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Introduction

Morse theory is a powerful method to study the topological structure of a smooth
manifold M by examining the critical points of a Morse function defined on it. For
example, let M = T? C R? be the two dimensional torus and f : M — R the height
function f((z,y,2)) = z. The functon f has four critical points p,q,r and s on M with
indices 0,1,1 and 2 respectively. Let M* denote the set of all points x € M such that
f(z) < a, and 7 ~ 7 denote homotopy equivalence. We can describe the change in
homeomorphism and homotopic types of M® as a passes through each critical value of f
as follows:

Case a < f(p):

M?* is the empty set.

x M*® is homeomorphic to a 2-cell or a disk.
* The homotopy type of M* is a single 0-cell since
the index of p is 0.

x M* is homeomorphic to a cylinder.
The homotopy type of M“ is a disk with a 1-cell
attached since the index of ¢ is 1.

*

* M* is homeomorphic to a torus with a disk removed.
x The homotopy type of M® is a cylinder with a 1-cell
attached since the index of r is 1.

x M®* is homeomorphic to the full torus.
* The homotopy type of M* is a torus minus a disk
with a 2-cell attached since the index of s is 2.

ii



In this thesis, we will present Morse theory on smooth finite-dimensional manifolds
and one application based on the books [10, 13].
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Chapter 1

Basic Definitions and Examples

We shall use the words "differentiable’ and "'smooth" and "differentiable of class
C>" as synonyms. Before the main chapter of this thesis, let us recall some definitions
and examples from differential geometry and topology.

1.1 Differential Geometry of Manifolds

1.1.1 Smooth Functions in Euclidean space

Definition 1.1.1: Let U C R™ and V C R™ be open subsets. We say that a function
f U — V is smooth if it has derivatives of all orders everywhere in U. The map f is
called a diffeomorphism from U to V if it is a smooth bijection and its inverse f~ :V — U
is again smooth. We denote by C*(U, V') the set of smooth functions from U to V.

Example 1.1.1: The function f : R — R defined by

1.1e ifz <0
1.1e(1 +e/4y

flz) = 7 +(61/(462_x2)) if x € (0, 2¢)
0 ifx > 2e

is smooth for any € > 0.
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1.1.2 Smooth manifolds

To formalize the definition of a smooth manifold we need the following notions.

Definition 1.1.2: Let M be a Hausdorff and second countable topological space.

(1) A coordinate chart or just chart of M is a pair (U, X) where U is an open subset
of M and X : U — R" is a map such that X (U) is an open subset of R" and X is
a homeomorphism from U to X(U).

(2) Two charts (U, X) and (V,Y) are called compatible if the subsets X (U NV') and
Y(UNYV) are open subsets of R™, and the transition map

XoY L:Y(UNV)—= XUNV)

is a diffeomorphism.

Figure 1.1: Compatible charts

(3) A collection of charts A = {(U;, X;)} is an n-dimensional atlas on M if any two
charts are compatible and J;U; = M.

(4) Two atlases Ay and Ay are equivalent if Ay U Ay is again an atlas.
(5) A differentiable manifold structure on M is an equivalence class of atlases.

(6) A smooth manifold of dimension n is a topological space M together with a
differentiable manifold structure on it.

Remark 1.1.1: From Definition 1.1.2:
(a) If pe U C M, then X(p) = (z1(p), x2(p), - ,xn(p)) € R™.

(b) Since X is continuous, so x; : U — R is a real valued continuous function for each
1=1,2,...,n.

(¢) The pair (U, X) is called a coordinate neighborhood (or a coordinate chart or
a chart) of M.

(d) (1,29, ,x,) is called the local coordinate system (or local coordinate ) on
(U, X).
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Example 1.1.2: The n-sphere S™ = {x = (21, ,Zn11) : |Jz|]| = 1} T R"™ is a smooth
manifold.

1.1.3 Smooth Maps between Smooth Manifolds

Definition 1.1.3: Let M,y and My be smooth manifolds of dimension m and n respectively.
A map f: My — M,y is smooth at p € My if given a chart (VYY) at f(p) € My there
exists a chart (U,X) at p € My such that f(U) C V and the mapping Y o f o X1 :
X(U) CcR™ = Y(V) CR" is smooth at X(p). A map f is smooth if it is smooth at
every point of My. The set of smooth functions from My to My is denoted C™(My, My).

f(U)
f(p) @T
—_—
l '
Yo fo X R

In particular, a map f : M — R on a smooth manifold M is called smooth if for all
p € M there is a chart (U, X) about p such that the map foX~!: X(U) — R is smooth.
We denote by C*(M,R) = C*°(M) the set of real valued smooth functions on M.

Definition 1.1.4: Let M and N be two smooth manifolds. We say that a mapping
p: M — N
(1) is a diffeomorphism if it is bijection, and the maps ¢ and ©~' are smooth;

(2) is a local diffeomorphism at p € M if there exist neighborhoods U of p and V' of
@(p) such that the map ¢, : U — V is a diffeomorphism.

1.1.4 Tangent Vectors and Tangent Spaces

Definition 1.1.5: Let M be a smooth manifold. For any p € M, choose a smooth curve
a: (—e,€) = M with a(0) = p. Let D be the set of all real valued functions on M that

3
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are smooth at p. The tangent vector to the curve a att = 0 (or the tangent vector
to M at p) is a function o/(0) : D — R given by
d(f o a)

O/(O)f = T |t:07 f & D

The tangent space of M at p, denoted by T,,M, is the set of all tangent vectors to M
at p.

Definition 1.1.6: Let M and N be smooth manifolds of dimension m and n respectively,
and let g : M — N be a smooth map. For any p € M and for each v € T,M, choose a
smooth curve a : (—e, €) = M with a(0) = p,a’(0) = v. The differential of g at p is the
linear map dg, : T,M — Ty, N given by dg,(v) = B'(0), where B = g o o is independent
of the choice of a.

1.1.5 Hessian, Regular points, Critical Points of a Function

Definition 1.1.7: Let M be a smooth manifold of dimension n, and let f: M — R be a
smooth map of M. For each point p € M, we choose a chart about p, X : U — V C R"
such that X (p) = (z1(p),- - ,@a(p)) € V. Let

F=foX 1:R" >R,

and the derivative
dFxp) : TxpR" = Trxp)R.
Then

(1) The Hessian of f with respect to X is defined as the symmetric matriz of second
order partial derivatives:

_ O*F
Hp =H(foX 1):<8x0$'> '
Y5 ) 1<ij<n

(2) p is a critical point or singular point of f if dFxy) is not surjective, this means
that the partial derivatives

S =0 (X)) =0

The real value f(p) = F(X(p)) is then called a eritical value of f.

(8) Any point which is not a critical point of f is called a regular point of f, and
any real value which is not a critical value of f is called a regular value of f.

(4) p is a non-degenerate critical point of [ if the Hessian is non-singular, that

is, det <HF(X(p))> # 0.
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(5) Any critical point whose Hessian is singular is called a degenerate critical point.

(6) The index of a non-degenerate critical point p with respect to f is the number of
negative eigenvalues of the Hessian Hp(X (p)).

Example 1.1.3: Let M = S? = {(z,y,2) € R® : 2% + y?> + 22 = 1} be the unit sphere in
R3. The function f: M — R by (z,y,z) — z is a Morse function.

Proof. Let

X1 X2 X1 X2

) and ¢2($17372,553) = (mym)

¢1(21, 2, 3) = (1—79(;3’1—7%

be two charts of S2. The inverses of ¢; and ¢, are

FEE TR Y T
b V+yi+ U yi+yi+ 1 yi+y3+1

and

¢2_1($17:U2) = (

respectively. In order to determine the critical points of f, consider the map f o ¢; ' :
R? — R for each ¢ = 1,2. Note that (S?\ {S}, ¢») is the coordinate chart around (0,0, 1)
and define a map g = fo¢,' : R> = R by

21, 25 1— a2 — 22
l+ai4+23 1+at+23 1+ a3+ 23

1— x? - ZU2
L -1 . 1 2
g(@1,22) = [ o ¢y (21,22) = 1422422
Since
—4zq —4x9
dg(m,mz) = 2 N2 2 2\2 |7
(1+I‘1+x2) (1—|—I‘1+$2)
we have

dG(z,,2) = 0if and only if 71 = x5 = 0.

Hence ¢5'(0,0) = (0,0,1) is the only critical point of f in S?\ {S}. We will now find the
Hessian of f at (0,0,1). By Definition 1.1.7,

0?g
Hy(92(0,0,1)) = Hy(0,0) = (axa$ ‘ (0, 0))
0T 1<i,j<2
—4(1 — 323 + 23) 16215

A+aita3)® | (Q+ai+ad)? o
162122 —4(1 4 2% — 323)
(1+ a7+ 23)3 (1+af + 23)3

()

This shows that (0,0, 1) is a non-degenerate critical point of f with index 2. For the point
(0,0, —1), we use the chart (S?\ {N}, ¢;), and a similar calculation shows that (0,0, —1)
is the only critical point of f in S?\ {N} with index 0. O

\(0,0) |(0,0)

5
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Example 1.1.4: Let r and R be real numbers satisfying 0 < r < R, and let

M =T = {(z,y,2) :x2+(\/m—R)2:r2}

be a two dimensional torus. The function f : T?> — R defined by f((x,y,2)) = 2 is a
Morse funtion which has four non-degenerate critical points

(07 07 _(R + T))a (O, 07 _(R - T))v (07 07 R — T) and (07 07 R + T)
with indices 0,1,1 and 2 respectively.

Proposition 1.1.1: The notions (2), (3), (4) defined in Definition 1.1.7 do not depend
on the choice of chart.

Proof. Let (Uy, 1) and (Us, p2) be coordinate charts of M around a critical point p of f
such that ¢, (p) = (wl(p), e ,xn(p)> = <y1 (P), - ,yn(p)>: w2(p).We note that

fopr' =(fows)o(propr") (1.1.1)
and
fows'=(foei")ol(propy). (1.1.2)
O(foerh) A(fowy")

(2) We will prove that
alli=1,2,---,n

(¢1(p)) = 0 if and only if (p2(p)) = 0, for

O(fowy")
Ay

coordinate function of ¢, o p7'. By equation (1.1.1) and 5 o @7 ' (p1(p)) = wa(p),
using the chain rule we obtain

Suppose that for all 7, we have (¢a(p)) = 0, and let (p20¢7"); be the jth

A(pa 01

O(fowr!) Z": o @y )
8:172-

(1.1.3)
0%i oy =1 O

900901)

v1(p) ®1(p)

Hence

W) (0, ) = 3 020 ) 2020 2 i ),

o -1
By hypothesis, %(@(p)) = 0. Similarly, by equation (1.1.2) and the chain
i 1
rule, if we have a<faom(<p1(p)) = 0, for all 4, then we have a(fgcpl)(m(p)) =0.
Ty Yi

(3) It follows from the previous point.
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(4) We will prove that det <wal_1(g01(p))>7é 0 if and only if det (wagl(g@(p))> # 0.
From equation (1.1.3), for 1 < j <n, we have

d(fopi)
axj

A(pa 0 o1 )k

p1(p) k=1 v1(p)

@1(10))
@1(17))

By applying the chain rule again and o5 0 o7 (¢1(p)) = wa(p),

O*(fopr!)
8$i8$j

9 (&K O(foprh) 1 A2 0 01 Mk
(;;1 by \2eer) Oz

& (0(fopy") 1
<8yk(<ﬂ20801 )

v1(p) »1(p)

d(p2 0 0T Vi

I
M= 2
N

=1 9% ©1(p) Oz,
n n _1 —
k=1 8yl Gyk ©1(p) O ©1(p) Oz;
. 3(f ANfowr") P(p20 07k
+ (P20 ) —
1;1 Iy ©1(p) Oz;0x; ©1(p)
1
LS P(fogr,  O(eoeit) 80 o)
= —~ (lzl é)ylé)yk((m(p))(‘)xi((pl(p»)@xj(@l(p))'
Since p is a critical point of f,
O(fowy' O(fopy'
280 (o)) = 20 () =0, v
k »1(p) Yk

Now, for 1 < k,l < n, the above expression can be written as:

d(p2001 )1

- — — Ox;
O*(fopi") _(Op2oer ) 20w .
SO () = (TR SR | ,
L0 Z; Z; ©1(p) 8(9020901,1)”
O, ©1(p)
where Hy = wa;(cpg(p)). Hence, for all 1 <4, j < n, we obtain
Hfogofl(gpl(p)) - JtHfogogl(gD?(p))J) (114)
where
Op2opi)t  Op2091'h
axl axn
J=J(p200)(p1(p) = : :
Np2opi)n w2001 ")
01 Iy ¢1(p)

w1(p)
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is the Jacobian of ¢y 0 7' at o1(p) and J* is its transpose. Since o 0 o7 is
a smooth map with smooth inverse, the matrix J = J(p3 o ©7')(¢1(p)) is non-

singular. Therefore, equation (1.1.4) implies det wa;1(<p1(p)) # 0 if and only if

et Hyppo 200 ) 0.
]

Proposition 1.1.2: The index of a non-degenerate critical point is independent of the
chart.

Proof. According to equation (1.1.4), Hfowl—1<g01(p)) and waz_l(@(p)) are congruent.
Therefore, by Sylvester’s Law, Hfowfl(apl(p)) and wa;l(goz (p)) have the same index. [

We need to state, without proof, the Morse-Sard-Federer theorem (see Theorem 3.4.3
of [4] or Theorem 4, p. 10 of [2] or p.16 of [12]).

Theorem 1.1.1: (Morse-Sard-Federer theorem) Let f : M — N be a smooth map
between smooth finite dimensional manifolds.

(1) The set of critical values of f has measure zero in N.

(2) If f(M) has nonempty interior, then the set of reqular values is dense in the image
f(M).
O

1.1.6 Vector Fields and One-Parameter Tranformation Groups

Definition 1.1.8: A smooth vector field on a smooth manifold M is a smooth map
X : M — TM, such that for each p € M we assign a vector X, € T,M, X : p+— (p, X,).

Definition 1.1.9: Let ¢ : I — M be a smooth curve. A smooth vector field V along c
is a smooth map that associates to everyt € I a tangent vector V (t) € Ty M. A velocity

d
vector (or tangent vector field), d—; € T, wyM, is defined by

de . flelt+h) = f(e(t))
%(f)—}lll_{% h

, [ €D.
Definition 1.1.10: A one-parameter group of diffeomorphisms of a smooth manifold M
is a smooth map ¢ : R x M — M satisfying the following properties:

(a) For eacht € R, the map ¢, : M — M defined by ¢:(q) = ¢(t,q) is a diffeomorphism
of M onto itself.

(b) For all s,t € R, we have ¢siy = P50 Py.
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Next, given a one-parameter group of diffeomorphisms ¢ on a smooth manifold M, we
define a vector field X on M by

X,(f) = lim f(onlg)) = f(9)

lim . : (1.1.5)

where f is any smooth real valued function on M. This smooth vector field is said to
generate the group ¢.

Example 1.1.5: Let M be the 1-sphere St. The map
p:Rx St — St
cos(t) —sin(t) x
(t’ (a:,y)) ~ ( sin(t)  cos(t) y )’
is a one-parameter group of diffeomorphisms.

Definition 1.1.11: A Riemannian manifold is a smooth manifold endowed with an
inner product on each tangent space which vary smoothly.

Definition 1.1.12: Let M be a Riemannian manifold. Let (X,Y) denote the inner prod-
uct of two tangent vectors, as defined by this metric, and let f € D. The gradient of f
as a vector field gradf on M defined by

(X, gradf) = X(f).

In other words,
(v, gradf(p)) = df,(v), p € M, Vv € T,M.

Remark 1.1.2:

(a) The vector field gradf(p) =0 if p is a critical point of f.

d
(b) If we have a curve ¢ : R — M with velocity vector d—j, then

A — g (G = (Gt ).

Lemma 1.1.1: A smooth vector field X on M which vanishes outside of a compact subset
K of M generates a unique one-parameter group of diffeomorphisms ¢ of M. O

1.1.7 Jacobian of a map and coarea formula

Let My and M; be smooth, connected, Riemannian manifolds of dimension n, equipped
with Riemann metrics gy and g; respectively. Let F': My — M; be a smooth map. For
any ro € My, the differential map of F' at x( is a linear map

dF$O : T$0M0 — TF(xo)Ml-

9
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If we choose an orthonormal basis {€;}1<i<n of Ty, My and let f, = dF}, (), then we can
form an n x n symmetric matrix

Gr(x0) = <<f:’ f;’>g1 )1gi,j§n'

The matrix Gr(zo) is non-negative because for any y = (y1, - ,y,) € R", we have

yGr(xo)y (Z fis f0) v, - '7Z<fi,fn>yi)yT

i=1 =1

= iz fzyf] YilY;

n
j=1:=1
n

= ZZ fzyw f]y]

= zn: zn:fzyiy ijj>

J=1 \i=1

<.

I
-

-
u

Since Gr(xg) is non-negative, all of its eigenvalues are non-negative so that
det(Gp(zg)) > 0.
The Jacobian of F' is the smooth non-negative function

|Je|: My — [0,400)

Ty > det GF<CL’0)
Since Gr(xg) is a symmetric matrix, it can be expressed as
Gr(wo) = QFDFQ;?

(the spectral decomposition) where () is an orthogonal matrix and D = diag(Ay, - -+, A,) is
a diagonal matrix formed with the egenvalues Ay, - -+, A, of Gp(xo). By the non-negativity
of the eigenvalues of Gr(zy), we have

Gr(r0) = QrDrQf = QF\/FFQEQF\/FFQE = Br(z0) Br (o),
where Br(zo) = Qpv/DrQ%. Therefore,

det GF<CL’0) = det (BF(ZL'O)BF(I())) = det BF(ZE()) det BF([E()) = (det BF(JZ()))2

10
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According to Theorem 1.1.1, if F': My — M, is a smooth map between smooth finite
dimensional manifolds, then almost every x; € M; is a regular value of F. For such z’s,
the fiber F~!(z;) is a finite set and we denote by Ng(z1) € Z>oU{oo} its cardinality.

Now we state the coarea formula theorem without proof.

Theorem 1.1.2: (Coarea formula) Let F' : (My,g0) — (Mi,q1) be a smooth map

between two smooth, compact, connected, oriented, finite-dimensional Riemannian mani-
folds. Then the function

M, 3 x1 — Np(z1) € Z>o U {o0}

is measurable with respect to the Lebesgue measure defined by the volume form dVy,, and

[, VeV (o) = [ | el(@o)dVy, (o).

where x1 = F(x).

1.1.8 Frenet-Serret formulas

Let o : I C R — E = R3 be a curve parametrized by arc length s. The tangent, normal,
and binormal unit vectors, often called 7'(s), N(s), and B(s) (or simply 7', N, and B) form
an orthonormal basis spanning R? and are defined as follows:

T(s) = d(s),

B a//(s)
NE) = T
B(s) = T(s)x N(s).

The Frenet-Serret Formulas are the following

T' = kN
N = —kT + 7B
B' =71N,
where
k = k(s) = ||a"(s)|| is called the curvature or bending of « at s,

= 7(s) is called the torsion or twisting of a at s.

11
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1.2 Topology of Manifolds

In this section we will assume that X and Y are topological spaces unless stated other-
wise.

1.2.1 Homotopy
Definition 1.2.1: A family of maps hy : X — Y, t € [0,1] is called a homotopy if the
associated map H : X x [0,1] =Y given by H(z,t) = hy(z) is continuous on X x [0, 1].

Definition 1.2.2: Let f,g : X — Y be two continuous maps. Then the maps f and g
are homotopic if there ezists a homotopy hy : X — Y such that ho(x) = f(x) and
hi(z) = g(z) for all x € X, and we write f ~ g.

Definition 1.2.3: A continuous map f : X — Y is a homotopy equivalence if there
exists a continuous map g : Y — X such that fog ~idy and go f ~ idx. In this case, the
spaces X andY are said to be homotopy equivalent (or to have the same homotopy

type).

Remark 1.2.1: The map g mentioned in Definition 1.2.3 is called a homotopy inverse

of f.
Example 1.2.1: Let p € R™. The space R™ \ {p} is homotopy equivalent to S™~1.

Definition 1.2.4: A subspace A of X is a deformation retract of X if there exists a
homotopy hy : X — X, t € [0, 1] satisfying:

(i) ho(x) =z for all z € X,
(ii) hi(z) € A for allz € X,
(7ii) hi(a) = a, for alla € A andt € [0, 1].

1.2.2 CW-Complexes

Definition 1.2.5: (Attaching a \-cell)

Let Y be any topological space, and let e* = {x € R* : ||z]| < 1} be the A-cell with
boundary 0(e*) = {xr € R* :||z|]| =1} = S Ifg: S™! — Y is a continuous map,
then' Y with a \-cell attached by g, denoted by Y U, €*, is obtained by taking the disjoint
union of Y and e, and identifying each x € S* ! with g(z) € Y.

Remark 1.2.2: €% is a point and 9(e®) = S~ is the empty set.

Definition 1.2.6: Let X be a Hausdorff space. X is said to be a CW-complex (or cell
complex) if there exists a sequence of subspaces X ¢ XM ¢ X® c ... C X such that

(i) X© s a discrete (disjoint union of 0-cells).

12
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(i) XY 4s obtained from X@ by attaching (i + 1)-cells.

(iii) The set X = U, X™ is endowed with the weak topology (if A C X is open (or
closed) if and only if AN X™ s open (or closed) in X™ for each n).

Definition 1.2.7: Let X be a CW complex. The n-skeleton of X, denoted by X is
the union of all the cells of dimensions less than or equal to n in X.

Definition 1.2.8: Let X, Y be two CW complezes. A map f: X — Y is a cellular map
if f(XM)CY™ for all n.

13



Chapter 2

Morse Theory

In this chapter we will give the definition of Morse functions, prove their existence and
describe their properties.

2.1 Morse Function

Definition 2.1.1: Let f be a smooth function on a smooth manifold M. f is said to be a
Morse function if every critical point of f is non-degenerate.

Example 2.1.1: The height functions on the sphere S* and the torus T? (Examples
1.1.3 and 1.1.4) are Morse functions.

Example 2.1.2: Let [zg, 21, -+ , 2,] be an equivalence class of (n+1)-tuples (29, 21, , Zn)
of complex numbers, with Z |zj|2 1, and let M = CP™ = {[z0,21, - ,2n)} be the

complex projective n-space. Deﬁne f:M—R by
n
(20,21, , 2n] = Z Cj|Zj|27

where ¢y, c1, - , ¢, are distinct real constants. Such a function f is a Morse function.
Proof. In order to determine the critical points of f and their indices, we consider the fol-

lowing local coordinate system. For each j € {0,1,--- ,n}, let U; be the set of equivalence
classes of (n + 1)-tuples (29, 21, - - , 2,) of complex numbers with z; # 0. That is,

14



CRV CHAPTER 2. MORSE THEORY

UJ = {[207Z17 » %55 : ,Zn] D% 7é 0}
:{ZZ 1 ,Zn]}
"2 2y Zj
_ ). 20 21 Zn
_{-|zj|%’|zj|zj’”' Azl ,Izjlzj]}
:{[L’g—i-l'yo’-..’ 1—Z<$%+y%)”xn+2yn}}7
) k]
where
Zk )
25| = = a1 + gk
Zj
and

(2] = 1= 2 (a% + 40).
k#j

Let B;(0) be the open unit ball in R**. We now prove that U; is diffeomorphic to By (0).
We define g; : U; — B1(0) by

g](“) = (37073/0755171/17"' 7%7%7"' 7xn7yn>7

where u = [z + iyo, 1 + WY1, - - ,\/1 — Y (x4 y}), -+ ,xn + iy,]. The map g; is well
k#j

defined since for any

u = [xo + 1Yo, 1 + W, -, 1‘2@%“‘%%):"' , Tn + 1Y) € Uj
Py
we have
‘g](u)‘z = |(x0,yo,;1:1,y1,- o 7%7%7 e 7xn7yn)‘
= > (@ + i) — (25 + )
k=0
<> (zF+yp) (since z; # 0, so :L‘JQ + yjz- > 0)
k=0
<1 (since » (2} +yp) =1).
k=0

This means that Im(g;) C B1(0). In addition, it is clear that g is bijective and smooth.
Hence (U;, g;) is a coordinate chart of M around [0,---,1;,---,0]. Note that for any

V= ('r07y0ax17y17"' 7%7%7'” ,xn,yn) € Bl(0)7

we have

gj_l(v) =[x + iyo, x1 + Y1, -, 1 — Z(x%y,%% s T+ iYn] € Uj.
k#j

15
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We now define F:= fog;"': Bi(0) C R*™ — R by

PO = Yot i) o 1=+

oy oy
= ¢+ Y (o — ) (@} + i)
py
= ¢+ > bi(zh + i),
oy

Wlthbk:Ck—Cj #07 Vk#]7 where v = (x07y07"' 7%7%7”' 7$n7yn> GBI(O>

To find the critical point of f, we have to solve the equation dF;, = 0. For any
U= (x07y0a e 7%7)%4 U 7xn7yn) € Bl(o)a we have

dFv - 2(()05[}0, b0y07 T 7%7%7 e 7bnxn7 bnyn> .
This shows that dF, = 0 if and only if v = 0. Hence

pj:g]fl<0):[0’... ,1].,... ,O]

is the only critical point in U;. We next find the Hessian of f at p;. Let to5 = x5 and
tosy1 = ys for s =0,1,--- ,n and so by definition 1.1.7,

2bp O -~ 0 O
) 0 2b --- 0 O
OF S o
Hr(g;(pj)) = Hp(0) = Il (0) = : : AR :
k& kl€{0,1, 2n+1}\{24,2j+1} 0 0 --- 2b, 0
o o0 - 0 2b,
This shows that p;, for each j = 0,1,--- ,n, is a non-degenerate critical point of f since

b # 0, Vk # j, so that Hp(g;(p;)) is non-singular. The critical point p; has index equal
to twice the number of k£ with b, < 0 (or ¢; < ¢;). Therefore, f is a Morse function. [

2.2 Morse lemma

Lemma 2.2.1: (Morse lemma) Let p be non degenerate critical point of f with index
M. Then there is a local coordinate system Y : V. C R" — U, in a neighborhood Up of p
with 0 € V' and Y (0) = p such that the identity

holds throughout V.

Before proving the Morse lemma we prove the following.

16
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Lemma 2.2.2: Let f € C™ be function in a convex neighborhood V' of 0 in R™, with
f(0) =0. Then

n
f(xbx?v U ,SL’n) = Zzigi(xhx% T 7'TTL)
=1

for some suitable C* functions g; defined in V, with g;(0) = gg, (0).

Proof. Let (1,29, -+ ,x,) € V. Since V is convex, then t(xy, 2o, - ,2,) + (1 =)0 €V,
for all 0 < ¢t < 1. In other words, (txy,txs, - ,tx,) € V, for all 0 <t < 1. Define

F:0,1] — R
F(t) = f(txy, txg, - txy,).

By the Fundamental Theorem of Calculus

Since F'(1) = f(x1, 29, -+ ,x,) and F(0) = f(0) =0,

=

I
S O O—_

f(x17x27”' 7$n> 7(t$17tx27” tmn>dt

~+

d
<8f t:pl,txg,--- Jtry) T Of (twy, twg, - >t$n)xn> dt

T
or,,

n
>

=1

tml, twg, -  txy,)dt

Q)

.

Z;

0

" 1
:.Z%O/&E

\

twy, txg, -+ tx,)dt.

.

=1

=

We define

gV — R

gi($17$27"' >xn) = /gxf (tfﬂl,t.ﬁlfg,"' 7txn)dt

1
Since f € C*, so is g; for each i. Furthermore, ¢;(0) = gg{_ (0) [dt = %(O). Therefore,
1 0 K2

n

f(xlvx%'” an) = Z J3igi(I1,LL’2,"' 7In)' [

=1

Proof. (of the Morse lemma) Without loss of generality, assume that f(p) = 0, since
we can replace [ by f — f(p) if necessary. Choose a local coordinate system X : Vy C
R"™ — U, in a neighborhood U, of p such that X (0) = p. Since f(p) = (f o X)(0) =0 and

17
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(foX) € C, by Lemma 2.2.2, there exists n suitable functions g; € C* defined in a
convex neighborhood V; C R” of 0 such that

(fOX)<.T1,Z‘2,"' an) - ingi(xbx%”' 7‘r”>

i=1

and satisfy

I(f o X)
8£L'i

Now we have ¢;(0) = a(g;j() (0) = 8%-(17) = 0. Using Lemma 2.2.2 again, for every

1=1, 2,--- ,n, we have

g:(0) = (0), foranyi=1,2,---,n.

n
g¢($1,$27"' 71‘”) = ijhij(xlax27"' 7%)7
j=1

where for each 1 < j <n, h;; is a C function defined in a convex neighborhood V, C V}
— 99

of 0, with h;;(0) = 5%2(0), for any j =1, 2,--- ,n. Hence

=1
= Z Zﬂﬁﬂijhzj(%l, Loy >~’Un)
i=1j=1
= Z%zhm(ﬂch Loy 7xn) + Z%Ij (hij + hji) ($17l’27 e ,l‘n)
i=1 i<j
=Y wlHu(w1, @0, ,xn) + 2 @i Hyj (w1, 00, L 2),
i=1 i<j
where H;; = 5 (hij + hj;) = Hj;. Now let us compute H¥(p) := (%(p))K, o the
T J SLIsSn
Hessian matrix of f at p. We know that afgm.(p) = g;fgf) (0). So, let us compute the
10T 4 10T 4

second order partial derivative of f o X at the origin. From the computation above, we
have defined f o X in a convex neighborhood V5 of 0 by

n

(foX)(z1, 20, ,x,) = Z:B?H,-,-(:Bl,xg,--- ,xn)+22$ixjHij(:v1,x2,--- ,Tn). (2.2.2)

=1 i<j
Therefore,
IfoX), .
om0z, 0 = 2Ha(0)
. I(f o X) A(f o X)
o O . .
0z;0x; 0= Ox;0x; (0) = 2H;;(0), for all i < j.
Therefore,
I(f o X) o
T2y = o <ii<nm
D0z, (0) = 2H;;(0), for all 1 <i,j <n

18
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By hypothesis, p is a non degenerate critical point of f, so

0 Of o X
0 # det (Hf(p)) = det ( ax,-ng (p)) = det ( af; ar (0)> = det (2H;(0)),; -, -

We can assume that Hy (p) = 2H,.(0) # 0. If H,,(0) = 0 and det (H;;(0)),, ;,, # 0,
then there exists i > r such that H;,. # 0. Hence we choose a new suitable local coordinate
system

xr+xi Ty — Xy
72 7.'.7‘T7:—17 2 7-.

(.’fl,"' 7'%7‘—175(:\7'7”' 7‘%1'—17551'7”' 73:\”) - (Ila"' y Lp—1, : an)'

Therefore, f—I\M = H,,.+ H;, # 0. We wish to prove this lemma by induction. Now suppose

that H11(0) # 0 and by the continuity of H;; (H;; € C*°, for every i,7j), there is a
neighborhood V3 C V, of 0 such that Hy; # 0 on it. We define a new first coordinate 1,

near V3 by
— " H
Y = HH (1’1"‘21’] M)

and for each 2 < j <n, we keep the z;-coordinate as it is. Thus

n Hl]
T1 = -
\Hn’ = Hu
and
Oz Oy ... Om 1 _H(0) 0 Hin(0)
2, (0) 55 (0) o: (0) T ) 10
52(0) 32(0) 522(0) 0 1 - 0
det ur 2 " = det
5(0) FE2(0) - 32=(0) 0 0 1
1
= — 0.
[H11(0)]
Since the determinant of the Jacobian matrix of the transformation from (y;,xs, - , ;)
to (z1,xs, -+ ,x,) evaluated at 0 is not zero, (y1, 22, -+ ,x,) is a local coordinate system

on the neighborhood V3 of 0. In V3, we square y; and

2
Hy; " H
‘H11’$1+2|H11‘ E xlx]——i—\Hll] E .CEJ 1
Hyy Hyy

7j=2

2
on)
HHZL’I + 2 Z .I‘lIJHl] B PP if Hi1 >0

Z%Hlj)
_Hllxl -2 Z Il.T]Hlj B PP if Hi; <.

19
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Hence
n 2
n y% -2 ; 'l'il’jiHEilj — 221?% if Hll >0
Huai +2) max;Hy; = 25y P (2.2.3)
=2 —yi =2 ¥ wyegp = Y aipt it Hyp <0
2<i<j j=2

Therefore, by equations (2.5.10) and (2.2.3),

i=1 i<j

= I%HH + 2 lexjHlj + ZZE?HM + 2 Z xixsz’j
j=2 i=2 2<i<j

2, N\~ 2 Hy Hy,Hy, ,
y1+§2xj<ﬂjj H11)+22<§Z:<Jxx](H Huﬂ) if Hyy > 0

2<i<j

y§+zx§ D42y wagHY it Hy >0
=2

)
2<i<y J

S 2HY +2 Y maHS i Hy <0,
j=2

2<i<y

=42+ Y 20 +2 Y waHY
j=2

2<i<j

where H;; = %(hij + h;i) = Hj;. Suppose that there is 7 > 1 such that the following
equation holds:

foV =yt ty? + ZxQH D42 3 g HY. (2.2.4)

j=r r<i<j
We will prove that the equation (2.2.4) holds for 7+ 1. We have assumed that H{(0) # 0
and again by the continuity of Hz(] , there is a neighborhood V,,5 C V,,y C --- C V5 of
0 such that H( # 0 on it. As in the base case, we define a new " coordinate ¥, near

Vrez b (r)
H T
Yr \/ Hrr (ZL’T + Z .CE] )

Jj=r+1

and for each j # r, we keep the z;-coordinate as it is. We obtain that (y1, y2, -+, Yr—1, Yr, Try1, - - -

is a local coordinate system of V,,5. By a similar calculation as that of equation (2.2.3),
we have

HriH’rj n 2H7?j
m, 2 Ui

Jj=r+1

H —i-ZZxrx] () :I:yT 2 Z Tixj

j=r+1 r+1<i<j
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This, together with equation (2.2.4), gives

foY = Z +9? +Za¢2H(r + 2 Z xia:jH()

i<r—1 r<i<j
= > +yi+22HD +2 Y xrxjH,E;)+ > J:?HJ(;)+2 Sz HY

i<r—1 j=r+1 j= r+1 r41<i<j
—Zj: 2_2 Z ] HT’LHTJ o & 7‘] - 2H 7”) 2 . H()
= y; Tilty o ox H + Y THP 2 Y wuay

i<r r+1<i<j rr j=r+1 rr j=r+1 r4+1<i<y

" H (r) HriHT‘

-y Y (H) - g2 ) v X v () - )

i<r j*r—i—l H r+1<i<y HTT
=ty + Z aszTH)—i—Q > wuH TH,

i<r Jj=r+1 r4+1<i<y

2
where HI™ = HY — 75 and BT = B — Mol O

Corollary 2.2.1: Let f : M — R be a smooth function on a smooth manifold M. A
non-degenerate critical point of a smooth function f is isolated. In particular, if f is a
Morse function and M is compact, then f has a finite number of critical points.

Proof. By Lemma 2.2.1, we observe that if f has a non-degenerate critical point at p,
then there is a coordinate chart (U,,Y ') of M about p that satisfies equation (2.2.1).
This chart contains no other critical point of f other than p since, by equation (2.2.1),

d(f © Y)( = (:I:th Ty j:2yn)

Y1, sYn)

and d(foY) .~ =0ifandonlyif (y1, -+ ,y,) = 0. Hence Y'(0) = p is the only critical
point of f in U,. Therefore, p is isolated.

Now suppose that M is compact. If the set of critical points were infinite, it would
have an accumulation point. By continuity of df, such a point would also be a critical
point which is not isolated, which is a contradiction. O

2.3 Existence of Morse Functions

The goal of this section is to show the existence of Morse functions on any smooth
manifold. Since the Whitney embedding theorem (see [14], Chapter IV) tells us that any
smooth manifold is embedded in a suitable Euclidean vector space, let M be a smooth
n-dimensional manifold embedded in £ = R"** for some k € N.

Let A be a smooth finite dimensional manifold. We will consider the families of smooth
functions f\ : M — R, for all A € A, and investigate the conditions on A such that f, has
no degenerate critical points. To do this, we will produce a smooth map 7 : Z — A and
then prove that f\ has no degenerate critical points for every A € A, which is a regular
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value of m. Moreover, Theorem 1.1.1 implies that f, is a Morse function for almost all
Ae A

Let us recall that E* = {a | « : E — R is a linear map} is the dual space of real vector
space F, and the following useful definitions:

Definition 2.3.1: The dual of the tangent space T, M of a smooth manifold M 1is called
the cotangent space at x denoted by

T:M = (T, M)*.
An element of TYM s called cotangent vector or covector.

Definition 2.3.2: Let f : M — N be a smooth map between smooth finite dimensional
manifolds. The differential map of f at x is the linear map dfy, : T, M — Ty N.

(1) f is called immersion if df, is injective for every x € M.

(2) f is called submersion if df, is surjective for every x € M

Definition 2.3.3: Let f : M — N be a smooth map and x € M. We have the cotangent
map
A" fo = (dfe)" : Tj, )N — T; M

defined as the dual to the tangent map (the differential map of f at x)
dfx : TxM — Tf(m)N.

In particular, if N =R, then df, is a covector (i.e. df, € TiM ).

Let ' : A x E — R be a smooth function. We associate to ' a smooth family of
functions Fy : £ — R given as Fy(z) = F(\ x), forall (\,z) € A x E. Let f and fy,
respectively, be the restriction of ' to A x M and of F\ to M. That is

F,,=f:AxMCAXxFE—=R,

and
FMM :f)\{)\}XM%JM—)R

Let x € M. Since i : M — FE is an embedding, di, : T,M — T, E = F is injective and
there is a natural surjective linear map (di,)* := P, : E* — T M defined by

a— a(diy).
In particular, we have the following identity
d(fx)e = Pod(F))a
since T, M & T.E dQQC R determined d(fy), : T.M — R by

A(fr)e = d(F\)g 0 diy = (dig) (d(F))s) = Pod(Fy)s.
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Remark 2.3.1: The surjective linear map P, is a submersion since the differential of the
linear map P, is P, and it is surjective.

For every x € M, we define a smooth partial differential map of f, 0°f : A — ThM
by
" f(A) = d(fx)a-

Definition 2.3.4: Let F': A x E — R be a family of smooth functions. We say that

(1) F is sufficiently large relative to the submanifold M — E if dim A > dim M
and for every x € M, the point O € T*M is a reqular value for 0" f.

(2) F is large if for every x € E the partial differential map
O"F : N — E*
defined by O°F(\) = d(Fy), is a submersion.

Example 2.3.1: Let E be Euclidean space with the standard inner product (-, -).
(a) Suppose A = E* and let H : E* x E — R be the function defined by

H(\ z) = Ax), forall(\z)€ E* x E.
(b) Suppose A = FE and let R: E x E — R be the function defined by

1
R\, x) = §||x — N3, forall(\z)€ ExE.

(c) Let A be the space of positive definite symmetric endomorphisms A : E — E, and
let F: A x E— R be the function defined by

1

F(Ax)= 5 (Az,z), for all(A,z) e AX E.

The first two functions above are large and the last function is sufficiently large relative
to any submanifold of EE not passing through the origin.

Proof. (a) Let z € E. We will prove that the differential of
OH : B — B, A\ s d(H,),

is surjective for all A € E*. Since H) : E — R is given by H)(y) = \(y).

For every v € T, E = F, we choose « : (—¢,€) — E be the smooth curve on E which
is defined by
at) =z +tv. (2.3.1)
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Then

d(H)y)z(v) = Z(H,(a(t)))\ ) = i()\(a: + tv))l ) = jt()\(x) +t/\(v)>‘ ) = A(v).

Then 0 H is the identity and hence the differential of 9 H is surjective. Therefore,
H is large.

Let x € E. We wish to show that the differential of
R E — E*, A\—d(R)):
is surjective. We will first find d(R)),, where Ry : E — R is given by
Ra(y) = 5 lly = AP

For every v € E, using the smooth curve on E as in (2.3.1), we have

1d 2
— ;acllt<<($ - )\) + tv, (x B )\) " t"U> ) ’tzo
— it = = 2 (=, + “”’t”)lto

-

Thus 9*R is a linear function which is defined by
O"R(A) = d(R))z = ((z = A),-) = (= A)7,

where (x — \)* is the metric dual.

Now we will prove that the differential of 9* R is surjective. It suffices to prove that
0" R is surjective since 0" R is a linear function. To see this, let ey, -+ , e, be the
orthonormal basis of E. Define {ef = (e;,+)} asa basisof E*. Let &« € E*, o« : E — R,

and let
n—+k

A=z — Za(ei)ei c k.

=1
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n+k
Then (x — A, -) = «. Indeed, for every v € E, v = 3 v;e;, we have
i=1

n+k ntk n+k n+k
(x — \v) = <Z ale)e, Y viei> = ale)v; = ald vie;) = a(v)

i=1 i=1 i=1 i=1
since {e1, -+ ,en1x} is the orthonormal basis of E and « is linear function.

(c) Let M be a submanifold of £ which does not pass through the origin. We will prove
that F': A x E — R is sufficiently large relative to M. For every x € M, we consider
the partial differential map

Ff=g:N—=T;M,
1
which is given by A + d(fa),. Since f4 : M — R is defined by y — 5 (Ay,y) for
every v € T, M, take a smooth curve a : (—g,¢) — M : such that «(0) = x and
da(()) = v, so that

amnwﬁiigﬂwm%_

) . o),
Hfotan) (s ),
( (Av.) + (Ax U>)

Define g(A) = (Az,-) = (Axz)*. To prove that 0 € T M is a regular value of 07 f, it
suffices to prove that

[\D\»—t [\D\»—t

/\ l\:)\?—‘

dg, : TeA — Tipay- (TZM) = TEM

is surjective for every B € ¢g~'(0). Note that ¢7*(0) = {B € A : BxlT,M}. Let
B € ¢g7'(0), C € TgA, and B : (—¢,¢) — A be a smooth curve with (0) = B and
B'(0) = C. Then, for every v € T,M we have

()0 = g (500

(om0 -
=Qﬂ@%@+<ﬂ&mﬁ>%to
(Ca, )
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Since A is an open set of the vector space of symmetric matrices, TgA is isomorphic to
the space of symmetric matrices. Let p € T M, p: T,M — R (linear). We will then find
an element C' of TgA such that (Cz,v) = p(v), forall v € T, M. To see this, we claim that
for every p(v), there exists w € T,,M such that p(v) = (w, z) . Indeed, let ay, -+ , a4 be
orthonormal basis of £ such that

n+k n+k
V=Y v =Y af(v)o
i=1 i=1
where {a]}1<i<nix is the dual basis of E. Thus
n—+k n+k n—+k
p(0) = o3 i) = 3 ity = (3 ptaijar ) o
i=1 i=1 i=1

n+k
and we choose w = p* = > p(a;)q;. Therefore,
i=1

(w,v) = <2 plaen 3 a> = 3 () = o2 ) = ol0).

Now, for any x € M, x # 0, we can choose an orthonormal basis {f; }1<i<n+x of E such

n+k
that x = > x;6; with x; # 0 for all i and we have
i=1

n+k

w=p"= Z p(Bs)Bi
i=1

such that p(v) = (w,v) . In this basis, we can find a symmetric matrix

p(B1) 0
T1
C =
T4k
p(Br) 0

T1

such that C'z = w. That is, there exists C' = € TgA such that
Ttk

(Czx,v) = (w,v) = p(v), Yv € T, M. This proves that dgp is surjective. O

Lemma 2.3.1: If F : A x E — R is large, then it is sufficiently large relative to any
smooth submanifold M C E.

Proof. Suppose that F'is large. Then, for every x € E, we have

PF:N— E*, A= d(F)\),
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is a submersion. We wish to prove that 0 € Ty M is a regular value for
Ff:N=TiM, A= d(f)).
Using the identity d(f\), = P.d(F))., we have
0"f = P,O"F.

Hence 9% f is a submersion since it is a composition of two submersions P, and 0*F. This
means that the differential of 0" f is surjective and so it has no critical values. This proves
that 0 € T M is a regular value for 0" f. [

Theorem 2.3.1: If F': A x E — R is sufficiently large relative to a smooth submanifold
M C E, then there exists a subset Aoy C A of measure zero such that fy = Fx\|p : M — R
is a Morse function for all X\ € A\ A.

Proof. 1t will be convenient to divide it proof into various steps, claims and lemmas.

Step 1. First assume that M is special, i.e. that there exist global coordinates

(@1, Tny o Tg)

on E such that M can be identified with an open subset W C F = R" of the coordinate
subspace
{xn—l—l == Tntk = O}

For every A € A, we now consider the function fy : M — R as a function
Hh:M=W—=R
and the differential of fy at w = (xy, -+ ,2,) € W,
d(f\)w : TuW =F =R" = Ty, )R =R

is given by
v = (grad(fy)(w),v)
and we have a function ¢y : W — R",

dfx Ofx )

pa(w) = grad(f)(w) = (5 w5 5 2

Thus a point w € W is a non-degenerate critical point of fy if and only if ¢, (w) = 0 and
the map dy, : T,W — R™ is bijective (i.e., the Hessian matrix of f, is non-singular).
Hence, we deduce that f, is a Morse function if and only if for every w € W such
that @)(w) = 0, w is not a critical point of ¢, (since dyp) is surjective at the point w).
Equivalently, 0 € R" is a regular value of ¢,.

We now consider the smooth function ® : A x W — R" defined by

q)()U ’LU) = (,0/\(11})
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Claim 2.3.1: 0 € R" is a regqular value of ®.

It suffices to prove that for every (\g,wg) € ®1(0) C A x W, the differential map
AP0 © Trowe) (A X W) — R™ is surjective (i.e. (Ag,wp) € ®71(0) is not a critical
point of ®). Since F is sufficiently large relative to M, by our definition of F, we have the
differential map

0 f A =Ty M, X d(fa)w, = (gradfa(wo), ) = (pa(wo), ) = (wa(wo))”
is surjective for every (A, wg) € A x {wo} C A x W such that
9" f(A) =
i.e. pr(wy) = PN\, wp) = 0. We then have
A0 [ro : TroA = Towo o) (T M) = T, M = (R")”

is surjective for every (Ao, wp) € A x {wo} C ®71(0). Next, we will prove that the partial
differential map

9
)

is surjective so that we can conclude that the differential

(I)(Ao,wo) : T)\OA — R”

d(I)()\(]?wO) : T(A(),wo)(A X W) — R”

is surjective. To see ——®(xyw,) is surjective, we first note that for every v € Ty A we have

N
» 6 8 *
10" 1 )0) = { 35 Boum 01:) = (3P (0) 252
since, if « is a smooth curve in A with «(0) = Ay and o/(0) = v
d d
A" ) (v) = 7|, (0" f(a(0)) = | _ (Cain(wn). )
- ;’tzo (Z: <gpa(t) (wo), 6i> ef), where {¢;} is an orthonormal basis of R"
= > (ol et e) )= 3 (el (wn) @ 0). )
:;<8)\(’0A ‘ > 8)\% ),'>

_ <§)\<I>(A0,w0)( ), > (a)\@(xowo)( ))

We now let B € R". Then (B,-) € (R™)* and by surjectivity of d(0"°f),,, there exists
A € Ty, A such that
d(awof)AO(A) = <Bv > :
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By (2.3.2), 5
<a)\q)(>\o7w0)(A)7 > = <B7 ) :

This shows that aa)\q)(xo,wo)(/l) = B. Therefore,

Now, we wish to produce a smooth map 7 : Z — A as we planned at the beginning of
this section. According to the Regular Value Theorem (see Lemma 1 on page 11 of
[12]), we obtain

0 @ . ot
—_— w, 1S surjective.
O\ (Ao,wo)

O10) = {(X\, w) € A X W | px(w) = 0}
as a closed smooth submanifold of A X W of dimension
dim(®~1(0)) = dim(A x W) — dim(R"). (2.3.3)

We set Z = ®~1(0). Since Z is a smooth submanifold of A x W, the smooth map 7 : Z — A
is induced by the natural projection p : AxW — A. We have the condition on A as follows:

Lemma 2.3.2: If \ is a regular value of 7, then 0 is a reqular value of @y, which means
that f\ is a Morse function.

To prove this we need the following lemma from linear algebra:

Lemma 2.3.3: Let T}, T5 and V be finite dimensional real vector spaces. If
D, :T, =V i=1,2

are linear maps such that Dy + Dy : T7 & Ty — V' is surjective and the restriction of the
natural projection P : Ty & Ty — Ty to Ker(Dy + D3) is surjective, then Dy is surjective.

Proof. Let v € V. Since Dy + Dy is surjective, there exists (t1,ty) € Ty @ Ty such that
(Dl + Dg)(tl, tg) = D1<t1) + Dg(tg) = . (234)

By the surjectivity of
Pker(D+Dy) - Ker(Dy + Do) — T,

for every t; € T, there exists (t],t5) € Ker(Dy + Dy) C 11 & T» such that P(t),t)) =t
and
Dy (t)) + Do(ty) = 0. (2.3.5)

But P(t},t,) =t} so that ¢} = t;. Next, by (2.3.4), (2.3.5) and the linearity of D, we
have the following

v = Di(t1)+ Ds(ta) = Di(ts) + Da(tz) — (Di(t1) + Da(th) )= Da(ta) — Dalth) = Da(ta—t}),

so v € ImD,. Therefore D is surjective. O
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Proof. (of Lemma 2.3.2) Suppose that A is a regular value of 7. If A\ ¢ w(Z), then
(A, w) ¢ Z and hence ¢,(w) # 0. This shows that f has no critical points on M, and so
it is a Morse function. If X € m(Z), then the differential map dm\ vy : TrnwZ — THA is
surjective for every (A, w) € 71(\) C Z. We wish to prove that 0 is a regular value of ;,
i.e. for every w € W such that ¢,(w) = 0 the differential map

d(px)w = 6(20@()\’ w) : T,W — R"

is surjective.
For every (A, w) € A x W, let

0
a@(/\7 w) . TAA — Rn
and

a‘jucp(A w) : T,W — R™.

Then we observe that

dPnw) = 2<1>(A,w) + £U®(A, w) : Th\A ® T,W — R™.

o\

Since d®y . is surjective for every (A, w) € Z (as we saw the proof of Claim 2.3.1), then
SO is 5 9

—®(A — (A A T,W — R™

A h )+ g e w) i DA S

0 0 0

Thus a—fl)()\, w) is surjective by Lemma 2.3.3, since a@()\, w) and a—@()\, w) are linear
w w

maps, and dm ) 1 T(\w)Z — ThA is surjective with

0 0
TowZ = Ker(aA (N w) + a—wq)()\,w))

for every (\,w) € Z. To prove the last assertion, let z = (A\,w) € Z = ®71(0),v € T.Z,
and 7 : (—€,€) — Z be a smooth curve on Z with v(0) = z and 7/(0) = v. Thus

(+(t)) = 0.

Then we have 4
0= 2 2(1(1)] _y= d20)(7'(0)) = d2(v).

This shows that v € ker (d®.). Hence T() ,)Z C ker (d®(x.)). Since

dim (7, 7) = dim (Z) = dim (7*(0))
=dim(AxW)—n

=dim (T,(A x W)) —

= dim (ker (d®,)) + dim (Im(d@z)) —-n
= dim (ker (d®,))
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since d®, is surjective, so dim (Im(d®,)) = dim (R™) = n. Therefore, we conclude that

0 )
TonwZ = ker (d® .)) = ker (ﬁcp(A, w) + 5B w)).

]

Let Ay C A be the set of critical values of 7 : Z — A. Theorem 1.1.1 implies that Ay,
has measure zero in A. Set A, = Ay;. Then, by Lemma 2.3.2, the function f) : M — R
is a Morse function for all A € A\ A.

Step 2. M is a general manifold. We can cover M by a countable open cover (M )g>1
such that Mj, is special. Thus, for every k > 1 there exists a subset Ay, C A of measure
zero such that fy : M — R is a Morse function for all A € A\ Ay, by Step 1. Let us set

A = U A, Then Ay a set of measure zero in A since it is the union of the measure
k>1

zero sets in A. Therefore, the function f) : M C U M, — R is a Morse function for all
k>1

AEA\ A O

From Example 2.3.1, Lemma 2.3.1 and Theorem 2.3.1, we have the following corol-
lary.

Corollary 2.3.1: Suppose that M is a submanifold of the Euclidean space E. Thus
(1) For almost allv € E* andp € E, the functions hy, 1, : M — R defined by

ho(a) = v(x) andr(z) = 3z~ pIP

are Morse functions.

(2) If M does not contain the origin, then the function q4 : M — R defined by

1
ga(z) = 5 (Az, )
is a Morse function for almost all positive symmetric endomorphism A of E.

Lemma 2.3.4: Let M be a compact smooth manifold, and let f : M — R be a Morse
function on M. Then f can be viewed as a height function h, with respect to some suitable
embedding of M in a Fuclidean space.

Proof. Let ® : M — E = RY be an embedding (inclusion). We define a new embedding
relative to f as follows:

dp: M — RxRY
= (f(z), ®(x)).

Let {€},., ., be the canonical basis of (RxRY)* = RxR". According to Corollary 2.3.1,
we have a Morse function as a height function hg, : R x RY — R which is given by

he (z) = €1(z) = (€1, 2) .
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Therefore, f can be written as follows:

f(@) = (&, (f(@), ®())) = &(Ds(x)) = he, 0 ().

2.4 Fundamental Theorems of Morse Theory

In this section, we let f : M — R be a real valued function on a smooth manifold M, and
let

M= 7 ((~o0,a]) ={pe M : f(p) <a}.

2.4.1 First Fundamental Theorem

We first consider the region that f has no critical points as follows:

Theorem 2.4.1: Let f : M — R be a smooth real valued function on a manifold M. Let
a and b be reqular values of f with a < b such that the set

fHa,b)={peM|a< f(p) <b}

is compact and contains no critical points of f. Then M® is diffeomorphic to M®. Fur-
thermore, M® is a deformation retract of M®, so that the inclusion map M® < M is a
homotopy equivalence.

Proof. Since f~!([a,b]) is compact and contains no critical points, there exists € > 0 small
enough such that the set f~1((a—e¢,b+€)) contains no critical points of f. Let p: M — R

e L
AL

be a smooth function defined by

_ ety frefTa—ebte)
p(z) = , .
0 otherwise
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Now we can define a smooth vector field X on M by
X, = p(z)gradf(z) for allz € M.

That is,

(2.4.1)

X — m gradf(:L‘), lfx c f_l((@—e,b+€))
’ 0 otherwise,

which satisfies the conditions of Lemma 1.1.1. Thus X generates a 1- parameter group of
diffeomorphism ¢ : R x M — M. Then for each fixed p € M the map ¢ :=¢, : R = M
is a smooth curve in M defined by ¢(t) = ¢(p) and ¢(0) = ¢o(p) = p, because ¢g = idyy;.
Therefore, by Remark 1.1.2,

d(f © ¢(p)) d(f °c)

' :< t,gradf >>>
~ (20, o))

(Xu0> gradf (6u(p)))

since =2+ d‘bt( ) — Xo.(»)- Hence, the last equality together with equation (2.4.1) give us that

dt 0 otherwise

df (6u(p)) _ {1 if 6u(p) € 7 ((a— bt e))

We then have
t+f(p) ifg(p) € fH((a—eb+e))

f(p) otherwise (2.4.2)

f(9e(p)) = {

d
WZOforallteRand

since ¢o(p) = p. In addition, f(¢:(p)) is increasing since
pE M.

Consider the diffeomorphism ¢,_, : M — M. We claim that ¢p_,| : M* — M is a
Ma
diffeomorphism.

First, we prove that ¢,_, maps M® into M®. We wish to prove that for every x € M¢,
then f(dy_o(x)) < b (i.e ¢p_o(x) € M®). Let 2 € M?. Since f(¢¢(p)) is increasing,

F(o(x)) = f(z) < f(Pp-a(@)).
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F&)= 1 (%)

ACEY)

There are two cases:
o if f(¢y_a(z)) < b, then ¢y o(z) € M.
o if f(pp_a(x)) > b, then by (2.4.2), f(x)—a > 0and f(z) > b which is a contradiction.

Therefore, ¢y_, maps M into M°. Since ¢, : M — M is a diffeomorphism for each t,
then the restriction of ¢,_, to M* is also one to one. So, we only remain to prove that
¢p_q maps M onto MP. Let y € M®. There exist x = ¢q_s(y) € M* because, by (2.4.2),
we have

f(@) = f(das(y)) <
and if f(p,_p(y)) > a, since f(¢i(p)) is increasing, we obtain
a < f(¢a—b(y)) < [(D(r@)-n(Y)) < fldo(y)) <,
and this implies that
Qo) =a—=b+ fly) Sa—b+b=a

which is contradiction. Therefore, the map ¢,_, is onto since
Po—a(®) = Pp—a(Pa—s(y)) = G0(y) =y

Now we proceed to prove the second part: M is a deformation retract of M. Consider
the family of maps 7, : M® — M? defined by

T ifex e M
rile) = {¢(af(:v))t($> ifa < f(z) <b’ telo1)

If x € M?, then ry(z) =2 € M* C M. If a < f(x) <b, then (a — f(x))t <0 and by the

monotonicity of f(¢¢(p)), this implies that f(da—fw@)e(®)) < f(do(x)) = f(x) < b. Thus
74(%) = @a—p(a))(x) € MP. This family also satisfies the following conditions:

e r,(z) is continuous on the product topology M® x [0,1].
o ro(z) =z for all z € M.

o r(2) = Pu_y@)(x) € M° Indeed, if x € M?, then r(z) = x € M* and by the
monotonicity of f(¢:(p)), if a < f( ) <b, then

f(ri(2)) = f(@a—p@)(x)) < fdo(x)) = f(z) <b.

Case 1: if f(ri(z)) < a, then ri(z) € M°.
Case 2: ifa < f(r1(z)) < b, then f(ri(z)) = a— f(x)+ f(z) = a. Hence r1(z) € M“.
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F(rx)
' ‘a1 b E

| |
T T
¢

f(r,(®)

e It is clear that r(z) = « for all x € M.

Therefore, M*® is a deformation retract of M?, so that the inclusion map M® — M? is a
homotopy equivalence. O

2.4.2 Second Fundamental Theorem

Now let us consider a region in which f has one critical point.

Theorem 2.4.2: Let p be a non degenerate critical point of f with index \. Let ¢ = f(p)
and assume [~ ([c—¢€, c+€]) is compact and contains no other critical point of f for some
e > 0. Then for all sufficiently small €, the set M°T¢ has the homotopy type of M€ with
a A-cell attached.

Proof. By the Morse lemma, there is a local coordinate system X : U, — R" defined by
X = (21,2, ,@,) in a neighborhood Uy, of p with X (p) = (z1(p), 22(p), -+, 2a(p)) =0
and such that the identity

_ 2 2 2 2
f—C—QZl—~~'—x)\+£l}>\+1+"'+xn

holds throughout U,,.

X:U, >R [-
| o

X(p)= (5P @) =0

Choose € > 0 sufficiently small such that the set f~!([c — €, ¢ + €]) is compact and
contains no critical point of f other than p and the image X (U,) contains the closed ball

n
Bye = {(x1, 29, -+ ,2,) | 3 22 < 2¢}. We construct a smooth function p : R — R such
i=1
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that
p(t) > 0forall teR
p(0) > €
p(t) =0 for all t > 2e
—1<p(t)<Oforall teR

(see Example 1.1.1). We define a new smooth function F': M — R by

fla) = p(@i(q) + - +23(q) + 22344(0) + - - +203(q)), ifq el
For convenience, we define functions X_, X, : U, — [0,+0c) by X_ =2 +--- + 23} and

X, =23, + -+ 22 In terms of these functions, we have
fla) =c—X_(q) + Xi(q) for all ¢ € U,

and

F((]) — f(Q)7 lfq ¢ UP .
f(@) = p(X_(q) +2X(q)), ifqgel,

By definition of F| it is clear that F' is smooth on the interior and exterior of U,. In
order to verify that F' is smooth, it suffices to check that F' is smooth on the boundary

of U, that is, on the set {g € X~'(Ba.) : i(mq))? — X_(¢q) + X.(q) = 2¢}. Let
=1

us prove that F' is continuous on the boundary of U,. For any ¢y € 90U, (boundary of
U,), let {¢;} be a sequence that converges to qo. Then there are subsequences {a;,} €
X‘l(BQE) and {¢;,} ¢ X '(Ba) of {¢;} such that both sequences converge to q. If
{a;;} € X Y(Bs), then F(q;,) = f(a,) — p(X—(q;,) + 2X4(¢;,)) and hence F(g;,) —
fq0) — p(X_(q0) + 2X1(q)) as gi; — qo- Since X_(qo) + 2X;(q0) = 2¢ + X1 (qo) and
p(t) = 0forallt > 2¢, lim; oo F(qi,) = f(qo)- If {qi,} ¢ X '(Bs), then F(q;,) = f(g;,) so
that limy_,o F'(g;,) = f(qo) This implies that F' is continuous at gy € OU,. Next, we want
to prove that dF is continuous on the boundary of U,. We note that the derivatives of all
orders of p are identically 0 for all ¢ > 2e since p = 0 on this interval. If {g;;} € X~!(Ba),
then

9, )\ 2aiqr,) — 4xi(qij)p'(X,(qij) +F2X, () i A+1
Since ¢;; — qo and p'(X_(q0) +2X,(q0)) = p'(2¢ + X1 (q0)) = 0, we obtain

{ 2z;(qo) ifi < A

8F( o {—QZEi(Qij) — 22,(q;,) 0" (X_(qi,) +2X 1 (qi,)) ifi <A

(2.4.3)

¢

axz 27i(qo)  ifi>A+1°

—2x;(q;,) ifi <A

. Similarly, since ¢;, — qo,
2(131 sz leZ)\+1 ' qk o

If {¢;,} ¢ X_I(Bge), then — qzlv {

we obtain

(2.4.4)

¢

{ 2z;(qo) ifi < A

8% 22(qo) ifi>N+1
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Therefore, by (2.4.3) and (2.4.4), we conclude that dF is continuous at ¢y € OU,. Now,
we prove that d®F is continuous on the boundary of U,. If {¢;,} € X~'(Ba), then

2

FF [ 2/ (X () 42X (a)) — 4 )0 (X (0) +2X(g,)) <A
97 )T\ 2 - 49/ (X_(gs,) + 2X4(45)) — 1622(q,)0"(X_(gs,) +2X4(g;))  iFi> A+ 1

Since ¢;; — qo and p'(2¢ + X, (o)) = 0 = p"(2¢ + X, (qo)), we have

0*F —2 ifi< A\
= = . 245
522 (1) {2 ifi>A+1 (245)

7

°F -2 ifi<A
If {¢;, } ¢ X~'(Bac), then 87@%) = { nhe . Since ¢;, —+ qo, we then have

B2 2 ifi> A+l
0*F —2 ifi<
T (a) — = . 2.4.6
92 (%0) {2 ifi>A+1 (246)

By (2.4.5) and (2.4.6), we conclude that d*F is continuous at gy € 9U,,.

mn

O"F
Similarly, it is easy to check that for all n > 3, we have B 0 in the boundary of U,,.
€T

(2

In conclusion, F' is smooth on the boundary of U,
Claim 2.4.1: Mt = F~1((—o0,c+ ¢€]).

Proof. Since p(t) > 0 for all t € R, F(q) < f(q) for all ¢ € M.
e Case: ¢ ¢ U,. We have F' = f. Therefore

F (=00, c+€]) = fH{(—o0,c+€]) = M.

e Case: ¢ € U,. For any ¢ € M, then f(q) < ¢+ e and hence F(q) < f(q)
¢+ e Thus ¢ € F7'((—o00,c + €]). Hence Mt C F~'((—o0,c + ¢€]). For any ¢
F=((=00, ¢+, then F(q) = F(0)—p(X_(0)+2X, (g)) < ce. TEX_(q)+2X ,(q) >
2¢, then p(X_(¢)+2X:(q)) =0andso f(q) = F(q) <c+e. If X_(¢)+2X(q) < 2¢
(or %52 + X (q) <€), then f(g) = c— X (q) + X (q) < c+ 352+ X, (q) < c+e.
We then have f(¢) < c+e for all ¢ € U,. Hence q € f~((—o0,c+e€]) = Met. That
is, F~1((—o0,c+ €]) C M*. Therefore, M = F~((—o0,c+ €]).

<
€

O
Claim 2.4.2: F~((—o0,c — €|) is diffeomorphic to M°*e,

Proof. By Theorem 2.4.1 and Claim 2.4.1, we only prove that the set F'~([c — ¢, ¢ + ¢€])
is compact and contains no critical point of F. First, we only show that the set F~!([c —
€,c+¢]) is a closed subset of a compact set f~*([c—¢, c+¢]). For any ¢ € f~((—o00,c—¢)),
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then f(q) < ¢ —e. Hence F(q) < ¢ — e since F(q) < f(q). That is, ¢ € F~((—o0,c — €)).
We then have

Figure 2.1:

It follows that F~([c — e,c+¢€]) C f~'([c — €,¢ + €]). Since F is a smooth function
and the set [c — €,¢c + €] is closed, the set F~'([c — €,c + ¢€]) is closed. Thus the set
F~'([c — €,c + ¢€]) is compact.

Next, we show that the set F'~*([c — €, ¢ + €]) contains no critical point of F. Before
doing this, we prove that the functions f and F' have the same critical points.

e Case: ¢ ¢ U,. The functions F' and f coincide. Then they have the same critical
points in this region.

e Case: ¢ € U,. Wehave F(X_, X, ) = f—p(X_+2X,) = c—X_+ X, —p(X_+2X)
and X~ ': X(U,) — U, as the inverse of X. We then have

OF OF
dFoX )= "dX_oX N+ ——d(X,o X!
( ) O0X ( ) 8X+ ( + )
= (=1 —p(X_+2X )d(X_ o XY + (1 -2/ (X_ +2X,))d(Xy0X )

=Ad(X_oX Y+ Bd(X, 0X™)

Since —1 < p/(t) < 0 for all ¢, then the coefficients A = (=1 — p/(X_ +2X,)) and
B =(1-2p(X_+2X,)) are nowhere zero. And also we have

d(X—OX_l)(I) = (23171,2{[‘27"' an)\aO)\-i—la"' 707’L)
and
d(X+ © X_l)(x) = (017 e aO/\a 2'CC>\+17 2ZL')\+2, e 72'7;71)'

Therefore, d(F o X 1) (x) = (24x1,2Axs,--- ,2Ax),2Bw\11,2BTy\2, - ,2Bx,)
and so d(F o X7 1)(z) = 0 if and only if x = 0. Since there is only point p in
U, such that (z1(p),z2(p), - ,zn(p)) = 0, then x = 0 only at the point p € U,.
This proves that p is the only critical point of F* within U,.
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Now, we return to prove that the region F~!([c—¢, c+¢]) contains no critical points
of F. By assumption, f~*([c — ¢, ¢ + €]) contains no critical points of f other than
p and, since F~([c —e,c+€]) C fH([c —€,c+€]), then F~!([c — €, ¢+ €]) contains
no critical points of ' with the possible exception of p. However, we note that
F(p) = f(p) = p(X_(p) +2X+(p)) = ¢ = p(0) < c—e. Thatis, p € F~((—00,c—¢))
cannot be in F~!([c — ¢,¢ + €]). By Theorem 2.4.1 and Claim 2.4.1, we see that
F7Y((—o0, ¢ — €]) is diffeomorphic to F~!((—o0, ¢ + €]) = McTe.

]

Define the A-cell by e* := {q € U, | X_(¢q) < e and X, (¢) = 0} and denote the closure
of the region F~1((—o0,c—¢€]) \ M by H (see Figure 2.1).

Claim 2.4.3: M “Ue* is a deformation retract of MU H.

Proof. First, we wish to see that ¢* C H. For any ¢ € ¢*, we have X_(¢) < € and
X.:(q) = 0. Hence f(q) = ¢— X_(q) > ¢—e. That is, ¢ is a point of the closure of the
complement of M €. Now consider a function g : R — R defined by ¢(t) = p(t) +t. We
know that —1 < p/(¢) < 0 for all ¢, so g is increasing. Then p(X_(q))+ X_(¢q) > p(0) since
9(0) < g(X_(q)). We also know that F(q) =c— X_(q) — p(X_(q)) < c—p(0) < c—¢, so
q € F7'((—o0, c — ¢]). Therefore, ¢ € H.

N
UL CTIRE. )

A=g2X_<X_ +¢

B=-X_zX.+z (geM™)
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we define s; : [0,1] — [0, 1] by

X_—e¢

Jr

Thus the function s;z; remains continuous for each @ > XA as X, — 0 and X_ — €. This
is true since for each ¢ > A\, we have |z;| < /X, and

X —
|St$l‘§<t+(1—t) X 6)\/X+_t X++(1—t)\/X7—€—>O
+

as X, — 0, X_ — e. We define a family r, : M“"“UH — M°“UH by

(21, ,Tn) ifq¢ U,orqe M
re(@y, e xn) =% (T, ot ETy) ifge Hand X _(q) <e ,te]0,1].
(Ilv IR 5 PRI W PR ,Stl'n) if € S X—(q) S X-i-(Q) +e
For each t € [0, 1], this family is well defined because for any ¢ € M ¢ U H, we obtain
ri(q) € MU H. Indeed, if ¢ ¢ U, or ¢ € M, then it is clear that r; is the identity

map. Thus r(q) € MU H. If ¢ satisfies X_(¢) <eore < X_(¢q) < X, (¢) +¢, we then
consider the following

F(ri(q)) = c— X_(ri(q)) + X4 (re(q)) — p(X-(r4(q)) + X4(1:(q)))- (2.4.7)

F
X, =1-—2p(t) > 0 since =1 < p'(t) <0

for all t € R. We also note that X_(r;) = X_ is independent of ¢. Therefore, it suffices to
verify that 7(q) and r(¢) belong to M “U H since F is increasing and depends smoothly
on the variable X, .

By the proof of Claim 2.4.2, we recall that

e Caset=1:1f g € H and X_(q) < ¢, then it is clear that r; is the identity map. If
e < X (q) < X:(q) + ¢, then sy = 1, which implies 7 is the identity map. Hence

1 e MU H.
e Caset =0: IfquandX()<e thenro(xl, ) = (T1, -+ ,xx,0,--+,0)
and X (ro(x1, - ,2,)) = 0. Thus ro(xy,- -+ ,z,) € e C H.

X_

Ife <X (¢q) <Xi(q)+e, then sy =

et - § ( )
Therefore, ro(zq,- -+ ,x,) € M € since X_(r;) = X_ and
flro(wy, -+ ) = c = X_(ro(@1, -+ @) + Xy (ro(ze, -+, 2)).
Now, we can conclude the following results:
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e for each t € [0, 1], the family r, is well defined.
e 1y is the identity map.
e the image of 7 is contained in M ¢ U e?.

Finally, It is easy to check that ro(q) = ¢ for all ¢ € M€ U e*. Indeed, it is clear for
g€ M. Ifgeer then g€ H, X _(q) <eand X, (q) = 0. Then we have

TO(xl(Q)v"' 71’“((])) = ro(xl(Q)v"' 7x>\(Q)707"' 70) = (l’l(q),"' 71‘/\(q>707"' 70)'

Therefore, we have proved the Claim 2.4.3. m

By Claims 2.4.2 and 2.4.3, the proof of Theorem 2.4.2 is complete. n
Proposition 2.4.1: (Generalization of Theorem 2.4.2) Suppose that py, -+, pg
are k non-degenerate critical points with indices Ay, -+, A\ in f~'(c). Then, M€ has

the homotopy type of M€ UeM U--- U e,

Example 2.4.1: In the case k = 2, see Figures 2.2 and 2.3.

M jiid

c+&

c—&
1-{3_5 - @

Figure 2.2: p; and py are non-degenerate critical points with indices \y = Ay = 1 in

(o).

|

Figure 2.3: M°*¢ has the homotopy type of M €Ue! Uel.
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2.4.3 Consequence of the Fundamental Theorems

Theorem 2.4.3: If f : M — R is a smooth function on a compact smooth manifold M
with no degenerate critical points and if each M® is compact, then M has the homotopy
type of a CW -complex, with one cell of dimension A for each critical point of index \.

To prove this theorem, we will need the following two lemmas.

Lemma 2.4.1: (Whitehead) Let p, and o, be homotopic maps from the sphere d(e*)
to a topological space X. Then the identity map of X extends to a homotopy equivalence

. A A
kX Uz et — X Uy, e

Proof. Let ¢, be a homotopy between (g and ¢;. Define k : X Uy, e* — X U, e* by

x ifreX
k(z) =< 2ru ifo=ru, ued(e), 0<r<3
oor(u) ifz=ru, ued(e), 3 <r<l1,
and%:XU(pleA%XU%e)‘by
x ifreX
E(m): 251 if v =su, u€cdled), 0<s S%
prua(u) o =su, ucd(e), J<s<1

Since the functions k and k are continuous, there are the compositions

x ifreX
' 1
Fok(z) =44 %fl’zmaueﬁ(ei),(l)érggl
Oar—1(u) fx=ru, ued(e), ; <r<3
oor(u) ifz=ru, ued(et), 3 <r<l1,
and
x itre X
kok(z) = {5 %fx:s%ueé’(ei),?ﬁséji
Po-as(u) ifz=su, uedle), <s< 3
orus(u) iz =su, uede), I<s<1
We want to find a homotopy hy : X Uy, € — X Uy, e*, t € [0,1] such that hg = ko k and
hi = id. Consider a family of maps h; : X Uy, e* = X Uy, €* defined by
x ifreX
4
= itr = ru, e o)), 0 < r < 152
hu(w) =y 2+ i Ay 143t t+1
P na-p() ifz=ru, uede), H*<r<H
© (2-2n) (u) ifz=ru, uedle), T <r<1.
1+3t (1-1) 2
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It is easy to check that h; is continuous, hy = kok and hi = d.

We next consider a family of maps &} : X Uy, e* — X U,, e defined by

x itee X
4
ik if v = su, ued(e), 0<s <
P1_(as _paopn(u) ifz=su, ued), H*

1+3t

<P1_(zi;§§>(1_t)(u) if v = su, uedled), T <s<1.

Again R is continuous and satisfies b, = k o k, b = id. O

Lemma 2.4.2: (Hilton) Let ¢ : 9(e*) — X be an attaching map. A homotopy equiva-
lence f : X —'Y can be extended to a homotopy equivalence

F:XU¢€A—>YUJ£0¢6)\.

Proof. Since f : X — Y is a homotopy equivalence, there exist a homotopy inverse
g:Y — X to fand h; : X — X a homotopy such that hg = go f and h; = idx. Let
H :[0,1] x 9(e*) = X defined by H(t,z) = hi(¢(z)). Then we have H(0,z) = go fop(x)
and H(1,z) = ¢(z). Thus g o f o ¢ and ¢ are homotopic maps from d(e*) to X. By the
Lemma 2.4.1, there exists a homotopy equivalence

kX Ugofop A X Uy, et

Define the following two maps F : X Uy e* = Y Ujpo, € and G 1 Y Uypoy, € = X Ugo oy, €
as follows

F(zx) =
(z) T if x €

{f(as) ifreX
and

gly) ifyeY
G(y) = { ) . \
Y ity € e
We will first prove that F' has a left homotopy inverse k o G. That is, the composition
koGoF :XU,e* = X U, e is homotopic to the identity map. From the definition of
k, F and G, we note that

go f(z) if v e X
koGoF(x)=12ru ifo=ru, ued(e), 0<r<g
hy_o, 0 0(u) if z =ru, u € d(e), %§r§1

is a continuous map. Define a family of maps ¢; : X U, e* — X U, e* by

2 .
q(x) = Ty if v =7ru, ued(e), 0<r <t
1

hy ori0@(u) ifx=ru, uedle?), T <r<1.
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We then see that
ho(z) =go f(z) ifxeX

qo(x) = 4 2ru ifx=ru, uedle), 0<r <]
ha—a, 0 o(u) ifx=ru, uedle), s <r<l,
and
hi(z) =2 itreX
@(x) =qru ifx=ru, uedle?), 0<r<1

hioo(u) = @(u) ifr=u, ued().

Since gy = ko G o F and ¢; = id, the composition k o G o F' is homotopic to the identity
map and hence F' has k o GG as a left homotopy inverse.

Similarly, G has a left homotopy inverse, since ¢ = f o : d(e*) — Y is an attaching
map and g : Y — X is a homotopy equivalence, so G : Y Uy e} — X Uyoy € has a left
homotopy inverse.

Claim 2.4.4: If a map F has a left and a right homotopy inverse L and R respectively,
then F' is a homotopy equivalence, and L (or R) is a 2-sided homotopy inverse.

Proof. Since L and R are left and right homotopy inverses to F, we have the relations
LF ~id and F'R ~ id. This implies that

L~ L(FR) = (LF)R~ R.

Hence
FL~FR~id (or RF ~ LF ~id)

which proves that L (or R) is a 2-sided homotopy inverse. [
To prove the Lemma 2.4.2, it only remains to prove that I has a right homotopy
inverse. By the Claim 2.4.4, we obtain the following:

e ko(GoF') ~id implies that (GoF')ok ~ id since k is known to have a left homotopy
inverse (by Lemma 2.4.1).

o Go(Fok)=(GoF)ok ~id implies that (F o k) o G ~ id since G is known to
have a left homotopy inverse.

o Fo(koG) = (Fok)oG ~id implies that F" has ko G as a right homotopy inverse.

Therefore, F' is a homotopy equivalence. This completes the proof of Lemma 2.4.2. [

Proof. (of Theorem 2.4.3) Let a € R and py;,, be critical points belonging to f~'(c¢;)
with index A\, If f~'(a) = 0, then M® = () and so we have nothing to do.

If f~'(a) # 0, then M* # ().

Base case: We may assume that ¢; < a < c¢p. Since M* is compact, f has a global
minimum value ¢; € R (i.e, ¢; < f(p) for all p € M). According to the Theorem 2.4.1,
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M€ is homotopy equivalent to M for some small ¢ > 0. Since the critical points
belonging to f~!(c;) have index 0, by Proposition 2.4.1, M "¢ has the homotopy type of
a disjoint union of 0 cells. Therefore, M*® has the homotopy type of a CW-complex.

Induction hypothesis: Suppose that a # ¢y, ¢o, ¢3, --- such that M is homotopy
equivalent to a C'W-complex K via g. Let ¢ = ¢;, be the smallest critical value of f bigger
than a. According to the Theorem 2.4.1 and Proposition 2.4.1, for some small ¢ > 0 we
have that M€ is homotopy equivalent to M® via h and that M¢"¢ has the homotopy
type of MU,  edol Uy ,---U 0% for some attaching maps Piolr " > Pioksy
Then, by Lemma 2.4.2 we see that

@jokjo

c—e Ajog1 .
MUy, , M0t Uy - U

Ninks A Nink s
. J0kj0 ~ M@ ol e 90k
Piokj, € ~M Uho¢j01 € Uh°¢j02 Uhoﬂ"jokm (& .

Since M*“ is homotopy equivalent to K via g, Lemma 2.4.2 shows that
o Ajo1 Aiokjy Ajo1 Ajoks
M Uhogpjol e”Jo Uho@jOQ Uhocpjokjo e jo ~ K UgOhOSOj01 e”Jo UgOhC’(PjOQ Ugohogajokjo e Jo

By cellular approximation, for each r, 1 < r < k;;, the map g o h o ¢j,, is homotopic to
a cellular map 1, : 9(eMor) — KXor=1  where K™or=Y is the (\;,, — 1)-skeleton of K.
Applying lemma 2.4.1 shows that

Ajo1 Nokjy ~ Ajo1 Niok;
K Ugohmpjol ero Ugohowoz Ugoho%'okjo e %o o~ ¢ U"pjol e Ul/’j02 U¢j0kj0 e .
. Nighs . .
Hence K Uy, , eot Ugjgo =+ Upjop. € %0 is a C'W-complex since the attaching maps are
J0

cellular. Therefore, we conclude that M€ has the homotopy type of a C'W-complex.

By induction, if ¢ is the smallest critical value of ¢;’s such that ¢; > ¢, then M has
the homotopy type of a CW-complex for every a € (c,¢).

Finally, since M is compact, the Morse function f has a finite number of critical points
(see Corollary 2.2.1) and a finite number of critical values. Thus the inductive step above
completes the proof for all of M. O

2.5 The Morse Inequalities

In this section we will see a series of inequalities proved by Marston Morse which
give bounds on the Betti numbers of a smooth manifold M. More precisely, the Morse
inequalities establish a relationship between the number of critical points of index A of a
real valued Morse function on M and the A-th Betti number on M.

Let us denote a tuple of topological spaces such that X,, D X,.1 D --- D Xy by
(Xn, Xpn_1,-+,Xo). In particular, if the tuple consists of two spaces or three spaces, then
it is called a pair or triple respectively.

Definition 2.5.1: Let S be a function from a pair of spaces to the integers. We say that
S is subadditive if for all triples (X,Y, Z) the inequality S(X,Z) < S(X,Y)+ S(Y, Z)
holds. If equality holds, then S is called additive.
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For any pair of spaces (X,Y) and a given field F as coefficient of the A-th relative
homology group H,(X,Y), we denote by

bA(X,Y) = rank over F of Hy(X,Y,TF)
the A-th Betti number of (X,Y’) and by
X(XY) =3 (=1)'ha(X,Y)
the Euler characteristic of (X,Y).

Given a pair (X, 0), we will write S(X) := S(X, ().

Given a triple (X, Y, Z), we can construct the following long exact sequence of relative
homology

(Y, Z2) D (X, Z) 2 HAXLY) S H (Y 2) B (2.5.1)
Lemma 2.5.1: by is subadditive and x is additive.

Proof. Form (2.5.1), we can construct short exact sequences as follows:

0 0 0
\ \ \
Ker f) Kergy Kerh)
{ { {
0"t viz) B OHN(X.Z) B H(XY) BHovz) s M
! 4 4
Im f Img, Imh,
{ I 1
0 0 0

(1n) (25) (3x)

By the short exact sequence (2,) above, we have

ba(X, Z) = rank
KergA) + rank(Img))

nk(Imfy) + rank(Kerhy)

nk(Kerfy) + rank(Imfy) + rank(Kerhy) + rank(Imh,y)
= rank(HA(Y, Z)) + rank(H,(X,Y))

= bA(X,Y) + 0A(Y; 2),

which shows that by is subadditive.

To see that x is additive, we first note from the short exact sequence (2,) above that

ba(X, Z) = rank(Imf)) + rank(Imgs,). (2.5.2)
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From the short exact sequences (1,) and (3,), similar reasoning leads to the following
results

bA(Y, Z) = rank(Imhyi1) + rank(Imfy), (2.5.3)

and
bA(X,Y) = rank(Img,) + rank(Imh,y). (2.5.4)

Therefore, by putting (2.5.2), (2.5.3) and (2.5.4) together, gives
Y, Z) — b\(X, Z) + bA(X,Y) = rank(Imhy, 1) + rank(Imh,). (2.5.5)
Multiplying (2.5.5) by (—1)* and summing over \ we then see that
S (=MbY, Z) = ba(X, Z) + bA(X,Y) )= (= 1)"rank(Imhy 1) + rank(Imhg). (2.5.6)
A=0

Since we have rank(Imh,, ;) = rank(Imhy) = 0, (2.5.6) shows that

]

Lemma 2.5.2: If S is subadditive and we have a tuple of spaces (X, X1, -+, Xo), then
S(Xn, Xo) < Xn: S(Xi, Xi—1). If S is additive then equality holds.
i=1

Proof. We will prove the lemma by induction on n.
Base case: If n =2, then S(X5, Xy) < S(Xa, X1) + S(X1, Xo) since S is subadditive.
Induction hypothesis: We suppose that the inequality is true for n — 1, that is,

n—1
S(Xn-1,Xo) < S(Xi, Xioq).

1

)

Since S is subadditive, we have S(X,, Xo) < S(X,, Xn-1) +S(X,—1, Xo). By hypothesis,
n—1 n

we then have S(X,,, Xo) < S(X,,, X»—1) + S(X;, Xi—1) = X S(X;, X;—1). Therefore it

‘ .

i= =1

is true for n.

A similar proof shows that S(X,,, Xy) = i S(X;, X;—q) if S is additive. O
i=1

Theorem 2.5.1: (Weak Morse Inequalities) Let M be a compact smooth manifold

and f: M — R be a Morse function on M. We denote the number of critical points of f
of index X\ by py. Then we have

bA(M) < pux, (2.5.7)
and
X(M) = (=1 . (2.5.8)
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Before proving this theorem, let us recall the following theorem (see theorem 2.20 of
[5])-

Theorem 2.5.2: (Excision) Let A, Z C X be topological spaces such that the closure
of Z is contained in the interior of A. Then the inclusion (X \ Z,A\ Z) — (X, A)
induces isomorphisms H.(X \ Z, A\ Z) — H,.(X, A) for all r. Equivalently, if we have a
subspaces A, B whose interior cover X, then the inclusion (B, AN B) — (X, A) induces
isomorphisms H,(B,AN B) — H,(X, A) for allr.

Proof. (of Theorem 2.5.1) Since f is a Morse function and M is compact, by Corol-
lary 2.2.1 f has a finite number of critical points and each critical point is isolated. Let
{p1,p2, -+ ,pn} be the set of critical points of f with indices A1, g, - -+, A, respectively.
For simplicity, assume that f(p;) # f(p;) for ¢ # j. There exists a; with a; < a;1; for
all i € {0,1,2,--- ,n} such that M = (), M = M, and M% contains only the critical
point p; of f. That is, p; the only critical point of f with index A; in M% \ M%-* for
each j € {1,2,--- ,n}. By the Theorem 2.4.2, we then have M% has the homotopy type
of M@%-1U eV, and hence, by the Theorem 2.5.2,

H (M, M= F) o~ H,(M%= Ued, M%)
= Hy (e, 0(eV), F)

~ H,_,(d(eM),F) (by the exact sequence of a pair)
>~ H,_4(S%! IF)

- itr =

- { otherw1se

This shows that

1 ifr=M\;
b(M%, M5 F) =
0 otherwise.

Since b, is subadditive and we have a tuple of spaces (M, M1 ... M%) Lemma 2.5.2
gives us that

ba(M) = by (M, M)

<> by (M, MY
i=1
since
1 if A=\
bA(M®, Moy =8
0 otherwise.

This proves inequality (2.5.7).
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We prove the last part of this theorem by using Lemma 2.5.2,

X(M) = x (M, M)

I

.
Il
—

X(Maz" Maifl)

I

.
Il
—

Do (=1 ba (M, M)

(-1)%2 ba(M®, M)

(—1)

]

Observation 2.5.1: If uy =0, then by = 0.

A .
Lemma 2.5.3: The function Sy defined by Sx(X,Y) = > (—1)"bx—i(X,Y) is subadditive.
=0

Proof. Note that (2.5.5) can be expressed as
rank(Imhyi1) = bA(Y, Z) — bA(X, Z) + bx(X,Y) — rank(Imh,). (2.5.9)

Since rank(Imhyy1) > 0 and rank(Imhg) = 0, (2.5.9) tells us that

A
S (=1 (ba-i(Y, 2) = bai(X, Z) + by_i( X, Y))> 0. (2.5.10)
i=0
This means that
S\Y,Z) = S\(X,Z)+ S\(X,Y)>0
which implies that S) is subadditive. O

Theorem 2.5.3: (Strong Morse Inequalities) Let M be a compact smooth manifold
and f: M — R be a Morse function on M. We denote the number of critical points of f
of index X\ by py. Then the inequality

A A

D (1) ori(M) < D (=1) ' a— (2.5.11)
i=0 i=0

holds for every A € {0,1,--- ,n}.

Proof. Since we have a tuple of spaces (M = M M-t ... M% = () and Sy is sub-
additive, by Lemma 2.5.2

SV(M,B) = Sy(M) < 37 Sy (M, M%),
j=1
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Hence, applying Lemma 2.5.3 gives

A
> D (1) bai(M, M)

1:=0

(1) (2 bas (M, 2%

Jj=1

(— 1)iﬂ>\—i

M:

Z(—l)ibx i

s
I
=)

<
Il

19 109~

@
Il
=)

since
1 ifA—i=M\;
ba—i(M*, M) = 1 Z. ’
0 otherwise.
O

To see that these inequalities are definitely stronger than the previous ones, we consider
the following cases of (2.5.11):

2 (=1)bai(M) < 3 (=1 pac (2.5.12)
Z:l(_l)ibk—l—i(M) < Al(—l)i/l/\—l—i (2.5.13)

By adding the inequalities (2.5.12) and (2.5.13), we get (2.5.7). If uy = 0, then inequality
(2.5.12) together with Observation 2.5.1 imply

i(—l)ibx—l—i(M) > Zl(—l)%_l_i, (2.5.14)

and so, by (2.5.13) and (2.5.14), we have the equality
ba-1(M) = bro(M) + -+ (=1)*1b(M) = pin1 — pia—a + -+ + (=1)* o, (2.5.15)
or equivalently,
bo(M) = by (M) + -+ (=D oy o (M) = po — pa + - + (=1)* 'paca. (2.5.16)

Since py = 0 for every A > n+ 1, if A > n + 1, then (2.5.16) is exactly the same as
(2.5.8).

Corollary 2.5.1: If puyy1 = pa—1 = 0, then by = py and by.1 = by_1 = 0.
Proof. It pyy+1 = px—1 = 0, then Observation 2.5.1 gives that

bas1 = by_1 = 0. (2.5.17)
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A similar calculation as that case of (2.5.15) leads to the following results
bA(M) = bt (M) + -+ + (=1) 0o (M) = i — piaer + -+ + (—1) o, (2.5.18)
and

ba-2(M) = ba—s(M) + -+ (=1)*?bo(M) = pir-z — pta—s + -+ + (=1)*Ppo. (2.5.19)

By subtracting the (2.5.19) from (2.5.18), we obtain by = p,. O
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Chapter 3

Simple applications of Morse
theory

In this chapter, we will give some simple applications of theorems of the previous chap-
ter.

3.1 Examples

Example 3.1.1: (n-sphere S™) As in Example 1.1.3, the height function f from S™ to
R has only two non-degenerate critical points, one of index 0 and one of index n.

Hence, Theorem 2.4.3 implies that S™ has the homotopy type of a C'W-complex of the
form e’ U e™. So, the chain complex of S™ is of the form

0— Cp(S") - 0—- 0= Cy(S") —0
I [ (3.1.1)
Z.e™ Z.€°

From (3.1.1), we see that the boundary homomorphisms are 9, = 0 for all r. Therefore,
the homotopy groups of S™ are

H,(5".7) = {Z 1fr—q,n

0 otherwise.
Example 3.1.2: (Complex projective space CP") From Ezample 2.1.2, we know
that po,p1,--- ,pn are the only critical points of f, and that the index of p; is equal to
twice the number of k with ¢, < c¢;. Hence, we will get every even index between 0 and 2n
exactly once.
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Applying Theorem 2.4.3 gives us that CP™ has the homotopy type of a C'W-complex of
the form e Ue?U- - -Ue?™. This shows that the chain complex of CP" is of the form

0= Cou(CP") —0—= Cyn_n(CP") —---—= CH(CP") —=0—= Cy(CP") —0
I I I I
Z.e*™ Z.e¥n=b) Z.e? Z.e°
(3.1.2)
(3.1.2) tells us that the boundary homomorphisms are 0, = 0 for all r. Therefore, the
homotopy groups of CP™ are given by:

Z ifr=20,2---,2n

0 otherwise

H,(CP",7) = {

Remark 3.1.1: We can use Corollary 2.5.1 to find the homology groups of spaces above
without using Theorem 2.4.3. For the first example, since p,+1 = 0 and p,—1 = 0,
then b, = p, = 1. This implies that H,(S™ Z) = 7. Similarly, Hyo(S™,Z) = 7 since
bo = po = 1.

For the second example, we will have by = by = --- = by, = 1 since pur_1 = 0 and
prs1 = 0 for each k =0,1,--- 2n. Therefore, H,(CP",Z) = Z for all k =0,2,--- ,2n.

3.2 Reeb’s theorem

Theorem 3.2.1: Let f: M — R be a Morse function on a compact smooth manifold M
of dimension n with exactly two critical points. Then M is homeomorphic to S™.

Proof. Let p and ¢ be the critical points of f. We observe that p and ¢ must be the
minimum and maximum points of f since M is compact. We suppose that f takes
minimum and maximum values at p and ¢ respectively. According to Lemma 2.2.1, it is
easy to show that the index of p is 0. Indeed, if the index of p is A # 0, then there exist a
suitable local coordinate system X : V' C R" — U, in a neighborhood U, of p with 0 € V/
and X (0) = p such that

A n
foX=Ff(p)=> ai+ > a7 (3.2.1)
=1 i=A+1

holds throughout V. In particular, we have (4,0,---,0) € V for some § > 0 and so
foX(6,0,---,0) = f(p) — & < f(p) which is contradiction since f takes the minimum
value at p.

Similarly, the index of ¢ is n because f takes maximum value at this point.

Without loss of generality, we assume that f(p) = 0 and f(q) = 1. Therefore, f can be
expressed in terms of the coordinate systems (z1,--- ,x,) in a neighborhood U, of p and
(y1,- - ,yn) in a neighborhood U, of ¢ as the following form:

2 2 DY 2
f_{x1+:1:2+ + a2 (32.2)

B R R R Ry V-
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Choose a small positive number € such that 0 < > :L’f <eandl—e<1-—- Z/Z-Q <1,
i=1 =1

so that the sets f~'([0,€]) and f~'([1 — ¢,1]) are diffeomorphic to closed n-disks D}' and
D} respectively. Moreover, since f~'([e,1 — €]) is a closed subset of the compact set
M and contains no critical point of f, Theorem 2.4.1 tells us that f~!([0,¢€]) = M¢ is
diffeomorphic to f~1([0,1 — €]) = M'~¢. Hence, M = f~1([0,1 —¢]) U f7H([1 —¢,1]) is
diffeomorphic to D} Ugn-1 Dy which is the union of two closed n-disks glued along their
boundary.

To show that D) Ugn—1 Dy is homeomorphic to S", we will use the following lemmas,
which we state here without proof.

Lemma 3.2.1: (The Universal Properties of the Quotient Topology) Let p :
X =Y be a quotient map and let Z be a topological space. Given any continuous function
[+ X — Z with the property that f(x1) = f(x2) whenever p(x1) = p(x2), then there is a
unique continuous function f Y — Z so that fp = f.

X
$e <
v -, 7

Lemma 3.2.2: Let h : X — Y be a continuous bijective function. If X is a compact
space and 'Y is a Hausdorff space, then h is homeomorphism.

Consider a map f : Dy U Dy — 5™ defined by

| fulz) ifxe Dy
fle) = {fl(x) if v € Dy,

where f,(z) = (x,1/1 — ||z||?) and fi(z) = (x,—4/1 — ||x||?) are homeomorphism from the

standard unit disk to the upper and lower hemispheres respectively. Then f is continuous
since f,, and f; are continuous. Moreover, since S™ = S]' U S}', f is surjective. Note that
Dy Ugn-1 Dy is the quotient of D)y U Dy by the relation ” ~ 7 that identifies those points
in D and in Dy that lie in the intersection D}y N Dy = S™=1 Since f, and f; are injective
and if z; € D; and xy € D;L, then

f(a1) = fla2) <= fulz1) = filz2)
= (21, /1= [Je]2)= (2, —y/1 = ||z ?)
< 11 = 29 and ||zy]| = [|xe]| = 1
= T~ o

By Lemma 3.2.1, f induces a continuous map f : D} Ugn-1 Dy — 5™, which is bijective
since f is surjective and f(x1) = f(x2) implies that z1 ~ xs.
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Since D and Dy are closed and bounded subsets of R", they are compact. Thus, the
finite union Dy U Dy is compact, and so is its quotient Dy Ugn—1 Dy. Since S™ is a metric

space, it is a Hausdorff space. Therefore, f is a homeomorphism from D} Ugn—1 Dy to S™,
by Lemma 3.2.2. O

Remark 3.2.1:

1. If n < 6, then M is diffeomorphic to S™ and if n > 7, then there exists M such
that homeomorphic to S™, but it is not diffeomorphic to S™. Such manifolds called
exotic spheres (see [6], [8]).

2. If [ is smooth and its critical points are degenerate, then the theorem remains true
(see [9] or Theorem 1’ in Chapter 6 of [11]).

3.3 Morse Functions on Knots

Definition 3.3.1: A knot is a smooth embedding of the circle (M = S*) into the oriented
real Buclidean 3-dimensional space E = R3, with inner product (-, -) .

Let ¢ : S' < E be a smooth embedding as in the definition. We denote by K = ¢(S?)
the image of this embedding which is a compact subset of E. Indeed, we will prove that
K is bounded and closed. Define

Y St = Rby d(z) = [|(@)]]-

It is clear that 1) is continuous on S!. Since S! is a compact metric space, v attains its
maximum and minimum values on S!. Therefore, there exists M > 0 such that

0<(x) <M, Ve e S

Equivalently,
0 < [[p(x)]] < M, Vo € S*.

Now, suppose that x* is an accumulation point of K = ¢(S'). There exists a sequence
{y;} in K such that
lim y; = x*.
1—00
Since ¢ is an embedding, ¢ is injective. Thus there exists a unique z; € S! such that
é(z;) = y;, for every 4. Since S is compact and {z;} is a sequence in S, then there exists
a sub-sequence {z;, } such that
lim z;, = 2" € St
Jj—o0
and
zt = ].1Lm Yi; = jlijglo P(2i;) = ¢(lim 2;;) = ¢(2") € K.

00 j—o00

Therefore, K is a compact subset of E.
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Let S be the unit sphere in E. Then, for each v € S, it determines a linear map

L,-E — R
r = (v,x).

This function can be restricted to K C E to give a Morse function for almost all v, and
can be viewed as a height function

hy == Ly|lk : K - R

(see Corollary 2.3.1). Let px(v) be the number of critical points of h,. We define g (v) =
if h, is not a Morse function, and if h, is a Morse function on K, Note that px(v) >
since a Morse function on a compact set has at least two critical points.

0
2

By the coarea formula (see Theorem 1.1.2), we have the following.

Theorem 3.3.1: Let g : S — 7Z be the function defined by g(v) = pux(v). Then
(1) g is measurable.

(2) the average size of g is given by

i = — /uK JdA(v) 4W/MK JdA(v),

CL’/’@CL

where dA denotes the Euclidean area element on S.

Consider the smooth embedding ¢ : S — E as a simple closed smooth curve

¢:[0,27] — E.
Then ao()
0 — (1) # 0

since its derivative is injective. Let L be the length of K = ¢([0, 27]). Thus, we can obtain
a curve

v [0,L] = E
parametrized by arc length which has the same image set as ¢. Indeed, we define
s:[0,2n] — [0, L]
t
toes s(t) = / 1/ ()| du.
0

Smce — = |¢'(t)| > 0, the function s = s(t) has a smooth inverse ¢t = t(s) with
dt 1
Lo _>o
s |¢'(1)]
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We set
Yp=¢ot=¢(t):[0,L] - E.
Hence ¢([0, L]) = ¢(]0,27]) = K and
1
(1)

AW _
o =16 5 = 160 | = 1

If x € K, then x = ¢(s,) for some s, € [0, L] and |¢'(s;)| = 1. Let
T(s2) = ¢'(52),
the unit vector tangent to K at x. Define
S(K) ={(z,v) € K x S:vLlT(s,)},

the unit sphere bundle associated to the normal bundle of K in E. Thus, there are natural
projections

A K xS o K,
p: K xS — S

The restriction of these projections to S(K) give smooth maps

pr :S(K) — S.

Lemma 3.3.1: The vector v € S is a regular value of the map px : S(K) — S if and
only if h, : K — R is a Morse function. Moreover,

pr(v) = N,y (v), Yo e S. (3.3.1)

Proof. Consider the map

The differential of g at s, is given

dg d
ds = s (v, ¢(s))

This shows that ¢(s,) is a critical point of h, if and only if ¢'(s,) = T'(s,)Lv. Since

= (v,¢/(sy)) -

5=5y

s5=5y

d’g
ds

d

= s (v, ¢/(5)> = (v, ¢H(3y)> = ’Li(Sy) (v, N(Sy» J

5=5y

5=5y

then

h, is a Morse function if and only if T'(s,) Lv and k(s,) (v, N(s,)) # 0. (3.3.2)
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Secondly, define

a:R/LZ xR/2r7Z — S(K)
(5,0) > (&(s), cos(O)N(s) + sin(0) B(s)),

where

(s
N = e
and
B(s) =T(s) x N(s)

are the normal and binormal unit vectors respectively. It is clear that « is well defined
and smooth. Since

ng = (qﬁ’(s), cos(A)N'(s) + Siﬂ(e)Bl(S))
and
Z‘; — (0, = sin(6)N(s) + cos(0) B(s))

are linearly independent for every (s,6) € R/LZ x R/27Z, the map « has a smooth
inverse. Moreover, we observe that « is a diffeomorphism.

Let v € S and
B = pit(v) = {(z,v) € S(K) :v1T(s,)}.

We assume that B # (). Suppose that z = (y,v) € B. We can then express z and v as
follows:

2 = (6(s,), cos(0)N(s,) +sin(0)B(s,)).
and
v = cos(§)N(sy) + sin(0)B(sy)

for some (s,,0) € R/LZ x R/27Z. We have
pr :S(K) — S

is the restriction of
H:R®xR® = R? (u,v) — (03,13) ( Z ) = .

Thus,
(dpr). : T.S(K) CR* x R* - T,S C R®

is the restriction of

(dH), : R* x R® = R?, (u,v) — (03, I3) < Z ) = 0.
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_ ¢'(sy)
(dpi)=(;) = (aH). TZS(K)< cos(8)N'(s,) + sin(6) B'(s,) )
= cos(0)N'(s,) + sin(0) B'(s,)
= —k(sy) cos(0)T(sy) — 7(sy) sin(0)N(s,) + 7(s,) cos(0)B(s,),

and

0
(WU()z(@) = (dH). TZS(K)< —sin(0)N(s,) + cos(0)B(sy) )
= —sin(0)N(s,) + cos(0) B(sy).

d d
Therefore, v € S is a regular value of pg if and only if (de)z(d—a) and (de)z(d—(g) are
s
linearly independent. Equivalently,

v € S is a regular value of pg if and only if (s, ) cos(d) # 0 with (y,v) € B.  (3.3.3)
Note that
() cos(0) = (s,) (cos(O)N (s,) + sin(0) B(s,), N(s,)) = k(s,) (v, N(s,))
for (y,v) € B. This means that

h, is a Morse function by (3.3.2).

To prove the second assertion, we will show that for every v € S, an element of
the set of critical points of h, produces only an element of px'(v) and vice versa. If
o(s), s € R/LZ is a critical point of h,, then (¢'(s),v) = 0 and there exist a,b such that
v =aN(s)+ bB(s) with ||v|| = 1. Since ||v|| = 1, there exists § € R/2nZ which satisfies
v = cos(#)N(s) + sin(0)B(s). Thus, there is (s,0) € R/LZ x R/2x7Z which produces
a unique element of py'(v) via the above diffeomorphism map a. If z = (y,v) € B =
px (), then v LT(s,) and there exist (s, ) such that v = cos(8)N(s,) +sin(0)B(s,) and
k(sy) cos(f) # 0 (since v is a regular value of pg). Thus,

K(sy) (v, N(sy)) = r(sy) cos(0) # 0

and
(v,¢(sy)) = (v, T(sy)) = 0,

i.e. ¢(s,) is a critical point of h,. Therefore,

pr(v) = Ny (v), Yo € S,
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By Theorem 3.3.1, for every v € S, we have that pg(v) is measurable, which together
with identity (3.3.1), implies N,, (v) is measurable and

i = o [ Vo)A, (), (334

where dA,, denotes the area element on S with the induced metric g5 = (-,-) from the
usual inner product on FE.

On the other hand, we will use the Theorem 1.1.2 for the map
K - (S(K)agK) — (Sags)a
where g denotes the metric on S(K) defined by g = ds? 4+ d#? from the diffeomorphism
a. We will compute the Jacobian |Jk| of px. Let
¢ :=pgoa:R/LZxR/21Z — S
(s,60) +—— cos(6)N(s)+ sin(0)B(s).

Then
dd do
75 = Drx(a(s,0)).—=
= cos(0)N'(s) + sin(6) B'(s)
= —k(s)cos(0)T(s) — 7(s)sin(0)N(s) + 7(s) cos(6)B(s)
and

dd da

- _sm(e)N( ) + cos(0) B(s)

form the Jacobian Jx as follows:

<Cf?> <d¢ d®> :det<ﬁ2<s>cos2<e>+72<s> T<s>>_

2 _
rlm=detl g ge i 4P 7(s) 1
df’ ds o do’ do
Therefore, the Jacobian of px is |Jk| = ’F&(S) cos(f)| and we can now apply Theo-
rem 1.1.2

J Now Wy, (0) = [[ 1Ay (2. v)

27r
= / / ) cos (6 |d6ds
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where .
m:/p$W5
0
is called the total curvature of the knot K.
By (3.3.4), we conclude

= - [ 0) = - [ Ny (0)dAgy (o) = ~Tic (3.3.5)

Remark 3.3.1: Tx measures how "twisted" is the curve K. That is, large Tx means
that K is very twisted. Therefore, (3.53.5) shows that if K is very twisted, then the height
function h, will have lots of critical points on K (since Tk is large when pug(v) is large).

In [7], the number

1
i = STk (3.3.6)
was called the crookedness of the knot K. We observe from (3.3.5) and (3.3.6) that
= = [ S ()dAg () = 5T (3.3.7)
Sy SQMKU 9s\V) = K s

Moreover, any Morse function h on a circle has an even number of critical points, half of
which are local minima. In order to see this, consider the composition

g:0,L]c RS KR,

The function g has a finite number of non-degenerate critical points only. The values of g
on these points must alternate between local minima and maxima (by Rolle’s theorem),
which implies that there must be the same number of local minima as that of local

1
maxima. We then conclude that §,uK(v) is the number of local minima of the Morse

function h,,.

Corollary 3.3.1: For any knot K — E, we have Tx > 2.

1
Proof. Since every Morse function on K has at least two critical points, we have SHK >1
and, by (3.3.7),

1 1 1 1

Ty = :f/f dA :»f/m. _ 1.

o K CK 4r Js 2/”((@) gs(v) = 4r Js gs(v)

That is, Tk > 2. O

Corollary 3.3.2: If K is a planar convex curve, then Tk = 2.

Proof. Note that

hy : KCR* — R
x — (v,x)
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is the restriction of a linear continuous function. We will now prove that if K is planar
and convex, then any local minimum of h, must be an absolute minimum.

Suppose h,, has two local minima at zy, 29 € K. If hy(z1) > h,(x2), by continuity of
h, on K, there exists 3 € K — {x1, 22} such that

hv(flfg,) = hv(l'l).

The straight line segment between x; and x3 is totally contained in K and for any point
on that segment

(v,try + (1 —t)xg) = <U x1) + (1 —t) (v, z3)
= thy(z1) + (1 = t)hy(23)
= thy(z1) + (1 = 0)hy(21)
= hv(xl)a

where t € [0,1]. There exist points on K arbitrarily close to x; and they have to be on one
side of such a line. Since z; is a local minimum, such points must be on the side where
(v,-) is greater that h,(z1), but this means that the line segment above is not contained
in K, which is a contradiction. Therefore, there is only an absolute minimum of h,,. Thus,
(3.3.7) gives

1 1 r1 1
gTK =K =4 /s iﬂK(U)dAgs(U) ~ ar /s dAgs(v) = 1.

That is, Tk = 2. O
Corollary 3.3.3: If T < 4w, then K is not knotted.

Proof. If Ty < 4m and pg > 4, then

Tk = 7lg = /MK JdA, (v /4dAgs v) = 4m,

which contradicts to the hypothesis. Thus, there exists v € S such that pg(v) < 4 and

h, is a Morse function. This proves that px(v) = 2 so that h, has only two critical points
on K.
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Without loss of generality, by means of a ro-
tation and a translation, we can assume that
v = eg = (0,0,1), and that 0 and M are the
global minimum and maximum values of h, re-
spectively. Let

oy, ay : [0, M] = R? h+— ai(h), as(h),

with a1(0) = a2(0) and oy (M) = ag(M). Next,
we observe that for every h € [0, M] the intersec-
tion of the hyperplane at height A with the knot
K consists precisely of two points «y(h) and as(h)
(as in the figure on the right). e 0

Let C, = {tay(h) + (1 — t)aa(h) : 0 <t < 1}. We claim that the set

CZZ U Ch

he[0,M]
is a closed disk. Consider the homotopy map

F:[0,1]]xC — C
(s,ta1(h) + (1 = Bas(h)) = (1= s)t+s)an(h) + (1 = s)(1 = t)aa(h).

We have

F(0,tar(h) + (1 — tas(h)) = tay(h)+ (1 — tas(h)
F(Ltai(h) + (1 — tas(h)) = ay(h).

which means that when s = 0 it gives the identity map on C', and when s = 1 it maps
everything to the contractible curve described by ;. O]

63



Bibliography

>

w

ﬁﬁﬁﬁ
(G2 TN
AL AT R

8

0
10
1
12
13

[14]

Arnol’d, V. I.: Ordinary Differential Equations, Third Edition.

de Rham, G.; Smith, F. R.; Chern, S. S.: Differentiable Manifolds, Springer,
1984.

do Carmo, M. P.: Riemannian Geometry, 1992.
Federer, H.: Geometric Measure Theory-Springer-Verlag, 1969.
Hatcher, A.: Algebraic Topology, Cambridge University Press, 2001.

Matsummoto, Y.: An Introduction to Morse Theory (Translations of Mathemati-
cal Monographs, Vol. 208), American Mathematical Society, 2001.

Milnor, J.: On the Total Curvature of Knots, Annals of Mathematics, Second Series,
Vol. 52, No. 2 (Sep., 1950), pp. 248 — 257.

Milnor, J.: Manifolds homeomorphic to the 7-sphere, Annals of Mathematics
vol.64(1956), 399-405.

Milnor, J.: Sommes de variétes différentiables et structurees différentiables des
sphéres, Bulletin de la S.M.F. ;tome 87(1959), p.439-444.

Milnor, J.: Morse THEORY, Annals of Mathematics Studies, vol. 51, Princeton
University Press, 1963.

Milnor, J.: Differential topology. In Lectures on Modern Mathematics, vol. II, T.
Saaty, editor, pages 165-183. Wiley, New York, 1965

Milnor, J.: Topology from the Differentiable Viewpoint, University Press Of Vir-
ginia, 1965.

Nicolaescu, L.: An Invitation to Morse Theory, Second Edition, Springer-Verlag
New York, 2011.

Whitney, H.: Geometric Integration Theory, Princeton University Press, 1957.

64



	Acknowledgments
	Introduction
	Basic Definitions and Examples
	Differential Geometry of Manifolds 
	Smooth Functions in Euclidean space
	Smooth manifolds
	Smooth Maps between Smooth Manifolds
	Tangent Vectors and Tangent Spaces
	Hessian, Regular points, Critical Points of a Function
	Vector Fields and One-Parameter Tranformation Groups 
	Jacobian of a map and coarea formula
	Frenet-Serret formulas

	Topology of Manifolds
	Homotopy
	CW-Complexes


	Morse Theory
	Morse Function
	Morse lemma
	Existence of Morse Functions
	Fundamental Theorems of Morse Theory
	First Fundamental Theorem 
	Second Fundamental Theorem
	Consequence of the Fundamental Theorems

	The Morse Inequalities

	Simple applications of Morse theory
	Examples
	Reeb's theorem
	Morse Functions on Knots


