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Introduction

Twitter is an online social network, specifically, it is a micro-blogging com-
posed of short messages on any topic. In these messages the users can interact
with other users. Thus, due to the interaction of users is significant in differ-
ent areas such as marketing and polity, we try to model this behavior using
random graphs.

The objective of this work is to model the interaction of users in a social
network through time. We are interested in describing things like: How many
links are added at every step and how they appear at every step. If there
are differences between the links from the current nodes and from the new
nodes. Which is the distribution for in-degree and out-degree through time.
What is the value of the biggest in-degree and out-degree. Even more, how
is the network at the end of the process. In other words, we want to know
how the network grows. Figure 1 shows visually what we want to model. We
want to know how to pass from 1(a) to 1(b), then from 1(b) to 1(c), and so
on. Then we want to develop a model with a similar behavior.

(a) Network 1 (b) Network 2 (c) Network 3
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2 Introduction

(d) Network 4 (e) Network 5 (f) Network 6

Figure 1: Evolution of a network over time.

The thesis is divided in 5 chapters. Chapter 1 is dedicated to explain the
graph and network theory needed to understand this thesis. We show two
models to generate random graphs. The first one is the model proposed by
Erdös and Rényi (ER), the second one is the model proposed by Barabási
and Albert (BA). Furthermore, we will see what is a scale free graph and its
relation with a graph generated with the BA model. Chapter 2 is dedicated
to explain the source and properties of the data we will try to model. First,
we explain how to build the networks. Then, we show an analysis of those
networks in order to construct a representative model. Chapter 3 is dedicated
to develop the proposed model, explain its parameters and how to set them
for a data set. Besides, we talk about how we compare the real network with
our modeled network. Chapter 4 is dedicated to present the results of setting
the parameters and comparing the real data with the modeled network. In
addition, we present a simple result of how we can use the proposed model in
order to predict information in the future. Finally, in Chapter 5 we present
the conclusions and the future work.



Chapter 1

Random Graphs

In this chapter we present the theoretical framework to study graph and
network theory. Next, we show the model proposed by Erdös and Rényi
in 1959 and 1960 to construct random graphs. Later, we study scale-free
random graphs and the model proposed by Barabási and Albert in 1999 to
construct them.

1.1 Graph and Network Theory

The first example that introduces graph theory was proposed by Leonard
Euler in 18th century. He solved the problem known as the Seven Bridges of
Kögnisberg. In Figure 1.1 we can see a representation of the 7 bridges that
existed in that city in 1736, the parcels of land are labelled by A,B,C and
D. This problem ask about the possibility of visiting all the city crossing
every bridge once and only once.

The solution was given with a graph like in Figure 1.2 where the parcel of
lands are the vertices and the bridges are the edges. Due to Euler’s solution,
nowadays we call an Eularian trail a trail in a graph which crosses every edge
exactly once. We will next define some basic aspects of graph theory.

Definition 1.1. A graph is a pair G = (V,E) of sets such that E ⊆ V ×V ;
the elements of V are called vertices and the elements of E are called edges.

If the set of edges E is symmetric (i.e. (u, v) ∈ E ⇒ (v, u) ∈ E) it is
said that G is an undirected graph. On the other hand, if E is nonsymmetric
it is said that G is a directed graph or digraph. Also, it is said that a graph

3



4 Random Graphs

Figure 1.1: The Seven Bridges of Kögnisberg.

Figure 1.2: Graph of the Seven Bridges of Kögnisberg.

without self loops is a simple graph. In this work we use simple digraphs to
represent the data, but we just say graph to refer to them unless we specify
else. If we work with different graphs at the same time, we denote the set of
vertices and the set of edges of G by V (G) and E(G) respectively.

Definition 1.2. A path in a graph G is a non-empty graph P = (V,E)
of the form V = {x0, x1, ..., xk} and E = {(x0, x1), (x1, x2), ..., (xk−1, xk)},
where the xi are all distinct.

The number of edges of a path is its length. We often refer to a path by a
natural sequence of its vertices, x0, x1, ..., xk, and we say that x0 and xk are
linked by a path.

Definition 1.3. A graph G is connected if it is non-empty and any two of
its vertices are linked by a path in the underlying undirected graph of G.
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If the graph is disconnected we are interested in the connected compo-
nents. If the connected component with more vertices is unique and it is much
larger than the other components we call it the giant component, sometimes
denoted by GC.

Definition 1.4. Two vertices v and w of G are adjacent or neighbours
if (v, w) is an edge of G. We denote the set of neighbours of a vertex v ∈ G
by N(v).

Definition 1.5. The degree of a vertex v is the number |N(v)|. We denote
the degree of v by d(v).

In other words, the degree of a vertex is the number of edges related to
it. In a directed graph the in-degree of v es the number of edges that it is
incident from, and the out-degree is the number of edges that it is incident
to. We denote the in-degree and out-degree of a vertex v ∈ G by din(v) and
dout(v), respetively.

Definition 1.6. The minimum degree and the maximum degree of a
graph are denoted by δ and ∆ respetively. More precisely,

δ := min{d(v)|v ∈ V }
∆ := max{d(v)|v ∈ V }

Definition 1.7. The average degree of a graph is denoted by d̄, and it is
defined as

d̄ :=
1

|V |
∑
v∈V

d(v)

In a directed graph we denote by δin the minimum in-degree, ∆in the
maximum in-degree, d̄in the average in-degree, δout the minimum out-degree,
∆out the maximum out-degree and d̄out the average out-degree. It is satisfied
that δ ≤ d̄ ≤ ∆, δin ≤ d̄in ≤ ∆in and δout ≤ d̄out ≤ ∆out. Also, it can be
proved that d̄in = d̄out.

Definition 1.8. The empirical degree distribution of a graph G is de-
noted by pk. It gives the probability that a randomly selected vertex in the
graph has degree k. Thus

pk =
|{v ∈ G such that d(v) = k}|

|V |
.
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In general, it is named just as the degree distribution. In addition, pk is
almost always identified with an approximating continuous distribution. In
directed graphs there are the analogous in-degree distribution and out-degree
distribution. Poisson, power law and log-normal are degree distributions that
usually appear in graphs.

Sometimes, we need to describe a graph with matrices to be helped by
linear algebra. Here we present two informative matrices related to a graph.

Definition 1.9. The adjacency matrix of a grah G is denoted by A, and
it is defined as

Aij :=

{
1 if (vi, vj) ∈ E
0 otherwise.

Let’s note that if G is an undirected graph, A is a symmetric matrix.
On the other hand, if G is a directed graph, it has non-symmetric adjacency
matrix.

Definition 1.10. The laplacian matrix of a grah G is denoted by L, and
it is defined as L := D − A where

Dij :=

{
d(vi) if i = j
0 otherwise.

If we work with different graphs at the same time, we denote the adjacency
matrix and the laplacian matrix of G by AG and LG respectively.

Let’s note that for every graph, the laplacian matrix sum zero by row.
Thus, L1 = 0 = 01, where 1 = (1, . . . , 1)t. It means that 1 is an eigenvector
and 0 is an eigenvalue of L.

Finally, what is the difference between graph and network? In general
terms they can be thought as the same. However, we will do a distinction as
Barabási does in [4]. The network terminology refers to real systems, and we
want to recall the idea that two different networks can be represented by the
same graph. When we refer to a network we will use the words node and link
instead of vertex and edge. Since in this work we model interaction of users,
the network terminology will highlight the fact that the users or nodes are
more than simple dots, even more, the nodes are connected or linked. Also,
with this distinction we can talk about the graphical representation of the
network just as a graph.

To find complementary definitions and a larger introduction to graph and
network theory we recommend [4], [9], [12] and [17].
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1.2 Erdös-Rényi Model

In real life we can find many data that can be studied with graph and network
theory. In fact, sometimes the data could be analyzed if it is part of a
random process, thus we create random graphs. For example, we can describe
probabilistic rules to create edges in a graph with a fixed number of vertices.

Erdös and Rényi proposed a model for random graphs in 1959. This model
chooses uniformly a graph among all the graphs with n vertices and M edges
and it is denoted by G(n,M) [10]. Afterwards, in 1960, they proposed a
new model. In this model we start with n isolated vertices. Then, for every
pair of vertices and with probability p > 0 we add an edge between them,
independently of the other vertices [11]. We denote this model by ER and
the graph generated by G(n, p).

This model has two important characteristics. The degree distribution of
the graph generated by the ER model follows a Poisson distribution asintot-
ically in n. Also, if we think in many graphs G(n, p) with a fixed value of n,
but with differents values of p, we will find a phase transition. In the regime
that p ∈ (0, 1

n
) we have tiny clusters with a small number of edges. On the

other hand, if p ∈ ( 1
n
, 1) the size of the largest component is significant. In

this regime numerous isolated components coexist with the giant component.
The point p = 1

n
is called the critical point. It is important to note that,

since the distribution in the ER model is Poisson, then the average degree at
this point is d = np = 1. These and some more characteristics of this model
can be found in [4], [10] ,[11] and [21].

An example with the ER model using n = 200 and p = 0.3 was simu-
lated. In Figure 1.3 the graph created is shown, the size of the vertices is
proportional to its degree. In Figure 1.4 the degree distribution of the graph
is shown. As expected, it looks like a Poisson distribution with mean 60.



8 Random Graphs

Figure 1.3: Example of a random graph generated by the ER model with
n = 200 and p = 0.3.

50 55 60 65 70 75
Degree: k
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Figure 1.4: Degree distribution of the graph in Figure 1.3.

1.3 Scale-free Random Graphs

In real-world many networks are different to networks modeled by the ER
model. As an example, let’s see the structure of a network generated by
300,000 nodes and 1.5 million links. The nodes in this network are documents
in the WWW and the edges are links among them. Different to ER model
this network has nodes with very large in-degree, some nodes have more than
50 links, and a few other have more than 500 links [4].
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As we can imagine, the in-degree distribution in this WWW network does
not follow a Poisson distribution like in an ER model. However, if we plot the
data on a log-log scale we can see that the distribution looks like a straight
line. In Figure 1.5, we can see in gray the in-degree and the out-degree
distribution in a log-log scale, in purple the line that fits the data, and in
green the Poisson distribution with average d̄in = d̄out = 4.6, this average
comes from the data.

Figure 1.5: Left side shows the line that fits the in-degree distribution and
the right side shows the line that fits the out-degree distribution in a log-log
scale. Image from [4].

Because of the straight line in Figure 1.5, the degree distribution pk seems
to follow an inverse of a power of k. This is known as a power law distribution.
Note that if pk is similar to k−λ then log(pk) is similar to −λ log(k), this
explain the straight line.

Supose that there exists a normalizing constant C and a constant expo-
nent λ that no depend on k, such that pk = Ck−λ. Then∫ ∞

kmin

pkdk = 1

where kmin is the minimum degree which fits the line. Thus∫ ∞
kmin

Ck−λdk = 1⇒ C =
1∫∞

kmin
k−λdk

,
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therefore,

C = −(1− λ)k
(λ−1)
min ,

and hence,

pk = (λ− 1)k
(λ−1)
min k−λ.

This is a power law distribution with degree exponent λ. It is common to
use this continuous distribution instead of a discrete distribution. Note that
if we want to work with a discrete function, the value of C is complicated to
compute. In the discrete framework

C =
1∑∞

k=1 k
−λ .

The denominator is called the Riemann-zeta function and it is not easy to
work with it.

It is said that this distribution is invariant of scale because for T ∈ N

pTk = (λ− 1)k
(λ−1)
min (Tk)−λ

= T−λ(λ− 1)k
(λ−1)
min k−λ

= T−λpk.

We have that, clearly P1000 < P10 but, P1000 ∝ P10 and it means, in a discret
framework, that selecting randomly a vertex, the probability that this vertex
has degree 1000 is proportional to the probability of this vertex has degree
10.

This distribution is interesting also because if we calculate its the second
moment

< k2 >=

∫ kmax

kmin

k2pkdk = (λ− 1)kλ−1min

(
k
(3−λ)
max − k(3−λ)min

3− λ

)

where kmax is the maximum degree which fits the line. We can note that
when kmax →∞, if λ ≤ 3, then < k2 > diverges. Denoting by N the number
of vertices in the graph, Barabási argues that
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“The divergence of < k2 > for large N indicates that the fluctuations around
the average can be arbitrary large. This means that when we randomly choose
a node, we do not know what to expect: The selected node’s degree could be
tiny or arbitrarily large. Hence networks with λ ≤ 3 do not have meaningful
internal scale, but are scale-free” [4].

In other words, in a scale-free graph it is completely possible to find vertices
with small and vertices with very large degree, which is very different to
ER model. A scale-free graph is a graph whose degree distribution follows a
power law.

1.4 Barabási-Albert Model

In 1999 Albert-László Barabási and Réka Albert proposed a model in [1] that
generate scale-free random graphs. This model is called the BA model and it
is based in the idea that the rich gets richer. Thus, when we add a vertex to
the graph it is more probably linked to the vertices with the biggest degrees.
With this in mind, this model generates graphs only with two steps: growth
and preferential attachment. Here we describe the simplest version of this
model.

To get a graph with N vertices, start with 2 vertices, v0 and v1, linked
by one edge, j = 0 and do N − 2 times these 2 steps:

1. Growth. Add the vertex vj+2.

2. Preferential attachment.

• Add the edge (vj+2, vi) choosing vi, with probability

p =
d(vi)∑j+1
i=0 d(vi)

where d(vi) denote the degree of vertex vi, and i ∈ {0, ..., j + 1}.

• Do j = j + 1.

At the end of the process, this model generates a scale-free random graph
with degree exponent λ = 3, the proof can be consulted in [4]. Specifically,
it generates a connected graph without loops, a tree.
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As we said, this is the simplest version of the model. In fact, in [1] the
description of the model is different. First, they said that we could start with
a graph with n vertices, but they do not say which is the initial configuration
of these vertices. So, if we do not have edges, the probability described
above does not make sense. Second, they propose that we could add m edges
instead of one edge to every new vertex, but they does not say if this process
is adding one by one changing probabilities or all simultaneously. Even more,
they do not say if we could generate a multigraph, because if the m edges
are independent that could happen.

It is important to say that the model we presented above does not have
these problems. However, in 2001, Bollobás, Riordan, Spencer and Tusnády
investigate the model rigurosly and proposed the Linearized Chord Diagram
in [5] to solve the problems. In [21] we can find a general description of the
preferential attachment model based in BA model but considering just one
vertex with one self-loop as the initial configuration, and with the posibility
of get multilinks.

This model generates scale-free random graphs based in the preferential
attachment idea, but we have to say that there exists models that generate
scale-free random graphs based in other properties of the graph.

An example with the BA model using n = 200 was simulated. In Figure
1.6 the graph built is shown, the size of the vertices is proportional to its
degree. As we can see, this model generates trees. In Figure 1.7 the degree
distribution of the graph in log-log scale is shown. As expected, it looks like
a straight line.

Non-linear Preferential Attachment

The preferential attachment described in step 2 of the BA model can also be
written as follows: Add the new edge choosing vi, with probability

p =
d(vi)

α∑j+1
i=0 d(vi)α

where α = 1. With this fixed value of α, we say that the preferential at-
tachment is linear, and we obtain scale-free graphs. However, we can work
with differents values of α. For α ∈ (0, 1) we say that the preferential attach-
ment is sublinear. And, for α > 1 we say that the preferential attachment
is superlinear. In sublinear preferential attachment, the distribution of p is
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Figure 1.6: Example of scale-free random graph generated by the BA model
with n = 200.
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Figure 1.7: Degree distribution in log-log scale of the graph in Figure 1.6.

more similar to a uniform distribution. That’s why, in this case the degree
values follows the stretched exponential distribution. In superlinear prefer-
ential attachment the rich-gets-richer process is accelerated. Thus, we get
a few vertices connected with almost all the rest vertices. Complementary
information and more results can be consulted in [4], [7], [20].

We simulated an example with non-linear preferential attachment using
n = 200 and α = 0.5. In Figure 1.8(a) the graph built is shown, the size of
the vertices is proportional to its degree. In addition, an example with non-
linear preferential attachment using n = 200 and α = 1.5 was simulated. In
Figure 1.8(b) the graph built is shown, the size of the vertices is proportional
to its degree. For these graphs, the degree histogram is not very informative,
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however we can visualize the maximum degree ∆ for several simulations. Fig-
ure 1.9 shows an histogram with the maximum degree ∆ for 100 simulations
in sublinear model (α = 0.5), linear model (α = 1.0) and superlinear model
(α = 1.5), using n = 250. Clearly, they return values of ∆ in different ranks
and the dispersion is also very different.

(a) Sub-linear PA, α = 0.5. (b) Super-linear PA, α = 1.5.

Figure 1.8: Examples of non-linear preferential attachment using n = 200.
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Figure 1.9: Maximum degree ∆ for 100 simulations using n = 250 and
α ∈ {0.5, 1, 1.5}.



Chapter 2

Users Interaction Network in
Twitter

This chapter is dedicated to explain the source and properties of the data we
will try to model. In the first section we describe how the data was obtained
and how to pass from the data to networks. Afterwards, in the second section
we detail significant features in the networks in order to create a model that
fits the data.

2.1 Build the Network

Twitter is an online social network, specifically, it is a micro-blogging com-
posed of short messages on any topic. The word tweet refers to the action
of post a message as well as to the message itself. In every tweet, users can
do retweets 1 and mentions 2. Besides, in the same tweet they can employ
hashtags3 in order to clasify his message in a topic.

Twitter has an Application Programming Interfaces (API) to access to
its data. In this work we used the package Tweepy to use the API from
Python. The data we use are tweets collected by streaming, this means that
we collect tweets in real time. This is useful to download a high volume of
twitter messages.

1A retweet is a repeated tweet from other user.
2A mention is a cite to another user preceded by @.
3A hashtag is a word or phrase without spaces preceded by a #.

15
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All tweets we collected were downloaded with a fixed query 4. We use as
query a set of hashtags where the people are talking about the same topic.
The list with all these tweets is called a conversation.

From every single tweet we get a lot of information: name of user who did
the tweet, description of the user, friends count, followers count, text in the
tweet, if it is a retweet, a list of users mention, a list of hashtags in the text or
in the retweet, the exactly hour in wich the tweet was created, etc. However,
to generate the users interaction network we focus on mentions and retweets.
This network has as nodes all users that interact in the conversation even if
they interact indirectly. The users who interact indirectly are the users who
were mentioned in the conversation and they never response. The users who
interact directly are the users who really tweet in the conversation. If u, v
and w are users in the conversation we add the directed link (u, v) if one of
these cases occurs:

1. u writes a tweet in which v is mentioned.

2. u does a retweet of the tweet of v.

3. w mentions v in a tweet, and u does a retweet to the tweet of w.

Let’s note that in case 3 some links were added because of case 1 and
case 2. In case 3, first the link (w, v) was added , then, 2 links were added
at the same instant, (u,w) and (u, v). It is not strange to add more than
one link at the same moment. For example, u can write a tweet in which he
mentions v and w. Thus, at the same moment the links (u, v) and (u,w) are
added to the network. It is important to note that, if a node is added to the
network there is it because it has an interaction with itself or with another
user in the conversation. It means that the only way that a component in
the graph has just one node, is if it interacts just with itself.

These cases show how to add links in the network, however we used a new
variable: time. Given that we have the exact time in which each tweet was
made, we have the exact time in which each link was added. Hence, for every
conversation analyzed, we have a list of edges, with a source and a target,
besides the time of creation of that link. The list of edges described above
is used to create a sequence G1, G2, ..., G100 of networks. Although the time

4A query is a list of search terms to download. For example, user names, hashtags, key
words, etc.



2.2. REAL NETWORKS ANALYSIS 17

is continuous it is enough to work with 100 networks in order to analyze the
interactions of users through time. We refer to Gt as the graph at time t.

For every conversation, we divide the total time in 100 windows of time
uniformly. G1 is the network such that the links are the edges in the list
in the first window of time. G2 is the network such that the links are the
edges in the list until the second window of time, and so on. At the end
of the process we generate 100 networks such that for every t ∈ {1, ..., 99},
V (Gt) ⊆ V (Gt+1) and E(Gt) ⊆ E(Gt+1).

2.2 Real Networks Analysis

To propose a model we analyze different data sets. However, in this section we
just present the analysis of 3 of them. The proposed model will be compare
with these data sets in Chapter 4.

The first data set we present was downloaded on Jun 29th, 2017 at 13:35
hours. It was during the FIFA Confederations Cup. The query used was
just one hashtag: #MexicovsAlemania. This data set is conformed by 13645
tweets and they generate a network with 6909 nodes and 7936 links. The
second data set we present was downloaded on Sep 19th, 2017 at 16:34
hours. It was few hours after the earthquake occured in Puebla. The query
used was a list of hashtags: #sismo, #fuerzamexico, #prayformexico and
#ayudaciudadana. This data set is conformed by 8000 tweets and they gen-
erate a network with 7966 nodes and 7869 links. The third data set we
present was downloaded on Jun 12th, 2018 at 21:10 hours. It was during
the third presidential debate in Mexico. The query used was two hashtags:
#DebateINE and #DebatePresidencial2018. This data set is conformed by
10000 tweets and they generate a network with 5677 nodes and 7308 links.
The networks of this data sets will be called: Soccer network, Earthquake
network and Debate network, respectively.

A feature that we use to analyze the sequence of networks is the number
of links. We note that the number of total links that has the network over
time can be approximated with a linear regression. In Figure 2.1 we show the
number of total links over time and its linear adjustment for each network.
In 4.2(b) and 4.2(c) the residual sum of squares (RSS) is almost 0.

After that, we analyze the in-degree and out-degree distributions over
time. We realize that all of them looks like heavy tailed distributions. The
in-degree and out-degree distributions for the networks at different times t,
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t ∈ {25, 50, 75, 100}, is shown in log-log scale in Figure 2.2.
Let’s remember that we talked about how the giant component emerges

in ER random graphs in Chapter 1. We analyze if there exists a GC by
looking at the proportion of nodes and links in the larger component of the
networks. Thus, we realize that the GC exist and it emerges soon in the
process. Figure 2.3 shows the proportion of nodes and links in the GC for
the networks over time. Moreover, we analyze the underlying undirected
graphs and we contrast the average degree vs the proportion of nodes in the
GC. In Figure 2.4, the contrast of these features shows the fact that the
average degree is always less than 1, opposite to the ER model.

Befere continuing we have to make a clarification. For every step t ∈
{1, 2, ..., 100}, we call new nodes and new links at time t, to the nodes and
links added to the network at that time. For every step t ∈ {2, ..., 100},
we call current nodes and current links at time t, to all nodes and all links
that the network has at that time, but that are not part of the new nodes
or new links. It means, for a sequence of networks G1, G2, ..., G100, G1 has
new nodes and new links but does not have current nodes or current links,
and, for G1, G2, ..., G100 the number of nodes is equal to sum the number of
current nodes plus the number of new nodes. Thus, we observe the activity
of the nodes added in the network at every step. We analyze what is the
proportion of the new links that come from the new nodes. A normalized
histogram with the proportion of new links in new nodes for the networks is
shown in Figure 2.5. It is clear that most of the new links are from the new
nodes, the rest of the links are from the current nodes.

We know that many of the new links are from new nodes, but now we
need to know how many links are added by every new node. To analyze this
idea we observe the average out-degree in new nodes and we found that the
mean is nearly to 1. Finally, we analize how many of the new links go to
the new nodes. We found that the average in-degree in new nodes is nearly
0. Figure 2.6 shows the average out-degree in new nodes and the average
in-degree in new nodes for each network. If we analyze both ideas, we find
that most of the links from the new nodes go to the current nodes. This last
observation in many senses resembles the degree dynamics in the Barabási-
Albert model 5. Hence, we will model the users interaction network with a
modification of it.

5There is a larger description of the degree dynamics in the Barabási-Albert model in
Chapter 5, Section 5.4 of [4].
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(b) Earthquake Network
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(c) Debate Network

Figure 2.1: Number of total edges over time.
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Figure 2.2: In-degree and out-degree distributions at different times.
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(d) Earthquake Network
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Figure 2.3: Proportion of nodes and links in the giant component over time.
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Figure 2.4: Average degree vs proportion of nodes in the GC over time.
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Figure 2.5: Proportion of new links added by the new nodes over time.
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Figure 2.6: Average out-degree and average in-degree in the new nodes over
time.



Chapter 3

Users Interaction Network
Model

In this chapter we present a proposed model of interaction of users in a social
network through time. Next we describe how we set the parameters to each
data set. Finally we explain how we compare the real network with our
modeled network.

3.1 Proposed Model

This model is based in some facts we described in Chapter 2. Because of the
number of edges through time fits lineary in real data, then, in the proposed
model we try to add, at every step, a fixed number of edges. Also, we divide
the vertices in current vertices and new vertices as in the real networks.
Moreover, we add new edges from current vertices and from new vertices to
resemble the behavior of the real networks.

In real data, we found that the new vertices which are being added at
every step have average in-degree close to 0 and average out-degree close
to 1. Thus, to keep it simple, the new vertices in the model always have
in-degree 0, it means that all new edges, from the current vertices and from
the new vertices, will be directed to the current vertices. In addition, with
the same idea of having a simple model, the out degree of every new vertex
will be 0 or 1. Finally, because the real networks seem to have heavy tailed
in-degree and out-degree distribution, different to an ER graph, we use pref-
erential attachment in both directions to create new edges. Let’s remember

25
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that the linear preferential attachment induces a heavy-tailed distribution,
specifically, a power law.

With all these characteristics we considered different models. However,
we present only the model that fits better to the data. It produces a sequence
of graphs denoted by (Gt)t≥1. The sequence of graphs is such that, for every
t ∈ {1, ..., N − 1}, V (Gt) ⊆ V (Gt+1) and E(Gt) ⊆ E(Gt+1).

In this model we need an initial network, and a list with the number of
vertices wich will be added at every step. We use exaclty the initial network
and the list that comes from the data. Besides, in this model we have 5
parameters [θ, ρ, αin, αout, βin], where θ ∈ N and ρ, αin, αout, βin ∈ R. The
parameters θ and ρ are related with how many edges are generated for the
current and new vertices. The number of edges that will be added at every
step is denoted by θ. ρ ∈ (0, 1) is a value such that the floor of (1 − ρ)θ,
denoted by b(1 − ρ)θc, represents the number of new edges generated at
every step in the current vertices. The parameters αout, αin and βin are
exponents related to the preferential attachment. Specifically, αin ∈ (0, 1)
and αout ∈ (0, 2) affects only at the current vertices and βin ∈ (1, 1.5) affects
only at the new vertices. These intervals were fixed by empirical exploration.

In this model we have 3 updates for every step: current preferential at-
tachment, growth and new preferential attachment. Let lt =

∑t
s=1 ns the

number of vertices at time t. Start with t = 2, a graph G1 such that
|V (G1)| = n1 6= 0, and a list [n2, ..., nN ] with the number of vertices wich will
be added at every step. Do N − 1 times these 3 updates:

1. Current preferential attachment. Create a set of edges, Et, such
that |Et| = b(1− ρ)θc. Every edge (vi, vj) in Et is made independently
choosing vi in the current vertices, {v1, v2, ..., vlt−1}, with probability

pαout =
[dout(vi) + 1]αout∑lt−1

w=1[dout(vw) + 1]αout

,

and choosing vj also in the current vertices with probability

pαin
=

[din(vj) + 1]αin∑lt−1

w=1[din(vw) + 1]αin

,

where αout and αin allow non-linear preferential attachment.

2. Growth. Create a set of new vertices Vt = {vlt−1+1, ..., vlt−1+nt = vlt}.
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3. New preferential attachment.

• Create a set of edges, Ft, such that |Ft| = min{bρθc, nt}. Every
edge (vi, vj) in Ft is made choosing vi in Vt without replacement
and choosing vj in the current vertices with probability

pβin =
[din(vj) + 1]βin∑n1

w=0[din(vw) + 1]βin
,

where βin allow non-linear preferential attachment.

• Add to the network the sets Et, Vt, and Ft.

• Do t = t+ 1.

Let’s note that we do not add the new vertices and new edges to the
network until the last update. Doing it in this way we avoid to chage the
probabilities pαout , pαin

and pβin with every new vertex or edge added.

3.2 Setting Parameters

The proposed model has 5 parameters [θ, ρ, αin, αout, βin]. We are interested
in getting good enough values of them for every data set in order to describe
its behavior.

The values of θ and ρ are easier to be fixed than the others. For every
data set, the value of θ is chosen as the slope in the linear regression with the
number of total links that has the network over time. To choose ρ ∈ (0, 1)
such that b(1 − ρ)θc represents the number of new links generated at every
step in the current nodes, we use ρ as the mean of the proportion of new
links in new nodes.

The values of αin, αout and βin are more difficult to choose. However, we
know that they are related with the in-degree and out-degree distribution.
Thus, to set these parameters we create a cost function based in an error of
the values of in-degree and out-degree in the network, and we use Differential
Evolution (DE) to minimize it. The parameters θ and ρ are fixed during the
differential evolution. In fact, we use a modification of DE in order to take
advantage of the model. In addition, because of the random process, the
error generated is random, so the “cost function” we use will not be literally
a mathematical function. For the same parameters it could return differents
results. However, it is a function in a computational sense, and it is called
fitness function.
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Differential Evolution

Differential Evolution (DE) is a stochastic method developed by Price and
Storn in 1995 in [18]. It has the ability to minimize non-differentiable cost
functions. DE is easy to implement, even more, the implementation of DE
could be parallelizable. This is very important in case of one evaluation of
the fitness function takes from minutes to hours. This method uses just 2
parameters to generate new solutions, CR ∈ [0, 1] and F ∈ (0, 1).

We present the DE method like in [19] with 4 steps: Initialization, Mu-
tation, Crossover and Selection.

1. Initialization. Choose randomly Np vectors x0,0, x1,0, ..., xNp−1,0. We
call every vector an individual and the set with these vectors the pop-
ulation. The 1st subindex is the identifier of the individual in the
population. Due to DE is an iterative search method the 2nd subindex
is the number of iteration. Every iterarion is called a generation.

The initial population should cover the entire parameter space. Given
the dimension of the parameter space, d, let’s denote every parameter
of an individual with 3 subindexes thus

xi,g = [x0,i,g, x1,i,g, ..., xd−1,i,g]
T .

After this point we proceed to do the next 3 steps for a fixed number
of generations or until we have convergence in the fitness function.

2. Mutation. The idea of this step is to mutate the population to pro-
duce a new one with Np trial individuals, called mutants. It is used
a differential mutation, it means that mutants are created as a linear
combination of randomly individuals in the population.

Specifically, for every i ∈ {0, ..., Np − 1} select randomly different in-
dexes r1, r2, r3 ∈ {0, ..., Np − 1} \ {i}, then, create a mutant individual
vi,g+1 according to

vi,g+1 = xr1,g + F (xr2,g − xr3,g),

where F ∈ (0, 1) is a scale factor that controls the rate at which the
population evolves. In case of the mutant individual vi,g+1 is not in the
parameter space we generate a new one randomly.
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3. Crossover. DE uses an uniform crossover in order to increase the
diversity of the population. In this step DE crosses the population at
time g with the Np mutant individuals created in step 2. DE made the
crossover in the order in which the mutants were created.

Every individual crossed ui,g is defined by

uj,i,g =

{
vj,i,g r(0, 1) ≤ CR or j = jrand
xj,i,g otherwise,

where r(0, 1) represents a random value in (0, 1), jrand is a random index
in {0, 1, ..., d − 1} and CR ∈ [0, 1] is a defined value called crossover
probability. The CR value controls the fraction of parameters copied
from the mutants.

4. Selection. Finally, a comparasion is done between every individial
xi,g in the population and its correspondent individual crossed ui,g.
The elements with the lowest fitness function value pass to the next
generation. It is

xi,g+1 =

{
ui,g if f(ui,g) ≤ f(xi,g)
xi,g otherwise.

Let’s remember that the proposed model produces a sequence of N ran-
dom graphs. Thus, if we do some simulations with the same set of parameters,
we obtain different graphs. Let’s denote the graphs obtained by the real data
as (Gt(D))t≥1 and the graphs generated by the model as (Gt(M))t≥1. We
define the error in a simulation as

e(αin, αout, βin) = (0.25)
|∆in(GN(M))−∆in(GN(D))|

|∆in(GN(D))|

+ (0.25)
||ϕin(GN(M))− ϕin(GN(D))||

||ϕin(GN(D))||

+ (0.25)
|∆out(GN(M))−∆out(GN(D))|

|∆out(GN(D))|

+ (0.25)
||ϕout(GN(M))− ϕout(GN(D))||

||ϕout(GN(D))||

where ∆in(GN(M)) is the maximum in-degree in GN(M), and ϕin(GN(M))
is a sorted vector with the in-degree values of GN(M). Analogously for the
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out-degree values and for the graphs obtained with the data. Note that every
term in this error is weighted with the same value. The first term is nearly
to 0 if the in-degree values in GN(M) and GN(D) are in the same rank. The
second term is nearly to 0 if the values of in-degree are similar 1 by 1. The
third and fourth terms are analogous for the out-degree values. To sum up,
this error is nearly to 0 if the in-degree and out-degree values in GN(M) and
GN(D) are similar.

The fitness function f is defined as

f(αin, αout, βin) = min{e1(αin, αout, βin), ..., eS(αin, αout, βin)}

where S is the number of simulations done with the fixed parameters and
every ei(αin, αout, βin) is the error in the simulation i. This fitness function
allows to evaluate the model S times and pick the best. In practice we use
S = 2 and N = 100.

With this fitness function, for a fixed number of generations, we can apply
the differential evolution method and choose the best parameters. However,
we add the variable time in order to take advantage of the model. We note
that if a modeled graph in the middle of the process is not similiar to its
respective graph with real data, then, at the end of the process the modeled
graph is not similar to its respective graph with real data. This happens
because of the way in which the graphs grow in the model. Hence, instead
of generating a sequence of 100 graphs in every simulation, we generate the
sequence with the first 25 graphs, then we generate the sequence with the
first 50 graphs, then we generate the sequence with the first 75 graphs and
finally, we generate the complete sequence of 100 graphs as explained below.

1. Apply DE with 11 generations. In this case the model generates a
sequence of 25 graphs.

2. Apply DE with 9 generations using the final population in step 1 as
the initial population. In this case the model generates a sequence of
50 graphs.

3. Apply DE with 7 generations using the final population in step 2 as
the initial population. In this case the model generates a sequence of
75 graphs.

4. Apply DE with 5 generations using the final population in step 3 as
the initial population. In this case the model generates a complete
sequence of 100 graphs.
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Generating a complete sequence of 100 graphs with the proposed model
is very slow. However, this modification of DE allows to generate a more
complete sequence of graphs restricting to solutions that fit better through
time. At the end of the modified DE we will have evaluated the fitness
function in candidate solutions for more than 30 generations.

3.3 Graphs Comparison

Distance Between Graphs

The first tool we use to compare graphs is a distance between them. A
distance gives a quantity idea of how similar are the graphs in a single value.
The distance we explain is called cut distance and it is based in the cut norm
described by Frieze and Kannan in 1999 in [13]. Let A be an n× n matrix,
the cut norm of A is defined by

||A||2 =
1

n2
max
S,T⊆[n]

∣∣∣∣∣ ∑
i∈S,j∈T

Aij

∣∣∣∣∣ .
The cut distance was introduced in [6] by C. Borgs, J. T. Chayes, L. Lovász,
V. T. Sós and K. Vesztergombi in 2008. This distance between graphs re-
flects global structural similarity. It can be defined even for two graphs with
possibly different number of vertices. However, the cut distance is more in-
formative for graphs in which the number of edges is closer than the maximal
number of edges, dense graphs. If we do not have preliminary information
about the density of the graphs this distance should not be the unique way
to compare two graphs. For example if we compare a graph constructed by
real data G with a graph modeled GM , both non-dense graphs. Then the
cut distance from G to GM should be close to 0. On the other hand, if this
distance is not close to zero we could guarantee that the graphs are different.

We describe the cut distance as in [15]. First, we introduce a distance
between two graphs on the same set of vertices. After, a distance between
two graphs on the same number of vertices but labeled in a different way.
Finally, the distance between two arbitrary graphs.
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Same Set of Vertices. To define this distance we must to start by
defining some notation. Let be G = (V,E) a graph and sets S, T ⊆ V (G).
We denote by eG(S, T ) the numbers of edges such that point from a vertex
in S to a vertex in T . Thus, given G and G′ on the same set of vertices

d2(G,G′) = max
S,T⊆V (G)

|eG(S, T )− eG′(S, T )|
|E|2

.

Same Number of Vertices. Let’s note that for two graphs which
have the same number of vertices they can have labeled the vertices in a
different way. In this case we just have to use a combinatorial idea. We
look for the minimum value of the distance describe above but relabeling the
vertices. Thus, given G and G′ on the same number of vertices but labeled
in a different way

δ̂2(G,G′) = min
Ĝ,Ĝ′

d2(Ĝ, Ĝ′),

where Ĝ denote all the posible labelings of G.
Arbitrary graphs. We next describe how to get a distance between two

graphs using previous ideas. Given a graph G and k ∈ N, we define G[k]
as the graph conceived by G but replacing every vertex by other k vertices
linked exactly like their predecessors were. As an example, if we have a graph
G like in Figure 3.1(a), then G[2] is like in Figure 3.1(b).

(a) G (b) G[2]

Figure 3.1: An example of G and its respective G[2]

Let’s note that if we have graph G and G′ such that |V (G)| = n and
|V (G′)| = n′, then G[n′] and G′[n] have the same number of vertices. Thus,
to define a distance between G and G′ it is used k ∈ N to compare G[kn′]
and G′[kn].
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Finally, the cut distance between two graphs is defined in terms of the
distance δ̂2 as

δ2(G,G′) = lim
k→∞

δ̂2(G[km], G′[kn])

This distance is called cut distance due to the fact that in the case of two
graphs on the same set of vertces the distance between them is similar to
calculate a cut norm. Specifically

d2(G,G′) = ||AG − AG′||2.

If we analyze the final definition for two arbitrary graphs, we can note
two things. First, if G is directed the definition is the same. Second, this
distance is hard to compute due to the max-min process. In fact, just to
compute the distance between two graphs with the same set of vertices, it
is not easy. In [2] Noga Alon and Assaf Naor proved that the problem of
approximating the cut-norm is MAX SNP hard. However, they proposed an
efficient approximation algorithm.

In practice, we just need to compute the distance between two graphs
with the same number of vertices. However, we use a function in the art
state found in the package cutnorm. This function, implemented by Ping-Ko
Chiu, Peter Diao and Olewasanmi Koyejo, computes an approximation to
the cutnorm based on some techniques detailed in [2] and [22]. The function
returns two values using different methods, we just present the results with
one of these methods.

Analysis of Heavy Tailed Distributions

We explained in last section that the cut distance gives information about
global structure. However, we want also information about particular fea-
tures in the graphs over time. Thus, we analyze the in-degree and out-degree
distributions of some graphs generated with the proposed model at different
times. Due to we use a preferential attachment model the first idea to ana-
lyze the distributions is by fitting a power law. Let’s remember that a power
law distribution pk with degree exponent λ is defined as

pk = (λ− 1)k
(λ−1)
min k−λ,

where kmin is a fixed value.
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It is important to note that a straight line in an histogram in log-log
scale is not sufficient to assure that a distribution is a power law. However,
a visual inspection of the data in this scale helps to decide if the data follows
a heavy tailed distribution.

In general, the small values of the data does not fit very good in a power
law. That is why in order to determine what portion of the data could be
fitted with a power law the value of kmin must be estimated. Clearly, if kmin
is large, less data are fitted and we can not assure that the fit is good enough.

To estimate the value of λ is used the maximum likelihood estimator
(MLE) for the continuous power law. In [16] is proved that for a data list
with positive values k1, ..., kn the MLE is

λ̂ = 1 + n

[
n∑
i=1

ln
ki
kmin

]−1
where kmin ≥ ki. Thus, we have to choose the value of kmin where the power
law begins. The optimal value of kmin can be found as in [8] by creating
a power law distribution starting from every value in the data list, then
compute the Kolmogorov-Smirnov distance between the data and the fit and
select the fit with the smallest distance. This distance is defined as

D = max
k≥kmin

|S(k)− P (k)|

where S(k) and P (k) are the cumulative distribution functions of the data
list and the power law respectively.

Fitting a power law with these methods it is not sufficent to conclude that
this distribution is the best description. As we said, if the kmin is large, we
are not fitting a good proportion of the data. Even more, the same data set
can be fitted with other distributions in an optimal way. Thus, J. Alstott,
E. Bullmore and D. Plenz proposed in [3] that we must do a comparative
test with other distributions. In practice we use the package powerlaw for
Python in order to analyze heavy tailed distributions. In this package is
implemented the method for fit a power law distribution getting λ and kmin
as we explained. Also, a method is implemented to compare an exponential
distribution fitted vs a power law fitted, and a power law fitted vs a lognormal
fitted. In addition, this package has the option to show the data and the fits
in a log-log plot. Complementary information and more methods of this
package can be consulted in [3]. A similar package for R is presented in [14].



Chapter 4

Results

In this chapter we present the results of setting the parameters in the pro-
posed model for each data set. Also, we present the results of compare the
real networks with the networks modeled. In addition, we present a simple
result of how can we use the proposed model to predict information in the
future.

We recall that in this model we have 5 parameters [θ, ρ, αin, αout, βin]. We
said in Chapter 3 that the value of θ is chosen as the slope in the linear
regression with the number of total links that the real networks have over
time. Also, we choose the value of ρ as the mean of the proportion of new
links in new nodes. The values of these parameters for every network are
shown in Table 4.1. Although we present the results just for 3 networks, we
observe in general that ρ is close to 0.8. On the other hand, we found very
different values of θ in other networks.

θ ρ
Soccer network 81.45 0.79

Earthquake network 78.98 0.83
Debate network 72.70 0.76

Table 4.1: Parameters θ and ρ for every network.

Also, we create a fitness function and we use a modification of differential
evolution in order to fit the values of αin, αout and βin. The values of CR
and F in the DE method were calibrated with some experimental results for
differents fitness functions, number of generations, and number of individuals.
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At the end we executed the method once with the parameters CR = 0.7 and
F = 0.3. Table 4.2 shows the values of these parameters for every network.
Empirically, we had found that the value of βin affects directly the value of
∆in, also in other networks βin is close to 1.3. On the other hand, the values
of αin and αout affects the in-degree and out-degree distributions itself and
they are more susceptible to the fitness function.

αin αout βin
Soccer network 0.417 1.707 1.352

Earthquake network 0.499 1.639 1.370
Debate network 0.235 1.460 1.285

Table 4.2: Parameters αin, αout and βin for every network.

With the 5 parameters fitted, we do the comparison of the real networks
and the networks modeled with these parameters. We use the networks with
the minimum fitness at the end of the DE method in order to compare. In
Table 4.3 we compare the number of links at the end of the process, it means,
the value of E(G100) for the real network and the modeled network. Clearly,
the modeled network has less links. After, we inspect the number of links
over time. We want to deduce if the model also fits lineary the number of
links. Figure 4.1 shows the number of links over time for each data set, its
linear regression and the number of links over time for the model. We observe
that the model also fits lineary the number of links over time. However, using
the same θ in each step it is not enough. This single value it is not robust to
imitate the behavior of the number of links over time.

Data Model
Soccer network 7936 7275

Earthquake network 7869 7166
Debate network 7308 6681

Table 4.3: Number of links.

The number of links added for new nodes are related with the value of
θρ. Let’s remember that we choose ρ as the mean of the proportion of new
links in new nodes. Table 4.4 shows the values of this mean for every network
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with real data and with the proposed model. Besides, Figure 4.2 shows an
histogram for this proportion in the real sequence of networks, and it shows
an histogram for this proportion in the modeled sequence of networks. As
expected, the means are similar even though the distributions are different.
We can try to fit a distribution in the data. However, using just a single
value helps to keep a simple model.

Data Model
Soccer network 0.79 0.77

Earthquake network 0.83 0.82
Debate network 0.76 0.75

Table 4.4: Mean of proportion of new links in new nodes.

Another feature we can highlight is that at every step, the new nodes in
the modeled sequence of networks have average out-degree close 1, because
of the new nodes in the real sequence of networks have average out-degree
close to 1. Besides, the new nodes in the modeled sequence of networks have
average in-degree 0, because of the new nodes in real sequence of networks
have average in-degree close to 0. Figure 4.3 shows an histogram for the aver-
age out-degree in the real sequence of networks and in the modeled sequence
of networks. Table 4.5 shows the mean of these values for every network. In
this case, we have something similar, the distributions are different but the
mean is close. Hence, it is a good idea that the new nodes in the model have
out-degree at most 1 and out in-degree 0 in order to keep a simple model.

d̄out(Data) d̄out(Model) d̄in(Data) d̄in(Model)

Soccer network 0.92 0.88 0.19 0

Earthquake network 0.84 0.81 0.24 0

Debate network 0.99 0.93 0.21 0

Table 4.5: Mean of average out-degree and mean of average in-degree in new
nodes.

After, we compare the global structural similarity between the real net-
work and two random graphs. We generate a random graph GBA, using the
Barabási-Albert model, with the same number of nodes as in the real network
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G and we compute the cut distance between them δ2(GBA, G). In addition,
if we denote by GM the network generated at the end of the proposed model,
we compute the cut distance δ2(GM , G). Table 4.6 shows the values of the
cut distance for every network. As expected, both distance are close to 0
because they are not dense graphs. However, the cut distance in our model
is smaller, even in an order of magnitude. We suppose the cut distance in
the proposed model is smaller for different reasons, but the main idea is that
the real network is not a undirected tree as in a BA random graph.

δ2(GBA, G) δ2(GM , G)

Soccer network 6.41e-6 7.84e-7

Earthquake network 2.2e-06 6.35e-7

Debate network 1.02e-6 6.22e-7

Table 4.6: Cut distance between real networks and random graphs of two
models.

We analyze the in-degree and out-degree distributions over time in real
networks. We had realize that all of them look like heavy tailed distributions
but visually it is not sufficent to assure that. We compute a p-value in
order to compare if the data fit better with an exponential distribution or
with a power law distribution. For every data set, and for every in-degree
distribution in the networks at t = 25, 50, 75, 100, the p-value was less than
0.05. Thus, we can say that a power law is a better fit than the exponential.
It does not mean that the data follow exactly a power law. However, we
can say that the in-degree distributions are heavy tailed distributions. After
that, we compare the data between a power law distribution and a lognormal
distribution. In almost all of the cases, the p-value was more than 0.05. Thus,
neither distribution is a significantly stronger fit. On the other hand, the
out-degree distributions in many cases neither distribution is a significantly
stronger fit. Even though the test is not conclusive respect to those fits, we
keep the power law fit for two important reasons. First, the power law is
a simple fit because it needs just one parameter contrary to the lognormal
distribution which needs two. Second, and maybe the most important, the
proposed model is a modification of the BA model and the power law is a
distribution that can be deduce from that model. Figures 4.4 and 4.5 show
the in-degree and out-degree distribution, respectively at t = 50 and t = 100,
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in log-log scale. These figures show the probability density function (pdf)
for the real network and for the modeled networks, also it shows their power
law fit and their lognormal fit. Figure 4.4 evidences some facts. For the
real network and for the modeled network the power law fit is similar to the
lognormal fit. The kmin for every power law fitted is small, between 2 and 4,
so we can assure that the fit is good enough. The distributions between the
data and the model are close. Even more, they are close at different times.
On the other hand, Figure 4.5 evidences that for the real network and for the
modeled network the power law fit is similar to the lognormal fit but neither
distribution is good enough to model the real data. Also, the distributions
between the data and the model are not always close.

The distributions that fit the data are importat, but, the exact values
of ∆in and ∆out can be more important. Let’s remember that every node
represent an user. Thus, the value of ∆in gives information about the user
who is more mentioned during the conversation. The value of ∆out gives
information about the user who more mention different users during the
conversation. Tables 4.7 and 4.8 show the values of ∆in and ∆out for every
network at time t = 50 and t = 100 respectively. As expected, the values
between the real data and the proposed model are close, this is due to the
fitness function used in the DE method.

∆in(Data) ∆in(Model) ∆out(Data) ∆out(Model)

Soccer network 308 218 26 24

Earthquake network 110 90 11 9

Debate network 434 293 15 13

Table 4.7: Maximum in-degree and maximum out-degree at t = 50.

∆in(Data) ∆in(Model) ∆out(Data) ∆out(Model)

Soccer network 612 594 35 35

Earthquake network 223 223 12 11

Debate network 760 721 17 17

Table 4.8: Maximum in-degree and maximum out-degree at t = 100.
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Besides, we sort the degree values in the real data and in the model and
we generate a scatter plot in log-log scale to visualize a relation 1 to 1 in
all the network. Figure 4.6 shows the scatter plot for the in-degree values
in the networks at time t = 50 and t = 100. Figure 4.7 shows the scatter
plot for the out-degree values in the networks at time t = 50 and t = 100.
Both figures evidences that the dots are close to the identity due to the
fitness function used. Even more, they are close at different times. Also, it
shows, by the same reason, that the last dot is close to the identity even if
the rest of the dots are not so close. In addition, we can note in Figure 4.6
that in general for small values the dots are under the identity and for large
values the dots are above the identity. Furthermore, Figure 4.7 shows that in
general the dots are above the identity. Clearly, the results for the in-degree
values are better than for the out-degree values. The fact that we use two
parameters that affect directly the in-degree values and just one that affects
the out-degree values, could be the reason of this behavior.

Another features we can study in the evolution of the graphs are the
proportion of nodes and links in the giant component. Figure 4.8 shows these
proportions over time for each graph. We can note that the GC emerges soon
in both process, but in the proposed model is faster. Clearly this model is not
the best to explain these features. However, both have a similar increasing
trend. After, we analyze the underlying undirected graphs and we contrast
the average degree vs the proportion of nodes in the GC. Figure 4.9 shows
that this feature neither is very good explained with the proposed model.
However, we can note that in the real data as in the model the average
degree is always less than 1, opposite to the ER model. In addition, all these
features are related. Note that if in the model the proportion of links in the
GC decrease over time, then the proportion of nodes in the GC also decrease.
Besides, if we keep the average degree, the contrast of the average degree vs
the proportion of nodes could be more similar to the reality.
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(b) Earthquake Network
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Figure 4.1: Number of total links over time.
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Figure 4.2: Proportion of New Links in New Nodes.
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Figure 4.3: Average out-degree in the new nodes over time.
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Figure 4.4: In-degree distributions at t = 50 and t = 100.
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Figure 4.5: Out-degree distributions at t = 50 and t = 100.
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Figure 4.6: In-degree scatter plot at t = 50 and t = 100.
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Figure 4.7: Out-degree scatter plot at t = 50 and t = 100.
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Figure 4.8: Proportion of nodes and links in the giant component over time.
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Figure 4.9: Average degree vs proportion of nodes in the GC over time.
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Prediction

In this section we present the proposed model with a different objetive. We
use the Soccer network to implement a simple example of prediction. We use
information from the data until the midle of the process in order to predict
information at the end of the process. It means, we use information from
G1 and until G50 in order to predict information of G100. Specifically, we
are interested in the number of links, the maximun in-degree, the maximum
out-degree and if the network modeled can be structurally similar to the real
network.

We fit the 5 parameters in the model at t = 50 with the real data. The
values αin, αout, βin were obtained with the modification of the DE algorithim
explained in Chapter 3 but with times t = 12, 25, 40, 50.

Then, we simulate the model with these parameters and we generate a
complete sequence of 100 networks. Finally, we repeat this idea 100 times
and we collect the informarion in the last networks generated.

Table 4.9 shows the values of number of links, maximun in-degree, and
maximum out-degree for the real data. Also it shows the rounded mean of
these values in the 100 simulations, and their standard deviation (SD).

Data Mean SD
Number of Links 7936 6815 3.2

Maximun In-degree 612 817 324.5
Maximun Out-degree 35 28 19.1

Table 4.9: Results of 100 simulations.

We can note that the mean of number of links is far from the reality 15%.
The mean in the maximun in-degree and maximum out-degree are far from
the reality 33% and 20%, respettively. In addition, they have a large SD like
in the BA model with superlinear preferential attachment.

Besides, in order to get information of the structural similarity we com-
pute the cut distance between the modeled networks and the real network.
These distances have mean µ̂ = 8.85e-7 and standard deviation S = 6.85e-7.
In this case, the 100 simulations return a distance smaller than a distace with
a BA model.



Chapter 5

Conclusions and Future Work

In this thesis we have worked with data downloaded from Twitter in real
time. We generated networks of users based in their interaction using the
tweets collected. We analyzed these networks and studied different models of
random graphs in order to propose a model of users interaction in this social
network.

The proposed model is a modification of the Barabási-Albert model.
There are two main difference between them. First we use directed graphs.
Second, we have the two types of non-linear preferential attachment, sublin-
ear and superlinear. Also, in the proposed model, at every step we can add
more than one vertex or edge to the graph. Moreover, we divided vertices
and edges in current and new. Instead of add edges only when a vertex is
added, we add edges in two differents updates in the model, from current ver-
tices and from new vertices. As in the BA model, the edges are added with
a preferential attachment. However, the proposed model have parameters to
use non-linear preferential attachment.

The proposed model have 5 parameters. We explained how to choose
them by a fixed data set. For example, we created a fitness function of error
and we used differential evolution (DE) to minimize it. In fact, we took
advantage of the model and we modified the DE method.

We studied the cut distance between graphs and how to analyze heavy
tailed distributions to compare the proposed model with the real data.

The proposed model have similarities with the evolution of the real net-
works by construction. Even more, the proposed model shows a better perfor-
mance structurally than the BA model by comparing with the cut distance.
Besides, a power law fit is enough to explain the in-degree and out-degree
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distributions over time in the data and in the proposed model. The fact that
we used two parameters that affect directly the in-degree distribution can be
a reason for having the in-degree values closer to reality than the out-degree
values. On the other hand, the proportion of vertices and edges in the giant
component between the proposed model and the real data are very different.
However, both have a similar increasing trend that the BA model clearly
does not have. In general, we think that the proposed model explain better
the evolution of the graphs than the BA model. Despite these results, we
believe that the proposed model could be improved.

Additionally, we tried to use the proposed model in order to predict infor-
mation in the future. We get good results in structural similarity with the cut
distance. However, specific information like the number of edges, maximum
in-degree and maximum out-degree appear to be still underpredicted.

As a future work, we will analyze other information in the graphs. For
example, the spectrum in the laplacian matrix in order to get information
about communities. Besides, we will try to develop a new model. We expect
that in the future we can also explain the proportion of vertices an edges in
the giant component. Furthermore, we belive that a new model can also fit
the number of vertices added at every step. In addition, we can parallelize
the DE method in order to analyze large graphs and to get faster results.
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degree sequence of a scale-free random graph process ; Random Structures
and Algorithms; 18:279-290; 2001.

[6] Borgs, C., Chayes, J.T., Lovász, L., Sós, V. T. and Veszter-
gombi, K.; Convergent Sequences of Dense Graphs I: Subgraph
Frequencies, Metric Properties and Testing ; Adv. Math 1801-1851
arXiv:math/0702004; 2008.

[7] Choi, J., Sethuraman, S. and Venkataramani, S.C; A scaling
limit for the degree distribution in sublinear proferential attachment
schemes ; Rand. Struct. Alg. 48, 703-731; 2015.

[8] Clauset, A., Shalizi, C.R. and Newman, M.E.J.; Power-law Dis-
tributions in Empirical Data; SIAM Review 51(4), pp. 661-703; 2009.

[9] Diestel, R., Graph Theory, fifth edition, Springer, Hamburg, Ger-
many, 2017.

53



54 BIBLIOGRAPHY
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