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Abstract: For two combinations of proportional and excess of loss reinsurance
in a renewal risk process, we investigate existence of the insurer’s adjustment
coefficient as a function of retention levels, assuming that the premiums are
calculated according to the expected value principle. In the classical Poisson
compound case with exponentially distributed claims we prove, under some ad-
ditional assumptions, unimodality of the adjustment coefficient as a function of
the retention levels. For the maximal adjustment coefficient the ruin probabil-
ity is minimal. Our results complement previous work of Waters [8], Centeno
[3] and Hesselager [4].
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1. Introduction and Background Results

In several papers and textbooks on optimal reinsurance, it is assumed that the
insurer estimates the probability of ruin using the Cramer-Lundberg approxi-
mation (if the adjustment coefficient exists). Thus, as the adjustment exponent
increases, the ruin probability decreases exponentially fast. The effects of rein-
surance treaties on the Cramer-Lundberg coefficient have been investigated in
various papers (see e.g. Waters [7], [8], Hesselager [4], Kaluszka [5], Centeno
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[1], [2], [3]), and the references therein). Assuming that the reinsurer premi-
ums are calculated according to the standard deviation and variance principles,
Hesselager [4] studied optimal reinsurance treaties when both, the insurer and
the reinsurer, aim to minimize their ruin probabilities. He considered three
different types f4, fZ and fC, of reinsurance compensation functions, namely

fAz) = ar+ (1 —a)max{0,z — M},
fB(x) = min{az, max{0,z — M}},
) = amax{0,z — M},

where a € [0,1] and M > 0 are fixed parameters of the model, termed retention
levels. Hesselager proved that for all global and individual reinsurance treaties
with general Vajda compensation function f, the corresponding reinsurer’s ad-
justment coefficient Ry fulfills

RfA S Rf S RfB,
and if f is convex, then

RfA < Rf < Rfc.
As a consequence, the ruin probability for the reinsurer is minimal for reinsur-
ance treaties B and C, respectively.

Centeno [3] investigated reinsurance treaties of type A for renewal risk mod-
els. In the case when the proportional reinsurance premium is calculated on
original terms, and the excess of loss premium is calculated according to the ex-
pected value principle, she proved that the insurer’s adjustment coefficient has
a unique maximum with respect to the retention levels a and M (this property
of the coefficient is called unimodality).

Following the approach of Centeno [3], in this paper we investigate reinsur-
ance treaties of types B and C. Assuming that the premiums are calculated
according to the expected value principle, we obtain conditions for existence of
the insurer’s adjustment coefficient as a function of levels M and a. In the case
of classical risk processes with exponentially distributed claims, under some
restrictions on the reinsurance levels a, M and the premium ¢, we also prove
unimodality of the adjustment coefficient.

The general renewal risk model is described as follows (for more details
see e.g. Rolski et al [6]). The number of claims N(¢) arriving at a insurance
company in the time interval [0,¢] is given by N(t) = sup{n : S,, < t}, where
So=0,8,=Ty+T5+---+1T,, and T}, is the interarrival time between the
(n — 1)-th and the n-th claims. We suppose that {7,,}2°; is a sequence of
independent and identically distributed random variables with mean value 1/~.
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Let { X, }2° | be a sequence of non-negative, independent and identically dis-
tributed random variables, having common distribution function F' with mean
u and density function f. Here X, corresponds to the amount of n-th claim.
We assume that the moment generating function My (r) = E[e"™i] exists on
(—o0,7) for some 0 < 7 < co. We also assume that {X,,}>°, is independent of
{T},}72 1, and that F' is strictly increasing in [0, c0) with F'(0) = 0. This implies
0 < F(x) <1 for all x > 0. The risk process {Y;, t > 0} is defined by

N(t)

Y(t)=ct— ) X,
n=1

where ¢ > 0 is the insurer’s premium income per unit time. The classical risk
process corresponds to exponentially distributed interarrival times. The ruin
probability ¢ (u) associated to an initial capital u > 0 is defined by
(u) =inf{t >0:Y(t) <0}.
We suppose that our model satisfies the positive safety loading condition
c > A, (1)

which yields ¢(u) < 1 for each u > 0.

Let Y, = X, —cT,,,n = 1,2,..., and let g(r) = Ee"™ be the moment
generating function of Y,,. The adjustment coefficient R of the risk process
{Y (t), t > 0} is defined as the unique positive solution to the equation g(r) = 1,

when such solution exists, and 0 otherwise, and satisfies the Cramer-Lundberg
inequality

d(u) <e ™ uw>0, (2)
and the Cramer-Lundberg approximation
P(u) =~ Ce " u — oo, (3)

for some constant C.

Because of the last inequality, the adjustment coefficient is considered a
measure of riskiness of {Y(¢), ¢t > 0}. Hence, maximization of R as a function
of the parameters of the process is relevant; we will consider the important case
in which the insurance company takes a reinsurance contract.

2. Results and Proofs

We suppose that the insurer has the choice of reinsuring risk by reinsurance
treaties of type B and C. This means that the reinsurer retains in the n-th
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claim the amounts
ZB = min{aX,,, max(0, X,, — M)},
and
z¢ = amax{(0, X,, — M)},

respectively, and the reinsurer covers the difference X,, — Z,,. We will suppose
that the retention limits a and M are real numbers satisfying M > 0 and
0 < a < 1 (the case a = 1 is a particular instance of the reinsurance model
studied by Centeno [3]).

We also assume that the corresponding reinsurance premiums PfM and

Pg s are calculated according to the expected value principle with loading co-
efficient «, i.e.,

Pl = (14 a)yE[Z]] = (1 + a)yEmin{aX,, max(0, X, — M)}]
/” of () de — M [F( M, F(M)] + /: axf(x)dx] ,

M 1—a

= (1 +a)y

1—a

and
PEM = (1+ a)'yE[Zf] =(1+a)y [/Moo(fz: — M) f(x) dl‘:| .

Thus, for treaties of type B, the insurer’s adjustment coefficient R, ys is the
unique positive root of

Garr(r) == E[er(Xn—Zf)—chJrrTPfM] _q @

if such solution exists, and 0 otherwise. The adjustment coefficient for treaties
of type C' are defined similarly. Since

() ~ Ot
for big u by (3), a natural question is to determine whether the adjustment

coefficient is a unimodal function of the parameters a and M and what is its
maximum.

In addition to (1), let us assume that
(I+ a)yu > c. (5)
This condition reflects the fact that the insurer cannot insure the whole risk.

Let us denote by W (a, M) the insurer’s net profit per period of time after
reinsurance. We write
c—p
ayp




MINIMIZING THE RUIN PROBABILITY OF... 87

and put
A={a:0<a <1, and there exists M > 0with EW (a, M) = 0}.

From (1) and (5) it follows that 0 < a9 < 1. Notice that

EW (a,M) = c—(1+a)vEZ, —~vE (X, —Zp)

= c—avyEZ, —ypu.

Let L be the set of points (a, M) for which the expected profit is strictly positive,
namely

L={(a,M):0<a<1, M >0, E[W (a,M)] > 0}.
The following result can be proved similarly as in Centeno [3].

Lemma 1. For both types of reinsurance treaties B and C, the adjustment
coefficient R, nr is positive if and only if (a, M) € L.

Our first result is the following theorem.

Theorem 1. Under conditions (1) and (5), for both types of reinsurance
treaties B and C,

a) A= [ag,1).

b) For all a € A there exists a unique M > 0 such that E[W (a,M)] = 0.

Let us denote this dependence function of M on a by ®(a), where ® : A —
[0,00). Then for M > ®(a) we have that Rq pr > 0.

¢) ® has continuous first derivative.
d) ®(ap) = 0.

Proof. Let 1 > a > ag. Due to condition (5) we have
E[W (a,0)] =c—avyap —ypu <0
for both types of reinsurance treaties B and C. The safety loading condition
gives
lim E[W (a,M)] =c—yu>0.

M—o0
Since EW (a,-) is continuous, the equation
E[W (a,-)] =0 (6)
has at least one positive solution. In case of reinsurance treaty B

WM _ [ ()~ ran] o, 9

oM —
whereas in case of reinsurance treaty C,
oF W (a, M
OEW LML _ 1 — P(MY) > 0, ®)

oM
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which shows that the solution to (6) is unique. Moreover, there is no M > 0
satisfying E'[W (a,M)] = 0 for 0 < a < ap. This follows from (7), (8), and
the inequalities EW(a,0) > 0, 0 < a < ag. Using again (7), (8) and that
EW (ag,0) = 0, we obtain a) and b). Part c) follows easily from the explicit
function theorem, and d) is a consequence of ¢) and the fact that EW (ag,0) =
0. U

The study of unimodality of R, »s as an implicit solution of (4) can be com-
plicated for general distributions of 7" and X,,. Here we consider the particular
case of a classical risk process with exponentially distributed claims. Without
loss of generality, we can assume that p = 1.

We have the following results on the unimodality of the adjustment coeffi-
cient.

Theorem 2. Consider a classical risk process with exponentially dis-

tributed claims and reinsurance treaty of type B. Let a > ag, and we assume
YIn[(1 + a)1] } | o)

v—1
Then, the insurer’s adjustment coefficient R, ys is a unimodal function of M,
and attains its maximum at the point R’ = M~'In[(1 + a)y]. In particular,
the maximal adjustment coefficiet coincides with the maximal adjustment co-
efficient obtained by Centeno [3] in the case of the classical risk model with
exponentially distributed claims and reinsurance treaty of type A.

lI+a)yy>c>vy>1, M>max{a,

Proof. We have
Puns = (1+ a)yE[min{aX,, max(0, X,, — M)}]
=(1+4a)y [e’M - (1- a)e_ljl/[a]

and
—Cr 1
ElerTPam—erT] — —r - (10)
1+er—r(l+a)y [e*M —(1—a)e 1*«1]

Calculating the moment generating function of X,, — Z,, we obtain that it
exists for r < 1T1a> and for r # 1,
E[er(Xn—Zn)]
(T_I)M 1 M(r—ra—1) 1 M(r—ra—1)
_ € B p— M(r—1) — T 11
— — — l1—a — l1—a
r—1 r—1 te r—ra—1° - (1)
Let us note that for a > ag, and M satisfying (9), we have E(W(a, M) > 0,
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that is
M Cc—
eM_(1-a)e T < ’Y, (12)
ay
hence the adjustment coefficient R, s exists and is positive, from Theorem 1.

Substituting (10) and (11) into (4), we obtain that R, as satisfies the equation

Ala, Ro s M) =0, (13)
where
Ala,r, M) = (r—ra—1)eIM
A+ ar(r—1)(r —ra— D™ — (1 - a)e 174]
M(r—ra—1)

—(r=1)(1—-a)e T« —(r—ra—1)[1+(r—1)c.
We will show that the solution R, js is a unimodal function of M.

Indeed, the implicit function theorem gives
iR __(d/dM)A(a,r,M)|
oM = dr) Aa, v, M) T e

——A(a,r, M) = (r—1)(r—ra—1)e M

+1+a)y(—e M +e7ima) —c
— (=D —ra— 1M — (1+an]le M —e ),
the function R(a, M) has a unique possible inflection point, given by
B In[(1 + )]

M
Wi . d? A(a,r,M) . . .
e will prove that dT|T: r < 0, thus showing that R, js is a unimodal

function of M, attaining its maximum at R'.

R (14)

Differentiating R, as twice with respect to M at the point R, we obtain
from the implicit function theorem that

d*Ra | - (d?/dM?)A(a,r, M) |
amz T T Ay Ala, r, M) T
Calculating the derivatives in this expression, we get
d?A(a,r, M _ _ M
%h:}g/ =(1+a)yr(e™ —e1-a)>0.

Calculating the derivative (d/dr)A(a,r, M), we have
dA(a,r, M)

g = 1-—a)e™ M L M(r—ra—1)er—DM
”
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—(1+a)y(r—ra—1)e™-(1 —a)eilj\fa
L+ a)y(r = )(1—a)fe™ — (1 - a)e” 177

—(1 - a)eM(rfﬁ) —(r— 1)M€M(r7ﬁ)
—(1—-a)l+4+rc—c)—c(r—ra—1).
Substituting (14) in the previous equation and using (12), we obtain
(@/dr) A7, M)
= 14+a)y(1—-ae™+1A+a)y(R —Ra—-1)Me ™™ (15)
1+ a)y(R — Ra—D[e™ — (1 - a)e 174]
M

—(

—(1+a)y(R = 1)1 —a)le™ = (1 - a)e1=4]
—(14+a)y(1 —a)e” e (1+a)M~(R — 1)67%
—(

1—a)(l —I—R'c—c) —c¢(R' = Ra-1)
> (1+a)y(1 -a)e ™4+ 1A +a)y(R —Ra—-1)Me™
N
~(14+a)y(R — Rla—1) =
—ﬂ+ahﬂ?—Uﬂ—af;;

(14 a1l —a)e T — (1+a)y(R —1)Me 1=
—(1—a)1+Rec—c)—c(R — Ra-1).
Further, using e > 67%, and R’ < 1, it holds
(d/dr)A(a,r, M)|,=r

> (1+a)y(~R +Ra+1)[-Me™ + c

m] —(1—a)(1+ Rc—c)

> 0,

where in the last inequality we used our assumptions on ¢, M and -, to obtain
that both addends are positive. O

Theorem 3. Consider a classical risk process with exponentially dis-
tributed claims and reinsurance treaty of type C. Let a > ag. Under assump-
tions (1) and (5), there exists some positive constant My, such that for all
M > My, the insurer’s adjustment coefficient R, ns is a unimodal function of
M, and attains its maximum at the unique point satisfying

ln[a(l + Ra,Ma — Ra,M)]-

M = L
Ra,M



MINIMIZING THE RUIN PROBABILITY OF... 91

Proof. We proceed similarly as in the proof of Theorem 2. We have
P.y = (1 + a@)yaE[max(0, X,, — M)] = (1 + a)yae™ M,

and
1
E rT'Pg ay—crTy) 16
le ] 1+cr—r(l+ a)yae™™ (16)

for all r satisfying
1+cr —r(1+a)yae™ > 0.

The moment generating function of X,, — Z,, exists for r < 1T1a7 and is given

for r # 1 by

1 raeM (=1
r—1 (=D —ra—1)
Substituting (16) and (17) into (4) yields that for fixed a > a9, M > ®(a), the
adjustment coefficient R, ys exists and solves the equation

M(r—1)

E[er(anZn)] _

(17)

1 rae
r=1 (=10 —-ra—1)

which is equivalent to
Ala, M,7) == (r—=1)(r—ra—1)[1+cr—(1+a)are M]4+raeM=Y 4r—ra—1 = 0.
(18)

=1+cr—r(1+ a)yae ™,

From the implicit function theorem we obtain

iR __(d/dM)A(a,M,T)|

dM M T T d dr) Aa, M) T Rea
The possible inflection points R” of R, pr satisfy (d/dM)A(a, M,r)|,—p+» = 0.
Since

(d/dM)A(a, M,r) = r(r — a1+ a)(r —ra—1)e M 4 M=),

we obtain that R” satisfies
1 1 1" i
M= nja(l+R'a— R )]
R//
From the previous expression we obtain that limy; ..o R’ = 0, hence there

exists M > 0 such that for M > M; we have R"” < 1.

We will show that there exists My > 0 such that for M > My we have
2
%h:m < 0, thus proving that R, s is a unimodal function of M,
attaining its unique maximum at R”. We have
d%/dM?)A(a, M, )
@2 JAM2) Ry = - S Py
(&/dM") Ra,pr (d/dr)A(a, M, r) =,
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and for M > M,
(d?/dM?)A(a, M, 7)|,—pr = —R"™*(R" — 1)ae " Ma(R" — R"a — 1) < 0.
On the other hand,
(d/dr) A(a, M,7) g
= (R"—R'a—1)[1+cR"—(1+a)aR e M +(R"—1)(1 —a)[l +cR"

—(1+ a)aR"e ™M)
+(R" = R'a—1)jc— 1 +a)ae M +a(l+a)e ™1+ R'a—R"
+R"aMe ™1 +a)(1+R'a—R")+1—-a.

Using that limp;_,o, R’ = 0, we obtain

A}iinoo(d/dr)A(a, M,R")=—-1-¢<0,

hence there exists My such that for M > M there holds
d?>A(a, M,r)

M2 |r:RZ,M < 0. O

3. Conclusions

For renewal risk models we considered two different types of reinsurance treaties,
B and C| respectively, which are combinations of excess-of-loss and quota-share
contracts. Following the approach of Centeno [3], in Theorem 1 we obtained
conditions on the reinsurance levels ¢ and M and on the premium ¢, which
give for general renewal risk models existence of the corresponding adjustment
coefficients R, ar.

Due to the complicated form of the equation which satisfies the adjustment
coefficient R, ps for general renewal risk models, we considered the particular
case of classical risk models with exponentially distributed claims. In case of
reinsurance treaty of type B, we obtained in Theorem 2 explicit conditions on
a, M, and ¢, under which the reinsurance adjustment coefficient R, ps is a uni-
modal function of M. The maximal reinsurance coefficient is the same as the
maximal adjustment coefficient obtained by Centeno [3], for a different type of
reinsurance treaty, and in this case the ruin probability is minimized among all
the reinsurance contracts of type B. Unimodality of R, ps for general renewal
risk models with reinsurance treaties of type B remains to be investigated.
For classical risk models with exponentially distributed claims and reinsurance
treaties of type C, we obtained unimodality or R, when M > My, for some
constant My, thus minimizing the ruin probability for such reinsurance con-
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tracts It remains to study the unimodality of R, ps for reinsurance treaties of
type C, for general renewal risk models.
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