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Abstract

The paper deals with Lévy processes with values in Ly (H), the Banach space of trace-class
operators in a Hilbert space H. Lévy processes with values and parameter in a cone K of Ly (H)
are defined and several properties are established. A family of L;(H)-valued Lévy processes is
obtained via the subordination of K- parameter, Li(H )-valued Lévy processes.
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1 Introduction

Subordination of a finite dimensional Lévy process {X; : ¢ > 0} by an independent one dimensional
positive Lévy process {Z; : t > 0} is a largely studied area, see for example Bochner (1955), Sato
(1999, 2001). The subordinated process Y; = Xz,,t > 0, is still a Lévy process, whose characteristic
triplet can be obtained in terms of the characteristic triplets of the processes X and Z (Sato (1999,
Th. 30.1).

Real valued processes with parameter in a finite dimensional cone K are considered by Bochner
(1955) as multidimensional time variable. The Gaussian case has been studied by Lévy (1948),
Chentsov (1957), McKean (1963), Orey and Pruitt (1973) and Khoshnevisan and Shi (1999). In
general, subordination in higher dimensions is not done in a unique manner. Barndorff-Nielsen,
Pedersen and Sato (2001) introduce K-parameter Lévy processes with values in a finite dimensional
space and study a type of subordination by K-increasing Lévy process when K = R’!. Other



type of subordination of K-parameter convolution semigroups and K-parameter multivariate Lévy
processes are studied in Pedersen and Sato (2001) for a proper cone K of R™. In the last two named
papers the authors are able to identify the characteristic triplet of the subordinated process when
K is a cone with a basis.

The present paper deals with Lévy processes, subordination and trace-class operators. The
latter operators are important in probability theory and stochastic analysis in infinite dimensional
spaces, since positive trace-class self-adjoint operators are the “covariance operators” of Gaussian
measures in Banach spaces (Kuo (1975)). Therefore, it is natural to study random covariance
operators and their corresponding Lévy process.

Let Li(H) be the Banach space of trace-class operators in a separable Hilbert space H and let
K be a cone of covariance operators in Li(H). In this paper we study K-increasing Lévy processes
{Z; :t > 0} and introduce the K-parameter Lévy processes {X(5);S € K} with values in L;(H).
The subordinated L;(H )-valued Lévy process Y; = X(Z;), t > 0, is constructed, identifying its
characteristic triplet in terms of the corresponding characteristic triples of X and Z, in the case
when the cone K has a basis. Our corresponding finite dimensional consequence do not recover the
results of Barndorff-Nielsen, Pedersen and Sato (2001) and Pedersen and Sato (2001), but they are
rather of different nature, giving new results for the finite dimensional case that includes symmetric
real matrices. Our approach is such that the parameter set and the state of the process belong to
the same space. This provides another approach to subordination in the finite dimensional case.

The paper is organized as follows. Section 2 recalls several facts and introduces notation about
Li(H)-valued Lévy processes and trace class operators. Section 3 studies the Lévy-Khintchine
representation of subordinators taking values in a cone K of covariance operators. Examples and
a detailed study of their corresponding Laplace transform is also presented. Section 4 introduces
the K-parameter L;i(H)-valued Lévy processes and derives a representation theorem for them as
well as some useful tail and moments estimates. Section 5 derives the characteristic triplet of a
trace-class-valued Lévy process obtained via the subordination of a covariance-parameter L (H)-
valued Lévy process by a covariance-valued subordinator. For the sake of completeness we include
the corresponding result for the case of symmetric real matrices with basis.

2 Preliminaries and notation

In this section we recall well known facts and assemble some basic notation about trace-class
operators in a separable Hilbert space as well as Lévy processes taking values in the Banach space
of trace-class operators.

2.1 Trace-class operators

Throughout this work, (L1(H),|-||[;) will denote the separable Banach space of trace-class oper-
ators of a separable Hilbert space H whose inner product is denoted by < -,- >. We recall that
a compact operator S of H is said to be of trace-class if Z]Oil sj < oo, where s;, j > 1, are the



eigenvalues of the positive compact operator |S|. The norm of a trace-class operator S is defined
by [[S[l; = 72 s;j- The trace of S in Li(H) is defined by tr (S) = 3772, (Se;, €;), where {e;} is
a complete orthonormal set of H. The dual space of Li(H) will be denoted by L%(H) and L} (H)
will denote the cone of positive trace-class (covariance) operators in Li(H). An important fact
that will be used often is that tr(S) = ||S||; when S belongs to L (H), because the eigenvalues of
a positive operator are nonnegative. It is well known (see for example Reed and Simon (1980, Th.
VI1.26)) that Lj(H) = L(H), where L(H) is the Banach space of bounded linear operators in H.
More precisely, for every continuous linear functional f € Lj(H) there exists V in L (H) such that

f(S) =tr(VS) for every S € Ly (H). (1)

Often, f in (1) shall be denoted by fy indicating that fi(S) = tr(V.S). Linear functionals in (1)

take values in the complex numbers C, therefore V is no necessarily self-adjoint. They will be
R-valued linear functionals when V' and S be self-adjoint operators. We recall that f is positive
linear functional (with respect to L] (H)) when V and S are positive operators.

When dealing with characteristic functionals we will assume in (1) that both, V' and S are
self-adjoint operators, unless otherwise stated.

A nonempty closed convex set K of a Banach space B is said to be a cone if A\ >0 and z € K
imply Az € K. A cone K is said to be generating if B = K — K, that is, every x € B can be written
asx =x1 — 29 for x1 € K and 29 € K. A cone K is called a proper cone if x = 0 whenever = and
—zxare in K. Let K be a cone of B and let B* be the topological dual of B. The dual cone K* of
K is defined as the set of positive linear functional (with respect to K)

K*={feB*: f(s) >0 for every s € K}.

We observe that L (H) is a proper generating cone for Ly (H) (Reed and Simon (1980, p. 212)).

2.2 Trace-class-valued Lévy processes

A Lévy process {X; : t > 0} with values in L;(H) is a stochastically continuous process such that
Xp = 0, it has independent and stationary increments and it is a right-continuous with left-limit
(cadlag) process. From the Lévy-Khintchine representation of the characteristic functional of a
separable Banach space valued Lévy processes (see Gihman and Skorohod (1975, Th. IV.5)) we
obtain the corresponding one for trace-class valued Lévy processes.

Theorem 1 Let {X;:t >0} be a Lévy process with values in Li(H). Then, its characteristic
functional Eetf(Xt) has the form

1 . if(z ;
exp {t <—2A(f, f)+if(y)+ /L1(H) [e CONN . zf(:p)l{\\z||1g1}(£v)} V(d$)> } ) (2)



for f € L(H), where v is in Li(H), A(f, f) is a nonnegative quadratic functional in f, v(A) is a
finite measure in A € B for all € > 0, such that for any continuous linear functional f

/” P @t <o (3)

Also, from Theorem IV.8 of Gihman and Skorohod (1975) we obtain the next result for bounded
variation trace-class-valued Lévy processes.

Proposition 2 Let {Z; : t > 0} be a L1(H)-valued Lévy process. Then, {Z;} has bounded variation
on each interval [0,t], with probability 1, if and only if, it has characteristic functional is given by

B = eqp {t (/Ll(H) <eif(x) _ 1) v(dx) + if(’y)) } fe Li(H),

where v € L1(H) and the Lévy measure v satisfies
[ el <o ()
0<[Jz]l, <1

The triplet of parameters (A, v,~) in Theorem 1 is called generating triplet of X and it is
unique. We recall from Araujo and Giné (1980) and Linde (1986) that a o-finite measure v on a
separable Banach space B with v({0}) = 0 is called Lévy measure if the function

fr— eXp{/ [eim) —1—if(x)lgzy<y(@)| v(d2)}  f€ B, (5)

is characteristic functional of a probability measure on B.

In general, identification of Lévy measures in Banach spaces is not an easy problem. It is
known (Linde (1986)) that a weak limit of a sequence of infinitely divisible probability measures in
a separable Banach space is infinitely divisible, however, the corresponding sequence of generating
triplets does not converge necessarily to the generating triplet of the weak limit. In this direction
the following two results will be useful in the sequel. The first is a special case of Linde (1986,
Prop. 5.7.4) and the second one follows straightforward.

Theorem 3 Let py,, n > 1, and po be infinitely divisible probability measures on Li(H) with
generating triplets (An, Vn,vn) and (Ao, 1o ,70) respectively. Suppose that py, converges weakly to
wo- Then we have the following

a) If vo({[|zll, = 1}) = 0 then v, — 0.
b) Let P, and Py be the probability measures corresponding to v, and vy whose characteristic
functional are given by (5). Then P, converge weakly to Py provided v, — 7o and

0l0 n—oo

limliminf/ f (@) vn(de) =0 fe LE(H).
el <5



Proposition 4 Let g(f,z) = e/(®) — 1 — if (@)1ge),<1y(x) for f € L(H). Let v be a measure on
Li(H) satisfying v(||z||; > 1) < oo and
f”$||1<1 |f(2)? v(dx) < oo for all continuous linear functional f in L(H). Then

a) le(H) lg(f,x)| v(dx) < co.

b) If vy, is a sequence of measures such that v, T v then

/ o(f, 2)wn(dz) — [ g(f,2)v(da),
Li(H)

Li(H)
Proof. See the appendix. m

Finally, we recall the following general result proved in Pérez-Abreu and Rocha-Arteaga (2002),
which identifies generating triplets of Lévy processes obtained as linear transforms of Lévy processes.

Proposition 5 Let {X; :t > 0} be a B-valued Lévy process with generating triplet (A, v, 7). Let
By be a Banach space such that the map V —— fy is an isomorphism of By onto B*. LetT : B — B
and let T' : By — By be continuous linear transformations with the property

fv(TS) = fry(5), (6)

for every V€ By and S € B. Then {T'(X;) :t > 0} is a B-valued Lévy process with generating
triplet (A, vy, yr) given by

Ap = TAT',
vr = (VT_l) |B\{O} ) (7)
vr =Ty + [ Ta [Lre<1y(T2) = Ly <y (@)] v(do).

Here vT—1(C) = v({x : Tx € C}) and (vT™1) |B\{0} denotes the restriction of the measure v~
to B\{0} and the last integral is a Bochner integral.

3 Subordinators of covariance operator type

In this section we study trace-class valued subordinators, i.e., Lévy processes taking values in a
cone of covariance operators in L (H). A class of general examples is given as well as a detailed
study of the Laplace transform of this class of subordinators.



3.1 Trace-class increasing Lévy processes

A proper cone K of Li(H) introduces a partial order on Li(H) by defining S1 <i S2 whenever
Sy — 81 € K for any S, Sy € L1(H). This allows us to define the notions of increasingness and
decreasingness in Li(H). Let {S,,} be a sequence in Ly (H). If S,, <x Sp+1 for each n, the sequence
is called K-increasing. If Sp41 <K Sp, for each n, the sequence is called K-decreasing. A function
f:1]0,00) — L1(H) is called K-increasing if f(t1) <g f(t2) for t; < to; and it is called K-decreasing
if f(tg) <K f(tl) for t1 < ts.

The proof of the following proposition is standard.

Proposition 6 Let {Z; :t > 0} be a Lévy process in L1(H). Let K be a proper cone in Li(H).
Then the following are equivalent.

a) For any fired t > 0, Z; € K almost surely.

b) Almost surely, Zy(w) is K-increasing in t.

A very useful tool in the study of one dimensional subordinators is the special form that takes
their characteristic and Laplace transforms; see Bertoin (1996), Sato (1999). The following result
extends to cones of covariance operators in L (H) a result by Skorohod (1991, Th. 3.21), who
derives the characteristic function of a Lévy process taking values in a cone of a (finite dimensional)
Euclidean space. The first part of our proof follows some of the ideas in the Corollary to Theorem
IV.7 in Gihmann and Skorohod (1975) (who deal with independent increments in a special cone of
a Banach space). We make the proof shorter, more precise and taking advantage of the linearity of
the trace norm |-||; in the cone L{ (H).

Proposition 7 Let K be a proper cone of LT(H) such that the identity operator I € K*. An

Li(H)-valued Lévy process {Z; : t > 0} with generating triplet (A,v,~) given by (2) is K-increasing
if and only if, its characteristic functional has the form

Eet"VZ) — oy {t ( /K (ei”“(VS) - 1) v(dS) + itr(V70)> } Ve L(H), (8)

where the drift vo := v — f0<”3”1<1 Sv (dS) belongs to K (Bochner integral), the Lévy measure v is
concentrated on K and satisfies

/ 1511, v (dS) < co. (9)
o<|Is|; <1

Moreover, its Laplace transform is given by

Eetr(VZ) = o {t ( /K (e—““WS) - 1) v(dS) — tr(V’yo)>} VeKk® (10)



Proof. By using a consequence of the Hahn-Banach Theorem we can select a sequence of
functionals f such that K = N2, {S: fi (§) > 0} . Assume the K-increasingness of the process
almost surely. Then, each one dimensional process {fx (Z;)} has only nonnegative jumps since it
is nonnegative. If A is contained in U2, {S': fi (S) < 0} then v (4) = 0. Thus, v is concentrated
in K.

Let A = K N{z : ||z||; > e} which has positive distance from 0 and let
ZtAE = Y st (Zs —Zs_ )15, (Zs — Zs—) which is the finite sum of jumps of the process for each

e > 0. Hence {ZtAS} belongs to K almost surely. Since for each k£ fj (Zt — ZtAE) > 0 almost
surely, then {Zt — ZtA € } belongs to K almost surely. For the positive linear functional tr(I-) € K*

we have that lim.|g (tr(Zt) - tr(ZtA 8)) exists since tr(ZtA °) is increasing as function of € and is

A

A A
n+k En
Zt - Zt '

Ae
bounded by tr(Z;). Hence tr(Z, """ — Z, ) = — 0 as n, k — oo for any
1

subsequence ¢, | 0. Let ZY € Li(H) the strong limit of ZtAE. Therefore the process {Z; — Z{} is
continuous almost surely and from (2)

Eeitr(V(Zi—27)) _ exp {t (itr(V”y) — ;A(tr(V-),tNVJ))} Ve L(H). (11)

Decompose tr(V-) = tr(V*:) —tr(V =) where V.= V*t— V= and V* and V" are positive linear
operators in K*. Notice that the process {tr(V(Z; — Z}))} is nonnegative and continuous almost
surely. Then var (tr(V*(Z; — Z7))) = tA(tr(V*:),tr(V"-)) = 0 and

tA(tr(V-),tr(V+)) = var [tr(V(Z = Z))) +tr(V™(Zy = Z))] = 0

since {tr(V*((Z; — Z}))} and {tr(V~(Z; — Z)))} are constants almost surely. This shows that
the covariance operator A = 0. Next, let 79 € K be such that

tr(tVay) = tr(V(Z; — Z9)). (12)

Observe that,

Eetr(VE) — iy Beitr(VZe) - erp {t/ (eitr(vs) — 1) l/(dS)} ) (13)
el0 K

then from (12) and (13) we get (8). Since

Eeit"(VZ)) — lim expd t / [eitr(VS) —1— itr(VS)] v(dS)
€l0 e<[Isl; <t

- /||5|1>1 (eitr(VS) o 1) v (dS) +i /a<”5”1§1 tr(VS)v (dS)) }



from Theorem 1 and (13) we have the convergence of

exp {z’t e8], <1 tr(V.S)v (dS)} as € | 0, which is equivalent to the convergence of the degener-
IS, <1 tr(V.S)v (dS) to the degenerate distribution at the point
I IS, <1 tr(VS)v (dS) and hence (9) follows from (1) choosing the positive linear functional
fr(-) = tr(I-). From (2), (11), (12) and (13) we get tr(Vyo) = tr(Vy) — f0<HSH1§1 tr(V.S)v(dS).
Now that v equals to v — f0<|\5||1§1 Sv(dS) follows from (9).

ate distribution at the point [

Conversely, assume that the process has the characteristic functional (8). In view of (2)
tr(Vyo) = tr(Vy) — f0<||5”1<1 tr(V.S)v(dS). We have used here that A = 0 and (9). Since y9 € K
we show that Z; — tyy € K almost surely. Let J; = Z; — tyy. Notice that J; and Z; have the
same jumps and JtAE = > set (Zs —Zs_)In, (Zs — Zs—). Since v is concentrated on K the jump

€

measure of Z; is concentrated on K. Therefore JtA is concentrated on K for each € > 0. Then the

, . . . VANS VANS .
Lévy process {JtAE} is K-increasing. Note that J, > —J, "' € K for €3 < £1. Hence lim, fk(JtAe)
exists for each k. Since

Eeifk(Jt—JtAE) = exp {t (/ (eifk(x) - 1) y(dw)) }
Kn{z:|lz]|<e}

tends to 1 as € | 0 we have that fi(J;) = lim.o f;c(JtAE). Since fi (JtAE) > 0 for all k£ then

fr(Je— JtAE) > 0. Hence J; — JtAS and JtAE are in K. Then J; € K. Now, K-increasingness of {Z;}
follows from Proposition 6. m

Corollary 8 The process {tr(Z;)} is an R-valued subordinator with

FEe—utr(Zi) _ exp {t (/ (e—utr(S) _ 1) v(dS) — utr(%))} uecRT.
K

Proof. Let f; be the positive linear functional in (1) corresponding to the identity operator I.
Then (10) evaluated in the positive linear functional uf; gives the result. m

The following are two important examples of covariance operators that are subordinators.

Example 9 (Stable positive covariance subordinator) Let S be and a/2-stable random operator
taking values in LT (H). Using (10) and the representation of the characteristic function of S after
Remark of Proposition 6.3.3 in Linde (1986) we get

Ee V) — oxp {F((;a/@ / {tT(V@)}a/ZU(d@)} Ve LT(H), (14)
a/2 S (H)

where o is the spectral measure of S, S;(H) denotes the intersection of LT (H) and the unit sphere
of L1(H) and C;/12 1s the constant appearing in such a representation. The Lévy measure v is given

8



by v(dX) = C;/lhlfiipa(d@) where ¥ = tO© with 0 < t < oo and © € S{(H). The Li(H)-
valued Lévy process Sy such that S1 has the law of S is called the «/2-stable covariance operator
subordinator.

Example 10 (Inverse Gaussian covariance subordinator). Let S be an a/2-stable random operator
taking values in LT (H) and let p be a positive linear functional of L1(H). Let us define the probability
distribution on L (H) by

e_p(@)

WFg(d@),

where Fg is the distribution of S. Let R be a random operator having the probability distribution
F(p;dO). Using again the representation of the characteristic function of S, (10) and (14) we

obtain

F(p;dO) =

EeftT(VR) = exp {/ (eftT(VE) _ ]_) V(dZ)} Ve L+(H);
ST (H)

—1
where v(d¥) = tlck’a/fz e P©)g(dO) and X = tO. Thus, R is an infinitely divisible random operator
taking values in LT(H) with Lévy measure v. This extends, to the infinite dimensional case, the
concept of inverse Gaussian matriz introduced in Barndorff-Nielsen and Pérez-Abreu (2002). The
Li(H)-valued Lévy process Sy such that Si has the law of R is called the inverse gaussian trace-class

subordinator.

3.2 A class of examples

A natural class of infinitely divisible L] (H)-valued random operators S can be obtained via a
general method described in this section. Let {Z;(¢)} j = 1,2, ..., be independent subordinators in
R satisfying Z;’il ®; (Aj) < 0o, where \; is a positive number and ®; is the Laplace exponent of
Zj, i.e.

PQ;(u) = /(0 ) (1—e ™) v (dz) + yo u, ueR". (15)

Then Ry = > 22 A\;jZ;(t) is well defined as an infinitely divisible one-dimensional positive random
variable for each ¢ > 0.

Theorem 11 Let {Z;}, for j = 1,2,..., be infinitely divisible subordinators in RT which are inde-
pendent. Define

S=> "NZ(l)e; @ e;, (16)
j=1



where {e;} is a complete orthonormal set of H, the linear operator e; ® e; is defined by (-, e;) e;
and {\;} is a sequence of positive real numbers. Assume that

o0

>0, () < oo, (17)
j=1

where ®; is the Laplace exponent for Z;. Then S is an infinitely divisible random operator taking
values in L{ (H) and therefore

Sy = Z)\ij(t)ej ® ey, t>0

is a covariance subordinator such that S1 has the law of S.

Proof. Let Z, ; be positive random variable with characteristic function [fZ/ "for j > land

n > 1. Define S, = ZOO NjZn je; @ ej, forn > 1. From the dominated convergence theorem we

get, for each n, - P
1 oo

Ee—tr(Sn) = Ee~ 21N Zn,g e n  J=1 @, (A5) > 0.

This proves that S, is a L] (H)-valued random operator. Next, for every self-adjoint V' in L(H)

n

o oo
Eetr(VS) — H Ee?iviZi = H ") P n>1,
=1 =1
where the real numbers v; = (Vej,e;), for j = 1,2, ..., satisfy [tr(V.S)| ‘ZJ LAV 25| < o0

almost surely. Then for each n > 1,
. 1/
EeltT’(VSn H Eez)\ ViZn, _ H Al/ )\ Uj {Eeth(VS)} n .

Remark 12 From (10), one obtains the Laplace transform of tr(V'S). Theorem 11 implies that
tr(V'S) = 3272, \juiZjis an infinitely divisible random variable on R, where v; = (Vej,ej).
Moreover, if Z; has Lévy density l;(x), the Lévy measure of tr(V'.S) is given by

Vir(vs) (dz) Z ( )\j)_l .Z‘) dz.

Jj=1

8

10



Therefore the Lévy measures of the one dimensional distributions of S have the form
votr (V) =3 () (o) ) d,

J=1

which provides a rich class of one dimensional positive infinitely divisible distributions and their
associated subordinators.

We now provide examples of L (H)-random operators of the form (16) satisfying condition
(17).

Example 13 Let us consider the Gamma random variable Z; with parameters p; and q; and prob-
ability density function q?jF(pj)xpifle*qj‘”. The random covariance operator S in (16) is called the
Gamma random operator. We can get the convergence of (17) by choosing the convergent series

i1 pj and the bounded sequence {log(1 + ;\—JJ)} As an special case we have \j = g; for any j.

Example 14 Let 0 < o < 1. If Z; is an a-stable random variable with Laplace exponent ®;(u) =
c;-ua + Yoju where oj is the drift, c;- = cjoflI‘(l —a) and ¢j > 01is the constant appearing in
the Lévy measure of Z; (see Sato (1999, Ex. 24.12)). Then (16) is called the a-stable random

=1 < 00 and the last two

covariance operator. Choosing {\;}, {c;} and {~o;} such that )

sequences be bounded we obtain the convergence of (17).

Example 15 Take the random variable Z; in (16) as the inverse Gaussian distribution with pa-
rameters 6; and ~y; and whose probability density function is (27r)*1(53'6*5”1x*3/267(55171+7321)/2.
Then S is called the inverse Gaussian random covariance operator. Taking Z;’il 0;vj < oo and a

bounded sequence {)\j/ng-} we have (17).

3.3 The Laplace transform

For special cones of covariance operators, one can deduce a useful property for the Laplace trans-
form of trace-class valued subordinators evaluated in complex linear functionals. Let {e;} be a fix
complete orthonormal set in H. Let K. the cone generated by e = {e;}, that is

K, = SELT(H):S:ZSjGj(@e]’ (18)
=1

the subcone of L (H) of all covariance operators on H having the same system of eigenvectors
{ej}. Recall that the linear operator e; ® e; in H is defined by (-, e;) e;. In this section we consider
subordinators with values in K., that correspond to Lévy processes taking values in covariance

11



operators with random eigenvalues but with the same nonrandom eigenvectors. They include the
class of examples given in Section 3.2. The one dimensional result can be seen in Sato (1999, Th.
25.17) and a multivariate (finite dimensional) case is due to Barndorff-Nielsen, Pedersen and Sato
(2001) for arbitrary cones of R™. Our result is only proved for the cone with basis K., being the
proof not straightforward even in this case.

Proposition 16 Let {Z; :t > 0} be a K-valued subordinator with Lévy measure v and drift o
given by Proposition 7. Then

Ee/7) — 2D f e [(H), (19)
where

Vo) = [ (" = 1(as) + fo (20)
and Re(f(S)) <0 for every S € K.,

Here f: Li(H) — C is a complez-valued continuous linear functional.

For the proof of Proposition 16 we need the following three technical lemmas whose proofs are
straightforward (see the appendix).

Lemma 17 Let U be a self-adjoint operator in L(H). Define the mappings T[/] : L(H) — L(H)
and TU . Ll(H) — Ll(H) by

Ty (V) = Zej ®elVer®e;U, forV e L(H) and (21)
j=1

o0
TU(S) = Zel & erSGj ®ey forS e Ll(H),
j=1
respectively. Then T(/] and Ty are linear transformations.

Lemma 18 Let U be a self-adjoint operator in L(H). Then, the linear transformations in (21)
satisfy

fv(TuS) = frv(S), (22)
forV.e L(H) and S € L1(H).
Lemma 19 Let U € L(H). Define the mappings T;; : L(H) — L(H) and Ty : L1(H) — L1(H) by
Ty(V) =T (VY + 0Ty (V2),  for V=V 4iV? e L(H) and (23)
Ty (S) = Ty (SY) +iTy2(S?)  for S = S* +i5? € Li(H),

where T[/]k and Tk, k € {1,2}, are the continuous linear transformations in (21). Then, TIIJ and
Ty are continuous linear transformations.
Note that (23) reduces to (21) when U = U is self-adjoint.
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Proof of Proposition 16. Let f € Li(H) be a complex-valued continuous linear functional.
From (1) we identify f with V € L(H) via fy(-) = tr(V-) where V is no necessarily self-adjoint.
Let V = V! 4+ iV? where V! and V? are self-adjoint operators in L(H). Denote ReV = V! and
Im V = V2. We prove the proposition in three steps.

Step I. Let V € L(H). For Re V = V! assume that fi1(e1 ® e1) € [0,1] and fy1(ej ® ej) = 0 for
j > 2. Since Z (t) = 3272, Zj(t)e; ® e € K. then

fv(Z) = Z Zi(t) fv (e @ ej).

Jj=1

We prove the formula (19) for this particular case of fi,. Let v; = fy(e; ®e;) € C, j > 1, and note
that v; = fy1(e;®ej)+ify2(ej®e;) where Revy = fyi(e1®er) € [0,1] and Revj = fy1(e;®ej) =0,
for j > 2.

We proceed as in the proof of continuous extensions of the Laplace transform in the finite dimen-
sional case (see Sato (1999, Th. 25.17)), so we only sketch the proof. Consider v; as a variable and
let A= {v; €C:Rewv; € [0,1]} and define ®;(v;) = Ee/v(%) and

Dy(v1) = exp {t (fKe(er(S) — Dv(ds) + fv(’}/(]))} for v € A. One can prove that ®;(v;) and
®y(v1) are continuous in A and analytic in the interior of A. Thus, by the Schwarz ’s principle of
reflection, ®1(v1)—P2(v1) extends to an analytic function on the domain {v; € C: Rev; € (—=1,1)}.
When Rewv; = 0, we have @ (v1)—P2(v;) = 0 which corresponds to the Lévy-Khintchine representa-
tion of the subordinator Z;. By the uniqueness Theorem for analytic functions ®;(vy) — ®2(v1) =0
in this domain. Then we get (19).

Step II. Let T' : L(H) — L(H) and T : Ly (H) — L1(H) be continuous linear transformations as
in Proposition 5 satisfying (6). Then, the process {Y; : ¢ > 0} defined by T'(Z;) is a Lévy process
with generating triplet (Ap, v, yr) given by (7), where yp = Ty (i.e. the integral in (7) does not
appear).

Given U € L(H) with Re fy(S) < 0 for every S € K., assume that there exists V € L(H) such

that
TV =U. (24)

From (6) and (24) we obtain Re fi/(T'S) = Re f+,(S) = Re fy(S) <0 for every S € K. Therefore
we can define

Vr(fy) = [ (e = Dur(as) + fu (). (25)
We claim that if
Eelv(Zt) — otV (fv) (26)
then
Eelv(Zt) — tVz(fu) (27)
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In fact, from (6) and (24) we have that fy(Y;) = fu(T'Z;) = f,(Z:) = fu(Z;) and then, by
Proposition 5,

Ur(fy) = / (eI T) —1)up(dS) + frry (1) = U2 (fr).

e

This proves that (26) and (27) coincide.

Step II1. Let U = U' + iU? be a linear operator in L(H) such that Re fy(S) < 0 for every
S € K.. Consider the continuous linear transformations of Lemma 17, T[/]k : L(H) — L(H) and
Tyr : Li(H) — Li(H), k € {1,2}, defined by (21). Also, consider the linear transformations of
Lemma 19, T}, : L(H) — L(H) and Tty : Ly (H) — Li(H) given by (23). Note that T};(e; ® e1) =
T[/ﬂ(el ®ey) = U! since e; ® e is self-adjoint operator. Let us take a linear operator V in L(H)
defined by V = e; ® e + iV? with the property

T,(V)=U (28)

(we can choose V2 = e; ® e; for instance).

Notice that T(/J and Ty satisfy condition (22) in Lemma 18. Then the process defined by Y; = Ty (Z;)

is a Lévy process. Next, since Z; lies in the cone K., we have that fe,ge, (Y1) = f17 . 0, (Z1) =
U

fu1(Zy) < 0. Then, equation (25) is definable for

\IITU (f61®61) = / (efel®el(5) - 1)VTU (dS) + f61®€1 (’YTU)

e

and the linear operator V whose ReV = e ® ey satisfies conditions of Step 1. This yields

Eelv(Yt) — otV (fv) (29)

From (23) and (28) we get Re fy/(Y:) = fe,@e, (Yi) < 0 (recall that Ty (Z;) does not contain complex
part). Next, we apply Step II to the operators U and V which satisfy (28) and (29) to get (19).
This ends the proof. m

4 Covariance-parameter Lévy processes with values in L;(H)

4.1 Definition and a representation theorem

Lévy processes with parameter in a proper cone K of L{(H) and taking values in Li(H) are
considered in this section. The concept of Lévy process is extended to a process {X(5) : S € K}
with a proper cone as the time parameter set. The case of a cone K C R” and R%valued random
variables is considered in Pedersen and Sato (2001).

Let f: K — Li(H) be a mapping. It is said that f is K-right continuous at S € K, if for every
K-decreasing sequence {S,} in K with [|S, —S||; — 0, || f(Sn) — f(S)|l; — 0. It is said that f
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has K-left limit at S € K\{0}, if for every K-increasing sequence {S,} in K with ||.S, — S|; — 0,
limy, oo f(Sy) exists in Ly (H). The function f is cadlag if it is K-right continuous in K and has K-
left limits in K\{0}. The K-left limit lim,,_,o f(Sy) of f at point S € K depends on the sequence
{Sn}. In fact, it can be shown that a function may has infinitely K-left limits at one point.

We now introduce the concept of covariance-parameter Lévy process with values in trace-class
operators.

Definition 20 A collection of Ly(H)-valued random variables {X(S) : S € K} with parameter in
a cone K and defined on a probability space (2, F, P) is called a cone-parameter Lévy process if it
satisfies the following:

a) The random variables Xg, — Xs, , Xs,_, — X8, 55 -, X5, — Xs, are independent for any K -
increasing sequence {S;},_, 5 , in K.

b) The increments Xg, — Xg, and Xg, — Xg, has the same law whenever Sz — Sy = S1 — Sy for
S3, So, S1andSy in K.

¢) X(0) =0 almost surely.

d) It is stochastically continuous, i.e., for every e > 0, P(||X(S,) — X (S5)||; > €) — 0 whenever S €
K and {S,} be a sequence such that ||S, — S||; — 0.

e) It is K-cadlag, that is, Xg(w) is K-cadlag in S, w-almost surely.

Examples that show the existence of such processes are the following.

Example 21 Let {Y(t) : t > 0} be a Lévy process in L1(H) and let f € K*. Then X(S) =Y (f(S))
S € K, is a K-parameter Lévy process in Li(H).

Example 22 Let {X7(S) : S € K} be K-parameter Lévy process in Li(H), for j = 1,2,...,n.
Then
X(9) =X (9)+..+X"(S) SeK,

is a K-parameter Lévy process in Li(H).

Example 23 Let K. be the cone of L1(H) of positive trace-class operators of the form S = E;’il
sje; ®e;j introduced in (18). Let {V(t) : t > 0} be a Lévy process on Li1(H) and let {c;} be a positive
bounded sequence in R. Define

X(S) = V(i Cij) S e K,.

Then {X(S): S € K.} is a K.-parameter Lévy process in Li(H).
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Example 24 Let {VI(t) : t > 0}, j = 1,2, ..., be independent Lévy process on Li(H) which are
symmetric and identically distributed. Define

X(S) = ivj (s4) S e K.
j=1

Then {X(S): S € K.} is a K.-parameter Lévy process in Li(H).

A useful result is the following representation theorem for covariance-parameter trace-class-
valued Lévy processes in the cone K.

Proposition 25 Let {X(S) : S € K.} be a K.-parameter Lévy process in L1(H). Let us denote
XIi(t) = X(tej ®@ej), for j =1,2, ..., where {X(te; ®ej) : t > 0}, j = 1,2, ..., is a sequence of Lévy
processes on Ly1(H). Let {U’(t) : t > 0}, j = 1,2,..., be a sequence of independent Lévy processes
such that

(X7 ()} £ (U7 (1)} (30)
For every S = Z;‘;l sjej ®@ej € K define U(S) = Z;il Uj(sj)'

Then
X(9) 4 U(S) for every S € K. (31)
Moreover -
B X (8) = H Belf(X7(s5) for every f € L7(H). (32)
j=1

Proof. Let S = 322, sje; ®ej € K.. We observe that {XJI(t) : t > 0} is a Lévy process for
each j > 1. From independence of {X7(¢)} and {U?(t)} and stationarity of increments of {X(S5)}
we have that

4

U1 (81) Xl (Sl) :X(81€1®€1),

2

U? (s2) iX(3262®62) =X Zsjej@)ej — X (s1e1 ®e1),
j=1
d 3 2
U3 (83) :X(53€3®€3) =X ZSjGj@Gj - X Zsjej@)ej s oo
— o

j=1

and so on. Then

n n
Z U (s;) 4 x Z sjej ® e; for every n > 1. (33)
j=1 j=1
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Let S, = >0,
P (|| Xs, — Xsll; >¢) (HZ? LU (s5) XSH > 5) — 0 as n — oo. Then, by It6-Nisio Theo-
rem we have >, U7 (s]) — X (S) as n — oo almost surely. This proves (31).

Let f € L7(H). Using (30) and (31)

P )
H i (X7 (s5)) H Bl W) = peif( 5 U7(s9) _, peif (X(S),
7=1

sje; ® e;j and note that [|.S, — S||; — 0 as n — oo. By the stochastic continuity

as n — oo, which gives (32) m

Remark 26 Let f € Li(H) and let 1x ;(f) = log Ee’/(X(€:¢)) It can be shown that there exists
a (no self-adjoint) bounded linear operator in L(H) denoted by x(f) such that (Yx(f)e;, ej) =
Yx j(f) for j > 1. Then from (52)

P
Eetf(X(9) — HE if (X7(s5)) H6¢XJ )$i — o ge1¥xi(f)sj _ tr(¥x(£)S) (34)
j=1

4.2 Distributional properties

Our following result gives tail estimates and moment inequalities for covariance-parameter, trace-
class-valued Lévy processes. They are infinite dimensional analogous of Lemma 30.3 in Sato (1999)
for one-dimensional time Lévy processes and Lemma 102 in Rocha-Arteaga and Sato (2001) for
cone-parameter Lévy processes, when the cone is finite dimensional.

Lemma 27 Let {X(S): 5 € K.} be a K.-parameter Lévy process in Li(H). Let {X]:¢t>0} and
{U} :t >0}, for j > 1, be as in Proposition 25 which satisfy (30).
Let (Aj,v;,7;) be the generating triplet of {Xt]} for each j. Let 1/? and 1/1 be the restrictions of v;

to the sets {||x|; <1} and {||z|; > 1} respectively. Let {Xo’j} and { X, } j > 1, be independent

Lévy processes with generating triplets (A;, V?,’h’) and (0, V] ,0) such that { } { 00 4 X; ’J}

for each j. Assume that

g:l (y; {llzll, > 1}) + E HX?JH?) < oo. (35)

Z;he;here exist positive constants C(e), C1 and Co such that, for every S € K.,
P([Xsll, > &) <C)[ISll,  fore>0, (36)
B [I1Xs}; 1 Xsll, < 1] <GSl (37)
B[ X5l :11Xsl; < 1] < CalIS]ly”. (38)
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b) For each continuous linear functional f on Li(H) there are constants C1(f) and Ca(f) such
that, for every S € Ko,

E|[f(Xs); |1 Xslly < 1| < CuH ISy (39)
|E[f(Xs); 1 Xslly < 1] < Ca(f) 15]]; - (40)

¢) There exists a constant Cs3 > 0 such that, for every S € Ko,
1B [Xs; [ Xslly < ll; < Cs 1Sy - (41)

Proof. Let S =377 sje; ®e; € Ke. In view of (31) we prove the assertions for U(S). We
shall keep in mind that tr (S) = [|S]|; = >3, s; and U(S) = 372, U (s;).

a) Let € > 0. For each Lévy process {Utj } we apply Lemma 8 in Pérez-Abreu and Rocha-Arteaga

(2002) to yield positive constants Cj(e) such that P () Ugj . > 5) < Cj(e)s;. In fact, one can
B x|y
obtain the expressions Cj(e) = v; ({||z||; > 1}) + ——=—=*. Then

P([Uslly > &) = P (|Us, + U, + ]|, > ¢)
=P(|U), + ...+ UX

SNHI
P(]

where 3772, Cj(e) is finite due to (35). This proves (36).
Next we show (37). Note that

> ¢; for some N)

M

J
Ul

> 5) < ZCj(€)Sj < ZCj(€) 151ly
j=1 J=1

1

J

{Uslly < 1p =304 <5 ||Ug||, < 1forall j

Jj=1 1

U Z;Ugj Sl;‘Ugj 1>1for some j
J= 1

Then )
B [losii 10, < 1] = £ |52, 04 sl < 1]
A . (42)
<EFE {HU(S)H?,) UZ, ) <1 for all j] + P (‘ Ui, > 1 for some ]> .
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We show the assertion for the first term in the sum in (42). Since {Utj } is a independent sequence,

we use a estimation for the second moment of a series of independent random variables on Banach
spaces, (Borovskikh (1996, Cor. 2.1.1),

2
o0
E(JUS)IF:||vg | <1foranj) <B|> vin o
7=1 S
[e o] 2 e}
J 3 j
<|E ZUSjln Ul 310 +2 EZ D USj 11n Ul 310}
=1 t j=1 T
1
2

IN

o0 o oo oo

1/2
ZCQJS]'/ +22> Crgsp < | Y5 +28) Cuy | 1ISI -
j=1 j=1 j=1 j=1

Again, we have applied Lemma 8 in Pérez-Abreu and Rocha-Arteaga (2002) to each Lévy process

. 12
{Utj } as follows. Constants (1 ; are obtained which satisfies D Ugj ) 1n o} < Cysj and

J
vl <1

J
Ui,

constants Cs ; satisfying the inequality F U

X 1n o <1°] < 027]‘8]1-/2. Moreover, from (30)
Sj 1_

112
one can obtain the expressions C1; = v} ({||z[|; > 1}) + E HX?’J‘L and Cy; = /C1;. Then by
(35) 2251 02273‘ and 272, C1; are finite.

For the second term of the sum in (42) we have

P(‘Usjj 1>1forsomej21>§j§;P(‘Ugj 1>1)
<> CiWs;< (DG | ISl
7=1 7=1

where C;(1) are as in a) for ¢ = 1. Thus, (37) holds.
Finally, apply Cauchy, Bunyakowski and Schwarz’s inequality to get

1/2 1/2 1 qi1/2
B Xslly: 1Xsl, <11 < {2 |I1Xsl351Xs], < 1]} < a2 isin’®,

where C} is the constant in (37). This proves (38).

b) Let f be a continuous linear functional on L;(H). Inequality (39) follows from
B |[F(Xs)*511Xsly < 1) < 17 B [ Xsll}: |1 Xs], < 1] and (37).
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Next,
|E[f(Xs); [ Xslly <1
- ‘E [eiﬂXs) - 1} _E [eiﬂXs) — 1| Xsll, > 1}
—F [e1059) — 1 i f(Xg): | Xsl, < 1] |

. 1
< |B [fX) 1] [+ 2P (IXs], > 1) + 5B [£2(Xs): |1 Xsll, <1].

Inequalities (36) and (39) provide constant multiples of ||S||; as bounds for the last two terms
of the former sum, respectively. Next, from (34) it follows that Eetf(Xs) — ¢tr(¥x(f)S) where
¥x(f) € L(H) is no necessarily self-adjoint operator. Then E !eif(Xf) - 1} = !et‘I'X(f) - 1}. It is
known that [tr(yx (f)S)| < [vx (NI ISy - I [tr(@x (f)S)] < 1, [0 =1 < Tlex(HI 18],
and if [tr(¥x (f)S)| > 1 then | — 1| < 2|¢ox (f)] [|S];. This proves (40).

c) By (38) E[|| Xsl;; || Xs|l; < 1] is finite for every S € K. and hence
E[Xs; || Xsll; <1] is a Bochner integral. TLet us denote V' = Xgljxg,<1- Since V is Pettis
integrable it satisfies

f(EV)=Ef(V) forevery fe€ Li(H). (43)
On the other hand, since EV € Li(H) we use the polar decomposition of a compact operator
EV =T |EV| where |[EV| denotes the positive compact operator |[EV| = {(EV) (EV)*}l/Q. This

is equivalent to |[EV| = T*EV,where T € L(H) is a isometry and T* denotes the adjoint operator
of T" which is also in L(H). Then

|EV|, =tr(|[EV|) =tr(T*EV) = fr- (EV) = Efp- (V).
Here we have used (43) with fr«~ € Lj(H). Finally, from (40)

1B [Xs: [ Xsll; <1l = Efr- (Xs; | Xslly <1) < Ca(fr-)

|51l -

5 Covariance-parameter subordination

Let {Z(t) : t > 0} be a K-valued subordinator and let {X(S) : S € K} be an independent K-
parameter Lévy process with values in Ly (H). Define the process {Y(¢) : t > 0} by Y (¢) = X(Z;).
This procedure of getting {Y(¢)} from {X(S)} and {Z(¢)} is called (Bochner’s) subordination.
For a general cone K one can show that Y is also a Lévy process in Li(H). The proof of this
fact is similar to the one dimensional case in Sato (1999) and to the multivariate case in Barndorff-
Nielsen, Pedersen and Sato (2001) (one should use the fact that if U and V' are independent random
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variables in Li(H) and if f : Li(H) x L1(H) — R is a bounded and measurable function, then
g(v) = Ef(U,v) is also bounded and measurable and Ef(U,V) = Eg(V)).

The identification of the characteristic triplet of the Lévy process Y is not an easy problem,
even in the multivariate finite dimensional case. For example, Barndorff-Nielsen, Pedersen and Sato
(2001) and Pedersen and Sato (2001) obtain the generating triplet of their subordinated processes
only in cases of cones of R" with basis (see also Rocha-Arteaga and Sato (2001)).

In this section we obtain the generating triplet of Y in terms of the generating triplets of X and
Z in the case of the cone with basis K.. Our result is of different nature that the one obtained in
the last three named works, in the sense that our K-parameter Lq(H)-valued Lévy process is such
that K and Li(H) are in the same space. In this direction our corresponding finite dimensional
results for real symmetric matrices are new.

Theorem 28 Let {X(S):S € K.} be a K.-parameter Lévy process in L1(H) and let {Z(t) : t > 0}
be a K.-valued subordinator. Then the process {Y (t) : t > 0} defined by Y (t) = X (Z(t)) is a L1(H)-
valued Lévy process such that

a) The characteristic functional is given by

Eetf (Y1) — (t¥z(x(f) for every real-valued f € L(H),
where Wy is given by (20) and x(f) € L(H) is no necessarily self-adjoint and satisfies
(Wx(flej, ) = x ;(f) where dx ;(f) = log Ee'f(X(te;9e7),

b) Let vz and ) = ijl ’Yz,jej ®e; be the Lévy measure and the drift of {Z}. Let (Ax ;,vx.j,7x,;)
be the generating triplet of {X (te; ® e;)} satisfying

> sl < o0 (44)

sgﬁ{_ulx,jw)} <00 for every C € B(Li(H)\{0}), (45)

s M) < oo for caery £ € Li(), (46)
i Il < oo. (47)

Let {Xf’j} and {th’j}, 7 > 1, be independent Lévy processes with triplets (AX,j,ug’(J,VXJ) and

(0, 1/)1(’]-,0) and {X (te; ® e;)} 4 {X?’j + th’j} where 1/9(’]- and V)lw denotes the restrictions of v;
to the sets {||x||; < 1} and {||z||; > 1} respectively. Assume that

i (ks (el > 1hy+ 2 [x09) < o (48)
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Let usg = L(X(S)). Then the generating triplet (Ay,vy,vy) of {Yi} is given by

Ay = Z’Y%,ij,j, (49)
j=1
W (C) = / us(Ca(ds) + 3 2w s(C). € € BLy(HN0}) (50)
7j=1

/ A | zps(dr)vz(dS) + Z’YZJ'YX,J (51)
e x 1<1

7j=1

c) If stHlﬁl HSH%/2 vz(dS) < oo and 7% = 0, then {Y;} has bounded variation on each interval
[0, 1].

The corresponding result for the case of symmetric real matrices is as follows.

Corollary 29 Let M, be the Banach space of m x m real symmetric matrices and let M, be the
cone of symmetric nonnegative definite matrices in My,. Fiz an orthogonal matriz O € M, with
{e;}, 7 = 1,2,...,n, as its system of eigenvectors, i.e, O = (e1,...,e,) where the vectors e; are
column vectors. Let Ko be the proper subcone of M} defined by

Ko ={SeM}:S=0Ds0'},

where Dg = diag (A (S), ..., \n(S)) is the diagonal matriz containing the eigenvalues \;j(S) of S.
Let {Z(t) : t > 0} be a subordinator in Ko with characteristic function

Ee—tr(S20) _ g {t </ (efm(ES) _ 1) vz (dS) — tr(Z’y%))} Ye M},
Ko

where 'y% = OD,Y% OT and vy is concentrated on K..

Let {X(S):S € Ko} be a matric cone—pammeter Lévy process in M, and let us = L(X(S). For
each j fix the matriz eje j in Ko. Then {X(ejel ;1) 11 >0} is a Lévy process and let us denote by
(Ax j,vxj,7Vx.j) its generating triplet.

Then the generating triplet of the subordinated matriz valued process {Y(t) : t > 0} defined by
Y, = X(Z(t)), is given by

Ay =X (7%) Ax1 + .+ 2 (02) Axs

n

vy (B) = / ns(BYv2(dS) + 3" s (4) v s (B),

=1

/ /” zps(dr)vz(dS) +Z)\ ’YZ YX,5-
e z||<1

7j=1
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Before the proof of the Theorem 28 we need the following technical Lemma.

Lemma 30 Let {X(S): S € K.} be a K.-parameter Lévy process in Li(H) and let vx ; be the
Lévy measure of {X (tej @ e;)} for each j. Assume the condition (46) of the Theorem 28. Then

lim lim inf |f (2)]? vn(dz) = 0,

0l0 n=00 Jjig||, <6

where Vp = Z?:l ajVX,jﬂ Z]oil aj < 0o and aj Z 0.

Proof. Let g,(6) = infysn {z;’; 15 g < 1F @) VX,j(dx)}.
Then g,(d) = >_7_; a; f||$||1<5 1f (2)]? vx j(dz) increases to the function
9(6) = X351 05 Jjuy. <o 1f (@)% vy (da). Let 8 € (0,1 Then |9 () — g(6)] <
D i1 @ fo” < f (@ )\QVXj(dx) — 0 as n — oo. Thus, g,(0) — ¢(d) uniformly in (0,1] and

hence lim lim 1nfgn((5) = liminf limg, (). The assertion follows from the fact that
6|0 n—oo n—oo  §|0

lim |,

510 ?llzll, <o |f (z VX,J(dSU) =0 for each j. m

Proof of Theorem 28. a) Let f be a real-valued continuous linear functional in Lj(H). From
(19) and (34) we get
EIY®) — B ( Eeitr(wx(f)s))
S=27;
— EetrWx(f)Ze) — ¥z (¥x(f))

b) We have that
Feif(Y(®) — ¥z (¥x(f))

aav (O3~ 1) + wwx(9) ] (52)

by (20) since Retr(yx(f)S) = lim,—co Z?Zl sjRevx j(f) < 0. Here we have used that S =
ZJ 1 Sj¢; ® e; and that Reyx ;(f) = log ‘Eeif(X(tej@ej))‘ < 0 for each j. Let g(f,z) = /@) — 1 —

o0
2) = 120x(f) Zm Ax;f, f) +22m (vx,5)
j=1

J=1

*/ g(f.2) | S A%,vx, | (do)
L1(H) ]Z:; Z,j J
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and hence

r(x () = —5f | Sosdxs (1) | +if | So0%mxs

j=1 j=1
4 / g(f.2) [ S 0% sy | de. (53)
Li(H) ]Z:; S

We have passed to the limit since the mapping >7%, V%]-Ax,j t L(H) — Li(H) and }°72, ’Y%,j’YX,j
€ Li(H) are well defined due to condition (44) and (47), respectively. That > 22, 7%7jAX7j is a
covariance operator follows from nonnegativeness of fy% j and that Ax ; is a covariance operator for
each j.

Next, let us = L£(X(S)). Notice that [, S|, 1{”S”1<1}Vz(d5) < o0 by (9) and that

le(H) x1{||x“1§1}(m)us(da:) is Bochner integrable by Lemma 27 relation (41). Then

Jie.|

K, le(H) :cl{”:C”lq}(m)ug(dm)yz(db’) is a Bochner integral. These Bochner integrals are, in par-

le(H) xl{”leSl}(aﬁ)ug(dac)H vz(dS) is finite and hence

ticular, Pettis integrals and therefore

/ ; /LI(H) f(x)1{||$||1§1} (z)ps(dz)vz(dS)

- </K i xl{lixél}@)ﬂs(dx)w(ds))' (54)

It follows from (34) and (54) that

/ (efr@x (NS _ 1)1, (dS)

_ / (B TXE) _ 1)1, (dS) = / /L (H)(eif(“)—1)ug(da:)uz(d5)

- / / o(f. ) ps(dz)vz(dS)
e v L1(H)

+if (/E/Ll(H)xl{”m1§1}(fv)pg(d:p)yz(d$)) . (55)
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From (52), (53) and (55) we arrive at

Bl —exp it |—= Z’YZJAXJ

/ /{a:||1<1} zps(dz)vz(dS) + Z’YZ]’YXJ (56)

7=1
+/L1(H)g(f’x) /EMS()VZ(dS)+;7%,]VX,]() dr

Next we prove (49), (50) and (51). Let p = L(Y1). It has been shown that the characteristic
functional i of Y7 has the form i = pj; - hy - 05 where p; is a characteristic functional of a

zero-mean Gaussian probability measure with covariance 121, 5:, is a characteristic functional of a
degenerating probability distribution at the point 4 and the function h; is given by

ho (f) = / o(f,2)p (dz) [ € L(H), (57)
Li(H)

where
o0
ji

5 (dz) = / s (dz)v2(dS) +ZVZJVX,J(da;) (58)

7j=1

zus(dz)vz(dS) + ) vz ivx,-
/5/{||x1<1} Z !

7j=1

We shall prove Ay = A, vy = and 7y = 7. In view of the uniqueness of the generating triplet, it
is enough to show that o in (58) is a Lévy measure. Thus, we claim that h; in (57) is a characteristic
functional (see (5)).

Let 7 (dr) = (1) (dz) + D9y (dx) where

by (d) = / s (da)vz(dS), (59)
P(z) (dx) Z'YZJVxJ(dw) (60)
7j=1
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First, we show that 7y is a Lévy measure. Let {U7 : t > 0} be the sequence of independent Lévy
processes appearing in Proposition 25 and satisfying (30) and (31). Let U, = >°7_; U’ ('y%j) ,
n > 1. Let u, = L(U,,) with generating triplet (A, v, ¥,) which are given by

n n n
An = Z’y%’jAX,j Vp = ZV%,J'VXJ and Yn = Z’y%’j’yij. (61)
7=1 7=1 7=1

Using (31) we have that U, — X (7%) almost surely. Let (Ao, v0,70) be the generating triplet of
X (7%) and let pg = L(X (7%)) Then, by It6-Nisio Theorem

fn, converges weakly to p. (62)

We assume that vy ({||z]|; = 1}) = 0. This is not a restriction, since not more than countably many
circles of the form {z : ||z|; = 1} has positive vp-measure. Then, from (62) and Theorem 3 we have
that

Yn — 70- (63>

Let f be any continuous linear functional f in Lj(H). Use condition (46) and Lemma 30 to obtain

6l0 n—oo

lim lim inf/” s |f (2)]* vn(dz) = 0. (64)

Now, from (62), (63) and (64), we are in position to apply Theorem 3 to yield that the probability
measures P, corresponding to the Lévy measures v, in (61) converge to the probability measure
Py corresponding to the Lévy measure vy. That is,

P, converges weakly to Py. (65)

On the other hand, recall that g(f,z) = e/(®) —1 — if(x)l{”leﬂ}(:n). It is clear from (61) that v,
converges to () which satisfies

72)({0}) =0, 72y ([[#fl; > 1) < oo and / |f (@)]* Pz) (dir) < oo

fl=]l, <1

These properties of () are immediate from the fact that vx ;j({0}) = 0, j > 1 and condi-
tions (45) and (46), respectively. Then le(H) lg (f, )] D(9y(dx) < oo and le(H)g(f,a:) Vp(dx) —
i} L) 9 (f, ™) D9y (dw) by Proposition 4. But from (65) we have that the characterictic functional

B = [ g(fa)waldn) = By (£)
L1(H)
and hence Py (f) = le(H) g (f, ) (2)(dx). This proves that 7y is a Lévy measure.
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We show that 71 (d fK ps(dz)vz(dS) in (59) is a Lévy measure by proving that
exp { i) L 9 (f,m) (Cll‘)} is a characteristic functional. In view of (34) and (54) we have

R _ R R R
e Ll(H)g(f,:v)V(l)(dx) — Ke(etr(wx(f)S)_l)l,Z(ds) ) e—zf Ke {leli<1} zus(dr)vz(dS)

Notice that the last two factors are characteristic functionals, since the first factor corresponds
to the characteristic functional of a subordinated process at time 1 obtained by subordination of
Xg by Z; — t'y% and the second one corresponds to the characteristic functional of a degenerated
distribution.

We have shown that (58) is a Lévy measure and hence by uniqueness of the generating triplet we
get Ay =0, vy = and vy = 7, where A, v and 4 are defined in (58). This proves (49), (50) and
(51).

c¢) Assume that fl|5\|1<1 ||S||i/2 vz(dS) < oo and 4% = 0. Then Ay = 0 by (49) and vy (dz) =
fKe us(dz)vz(dS) by (50). We have

[ delwtan = [ [ el nsdzva(ds) < oc
llll, <1 e /llzl; <1

by (38). Now, from (54) and (56)

BTV 1) = exp {t [/ g(f, z)vy (dz)
L1(H)
/ / x) ps(dx)vz(dS) }
e |x||1<1
= ex e @ _ 1y (dx) 3.
p{t/,;l(m( oy ( >}

It follows from Proposition 2 that {Y;} has bounded variation on each interval [0,¢]. m

6 Appendix

Here we present the proofs of some the technical results used in the paper.

Proof of Proposition 4. a) Note that |g(f,z)| < %|f(a:)|2 if [[z||; < 1 and |g(f,z)| <
2v([llly > 1) if flzfl, > 1.
b) It is enough to prove that | Ly (H) h(z)vp(de) — [ 5 L v(dx) for every nonnegative measur-
able function h on Li(H). There exists a sequence {hk} of Slmple functions such that 0 < hy T h
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and [ hxdv 1 [ hdv. Since for each n we have [ hydv, 1 [ hdv, as k — oo and for each k we have
[ hidvy, 1 [ hydy as n — oo then

lim hpdvy = lim lim hrpdv, < lim lim hdv, = lim hduvy,.

k—oo k—oon—0oo k—oon—00 n—oo

This proves that [ hdv < lim [ hdv,. On the other hand, since v, is dominated by v, [ hypdyy, <

[ hpdv < [ hdv for all n and all k. Now, for each n, [hgdv, 1 [hgdv, as k — oo. Hence
[ hdv,, < [ hdv for all n. This proves that lim [ hdv, < [hdv. =
n—oo

Proof of Lemma 17. Let h € H and let V € L(H). Then

o0 [o¢] 2
, 2
|| =33 ver @ e (h),en) en ;) (66)
j=1 lk=1
= " ller, V¥er) (U(h),e5)* = [(Ver,en) P [|U(R)|3 < oo
Next, let h € H and let S € L1(H). Then
oo o0 2
| T (S) Z > (USer ® ex(h), ex) (e1, e5) (67)
=1 k=1

2

=Y (hoer) (er, (US) ex)| = [(hoen)| [tr (US)I?

k=1

From (66) and (67) the transformations T}, and Ty; are well defined for each U. It is easy to check
that they are linear and continuous.

It remains to show that Ty (S) belongs to Ly(H) whenever S belongs to Li(H). Let {¢x} be any
complete orthonormal set of H. Then

> Ty ¢>k,¢k!<ZZ| ((e1 @ e;USe; @ ex) g, ¢r)l

k=1 k=1j=1

<D0 e (US) el er, on)l?

k=1 j=1

o]
2
< lexll3 Y 1{USej, €5 < oo
j=1
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This proves that Ty (S) € L1(H). We have used here a characterization for a linear operator be of
trace-class (see Remark after Theorem VI. 24 of Reed and Simon (1980)). m

Proof of Lemma 18. Let V € L(H) and let S € L1(H). Then

fv(TyS) =tr Z Vei®ejUSej®er | = Ztr (Ver®e;USe; ® er)

j=1 j=1
:Ztr(ej@)elVel@erS):tr Zej@)elVel@erS
j=1 j=1
= fT(’JS(V>'

]
Proof of Lemma 19. Let V =V! + V2 and W = W! + W?2 be both in L(H) and let ¢ € R.
Then

TH(V A+ W) =T (VE+ eWh) + 0Ty (V2 + cW?)
=T (V') + T (V2) + ¢ [Ty (W) + T (W)
Thus, T, (/J is linear. Linearity of Ty is proved similarly. Continuity of T, (/] and Ty follows from

continuity of T[,]k and Ty, k € {1,2}, and the fact that |V tends to zero is equivalent to HVlH
and HVQH tend to zero both at time. m
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