that visiting an n-variable BF takes one picosecond (10−12 seconds).
Then, exhaustive search would need four months to visit all functions for
n = 6, and about 108 times the age of the universe (13.7× 109 years) to visit
all those for n = 7. The number of 8-variable BFs is 0.0012× the number of
atoms in the visible universe (1080) [7]. Trying to find good CBFs at random
is not plausible for these values of n. This dissertation focuses on the n-
variable BF problem, with n = 8, 10. The main efforts are concentrated in
improving further the highest nonlinearity achievable by metaheuristics for
these n-variable BF problems.

Due to the large efforts that have been dedicated to this problem, some
researchers consider that balanced BFs for 8 variables with nonlinearity
equal to 118 do not exist, so the best-known BFs might already be known.
This function has been searched for at least since 30 years ago but its
existence has not been proved. A similar situation appears for the case of
10-variable BFs with nonlinearity equal to 494. In any case, the main
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purpose is to reduce the gap between algebraic methods and metaheuristics
approaches.

In this thesis the following hypothesis is studied:

Diversity-based metaheuristic methods can provide a better
way of generating CBFs with high nonlinearity, improving
further the best current results obtained in literature by other
metaheuristic methods and reducing the gap between
algebraic and metaheuristic approaches.

1.4 Objectives

The general objective of this thesis is to improve the performance of
metaheuristics for the generation of CBFs with high nonlinearity. In order to
achieve this objective, the state-of-the-art is analyzed and extended by
incorporating diversity-based strategies. The specific objectives are the
definition of proper cost functions, the design of novel diversity-based
memetic algorithms and the achievement of CBFs with a quality similar to
the ones attained by algebraic methods. A particular objective in the design
of the novel diversity-based memetic algorithm is to generate a method able
to combine intensification and exploration in a proper way by enabling
some degree of intensification in the whole optimization process. This last
one is the main novelty when compared to current diversity-based methods
and the purpose of this modification is to reduce the time required to attain
high-quality BFs.

1.5 Contributions

This thesis proposes the first algorithm that considers the diversity in an
explicit way in order to generate balanced CBFs with high nonlinearity. The
main novelty appears in the replacement phase, where concepts related to
clustering are applied. Additionally, two new cost functions that guide the
search towards proper regions are devised. Regarding the diversity
management, two algorithms that involve two different ways of controlling
the diversity are proposed. The first one enforces a large contribution to
diversity for every member of the population, whereas the other one
considers the definition of clusters, meaning that some close members are
maintained in the population. Finally, a novel population initialization
method is also proposed which considers some algebraic constructions with
the aim of speeding up the attainment of higher quality BFs.

Concerning to the results we remark that this metaheuristic methods have
allowed to reduce the gap between algebraic and heuristic constructions.
Algebraic strategies are the methods that have allowed that attainment of
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the best known BFs up to date, and for many years many researchers of the
field of heuristics have tried to match the results of algebraic constructions.
However, this has not been possible. With the methods proposed in this
thesis, the results obtained by algebraic constructions for 8 and 10 variables
have been matched.

1.6 Brief Overview of the Thesis Chapters

This dissertation is composed of five chapters where it is clearly described
the state-of-the-art, the work developed for this thesis, the results obtained,
the conclusions and some lines of future work. The thesis is structured as
follows.

Chapter 2 starts with a brief explanation about the main metaheuristics that
have been used in the generation of BFs with good cryptographic properties.
The main concepts involved in the metaheuristic field are introduced. The
theory concerning to BFs and some motivations are exposed briefly. Then the
related work that has been done with metaheuristics is summarized.

Chapter 3 starts with the importance of the election of an appropriate cost
function and the particular motivation for the design of a novel cost
function for this problem is discussed. Then the cost functions and
algorithms proposed are fully described.

In chapter 4 the main results obtained with the algorithms described in
chapter 3 are exposed. Results for different parameters are discussed and
compared with the best-known results attained in literature. These studies
include statistical validation, tables and graphs with the aim of better
describing the attained results.

Finally, chapter 5 exposes the conclusions based on the results obtained and
some lines of future work.
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Chapter 2

Theoretical Framework

This chapter describes the set of metaheuristics that has been applied in the
search of BFs with high nonlinearity, the main concepts involved in the
metaheuristic field, the theory concerning to BFs and the related work that
has been done with metaheuristics to date for balanced BFs with high
nonlinearity.

2.1 Metaheuristics

Metaheuristic is a term used to refer to a subfield of optimization with
stochastic methods and encompasses a set of general approximate
algorithms used mainly to solve optimization problems. These algorithms
are usually applied to solve problems where there is no much analytic
information about the function to optimize and where other techniques
such as mathematical programming and/or exact techniques cannot be
applied. Although the techniques are general, in most cases problem-
dependent decisions are required to solve satisfactorily. These kinds of
approaches have been specially successful in the most complex optimization
problems, usually with huge search spaces.

Metaheuristics are one of the optimization technologies most widely used
nowadays. Their success is partially due to the simplicity both in design
and implementation and because in many complex problems they are the
methods that have attained the best-known results currently. A common
drawback of metaheuristics is that they can not guarantee to solve problems
exactly. In fact, usually there is no guarantee at all in relation to the quality
of the attained results. However, as it has been mentioned, in practice it
is used when other methods fail so practitioners are usually satisfied with
non-optimal but high-quality solutions, which are in most cases obtained by
metaheuristics in a reasonable time.

Regarding the design of metaheuristics, two somewhat contradictory criteria
must be taken into account:



10 Chapter 2. Theoretical Framework

• Diversification: some of the candidate solutions evaluated should be
distant to any of the previously evaluated candidate solutions with the
aim of discovering new promising regions.

• Intensification: some of the candidate solutions evaluated should be
close to some of the best solutions previously evaluated with the aim of
refining such solutions.

It is known that inducing a proper balance between diversification and
intensification is fundamental in order to generate high-quality solutions
and to widely explore the search space. In many cases, practitioners do not
design metaheuristics taking into account the balance between
intensification and diversification in an explicit way. Particularly, the
stopping criterion is not usually taken into account to perform such a
balance. However, some recent techniques have shown the importance of
relating diversification, intensification and the stopping criterion. This
thesis proposes a novel explicit mechanism to induce a proper balance
between intensification and diversification that relates its control with the
stopping criterion.

Generally, three of the main purposes that are taken into account when
designing metaheuristics are:

1. Solving problems faster

2. Solving larger problems

3. Obtaining robust algorithms, i.e. methods that in each execution attain
high-quality results

This thesis is specially focused on solving large problems and in obtaining
robust algorithms. While an effort was performed to implement the
algorithms in an efficient way, no complex data structures were used, so
probably faster implementation might be plausible for the algorithms
proposed in this thesis.

Several components must be selected when applying metaheuristics. Many
of these components depend on the particular metaheuristic that is used.
However, there are others, that are used in practically every metaheuristic.
Two of them are the following:

Representation of solutions

The variables in metaheuristics are a set of quantities that need to be
determined in order to solve certain problem. The variables are sometimes
called decision variables because the problem is to decide what value each
variable should take. An assignment of values to all decision variables in a
problem is called a solution S . Any metaheuristic needs an encoding of a
solution. In order to have a good representation it should be taken into
account how the solution will be evaluated and how the search operators
will operate on it. A good representation must have completeness (all the
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solutions are represented), connexity (any solution can be transformed into
another when a neighborhood is defined) and efficiency (easy to manipulate
by the search operators). In this thesis the terms candidate solution S and
individual I are used interchangeably.

Objective, Fitness and Cost Functions

When we work with metaheuristics the terms objective function and fitness
function are strongly related but there is a slight difference between them.
The objective function is the actual objective of the problem and the fitness
function is a quality measure of the solution that is defined with the aim of
guiding the search towards high-quality solutions. Sometimes the fitness
function is the same than the objective function and in other cases they
differ.

When the aim is to maximize the values associated with each candidate
solution, the quality measure of a candidate solution is called fitness function
(maximization problem), whereas when the aim is to minimize the values
associated with each candidate solution, it is more usual to use the term cost
function (minimization problem).

An illustrative example of the importance of differentiating between these
functions is the following. In linear programming, there are problems with
constraints that must be satisfied and the objective function is to minimize
the cost and fulfills the constraints. In such constrained problem fitness
functions might contain two parts: the objective function and a penalty
function which penalizes the value when constraints are violated. Another
example arises in combinatorial problems. In many cases the objective
function takes just a few distinct values. This is a drawback for the proper
operation of metaheuristics because the search is not properly guided
towards higher-quality regions. As a help for this drawback another fitness
function can be defined to distinguish among solutions with the same
objective function.

Some general ways to alter the fitness function have been defined [2] by
scaling the objective function: linear static scaling, linear dynamic scaling,
logarithmic scaling, exponential scaling and sigma truncation. For some
metaheuristics these kinds of transformation are quite important and might
be the key to success. Some studies that relate selection probabilities and
these kinds of transformations are included in [9].

2.1.1 Trajectory-Based Metaheuristics

Trajectory-based metaheuristics, also called single solution based, are a set of
metaheuristics that operate in each step with a single solution S . This kind
of metaheuristics are exploitation oriented, i.e. they are usually proper to
attain good solutions of a specific region of the search space. However, they
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Algorithm 1: General Operation of Trajectory-Based Metaheuristics
Input : Initial solution S0

1 t = 0
2 repeat

/* Generate candidate solutions S ′ from St */

3 Generate(C(St))
/* Select a solution S ′ from (C(St)) to replace St */

4 St+1 = S ′
5 t = t + 1
6 until stopping criterion satisfied

Output: Best solution found

are not so global, so many regions might remain unexplored even if long
executions are performed. It operates by transforming a single solution S by
performing "walks" through neighborhoods or search trajectories through
the search space in order to improve it. Thus, a trajectory-based meta-
heuristic iteratively applies generation and replacement procedures from the
current single solution S until a given stopping criterion is reached. The
generation procedure also called move operator is responsible for generating
a set of candidate solutions C(S) from the current solution S , this process is
usually defined based on a neighborhood of the current solution S ,
although it can also be done with other kind of mechanisms. The
replacement procedure is responsible for selecting a new solution S ′
belonging to the candidate solution set (S ′ ∈ C(S)) to replace the current
solution. The generation and replacement phases may be memoryless, which
indicates that only take into account the current solution to operate.
Algorithm 1 illustrates the general operation of trajectory-based
metaheuristics [51]. In base of the general framework of trajectory-based
metaheuristics, many different proposals have been defined. Some of the
most popular ones are: Hill Climbing (HC) or Local Search (LS), Simulated
Annealing (SA), Iterated Local Search (ILS), Variable Neighborhood Search (VNS)
and Guided Local Search (GLS).

Common Concepts

Neighborhood. The definition of the neighborhood set plays an important
role in the performance of trajectory-based metaheuristic. In combinatorial
optimization, the neighborhood N(S) of a solution S is usually represented by

N(S) = {S ′ : d(S ′,S) ≤ ε}, (2.1)

where d represents a given distance between solutions. The natural
neighborhood for binary representations — the one used in this thesis — is
based on the Hamming distance dH. In many cases, ε = 1 is used, meaning
that the neighborhood of a solution S consists in flipping one decision
variable of the solution.
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Local Optimum. Relatively to a given neighborhood N, a solution
S ∈ N(S) is a local optimum if it has a better or equal quality than all of its
neighbors, i.e.

cost(S) ≤ cost(S ′) ∀S ′ ∈ N(S). (2.2)

Large Neighborhoods. In general, the larger the neighborhoods, the best
results are obtained when applying a local search. However, due to the time
limitations is not feasible to use very large neighborhoods. In order to deal
with large neighborhoods, it is usual to apply heuristic search (sampling only
one part) or methods that allow to find the best neighbor without exploring
them all. For example, dynamic programming [3] and/or branch and bound [43]
are typical methods used to explore large neighborhoods.

Initialization of Solutions. Two main strategies are used to generate the
initial solution: random and greedy approaches. Random initial solutions are
obtained quickly, but the metaheuristic might take many iterations to
converge. In order to speed up the search, a greedy heuristic might be used
for generating the initial solution. One of the inconveniences of this last
approach is that when executed several times, even if a stochastic greedy
approach is used, all the initial solutions might be in close regions.

Search Space. The search space of a problem can be visualized as a directed
graph G = (V, E), where the set of vertices V corresponds to the solutions of
the problem, and the set of edges E is generated in base of the move operator.
For instance, when the move operator is based on a neighborhood there is an
edge between neighbor solutions.

Fitness Landscape. The fitness landscape can be defined by the tuple
(G, f ), where the graph G represents the search space and f represents the
objective function that guides the search. The analysis of the fitness
landscape is a very important aspect in the design of a metaheuristic in
order to solve any optimization problem. There exist a relationship between
the effectiveness of metaheuristics and the properties of the landscape. We
can describe a landscape using some geographical terms. In this way
considering the search space as the ground floor, we elevate each solution to
an altitude equal to its quality. We obtain a landscape made of valleys, plains,
plateaus, and so on.

Plateaus. Plateaus are connected regions of the search space that are
equally fitted. This represents a tedious problem for the performance of
metaheuristics because the fitness function is blind in such regions so there
is no information to guide the search toward better regions. When a fitness
function generates too many and large plateaus, it is usual to redefine the
fitness function so it is important to check if this issue is arising.
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Algorithm 2: Hill Climbing (HC)
Input : Initial solution S = S0

1 while not stopping criterion do
/* Generate candidate neighbors */

2 Generate(N(S))
3 if there is not better neighbor then
4 stop

5 S = Select a better candidate solution from N(S)
Output: Final solution found (local optimum)

Hill Climbing

Hill Climbing (HC) is the oldest and simplest metaheuristic method [1]. It
starts at a given initial solution and at each iteration HC replaces the current
solution by a neighbor that improves the fitness function. The search stops
when no neighbor is better than the current solution, which means that a
local optimum is reached. Algorithm 2 illustrates the operation of HC.

Starting with an initial solution S0, HC generates a sequence S1,S2, . . . ,Sk of
solutions with the following characteristics:

• The size of the sequence k is unknown a priori.

• Si+1 ∈ N(Si), ∀i ∈ [0, k− 1].

• cost(Si+1) < cost(Si), ∀i ∈ [0, k− 1].

• Sk is a local optimum: cost(Sk) ≤ cost(S), ∀S ∈ N(Sk).

Variants. In the previous pseudo-code the way of selecting a neighbor is not
specified. There are basically three distinct strategies for performing such a
selection.

1. Simple Hill Climbing: The first neighbor which improves the current
cost function is selected. The neighborhood is explored using a
deterministic pre-specified order.

2. Steepest Hill climbing: It evaluates the complete neighborhood an it
selects the neighbor that produces the largest improvement. If there is
a tie, random selection among them is usually considered.

3. Stochastic hill climbing: the neighborhood is explored in a random
order and the first found solution that improves the current solution is
selected.
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Algorithm 3: Iterated Local Search (ILS)
Input : Initial solution S0
/* Apply a given local search algorithm */

1 S∗ = Local Search(S0)
2 repeat

/* Perturb the obtained local optimum */

3 S ′ = Perturb(S∗, search history)
/* Apply local search on the perturbed solution */

4 S ′∗ = Local Search(S ′)
/* Accepting criteria */

5 S∗ = Accept(S∗,S ′∗, search memory)
6 until Stopping criterion satisfied

Output: Best solution found

Iterated Local Search

Iterated Local Search (ILS) is based on the simple principle of perturbing the
current local optimum and then apply local search again. Stutzle [50]
generalized this kind of heuristic. First, a local search is applied to an initial
solution. Then, a perturbation of the obtained local optimum is carried out.
Finally, a local search is applied again to the perturbed solution. The new
generated solution is accepted as the new current solution under some
conditions. This process iterates until a given stopping criterion is reached.
Algorithm 3 describes the general operation of ILS. The most important
design decisions in ILS are the selection of the neighborhood and the
perturbation method. Additionally, instead of using simple local search,
another trajectory-based method might be applied. The perturbation
method can be seen as a large random move of the current solution keeping
a percentage of the solution and perturbing the rest. In many cases, ILS is
integrated with population-based approaches. In such cases, perturbations
that are not very disruptive are usually applied. Finally, the acceptance
criteria defines the conditions that the new local optimum must satisfy to
replace the current solution.

Simulated Annealing

Simulated Annealing (SA) is a trajectory-based metaheuristic [22] that is
inspired by the annealing process in metallurgy. Its main feature is that it
enables the acceptance of worsening solutions (with certain probability) in
order to escape from local optima. Algorithm 4 describes the SA operation.
In SA algorithm the temperature update is diminished step by step. Most of
the time, it is performed in a way such that

Ti > 0, ∀i and lim
i→∞

Ti = 0. (2.3)



16 Chapter 2. Theoretical Framework

Algorithm 4: Simulated Annealing (SA)
Input : Cooling schedule

1 S = S0; /* Generation of the initial solution */

2 T = Tmax; /* Starting temperature */

3 repeat
/* At a fixed temperature */

4 repeat
5 Generate a random neighbor s′ from s
6 ∆E = cost(S ′)− cost(S)
7 if ∆E ≤ 0 then
8 S = S ′ /* Accept the neighbor solution */

9 else
10 Accept S ′ with a probability exp(−∆E/T)

11 until Equilibrium condition
/* e.g. a given number of iterations executed at each T */

12 T = g(T); /* Temperature update */

13 until Stopping criterion satisfied (e.g. T < Tmin)
Output: Best solution found

The temperature can be updated in several ways:

• Linear: Ti = T0 − i× β, β is a constant value.

• Geometric: T = αT, α ∈ [0, 1]. This is the most popular one.

• Logarithmic: Ti = T0/ log(i).

• Very slow decrease: Ti+1 = Ti/(1 + βTi).

• Non monotonic: it might increase the temperature to encourage the
diversification in the search space.

• Adaptive: dynamic decreasing rate depending on information
obtained during the search.

It is easily to see that the first four procedures to the temperature update
guarantees that the 2.3 conditions hold.

In this thesis we focus in the three trajectory search methods described
above. They were implementing with the aim of integrating them in a
population-based metaheuristic because in order to achieve proper
solutions, long executions were performed. In such circumstances,
population-based metaheuristics are required to further balance the search
towards exploration. The details of each implementation and adaptation to
the optimization problem at hand are given in chapter 3.
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Algorithm 5: General Operation of Population-Based Metaheuristics
Input : Initial population P = P0

1 t = 0
2 repeat

/* Generate a new population */

3 Generate(P′t )
/* Select new population */

4 Pt+1 =Select_Population(Pt ∪ P′t )
5 t = t + 1
6 until stopping criterion satisfied

Output: Best solution(s) found

2.1.2 Population-Based Metaheuristics

Population-based metaheuristics can be viewed as an iterative improvement
in a population of solutions P. The main purpose is to improve iteratively a
whole population of individuals — candidate solutions — by applying a set
of operators. First, the population is initialized usually with random
initialization. Then, a new population of solutions is generated and this new
population is incorporated to the current one using some replacement
selection procedures. The process ends when a stopping criterion is
satisfied. In the reproduction phase, a new population of solutions P′ is
created. In the replacement phase, a selection is carried out from the current
and the new populations. The reproduction and replacement phases may be
memoryless, which indicates that the procedures are based only in the
current population. Algorithm 5 illustrates the general operation of
population-based metaheuristics.

Algorithms such as Evolutionary Algorithms (EAs), Scatter Search (SS),
Estimation of Distribution Algorithms (EDAs), Particle Swarm Optimization
(PSO), Bee Colony (BC), and Artificial Immune Systems (AISs) belong to the
population-based metaheuristics.

Evolutionary Algorithms

In this thesis we focus the research in EAs, which are the most studied
population-based algorithms. Their success in solving difficult optimization
problems in various domains has promoted the field known as Evolutionary
Computation (EC). An EA uses mechanisms inspired by biological evolution
of the species, such as selection (competition between individuals),
reproduction (crossover, mutation) and replacement (survival of the best
individuals). EAs often attain well approximate solutions to many
optimization problems and are easy to implement. Algorithm 6 illustrates
the template of an EA. There are different types of EAs, such as: Genetic
Algorithm (GA), Evolution Strategy (ES) and Genetic Programming (GP) among
others.
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Algorithm 6: Template of an Evolutionary Algorithm (EA)
1 Initialization(P(0)) /* Initial population with N individuals */

2 Evaluation(P0) /* Set quality to each individual */

3 Set t = 0 /* Generation counter */

4 while not stopping criterion do
5 P′(t) = Selection(P(t)) /* Select parents to generate the

offspring */

6 P′(t) = Reproduction(P′(t)) /* Create the child population */

7 Evaluate(P′(t)) /* Set quality to each offspring */

8 P(t + 1) =Replacement(P(t), P′(t) /* Select individuals for next

generation */

9 t = t + 1

Genetic Algorithms (GAs) are the most popular class of EAs. This
metaheuristic was developed by J. Holland in 1970s [17]. Traditionally, GAs
are associated with the use of a binary representation, but nowadays one
can find GAs that use other types of representations. Most typical GAs work
by choosing the parents by the proportional selection method, which give to
the best individuals a higher probability to become a parent for the
offspring. The reproduction phase in GAs is performed by applying a
crossover operator to two parents, any time that the crossover operator is
applied to two parents, two offspring are generated. Then a mutation that
randomly modifies the offspring is applied in order to promote diversity.
The most usual replacement technique in GAs is generational, that is, the
parents are replaced systematically by the offsprings. However, nowadays
including elitism is also very typical, meaning that the best individual
found along the search always remains in the population.

Evolution Strategy (ES) are another kind of EAs. This metaheuristics were
originally developed by Rechenberg and Schewefel in 1964 [42]. This kind
of metaheuristics are based on the principle of string causality: small changes
have small effects and are mostly applied to continuous optimization
problems where representations are based on real-valued vectors. The
selection operator is deterministic and is based on the fitness ranking, so the
best individuals have higher probability to become parents. In an ES, there
is a distinction between the population of parents of size µ and the
population of the offsprings of size λ ≥ µ. An individual is composed of the
float decision variables plus some other parameters guiding the search.
Thus, an ES facilitates a kind of self-adaptation by evolving the solution as
well as the strategy parameters (e.g., mutation step size) at the same time.
ESs usually apply a normally (Gaussian) distributed mutation and an elitist
replacement. Crossover is rarely used, at least in the most standard
variants.

Genetic Programming (GP) is a more recent evolutionary approach, which
extends the generic model of learning to the space of programs [23]. The
main difference between GP and other EAs is that instead of using a linear
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representation for the solutions in the population it uses programs
(nonlinear representation based on trees) to solve the problems. GP is a
form of program induction that allows to automatically generate programs
that solve a given task. In general, the parent selection is a fitness
proportional, the crossover operator is based on subtrees exchange, the
mutation is based on random change in the tree and the replacement is
generational. One of the problems in GP is the uncontrolled growth of trees.
Nowadays GP is widely used in machine learning and data mining tasks
such as prediction and classification.

Memetic Algorithms

A very successful way to improve the performance of EAs is to hybridize
with local search or other trajectory-based techniques. In fact, combinations
of genetic algorithms and trajectory-based search heuristics, often called
Memetic Algorithms (MAs), have been applied successfully to many
combinatorial optimization problems. According to Moscato [34] MAs are
an hybridization between EAs and refinement procedures. Norman and
Moscato [36] implemented the first MA.

As it is said at the beginning of the chapter, the two main goals desired to
achieve in the design of metaheuristics is to perform the exploitation and
exploration in a proper way. A memetic algorithm allows to do this
efficiently. This is because the part concerning to the population method is
oriented to explore the search space and the part concerning to the trajectory
method is oriented on intensifying the search.

According to its hybridization, the MAs can be categorized into three
different generations [35]:

• 1st generation: refers to hybrid algorithms between evolutionary based
(global search) and trajectory based (local search). Some examples of
this category are Lamarckian Memetic Algorithm (LMA) and Baldwin
Memetic Algorithm (BMA).

• 2nd generation: refers to multiple individual learning methods within
an evolutionary system exhibiting the principles of memetic
transmission and selection in their design. Some examples of this
category are Hyper-Heuristic, Meta-Lamarckian and Multi-Meme.

• 3rd generation: refers a rule-based representation of local search
co-adapted alongside candidate solutions within the evolutionary
systems, thus capturing regular repeated features in the problem
space, one example of this is Co-evolution of MAs.
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Algorithm 7: Lamarckian Memetic Algorithm (LMA)
1 Initialize(P0)
2 Evaluate(P0)
3 Improvement(P0)
4 t = 0
5 while not stopping criterion do
6 P′t = Mating Selection(Pt)
7 P′t = Reproduction(P′t )
8 Evaluate(P′t )
9 P′t = Improvement(P′t )

10 Pt+1 = Replacement (Pt, P′t )
11 t = t + 1

In a MA the individuals are improved locally by the refinement procedure:
local search, lifetime learning or individual learning. In base of the modifications
arising from the refinement procedure we can classify the MAs in two
groups [8]:

• Lamarckian Memetic Algorithm (LMA): modifications are written
back in every individual representation. Algorithm 7 illustrates how a
LMA works.

• Baldwin Memetic Algorithm (BMA): modifications change the fitness
of the individuals without altering its representation.

Description of LMA components

Initialize. This phase is responsible for generating N individuals in the
population, the most usual is random generation.

Evaluate. This phase is responsible for assigning fitness or quality to each
individual in the population. This operator makes use of the objective
function.

Improvement. This phase is responsible for improving each individual
belonging to the population. The most commonly is to use a local search
procedure to improve the individuals.

Mating Selection. This phase is responsible for selecting those individuals
among the entire population that will be the parents of the offspring. The
parents are selected according to their fitness using one of the following
strategies:
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• Roulette Wheel Selection: assigns to each individual a selection
probability and the best individuals have more probability to be
chosen. This is a very elitist procedure and in many cases it does not
provide enough diversity to attain high-quality solutions.

• Tournament Selection: consist in randomly select k individuals (size of
the tournament) and select the best one. This procedure is less elitist
and provides more diversity. A binary tournament (k = 2) is used in
the implementations for this thesis.

Reproduction. This phase is responsible for generating the offspring
population. Valid solutions are produced by inheriting some characteristics
from their parents through the application of variation operators such as
crossover and mutation.

• Crossover. This procedure is applied to a pair of parents. For binary
representations the common crossover operators are based on
interchanging segments of their parents with a certain probability pc.
Three popular procedures to perform this exchange are the following:

1. 1-point: cut the parents in a random position k to do the exchanges.
The resulting offspring is obtained up to the point from one parent
and from the point from the another parent.

2. n-point: cut the parents in p random positions (k1, ..., kp) to do the
exchanges. The p positions are treated equally.

3. Uniform: each element of the offspring is selected randomly from
either parent. Each parent contribute equally generating the
offspring. A slight variant of this method is used in this thesis.

• Mutation. This operator acts on a single individual doing small
changes with certain probability pm. An usual value for pm is 1/k
where k is the number of decision variables, so in average only one
variable is mutated.

The fundamental aspects to be taken into account in the mutation are:
ergodicity (allow every solution of the search space to be reached),
validity (produce valid solutions) and locality (produce minimal
changes in the solutions with a high probability). In EAs the mutation
is related to neighborhood operators of trajectory metaheuristics and
for binary representations the commonly used mutation is the flip
operator. In this thesis we use two flips from truth table positions
containing 0 and 1, so it can be seen as a swap between them.

Replacement. This phase is responsible for selecting the individuals that
pass to the following generation. Modifications in this phase plays a very
important role in our proposal for the diversity management, further details
are described below and in the chapter 3.
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Algorithm 8: RMDDC Survivor Selection Technique
Input : Population, offspring

1 Output: New Population;
2 Current = Population ∪ Offspring;
3 foreach I ∈ Current do
4 Icost = Fitness associated to individual I.

5 Best = Individual with lowest fitness in Current;
6 NewPop = {Best} ;
7 Current = Current \ {Best} ;
/* Update D taking into account the elapsed time (Te), stopping

criterion (Ts) and initial value of D (DI). */

8 D = DI − DI × Te/Ts ;
9 while |NewPop|<N do

10 foreach I ∈ Current do
11 Idist = distance to the closest individual of I in New Pop;
12 if Idist < D then
13 Icost = ∞ ;

14 ND = Non-dominated individuals of Current (without repetitions)
taking into account Idist and Icost as the two objectives.;

15 Selected = Randomly select an individual from ND;
16 NewPop = NewPop ∪ Selected ;
17 Current = Current \ {Selected};

18 Population = NewPop;
Output: Population

Diversity Management

In EAs premature convergence is a drawback which represent a problem of
efficiency. Due to this the EA could converge prematurely to a sub-optimal
region. In order to mitigate this, some techniques have been developed. The
different methods are classified in base of the component of the EA that is
modified: selection-based, population-based, reproduction-based, fitness-based and
replacement-based. The fundamental guideline used for replacement-based
techniques is to change the replacement phase by diversifying the survivors,
so more exploration is induced. Following this, Segura [46] designed the
Replacement with Multiobjective based Dynamic Diversity Control (RMDDC)
strategy. This is carried out by adopting multi-objective concepts and
considering the diversity as an explicit objective. Algorithm 8 illustrates
how the RMDDC strategy works for a minimization problem.

We need to clarify that increasing the diversity by itself is not a real objective
when performing an optimization. However, it is an auxiliary objective that
might enable to attain better results. For more details about the different
procedures in diversity management the reader is referred to [47].
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2.2 Cryptographic Boolean Functions

History

The work concerning to cryptographic BFs started with George Boole and
Claude Elwood Shannon [14]. With his most important work An
Investigation into the Laws of Thought, on Which are Founded the Mathematical
Theories of Logic and Probabilities (1854), Boole redefined logic in a different
way, transforming it into algebra. In his honor, the discipline of
mathematics that studies logical expressions is called Boolean Algebra. The
work of Boole was ignored for many years, until the 1940s when Claude
Elwood Shannon picked up Boole’s work and recognized its relevance to
electronics design. The paper Communication Theory of Secret Systems (1949)
by Shannon is the first analysis of cryptography [48].

2.2.1 Boolean Functions and their Representations

In Boolean Algebra {0,1} is the set of interest. The symbols 0 and 1 represents
status of information, and they basically can be considered to be as a True
(1) or False (0). These symbols can be combined by using electronic devices
that perform operations on them. The most typical logic circuits take two
values as an input and generate a new value. This is the case of the logic
gates OR, AND and XOR. The logic gate NOT takes as input a single value
and generates a new value. A way to explain the operation of logic gates is by
using truth tables. Let A and B be Boolean variables representing the input of
a logic gate. Then, the output of the logic gates is illustrated in table 2.1.

TABLE 2.1: Truth table of logic gates

A B AND (A∧B) OR (A∨B) NOT (¬A) XOR ( A
⊕

B )
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

The set {0, 1} will be most often endowed with the structure of field (and
denoted by F2) and the set Fn

2 of all binary vectors of length n will be
viewed as a F2 vector space. The null vector of Fn

2 is 0. Fn
2 is endowed with

field structure to form the well-known Galois Field GF(2n) [16]. A BF of n
variables is a function

f : Fn
2 → F2. (2.4)

It is usually written as f (x) = f (x1, x2, ..., xn), where x is the shorthand
writing of vector (x1, x2, ..., xn). As an example, consider the 4-variable BF

f (x) = f (x1, x2, x3, x4) = x1
⊕

x2x3
⊕

x4x1. (2.5)
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There are several ways of representing BFs. The three representations
exposed in the following are universal for BFs, meaning that each BF are
represented uniquely in each kind of representation. For further
information about conversions between representations of BFs, the
interested reader is referred to [53].

Truth Table Representation

One of the most basic representation of a BF is by its binary truth table which
is the vector of all outputs of the BF f lexicographically ordered. The binary
truth table has length 2n. The lexicographical order of the binary vectors x
follow a particular order when going through all the possible values in Fn

2 .
Let kx denote the integer representation of x = (x1, x2, ..., xn), i.e.,

kx = to_int(x) =
n

∑
i=1

xi2n−i. (2.6)

We can see the function to_int as the function that maps a vector x from Fn
2 to

an integer kx ∈ Nn = {0, · · · , 2n− 1}. When the integer kx takes all the values
from 0 incrementally to 2n − 1, then the corresponding binary vector x goes
through all the elements in Fn

2 . This order is the lexicographical one.

Very linked to this representation is the polarity truth table or polar form. Let f
denote a BF, then f̂ is used to define the polarity truth table. In this case
f̂ (x) ∈ {−1, 1} and each element of f̂ is obtained as f̂ (x) = (−1) f (x).
Table 2.2 has the truth table and the polarity truth table of f 2.5.

TABLE 2.2: All the x ∈ F4
2 with their corresponding integer

values kx, the truth table f and the polarity truth table f̂ of 2.5

kx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
f 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1
f̂ 1 -1 1 -1 1 -1 -1 1 1 1 1 1 1 1 -1 -1

Algebraic Normal Form Representation

In coding theory and cryptography a natural representation of BFs is to write
the BF as a multivariate polynomial. A BF can be written as

f (x) = c0
⊕

1≤i≤n

cixi
⊕

1≤i<j≤n

cijxixj
⊕
· · ·

⊕
c1,...,nx1x2 · · · xn, (2.7)
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and it is called the algebraic normal form representation of f , or the ANF in
brief, where c0, ci, cij, · · · , c1,...,n are coefficients having value in F2. It has been
proved that every BF in n variables can be represented uniquely in the form
of equation 2.7, i.e., with a unique set of coefficients. Thus, the representation
of equation 2.7 is universal [6].

As an example, f 2.5 is the algebraic normal form of a BF in four variables.
In such a case, almost all the coefficients are zero. The only exceptions are
c1, c23, c41.

Support Representation

A different way to store a BF is by recording the values of the variables where
the BF takes value 1. The support of f — denoted as supp( f ) — is defined as

supp( f ) = {x : f (x) = 1, x ∈ Fn
2}. (2.8)

The support of f is a set of vectors of length n. For example, the support for
f 2.5 is

supp( f ) = {(0001), (0011), (0101), (0110), (1110), (1111)}.

If all these vectors are listed as a matrix X f , the X f is called the characteristic
matrix of f which is unique when the rows are in an specific order, e.g., with
the order defined above in expression 2.6.

Enumeration of Boolean Functions

Fn denotes the set of all n-variable BFs. The number of n-variable BFs is

|Fn| = 22n
. (2.9)

Affine Boolean Functions. An affine BF Lw,c on Fn is a BF that takes the
form

Lw,c(x) = w · x
⊕

c = w1x1
⊕
· · ·

⊕
wnxn

⊕
c, (2.10)

where w ∈ Fn
2 and c ∈ F2. If c = 0, then Lw,0 (Lw) is a linear BF.

The sets of n-variable affine and linear BFs are denoted by An and Ln
respectively. The number of n-variable affine and linear BFs are

|An| = 2n+1, (2.11)
|Ln| = 2n. (2.12)
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Basic Definitions

Hamming Weight. The numbers of 1′s in the truth table of f is called the
Hamming weight of f and is denoted by wH( f ). As a consequence wH( f ) is
the number of elements in supp( f ).

wH( f ) = ∑
x∈Fn

2

f (x). (2.13)

This definition is also true for vectors x ∈ Fn
2 . Particularly, the hamming

weight of a vector x ∈ Fn
2 is the amount of nonzero positions.

Hamming Distance. Let f (x), g(x) be two n-variable BFs, the Hamming
distance between f (x) and g(x), denoted by dH( f , g), is the number of
coordinates with different values in their truth tables. It can be written as

dH( f , g) = wH( f ⊕ g) = ∑
x∈Fn

2

f (x)⊕ g(x). (2.14)

2.2.2 The Walsh Hadamard Transform

The Walsh Hadamard Transform (WHT) can be seen as another kind of
n-variable BF representation. In this dissertation this is the most important
representation of n-variable BFs, because it is used to calculate relevant
cryptographic properties of BFs, between them the nonlinearity. Let f be a
n-variable BF, the WHT of f is the function Wn : Fn

2 → Z defined by

Wn( f )(w) = ∑
x∈Fn

2

(−1) f (x)
⊕

Lw(x), w ∈ Fn
2 . (2.15)

Another intuitive way to calculate the WHT is by using the polarity truth
tables of f and Lw

Wn( f̂ )(w) = ∑
x∈Fn

2

f̂ (x)L̂w(x), w ∈ Fn
2 . (2.16)

The Walsh Hadamard inverse transform corresponding to 2.16 is

f̂ (x) = 2−n ∑
w∈Fn

2

Wn( f̂ )(w)L̂w(x), x ∈ Fn
2 . (2.17)

The WHT of f measures the correlation between f and each Lw. According
to Millan [33], the correlation with Lw is given by

c( f , Lw) =
|Wn( f )(w)|

2n . (2.18)
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The correlation is a real number 0 ≤ c( f , Lw) ≤ 1, that represents the degree
of similarity between f and Lw. A correlation value of zero indicates that f
and Lw are completely uncorrelated. Differently, a value equal to 1 means a
perfect correlation between f and Lw.

Parseval’s Equation

The values in the WHT of f are constrained by a square sum relationship
which implicitly limits the magnitude and frequency of those values, this is
known as Parseval’s Equation (2.19) from [24]:

∑
w∈Fn

2

(Wn( f )(w))2 = 22n. (2.19)

This value is constant for all n-variable BFs, i.e., the values in the WHT of
every BF must satisfy Parseval’s equation. However, a WHT of a function
can satisfy Parseval’s equation and not necessarily be Boolean.

Hadamard Matrices

A Hadamard matrix Hn is a square matrix of dimension 2n, such that

HnHT
n = 2n I2n , (2.20)

where HT
n is the transpose of Hn, and I2n is the 2n × 2n identity matrix. The

entries of the matrix are either +1 or −1 and its rows and columns are
orthogonal.

By defining H0 = (1), Hadamard matrices can be constructed with the
following formula:

Hn =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
. (2.21)

When n = 1, 2, it is easy to formulate the matrices

H1 =

(
1 1
1 −1

)
and H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (2.22)

Let f̂ be the polarity truth table representation of f and Wn( f̂ ) the WHT of
f̂ . Then, the WHT and the inverse WHT can be represented by means of
matrices as follows:

Wn( f̂ ) = f̂ · Hn, (2.23)

f̂ = 2−nWn( f̂ ) · Hn. (2.24)
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When equations 2.23 and 2.24 are used to compute the WHT, it is faster than
to use the normal WHT 2.15 and 2.17. The Hadamard matrix representation
can be used to formulate fast computation of WHT.

Fast Walsh Hadamard Transform

Direct calculation of Wn would require about 22n operations. This is because
there exists 2n linear functions and computing the correlation 2.18 with each
linear function requires 2n operations, which give us the total amount of
operations required by the direct calculation of the WHT. Fortunately there
is a faster way to obtain Wn, —the Fast Walsh Hadamard Transform
(FWHT)— which is a discrete version of the so-called Fast Fourier
Transform (FFT). This is possible because Hn can be written as a product of
n matrices with dimensions 2n × 2n. Each matrix has only two non-zero
elements per column. Thus only n2n operations are needed to evaluate Wn.
In order to explain the decomposition of Hn the Kronecker products must be
introduced.

Kronecker product of matrices

If A is an m× n matrix and B is a p× q matrix, then the Kronecker product
A
⊗

B is the mp× nq matrix obtained from A by replacing every entry aij by
aijB

A
⊗

B = (aijB). (2.25)

The Kronecker product is not commutative, i.e., in general A
⊗

B 6= B
⊗

A.
However, it is associative, (A

⊗
B)
⊗

C = A
⊗
(B
⊗

C) and distributive,
(A + B)

⊗
C = A

⊗
C + B

⊗
C.

Hadamard matrices can be defined using the Kronecker product

Hn = H1
⊗

Hn−1. (2.26)

As a consequence any Hadamard matrix Hn can be decomposed as

Hn = M(1)
n M(2)

n · · ·M
(n)
n , (2.27)

where M(i)
n = I2n−i

⊗
H1
⊗

I2i−1 , and Im is the m × m identity matrix. The
proof of 2.27 is easy by induction and can be found in [24]. Example, for
n = 2

M(1)
2 M(2)

2 =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1
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M(1)
2 M(2)

2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


M(1)

2 M(2)
2 = H2.

An interesting remark is that the matrices M(·)
n commute with each other, i.e.,

M(i)
n M(j)

n = M(j)
n M(i)

n , for any i, j.

The sparse matrix method of the equation 2.27 allows to compute the Wn
using only n2n operations. This can be exemplified when is used the concept
of butterfly diagram. A butterfly diagram of size two, takes two inputs
(x0, x1) and gives two outputs (y0, y1): y0 = x0 + x1, y1 = x0 − x1.

FIGURE 2.1: Fast WHT applied to the BF 2.5 to obtain its WHT
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Figure 2.1 shows an example of use of the Fast WHT applied to f 2.5.
Intuitively, we can see any Wi (i ∈ {1, · · · , n}) like a i-phase in the
computation of the WHT (W0 is the 0-phase and corresponds to the polar
form of the BF). It is easy to see that we need to have computed the
(i − 1)-phase to compute the i-phase. So the FWHT works by computing n
phases orderly. More details about this can be found in the section 3.1.3.
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2.2.3 Cryptographic Properties of Boolean Functions and
Special Functions

Boolean functions used in stream ciphers must have some required
properties. These properties are designed to make ciphers secure against
some attacks. Some of the most important cryptographic properties of BFs
are briefly explained in the following.

Algebraic Degree

Let deg( f ) denote the algebraic degree of f . The algebraic degree is defined
to be the number of variables in the largest product term of the algebraic
normal form 2.7 of f having a non-zero coefficient. The affine BFs which
includes the linear BFs have an algebraic degree of 1.

Balancedness

The most basic of all cryptographic properties desired to be exhibited by BFs
is balance, f is said to be balanced if wH( f ) = 2n−1. In terms of its WHT, a
BF f is balanced if and only if

Wn( f )(0) = 0. (2.28)

If the magnitude of wH( f ) deviates from 2n−1, the function can be better
approximated with a constant function. This is one of the reasons for the
importance of balancedness Thus, the most basic of all cryptographic
properties desired to be exhibited by BFs is balance. The set of n-variable
balanced BF is denoted as Bn and its size is

|Bn| =
(

2n

2n−1

)
. (2.29)

It is important to remark that we use this search space along this thesis.

Nonlinearity

The nonlinearity Nn( f ) of f is calculated using the maximum absolute value
of the WHT and represents the minimum Hamming distance between f and
the affine BFs set An, i.e.

Nn( f ) = min
φ∈An

dH ( f , φ) . (2.30)
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Mathematically, the relationship between the nonlinearity of an n-variable
BF f and the WHT of f is given by the following equation:

Nn( f ) =
1
2

(
2n − max

w∈Fn
2

|Wn( f )(w)|
)

, (2.31)

where maxw∈Fn
2
|Wn( f )(w)| represents the maximum absolute value in the

WHT. By Parseval’s equation, we can obtain an upper bound of nonlinearity
in general case (when n is even), that is

Nn( f ) ≤ 2n−1 − 2n/2−1. (2.32)

Auto Correlation

The auto correlation of f AC( f ) is the maximum absolute value of r f (x),
x 6= 0 such that r f is the auto correlation spectrum of f

AC( f ) = max
x∈Fn

2\{0}
|r f (x)| s.t. r f (w) = ∑

x∈Fn
2

(−1) f (x)+ f (x⊕w). (2.33)

Algebraic Immunity

The algebraic immunity (AI) is defined as the minimum degree of the
nonzero function g such that g is known as the annihilator of f (or f ⊕ 1)

AI( f ) = min{deg(g) : f g = 0∨ ( f ⊕ 1)g = 0, g ∈ Fn}. (2.34)

Fast Algebraic Resistance

The fast algebraic resistance (FAR) of f is defined as the minimum value of
deg(g) + deg(h) for all (deg(g), deg(h))- relations on f , i.e.

FAR( f ) = min{deg(g) + deg(h) : f g = h ∧ deg(g) < deg(h)}. (2.35)

FAR is upper bounded by deg( f ). This means that any cost function dealing
with FAR also deals to some extent with algebraic degree.

Bent Functions

Bent BFs are a very special class of BFs. A BF f (x) is bent if and only if

|Wn( f )(w)| = 2n/2, ∀w ∈ Fn
2 . (2.36)

Bent BFs are not balanced and they are usually not applied in cryptosystems.
It can be noticed that bent BFs only exists when n is even.
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Correlation Immune Functions

Correlation immunity is an interesting cryptographic property that
measures the level of resistance against correlation attacks. A BF with low
order correlation immunity is more susceptible to a correlation attack than a
BF of high order correlation immunity. The correlation immunity m of a BF
of algebraic degree d of n variables satisfies m + d ≤ n; for a given set of
input variables, this means that a high algebraic degree will restrict the
maximum possible correlation immunity. Furthermore, if the BF is balanced
then m + d ≤ n− 1.

A BF is correlation immune of order m (in brief CI f (m) ) if the output of
the BF is statistically independent of the combination of any m of its inputs.
According to Picek [39], for the WHT it holds that

Wn( f )(w) = 0; for 1 ≤ wH(w) ≤ m, w ∈ Fn
2 . (2.37)

Sarkar and Maitra [44] showed that if a CI(m) BF f has an even number of
variables n and k ≤ n/2− 1, then its nonlinearity Nn( f ) has the upper bound
as follows:

Nn( f ) ≤ 2n−1 − 2n/2−1 − 2k, (2.38)

where k equals m + 1 if f is balanced or has Hamming weight divisible by
2m+1 and k equals m otherwise. In the case when k > n/2 − 1 then the
nonlinearity has the upper bound

Nn( f ) ≤ 2n−1 − 2k. (2.39)

In the following, we concentrate only on BFs where m + 1 ≤ n/2− 1. This
bound is called Sarkar-Maitra divisibility bound and due to this we know
that the maximum possible nonlinearity for 8-variable BFs is 118, that occurs
when m = 0. In this way the nonlinearity upper bound for any n-variable BF
with n even is

Nn( f ) ≤ 2n−1 − 2n/2−1 − 2. (2.40)

Resilient Functions

When correlation immune BFs are balanced, they are also called resilient
BFs. It is said that a balanced BF with CI(m) is m-resilient. In other words,
the BF f is called m-resilient if wH( f ′) = 2n−m−1 for any its sub-function f ′

of n − m variables. From this point of view we can consider formally any
balanced BF as 0-resilient. The concept of an m-resilient function was
introduced in [10].
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2.3 Metaheuristics for Cryptographic Boolean
Functions

There are many works related to finding BFs with high nonlinearity using
metaheuristics. These methods can be classified in three groups:
trajectory-based metaheuristics, population-based metaheuristics and
hybrid metaheuristics that combine algebraic constructions and (mainly)
local search procedures in order to construct BFs with high
nonlinearity.

2.3.1 Trajectory-Based Metaheuristics

Smart Hill Climbing

The Smart Hill Climbing (SHC) method developed by Millan [33] is a quite
simple strategy. It does not use any cost function explicitly, i.e. it uses the
maximum absolute value in the WHT directly, which is implicitly related
with the nonlinearity, so we can deduct that they made use of it to guide the
search. They consider defining some sets involving certain linear functions
Lw(x) that have minimum Hamming distance to f (x). The purpose of
defining these sets is to ensure that a change always improve the
nonlinearity of f . Thus, the method identifies the linear functions that have
more correlation with f and by properly complementing certain truth table
positions the correlation to those linear functions is diminished.

Let Xα denote the maximum absolute value in the WHT of the BF f .

Xα = max
w∈Fn

2

|Wn(w)|.

SHC works by defining the following sets

A+
1 = {w : Wn(w) = Xα, w ∈ Fn

2}
A−1 = {w : Wn(w) = −Xα, w ∈ Fn

2}
A+

2 = {w : Wn(w) = Xα − 4, w ∈ Fn
2}

A−2 = {w : Wn(w) = −Xα + 4, w ∈ Fn
2}.

The main idea behind this method is to decrease the maximum absolute
values that appear in the WHT. It is easy to proof that when two different
truth table values are complemented the change in the WHT Wn(w) is -4,0
or 4, this is why we need to identify the WHT entries where the value
|Xα − 4| appear. In order to improve the nonlinearity it is required to find a
pair of truth table positions x1, x2, such that f (x1) 6= f (x2). When these truth
table values are complemented

f (x1) = f (x1)⊕ 1, f (x2) = f (x2)⊕ 1, (2.41)
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Algorithm 9: Smart Hill Climbing (SHC) - Related Work
Input : n-variable BF f

1 LOF=False; /* Local optimum found flag */

2 while LOF=False do
3 Calculate the WHT Wn ;
4 Obtain the sets A+

1 ,A−1 ,A+
2 ,A−2 ;

5 Set C0 = ∅, C1 = ∅ ;
6 foreach x ∈ Fn

2 do
7 if f (x) = Lw(x), ∀w ∈ A+

1 then
8 if f (x) 6= Lw(x), ∀w ∈ A−1 then
9 C f (x) = C f (x) ∪ x ;

10 if C0 = ∅ ∨ C1 = ∅ then
11 LOF = True;

12 flag=1;
13 foreach x ∈ C0 & flag=1 do
14 foreach y ∈ C1 & flag=1 do
15 if f (x) 6= Lw(x) & f (y) 6= Lw(y), ∀w ∈ A+

2 then
16 LOF = True;

17 else
18 if f (x) = Lw(x) & f (y) = Lw(y), ∀w ∈ A−2 then
19 LOF = True;

20 else
21 f (x) = f (x)⊕ 1 ;
22 f (y) = f (y)⊕ 1 ;
23 LOF = False;
24 f lag = 0;

Output: Local optimum f

the changes in the WHT do not increase the quantity |Xα − 4| and decreases
the quantity |Xα|. The algorithm 9 illustrates how the SHC works. The sets
C0, C1 in the 5th line stores the truth table positions that can be
complemented in order to diminish |Xα|. Since the values corresponding to
|Xα − 4| could increase and remain the same nonlinearity, we need to
identify those pairs x, y such that when are complemented (lines 21,22), the
values |Xα| decreases and |Xα − 4| do not increases. In order to identify
those where |Xα − 4| do not increases we need to make sure that the
conditions on lines 15 and 18 are not met and in this way the nonlinearity of
f is increased. The best results obtained by Millan with the SHC are BFs
with nonlinearity N8( f ) = 112 for 8 variables and N10( f ) = 474 for 10
variables after starting from 10000 BFs.
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Algorithm 10: Simulated Annealing (SA) - Related Work
Input : Solution S0, cooling schedule (T0, α),MIL,MaxIL

1 S = S0;
2 T = T0;
3 for it = 0; it < MaxIL; it ++ do
4 for i = 0; i < MIL; i ++ do
5 Select neighbor S ′;
6 δ = CXR(S ′)− CXR(S);
7 if δ ≤ 0 then S = S ′;
8 else
9 Generate u = U(0, 1);

10 if u < exp(−δ/T) then S = S ′;

11 T = T × α;
Output: Best solution found S

Simulated Annealing

The first known SA method to address this problem was proposed by Clark
[11]. Clark works with many versions of SA, the SA version which provides
him the best results can be found in [13], however, additional results
concerning to this method can be found in [12]. The main aim of the
application of SA is to avoid getting stuck into low-quality local optima.
The SA method proposed by Clark encourage improving moves but allows
some worsening moves to be accepted as a mean to escape from local
optima. Algorithm 10 illustrates how the SA proposed by Clark works. The
initial temperature T0 is not described in the works of Clark, where the
remaining parameters setting for SA is MaxIL = 400 which is the maximum
number of outer iterations for the search, MIL = 400 which is the maximum
number of inner iterations at fixed temperature and α = 0.95 which is the
geometric cooling parameter.

The main contribution from Clark is the development of another cost
function to guide the search. The cost function CXR that he developed can
be derived by considering the Parseval’s equation 2.19 and it is as follows

CXR = ∑
w∈Fn

2

(|Wn(w)− X|)R , (2.42)

where X and R are parameters to set, Clark found that proper values for these
parameters are R = 3.0 and X = 12. Thanks to this new cost function, Clark
was able to overcome the results obtained by Millan for the 10-variable case.
Clark was able to reach BFs with nonlinearity N8( f ) = 116 and N10( f ) =
486 for 8 and 10 variables respectively, employing a two-stage optimization
method, which basically consists of an annealing-based search using the cost
function CXR followed by SHC method 9 to improve the nonlinearity.
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Following the work from Clark, Kavut [21] develop another cost function
2.43 to be used in the SA method proposed by Clark.

CRS = ∑
w∈Fn

2

|Wn(w)|R + ∑
w∈Fn

2\{0}
|r f (w)|S, (2.43)

where R and S are parameters to set and r f (w) is the auto correlation
spectrum 2.33 of the BF f . The values corresponding to these parameters are
R = 3, S = 3. Kavut works with a three-stage optimization method which is
based on applying simulated annealing using the cost function 2.43, then
use a hill climbing technique with respect to the cost function 2.43 and
finally use the SHC 9 to improve the nonlinearity. Kavut was able to find
BFs with nonlinearity N8( f ) = 116 and N10( f ) = 486 for 8 and 10 variables
respectively.

Another researcher that works using SA is McLaughlin [29]. The novelty
of the work by McLaughlin is that his experiments do not make use of cost
function focus in nonlinearity. He employed the SA along with the algebraic
immunity (AI 2.34) and the fast algebraic resistance (FAR 2.35)

f it( f ) = AI( f ) + FAR( f ). (2.44)

The computation of the AI and FAR is exponential in memory and time.
However, McLaughlin found BFs with nonlinearity N8( f ) = 116 and
N10( f ) = 488 for 8 and 10 variables respectively. He was able to obtain these
results for n = 10 in the 32% of the functions tasted after several days of
execution (is not mentioned how many).

2.3.2 Population-Based Metaheuristics

Genetic Algorithm

The genetic algorithm developed by Millan [32] is the first known
population-based metaheuristic to find BFs with high nonlinearity. It uses
the balanced BFs search space Bn (see 2.29) and the nonlinearity Nn( f ) as
the fitness function to guide the search. In order to generate the offspring
they define a merging operator that combines two parents (which should be
close) to produce a single offspring. The offspring is also balanced and is
modified with a random mutation incorporated in the merging operator.
Algorithm 11 describes the working operation of the GA developed by
Millan. The novelties of this GA is the merging operator and the
incorporation of the SHC to improve the offspring generated. This method
can be considered as the first LMA used to find BFs with high nonlinearity.
The SHC method was described before. Algorithm 12 illustrates how the
merging operator works. The condition in the line 3 is used to ensure that
only parents which are close to each other are allowed to breed. It should be
noted that complementing the truth table of a BF does not alter its
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Algorithm 11: Genetic Algorithm (GA) - Related Work
Input : Population size N

1 Initialize(P0) ; /* Generate N random balanced BFs */

2 Evaluate(P0) ; /* Calculate the nonlinearity of each BF */

3 for i = 0; i < MAXITER; i ++ do
4 P′i =Merging(Pi); /* Generate N(N − 1)/2 offspring */

5 Evaluate(P′i );
6 (Optional SHC) ; /* Apply the SHC (alg 9) to each offspring */

7 Pi+1 =Replacement(Pi, P′i ); /* Select the N best as the new pop */

Output: Best solution found

Algorithm 12: Merging - Related Work
Input : Two BFs as the parents f1, f2

1 Set c = f1;
2 Set n1 = 0 and k = 0;
3 if dH( f1, f2) > 2n/2 then Complement f1 or f2 ;
4 foreach x ∈ Fn

2 do
5 if f1(x) = f2(x) then c(x) = f1(x) ;
6 else
7 if n1 = dH( f1, f2)/2 then c(x) = 0;
8 else if n1 + dH( f1, f2)− k = dH( f1, f2)/2 then c(x) = 1;
9 else c(x) =random bit;

10 k ++; if c(x) = 1 then n1 ++;
Output: Offspring c

nonlinearity. The conditions in the lines 7 and 8 are used to force the
offspring to be balanced and the condition in the line 9 can be seen as the
random mutation incorporated.

The results obtained by Millan in his GA are BFs with N8( f ) = 112 for 8
variables and N10( f ) = 476 for 10 variables when no local search is employed
and when the SHC method is employed to improve the offspring the results
obtained are BFs with N8( f ) = 116 for 8 variables and N10( f ) = 484 for 10
variables. It can be seen that the hybridization between the GA and SHC
performs much better than the pure GA.

Evolution Strategy

Picek [39] implemented an (µ + λ)-ES algorithm. In each generation parents
compete with the offspring and from their joint set, the µ fittest individuals
are kept. There is not information about the use of some mutation operator.
The best results obtained by Picek with ES are BFs with nonlinearity N8( f ) =
112 for 8 variables (no results were presented for 10 variables) with λ = 10,
µ = 500 and Nn( f ) as the fitness function.
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Genetic Programming

Picek [39] use a tree-based GP in which a BF is represented by a tree of
nodes. BFs are represented in XOR and AND operators. GP uses
tournament selection with tournament size 3. The crossover is performed
with five different tree-based crossover operators selected at random: a
simple tree crossover with 90% bias for functional nodes, uniform crossover,
size fair, one-point and context preserving crossover. The best results
obtained by Picek with GP are BFs with nonlinearity N8( f ) = 114 for 8
variables (no results were presented for 10 variables), with tree depth size
equal to 7, population size equal to 10000 and Nn( f ) as the fitness
function.

Cartesian Genetic Programming

Picek [39] uses a Cartesian Genetic Programming (CGP) which represents the
BFs as a directed graph. Setting the number of rows to be one and levels-back
parameter to be equal to the number of columns is regarded as the best and
most general choice. CGP usually uses small population sizes and has no
crossover operator. Determining the best combination of maximum number
of nodes and mutation rate is crucial for a well performance of CGP. The
number of input connections ni for each node is set equal to 2 and the number
of program output connections no is set equal to 1. The mutation operator is
one-point where the mutation point is chosen with a fixed probability. The
best results obtained by Picek with CGP are BFs with nonlinearity N8( f ) =
116 for 8 variables (no results were presented for 10 variables), with genotype
size equal to 1500, mutation rate equal to 13% and population size equal to 5.
Additionally CGP uses a (1 + 4)-ES individual selection in which offspring
are favored over parents when they have a fitness better than or equal to the
fitness of the parent. Nn( f ) is used as the fitness function.

Clonal Selection Algorithm

The Clonal Selection Algorithm (CLONALG), which belongs to the field of
Artificial Immune Systems, is inspired by the clonal selection theory of
acquired immunity that explains how B and T lymphocytes improve their
response to antigens over time called affinity maturation.

Picek [38] implemented CLONALG method along with Nn( f ) as the fitness
function, however, additional results obtained are not promising. The results
obtained by Picek with CLONALG are BFs with N8( f ) = 114 for 8 variables
and N10( f ) = 476 for 10 variables, with a population size of 50, the number
of the clones is defined by

Nc =
n

∑
i=1

⌈
β · n

i

⌉
, (2.45)
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where β is a parameter set equal to 6. The mutation intensity value M is
calculated by

M = (1 + l · ρ (1− exp(−r/τ))) , (2.46)

where l is the bit string length, r is the rank of the clone to be mutated in the
current population, ρ = 0.2 is the mutation parameter and no information is
given about the τ variable.

Estimation of Distribution Algorithm

The main idea of estimation of distribution algorithms (EDAs) is to extract
patterns shared by the best solutions, represent these patterns using a
probabilistic model and generate new solutions from this model. In contrast
to GAs, EDAs apply learning and sampling of distributions instead of
crossover and mutation operators.

Picek [37] uses three types of probabilistic graphical models: univariate
model, 1-order Markov model and tree model. The research was focused on
analyzing the influence of three factors: the probabilistic model type, the
truncation selection factor and the population size. Picek realizes that the
probabilistic model was not a decisive factor in the success of the algorithm,
however the probabilistic model that gives the slightly best results is the tree
model. In brief, Picek was able to find BFs with N8( f ) = 116 for 8 variables
and N10( f ) = 482 for 10 variables, with a population size equal to 500 and a
truncation value equal to 0.4.

Particle Swarm Optimization

Another population-based metaheuristic found in the literature review was
the work by Mariot [26], in which the particle swarm optimization (PSO)
algorithm is employed. The main idea in this job is to apply Kennedy and
Eberhart’s discrete PSO to explore the space of balanced boolean functions.
The PSO algorithm is coupled with the SHC 9 method to locally improve the
nonlinearity of the particles.

The positions of the particles are 2n-bit vectors representing the truth tables
of BFs of n variables. Mariot designed a swap-based operator in such a way
that a bit flips its value by swapping with another different bit value. The
velocity vector of a particle is in turn updated using the classical PSO
velocity equation, which is normalized through the logistic function to get
meaningful probability values to perform a swap. Mariot tested the PSO
algorithm with a coupled fitness function between the nonlinearity and the
auto correlation 2.33.

f it( f ) = Nn( f ) + AC( f ). (2.47)

In order to improve the performance of the PSO algorithm after the
application of the position update operator each particle is optimized with
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Algorithm 13: Hill Climbing for Bent BFs - Related Work
Input : Bent BF f , MAXCHANGES, Nnmin

1 Set f ′ = f ;
2 Define Ti = {x : f (x) = i, x ∈ Fn

2} i ∈ {0, 1};
3 for i = 0; i < MAXCHANGES; i ++ do

/* Check the Hamming weight (2.13) of f */

4 if wH( f ) < 2n−1 then
5 Select x1, x2 ∈ T0;

6 else if wH( f ) > 2n−1 then
7 Select x1, x2 ∈ T1;

8 else
9 Break;

10 f ′(x1) = f ′(x1)⊕ 1;
11 f ′(x2) = f ′(x2)⊕ 1;
12 if Nn( f ′) < Nnmin then
13 f ′ = f ;

14 else
15 i = 0;

Output: Balanced BF f ′

the SHC 9 method. The results obtained by Mariot are BFs with
N8( f ) = 116 for 8 variables and N10( f ) = 480 for 10 variables, with 200
particles and 400 iterations for the algorithm.

2.3.3 Hybrid Methods with Algebraic Components

There also exist hybridizations between algebraic methods and
metaheuristics, these are simpler methods that work with bent BFs and by a
hill climbing procedure the BFs are balanced trying to lose the least possible
nonlinearity.

Hill Climbing for Bent BFs

Burnett and Millan [5] implemented a HC method that randomly adjust a
bent BF until convert it in a balanced BF. Algorithm 13 shows how this
method works.

The HC method implemented by Burnett and Millan, receives a bent boolean
function f , the maximum number of distinct 2-bit changes to be considered
for each bent function MAXCHANGES and the minimum nonlinearity value
which is acceptable for the resulting BF Nnmin .
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The bent BFs for the algorithm 13 are based on the construction by
Maiorana-McFarland [28]. As bent BFs are not weight balanced and have a
Hamming weight of 2n−1 ± 2n/2−1 the purpose of this method is to achieve
balance while retaining high nonlinearity. The results that they obtain are
the best known for metaheuristic methods, since they are able to find BFs
with N8( f ) = 116 and BFs with N10( f ) = 488 for 8 and 10 variables
respectively.

Another method very similar to the Burnett method is the concerning to the
work of Izbenko [19]. Izbenko applies a modified SHC 9 procedure to a bent
BF, in this way Izbenko was able to find BFs with N8( f ) = 116 for 8 variables
and N10( f ) = 488 for 10 variables.

2.3.4 Summary of the Previous Work

Table 2.3 summarize the best results known up to the date for the previous
work in metaheuristics reported. Additionally it is showed the best results
known, which are obtained by algebraic constructions and the nonlinearity
theoretical bound (NTB) for BFs with 8 and 10 variables.

TABLE 2.3: Comparison between the best results obtained for
metaheuristics up to date

Metaheuristic Method fob N8( f ) N10( f )

Trajectory-based

SHC [33] Nn( f ) 112 474
SA-SHC [13] CXR & Nn( f ) 116 486
SA-SHC [21] CRS & Nn( f ) 116 486
SA-HC [29] AI( f )+FAR( f ) 116 488

Population-based

GA [32] Nn( f ) 112 476
GA-SHC [32] Nn( f ) 116 484

ES [39] Nn( f ) 112 -
GP [39] Nn( f ) 114 -

CGP [39] Nn( f ) 116 -
CLONALG [38] Nn( f ) 114 476

EDA [37] Nn( f ) 116 482
PSO [26] Nn( f )+AC( f ) 116 480

Hybrid HC-Bent [5] Nn( f ) 116 488
SHC-Bent [19] Nn( f ) 116 488

Algebraic Constructions [18, 15] 116 492
Nonlinearity Theoretical Bound (NTB) [44] 118 494

We can see that when bent boolean functions are used or when the objective
function employed to guide the search is different to the nonlinearity (Nn),
better results are obtained. However, none of the metaheuristics presented
achieves the results obtained for algebraic constructions for n = 10. Needless
to say about achieving the NTB for n = 8, 10, which stills unknown.
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Chapter 3

Proposals and Methods

This chapter is devoted to present the main algorithm proposals designed for
this research. Firstly, the common concepts concerning to the proposals are
described: the nonlinearity computation and the representation of solutions.
Then, the new cost functions, trajectory methods, population methods and
hybrid with algebraic procedures are introduced with a detailed description
of them.

3.1 Components Applied in all Proposals

3.1.1 Representation of Solutions

In this thesis each solution S is encoded using the binary representation
composed by a vector with 2n boolean decision variables S [k], where n is
the number of variables of the BF f and k ∈ Nn. In order to introduce the
relationship between the solution S and f , let us introduce the analogous
function to to_int 2.6 that maps an integer k to a binary vector x ∈ Fn

2 , thus,
to_bin : N→ Fn

2 , such that

x = (x1, · · · , xn) = to_bin(k) =
(⌊

k
2n−1

⌋
%2, · · · ,

⌊
k

2n−n

⌋
%2
)

. (3.1)

Now, we are ready to introduce the relationship between the solution S and
f , each decision variable S [k] is set equal to the corresponding truth table
value f (x), where k = to_int(x), x ∈ Fn

2 (or x = to_bin(k), k ∈ Nn)

f (x) = S [k]. (3.2)

Since, we only work with balanced BFs, 2n−1 decision variables will be set
equal to 0 and 2n−1 decision variables will be set equal to 1. Let us denote the
positions sets P0 and P1 such that

S [p0] = 0 ∀ p0 ∈ P0,
S [p1] = 1 ∀ p1 ∈ P1.
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Thus, the sets P0 and P1 have the following properties:

|P0| = |P1| = 2n−1, P0 ∩ P1 = ∅, P0 ∪ P1 = Nn.

Each solution has associated its P0, P1 sets and an integer vectorW of length
2n which denotes the WHT of the BF f , analogously to the equality 3.2 we
have that the following holds for a vectorW denoting the WHT of the BF f

Wn( f )(w) =W [k] s.t k ∈ Nn, w = to_bin(k), (3.3)

where W [k] denotes an integer value and Wn( f )(w) the WHT value
associated to the linear function Lw, which is also an integer.

As an example of the representation, consider the following 4-variable
balanced BF f in truth table form

f = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 (3.4)

The solution S and its attributes, the Pi sets and the W vector are
represented as

S = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 (3.5)

S .P0 = { 1 3 5 7 9 11 13 15 }
S .P1 = { 0 2 4 6 8 10 12 14 }
S .W = 0 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We can associate to each solution its nonlinearity too, in this case, we have
that

S .N4 =
1
2
(24 − 16) = 0.

As the balanced BF f 3.4 is affine, its nonlinearity is equal to 0.

Neighborhood.

In order to introduce the neighborhood employed in this thesis it is necessary
to define an operator that transforms a solution S into another one S ′. We
call this operator Bit Swapping (BS), it receives a solution S and two positions
p0 and p1 as inputs and returns another solution S ′, such that the decision
variables S [p0] and S [p1] are exchanged (or complemented) and dH(S ,S ′) =
2, i.e.

S ′[k] =
{

1⊕ S [k] if k = p0, p1

S [k] if k ∈ Nn \ {p0, p1}.
(3.6)

The Bit Swapping operator is defined as follows

BS(S , p0, p1) := swap(S [p0],S [p1]). (3.7)
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Algorithm 14: Random Construction of a Balanced BF
input : S (vector with length 2n)

1 Set S [k] = 0 ∀k ∈ Nn;
2 Set S .P0 = Nn ; /* S .P0 starts with size 2n */

3 Set S .P1 = ∅;
4 for j = 0; j < 2n−1; j ++ do
5 Select some k ∈ S .P0;
6 S [k] = 1 ;
7 S .P1 = S .P1 ∪ {k};
8 S .P0 = S .P0 \ {k} ; /* S .P0 finishes with size 2n−1 */

output: Solution S

As an example, consider the solution S given previously in 3.5 and the
positions p0 = 3 ∈ S .P0 and p1 = 8 ∈ S .P1, we have that the new neighbor
solution is

S ′ = BS(S , p0 = 3, p1 = 8)

S ′ = 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 (3.8)

S ′.P0 = { 1 8 5 7 9 11 13 15 }
S ′.P1 = { 0 2 4 6 3 10 12 14 }
S ′.W = 0 -12 4 0 0 4 4 0 -4 0 0 -4 -4 0 0 -4

S ′.N4 =
1
2
(24 − 12) = 2

It is easily to see that solutions S and S ′ only differ in two positions: the third
and the eighth. However, S ′ has a better (higher) nonlinearity than S .

Employing BS we can construct the full neighborhood for a single solution S
as

N(S) = {BS(S , p0, p1) : p0 ∈ S .P0 ∧ p1 ∈ S .P1}. (3.9)

The total amount of bit-swapping that can be performed is the neighborhood
size

|N(S)| = |S .P0| × |S .P1| = 2n−1 × 2n−1 = 22n−2. (3.10)

3.1.2 BFs Random Generator

The trajectory-based and population-based metaheuristics make use of the
balanced BF random generator. The algorithm 14 describes how to generate
a balanced BF at random. It generates a set P0 = Nn with 2n elements and
all the decision variables are set equal to 0, then 2n−1 different elements are
extracted at random from P0, generating another set P1 and the decision
variables associated to the elements in P1 are set equal to 1. In this way is
ensured that the BF generated is balanced.
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Algorithm 15: Computation of the FWHT
input : Solution S

1 Set W0[k] = 1− 2S [k] ∀k ∈ Nn ; /* Zero phase */

/* Cycle to go through the different phases */

2 for i = 0; i < n; i ++ do
3 p = 2i ; /* To identify which cells must sum */

4 q = 2n−(i+1) ; /* Gives the number of distinct sums (blocks ) */

/* Cycles to fill the phase i + 1 */

5 for j = 0; j < q; j ++ do
6 for k = 2jp; k < 2jp + p; k ++ do

/* Butterfly diagram of size two */

7 Wi+1[k] = Wi[k] + Wi[k + p] ;
8 Wi+1[k + p] = Wi[k]−Wi[k + p] ;

9 Set S .W = Wn;
output: Walsh Hadamard Transform S .W

3.1.3 Fast Walsh Hadamard Transform Implementation

As we previously discussed, the direct calculus of the WHT requires N2

operations, with N = 2n. The FWHT allows to compute the WHT in N log N
operations, i.e. in only n2n (instead of 22n) operations. All the cost functions
are based on using the WHT values, so calculating it in an efficient way is
really important to be able to run several iterations of our optimizers. The
algorithm 15 describes how to compute the FWHT using the butterfly
diagram of size two (see subsection 2.2.2).

To properly understand the number of steps executed by algorithm 15, it is
clear that n phases are carried out. In each phase, it performs pq operations
and for every p it makes 2 operations, so the total number of operations
(Top) is

Top = npq2 = n2i2n−(i+1)2 = n2n.

Walsh Hadamard Transform Update

Several of the proposals are based on performing bit-swapping in the
encoding, i.e. a position with value 0 is modified to contain a 1, and a
position with value 1 is modified to contain a 0. Calculating again the entire
WHT would be costly, so an effort to properly update the WHT efficiently
was performed. By storing the set of phases W0, ..., Wn in the individual
representation, we can define another algorithm to update the WHT
(WHTU) faster when a bit-swapping of this kind is performed. The main
principle is to update only the information that is altered because of the
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Algorithm 16: Walsh Hadamard Transform Update (WHTU)
input : Solution S and positions p0, p1 to update
/* Update S, by bit-swapping S [p0] with S [p1] */

1 BS(S , p0, p1);
2 Set W0[k] = 1− 2× S [k] ∀k ∈ Nn ; /* Zero phase */

/* Cycle to go through the different phases */

3 for i = 1; i ≤ n; i ++ do
/* Identify the blocks for any position at each phase */

4 b0 = p0/2i ;
5 b1 = p1/2i ;
6 p = 2i−1 ; /* To identify which cells must sum */

7 for k = 2b0p; k < 2b0p + p; k ++ do /* b0 block update */

8 Wi[k] = Wi−1[k] + Wi−1[k + p] ;
9 Wi[k + p] = Wi−1[k]−Wi−1[k + p];

10 if b0 6= b1 then
11 for k = 2b1p; k < 2b1p + p; k ++ do /* b1 block update */

12 Wi[k] = Wi−1[k] + Wi−1[k + p] ;
13 Wi[k + p] = Wi−1[k]−Wi−1[k + p];

14 Set S .W = Wn;
output: Walsh Hadamard Transform Updated S .W

modification of these two positions. The algorithm 16 explains how to
update the WHT when a bit-swapping is performed.

FIGURE 3.1: Comparison between the number of operations
performed by the three different methods to obtain the WHT.
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This algorithm allows to update the WHT in approximately 5 × 2n−1

operations on average. Additionally, the total number of operations that the
algorithm 16 performs is bounded by 2× 2n (when the condition in the line
10 is never fulfilled) and by 3 × 2n (when the condition in the line 10 is
fulfilled at most in n− 1 phases) i.e. we have

2n+1 < 5× 2n−1 < 3× 2n. (3.11)
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The number of operations required to compute WHT with different
algorithms are shown in figure 3.1 for n ranging between 6 and 14. Three
different algorithms are considered, the trivial WHT, the fast WHT and the
WHT update . Obviously, this last one can only be used when a single
bit-swapping is performed. As we can see in figure 3.1 the FWHT reduces
the number of operations in several orders of magnitude with respect to the
direct computation, and the WHTU reduce the number of operations in an
additional half order, so in order to evolve several iterations of the
optimizers, its application is important.

3.2 Proposals

3.2.1 Cost Functions

In order to properly measure the performance of the algorithms developed
in this thesis, it is important to remark that our aim is to generate balanced
BFs with high nonlinearity, i.e. our objective function is the nonlinearity 2.31

F1(S) =
1
2

(
2n −max

k∈Nn
|S .W [k]|

)
. (3.12)

We can analyze some properties of this function by taking into account that
the values in the WHT S .W are constrained by the Parseval’s equation 2.19.
We know that for a balanced BF all the values in its WHT are multiples of 4.
This has as a consequence that the amount of different values that could take
maxk∈Nn |S .W [k]| is really small so the different values of F1 is also small.
This relation between maxk∈Nn |S .W [k]| and F1 is more clear if we transform
the original objective function 3.12 (maximize the nonlinearity) into another
one (minimize the maximum value in the WHT):

F2(S) = max
k∈Nn

|S .W [k]|. (3.13)

As other researchers [12], we realized that using the objective function as the
fitness function is not suitable to guide the search in EAs and it is necessary
to define a new fitness function (in our case cost function). One of the
drawbacks seen easily from the objective function 3.12 (or 3.13) is that it just
takes a small amount of different values, so a lot of BFs are considered to be
of equal value. However, even if they share the same nonlinearity, one of
them could be used to easily improve the nonlinearity, by just making some
modifications, while another ones could be far from better solutions.

Previous Cost Function

In order to tackle the problem of generating CBFs with high nonlinearity, the
most usual alternative is to use the objective function F1 3.12 as the fitness
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function or the objective function F2 3.13 as the cost function to guide the
search. Many researchers use only F1 3.12 (or F2 3.13), in some cases is used
together with an extra penalization to respect the balance of the BF. Since we
work only with balanced boolean functions these kinds of penalizations are
not required in our method so we discard them in our analyses.

The most popular cost function used with metaheuristics is the objective
function F2 3.13, that will be denoted as C1 in the following.

C1(S) = F2(S) = max
k∈Nn

|S .W [k]|. (3.14)

Also, the cost function designed by Clark [12] is widely used,

C2(S) =
2n−1

∑
k=0
||S .W [k]| − X |R. (3.15)

When using C2 3.15 every value in the WHT influences the cost function of S,
rather than just the maximum one as in the cost function C1 3.14. The authors
note “the parameters X and R provide freedom to experiment”. Similarly to
the authors, we use R = 3 and for the X , the expected maximum value for
the WHT when achieves the nonlinearity bound. This value is calculated
using equations 2.31 and 2.40 by equalizing them and solving for X

2n−1 − 2−1X = 2n−1 − 2n/2−1 − 2

X = 2n/2 + 22. (3.16)

This is the value that we use for X in our experiments in order to compare
the performance of the cost functions.

Motivation for New Cost Function

The main drawback for C1 3.14 has been mentioned above and is based on
the fact that too few different values are generated. The cost function C2 3.15
might solve this issue. However, a solution S1 with a higher nonlinearity
than a solution S2 might have a higher (worse) cost function than S2 which
is a not desirable property. Moreover, despite the large amount of research
on the application of EAs to the design of CBFs with high nonlinearity, their
results are not so good as the ones obtained with algebraic constructions
(see table 2.3). Thus, we consider that there is enough motivation for
designing a new cost function that avoids the drawbacks of the previous
ones. Particularly, we hypothesize that one of the issues that causes the poor
performance of currently designed metaheuristics is due the definition of
the cost function C1 3.14 — the most commonly applied cost function —
which has the drawback that it might contain huge plateaus because it
returns integer values in a small range, so many BFs are mapped to the
same value. To illustrate this we can explore the full neighborhood N(S) of
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a solution S and compute the probability that a neighbor S ′ has identical
cost value PI(S ′,S), better cost value (lower) PB(S ′,S) or worse cost value
(higher) PW(S ′,S) than S when the cost function C1 3.14 is employed to
guide the search. The figure 3.2 shows the average of this probability values
when 50 different solutions with the same nonlinearity are generated at
random for 15 different nonlinearity values ranging between 88-116 and
422-478 for 8 and 10 variables respectively.

FIGURE 3.2: Probability that a neighbor S ′ has identical cost
value PI(S ′,S), better cost value PB(S ′,S) or worse cost value
PW(S ′,S) than S when the cost function C1 3.14 is employed to

guide the search
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As we can see, the probability to have the same cost value when applying
C1 3.14 is large. In fact, in about half of the neighborhood, the cost value does
not vary. For the best solutions, the probability to have the same cost value
diminishes. However, this is because the probability to have a worse cost
value (higher) increases.

New Cost Functions

One of the contributions of this thesis is the definition of new cost functions.
We propose two new cost functions in order to address the problem properly.
In order to explain our cost function, lets denote the absolute values in the
WHT as X1, X2, · · · , Xα, such that

X1 = 0 < X2 < · · · < Xα = max
k∈Nn

|S .W [k]|.

In addition, ηi is used to denote the amount of times that the Xi value appears
in the WHT. Note that X1 = 0, since S .W [0] = 0 (according to equation 2.28)
and η1 > 0.
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Based on the above, we propose two new cost functions. In both we form a
tuple of values

C3(S) = (F2(S), ξ1(S)), (3.17)
C4(S) = (F2(S), ξ2(S)), (3.18)

where the first one is the objective function F2 3.13 and the second values ξ1,
ξ2 — which are the novelty — help us to discern between solutions with the
same nonlinearity. The second members ξ1, ξ2 of such cost functions are the
following

1. In the second value of the cost function 3.17 we try to minimize the
maximum absolute value Xα and the second maximum absolute value
Xα−1 in the WHT. In order to attain this aim, the second value of the
cost function takes also into account the number of appearances of these
values ηα and ηα−1 in the WHT. This is implemented as follows:

ξ1(S) = (ηα × Xα)
3 + (ηα−1 × Xα−1). (3.19)

2. Let ±Xk belong to the WHT such that Xk−1 ≤ X < Xk. In the second
value of the cost function 3.18 we try to minimize the appearance of
entries with absolute values greater than X 3.16. The penalty applied
to the appearances is higher for the larger values.

ξ2(S) =
α

∑
i=k

(2× ηi × Xi)
i−k+1. (3.20)

Employing the cost functions previously defined, we define a new
operator ≺ in such way to identify when a solution S ′ is better than the
solution S (S ′ ≺ S) and the operator � in which the solution S ′ is better or
equal than the solution S (S ′ � S). For example, for C3 3.17, we have

S ′ ≺ S : F2(S ′) < F2(S) ∨
(
F2(S ′) = F2(S) ∧ ξ1(S ′) < ξ1(S)

)
, (3.21)

S ′ � S : F2(S ′) < F2(S) ∨
(
F2(S ′) = F2(S) ∧ ξ1(S ′) ≤ ξ1(S)

)
. (3.22)

3.2.2 Trajectory-based Metaheuristics

Full Hill Climbing

This one is based on the general HC algorithm 2. Algorithm 17 illustrates
how the FHC method works. This algorithm makes use of the
neighborhood 3.9 and stops when a local optimum is reached.

The FHC algorithm 17 ensures that all the neighbors of a solution S are
visited just once, this algorithm works as follows: first one decision variable
set equal to 0 is selected at random (line 5) and is bit swapped with all the
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Algorithm 17: Full Hill Climbing (FHC)
Input : Initial solution S , Tend

1 Telapsed = 0 ;
2 LOF= False ; /* Local Optimum Found */

3 while LOF= False do
/* Check all the neighbors S ′ by fixing p0 at random and swap

with the whole set P1 randomly */

4 BSF= False ; /* Best Solution Found */

5 foreach p0 ∈ S .P0 ∧ BSF= False do
6 foreach p1 ∈ S .P1 ∧ BSF= False do
7 S ′ = BS(S , p0, p1) ; /* Select the current S ′ ∈ N(S) */

8 if S ′ ≺ S then
9 S = S ′ ;

10 BSF= True;

11 Update(Telapsed) ;
12 if Telapsed > Tend then
13 BSF= True ;
14 LOF= True ;

/* If all the neighbor solutions S ′ are visited and BSF = False

the solution S is a local optimum */

15 if BSF= False then
16 LOF= True ;

Output: Local Optimum S

decision variables set equal to 1 (line 6), then if the neighbor generated is
better than the current solution, this is selected to replace the current
solution S (line 9) and both for cycles stops and start again. If no better
neighbor is found and the neighborhood is fully visited, the solution is
considered as local optimum and the algorithm stops (line 16). Another
stopping criterion that can be used is time (line 12) returning the best
solution found.

First Improvement Quasi-Tabu Search

Tabu Search is a very popular method that in each iteration moves to the non-
tabu neighbor that attains the largest improvement. Since the neighborhood
considered in this thesis is quite large, exploring the whole neighborhood is
too costly. As a result, a novel method that applies some of the principles
of Tabu Search was devised. However, this method does not explore the
whole neighborhood. Instead, it moves to the first neighbor that improves
the current solution. The algorithm 18 illustrates how the First Improvement
Quasi-Tabu Search (FIQTS) works. First, the tabu bit-swapping positionsR0
and R1 are initialized at random (line 2), R0 and R1 contain positions that
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Algorithm 18: First Improvement Quasi-Tabu Search (FIQTS)
Input : Initial solution S , Tend

1 Telapsed = 0 ;
/* Tabu bit-swapping positions initialized randomly */

2 Set Ri = {pk : pk ∈ S .Pi, k = 1, · · · , 2n−4}, i ∈ {0, 1} ;
/* Non-tabu bit-swapping positions */

3 Qi = S .Pi \ Ri, i ∈ {0, 1} ;
/* Construct the reduced neighborhood */

4 Nr(S) = {BS(S, q0, q1) : q0 ∈ Q0, q1 ∈ Q1} ;
5 Set Nv(S) = ∅ ; /* Neighbors already visited */

6 Set Repeats = 0 ; /* Repetitions of neighbors */

7 LOF= False ; /* Local Optimum Found */

8 while LOF= False do
/* Select a random neighbor S ′ ∈ Nr(S) */

9 S ′ = BS(S , q0, q1), q0 ∈ Q0, q1 ∈ Q1 ;
/* Exchange the oldest element riold ∈ Ri with qi ∈ Qi */

10 swap(Qi[qi],Ri(riold)), i ∈ {0, 1} ;
/* Check if the neighbor has not been visited */

11 if Nv(S) ∩ {S ′} = ∅ then
12 Nv(S) = Nv(S) ∪ {S ′};
13 if S ′ ≺ S then
14 S = S ′ ;
15 Nv(S) = ∅;
16 Repeats = 0;

17 else
18 Repeats ++;

/* Stopping criterion */

19 if Nv(S) = N(S) or Repeats ≥ 2|Nr(S)| then
20 LOF = True ;

21 Update(Telapsed) ;
22 if Telapsed > Tend then
23 LOF =True ;

Output: Best solution found S

are not allowed to bit-swap. Then the non-tabu bit-swapping positions Q0
and Q1 are initialized (line 3), such that

Qi ∪Ri = S .Pi Qi ∩Ri = ∅ i ∈ {0, 1}.

The sets Q0 and Q1 contain positions such that the decision variables S [q0],
S [q1] are set equal to 0, 1 respectively, and that might be bit-swapped. In
base of these sets the reduced neighborhood Nr(S) is constructed (line 4).
Each time that a neighbor is created by bit-swapping the decision variables
in the positions q0 and q1, such elements are moved to R0 and R1,
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Algorithm 19: Iterated Local Search (ILS)
Input : S , outer iterations Out_iters, percentage of perturbation pp

1 Set ρ = d2n−1 × ppe;
2 Set Iters = 0;
/* Apply the FIQTS algorithm (alg 18) */

3 S ′ = FIQTS(S);
4 S = S ′ ; /* Best solution found */

5 while Iters < Out_iters do
6 S ′′ = S ;

/* Perturb the obtained local optimum S ′′ */

7 for k = 0; k < ρ; k ++ do
8 S ′′ = BS(S ′′, p0k , p1k) ;

/* Apply the FIQTS algorithm (alg 18) to S ′′ */

9 S ′ = FIQTS(S ′′);
/* Check if the new local optimum is better */

10 if S ′ ≺ S then
11 S = S ′;
12 Iter ++;

Output: Best Solution Found S

respectively (lines 9, 10). Additionally, the elements that have been for a
longer time in R0 and R1 are inserted in Q0 and Q1. The main principle is to
promote the selection of different decision variables in each step when
performing the bit-swapping. The stopping criterion is set in such a way
that the iterative process ends when all the neighborhood has been visited
and no better solution was found or when the random sampling process
generates too many neighbors that have already been visited previously
(line 19). Another stopping criterion that can be used is time (line 22).

Iterated Local Search

Iterated local search is basically the join of local search and perturbation,
sometimes extended with additional memories. In this thesis, a simple ILS
is used. First, it applies the FIQTS algorithm in order to find a relatively
good solution in the region. Note that, since the whole neighborhood is not
visited necessarily, this solution might not be a local optimum. Then, a
perturbation based on performing a set of swaps is triggered and FIQTS is
applied again. This is repeated until a stopping criterion is reached. This
algorithm has one parameter to be fixed (the percentage of perturbation pp),
and it is described in algorithm 19.

The perturbation of the local optimum obtained at each step is carried out
by simply bit-swapping 2ρ decision variables in the solution S (lines 7,8).
This operation maintains the balancedness of the solutions because the same
amount of elements from S .P0 and S .P1 are selected. The main difference



3.2. Proposals 55

between ILS and the previous algorithms (FHC and FIQTS) is that the
previous algorithms stop when a local optimum is reached. However, in ILS
the process stops after a certain number of iterations and it might scape
from local optima.

Simulated Annealing

Simulated Annealing (SA) is another trajectory-based search method that
was designed with the aim of escaping from local optima. Its main feature
with respect to the previous described methods is that it incorporates a
strategy to accept worsening solutions with certain probability. It is a quite
popular algorithm, and the main modification was the incorporation of the
tabu method applied in FIQTS to reduce the neighborhood. Algorithm 20
illustrates the internal operation of this method.

As is known, the performance of the SA algorithm strongly depends on the
choice of the cooling schedule and on the neighborhood structure. We use
the classical version with a geometric cooling schedule following some ideas
exposed by Ben-Ameur [4]. In order to set the initial temperature and the
geometric value for α, we first calculate an estimate of the average ∆E (avg∆E)
for uphill movements at the initial execution time and we found that this
value avg∆E ≈ 0.5 (following the rules to calculate ∆E in the lines 15 and 17
of the algorithm 20). In this way we set the initial temperature such that the
acceptance probability of uphill movements is pu0 , so we have

pu0 = exp
(
−avg∆E

Temp0

)
, (3.23)

solving the equation 3.23 for Temp0, we obtain the value in the line 1

Temp0 =
−avg∆E

pu0

. (3.24)

For the α value we have that after the 50% of the execution time, we have

Temp = α0.5×Out_iters × Temp0, (3.25)

and if we decide that after this execution time only the Pu1 percentage of the
uphill movements will be accepted, then we have

pu1 = exp
(

−avg∆E

α0.9×Out_iters × Temp0

)
. (3.26)

Solving the equation 3.26 for α, we obtain the value in the line 2

α =

(
−avg∆E

Temp0 × pu1

) 1
0.5Out_iters . (3.27)
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Algorithm 20: Simulated Annealing (SA)
Input : S , outer iterations Out_iters, cooling schedule (avg∆E, pu0 , pu1)

1 Set Temp0 = −avg∆E/pu0 ;
2 Set α = [−avg∆E/(Temp0 × pu1)]

1/0.5Out_iters;
3 Temp = Temp0;
4 Set ItersO = 0;
5 Set Inner_iters = 22n−4;
6 Set Sbest = S ;
7 while ItersO < Out_iters do
8 Set Nv(S) = ∅;
9 Set ItersI = 0;

10 while ItersI < Inner_iters do
/* Select a random neighbor S ′ ∈ Nr(S) */

11 S ′ = BS(S , q0, q1) ;
/* Exchange the oldest element riold ∈ Ri with qi ∈ Qi */

12 swap(S .Qi[qi],S .Ri(riold)) ;
/* Check if the neighbor has not been visited */

13 if Nv(S) ∩ {S ′} = ∅ then
14 Nv(S) = Nv(S) ∪ {S ′};
15 ∆E = (Fob2(S ′)− Fob2(S)) ;
16 if Fob2(S ′) = Fob2(S) then
17 ∆E = (C3(S ′)− C3(S))/ max(C3(S ′), C3(S)) ;

18 if ∆E ≤ 0 then
19 S = S ′ ;
20 Nv(S) = ∅;

21 else
22 if U (0, 1) < exp(−∆E/Temp) then
23 S = S ′ ;
24 Nv(S) = ∅;

/* Saves the best of the whole process */

25 if S ≺ Sbest then
26 Sbest = S

27 ItersO ++;

28 Temp = αItersO Temp0;
Output: Best Solution Found Sbest

As in the ILS method, the SA stops after the outer iterations reach some fixed
value.
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Algorithm 21: Mating Selection
Input : Population P
/* Perform a binary tournament at each iteration */

1 for i = 0; i < N; i ++ do
2 Select randomly Ij, Ik ∈ P ; /* It could be that Ij = Ik */

/* Assign the best individual to I ′i */

3 I ′i = best(Ij, Ik) ;

Output: Parents P′

3.2.3 Evolutionary-based Metaheuristics

Common Components

The majority of EAs make use of a set of components such as the operators:
initialization, evaluation, mating selection, crossover, mutation and survivor
selection. The operators used in this thesis are described below.

Initialization. The EAs implemented starts with an initial population P0
generated at random. The population size is N, to generate the N individuals
in the population the algorithm 14 is called N times.

Evaluation. The cost of each individual is calculated using the
algorithm 15 for the calculus of the WHT, then the cost function C3 3.17 is
used to assign the cost value to each individual.

Mating Selection. Particularly, the mating selection is performed with a
binary tournament, which is exemplified in algorithm 21.

Reproduction. After the mating selection 21, the offspring population
is build. To generate it two variation operators are applied: crossover and
mutation.

1. Crossover. Algorithm 22 describes how the crossover operator works.
The crossover maintains balancedness in the offsprings. Lets see an
example of how this operator works. Suppose that we have two
parents I1, I2, each one representing a 4-variable BF. The elements in
the intersection of the sets I1.P1, I2.P1 are shown in gray:

I1 = 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0

I2 = 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0
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Algorithm 22: Crossover
Input : Parents Ij, Ik, cross probability pc

1 Set Cj[i] = 0 ∀i ∈ Nn;
2 Set Ck[i] = 0 ∀i ∈ Nn;
/* With Ij, Ik generate the offsprings Cj, Ck */

/* First take the intersection of their P1 sets */

3 Q1j = Ij.P1 ∩ Ik.P1 ;
4 Q1k = Ij.P1 ∩ Ik.P1;
/* Take the differences */

5 R1j = Ij.P1 \ Q1j ;
6 R1k = Ik.P1 \ Q1k ;
/* Cross the elements from R1j with R1k */

7 whileR1k 6= ∅ do
8 Select randomly rj ∈ R1j and rk ∈ R1k ;
9 if U (0, 1) < pc then

10 Q1j = Q1j ∪ {rj};
11 Q1k = Q1k ∪ {rk};
12 else
13 Q1j = Q1j ∪ {rk};
14 Q1k = Q1k ∪ {rj};
15 R1j = R1j \ {rj};
16 R1k = R1k \ {rk} ;

/* With Q1j and Q1k build the offsprings Cj, Ck */

17 Set Cj[i] = 1 ∀i ∈ Q1j ;
18 Set Ck[i] = 1 ∀i ∈ Q1k ;

Output: Offsprings Cj, Ck

So, we have the sets (lines 3, 4 from algorithm 22)

Q11 = I1.P1 ∩ I2.P1 = {1, 3, 5, 14}
Q12 = I1.P1 ∩ I2.P1 = {1, 3, 5, 14}

and the sets (lines 5, 6 from algorithm 22)

R11 = I1.P1 \ Q11 = {0, 6, 8, 10}
R12 = I2.P1 \ Q12 = {2, 7, 9, 11}

Now we make an uniform crossover with R11 and R12 (lines 7-16) and
depending of the value for the cross probability pc (line 9), we could
have at the end of the crossover the sets

Q11 = {1, 3, 5, 14, 0, 11, 8, 7}
Q12 = {1, 3, 5, 14, 9, 6, 2, 10}
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Algorithm 23: Mutation
Input : Individual I , mutation probability pm

1 foreach p1 ∈ I .P1 do
2 if U (0, 1) < pm then

/* Select p0 ∈ I .P0 at random to perform a bit-swapping */

3 BS(I , p0, p1) ;

Output: Individual mutated I

We should remark, that there is not an established order in which the
setsR11 andR12 are crossed.

From the sets Q11 , Q12 we can build two individuals C1, C2 such that

Ci[k] =

{
1 if k ∈ Q1i

0 if k ∈ Nn \ Q1i

i = 1, 2 (3.28)

C1 = 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0

C2 = 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0

It is important to note that when parents are close to each other, i.e.
their differences are not large, then the crossover is not very destructive.
In particular, if both parents are the same individual no changes are
performed.

2. Mutation. Algorithm 23 describes how the mutation of an individual
is performed. The mutation operator is used to perturb a single
individual. The mutation probability pm (line 2) is commonly set in
such a way that, in average, it only makes one swap between a pair of
distinct values in the individual I , i.e. pm = 1/2n−1, where 2n−1 is the
number of decision variables set equal to 1.

Algorithm 24 illustrates how to generate the offspring population by
employing the crossover and mutation operators. Since in the mating
selection phase the parents are added at random. In the reproduction phase
the parents are combined two by two following the order in what they were
added to the parent population. In this way it is ensured that each parent is
used to generate offsprings just once.

Replacement. The majority of EAs use a Replacement Generational with
Elitism (RGE) strategy based on using the offspring population with the best
individual either from the parent or the offspring population. This operator
is described in algorithm 25.

Most of the components — initialization, evaluation, mating selection and
reproduction — are the same than in the basic EA. However, after the
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Algorithm 24: Reproduction
Input : Parents P, cross probability pc, mutation probability pm
/* Generate two offsprings at each iteration */

1 for i = 0; i < N; i+ = 2 do
2 Select orderly Ii, Ii+1 ;

/* Perform crossover */

3 I ′i , I ′i+1 = Crossover(Ii, Ii+1, pc);
/* Perform mutation to each offspring */

4 I ′i = Mutation(I ′i , pm) ;
5 I ′i+1 = Mutation(I ′i+1, pm) ;

Output: Offspring population P′

Algorithm 25: RGE Survivor Selection Technique
Input : Population P, offspring P′

1 Set I = individual with best cost in P;
2 Set I ′ = individual with best cost in P′;
3 if I ≺ I ′ then

/* Replace at random any individual I ′r from P′ with I */

4 Select I ′r ∈ P′ ;
5 Set I ′r = I ;

6 Set P = P′;
Output: New population P

reproduction phase (crossover and mutation), a method to improve further
the offspring is applied. In most cases, local search is applied. In this thesis,
the FIQTS algorithm 18 is applied to every member of the offspring. There is
just a subtle difference which is the stopping criterion. In this case, FIQTS
stops after a certain period of time. The reason for this is that it is better to
limit the amount of time to be able to evolve a high number of generations,
instead of spending a lot of time on local search.

The simplest version of LMA 7 employs a replacement procedure that does
not include diversity management: the RGE survivor selection technique, so
this method will be called LMA-RGE.

Diversity Management

The first novelty of our approach is that instead of using a typical
replacement operator, such as the generational with elitism, a replacement
that takes into account the diversity is used. Particularly, a variant of the
RMDDC strategy 8 was used. The novel variant is called Replacement with
Elite based Dynamic Diversity Control (REDDC) and the difference is that,
among the non-penalized individuals, the one with the lowest cost is
selected. Note that in RMDDC, a multi-objective selection was used instead.
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Algorithm 26: REDDC Survivor Selection Technique
Input : Population P, offspring P′, distance D

1 Set Pc = P ∪ P′ ; /* Current Population */

2 foreach I ∈ Pc do
3 I .cost = C3(I) ; /* Cost of individual I */

4 sort(Pc) ;
/* I0 is the individual with lowest cost in Pc */

5 P = {I0} ; /* New population starts with the best */

6 Pc = Pc \ {I0} ; /* Update current population */

7 for i = 1; i < N; i ++ do
/* Calculate the distance to the closest neighbor (DCN) */

8 foreach I ∈ Pc do
9 I .DCN = min{dH(I , I ′) : I ′ ∈ P}; /* Hamming distance 2.14 */

10 if I .DCN < D then
11 I .cost = ∞ ; /* Penalize the closest */

12 sort(Pc) ;
13 S = I0 ; /* Select the best (I0) */

/* If all are penalized choose the farthest */

14 if S .cost = ∞ then
15 S = Ik s.t. I .DCN ≤ Ik.DCN, ∀I ∈ Pc ;

16 P = P ∪ {S};
17 Pc = Pc \ {S};

Output: New population P

Preliminary results showed that using RMDDC induced a too slow
convergence in this problem, so it was discarded and REDDC proposed.
Algorithm 26 illustrates how the REDDC strategy works.

Note that in the name of the new method the references to multi-objective
were suppressed. The reason is that is the new strategy there is no need to
calculate the non-dominated set, meaning that less computation steps are
required to perform the replacement. In each step, the non-penalized
individual with best cost is always selected (line 13). Since the population is
sorted at each iteration (line 12), if the cost of the selected individual is ∞,
this means that every individual is penalized. Thus, in such a case the
individual which contributes more to the diversity is added (line 15). Note
that the sorting strategy might be avoided with the aim of reducing the
number of steps. However, this would not result in an important gain
because this part of the algorithm is not computationally expensive. As in
the RMDDC strategy the parameter D is responsible for exploring the
search space towards find promising regions in it.

The LMA 7 that employs the REDDC survivor selection technique 26, is
called LMA-REDDC. This is the first evolutionary method proposed to
generate BFs with high nonlinearity that incorporates a diversity-based
scheme.
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Algorithm 27: REDDCC Survivor Selection Technique
Input : Population P, offspring P′, distances D and DC, cluster size Csize

1 Set Pc = P ∪ P′ ; /* Current Population */

2 foreach I ∈ Pc do
3 I .cost = C3(I) ; /* Cost of individual I */

4 sort(Pc) ;
/* I0 is the individual with lowest cost in Pc */

5 P = {I0} ; /* New population starts with the best */

6 Pc = Pc \ {I0} ; /* Update current population */

/* The first cluster with one element is formed */

7 C0 = {I0} ; /* Cluster centered in I0 */

8 C = {C0} ; /* Clusters set */

9 for i = 1; i < N; i ++ do
/* Calculate the distance to the closest neighbor (DCN) */

10 foreach I ∈ Pc do
/* Distance given by the Hamming distance 2.14 */

11 I .DCN = min{dH(I , I ′) : I ′ ∈ P} ;
12 if I .DCN < D ∧ I ′ ∈ Ck ∧ |Ck| = Csize then
13 I .cost = ∞ ; /* Penalize the closest to P */

14 if I .DCN < DC then
15 I .cost = ∞ ; /* Penalize the closest to any Ck */

16 sort(Pc) ;
17 S = I0 ; /* Select the best (I0) */

/* If all are penalized choose the farthest */

18 if S .cost = ∞ then
19 S = Ik s.t. I .DCN ≤ Ik.DCN, ∀I ∈ Pc ;

20 Ci = {S} ; /* Cluster centered in S */

21 C = C ∪ Ci ;
22 for j = 0; j < i; j ++ do
23 S .DCN = dH(S , Ij) Ij ∈ P;
24 if S .DCN < D then
25 Cj = Cj ∪ {S} ; /* Update the clusters previously added */

26 Ci = Ci ∪ {Ij} ; /* Update the current cluster */

27 P = P ∪ {S} ; /* Update the new population */

28 Pc = Pc \ {S} ; /* Update the current population */

Output: New population P, clusters C

Diversity Management with Clustering

One of the problems with the previous strategy, i.e. with the REDDC
method, is that no individual with a distance lower than D is accepted
(line 10). Usually, when crossover is applied to distant individuals, an
exploration step is performed. While maintaining distant individuals to
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explore different regions is important, using close individuals to better
intensify is also interesting. For this reason, a novel algorithm that tries to
explore and intensify during the whole search is proposed.

The main difference with respect to the previous algorithm is the inclusion
of a clustering technique, that as mentioned, induce the maintenance of
distant individuals but also allows the acceptance of some close individuals.
The REDDC with Clustering (REDDCC) strategy is explained in
algorithm 27.

The key of the REDDCC is to alter the replacement strategy by applying a
clustering technique that takes into account the stopping criterion. The aim
of this novel replacement strategy is to attain a dynamic balance between
exploration and exploitation.

In the majority of evolutionary methods we have not control about the
diversity of the population, then we introduce the REDDC strategy in order
to control the diversity of the population, but at the time the results were
not promising and we decided to incorporate a clustering technique. The
main difference between the REDDC and the REDDCC strategies is that the
the REDDCC strategy allows a certain number of individuals (cluster
size Csize) to be closer than D (but farther than DC < D), while in the
REDDC strategy this is not allowed.

Working Operation of REDDCC

First the population of the previous generation P and the offsprings P′ are
combined in the current population Pc (line 1). Then, each individual from
Pc is evaluated by taking into account its cost (line 3). In order to perform an
elitist strategy, the best individual — the one with minimum cost (I0) — is
selected to survive by placing it in the new population (we simply overwrite
the population P ) and removing it from Pc (lines 5-6). The first cluster with
seed I0 is added to the clusters set (lines 7-8). In the for cycle the N − 1
individuals remaining are added to the new population (line 9). In order to
select the elite individual in Pc the following steps are executed (lines 10-28).
First, the contribution to diversity of each individual in Pc is calculated
(line 11), this is done by taking into account the minimum distance between
each individual and all the individuals in P. If the individual does not
contribute enough to the diversity, the clustering technique penalizes it by
setting its cost to infinity (lines 12-14). Basically, it is penalized when it is too
close to a cluster that is already full or when it is closer than DC. Then the
best individual in the Pc is Selected (S) to survive (line 17). In case that all
individuals are penalized, the one that contributes more to the diversity is
chosen (line 19). A new cluster is created by using the new selected
individual as the seed (line 20). Then, the clusters are updated with S and
the individuals in P (lines 21-26). Finally S is added to P and removed from
Pc (lines 27-28).
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FIGURE 3.3: Illustration of the REDDCC survivor selection
technique
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To illustrate the process below, the figure 3.3 shows in an interactive way
how the REDDCC strategy works when a Csize = 2 is used. First consider a
population P and its corresponding offspring population P′, which are the
inputs of the algorithm 27, we can see them as two sets of points as in the
figure 3.3a. In the figure 3.3b we can see both populations P, P′ combined
into the current population Pc, as the points are numbered from 1 to 12 we
can consider that they are sorted according to its cost and the point with the
label “1” is the best of the population. The lines 1-4 of the algorithm 27 are
represented in the figure 3.3b. The selection of the best individual in Pc to
survive is represented in the figure 3.3c, it can be seen around this
individual two circles that represent the prohibited zones, one of radius D
(the solid circle) and another one of radius DC (the dashed circle). The solid
circle can be viewed as the boundary of each cluster, meaning that only Csize
individuals can be inside of each cluster (line 12). Within the dashed circle
there should never be more than one individual (line 14). After adding the
best individual to P, the iterative cycle starts in order to fill P with those
individuals that meet the conditions of quality and diversity. The figure 3.3d
illustrate the result obtained after the first iteration of the for cycle (line 9).
We can see that the first two individuals added in the figure 3.3d belong to
the same clusters and each one of the formed clusters is already full, this is
why the individual with the best cost in Pc and the labeled with “4” are
penalized in the figure 3.3e. The figure 3.3f shows the new individual added
to P in the second iteration. As the best in Pc violates the distance to the seed
of some cluster is penalized in the figure 3.3g. The figure 3.3h shows the
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Algorithm 28: Mating Selection with Clusters
Input : Population P, clusters C, pcc
/* Perform two binary tournament at each iteration */

1 for i = 0; i < N; i+ = 2 do
/* Choose two parents from different clusters */

2 if U (0, 1) < pcc then
3 Select randomly Ij1 , Ij2 ∈ Cj and Ik1 , Ik2 ∈ Ck, k 6= j ;
4 I ′i = best(Ij1 , Ij2) ;
5 I ′i+1 = best(Ik1 , Ik2) ;

/* Choose two parents in the same cluster */

6 else
7 Select randomly Ik1 , Ik2 , Ik3 , Ik4 ∈ Ck ;
8 I ′i = best(Ik1 , Ik2) ;
9 I ′i+1 = best(Ik3 , Ik4) ;

Output: Parents P′

new individual added to P in the third iteration. The figure 3.3i shows the
new individual added to P in the fourth iteration. We can see that the
cluster with seed 5* has size 3, as the clusters with seeds 3* and 4* were not
full at the moment that the fifth individual was added to P, 5* was accepted
to survive and it was until the update of the clusters (lines 20-26) was done
when the method realizes that the current cluster exceed the permitted size,
since that update part is done later, the number of elements in the clusters
can be Csize + 1. However this kind of situation occurs with very low
probability for populations with many individuals. The figure 3.3j shows
that all the individuals remaining in Pc are penalized, since all of them are
close to some cluster already full. In order to fill P the farthest individual is
added as is showed in the figure 3.3k. The figure 3.3l shows the individuals
selected to survive according to the REDDCC strategy.

Memetic Algorithm with Clusters

The LMA that incorporates clustering techniques, is called Memetic
Algorithm with Clusters (MAC). This is the most novel algorithm
developed for this thesis. The main novelty appears in the replacement
phase, which is the REDDCC survivor selection technique 27.

Some components of the MAC method are the same than those from the
LMA method. The reproduction procedure 24 is exactly the same. When
individuals that belong to the same cluster are crossed, an intensification
step is performed, whereas when they belong to a different cluster,
exploration is induced. Algorithm 28 illustrates how to perform a mating
selection in a population with clusters. This new selection procedure is
necessary because in the reproduction phase parents are crossed two by two
following the order in what they were added to the parent population. In
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Algorithm 29: Improvement
Input : Population P, Tls, Kls
/* Perform the improvement to the population */

1 for i = 0; i < N; i ++ do
2 if Ii was generated with parents belonging to different clusters then
3 Ii = FIQTS(Ii, Kls × Tls) ;

4 else
5 Ii = FIQTS(Ii, Tls) ;

Output: Population improved P

order to better control the behavior of the MAC method, a new parameter,
the pcc is added. This parameter refers to the probability that two
individuals from different clusters are crossed in order to create a pair of
offsprings (line 2). In other cases, individuals that belong to the same cluster
are crossed.

In the case of the improvement phase, the only difference is that we grant
more time for local search when the offspring is generated by crossing
parents from different clusters. The reason is that in such a case the
crossover operator is more disruptive, so it is expected that more time is
required to attain a new high-quality solution. Algorithm 29 illustrates how
the improvement phase works. A new parameter, the Kls is added. This
parameter refers to the local search time granted to those offsprings
generated with parents belonging to different clusters (line 3). If the parents
of the offspring belong to the same cluster the local search time granted is
Tls (line 5).

The MAC coupled with the REDDCC survivor selection technique 27, is
called MAC-REDDCC. This is the most novel evolutionary method that
incorporates a diversity scheme with a clustering technique. Algorithm 30
illustrates how the MAC-REDDCC method works.

Working Operation of MAC-REDDCC

The MAC-REDDCC method can be viewed as an extension of the
LMA-REDDC method. The working operation of the MAC-REDDCC
method is different from the LMA-REDDC method, this is because to the
incorporation of the clustering paradigm. First, after the initialization of the
population, the clusters set is initialized by considering that each individual
makes up a different cluster (line 3). All phases are carried out with their
corresponding parameters according to their previous descriptions.

At this point, the importance of the parameters D and DC has not been
explained in detail. In this thesis the value D represents the minimum DCN
required to avoid penalty when a individual is close to a full cluster and the
value DC represents the minimum DCN in a Cluster (DCNC) required to



68 Chapter 3. Proposals and Methods

Algorithm 30: MAC-REDDCC Method
Input : DC0 , D0, Csize, N, Tls, Kls, pcc, pm, pc, KE, Tend

1 Initialize(P0) ;
2 Evaluate(P0);
/* Each individual makes up a different cluster */

3 C = {Ck : Ck = {Ik}, Ik ∈ P0 } ;
4 Improvement(P0, Tls, Kls) ;
5 t = 0, Telapsed = 0 ;
6 Texploration = KE × Tend ;
7 while Telapsed < Tend do
8 P′t = Mating Selection with Clusters(Pt, C, pcc) ;
9 P′t = Reproduction(P′t , pc, pm);

10 Evaluate(P′t );
11 P′t = Improvement(P′t , Tls, Kls) ;
12 if Telapsed ≤ Texploration then
13 D = D0 − (D0 − DC0)× Telapsed/Texploration ;
14 DC = DC0 − DC0 × Telapsed/Texploration ;

15 else D = DC0 , DC = 0 ;
16 Pt+1, C = REDDCC (Pt, P′t , D, DC, Csize) ;
17 Update(Telapsed) ;
18 t = t + 1 ;

Output: Best solution(s) found

avoid penalty for individuals that could belong to the same cluster. These
two parameters should vary during the optimization process. Specifically,
these values should decrease as the stopping criterion is approached with
the aim of inducing more exploration in the initial stages, whereas more
intensification is performed in the last stages. In this thesis the stopping
criterion is set by time.

Preliminary results showed that more intensification is performed without
loss of diversity by setting D and DC to very small values after a percentage
of the granted execution time (Tend) and not necessarily at the end. Taking
this into account, a new parameter, KE is added. This parameter refers to the
percentage of granted time to explore the search space during the
optimization process (line 6).

In our scheme, an initial D0 and DC0 values must be selected by the user.
Then, a linear reduction of D and DC is carried out (lines 13-14) in such a
way that by the end of the exploration time (line 12), the resulting values
are D = DC0 and DC = 0 (line 15). To illustrate it, the figure 3.4 shows an
example in 2D of how varies the prohibited zones (displayed as circles) along
the execution time.



3.2. Proposals 69

FIGURE 3.4: Variation of the prohibited zones along the
execution time for the MAC.
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3.2.4 Hybridization with an Algebraic Technique

Motivated by the related work from Burnett [5] and Izbenko [19] we
considered the application of an algebraic procedure to improve our results.
Contrary to their work we decide not to use bent functions, instead we
employ the work from Tang [52] to build a population of individuals with
high nonlinearity to start to evolve our algorithms. The main difference
between this hybrid method is in the initialization procedure of the
population.

Tang [52] propose a method capable to construct balanced BFs of even
number of variables with high nonlinearity. Their construction is based on a
modification of the Maiorana-McFarland [28] method to construct bent BFs.
As a result Tang et al are able to obtain a large amount of balanced BFs with
nonlinearity

Nn ≥ 2n−1 − 2n/2−1 − 2dn/4e (3.29)

The reason behind this interesting fact about the nonlinearity of the BFs
constructed is briefly explained in the following. This method requires a
balanced BF h of n/2− 1 variables such that its nonlinearity is maximal i.e
Nn/2−1(h) is as high as possible. Algorithm 31 illustrates how to construct a
balanced BF with high nonlinearity.

In order to explain the algorithm 31 consider that we require to construct a
BF of 10 variables with high nonlinearity. The nonlinearity of the constructed
BF should be N10 ≥ 29− 24− 2d10/4e = 488. We need a BF h ∈ B4 such that its
nonlinearity is N4 = 4 (highest possible according to the upper bound 2.40).
Initially the BF f that will be constructed is set equal to zero in all its truth
table positions (line 1), then all the truth table positions are filled in the for
cycle (line 4), then x, y are considered in such a way that their concatenation
is z and y′ is set to be equal to the first n/2− 1 components of y in order to
use it to evaluate h. The permutation (line 8) is to help us to construct many
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Algorithm 31: Algebraic Construction of a Balanced BF
Input : h ∈ Bn/2−1

1 Set f (z) = 0 ∀z ∈ Fn
2 ;

2 Set 0 = (0, · · · , 0) ;
3 Set 1 = (1, · · · , 1) ;
4 foreach z ∈ Fn

2 do
5 Set x = (z1, · · · , zn/2);
6 Set y = (zn/2+1, · · · , zn);
7 Set y′ = (y1, · · · , yn/2−1);

/* Optional: permute x */

8 x = (zα, · · · , zβ), such that α, β ∈ {1, · · · , n/2} ;
9 if x = 0 then f (z) = (1 · y)h(y′) ;

10 else if x = 1 then f (z) = (1 · y)h(y′)⊕ 1 · y⊕ 1 ;
11 else f (z) = x · y ;

Output: BF f with high nonlinearity

BFs with the same h, for this example we can construct 5! = 120 different BFs
with nonlinearity N10 = 488. We should remark that the nonlinearity of the
resulting BF f strongly depends on the nonlinearity of h, this is because the
inequality 3.29 is a particular case of the following expression

Nn( f ) ≥ 2n−1 − 1
2

max
x∈Fn

2

|Wn( f )(x)| (3.30)

where
|Wn( f )(x)| ≤ 2n/2 + 2 max

y′∈Fn/2−1
2

|Wn/2−1(h)(y′)| (3.31)

According to this is better to write the inequality 3.29 as

Nn( f ) ≥ 2n−1 − 2n/2−1 − max
y′∈Fn/2−1

2

|Wn/2−1(h)(y′)| (3.32)

Where Wn/2−1(h)(y′) corresponds to the WHT of h and its maximum
absolute value is desired to be 2dn/4e. The reader is referred to [52] to see the
proof of the fact that the BFs constructed with this method have nonlinearity
as is indicated in the inequality 3.29 (or in general 3.32).
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Chapter 4

Experimental Validation

In this chapter we expose the experimental validation performed in order
to show our main results. Although along this research, several additional
experiments were carried out, only the most representative that allow us to
proof the hypothesis of the dissertation are exposed in the following.

4.1 Scheme of Experimental Validation

The majority of our experiments were carried out using 8 and 10 variables
for the boolean functions, meaning that candidate solutions consisted of 28

and 210 boolean decision variables, respectively.

Tests have been run on the cluster “El Insurgente”, using bi-processor
machines with 32 GB of RAM. Each processor is an Intel Xeon CPU E5-2620
at 2.1 GHz. Since the optimization methods devised in this thesis are
stochastic, each experiment was carried out by executing 50 independent
runs in every case. In order to compare the results, a set of statistical tests
that relied on a guideline similar to that applied in [47] was conducted.
Specifically, the following test were applied, assuming a significance level of
5%. First, a Shapiro-Wilk test was applied to check whether or not the results
followed a Gaussian distribution. If they did, the Levene test was used to
check for the homogeneity of the variances. If the samples had equal
variance, an ANOVA test was done; if not, a Welch test was performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis test was used
to test whether samples were drawn from the same distribution.

In the following are shown the comparatives between different methods,
cost functions and parameter values for the same method. In this thesis, the
sentence “method A is better than method B” means that the differences
between them are statistically significant, and that the mean and median
obtained by A are higher than the mean and median achieved by B. For each
comparative table, columns with the symbol ↑ show the number of cases
where the method listed in each row is statistically better. The number of
cases where it is statistically worse is shown in the column with the
symbol ↓. Finally, the number of cases where the differences are not
statistically significant are shown in the column with the symbol ↔. In
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addition, a score can be assigned to each method. This score is equal to the
number of cases where the method was statistically better minus the
number of cases where the method was statistically worse. The previous
considerations have the same meaning if we replace “method” with “cost
function” or “parameter value”.

4.2 Neighborhoods and Cost Functions

In our preliminary validations, we realized that using the objective function
F2 3.13 — or cost function C1 3.14 — attains a really bad performance when
is used to achieve solutions with high nonlinearity. In order to compare the
four cost functions C1 3.14, C2 3.15, C3 3.17, C4 3.18 we analyzed the features
of the neighborhoods of different n-variable BFs. When BFs are generated
at random, figure 4.1 shows the corresponding distribution of the obtained
quality for 8 and 10 variables.

FIGURE 4.1: Nonlinearity distribution of 22n−2 BFs generated
at random
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In order to plot the distributions shown in figure 4.1, 22n−2 independent
solutions were generated at random. Table 4.1 shows the minNn , maxNn ,
mean (N̄n), median (Ñn) and standard deviation (σNn) of the nonlinearity of
such solutions. It also shows the nonlinearity theoretical bound (NTBn) for
each n.

TABLE 4.1: Nonlinearity values for 22n−2 solutions generated at
random

n Min Max N̄n Ñn σNn NTBn
6 16 24 21.5 22 1.517 26
8 88 110 103.5 104 2.882 118
10 416 472 456.9 458 5.266 494
12 1826 1954 1926.3 1928 9.774 2014
14 7754 7982 7927.4 7930 18.27 8126
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In order to show that the quality of random solutions decrease for BFs with
more variables, figure 4.2 shows the average number of nonlinearity values
that need to be overcome by a solution generated at random to achieve the
NTB.

FIGURE 4.2: Nonlinearity values that need to be overcome to
reach the nonlinearity theoretical bound at random generation.
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Note that although it is not possible to do an exhaustive search for BFs with
more than 5 variables, the 6-variable BF problem is practically solved. In
fact, BFs with maximum nonlinearity are generated at random for the
6-variable BF problem if a large number of BFs are generated. The 8-variable
BF problem has been widely worked. However, a solution with a
nonlinearity equal to the NTB has never been found. In any case, we can see
in figure 4.2 that solutions generated at random are not so far in
nonlinearity to the NTB. Nowadays, it is relatively easy to achieve the
maximum nonlinearity known for the 8-variable BF problem (N8 = 116).
However, few methods are able to get the best-known solutions for higher
number of variables. The next step for metaheuristics is to achieve the
maximum nonlinearity known for the 10-variable BF problem (N10 = 492)
and for the hybrid case, this was achieved in this thesis.

Taking into account the previous results for random generation of BFs, we
selected 15 different nonlinearity values (V(n)) for n = 8, 10 by considering
the results in table 4.1. For each one of the 15 nonlinearity values Nn ∈ V(n)
we generated independently 50 different solutions S to perform our
experiments. The chosen nonlinearity values were the following:

• V(8) = {88 + 2i : i = 0, · · · 14}

• V(10) = {422 + 4i : i = 0, · · · 14}

Among the chosen nonlinearities values, some of them were very low or
very high to be generated consistently with random generation. Thus, all
the solutions to do this test were generated with the local search method
FIQTS 18. In the cases where low nonlinearities are required, we only need
to alter the line 13 with the condition S ≺ S ′. In order to avoid bias in the
validation of the cost functions at exploring the neighborhood, it was
checked that the minimum distance between any two solutions at fixed
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nonlinearity was large enough. This minimum distance between any two
solutions for n = 8 is 42.79% of the number of variables and for n = 10 is
46.72%, meaning that all solutions are distant.

For each single solution S with fixed nonlinearity value, its whole
neighborhood N(S) is explored in order to calculate the following
probabilities:

• PI(S ′,S) A neighbor S ′ has Identical cost as S

• PB(S ′,S) A neighbor S ′ has Better cost (lower) than S

• PW(S ′,S) A neighbor S ′ has Worse cost (higher) than S

Note that a solution has a neighborhood size 3.10 equal to 22n−2 which is a
quite large value even for small n. Figure 4.3 shows the plot that describes
the neighborhood size for n ranging between 6 and 14.

FIGURE 4.3: Neighborhood size for different values of n.
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FIGURE 4.4: PI(S ′,S) A neighbor S ′ has identical cost as S
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Figure 4.4 shows the average of PIi(S ′,S) probabilities calculated using each
cost function Ci for all the solutions S corresponding to the values
Nn ∈ V(n). As we can see, for the cost function C1 3.14, a neighbor S ′ is
equal in quality as the original solution S with a high probability for the
different values of nonlinearity. This means that a high percentage of the
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FIGURE 4.5: PB(S ′,S) A neighbor S ′ has better cost that S
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FIGURE 4.6: PW(S ′,S) A neighbor S ′ has worse cost that S

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 88  90  92  94  96  98  100  102  104  106  108  110  112  114  116

P
ro

b
ab

il
it

y

Nonlinearity

PW1
(S’,S)

PW2
(S’,S)

PW3
(S’,S)

PW4
(S’,S)

(A) 8-variables

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 422  426  430  434  438  442  446  450  454  458  462  466  470  474  478

P
ro

b
ab

il
it

y

Nonlinearity

PW1
(S’,S)

PW2
(S’,S)

PW3
(S’,S)

PW4
(S’,S)

(B) 10-variables

neighbors can be mapped into the same cost, which is not effective in order
to guide the search. The cost function C3 3.17 presents a lower probability
PI3(S ′,S), although is not very small. In the other extreme the cost functions
C2 3.15 and C4 3.18 practically do not map neighbors S ′ of the solution S to
the same cost. This is a good indicator for these cost functions and this is
due to the fact that these cost functions employs more information of the
WHT than the cost functions C1 3.14 and C3 3.17, which only uses one and
two values respectively. However, one might argue that using all the values
simultaneously might not be meaningful for the proper guide of the search,
so C3 3.17 might afford a proper balance.

Figure 4.5 shows the average of the PBi(S ′,S) probabilities calculated using
each cost function Ci for all the solutions S corresponding to the values
Nn ∈ V(n). The probabilities are high when the nonlinearity of the
individuals is low and the probability decreases as the nonlinearity
increases. A contrast for this graphic is in the figure 4.6 which plots the
average of the PWi(S ′,S) probabilities calculated using each cost function Ci
for the solutions S corresponding to the values Nn ∈ V(n). We can see in
the figure 4.6a that the cost function has a contradictory behavior, because it
is indicating that when a solution is a high-quality one, the cost of its
neighbors is worse.
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4.3 Trajectory-based Metaheuristics and Cost
Functions

The analyses presented in section 4.2 show some undesired features of one
the most used cost function nowadays. However, in order to properly
compare different cost functions it is important to include them in an
optimization scheme. This section includes a comparison for the four cost
functions within the local search methods FHC 17 and FIQTS 18. The main
aim is to identify which cost function is more suitable so that experiments
with MAC-REDDCC 30 —which are more computationally expensive— can
be performed with a single cost function.

4.3.1 Full Hill Climbing

In this method the four cost functions to guide the search were tested for
n = 8, 10. Table 4.2 shows the statistical results obtained for 50 independent
runs. FHC was executed until a local optimum is reached.

TABLE 4.2: Comparatives for the FHC method

n CF ↑ ↓ ↔ Min Max N̄n Ñn σNn t̄(s)

8

C1 0 3 0 108 112 110.16 110 1.503 3.4e-2
C2 2 1 0 112 116 114.12 114 0.627 1.6e+0
C3 3 0 0 114 116 115.92 116 0.396 2.4e-1
C4 1 2 0 108 112 111.84 112 0.792 3.1e-2

10

C1 0 3 0 464 472 469.4 470 1.863 7.9e-1
C2 2 1 0 482 484 482.72 482 0.97 1.8e+2
C3 3 0 0 480 484 483.16 484 1.621 1.6e+1
C4 1 2 0 468 480 475.44 476 1.809 1.9e+0

The best results obtained for each n are shown in bold. We can see that the
cost function C3 3.17 attains the best mean nonlinearity in both cases. If we
look at the average time column, we see that the cost function C3 3.17
employs less execution time to achieve a local optimum than the cost
function C2 3.15, which results are close to the results with the cost function
C3 3.17.

4.3.2 First Improvement Quasi-Tabu Search

As in the FHC method, FIQTS method was executed with the four cost
functions. Table 4.3 shows the results obtained with FIQTS for n = 8, 10. As
in the previous case, the cost function C3 3.17 attains a better performance.
The FIQTS method requires less iterations than the FHC method to reach
high-quality solutions, so it is faster to locate local optima.
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TABLE 4.3: Comparatives for the FIQTS method

n CF ↑ ↓ ↔ Min Max N̄n Ñn σNn t̄(s)

8

C1 0 3 0 108 112 110.16 110 1.448 3.8e-2
C2 2 1 0 112 116 114 114 0.7 1.1e+0
C3 3 0 0 114 116 115.96 116 0.283 1.4e-1
C4 1 2 0 108 116 112.6 112 1.629 3.7e-2

10

C1 0 3 0 466 472 470.16 470 1.888 6.8e-1
C2 2 1 0 482 484 482.68 482 0.957 9.4e+1
C3 3 0 0 480 484 483.64 484 1.12 1.0e+1
C4 1 2 0 472 480 478.48 480 2.27 3.4e-1

Comparison Between FHC and FIQTS

According to the results in tables 4.2 and 4.3, the cost function C3 3.17 is the
most adequate cost function for our optimizers. Thus, the cost function
C3 3.17 is chosen to be used from now. Table 4.4 shows a comparison
between FHC and FIQTS. Both proposals attain exactly the same score.
Thus, the better is chosen as the method with higher mean nonlinearity
(N̄n). The previous criterion help us to choose the best method when there is
a draw in their scores (there are not statistically significant differences
between them).

TABLE 4.4: Comparatives between the best results obtained for
FIQTS and FHC

n Method ↑ ↓ ↔ Min Max N̄n Ñn σNn t̄(s)

8
FIQTS 0 0 1 114 116 115.96 116 0.283 1.4e-1
FHC 0 0 1 114 116 115.92 116 0.396 2.4e-1

10
FIQTS 0 0 1 480 484 483.64 484 1.12 1.0e+1
FHC 0 0 1 480 484 483.16 484 1.621 1.6e+1

Moreover, it is noticeable that not only the FIQTS method is slightly better
in terms of quality, but it also needs less time. In order to decide which local
search method is the most suitable to use in the rest of experiments we
compare the performance of the FHC and FIQTS methods with the cost
function C3 3.17 employing a fixed time of 0.5 and 5.0 seconds for n equal to
8 and 10 respectively. Table 4.5 shows the results obtained for 50
independent runs for each method.

Additionally, Figure 4.7 shows the evolution of the nonlinearity for the FHC
and FIQTS methods with the cost function C3 3.17. The FIQTS method
quickly achieves high nonlinearity, so it is preferable for short-term
executions.
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TABLE 4.5: Comparison between FIQTS and FHC with the cost
function C3 in executions at fixed time

n Method ↑ ↓ ↔ Min Max N̄n Ñn σNn

8 FIQTS 0 0 1 114 116 115.96 116 0.283
FHC 0 0 1 114 116 115.92 116 0.396

10 FIQTS 1 0 0 480 484 481.52 482 1.182
FHC 0 1 0 480 482 480.08 480 0.396

FIGURE 4.7: Nonlinearity evolution for FIQTS and FHC at fixed
execution time
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4.3.3 Iterated Local Search

Given the previously presented results, the ILS method 19 considers the
application of the FIQTS local search strategy. Since the 8-variable problem
reaches the best-known result with a high-probability, we focus on the
10-variable problem in order to fix the percentage of perturbation parameter
pp. We carried out 50 independent runs independently for each parameter
value (0.1%, 1%,2%,3% and 4%) and evolved 100 iterations of the method.
We found that for all the different parameter values the results in
nonlinearity are the same. Specifically, all of them reach a nonlinearity equal
to 484 for n = 10. Table 4.6 shows the results obtained for the different
parameter values. For n = 8 the ILS method found a nonlinearity equal to

TABLE 4.6: Comparison for different parameter values for ILS

pp ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.001 0 0 4 484 484 484 484 0
0.01 0 0 4 484 484 484 484 0
0.02 0 0 4 484 484 484 484 0
0.03 0 0 4 484 484 484 484 0
0.04 0 0 4 484 484 484 484 0

116 in all the independent runs.
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4.3.4 Simulated Annealing

In the SA method 20 we use the paradigm of FIQTS in the iterations inside
the loop at fixed temperature. For this algorithm there are two parameters
to fix: the probability of accept uphill movements at the beginning of the
execution P0u and the probability of accept uphill movements at the end of
the execution PFu . After several tests it could be concluded that the
probability to accept worsening individuals should be quite small, because
as we can see in figures 4.6, when a solution is close to be a local optimum
the probability that a neighbor has worst cost (in many cases just slightly)
than the solution it self, increases a lot. Thus, many of the neighbors are
considered to be good in order to scape from local optimums and the space
is not properly intensified. However, a too low value does not provide
improvement either because a too low value converts the SA into a simple
local search. The parameters P0u and PF0 were tested with three different
values, each one using 100 outer iterations and the results obtained are
shown in table 4.7.

TABLE 4.7: Comparison for the parameters values of SA

P0u PFu ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.1 1e-5 4 1 3 480 484 482.24 482 1.492
0.1 1e-7 4 2 2 480 484 482.2 482 1.229
0.1 1e-9 6 1 1 480 484 482.72 482 1.325

0.01 1e-5 0 7 1 480 480 480 480 0
0.01 1e-7 2 4 2 480 484 481.24 482 1.271
0.01 1e-9 3 2 3 480 484 481.76 482 1.379

0.001 1e-5 0 7 1 480 480 480 480 0
0.001 1e-7 8 0 0 484 484 484 484 0
0.001 1e-9 2 5 1 480 484 481.12 480 1.288

We can see that the values reported in order to attain promising values with
SA are quite small when compared to usual values.

4.3.5 Comparison Between Trajectory Search Methods

Since the FIQTS method shows the best performance among FHC and
FIQTS, it is compared against ILS and SA. Table 4.8 shows the comparison
between FIQTS, ILS and SA. It is noticeable that the methods ILS and SA
reach the same results, but the SA has a lower execution time. However, this
is somewhat misleading because the ILS method reaches these values in a
shorter time of execution. To illustrate this, Figures 4.8 and 4.9 shows the
evolution of the nonlinearity when compared in terms of time and
iterations.

We can see that the ILS method quickly reaches high-quality solutions and
that the SA takes more time to reach to such solutions. When compared
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TABLE 4.8: Comparatives between the best results obtained for
FIQTS, ILS and SA

n Method ↑ ↓ ↔ Min Max N̄n Ñn σNn t̄(s)

8
FIQTS 0 2 0 114 116 115.96 116 0.283 1.4e-1

ILS 1 0 1 116 116 116 116 0 2.9e+1
SA 1 0 1 116 116 116 116 0 1.3e+1

10
FIQTS 0 2 0 480 484 483.64 484 1.12 1.0e+1

ILS 1 0 1 484 484 484 484 0 1.6e+3
SA 1 0 1 484 484 484 484 0 3.0e+2

FIGURE 4.8: Comparison between ILS and SA for n = 8
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FIGURE 4.9: Comparison between ILS and SA for n = 10
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to FIQTS, we see that both methods require much more execution time, so
these methods are not so suitable to be used in the MAC-REDDCC. After all
these experiments we conclude that the best method to be used in the MAC-
REDDCC 30 is the FIQTS 18 whit the cost function C3 3.17.
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4.4 Evolutionary-based Metaheuristics

4.4.1 Memetic Algorithm with Clusters

This section focuses on the main algorithmic contribution of this thesis,
which is the MAC-REDDCC method 30. One of the inconveniences of the
method is that several parameters must be set. Particularly these are the
following parameters:

1. Initial minimum DCNC DC0 : it avoids that individuals in the same
cluster are too close to each other i.e. it maintains a proper diversity in
each cluster (see algorithm 30 line 14).

2. Initial minimum DCN D0: it is responsible for controlling the degree of
diversity maintained in the whole population (see algorithm 30 line 13).

3. Cluster size Csize: indicates the maximum size allowed for each cluster
(see algorithm 27 line 12).

4. Population size N: number of individuals in the population and
number of offspring generated in each generation (see algorithm 24
line 1).

5. Local search time Tls: stopping criterion of the local search procedure
executed for every individual belonging to the offsprings (see
algorithm 29 line 5).

6. Local search factor Kls: if the offspring is generated with parents
belonging to different clusters, the local search time applied to this
kind of individuals is Tls × Kls (see algorithm 29 line 3).

7. Cross clusters probability pcc: indicates the probability to cross
individuals belonging to different cluster (see algorithm 28 line 2).

8. Mutation probability pm: probability of performing swaps to mutate
the individual (see algorithm 23 line 2).

9. Crossover probability pc: probability of interchanging each gene (see
algorithm 22 line 9).

10. Exploration factor KE: indicates the percentage of exploration explicitly
induced to the algorithm taking into account the distances DC0 and D0
(see algorithm 30 line 6).

Each parameter was fixed by testing 5 different values and for each
parameter value, 50 independent runs were executed. For each independent
run, the stopping criterion was set to 72 hours of execution. Due to the
limitations of time it is not possible to do an exhaustive search in the
parameters space by considering the dependences between all of them. In
fact if we consider all the possible combinations for 5 different values to
each parameter, it would require to do 510 = 9765625 different experiments.
Considering 50 independent runs for each experiment, it would require to
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do approximately 5 × 108 independent runs, each one for 72 hours which
gives approximately 3.5 × 1010 execution hours, which is approximately
4× 106 years. Thus, since it is not plausible to do the parameter setting in
this way, the optimization of each parameter was performed independently
from each other.

Study of the Parameters Influence

As mentioned, instead of dealing with all the dependencies between the
parameters we simply consider each one as independent of each other. First,
we sorted the parameters considering their importance. This was done in
base of some preliminary experiments, but some subjective decisions were
required. Once the parameters are ranked according to its importance, we
proceed to test different values of the first parameter and once that the first
parameter is set to a fixed value, we continue by setting the second
parameter and so on taking into account the previous parameters setting.
Note that for each parameter an initial value is given, which is used when
the corresponding parameter has not been optimized.

Parameters ranking

As the novel proposal of the thesis is the clustering technique in the
replacement phase, we decide to initially set the initial minimum DCNC
DC0 , deciding that this should be the first parameter of study. Very related
with DC0 is the D0 parameter. Thus, D0 was established to be the second
parameter of study. Since the amount of diversity is also related to the
cluster size parameter Csize, it was set to be the third parameter of study. For
the same reason the population size parameter N was set to be the fourth
parameter of study. Once the population size has been considered, we
should consider the execution time that should be spend by the algorithm in
the local search. The number of generations that the algorithm perform will
depend on the local search time fixed to each individual and on the
population size. For this reasons the local search time Tls was set to be the
fifth parameter of study. The factor of local search Kls is strictly related with
the local search time, so this parameter was set to be the sixth parameter of
study. Since the local search factor is used when an offspring is generated
with parents belonging to a different cluster, we set the cross cluster
probability pcc to be the seventh parameter of study. Then, other parameters
related to mating were set. The mutation probability pm was set as the eighth
parameter of study. The last parameter linked with the mating is the
crossover probability pc which is set to be the ninth parameter of study.
Finally, we proceed to analyze the exploration factor KE parameter, which is
set to be the tenth and last parameter of study.
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Zero parameters setting

Since the problem for 8 variables can be solved easily up to the best results
known for nonlinearity, we focus the parameters setting for the 10 variable
problem. Taking into account some preliminary results, the zero or initial
parameter setting Γ0 was set according to Table 4.9.

TABLE 4.9: Zero parameters setting Γ0

DC0 D0 Csize N Tls Kls pcc pm pc KE
20 100 10 200 0.01 1.0 0.2 0.002 0.5 1.0

Firstly, the DC0 parameter was set in such way that individuals in the same
cluster, are different in at least the 2% of their truth table positions. The truth
table has a length of 2n, as n = 10, we have

DC0 = b0.02× 210c = 20. (4.1)

For the D0 parameter, it was considered that individuals belonging to
separated clusters should be different in approximately at least the 10% of
their truth table positions. In our case we choose that the individuals in
different cluster were differ at least in the 9.8%, in this way we have

D0 = b0.098× 210c = 100. (4.2)

Preliminary results showed that even a small population with ten
individuals can reach promising results. Based on this, we decide to set the
Csize parameter equal to 10 and the population size N equal to 200, so that
several clusters are maintained in the population. After considering the
information given in table 4.3 and figure 4.7, it is noticeable that the FIQTS
method quickly improves the nonlinearity of random solutions. Thus, we
concluded that a low execution time for the local search refinement could be
suitable. The question is how short should be Tls. Figure 4.10 shows the
distribution of the time required by FIQTS method to reach a local optimum
for 10 variables. We can see that the method works pretty well for short time
executions, and is even able to reach local optimums in 0.1 seconds. In order
to evolve enough generations we set initial the local search time as the 10%
of this value (0.1× 0.1). For the local search factor Kls we simply decided to
set Kls equal to 1. In this way all the individuals will have the same local
search time and the parametrization strategy would change this value if
required.

In order to have a proper intensification in each cluster, we decided to set
the cross cluster probability pcc equal to 20%, which implies that individuals
belonging to the same cluster will be mated with more probability that
individuals belonging to different clusters. The mutation probability pm was
set in such a way that one exchange of a 0 position with a 1 position is
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FIGURE 4.10: FIQTS method execution time distribution.
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carried out on average, so we have

pm =
2

210 ≈ 0.002. (4.3)

The crossover probability pc was set in such a way that the offspring
generated share the same information amount of their parents, i.e. equal to
50%. Finally, the exploration factor was set equal to 1, which indicates that
the algorithm will be exploring the search space until the end of the
execution.

Preliminary results for Γ0. With Γ0 we carried out 50 independent runs
with the stopping criterion set equal to 72 hours. Table 4.10 shows the results
obtained for this experiment.

TABLE 4.10: Results for Γ0

n Min Max N̄n Ñn σNn Sr
10 484 488 486.96 487 1.087 50%

We can see from the results showed in table 4.10, that using the zero
parameters setting, the algorithm achieves the best results known for
metaheuristics in the 10-variable problem. The mean nonlinearity is high
(N̄n = 486.96), which indicates that in several of the independent executions
it was able to find solutions with nonlinearity equal to 488. The seventh
column shows the percentage of independent executions that reach this
nonlinearity value, which is called the success ratio (Sr).

The mean nonlinearity will be our main indicator to consider the quality of
each parametrization Additionally, the success ratio Sr help us to know what
percentage of the independent runs achieve a nonlinearity equal to 488. The
initial parameter setting Γ0 has a success ratio Sr = 50%, which means that
25 of the 50 independent runs achieve solutions with nonlinearity equal to
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488. Since 488 is the maximum nonlinearity that had been obtained ever in a
single execution of a metaheuristic, our aim was to find a parameterization
with a success ratio close to 100%.

First parameters setting: initial minimum DCNC

The first parameters setting Γ1 was carried out with the values 2,8,14,20 and
26 for the DC0 parameter. Each of these values was taken with 6 units of
distance and considering that the minimum distance that could have two
different solutions (2). Table 4.11 shows the summary of the results obtained
after 72 execution hours for the independent runs of each parameter value.

TABLE 4.11: Comparison for different DC0 values

DC0 ↑ ↓ ↔ Min Max N̄n Ñn σNn

2 0 0 4 484 488 486.88 488 1.288
8 0 0 4 486 488 487.16 488 0.997

14 0 0 4 486 488 487.24 488 0.981
20 0 0 4 484 488 486.96 487 1.087
26 0 0 4 484 488 487 488 1.088

FIGURE 4.11: Mean nonlinearity for different DC0 values

486.88

486.96

487

487.16

487.24

2 8 14 20 26

N
-

n

D
C

0

N
-

n

We see that all the parameters are tied in their scores, which indicates that
all the values could be suitable to set the parameter value. However if we
look at the mean nonlinearity, we see that the parameter value 14 has a
slightly better mean nonlinearity. This is more evident if we look at the
figure 4.11 which shows the mean nonlinearity values achieved by the
algorithm at this step. With the results obtained we can conclude that
DC0 = 14 is the most suitable value for the initial minimum DCNC. The
success ratio Sr with this parameter value is 62%, which is a better success
ratio than the previous. Table 4.12 shows the parameters setting, the mean
nonlinearity and the success ratio obtained after the first adjustment.
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TABLE 4.12: First parameters setting Γ1

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 100 10 200 0.01 1.0 0.2 0.002 0.5 1.0 487.24 62%

Second parameters setting: initial minimum DCN

The second parameters setting Γ2 was carried out with the values
20,40,60,80 and 100 for the D0 parameter. Table 4.13 shows the summary of
the results obtained after 72 execution hours for the independent runs of
each parameter value. We see that the parameters values are tied in their

TABLE 4.13: Comparison between different D0 values

D0 ↑ ↓ ↔ Min Max N̄n Ñn σNn

20 0 0 4 486 488 487 487 1.01
40 0 0 4 486 488 487.04 488 1.009
60 0 0 4 486 488 487.32 488 0.957
80 0 0 4 486 488 487.28 488 0.97
100 0 0 4 486 488 487.24 488 0.981

FIGURE 4.12: Mean nonlinearity for different D0 values
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scores again. By taking into account the information from the figure 4.12, we
realize that D0 = 60 is the most suitable value for the initial minimum DCN.
The corresponding success ratio Sr for D0 equal to 60 is 66%. Table 4.14
shows the parameter setting, the mean nonlinearity and the success ratio
obtained after the second adjustment.

TABLE 4.14: Second parameters setting Γ2

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 10 200 0.01 1.0 0.2 0.002 0.5 1.0 487.32 66%
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Third parameters setting: cluster size

The third parameter setting Γ3 was carried out with the values 1, 10, 20, 30
and 40 for the Csize parameter. Table 4.15 shows the summary of the results
obtained after 72 execution hours for the independent runs of each
parameter value. From the results we can see that a cluster size equal to 1

TABLE 4.15: Comparison between different Csize values

Csize ↑ ↓ ↔ Min Max N̄n Ñn σNn

1 0 4 0 484 484 484 484 0
10 1 0 3 486 488 487.32 488 0.957
20 2 0 2 486 488 487.44 488 0.907
30 1 0 3 486 488 487.24 488 0.981
40 1 1 2 486 488 487.04 488 1.009

has a really bad performance when comparing with other cluster size
values, meaning that considering clusters is really useful. In this case the
results obtained indicate that the most suitable value for Csize is 20. Figure
4.13 shows the mean nonlinearity obtained with all the tested values. The

FIGURE 4.13: Mean nonlinearity for different Csize values
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corresponding success ratio Sr for Csize equal to 20 is 72% and table 4.16
shows the corresponding parameter setting, the mean nonlinearity and the
success ratio obtained after the third adjustment.

TABLE 4.16: Third parameters setting Γ3

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 200 0.01 1.0 0.2 0.002 0.5 1.0 487.44 72%

Fourth parameters setting: population size

The values chosen for the fourth parameter setting were: 200, 250, 300, 350
and 400 for the N parameter. Table 4.17 shows the summary of the results
obtained after 72 execution hours for the independent runs of each
parameter value and figure 4.14 shows the mean nonlinearity obtained for
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TABLE 4.17: Comparison between different N values

N ↑ ↓ ↔ Min Max N̄n Ñn σNn

200 0 0 4 486 488 487.44 488 0.907
250 0 0 4 486 488 487.44 488 0.907
300 0 0 4 486 488 487.48 488 0.886
350 0 0 4 486 488 487.56 488 0.837
400 0 0 4 486 488 487.32 488 0.957

FIGURE 4.14: Mean nonlinearity for different N values
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the parameter values tested. We see again that the parameter values are
tied, but taking into account the information given by the figure we can
conclude that the most suitable values is 350. The corresponding success
ratio Sr for N equal to 350 is 78%. Table 4.18 shows the parameter setting,
the mean nonlinearity and the success ratio obtained after the fourth
adjustment.

TABLE 4.18: Fourth parameters setting Γ4

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.01 1.0 0.2 0.002 0.5 1.0 487.56 78%

Fifth parameters setting: local search time

The fifth parameters setting Γ5 was carried out with the values
0.01,0.02,0.04,0.08 and 0.16 for the Tls parameter. Each of these values was
generated by multiplying the previous by two. Small values were chosen
because preliminary experiments had shown the importance of evolving
many generations. Table 4.19 shows the summary of the results obtained
after 72 execution hours for the independent runs of each parameter value.

In this case, the first full draw is presented, as we can see in Table 4.19, the
parameter values 0.01 and 0.08 have the same score and mean nonlinearity.
In order to decide which value is more suitable to use in the algorithm, we
focus on the figure 4.15 and according to the slopes of the lines that connect
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TABLE 4.19: Comparison between different Tls values

Tls ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.01 0 0 4 486 488 487.56 488 0.837
0.02 0 0 4 486 488 487.32 488 0.957
0.04 0 0 4 486 488 487.32 488 0.957
0.08 0 0 4 486 488 487.56 488 0.837
0.16 0 0 4 486 488 487.52 488 0.863

these points with their neighbors we conclude that the most suitable value is
0.08 for Tls. This is because the next parameter value 0.16 also show a high
mean nonlinearity. However, the next value to 0.01 (0.02), has a lower mean
nonlinearity. In this way we can conclude that the parameter value Tls equal
to 0.08 is more stable.

FIGURE 4.15: Mean nonlinearity for different Tls values
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The corresponding success ratio Sr for Tls equal to 0.08 is exactly the same as
in the previous parameters setting Γ4 78%. Table 4.20 shows the parameter
setting, the mean nonlinearity and the success ratio obtained after the fifth
adjustment.

TABLE 4.20: Fifth parameters setting Γ5

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.08 1.0 0.2 0.002 0.5 1.0 487.56 78%

Sixth parameters setting: local search factor

The sixth parameters setting Γ6 was carried out with the values 0.5,1.0,1.5,2.0
and 2.5 for the Kls parameter. Table 4.21 shows the summary of the results
obtained after 72 execution hours for the independent runs of each parameter
value. We see that the Kls value with highest mean nonlinearity respect to
the other values — see figure 4.16 — is 2.0, which indicates that a local search
time equal to 0.16 will be performed to all these offspring generated with
parents belonging to different clusters.
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TABLE 4.21: Comparison between different Kls values

Kls ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.5 0 0 4 486 488 487.52 488 0.863
1.0 0 0 4 486 488 487.56 488 0.837
1.5 0 0 4 486 488 487.68 488 0.741
2.0 0 0 4 486 488 487.76 488 0.657
2.5 0 0 4 486 488 487.68 488 0.741

FIGURE 4.16: Mean nonlinearity for different Kls values
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The corresponding success ratio Sr for Kls equal to 2.0 is 88%. Table 4.22
shows the parameter setting, the mean nonlinearity and the success ratio
obtained after the sixth adjustment.

TABLE 4.22: Sixth parameters setting Γ6

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.08 2.0 0.2 0.002 0.5 1.0 487.76 88%

Seventh parameters setting: cross cluster probability

The seventh parameter setting Γ7 was carried out with the values
0.0,0.1,0.2,0.3 and 0.4. Table 4.23 shows the summary of the results obtained
after 72 execution hours for the independent runs of each parameter value.
We should notice that pcc has an influence on the degree between
exploitation and exploration in the algorithm: a pcc value of 0.0 indicates
that the mating will be always with individuals in the same cluster, which
reduces the exploration in the search space and increases the exploitation in
each cluster. We see that pcc equal to 20% is the most suitable parameter
value. Figure 4.17 shows the mean nonlinearity for these pcc values.

The corresponding success ratio Sr for pcc equal to 0.2 is exactly the same as in
the previous parameters setting Γ6 88%. This is because there was no change
in the pcc value, i.e. the initial value was a proper one. Table 4.24 shows the
parameter setting, the mean nonlinearity and the success ratio obtained after
the seventh adjustment.
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TABLE 4.23: Comparison between different pcc values

pcc ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.0 0 0 4 486 488 487.48 488 0.886
0.1 0 0 4 486 488 487.52 488 0.863
0.2 1 0 3 486 488 487.76 488 0.657
0.3 0 0 4 486 488 487.48 488 0.886
0.4 0 1 3 486 488 487.16 488 0.997

FIGURE 4.17: Mean nonlinearity for different pcc values
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TABLE 4.24: Seventh parameters setting Γ7

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.08 2.0 0.2 0.002 0.5 1.0 487.76 88%

Eighth parameters setting: mutation probability

The eighth parameter setting Γ8 was carried out with the values
0.000,0.002,0.004,0.006 and 0.008 for the mutation probability. These values
were chosen so that the mutation method can perform from zero to four
swaps between 0’s and 1’s positions in average. Table 4.25 shows the
summary of the results obtained after 72 execution hours for the
independent runs of each parameter value. We see that a mutation

TABLE 4.25: Comparison between different pm values

pm ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.000 3 0 1 486 488 487.88 488 0.48
0.002 2 0 2 486 488 487.76 488 0.657
0.004 1 1 2 486 488 487.52 488 0.863
0.006 0 2 2 486 488 487.28 488 0.97
0.008 0 3 1 486 488 487 487 1.01

probability equal to zero is the most suitable value for pm, which indicates
that no mutation will be allowed in the algorithm. Figure 4.18 shows the
impact of this parameter on the mean nonlinearity. Note that many memetic
algorithms do not use mutation, because in some sense, the local search
operator acts as a mutation.
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FIGURE 4.18: Mean nonlinearity for different pm values
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The corresponding success ratio Sr for pm equal to 0 is 94%. Table 4.26 shows
the parameter setting, the mean nonlinearity and the success ratio obtained
after the eighth adjustment.

TABLE 4.26: Eighth parameters setting Γ8

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.08 2.0 0.2 0 0.5 1.0 487.88 94%

Ninth parameters setting: cross probability

The ninth parameter setting Γ9 was carried out with the values 0.1,0.2,0.3,0.4
and 0.5 for the cross probability. Table 4.27 shows the summary of the results
obtained after 72 execution hours for the independent runs of each parameter
value and figure 4.19 shows the mean nonlinearity obtained for these values.

TABLE 4.27: Comparison between different pc values

pc ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.1 0 0 4 486 488 487.96 488 0.283
0.2 0 0 4 486 488 487.96 488 0.283
0.3 0 0 4 486 488 487.92 488 0.396
0.4 0 0 4 486 488 487.88 488 0.48
0.5 0 0 4 486 488 487.88 488 0.48

In this case we have another full draw between two parameter values, but
now there are not other values between them that help us to decide which is
better. We should consider that a pc value equal to 0.0 makes no sense, since
the offspring generated would simply be clones of their parents. Keeping this
in mind, we decided that the most suitable value for pc is 0.2, which allows
the algorithm to have a little bit more of exploration.
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FIGURE 4.19: Mean nonlinearity for different pc values
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The corresponding success ratio Sr for pc equal to 0.2 is 98%. Table 4.28 shows
the parameter setting, the mean nonlinearity and the success ratio obtained
after the ninth adjustment.

TABLE 4.28: Ninth parameters setting Γ9

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.08 2.0 0.2 0 0.2 1.0 487.96 98%

We should notice that pc is also responsible in some sense for the balance
between exploitation and exploration in the algorithm. A pc value equal to
0.5 indicates that the offspring generated will have the same amount of
information from both parents, if the parents belong to different clusters is
highly probably that the offspring will be generated in a different region of
the search space, far from both parents.

Tenth parameters setting: exploration factor

The tenth parameter setting Γ10 was carried out with the values
0.2,0.4,0.6,0.8 and 1.0. Table 4.29 shows the summary of the results obtained
after 72 execution hours for the independent runs of each parameter value
and figure 4.20 shows the mean nonlinearity obtained for these values.

TABLE 4.29: Comparison between different KE values

KE ↑ ↓ ↔ Min Max N̄n Ñn σNn

0.2 0 0 4 488 488 488 488 0
0.4 0 0 4 486 488 487.96 488 0.283
0.6 0 0 4 486 488 487.96 488 0.283
0.8 0 0 4 488 488 488 488 0
1.0 0 0 4 486 488 487.96 488 0.283
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FIGURE 4.20: Mean nonlinearity for different KE values
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In this case we have another full draw between the KE values 0.2 and 0.8.
We see in the figure 4.20 that they appear to have the same stability, and the
choice of the most suitable value for KE turns complicated.

TABLE 4.30: Comparison between different KE values for the
amount of individuals found with nonlinearity equal to 488

KE Min Max Mean Median
0.2 1 9 4.52 4
0.8 1 9 4.06 4

At this time, when it is achieved the 100% of success ratio for solutions with
nonlinearity of 488, we can figure out how many different individuals with
nonlinearity equal to 488 are found in average for each parameter value.
Table 4.30 shows the results obtained for KE equal to 0.2 and 0.8 concerning
to the amount of individuals with nonlinearity equal to 488 that are found.
We can see that the results are almost equal again, but the mean of solutions
found is slightly better for KE = 0.2. we might use KE = 0.8 by considering
that a small exploration factor could cause low diversity. However, this does
not occurs. This is clear if we look at the figures 4.21. Figures 4.21 shows the

FIGURE 4.21: Population entropy and cluster entropy for KE
equal to 0.2 and 0.8
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(A) Entropies for KE = 0.2
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(B) Entropies for KE = 0.8



4.4. Evolutionary-based Metaheuristics 95

entropies obtained with both parameter values. The entropy is calculated
for the whole population and for the clusters. Note that an entropy value
close to 0 indicates that the individuals are almost equal. From the figure
4.21a we conclude that if we choose to set KE equal to 0.2, the diversity of
the population during the execution will not be reduced drastically and in
the clusters will never be zero because it is no allowed that in the same
cluster there are identical individuals. Finally, we decided to use the 0.2
value.

Table 4.31 shows the parameter setting, the mean nonlinearity and the
success ratio obtained after the tenth adjustment.

TABLE 4.31: Tenth parameters setting Γ10

DC0 D0 Csize N Tls Kls pcc pm pc KE N̄n Sr
14 60 20 350 0.08 2.0 0.2 0 0.2 0.2 488 100%

Progress of the parameters setting

Once all the parameters have been set, we can see that the mean nonlinearity
and the success ratio improves for the parameter settings process. Figure 4.22
shows the mean nonlinearity for different parameter settings.

FIGURE 4.22: Mean nonlinearity for different parameter
settings
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It is interesting to see the behavior of the diversity of the population and the
diversity in the clusters for different parameter settings. Figures 4.23 shows
the curves that describes the population entropy and cluster entropy for the
configuration of parameters zero, four, six and ten.

FIGURE 4.23: Population entropy and cluster entropy for
different parameter settings
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From the figure 4.23a we can see that the population never converges to a
single region in the search space. This is due to the incorporation of the
clustering technique, which has the population divided in many regions of
the search space. Conversely, from the figure 4.23b we can see that the
individuals in each cluster converges to a different regions in the search
space. The entropy reduction behaves as it was expected, it is reduced as the
evolution progresses. We can see that the diversity behavior for the last
parameter setting KE (Γ10) is very different to the others. This is due to the
exploration factor that has been set equal to 0.2, which is approximately 14.4
hours. This is the reason behind the particular decrease of the entropy.
Again, the clusters never admit clone individuals. This is why the entropy
at the end of the execution is never 0 for the clusters, because all the
individuals need to be a little different.

Comparison Among Population-based Metaheuristics

MAC-REDDCC is an extension of the LMA-REDDC which in turns is an
extension of LMA-RGE. All these algorithms were executed using the set of
parameters obtained Γ10. Specifically, each of the three methods were
executed 50 independent times both with 8 and 10 variables in order to
properly validate our proposal when compared to the simplest variants
LMA-REDDC and LMA-RGE.

The parameterization of each method is shown in table 4.32. MAC-REDDCC
incorporates a clustering technique for the replacement phase, LMA-REDDC
incorporates an elitist diversity control for the replacement phase and LMA-
RGE simply incorporates a replacement generational with elitism based on
the offspring population plus the elite individual.
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TABLE 4.32: Parameters involved in MAC-REDDCC, LMA-
REDDC and LMA-RGE

Method DC0 D0 Csize N Tls Kls pcc pm pc KE
MAC-REDDCC 14 60 20 350 0.08 2.0 0.2 0 0.2 0.2
LMA-REDDC × 60 × 350 0.08 × × 0 0.2 0.2

LMA-RGE × × × 350 0.08 × × 0 0.2 ×

The results obtained for LMA-REDDC and LMA-RGE are shown in the table
4.33 next to the results obtained with MAC-REDDCC.

TABLE 4.33: Comparatives between the best results obtained
for evolutionary algorithms

n Method ↑ ↓ ↔ Min Max N̄n Ñn σNn

8
MAC-REDDCC 0 0 2 116 116 116 116 0
LMA-REDDC 0 0 2 116 116 116 116 0

LMA-RGE 0 0 2 116 116 116 116 0

10
MAC-REDDCC 2 0 0 488 488 488 488 0

LMA-REDDC 1 1 0 486 488 487.44 488 0.907
LMA-RGE 0 2 0 482 484 483.92 484 0.396

We see that the results obtained for LMA-RGE in the 10-variable case are
poor in comparison with the ones obtained with LMA-REDDC and MAC-
REDDCC. Thus, we can see here the importance of using a scheme based on
diversity in order to find proper solutions for the problem of generating BFs
with high nonlinearity. When compared to LMA-REDDC, we can see that
the novel proposal attains slightly better results, so the changes performed
in this thesis were required to attain good values with a success ratio close to
100%. Thus, the modifications developed in this thesis, increase the stability
of the proposal.

FIGURE 4.24: Population entropy for MAC-REDDCC, LMA-
REDDC and LMA-RGE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70

P
o
p
u
la

ti
o
n
 e

n
tr

o
p
y
 H

P

Time (h)

MAC-REDDCC
LMA-REDDC

LMA-RGE

(A) Population entropy n = 8
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(B) Population entropy n = 10

Figure 4.24 shows the population entropy for the different evolutionary
methods. We can see that the LMA-RGE never converges. For the
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LMA-REDDC method, we see that is the method that looses more diversity
along the execution time. The MAC-REDDCC method has almost the same
behave in both figures 4.24a and 4.24b, with the difference that for n = 8 the
solutions found are the best known and there exist a lot of such functions. In
the 10-variable case we see that the method losses more diversity that in the
8-variable case, this is because is harder to achieve high nonlinearity for 10
variables than 8 variables, so the algorithm should perform more
exploitation of the search space in order to found solutions with high
nonlinearity.

4.5 Hybridization with Algebraic Techniques

With the aim of improving the results obtained with the previously
presented algorithms, we decided to use an initial population of individuals
that already have high nonlinearity. This initial population is constructed by
employing the algorithm 31. We decided to make experiments with the
hybrid method only for the 10-variable BF problem. The reason behind this
is that the algorithm 31 allows us to construct only 56 BFs h ∈ B3 for n = 8,
meaning that we can only build BFs in 56 different regions of the search
space, and for each region we can build only 4! = 24 BFs. Moreover,
achieving BFs with nonlinearity equal to 116 is relatively easy with our
methods. In the case of constructing BFs with nonlinearity equal to 488 for
the 10 variable case, we can note that there are 10920 BFs h ∈ B4, meaning
that we can build BFs in 10920 different regions of the search space, and in
each region we can build 5! = 120 BFs, so, we can construct 1310400
different BFs with nonlinearity equal to 488.

In order to make 50 independent runs and each one with a population size
equal to 350, we build 17500 (50 × 350 = 17500) individuals with
nonlinearity equal to 488 with the algorithm 31. In order to explore a lot of
regions of the search space, it was ensured that the individuals belonging to
each population were not close to each other. Each population was
employed along with the three evolutionary methods: MAC-REDDCC,
LMA-REDDC and LMA-RGE. The parameter values are the indicated in
table 4.32. The attained results are shown in table 4.34.

TABLE 4.34: Comparatives between the best results obtained
for the hybrid methods

n Method ↑ ↓ ↔ Min Max N̄n Ñn σNn

10
MAC-REDDCC 0 0 2 492 492 492 492 0
LMA-REDDC 0 0 2 492 492 492 492 0

LMA-RGE 0 0 2 492 492 492 492 0

We can see that the information in table 4.34 does not help us to discern
which hybrid method is better in comparison with the others because all the
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methods achieve in all the executions BFs with nonlinearity equal to 492.
Note that this is currently the best-known solution. In order to discern
which method is preferable we compare the amount of individuals in the
final population that achieves a nonlinearity equal to 492. This comparative
is shown in table 4.35.

TABLE 4.35: Comparison between hybrid methods for the
amount of individuals found with nonlinearity equal to 492

Method Min Max Mean Median
MAC-REDDCC 350 350 350 350
LMA-REDDC 350 350 350 350

LMA-RGE 1 1 1 1

From the information in the table 4.35, we can see that in MAC-REDDCC and
LMA-REDDC every individual in the final population has nonlinearity equal
to 492. However, the LMA-RGE is able to find only one solution with such
nonlinearity. We consider that using the MAC-REDDCC and LMA-REDDC
is preferable, because maintaining a diverse population means that several
regions are explored and there is a larger probability to find better solutions
(if they exist). However, we are not able to discern between the REDDCC
and the REDDC strategies.

Figure 4.25 shows the entropy of the population along the execution time
for the three methods tested. This last comparative will be between the

FIGURE 4.25: Population entropy for MAC-REDDCC, LMA-
REDDC and LMA-RGE
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methods MAC-REDDCC and LMA-REDDC. As we can see in figure 4.25,
MAC-REDDCC never decrease its diversity but is able to reach very high
quality solutions, so in this sense its behavior seems more adequate to try to
reach a solution with a higher nonlinearity (if it exists).
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Chapter 5

Conclusions and Future Work

This chapter is devoted to describe the conclusions of the work developed in
this thesis and to describe some lines of future work that are considered to be
promising.

5.1 Conclusions

The problem of generating Cryptographic Boolean Functions (CBFs) with
high nonlinearity is an extremely complicated problem. This problem has
been addressed with many strategies in the last 30 years. Many heuristic
methods have been proposed to generate CBFs with high nonlinearity and
the results obtained have been improving among the years. However, the
results obtained so far are not as extraordinary as those obtained with
algebraic techniques. According to our knowledge, heuristic methods have
never been able to generate 10-variable CBFs with nonlinearity equal to 492,
but the algebraic constructions do.

In this thesis, we work with the hypothesis that a diversity-based
metaheuristic can provides a better way of generating CBFs with high
nonlinearity, improving further the best current results obtained by other
metaheuristic methods and reducing the gap between algebraic and
metaheuristic approaches. Based on this, a set of trajectory-based and
population-based metaheuristic methods are proposed.

Among all of methods proposed, the most novel is a population-based
metaheuristic that incorporates explicit diversity management with a
clustering technique that allows intensifying and exploring throughout the
optimization process, since it forces some members of the population to be
distant but some are allowed to be close. This method is a Memetic
Algorithm with Clusters coupled with a Replacement with Elite based
Dynamic Diversity Control with Clustering (MAC-REDDCC) survivor
selection technique. According to our knowledge, we are the first ones that
proposes the use of a diversity scheme to generate CBFs with high
nonlinearity.
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MAC-REDDCC works with a set of novelty components proposed in this
thesis. The most important component is the REDDCC strategy, which is
responsible for the explicit diversity management. The cost function
employed to guide the search is another important component. The cost
function devised takes into account more information from the Walsh
Hadamard Transform (WHT), what makes it more suitable to guide the
search. The local search method employed to improve the members of the
population is another important component. This novel local search method
is inspired by the Tabu Search algorithm and is called First Improvement
Quasi-Tabu Search (FIQTS).

The results obtained with the MAC-REDDCC method improves the best
current results reported in literature by other pure metaheuristic methods,
even match the results reported by hybrid metaheuristics with algebraic
techniques with success rate close to 100%.

As another researchers, we propose an hybridization between the
MAC-REDDCC method and an algebraic technique. The results obtained
with the hybridization are the best results known for 10-variable CBFs, since
CBFs with nonlinearity equal to 492 are generated. Being MAC-REDDCC
the first metaheuristic method that is able to generate CBFs with that
nonlinearity.

5.2 Future Work

As a future work we should say that the methods implemented here have
the drawback that are not scalable. After performing some initial
experiments with 12 variables, we concluded that we need to do some
changes — probably in the cost functions and in the local search procedures
— to be able to deal with 12 or more variables. Particularly, in order to
develop a better local search procedure it would be interesting to use a
neighborhood coupled with the Walsh Hadamard transform. In this way,
the improvement process could be faster. In other words, extending the
smart hill climbing algorithm 9 to operate with other cost functions seems
promising. Additionally, it seems interesting to employ another properties
such as the autocorrelation or the algebraic degree inside the cost function.
Some authors have obtained improvements with these kinds of
transformations, so integrating them with the advances developed in this
thesis seems promising.
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