
Available online at www.sciencedirect.com
Applied Mathematics and Computation 200 (2008) 378–386

www.elsevier.com/locate/amc
A nonstandard difference-integral method
for the viscous Burgers’ equation
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Abstract

We develop a nonstandard difference-integral method based on a nonstandard finite difference method coupled with a
CE–SE scheme. We use the viscous Burgers’ equation with preestablished conditions as a benchmark for testing our
method. Numerical results obtained show that this new method is more robust and efficient than the associated standard
difference-integral method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The phenomenon of the transport generated by a viscous fluid can be modeled by the viscous Burgers’
equation, which is given by
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where x and t are the spatial and time variables, respectively, u ¼ uðx; tÞ is the velocity of the fluid and s is the
viscosity constant of the fluid.

Eq. (1) has been the subject of intense numerical scrutiny, as a result, several high resolution methods have
been adapted and developed to solve it. Many of these methods use standard difference finite methods, for
example: flux corrected techniques (FCT) [1–3], total variation diminishing schemes (TVD) [1,4], CE–SE
method [5–7], and so on. Of the previous high resolution numerical methods, the CE–SE numerical scheme
(method of space–time conservation element and solution element) was developed in the nineties [5]. This
scheme has given very good results for problems with oscillating solutions which is a consequence of its prop-
erties: conservation of the physical characteristics of the solution, accuracy of the constructed numerical
solution and low computational cost [7]. The CE–SE method uses two discretizations of the space–time
003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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domain, one for approximating the solution of (1) and the second for approximating an integral form
obtained from (1).

The goals of this paper are: (i) to develop a nonstandard finite difference method which maintains the sim-
plicity of the calculations and improves the results obtained by a standard finite difference scheme for handling
the diffusion part of Eq. (1), (ii) to couple our nonstandard difference method with the CE–SE numerical sol-
ver for the Burgers’ equation.

The finite difference algorithm that we develop in this paper is based in the nonstandard difference method
introduced by Mickens [8,9]. Mickens uses the generalized form of the discretization of the second derivative,
o2u
ox2
¼ lim

h!0

uðxþ h; tÞ � 2uðx; tÞ þ uðx� h; tÞ
uðhÞ ; ð2Þ
and obtains the nonstandard function uðhÞ by calculating the exact solution of a second order differential
equation. Mickens’ method produces discrete solutions that are exact for particular equations and therefore
have the same properties as their analytical solutions. In order to use this idea, we consider that the spatial
second derivative of the solution of Eq. (1) is a spatial second order polynomial in the function u. The devel-
oped difference method is then coupled with a CE–SE numerical scheme.

The paper is organized as follows: In Section 2, a nonstandard difference finite method is developed. In the
following section, the nonstandard CE–SE method for Burgers’ equation is constructed. Finally, for the val-
idation of the nonstandard CE–SE method we consider the exact solution of Burgers’ equation with preestab-
lished conditions. In the numerical results, we show the improvement of the nonstandard approximation over
the approximation obtained with a associated standard CE–SE method.
2. Nonstandard finite difference method

The first stage of our work is to find a nonstandard function, uðhÞ, assuming that our approximated solu-
tion, wðx; tÞ ¼ wtðxÞ of (1), satisfies the following differential equation:
o2wt

ox2
¼ aw2

t þ bwt; ð3Þ
where a and b are constant coefficients. The exact solution of (3) is
wtðxÞ ¼
6b
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; ð4Þ
where k is a constant of integration. Substituting (4) in (2) we get,
o2wt

ox2
¼ lim

h!0

wtðxþ hÞ � 2wtðxÞ þ wtðx� hÞ
uðhÞ ; ð5Þ
and after some algebraic manipulations, a nonstandard function uðhÞ is obtained as it is indicated in the fol-
lowing proposition.

Proposition 2.1. The function uðhÞ ¼ 1
b ðe

ffiffi
b
p

h � 2þ e�
ffiffi
b
p

hÞ satisfies the following properties:

(i)
uðhÞ 6¼ h2;
(ii)
o2wt

ox2
¼ lim

h!0

wtðxþ hÞ � 2wtðxÞ þ wtðx� hÞ
uðhÞ ;
(iii) uðhÞ is a nonstandard function associated to the Eq. (3).
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Proof

(i) Straightforward by definition.
(ii) It follows from
lim
h!0

uðhÞ
h2
¼ lim

h!0
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(iii) To get a nonstandard function uðhÞ, we use the calculated solution in (4) obtaining:
wtðxþ hÞ � 2wtðxÞ þ wtðx� hÞ ¼ 6b
a

z
y

ð1� zyÞ2
� 2

ð1� zÞ2
þ y�1

ð1� zy�1Þ

" #
; ð7Þ

where z ¼ ke
ffiffi
b
p

x and y ¼ e
ffiffi
b
p

h. After simplifications of (7), we have

wtðxþ hÞ � 2wtðxÞ þ wtðx� hÞ ¼ ðy � 1Þ2

y
6bðz5 þ 2z4 þ 2z3 þ 2z2 þ zÞ � 12bðy þ 2þ y�1Þz3

að1� zÞ2ð1� zyÞð1� zy�1Þ

" #
: ð8Þ

Finally, we divide both sides of (8) by ðy�1Þ2
by obtaining,

wtðxþ hÞ � 2wtðxÞ þ wtðx� hÞ
1
b ðy � 2þ y�1Þ ¼ 6b2ðz5 þ 2z4 þ 2z3 þ 2z2 þ zÞ � 12b2ðy þ 2þ y�1Þz3

að1� zÞ2ð1� zyÞð1� zy�1Þ

" #
: ð9Þ

According to the generalized form (2), we take

uðhÞ ¼ 1

b
ðe
ffiffi
b
p

h � 2þ e�
ffiffi
b
p

hÞ: ð10Þ

So we have obtained a nonstandard function uðhÞ, which gives an approximation to the spatial second
derivative of uðx; tÞ, which is the base for our nonstandard finite difference method.
3. Nonstandard CE–SE method

Our second stage is to couple our previous method with the CE–SE method [5] for the viscous Burgers’
equation. The domain ½b1; b2� � ½0; T � is discretized by a mesh formed by a set of points or nodes, ðxj; tnÞ
for j ¼ 1

2
; 1; 3

2
. . . ;M and n ¼ 1

2
; 1; 3

2
; . . . ;N . For simplicity, we take equally spaced nodes, with spatial variation

h ¼ xjþ1
2
� xj�1

2
and with step of time k ¼ tnþ1

2 � tn�1
2 with n and j alternatively an integer number and a semi-

integer one or vice versa, see Fig. 1. Fixed a spatial variation, h, we calculate the step of time, k, verifying the
CFL condition defined in [6].

The CE–SE method uses two discretizations, defined in [5], of the space–time domain: solution elements
(SE(j, n)), non-overlapping opened rhombus centered in ðxj; tnÞ where the numerical approximation is
expressed by a quadratic Taylor expansion and conservation elements (CE(j,n)), non-overlapping rectangles
Fig. 1. Discretization of the space–time domain.
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where an integral form of the Eq. (1) is required, in each rectangle take part three different SE’s,
SEðj; nÞ; SE j� 1

2
; n� 1

2

� �
; SE jþ 1

2
; n� 1

2

� �� �
, as it is shown in Fig. 1.

In each solution element, SEðj; nÞ, we approximate the function uðx; tÞ by means of a second order Taylor
polynomial in the spatial variable, given by
wðx; t; j; nÞ ¼ rn
j þ an

j ðx� xjÞ þ �n
j ðx� xjÞ2 þ bn

j ðt � tnÞ; ð11Þ
where
rn
j ¼ wðxj; tn; j; nÞ;
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2
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To obtain the numerical solution described in (11), it is necessary to compute the coefficients
rn

j ; a
n
j ; �

n
j and bn

j ; 8j; n. We assume that the coefficients of the time step n are known and we show how to cal-
culate the coefficients of the next step, nþ 1

2
. For the calculation of r

nþ1
2

j , we use the resolution of the integral
form of the differential equation (1) in each CE j; nþ 1

2

� �
, see Fig. 1,
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Applying the Green’s theorem to (13a), we obtain the following path integral defined in the boundary of
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We decompose the integral (13b) as the sum of three integrals defined in each SE,
Z Z
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By (12), we use the following approximation
�
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2
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2
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ox2
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then we consider two options to approximate the second spatial derivative of the function w in ðxj; tnÞ:

1. A standard finite difference method:
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2. Our nonstandard finite difference method (Section 2):
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where b is a real constant.

In the boundary of the domain, we calculate �
nþ1

2
0 by using a second order forward differences and �

nþ1
2

M by
means of second order backward differences.

Substituting (16) or (17) in (15), the integrands of three integrals defined in each SE are constants, and Eq.
(13b) is approximated by
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By replacing (13a) and (13b) by (14) and (18), respectively, we obtain the following equation:
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We solve this resulting equation by substituting �
nþ1
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2
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2
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In order to obtain the coefficients a
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2
j , we use the expression described in [5],
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jaþjca�þja�jcaþ
jaþjcþja�jc ; jaþjc þ ja�jc 6¼ 0;

0; jaþjc þ ja�jc ¼ 0;

(
ð20Þ
where aþ and a� are the forward and backward standard differences of the first order, respectively, and c is a
positive real constant. The aim of the constant c is to smoother the approximation of the spatial partial deriv-
ative of x. In the boundary of the domain we calculate anþ1=2

0 using aþ, and anþ1=2
M by using a�.

Finally, to obtain the coefficients b
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a Taylor series of w2 and truncating the terms of higher order. Therefore,
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Once the coefficients r
nþ1

2
j ; a

nþ1
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j ; b
nþ1

2
j and �

nþ1
2

j are known, the solution (11) is defined in each SE j; nþ 1
2
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and we

have completed half time step of integration.

If �
nþ1

2
j ¼ ½�nþ1

2
j �NS, we get a nonstandard integro-differential method (nonstandard CE–SE scheme) and if

�
nþ1

2
j ¼ ½�nþ1

2
j �S, we obtain the associated standard integro-differential method (standard CE–SE scheme).

4. Numerical results

In this section we will make use of the viscous Burgers’ equation to demonstrate the effectiveness of our non-
standard CE–SE scheme in solving nonlinear problems. We choose this equation for testing our method by two
reasons: the first one is that an exact solution with preestablished conditions is known, namely
uðx; tÞ ¼ � 2 sinhðxÞ
coshðxÞ � e�t

; ð22Þ
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for s ¼ 1 and boundary conditions, uð�9; tÞ ¼ 2, uð9; tÞ ¼ �2 for t 2 ½0; T �, and the second reason is that the
solution (22) presents very fast changes for initial times and several methods are inaccurate and unstable in
these changing regions. The numerical CE–SE scheme is a high resolution method for problems with oscillat-
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Fig. 2. Solution Burgers’ equation in T ¼ 0:1 for h ¼ 0:2.
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Fig. 3. Error Burgers’ equation in T ¼ 0:1 for h ¼ 0:2.
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ing solutions, therefore we consider important to compare the numerical results of our method with an asso-
ciated standard CE–SE method.
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Fig. 4. Solution Burgers’ equation in T ¼ 0:4 for h ¼ 0:2.
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Fig. 5. Error Burgers’ equation in T ¼ 0:4 for h ¼ 0:2.
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Fig. 6. Solution Burgers’ equation in T ¼ 0:1 for h ¼ 0:6.
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Fig. 7. Solution Burgers’ equation in T ¼ 0:4 for h ¼ 0:6.
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The numerical tests were realized for increments 0:2 6 h 6 0:65 and k ¼ 0:01, with CFL ¼ 0:95,
c ¼ 1:5 and b was adjusted inside the scheme in every time step by
bnþ1
2 ¼ d max06j6M jxn

j j �min06j6M jxn
j j

h i
; n ¼ 0;

1

2
; 1;

3

2
; . . . ;N ;
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where the parameter d was taken depending of the size of the oscillation of the initial condition, in general we
considered d ¼ 3:8. A very important feature that is obtained from the numerical results is that in regions with
fast and slow changes of the exact solution, the nonstandard CE–SE method is very accurate with an absolute
error less than 5%, (see Figs. 3 and 5), whereas the standard CE–SE method approximates accurately the solu-
tion only away from the changes and there the error is less than 1%. The absolute error for the standard
approximation grows up to 45% in neighborhoods close to changes of the solution. Figs. 2 and 4 show the
behavior of the exact solution and their corresponding approximations from both methods for
T ¼ 0:1 and 0:4. Here one may observe the high precision of the nonstandard CE–SE method. It is of para-
mount importance to emphasize that for times smaller than 0.1, our method keeps its accuracy even though
the solution presents steeper changes than the ones shown in the previous figures.

For spatial increments relatively large, the standard CE–SE scheme becomes unstable at initial times and
diverges at later times as is shown in Figs. 6 and 7. In these figures, the robustness of the nonstandard CE–SE
method is shown, that is, this method is stable and converge to the exact solution.

5. Conclusions

In this work we have developed a nonstandard integro-differential method of high accuracy in regions with
fast or slow changes of the solution with good stability properties even for large spatial variations. Therefore,
our method has a low computational cost which is an important feature sought in order to solve many prob-
lems of fluid dynamics that appear in engineering. A future work is to establish the exact region of stability of
our nonstandard method, since we have numerical evidence that it is bigger than the region of the standard
method.
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