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Introduction

Morse theory is a powerful method to study the topological structure of a smooth
manifold M by examining the critical points of a Morse function defined on it. For
example, let M = T2 ⊂ R3 be the two dimensional torus and f : M → R the height
function f((x, y, z)) = z. The functon f has four critical points p, q, r and s on M with
indices 0, 1, 1 and 2 respectively. Let Ma denote the set of all points x ∈ M such that
f(x) ≤ a, and ” ' ” denote homotopy equivalence. We can describe the change in
homeomorphism and homotopic types of Ma as a passes through each critical value of f
as follows:

Case a < f(p):

Ma is the empty set.

Case f(p) < a < f(q):
∗ Ma is homeomorphic to a 2-cell or a disk.
∗ The homotopy type of Ma is a single 0-cell since

the index of p is 0.

Case f(q) < a < f(r) :
∗ Ma is homeomorphic to a cylinder.
∗ The homotopy type of Ma is a disk with a 1-cell

attached since the index of q is 1.

Case f(r) < a < f(s) :
∗ Ma is homeomorphic to a torus with a disk removed.
∗ The homotopy type of Ma is a cylinder with a 1-cell

attached since the index of r is 1.

Case f(s) < a :

∗ Ma is homeomorphic to the full torus.
∗ The homotopy type of Ma is a torus minus a disk

with a 2-cell attached since the index of s is 2.
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In this thesis, we will present Morse theory on smooth finite-dimensional manifolds
and one application based on the books [10, 13].
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Chapter 1

Basic Definitions and Examples

We shall use the words "differentiable" and "smooth" and "differentiable of class
C∞" as synonyms. Before the main chapter of this thesis, let us recall some definitions
and examples from differential geometry and topology.

1.1 Differential Geometry of Manifolds

1.1.1 Smooth Functions in Euclidean space

Definition 1.1.1: Let U ⊆ Rn and V ⊆ Rm be open subsets. We say that a function
f : U → V is smooth if it has derivatives of all orders everywhere in U . The map f is
called a diffeomorphism from U to V if it is a smooth bijection and its inverse f−1 : V → U
is again smooth. We denote by C∞(U, V ) the set of smooth functions from U to V .

Example 1.1.1: The function f : R→ R defined by

f(x) =


1.1ε if x ≤ 0
1.1ε(1 + e1/4ε2)
1 + e1/(4ε2−x2) if x ∈ (0, 2ε)

0 if x ≥ 2ε

is smooth for any ε > 0.
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crv CHAPTER 1. BASIC DEFINITIONS AND EXAMPLES

1.1.2 Smooth manifolds

To formalize the definition of a smooth manifold we need the following notions.

Definition 1.1.2: Let M be a Hausdorff and second countable topological space.

(1) A coordinate chart or just chart of M is a pair (U,X) where U is an open subset
of M and X : U → Rn is a map such that X(U) is an open subset of Rn and X is
a homeomorphism from U to X(U).

(2) Two charts (U,X) and (V, Y ) are called compatible if the subsets X(U ∩ V ) and
Y (U ∩ V ) are open subsets of Rn, and the transition map

X ◦ Y −1 : Y (U ∩ V )→ X(U ∩ V )

is a diffeomorphism.

Figure 1.1: Compatible charts

(3) A collection of charts A = {(Ui, Xi)} is an n-dimensional atlas on M if any two
charts are compatible and ∪iUi = M.

(4) Two atlases A1 and A2 are equivalent if A1 ∪ A2 is again an atlas.

(5) A differentiable manifold structure on M is an equivalence class of atlases.

(6) A smooth manifold of dimension n is a topological space M together with a
differentiable manifold structure on it.

Remark 1.1.1: From Definition 1.1.2:

(a) If p ∈ U ⊂M, then X(p) = (x1(p), x2(p), · · · , xn(p)) ∈ Rn.

(b) Since X is continuous, so xi : U → R is a real valued continuous function for each
i = 1, 2, . . . , n.

(c) The pair (U,X) is called a coordinate neighborhood (or a coordinate chart or
a chart) of M.

(d) (x1, x2, · · · , xn) is called the local coordinate system (or local coordinate ) on
(U,X).

2
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Example 1.1.2: The n-sphere Sn = {x = (x1, · · · , xn+1) : ||x|| = 1} ⊂ Rn+1 is a smooth
manifold.

1.1.3 Smooth Maps between Smooth Manifolds

Definition 1.1.3: LetM1 andM2 be smooth manifolds of dimension m and n respectively.
A map f : M1 → M2 is smooth at p ∈ M1 if given a chart (V, Y ) at f(p) ∈ M2 there
exists a chart (U,X) at p ∈ M1 such that f(U) ⊆ V and the mapping Y ◦ f ◦ X−1 :
X(U) ⊂ Rm → Y (V ) ⊂ Rn is smooth at X(p). A map f is smooth if it is smooth at
every point of M1. The set of smooth functions from M1 to M2 is denoted C∞(M1,M2).

In particular, a map f : M → R on a smooth manifold M is called smooth if for all
p ∈M there is a chart (U,X) about p such that the map f ◦X−1 : X(U)→ R is smooth.
We denote by C∞(M,R) = C∞(M) the set of real valued smooth functions on M.

Definition 1.1.4: Let M and N be two smooth manifolds. We say that a mapping

ϕ : M → N

(1) is a diffeomorphism if it is bijection, and the maps ϕ and ϕ−1 are smooth;

(2) is a local diffeomorphism at p ∈M if there exist neighborhoods U of p and V of
ϕ(p) such that the map ϕ|U : U → V is a diffeomorphism.

1.1.4 Tangent Vectors and Tangent Spaces

Definition 1.1.5: Let M be a smooth manifold. For any p ∈ M, choose a smooth curve
α : (−ε, ε) → M with α(0) = p. Let D be the set of all real valued functions on M that

3
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are smooth at p. The tangent vector to the curve α at t = 0 (or the tangent vector
to M at p) is a function α′(0) : D → R given by

α′(0)f = d(f ◦ α)
dt

|t=0, f ∈ D.

The tangent space of M at p, denoted by TpM , is the set of all tangent vectors to M
at p.

Definition 1.1.6: Let M and N be smooth manifolds of dimension m and n respectively,
and let g : M → N be a smooth map. For any p ∈ M and for each v ∈ TpM, choose a
smooth curve α : (−ε, ε)→M with α(0) = p, α′(0) = v. The differential of g at p is the
linear map dgp : TpM → Tg(p)N given by dgp(v) = β′(0), where β = g ◦ α is independent
of the choice of α.

1.1.5 Hessian, Regular points, Critical Points of a Function

Definition 1.1.7: Let M be a smooth manifold of dimension n, and let f : M → R be a
smooth map of M. For each point p ∈ M, we choose a chart about p, X : U → V ⊂ Rn

such that X(p) = (x1(p), · · · , xn(p)) ∈ V. Let

F = f ◦X−1 : Rn → R,

and the derivative
dFX(p) : TX(p)Rn → TF (X(p))R.

Then

(1) The Hessian of f with respect to X is defined as the symmetric matrix of second
order partial derivatives:

HF = H(f ◦X−1) =
(

∂2F

∂xi∂xj

)
1≤i,j≤n

.

(2) p is a critical point or singular point of f if dFX(p) is not surjective, this means
that the partial derivatives

∂F

∂x1
(X(p)) = 0, · · · , ∂F

∂xn
(X(p)) = 0.

The real value f(p) = F (X(p)) is then called a critical value of f.

(3) Any point which is not a critical point of f is called a regular point of f, and
any real value which is not a critical value of f is called a regular value of f.

(4) p is a non-degenerate critical point of f if the Hessian is non-singular, that

is, det
(
HF (X(p))

)
6= 0.

4
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(5) Any critical point whose Hessian is singular is called a degenerate critical point.

(6) The index of a non-degenerate critical point p with respect to f is the number of
negative eigenvalues of the Hessian HF (X(p)).

Example 1.1.3: Let M = S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit sphere in
R3. The function f : M → R by (x, y, z) 7→ z is a Morse function.

Proof. Let

φ1(x1, x2, x3) = ( x1

1− x3
,

x2

1− x3
) and φ2(x1, x2, x3) = ( x1

1 + x3
,

x2

1 + x3
)

be two charts of S2. The inverses of φ1 and φ2 are

φ−1
1 (y1, y2) =

(
2y1

y2
1 + y2

2 + 1 ,
2y2

y2
1 + y2

2 + 1 ,
y2

1 + y2
2 − 1

y2
1 + y2

2 + 1

)

and
φ−1

2 (x1, x2) =
(

2x1

1 + x2
1 + x2

2
,

2x2

1 + x2
1 + x2

2
,
1− x2

1 − x2
2

1 + x2
1 + x2

2

)
respectively. In order to determine the critical points of f, consider the map f ◦ φ−1

i :
R2 → R for each i = 1, 2. Note that (S2 \ {S}, φ2) is the coordinate chart around (0, 0, 1)
and define a map g = f ◦ φ−1

2 : R2 → R by

g(x1, x2) := f ◦ φ−1
2 (x1, x2) = 1− x2

1 − x2
2

1 + x2
1 + x2

2
.

Since
dg(x1,x2) =

(
−4x1

(1 + x2
1 + x2

2)2 ,
−4x2

(1 + x2
1 + x2

2)2

)
,

we have
dg(x1,x2) = 0 if and only if x1 = x2 = 0.

Hence φ−1
2 (0, 0) = (0, 0, 1) is the only critical point of f in S2 \ {S}. We will now find the

Hessian of f at (0, 0, 1). By Definition 1.1.7,

Hg(φ2(0, 0, 1)) = Hg(0, 0) =
(

∂2g

∂xi∂xj
(0, 0)

)
1≤i,j≤2

=


−4(1− 3x2

1 + x2
2)

(1 + x2
1 + x2

2)3
|(0,0)

16x1x2

(1 + x2
1 + x2

2)3
|(0,0)

16x1x2

(1 + x2
1 + x2

2)3
|(0,0)

−4(1 + x2
1 − 3x2

2)
(1 + x2

1 + x2
2)3

|(0,0)


=
(
−4 0
0 −4

)

This shows that (0, 0, 1) is a non-degenerate critical point of f with index 2. For the point
(0, 0,−1), we use the chart (S2 \ {N}, φ1), and a similar calculation shows that (0, 0,−1)
is the only critical point of f in S2 \ {N} with index 0.

5
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Example 1.1.4: Let r and R be real numbers satisfying 0 < r < R, and let

M = T2 = {(x, y, z) : x2 + (
√
y2 + z2 −R)2 = r2}

be a two dimensional torus. The function f : T2 → R defined by f((x, y, z)) = z is a
Morse funtion which has four non-degenerate critical points

(0, 0,−(R + r)), (0, 0,−(R− r)), (0, 0, R− r) and (0, 0, R + r)

with indices 0, 1, 1 and 2 respectively.

Proposition 1.1.1: The notions (2), (3), (4) defined in Definition 1.1.7 do not depend
on the choice of chart.

Proof. Let (U1, ϕ1) and (U2, ϕ2) be coordinate charts of M around a critical point p of f

such that ϕ1(p) =
(
x1(p), · · · , xn(p)

)
=
(
y1(p), · · · , yn(p)

)
= ϕ2(p).We note that

f ◦ ϕ−1
1 = (f ◦ ϕ−1

2 ) ◦ (ϕ2 ◦ ϕ−1
1 ) (1.1.1)

and
f ◦ ϕ−1

2 = (f ◦ ϕ−1
1 ) ◦ (ϕ1 ◦ ϕ−1

2 ). (1.1.2)

(2) We will prove that ∂(f ◦ ϕ−1
1 )

∂xi
(ϕ1(p)) = 0 if and only if ∂(f ◦ ϕ−1

2 )
∂yi

(ϕ2(p)) = 0, for
all i = 1, 2, · · · , n.

Suppose that for all i, we have ∂(f ◦ ϕ−1
2 )

∂yi
(ϕ2(p)) = 0, and let (ϕ2 ◦ϕ−1

1 )j be the jth

coordinate function of ϕ2 ◦ ϕ−1
1 . By equation (1.1.1) and ϕ2 ◦ ϕ−1

1 (ϕ1(p)) = ϕ2(p),
using the chain rule we obtain

∂(f ◦ ϕ−1
1 )

∂xi

∣∣∣∣∣
ϕ1(p)

=
n∑
j=1

∂(f ◦ ϕ−1
2 )

∂yj
(ϕ2 ◦ ϕ−1

1 )
∣∣∣∣∣
ϕ1(p)

∂(ϕ2 ◦ ϕ−1
1 )j

∂xi

∣∣∣∣∣
ϕ1(p)

. (1.1.3)

Hence

∂(f ◦ ϕ−1
1 )

∂xi
(ϕ1(p)) =

n∑
j=1

∂(f ◦ ϕ−1
2 )

∂yj
(ϕ2(p))∂(ϕ2 ◦ ϕ−1

1 )j
∂xi

(ϕ1(p)).

By hypothesis, ∂(f ◦ ϕ−1
1 )

∂xi
(ϕ1(p)) = 0. Similarly, by equation (1.1.2) and the chain

rule, if we have ∂(f ◦ ϕ−1
1 )

∂xi
(ϕ1(p)) = 0, for all i, then we have ∂(f ◦ ϕ−1

1 )
∂yi

(ϕ2(p)) = 0.

(3) It follows from the previous point.

6
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(4) We will prove that det
(
Hf◦ϕ−1

1
(ϕ1(p))

)
6= 0 if and only if det

(
Hf◦ϕ−1

2
(ϕ2(p))

)
6= 0.

From equation (1.1.3), for 1 ≤ j ≤ n, we have

∂(f ◦ ϕ−1
1 )

∂xj

∣∣∣∣∣
ϕ1(p)

=
n∑
k=1

∂(f ◦ ϕ−1
2 )

∂yk
(ϕ2 ◦ ϕ−1

1 )
∣∣∣∣∣
ϕ1(p)

∂(ϕ2 ◦ ϕ−1
1 )k

∂xj

∣∣∣∣∣
ϕ1(p)

.

By applying the chain rule again and ϕ2 ◦ ϕ−1
1 (ϕ1(p)) = ϕ2(p),

∂2(f ◦ ϕ−1
1 )

∂xi∂xj

∣∣∣∣
ϕ1(p)

= ∂

∂xi

( n∑
k=1

∂(f ◦ ϕ−1
2 )

∂yk
(ϕ2 ◦ ϕ−1

1 )
∣∣∣∣
ϕ1(p)

∂(ϕ2 ◦ ϕ−1
1 )k

∂xj

∣∣∣∣
ϕ1(p)

)

=
n∑
k=1

∂

∂xi

(
∂(f ◦ ϕ−1

2 )
∂yk

(ϕ2 ◦ ϕ−1
1 )
∣∣∣∣
ϕ1(p)

∂(ϕ2 ◦ ϕ−1
1 )k

∂xj

∣∣∣∣
ϕ1(p)

)

=
n∑
k=1

( n∑
l=1

∂2(f ◦ ϕ−1
2 )

∂yl∂yk
(ϕ2 ◦ ϕ−1

1 )
∣∣∣∣
ϕ1(p)

∂
(
ϕ2 ◦ ϕ−1

1

)
l

∂xi

∣∣∣∣
ϕ1(p)

)
∂(ϕ2 ◦ ϕ−1

1 )k
∂xj

∣∣∣∣
ϕ1(p)

+
n∑
k=1

∂(f ◦ ϕ−1
2 )

∂yk
(ϕ2 ◦ ϕ−1

1 )
∣∣∣∣
ϕ1(p)

∂2(ϕ2 ◦ ϕ−1
1 )k

∂xi∂xj

∣∣∣∣
ϕ1(p)

=
n∑
k=1

( n∑
l=1

∂2(f ◦ ϕ−1
2 )

∂yl∂yk
(ϕ2(p))

∂
(
ϕ2 ◦ ϕ−1

1

)
l

∂xi
(ϕ1(p))

)
∂(ϕ2 ◦ ϕ−1

1 )k
∂xj

(ϕ1(p)).

Since p is a critical point of f,

∂(f ◦ ϕ−1
2 )

∂yk
(ϕ2 ◦ ϕ−1

1 )
∣∣∣∣∣
ϕ1(p)

= ∂(f ◦ ϕ−1
2 )

∂yk
(ϕ2(p)) = 0, ∀k.

Now, for 1 ≤ k, l ≤ n, the above expression can be written as:

∂2(f ◦ ϕ−1
1 )

∂xi∂xj
(ϕ1(p)) =

(
∂(ϕ2 ◦ ϕ−1

1 )1

∂xi
, · · · , ∂(ϕ2 ◦ ϕ−1

1 )n
∂xi

)
ϕ1(p)

H2


∂(ϕ2◦ϕ−1

1 )1
∂xj...

∂(ϕ2◦ϕ−1
1 )n

∂xj


ϕ1(p)

,

where H2 = Hf◦ϕ−1
2

(ϕ2(p)). Hence, for all 1 ≤ i, j ≤ n, we obtain

Hf◦ϕ−1
1

(ϕ1(p)) = J tHf◦ϕ−1
2

(ϕ2(p))J, (1.1.4)

where

J = J(ϕ2 ◦ ϕ−1
1 )(ϕ1(p)) =


∂(ϕ2 ◦ ϕ−1

1 )1

∂x1
· · · ∂(ϕ2 ◦ ϕ−1

1 )1

∂xn... . . . ...
∂(ϕ2 ◦ ϕ−1

1 )n
∂x1

· · · ∂(ϕ2 ◦ ϕ−1
1 )n

∂xn


ϕ1(p)

7
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is the Jacobian of ϕ2 ◦ ϕ−1
1 at ϕ1(p) and J t is its transpose. Since ϕ2 ◦ ϕ−1

1 is
a smooth map with smooth inverse, the matrix J = J(ϕ2 ◦ ϕ−1

1 )(ϕ1(p)) is non-

singular. Therefore, equation (1.1.4) implies det
(
Hf◦ϕ−1

1
(ϕ1(p))

)
6= 0 if and only if

det
(
Hf◦ϕ−1

2
(ϕ2(p))

)
6= 0.

Proposition 1.1.2: The index of a non-degenerate critical point is independent of the
chart.

Proof. According to equation (1.1.4), Hf◦ϕ−1
1

(ϕ1(p)) and Hf◦ϕ−1
2

(ϕ2(p)) are congruent.
Therefore, by Sylvester’s Law, Hf◦ϕ−1

1
(ϕ1(p)) and Hf◦ϕ−1

2
(ϕ2(p)) have the same index.

We need to state, without proof, the Morse-Sard-Federer theorem (see Theorem 3.4.3
of [4] or Theorem 4, p. 10 of [2] or p.16 of [12]).

Theorem 1.1.1: (Morse-Sard-Federer theorem) Let f : M → N be a smooth map
between smooth finite dimensional manifolds.

(1) The set of critical values of f has measure zero in N.

(2) If f(M) has nonempty interior, then the set of regular values is dense in the image
f(M).

�

1.1.6 Vector Fields and One-Parameter Tranformation Groups

Definition 1.1.8: A smooth vector field on a smooth manifold M is a smooth map
X : M → TM, such that for each p ∈M we assign a vector Xp ∈ TpM, X : p 7−→ (p,Xp).

Definition 1.1.9: Let c : I →M be a smooth curve. A smooth vector field V along c
is a smooth map that associates to every t ∈ I a tangent vector V (t) ∈ Tc(t)M. A velocity

vector (or tangent vector field), dc
dt
∈ Tc(t)M, is defined by

dc

dt
(f) = lim

h→0

f(c(t+ h))− f(c(t))
h

, f ∈ D.

Definition 1.1.10: A one-parameter group of diffeomorphisms of a smooth manifold M
is a smooth map φ : R×M →M satisfying the following properties:

(a) For each t ∈ R, the map φt : M →M defined by φt(q) = φ(t, q) is a diffeomorphism
of M onto itself.

(b) For all s, t ∈ R, we have φs+t = φs ◦ φt.

8
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Next, given a one-parameter group of diffeomorphisms φ on a smooth manifold M, we
define a vector field X on M by

Xq(f) = lim
h→0

f(φh(q))− f(q)
h

, (1.1.5)

where f is any smooth real valued function on M. This smooth vector field is said to
generate the group φ.

Example 1.1.5: Let M be the 1-sphere S1. The map

φ : R× S1 −→ S1(
t, (x, y)

)
7→

(
cos(t) − sin(t)
sin(t) cos(t)

)(
x
y

)
,

is a one-parameter group of diffeomorphisms.

Definition 1.1.11: A Riemannian manifold is a smooth manifold endowed with an
inner product on each tangent space which vary smoothly.

Definition 1.1.12: Let M be a Riemannian manifold. Let 〈X, Y 〉 denote the inner prod-
uct of two tangent vectors, as defined by this metric, and let f ∈ D. The gradient of f
as a vector field gradf on M defined by

〈X, gradf〉 = X(f).

In other words,
〈v, gradf(p)〉 = dfp(v), p ∈M, ∀v ∈ TpM.

Remark 1.1.2:

(a) The vector field gradf(p) = 0 if p is a critical point of f.

(b) If we have a curve c : R→M with velocity vector dc
dt
, then

d(f ◦ c)
dt

= dfc(t)(
c(t)
dt

) =
〈
dc

dt
, gradf(c(t))

〉
.

Lemma 1.1.1: A smooth vector field X on M which vanishes outside of a compact subset
K of M generates a unique one-parameter group of diffeomorphisms φ of M. �

1.1.7 Jacobian of a map and coarea formula

Let M0 and M1 be smooth, connected, Riemannian manifolds of dimension n, equipped
with Riemann metrics g0 and g1 respectively. Let F : M0 → M1 be a smooth map. For
any x0 ∈M0, the differential map of F at x0 is a linear map

dFx0 : Tx0M0 → TF (x0)M1.

9
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If we choose an orthonormal basis {~ei}1≤i≤n of Tx0M0 and let ~fk = dFx0(~ek), then we can
form an n× n symmetric matrix

GF (x0) :=
(〈
~fi, ~fj

〉
g1

)
1≤i,j≤n

.

The matrix GF (x0) is non-negative because for any y = (y1, · · · , yn) ∈ Rn, we have

yGF (x0)yT =
( n∑
i=1
〈fi, f1〉 yi, · · · ,

n∑
i=1
〈fi, fn〉 yi

)
yT

=
n∑
j=1

n∑
i=1
〈fi, fj〉 yiyj

=
n∑
j=1

n∑
i=1
〈fiyi, fjyj〉

=
n∑
j=1

〈
n∑
i=1

fiyi, fjyj

〉

=
〈

n∑
i=1

fiyi,
n∑
j=1

fjyj

〉

= ||
n∑
k=1

fkyk||2

≥ 0

Since GF (x0) is non-negative, all of its eigenvalues are non-negative so that

det(GF (x0)) ≥ 0.

The Jacobian of F is the smooth non-negative function

|JF | : M0 → [0,+∞)
x0 7→

√
detGF (x0).

Since GF (x0) is a symmetric matrix, it can be expressed as

GF (x0) = QFDFQ
T
F

(the spectral decomposition) where Q is an orthogonal matrix andD = diag(λ1, · · · , λn) is
a diagonal matrix formed with the egenvalues λ1, · · · , λn of GF (x0). By the non-negativity
of the eigenvalues of GF (x0), we have

GF (x0) = QFDFQ
T
F = QF

√
DFQ

T
FQF

√
DFQ

T
F = BF (x0)BF (x0),

where BF (x0) = QF

√
DFQ

T
F . Therefore,

detGF (x0) = det (BF (x0)BF (x0)) = detBF (x0) detBF (x0) = (detBF (x0))2.

10
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According to Theorem 1.1.1, if F : M0 → M1 is a smooth map between smooth finite
dimensional manifolds, then almost every x1 ∈ M1 is a regular value of F. For such x1’s,
the fiber F−1(x1) is a finite set and we denote by NF (x1) ∈ Z≥0∪{∞} its cardinality.

Now we state the coarea formula theorem without proof.

Theorem 1.1.2: (Coarea formula) Let F : (M0, g0) → (M1, g1) be a smooth map
between two smooth, compact, connected, oriented, finite-dimensional Riemannian mani-
folds. Then the function

M1 3 x1 7−→ NF (x1) ∈ Z≥0 ∪ {∞}

is measurable with respect to the Lebesgue measure defined by the volume form dVg1 , and∫
M1
NF (x1)dVg1(x1) =

∫
M0
|JF |(x0)dVg0(x0),

where x1 = F (x0).

1.1.8 Frenet-Serret formulas

Let α : I ⊂ R→ E = R3 be a curve parametrized by arc length s. The tangent, normal,
and binormal unit vectors, often called T (s), N(s), and B(s) (or simply T,N, and B) form
an orthonormal basis spanning R3 and are defined as follows:

T (s) = α′(s),

N(s) = α′′(s)
||α′′(s)|| ,

B(s) = T (s)×N(s).

The Frenet-Serret Formulas are the following

T ′ = κN

N ′ = −κT + τB

B′ = τN,

where

κ = κ(s) = ||α′′(s)|| is called the curvature or bending of α at s,
τ = τ(s) is called the torsion or twisting of α at s.

11



crv CHAPTER 1. BASIC DEFINITIONS AND EXAMPLES

1.2 Topology of Manifolds

In this section we will assume that X and Y are topological spaces unless stated other-
wise.

1.2.1 Homotopy

Definition 1.2.1: A family of maps ht : X → Y, t ∈ [0, 1] is called a homotopy if the
associated map H : X × [0, 1]→ Y given by H(x, t) = ht(x) is continuous on X × [0, 1].

Definition 1.2.2: Let f, g : X → Y be two continuous maps.Then the maps f and g
are homotopic if there exists a homotopy ht : X → Y such that h0(x) = f(x) and
h1(x) = g(x) for all x ∈ X, and we write f ' g.

Definition 1.2.3: A continuous map f : X → Y is a homotopy equivalence if there
exists a continuous map g : Y → X such that f ◦g ' idY and g◦f ' idX . In this case, the
spaces X and Y are said to be homotopy equivalent (or to have the same homotopy
type).

Remark 1.2.1: The map g mentioned in Definition 1.2.3 is called a homotopy inverse
of f.

Example 1.2.1: Let p ∈ Rn. The space Rn \ {p} is homotopy equivalent to Sn−1.

Definition 1.2.4: A subspace A of X is a deformation retract of X if there exists a
homotopy ht : X → X, t ∈ [0, 1] satisfying:

(i) h0(x) = x for all x ∈ X,

(ii) h1(x) ∈ A for all x ∈ X,

(iii) ht(a) = a, for all a ∈ A and t ∈ [0, 1].

1.2.2 CW-Complexes

Definition 1.2.5: (Attaching a λ-cell)
Let Y be any topological space, and let eλ = {x ∈ Rλ : ||x|| ≤ 1} be the λ-cell with
boundary ∂(eλ) = {x ∈ Rλ : ||x|| = 1} = Sλ−1. If g : Sλ−1 → Y is a continuous map,
then Y with a λ-cell attached by g, denoted by Y ∪g eλ, is obtained by taking the disjoint
union of Y and eλ, and identifying each x ∈ Sλ−1 with g(x) ∈ Y.

Remark 1.2.2: e0 is a point and ∂(e0) = S−1 is the empty set.

Definition 1.2.6: Let X be a Hausdorff space. X is said to be a CW-complex (or cell
complex) if there exists a sequence of subspaces X(0) ⊂ X(1) ⊂ X(3) ⊂ · · · ⊂ X such that

(i) X(0) is a discrete (disjoint union of 0-cells).

12
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(ii) X(i+1) is obtained from X(i) by attaching (i+ 1)-cells.

(iii) The set X = ∪nX(n) is endowed with the weak topology (if A ⊂ X is open (or
closed) if and only if A ∩X(n) is open (or closed) in X(n) for each n).

Definition 1.2.7: Let X be a CW complex. The n-skeleton of X, denoted by X(n), is
the union of all the cells of dimensions less than or equal to n in X.

Definition 1.2.8: Let X, Y be two CW complexes. A map f : X → Y is a cellular map
if f(X(n)) ⊆ Y (n) for all n.

13



Chapter 2

Morse Theory

In this chapter we will give the definition of Morse functions, prove their existence and
describe their properties.

2.1 Morse Function

Definition 2.1.1: Let f be a smooth function on a smooth manifold M. f is said to be a
Morse function if every critical point of f is non-degenerate.

Example 2.1.1: The height functions on the sphere S2 and the torus T2 (Examples
1.1.3 and 1.1.4) are Morse functions.

Example 2.1.2: Let [z0, z1, · · · , zn] be an equivalence class of (n+1)-tuples (z0, z1, · · · , zn)
of complex numbers, with

n∑
j=0
|zj|2 = 1, and let M = CP n = {[z0, z1, · · · , zn]} be the

complex projective n-space. Define f : M → R by

[z0, z1, · · · , zn] 7→
n∑
j=0

cj|zj|2,

where c0, c1, · · · , cn are distinct real constants. Such a function f is a Morse function.

Proof. In order to determine the critical points of f and their indices, we consider the fol-
lowing local coordinate system. For each j ∈ {0, 1, · · · , n}, let Uj be the set of equivalence
classes of (n+ 1)-tuples (z0, z1, · · · , zn) of complex numbers with zj 6= 0. That is,

14
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Uj = {[z0, z1, · · · , zj, · · · , zn] : zj 6= 0}

=
{[z0

zj
,
z1

zj
, · · · , 1, · · · , zn

zj

]}

=
{[
|zj|

z0

zj
, |zj|

z1

zj
, · · · , |zj|, · · · , |zj|

zn
zj

]}

=
{[
x0 + iy0, · · · ,

√
1−

∑
k 6=j

(x2
k + y2

k), · · · , xn + iyn
]}
,

where
|zj|

zk
zj

= xk + iyk

and
|zj| =

√
1−

∑
k 6=j

(x2
k + y2

k).

Let B1(0) be the open unit ball in R2n. We now prove that Uj is diffeomorphic to B1(0).
We define gj : Uj → B1(0) by

gj(u) = (x0, y0, x1, y1, · · · ,��xj ,��yj , · · · , xn, yn),

where u = [x0 + iy0, x1 + iy1, · · · ,
√

1− ∑
k 6=j

(x2
k + y2

k), · · · , xn + iyn]. The map gj is well

defined since for any

u = [x0 + iy0, x1 + iy1, · · · ,
√

1−
∑
k 6=j

(x2
k + y2

k), · · · , xn + iyn] ∈ Uj,

we have

|gj(u)|2 = |(x0, y0, x1, y1, · · · ,��xj ,��yj , · · · , xn, yn)|

=
n∑
k=0

(x2
k + y2

k)− (x2
j + y2

j )

<
n∑
k=0

(x2
k + y2

k) (since zj 6= 0, so x2
j + y2

j > 0)

< 1 (since
n∑
k=0

(x2
k + y2

k) = 1).

This means that Im(gj) ⊂ B1(0). In addition, it is clear that g is bijective and smooth.
Hence (Uj, gj) is a coordinate chart of M around [0, · · · , 1j, · · · , 0]. Note that for any

v = (x0, y0, x1, y1, · · · ,��xj ,��yj , · · · , xn, yn) ∈ B1(0),

we have

g−1
j (v) = [x0 + iy0, x1 + iy1, · · · ,

√
1−

∑
k 6=j

(x2
k + y2

k), · · · , xn + iyn] ∈ Uj.

15
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We now define F := f ◦ g−1
j : B1(0) ⊂ R2n → R by

F (v) =
∑
k 6=j

ck(x2
k + y2

k) + cj

(√
1−

∑
k 6=j

(x2
k + y2

k)
2
)

= cj +
∑
k 6=j

(ck − cj)(x2
k + y2

k)

= cj +
∑
k 6=j

bk(x2
k + y2

k),

with bk = ck − cj 6= 0, ∀k 6= j, where v = (x0, y0, · · · ,��xj ,��yj , · · · , xn, yn) ∈ B1(0).

To find the critical point of f, we have to solve the equation dFv = 0. For any
v = (x0, y0, · · · ,��xj ,��yj , · · · , xn, yn) ∈ B1(0), we have

dFv = 2
(
b0x0, b0y0, · · · ,���bjxj ,���bjyj , · · · , bnxn, bnyn

)
.

This shows that dFv = 0 if and only if v = 0. Hence

pj = g−1
j (0) = [0, · · · , 1j, · · · , 0]

is the only critical point in Uj. We next find the Hessian of f at pj. Let t2s = xs and
t2s+1 = ys for s = 0, 1, · · · , n and so by definition 1.1.7,

HF (gj(pj)) = HF (0) =
(
∂2F

∂tk∂tl
(0)
)
k,l∈{0,1,··· ,2n+1}\{2j,2j+1}

=



2b0 0 · · · 0 0
0 2b0 · · · 0 0
... ... . . . ... ...
0 0 · · · 2bn 0
0 0 · · · 0 2bn

 .

This shows that pj, for each j = 0, 1, · · · , n, is a non-degenerate critical point of f since
bk 6= 0, ∀k 6= j, so that HF (gj(pj)) is non-singular. The critical point pj has index equal
to twice the number of k with bk < 0 (or ck < cj). Therefore, f is a Morse function.

2.2 Morse lemma

Lemma 2.2.1: (Morse lemma) Let p be non degenerate critical point of f with index
λ. Then there is a local coordinate system Y : V ⊂ Rn → Up in a neighborhood UP of p
with 0 ∈ V and Y (0) = p such that the identity

(f ◦ Y )(y1, y2, · · · , yn) = f(p)− y2
1 − · · · − y2

λ + y2
λ+1 + · · ·+ y2

n (2.2.1)

holds throughout V .

Before proving the Morse lemma we prove the following.
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Lemma 2.2.2: Let f ∈ C∞ be function in a convex neighborhood V of 0 in Rn, with
f(0) = 0. Then

f(x1, x2, · · · , xn) =
n∑
i=1

xigi(x1, x2, · · · , xn)

for some suitable C∞ functions gi defined in V, with gi(0) = ∂f
∂xi

(0).

Proof. Let (x1, x2, · · · , xn) ∈ V . Since V is convex, then t(x1, x2, · · · , xn) + (1− t)0 ∈ V,
for all 0 ≤ t ≤ 1. In other words, (tx1, tx2, · · · , txn) ∈ V, for all 0 ≤ t ≤ 1. Define

F : [0, 1] → R
F (t) = f(tx1, tx2, · · · , txn).

By the Fundamental Theorem of Calculus

F (1)− F (0) =
1∫

0

dF (t)
dt

dt.

Since F (1) = f(x1, x2, · · · , xn) and F (0) = f(0) = 0,

f(x1, x2, · · · , xn) =
1∫

0

df

dt
(tx1, tx2, · · · , txn)dt

=
1∫

0

(
∂f(tx1, tx2, · · · , txn)

∂x1
x1 + · · ·+ ∂f(tx1, tx2, · · · , txn)

∂xn
xn

)
dt

=
1∫

0

n∑
i=1

xi
∂f

∂xi
(tx1, tx2, · · · , txn)dt

=
n∑
i=1

xi

1∫
0

∂f

∂xi
(tx1, tx2, · · · , txn)dt.

We define

gi : V → R

gi(x1, x2, · · · , xn) =
1∫

0

∂f

∂xi
(tx1, tx2, · · · , txn)dt.

Since f ∈ C∞, so is gi for each i. Furthermore, gi(0) = ∂f
∂xi

(0)
1∫
0
dt = ∂f

∂xi
(0). Therefore,

f(x1, x2, · · · , xn) =
n∑
i=1

xigi(x1, x2, · · · , xn).

Proof. (of the Morse lemma) Without loss of generality, assume that f(p) = 0, since
we can replace f by f − f(p) if necessary. Choose a local coordinate system X : V0 ⊂
Rn → Up in a neighborhood Up of p such that X(0) = p. Since f(p) = (f ◦X)(0) = 0 and
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(f ◦ X) ∈ C∞, by Lemma 2.2.2, there exists n suitable functions gi ∈ C∞ defined in a
convex neighborhood V1 ⊂ Rn of 0 such that

(f ◦X)(x1, x2, · · · , xn) =
n∑
i=1

xigi(x1, x2, · · · , xn)

and satisfy
gi(0) = ∂(f ◦X)

∂xi
(0), for any i = 1, 2, · · · , n.

Now we have gi(0) = ∂(f◦X)
∂xi

(0) = ∂f
∂xi

(p) = 0. Using Lemma 2.2.2 again, for every
i = 1, 2, · · · , n, we have

gi(x1, x2, · · · , xn) =
n∑
j=1

xjhij(x1, x2, · · · , xn),

where for each 1 ≤ j ≤ n, hij is a C∞ function defined in a convex neighborhood V2 ⊆ V1
of 0, with hij(0) = ∂gi

∂xj
(0), for any j = 1, 2, · · · , n. Hence

(f ◦X)(x1, x2, · · · , xn) =
n∑
i=1

xi

 n∑
j=1

xjhij(x1, x2, · · · , xn)


=
n∑
i=1

n∑
j=1

xixjhij(x1, x2, · · · , xn)

=
n∑
i=1

x2
ihii(x1, x2, · · · , xn) +

∑
i<j

xixj (hij + hji) (x1, x2, · · · , xn)

=
n∑
i=1

x2
iHii(x1, x2, · · · , xn) + 2

∑
i<j

xixjHij(x1, x2, · · · , xn),

where Hij = 1
2 (hij + hji) = Hji. Now let us compute Hx

f (p) :=
(

∂f
∂xi∂xj

(p)
)

1≤i,j≤n
, the

Hessian matrix of f at p. We know that ∂f
∂xi∂xj

(p) = ∂(f◦X)
∂xi∂xj

(0). So, let us compute the
second order partial derivative of f ◦ X at the origin. From the computation above, we
have defined f ◦X in a convex neighborhood V2 of 0 by

(f ◦X)(x1, x2, · · · , xn) =
n∑
i=1

x2
iHii(x1, x2, · · · , xn) + 2

∑
i<j

xixjHij(x1, x2, · · · , xn). (2.2.2)

Therefore,
∂(f ◦X)
∂xi∂xi

(0) = 2Hii(0)

and
∂(f ◦X)
∂xi∂xj

(0) = ∂(f ◦X)
∂xj∂xi

(0) = 2Hij(0), for all i < j.

Therefore,
∂(f ◦X)
∂xi∂xj

(0) = 2Hij(0), for all 1 ≤ i, j ≤ n.
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By hypothesis, p is a non degenerate critical point of f, so

0 6= det
(
Hx
f (p)

)
= det

(
∂f

∂xi∂xj
(p)
)

= det
(
∂f ◦X
∂xi∂xj

(0)
)

= det (2Hij(0))1≤i,j≤n .

We can assume that Hx
rr(p) = 2Hrr(0) 6= 0. If Hrr(0) = 0 and det (Hij(0))1≤i,j≤n 6= 0,

then there exists i > r such that Hir 6= 0. Hence we choose a new suitable local coordinate
system

(x̂1, · · · , x̂r−1, x̂r, · · · , x̂i−1, x̂i, · · · , x̂n) = (x1, · · · , xr−1,
xr + xi

2 , · · · , xi−1,
xr − xi

2 , · · · , xn).

Therefore, Ĥrr = Hrr +Hir 6= 0.We wish to prove this lemma by induction. Now suppose
that H11(0) 6= 0 and by the continuity of Hij (Hij ∈ C∞, for every i, j), there is a
neighborhood V3 ⊆ V2 of 0 such that H11 6= 0 on it. We define a new first coordinate y1
near V3 by

y1 =
√
|H11|

x1 +
n∑
j=2

xj
H1j

H11


and for each 2 ≤ j ≤ n, we keep the xj-coordinate as it is. Thus

x1 = 1√
|H11|

y1 −
n∑
j=2

xj
H1j

H11

and

det


∂x1
∂y1

(0) ∂x1
∂x2

(0) · · · ∂x1
∂xn

(0)
∂x2
∂y1

(0) ∂x2
∂x2

(0) · · · ∂x2
∂xn

(0)
... ... . . . ...

∂xn
∂y1

(0) ∂xn
∂x2

(0) · · · ∂xn
∂xn

(0)

 = det


1√
|H11(0)|

−H12(0)
H11(0) · · · −

H1n(0)
H11(0)

0 1 · · · 0
... ... . . . ...
0 0 · · · 1


= 1√
|H11(0)|

6= 0.

Since the determinant of the Jacobian matrix of the transformation from (y1, x2, · · · , xn)
to (x1, x2, · · · , xn) evaluated at 0 is not zero, (y1, x2, · · · , xn) is a local coordinate system
on the neighborhood V3 of 0. In V3, we square y1 and

y2
1 = |H11|x2

1 + 2|H11|
n∑
j=2

x1xj
H1j

H11
+ |H11|

 n∑
j=2

xj
H1j

H11

2

=


H11x

2
1 + 2

n∑
j=2

x1xjH1j +

(
n∑
j=2

xjH1j

)2

H11
if H11 > 0

−H11x
2
1 − 2

n∑
j=2

x1xjH1j −

(
n∑
j=2

xjH1j

)2

H11
if H11 < 0.
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Hence

H11x
2
1 + 2

n∑
j=2

x1xjH1j =


y2

1 − 2 ∑
2≤i<j

xixj
H1iH1j
H11

−
n∑
j=2

x2
j

H2
1j

H11
if H11 > 0

−y2
1 − 2 ∑

2≤i<j
xixj

H1iH1j
H11

−
n∑
j=2

x2
j

H2
1j

H11
if H11 < 0

(2.2.3)

Therefore, by equations (2.5.10) and (2.2.3),

f ◦X =
n∑
i=1

x2
iHii + 2

∑
i<j

xixjHij

= x2
1H11 + 2

n∑
j=2

x1xjH1j +
n∑
i=2

x2
iHii + 2

∑
2≤i<j

xixjHij

=


y2

1 +
n∑
j=2

x2
j

(
Hjj −

H2
1j

H11

)
+ 2 ∑

2≤i<j
xixj

(
Hij − H1iH1j

H11

)
if H11 > 0

−y2
1 +

n∑
j=2

x2
j

(
Hjj −

H2
1j

H11

)
+ 2 ∑

2≤i<j
xixj

(
Hij − H1iH1j

H11

)
if H11 < 0

=


y2

1 +
n∑
j=2

x2
jH

(1)
jj + 2 ∑

2≤i<j
xixjH

(1)
ij if H11 > 0

−y2
1 +

n∑
j=2

x2
jH

(1)
jj + 2 ∑

2≤i<j
xixjH

(1)
ij if H11 < 0,

= ±y2
1 +

n∑
j=2

x2
jH

(1)
jj + 2

∑
2≤i<j

xixjH
(1)
ij

where Hij = 1
2 (hij + hji) = Hji. Suppose that there is r > 1 such that the following

equation holds:

f ◦ Y = ±y2
1 ± y2

2 ± · · · ± y2
r−1 +

n∑
j=r

x2
jH

(r)
jj + 2

∑
r≤i<j

xixjH
(r)
ij . (2.2.4)

We will prove that the equation (2.2.4) holds for r+1. We have assumed that H(r)
rr (0) 6= 0

and again by the continuity of H(r)
ij , there is a neighborhood Vr+2 ⊆ Vr+1 ⊆ · · · ⊆ V3 of

0 such that H(r)
rr 6= 0 on it. As in the base case, we define a new rth coordinate yr near

Vr+2 by

yr =
√
|H(r)

rr |

xr +
n∑

j=r+1
xj
H

(r)
rj

H
(r)
rr


and for each j 6= r, we keep the xj-coordinate as it is. We obtain that (y1, y2, · · · , yr−1, yr, xr+1, · · · , xn)
is a local coordinate system of Vr+2. By a similar calculation as that of equation (2.2.3),
we have

x2
rH

(r)
rr + 2

∑
j=r+1

xrxjH
(r)
rj = ±y2

r − 2
∑

r+1≤i<j
xixj

HriHrj

Hrr

−
n∑

j=r+1
x2
j

H2
rj

Hrr

.
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This, together with equation (2.2.4), gives

f ◦ Y =
∑
i≤r−1

±y2
i +

n∑
j=r

x2
jH

(r)
jj + 2

∑
r≤i<j

xixjH
(r)
ij

=
∑
i≤r−1

±y2
i + x2

rH
(r)
rr + 2

∑
j=r+1

xrxjH
(r)
rj +

n∑
j=r+1

x2
jH

(r)
jj + 2

∑
r+1≤i<j

xixjH
(r)
ij

=
∑
i≤r
±y2

i − 2
∑

r+1≤i<j
xixj

HriHrj

Hrr

−
n∑

j=r+1
x2
j

H2
rj

Hrr

+
n∑

j=r+1
x2
jH

(r)
jj + 2

∑
r+1≤i<j

xixjH
(r)
ij

=
∑
i≤r
±y2

i +
n∑

j=r+1
x2
j

(
H

(r)
jj −

H2
rj

Hrr

)
+ 2

∑
r+1≤i<j

xixj

(
H

(r)
ij −

HriHrj

Hrr

)

=
∑
i≤r
±y2

i +
n∑

j=r+1
x2
jH

(r+1)
jj + 2

∑
r+1≤i<j

xixjH
(r+1)
ij ,

where H(r+1)
jj = H

(r)
jj −

H2
rj

Hrr
and H(r+1)

ij = H
(r)
ij −

HriHrj
Hrr

.

Corollary 2.2.1: Let f : M → R be a smooth function on a smooth manifold M . A
non-degenerate critical point of a smooth function f is isolated. In particular, if f is a
Morse function and M is compact, then f has a finite number of critical points.

Proof. By Lemma 2.2.1, we observe that if f has a non-degenerate critical point at p,
then there is a coordinate chart (Up, Y −1) of M about p that satisfies equation (2.2.1).
This chart contains no other critical point of f other than p since, by equation (2.2.1),

d(f ◦ Y )(y1,··· ,yn) = (±2y1, · · · ,±2yn)

and d(f ◦Y )(y1,··· ,yn) = 0 if and only if (y1, · · · , yn) = 0. Hence Y (0) = p is the only critical
point of f in Up. Therefore, p is isolated.

Now suppose that M is compact. If the set of critical points were infinite, it would
have an accumulation point. By continuity of df , such a point would also be a critical
point which is not isolated, which is a contradiction.

2.3 Existence of Morse Functions

The goal of this section is to show the existence of Morse functions on any smooth
manifold. Since the Whitney embedding theorem (see [14], Chapter IV) tells us that any
smooth manifold is embedded in a suitable Euclidean vector space, let M be a smooth
n-dimensional manifold embedded in E = Rn+k for some k ∈ N.

Let Λ be a smooth finite dimensional manifold. We will consider the families of smooth
functions fλ : M → R, for all λ ∈ Λ, and investigate the conditions on λ such that fλ has
no degenerate critical points. To do this, we will produce a smooth map π : Z → Λ and
then prove that fλ has no degenerate critical points for every λ ∈ Λ, which is a regular
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value of π. Moreover, Theorem 1.1.1 implies that fλ is a Morse function for almost all
λ ∈ Λ.

Let us recall that E∗ = {α | α : E → R is a linear map} is the dual space of real vector
space E, and the following useful definitions:

Definition 2.3.1: The dual of the tangent space TxM of a smooth manifold M is called
the cotangent space at x denoted by

T ∗xM = (TxM)∗.

An element of T ∗xM is called cotangent vector or covector.

Definition 2.3.2: Let f : M → N be a smooth map between smooth finite dimensional
manifolds. The differential map of f at x is the linear map dfx : TxM → Tf(x)N.

(1) f is called immersion if dfx is injective for every x ∈M.

(2) f is called submersion if dfx is surjective for every x ∈M

Definition 2.3.3: Let f : M → N be a smooth map and x ∈ M . We have the cotangent
map

d∗fx := (dfx)∗ : T ∗f(x)N → T ∗xM

defined as the dual to the tangent map (the differential map of f at x)

dfx : TxM → Tf(x)N.

In particular, if N = R, then dfx is a covector (i.e. dfx ∈ T ∗xM).

Let F : Λ × E → R be a smooth function. We associate to F a smooth family of
functions Fλ : E → R given as Fλ(x) = F (λ, x), for all (λ, x) ∈ Λ × E. Let f and fλ,
respectively, be the restriction of F to Λ×M and of Fλ to M. That is

F|Λ×M := f : Λ×M ⊂ Λ× E → R,

and
Fλ|M := fλ : {λ} ×M ∼= M → R.

Let x ∈M. Since i : M ↪→ E is an embedding, dix : TxM ↪→ TxE = E is injective and
there is a natural surjective linear map (dix)∗ := Px : E∗ → T ∗xM defined by

α 7→ α(dix).

In particular, we have the following identity

d(fλ)x = Pxd(Fλ)x

since TxM
dix
↪→ TxE

d(Fλ)x−→ R determined d(fλ)x : TxM −→ R by

d(fλ)x = d(Fλ)x ◦ dix = (dix)∗(d(Fλ)x) = Pxd(Fλ)x.
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Remark 2.3.1: The surjective linear map Px is a submersion since the differential of the
linear map Px is Px and it is surjective.

For every x ∈ M, we define a smooth partial differential map of f, ∂xf : Λ → T ∗xM
by

∂xf(λ) = d(fλ)x.

Definition 2.3.4: Let F : Λ× E → R be a family of smooth functions. We say that

(1) F is sufficiently large relative to the submanifold M ↪→ E if dim Λ ≥ dimM
and for every x ∈M, the point 0 ∈ T ∗xM is a regular value for ∂xf.

(2) F is large if for every x ∈ E the partial differential map

∂xF : Λ→ E∗

defined by ∂xF (λ) = d(Fλ)x is a submersion.

Example 2.3.1: Let E be Euclidean space with the standard inner product 〈·, ·〉.

(a) Suppose Λ = E∗ and let H : E∗ × E → R be the function defined by

H(λ, x) = λ(x), for all (λ, x) ∈ E∗ × E.

(b) Suppose Λ = E and let R : E × E → R be the function defined by

R(λ, x) = 1
2 ||x− λ||

2, for all (λ, x) ∈ E × E.

(c) Let Λ be the space of positive definite symmetric endomorphisms A : E → E, and
let F : Λ× E → R be the function defined by

F (A, x) = 1
2 〈Ax, x〉 , for all (A, x) ∈ Λ× E.

The first two functions above are large and the last function is sufficiently large relative
to any submanifold of E not passing through the origin.

Proof. (a) Let x ∈ E. We will prove that the differential of

∂xH : E∗ → E∗, λ 7−→ d(Hλ)x

is surjective for all λ ∈ E∗. Since Hλ : E → R is given by Hλ(y) = λ(y).

For every v ∈ TxE = E, we choose α : (−ε, ε)→ E be the smooth curve on E which
is defined by

α(t) = x+ tv. (2.3.1)
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Then

d(Hλ)x(v) = d

dt

(
Hλ(α(t))

)∣∣∣t=0
= d

dt

(
λ(x+ tv)

)∣∣∣t=0
= d

dt

(
λ(x) + tλ(v)

)∣∣∣t=0
= λ(v).

Then ∂xH is the identity and hence the differential of ∂xH is surjective. Therefore,
H is large.

(b) Let x ∈ E. We wish to show that the differential of

∂xR : E → E∗, λ 7−→ d(Rλ)x

is surjective. We will first find d(Rλ)x, where Rλ : E → R is given by

Rλ(y) = 1
2 ||y − λ||

2.

For every v ∈ E, using the smooth curve on E as in (2.3.1), we have

d(Rλ)x(v) = d

dt

(
Rλ(α(t))

)∣∣∣t=0

= 1
2
d

dt

(
||(x− λ) + tv||2

)∣∣∣t=0

= 1
2
d

dt

(
〈(x− λ) + tv, (x− λ) + tv〉

)∣∣∣t=0

= 1
2
d

dt

(
〈(x− λ), (x− λ)〉+ 2 〈(x− λ), tv〉+ 〈tv, tv〉

)∣∣∣t=0

= 1
2
d

dt

(
||(x− λ)||2 + 2t 〈(x− λ), v〉+ t2||v||2

)∣∣∣t=0

= 〈(x− λ), v〉 .

Thus ∂xR is a linear function which is defined by

∂xR(λ) = d(Rλ)x = 〈(x− λ), ·〉 = (x− λ)∗,

where (x− λ)∗ is the metric dual.

Now we will prove that the differential of ∂xR is surjective. It suffices to prove that
∂xR is surjective since ∂xR is a linear function. To see this, let e1, · · · , en+k be the
orthonormal basis of E. Define {e∗i = 〈ei, ·〉} as a basis of E∗. Let α ∈ E∗, α : E → R,
and let

λ = x−
n+k∑
i=1

α(ei)ei ∈ E.
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Then 〈x− λ, ·〉 = α. Indeed, for every v ∈ E, v =
n+k∑
i=1

viei, we have

〈x− λ, v〉 =
〈
n+k∑
i=1

α(ei)ei,
n+k∑
i=1

viei

〉
=

n+k∑
i=1

α(ei)vi = α(
n+k∑
i=1

viei) = α(v)

since {e1, · · · , en+k} is the orthonormal basis of E and α is linear function.

(c) LetM be a submanifold of E which does not pass through the origin. We will prove
that F : Λ×E → R is sufficiently large relative toM. For every x ∈M , we consider
the partial differential map

∂xf := g : Λ→ T ∗xM,

which is given by A 7→ d(fA)x. Since fA : M → R is defined by y 7→ 1
2 〈Ay, y〉 for

every v ∈ TxM, take a smooth curve α : (−ε, ε) → M : such that α(0) = x and
dα
dt

(0) = v, so that

d(fA)x(v) = d

dt

(
fA(α(t))

)∣∣∣t=0

= 1
2

(〈
d

dt
A(α(t)), α(t)

〉
+
〈
A(α(t)), d

dt
α(t)

〉)∣∣∣t=0

= 1
2

(〈
A
dα

dt
(t), α(t)

〉
+
〈
A(α(t)), dα

dt
(t)
〉)∣∣∣t=0

= 1
2

(
〈Av, x〉+ 〈Ax, v〉

)
= 〈Ax, v〉 .

Define g(A) = 〈Ax, ·〉 = (Ax)∗. To prove that 0 ∈ T ∗xM is a regular value of ∂xf, it
suffices to prove that

dg
B

: TBΛ→ T(Bx)∗(T ∗xM) = T ∗xM

is surjective for every B ∈ g−1(0). Note that g−1(0) = {B ∈ Λ : Bx⊥TxM}. Let
B ∈ g−1(0), C ∈ TBΛ, and β : (−ε, ε) → Λ be a smooth curve with β(0) = B and
β′(0) = C. Then, for every v ∈ TxM we have

dg
B

(C)(v) = d

dt

(
g(β(t))(v)

)∣∣∣t=0

= d

dt

(
〈β(t)x, v〉

)∣∣∣t=0

=
(
〈β′(t)x, v〉+

〈
β(t)x, dv

dt

〉)∣∣∣t=0

= 〈Cx, v〉 .
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Since Λ is an open set of the vector space of symmetric matrices, TBΛ is isomorphic to
the space of symmetric matrices. Let ρ ∈ T ∗xM, ρ : TxM → R (linear). We will then find
an element C of TBΛ such that 〈Cx, v〉 = ρ(v), for all v ∈ TxM. To see this, we claim that
for every ρ(v), there exists w ∈ TxM such that ρ(v) = 〈w, z〉 . Indeed, let α1, · · · , αn+k be
orthonormal basis of E such that

v =
n+k∑
i=1

viαi =
n+k∑
i=1

α∗i (v)αi

where {α∗i }1≤i≤n+k is the dual basis of E. Thus

ρ(v) = ρ
(n+k∑
i=1

α∗i (v)αi
)
=

n+k∑
i=1

α∗i (v)ρ(αi) =
(
n+k∑
i=1

ρ(αi)α∗i
)

(v),

and we choose w = ρ∗ =
n+k∑
i=1

ρ(αi)αi. Therefore,

〈w, v〉 =
〈
n+k∑
i=1

ρ(αi)αi,
n+k∑
i=1

viαi

〉
=

n+k∑
i=1

viρ(αi) = ρ(
n+k∑
i=1

viαi) = ρ(v).

Now, for any x ∈ M, x 6= 0, we can choose an orthonormal basis {βi}1≤i≤n+k of E such
that x =

n+k∑
i=1

xiβi with xi 6= 0 for all i and we have

w = ρ∗ =
n+k∑
i=1

ρ(βi)βi

such that ρ(v) = 〈w, v〉 . In this basis, we can find a symmetric matrix

C =



ρ(β1)
x1

0
. . .

0 ρ(βn+k)
xn+k



such that Cx = w. That is, there exists C =



ρ(β1)
x1

0
. . .

0 ρ(βn+k)
xn+k

 ∈ TBΛ such that

〈Cx, v〉 = 〈w, v〉 = ρ(v), ∀v ∈ TxM. This proves that dgB is surjective.

Lemma 2.3.1: If F : Λ × E → R is large, then it is sufficiently large relative to any
smooth submanifold M ⊂ E.

Proof. Suppose that F is large. Then, for every x ∈ E, we have

∂xF : Λ→ E∗, λ 7→ d(Fλ)x
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is a submersion. We wish to prove that 0 ∈ T ∗xM is a regular value for

∂xf : Λ→ T ∗xM, λ 7→ d(fλ)x.

Using the identity d(fλ)x = Pxd(Fλ)x, we have

∂xf = Px∂
xF.

Hence ∂xf is a submersion since it is a composition of two submersions Px and ∂xF. This
means that the differential of ∂xf is surjective and so it has no critical values. This proves
that 0 ∈ T ∗xM is a regular value for ∂xf.

Theorem 2.3.1: If F : Λ× E → R is sufficiently large relative to a smooth submanifold
M ⊂ E, then there exists a subset Λ∞ ⊂ Λ of measure zero such that fλ = Fλ|M : M → R
is a Morse function for all λ ∈ Λ \ Λ∞.

Proof. It will be convenient to divide it proof into various steps, claims and lemmas.

Step 1. First assume that M is special, i.e. that there exist global coordinates

(x1, · · · , xn, · · · , xn+k)

on E such that M can be identified with an open subset W ⊂ F = Rn of the coordinate
subspace

{xn+1 = · · · = xn+k = 0}.
For every λ ∈ Λ, we now consider the function fλ : M → R as a function

fλ : M = W → R

and the differential of fλ at w = (x1, · · · , xn) ∈ W,

d(fλ)w : TwW = F = Rn → Tfλ(w)R = R

is given by
v 7→ 〈grad(fλ)(w), v〉 ,

and we have a function ϕλ : W → Rn,

ϕλ(w) = grad(fλ)(w) =
(∂fλ
∂x1
|w, · · · ,

∂fλ
∂xn
|w
)
.

Thus a point w ∈ W is a non-degenerate critical point of fλ if and only if ϕλ(w) = 0 and
the map dϕλ : TwW → Rn is bijective (i.e., the Hessian matrix of fλ is non-singular).
Hence, we deduce that fλ is a Morse function if and only if for every w ∈ W such
that ϕλ(w) = 0, w is not a critical point of ϕλ (since dϕλ is surjective at the point w).
Equivalently, 0 ∈ Rn is a regular value of ϕλ.

We now consider the smooth function Φ : Λ×W → Rn defined by

Φ(λ,w) = ϕλ(w)
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Claim 2.3.1: 0 ∈ Rn is a regular value of Φ.

It suffices to prove that for every (λ0, w0) ∈ Φ−1(0) ⊂ Λ × W , the differential map
dΦ(λ0,w0) : T(λ0,w0)(Λ × W ) → Rn is surjective (i.e. (λ0, w0) ∈ Φ−1(0) is not a critical
point of Φ). Since F is sufficiently large relative to M, by our definition of F, we have the
differential map

∂w0f : Λ→ T ∗w0M, λ 7→ d(fλ)w0 = 〈gradfλ(w0), ·〉 = 〈ϕλ(w0), ·〉 = (ϕλ(w0))∗

is surjective for every (λ,w0) ∈ Λ× {w0} ⊂ Λ×W such that

∂w0f(λ) = 0

i.e. ϕλ(w0) = Φ(λ,w0) = 0. We then have

d(∂w0f)λ0 : Tλ0Λ→ T∂w0f(λ0)(T ∗w0M) = T ∗w0M = (Rn)∗

is surjective for every (λ0, w0) ∈ Λ× {w0} ⊂ Φ−1(0). Next, we will prove that the partial
differential map

∂

∂λ
Φ(λ0,w0) : Tλ0Λ→ Rn

is surjective so that we can conclude that the differential

dΦ(λ0,w0) : T(λ0,w0)(Λ×W )→ Rn

is surjective. To see ∂

∂λ
Φ(λ0,w0) is surjective, we first note that for every v ∈ Tλ0Λ we have

d(∂w0f)λ0(v) =
〈
∂

∂λ
Φ(λ0,w0)(v), ·

〉
=
( ∂
∂λ

Φ(λ0,w0)(v)
)∗
, (2.3.2)

since, if α is a smooth curve in Λ with α(0) = λ0 and α′(0) = v

d(∂w0f)λ0(v) = d

dt

∣∣∣
t=0

(∂w0f(α(t))) = d

dt

∣∣∣
t=0

〈
ϕα(t)(w0), ·

〉
= d

dt

∣∣∣
t=0

( n∑
i=1

〈
ϕα(t)(w0), ei

〉
e∗i
)
, where {ei} is an orthonormal basis of Rn

=
n∑
i=1

( d
dt

∣∣∣
t=0

〈
ϕα(t)(w0), ei

〉
e∗i
)
=

n∑
i=1

〈
ϕ′α(0)(w0)(α′(0)), ei

〉
e∗i

=
n∑
i=1

〈
∂

∂λ
ϕλ(w0)

∣∣∣
λ0

(v), ei
〉
e∗i =

〈
∂

∂λ
ϕλ(w0)

∣∣∣
λ0

(v), ·
〉

=
〈
∂

∂λ
Φ(λ0,w0)(v), ·

〉
=
( ∂
∂λ

Φ(λ0,w0)(v)
)∗

We now let B ∈ Rn. Then 〈B, ·〉 ∈ (Rn)∗ and by surjectivity of d(∂w0f)λ0 , there exists
A ∈ Tλ0Λ such that

d(∂w0f)λ0(A) = 〈B, ·〉 .
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By (2.3.2), 〈
∂

∂λ
Φ(λ0,w0)(A), ·

〉
= 〈B, ·〉 .

This shows that ∂

∂λ
Φ(λ0,w0)(A) = B. Therefore, ∂

∂λ
Φ(λ0,w0) is surjective.

Now, we wish to produce a smooth map π : Z → Λ as we planned at the beginning of
this section. According to the Regular Value Theorem (see Lemma 1 on page 11 of
[12]), we obtain

Φ−1(0) = {(λ,w) ∈ Λ×W | ϕλ(w) = 0}

as a closed smooth submanifold of Λ×W of dimension

dim(Φ−1(0)) = dim(Λ×W )− dim(Rn). (2.3.3)

We set Z = Φ−1(0). Since Z is a smooth submanifold of Λ×W, the smooth map π : Z → Λ
is induced by the natural projection p : Λ×W → Λ.We have the condition on λ as follows:

Lemma 2.3.2: If λ is a regular value of π, then 0 is a regular value of ϕλ, which means
that fλ is a Morse function.

To prove this we need the following lemma from linear algebra:

Lemma 2.3.3: Let T1, T2 and V be finite dimensional real vector spaces. If

Di : Ti → V, i = 1, 2

are linear maps such that D1 + D2 : T1 ⊕ T2 → V is surjective and the restriction of the
natural projection P : T1 ⊕ T2 → T1 to Ker(D1 +D2) is surjective, then D2 is surjective.

Proof. Let v ∈ V. Since D1 +D2 is surjective, there exists (t1, t2) ∈ T1 ⊕ T2 such that

(D1 +D2)(t1, t2) = D1(t1) +D2(t2) = v. (2.3.4)

By the surjectivity of
P|Ker(D1+D2) : Ker(D1 +D2)→ T1,

for every t1 ∈ T1, there exists (t′1, t′2) ∈ Ker(D1 + D2) ⊂ T1 ⊕ T2 such that P (t′1, t′2) = t1
and

D1(t′1) +D2(t′2) = 0. (2.3.5)

But P (t′1, t′2) = t′1 so that t′1 = t1. Next, by (2.3.4), (2.3.5) and the linearity of D2, we
have the following

v = D1(t1)+D2(t2) = D1(t1)+D2(t2)−
(
D1(t1)+D2(t′2)

)
= D2(t2)−D2(t′2) = D2(t2− t′2),

so v ∈ ImD2. Therefore D2 is surjective.
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Proof. (of Lemma 2.3.2) Suppose that λ is a regular value of π. If λ /∈ π(Z), then
(λ,w) /∈ Z and hence ϕλ(w) 6= 0. This shows that f has no critical points on M, and so
it is a Morse function. If λ ∈ π(Z), then the differential map dπ(λ,w) : T(λ,w)Z → TλΛ is
surjective for every (λ,w) ∈ π−1(λ) ⊆ Z. We wish to prove that 0 is a regular value of ϕλ,
i.e. for every w ∈ W such that ϕλ(w) = 0 the differential map

d(ϕλ)w = ∂

∂w
Φ(λ,w) : TwW → Rn

is surjective.

For every (λ,w) ∈ Λ×W, let

∂

∂λ
Φ(λ,w) : TλΛ→ Rn

and
∂

∂w
Φ(λ,w) : TwW → Rn.

Then we observe that

dΦ(λ,w) = ∂

∂λ
Φ(λ,w) + ∂

∂w
Φ(λ,w) : TλΛ⊕ TwW → Rn.

Since dΦ(λ,w) is surjective for every (λ,w) ∈ Z (as we saw the proof of Claim 2.3.1), then
so is

∂

∂λ
Φ(λ,w) + ∂

∂w
Φ(λ,w) : TλΛ⊕ TwW → Rn.

Thus ∂

∂w
Φ(λ,w) is surjective by Lemma 2.3.3, since ∂

∂λ
Φ(λ,w) and ∂

∂w
Φ(λ,w) are linear

maps, and dπ(λ,w) : T(λ,w)Z → TλΛ is surjective with

T(λ,w)Z = Ker
( ∂
∂λ

Φ(λ,w) + ∂

∂w
Φ(λ,w)

)
for every (λ,w) ∈ Z. To prove the last assertion, let z = (λ,w) ∈ Z = Φ−1(0), v ∈ TzZ,
and γ : (−ε, ε)→ Z be a smooth curve on Z with γ(0) = z and γ′(0) = v. Thus

Φ(γ(t)) = 0.

Then we have
0 = d

dt
Φ(γ(t))

∣∣∣
t=0

= dΦγ(0)(γ′(0)) = dΦz(v).

This shows that v ∈ ker (dΦz). Hence T(λ,w)Z ⊆ ker (dΦ(λ,w)). Since

dim (TzZ) = dim (Z) = dim (Φ−1(0))
= dim (Λ×W )− n
= dim (Tz(Λ×W ))− n
= dim (ker (dΦz)) + dim (Im(dΦz))− n
= dim (ker (dΦz))
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since dΦz is surjective, so dim (Im(dΦz)) = dim (Rn) = n. Therefore, we conclude that

T(λ,w)Z = ker (dΦ(λ,w)) = ker
( ∂
∂λ

Φ(λ,w) + ∂

∂w
Φ(λ,w)

)
.

Let ΛM ⊂ Λ be the set of critical values of π : Z → Λ. Theorem 1.1.1 implies that ΛM

has measure zero in Λ. Set Λ∞ = ΛM . Then, by Lemma 2.3.2, the function fλ : M → R
is a Morse function for all λ ∈ Λ \ Λ∞.

Step 2. M is a general manifold. We can cover M by a countable open cover (Mk)k≥1
such that Mk is special. Thus, for every k ≥ 1 there exists a subset ΛMk

⊂ Λ of measure
zero such that fλ : Mk → R is a Morse function for all λ ∈ Λ \ΛMk

by Step 1. Let us set
Λ∞ = ⋃

k≥1
ΛMk

. Then Λ∞ a set of measure zero in Λ since it is the union of the measure
zero sets in Λ. Therefore, the function fλ : M ⊆ ⋃

k≥1
Mk → R is a Morse function for all

λ ∈ Λ \ Λ∞.

From Example 2.3.1, Lemma 2.3.1 and Theorem 2.3.1, we have the following corol-
lary.

Corollary 2.3.1: Suppose that M is a submanifold of the Euclidean space E. Thus

(1) For almost all v ∈ E∗ and p ∈ E, the functions hv, rp : M → R defined by

hv(x) = v(x) and rp(x) = 1
2 ||x− p||

2

are Morse functions.

(2) If M does not contain the origin, then the function qA : M → R defined by

qA(x) = 1
2 〈Ax, x〉

is a Morse function for almost all positive symmetric endomorphism A of E.

Lemma 2.3.4: Let M be a compact smooth manifold, and let f : M → R be a Morse
function on M. Then f can be viewed as a height function hv with respect to some suitable
embedding of M in a Euclidean space.

Proof. Let Φ : M ↪→ E = RN be an embedding (inclusion). We define a new embedding
relative to f as follows:

Φf : M ↪→ R× RN

x 7→ (f(x),Φ(x)).

Let {~ei}1≤i≤N+1 be the canonical basis of (R×RN)∗ = R×RN . According to Corollary 2.3.1,
we have a Morse function as a height function h~e1 : R× RN → R which is given by

h~e1(z) = ~e1(z) = 〈~e1, z〉 .
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Therefore, f can be written as follows:

f(x) =
〈
~e1,

(
f(x),Φ(x)

)〉
= ~e1(Φf (x)) = h~e1 ◦ Φf (x).

2.4 Fundamental Theorems of Morse Theory

In this section, we let f : M → R be a real valued function on a smooth manifold M, and
let

Ma = f−1((−∞, a]) = {p ∈M : f(p) ≤ a}.

2.4.1 First Fundamental Theorem

We first consider the region that f has no critical points as follows:

Theorem 2.4.1: Let f : M → R be a smooth real valued function on a manifold M . Let
a and b be regular values of f with a < b such that the set

f−1([a, b]) = {p ∈M | a ≤ f(p) ≤ b}

is compact and contains no critical points of f . Then Ma is diffeomorphic to M b. Fur-
thermore, Ma is a deformation retract of M b, so that the inclusion map Ma ↪→ M b is a
homotopy equivalence.

Proof. Since f−1([a, b]) is compact and contains no critical points, there exists ε > 0 small
enough such that the set f−1((a−ε, b+ε)) contains no critical points of f . Let ρ : M → R

be a smooth function defined by

ρ(x) =


1

||gradf(x)||2 , if x ∈ f−1((a− ε, b+ ε))
0 otherwise

.
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Now we can define a smooth vector field X on M by

Xx = ρ(x)gradf(x) for all x ∈M.

That is,

Xx =


1

||gradf(x)||2 gradf(x), if x ∈ f−1((a− ε, b+ ε))
0 otherwise,

(2.4.1)

which satisfies the conditions of Lemma 1.1.1. Thus X generates a 1- parameter group of
diffeomorphism φ : R ×M → M . Then for each fixed p ∈ M the map c := φp : R → M
is a smooth curve in M defined by c(t) = φt(p) and c(0) = φ0(p) = p, because φ0 = idM .
Therefore, by Remark 1.1.2,

d(f ◦ φt(p))
dt

= d(f ◦ c)
dt

=
〈
dc(t)
dt

, gradf(c(t))
〉

=
〈
dφt(p)
dt

, gradf(φt(p))
〉

=
〈
Xφt(p), gradf(φt(p))

〉

sincedφt(p)
dt

= Xφt(p). Hence, the last equality together with equation (2.4.1) give us that

df(φt(p))
dt

=

1 if φt(p) ∈ f−1((a− ε, b+ ε))
0 otherwise

.

We then have

f(φt(p)) =

t+ f(p) if φt(p) ∈ f−1((a− ε, b+ ε))
f(p) otherwise

(2.4.2)

since φ0(p) = p. In addition, f(φt(p)) is increasing since df(φt(p))
dt

≥ 0 for all t ∈ R and
p ∈M.

Consider the diffeomorphism φb−a : M → M . We claim that φb−a
∣∣∣∣∣
Ma

: Ma → M b is a

diffeomorphism.

First, we prove that φb−a maps Ma into M b. We wish to prove that for every x ∈Ma,
then f(φb−a(x)) ≤ b (i.e φb−a(x) ∈M b). Let x ∈Ma. Since f(φt(p)) is increasing,

f(φ0(x)) = f(x) < f(φb−a(x)).
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There are two cases:

• if f(φb−a(x)) ≤ b, then φb−a(x) ∈M b.

• if f(φb−a(x)) > b, then by (2.4.2), f(x)−a > 0 and f(x) > b which is a contradiction.

Therefore, φb−a maps Ma into M b. Since φt : M → M is a diffeomorphism for each t,
then the restriction of φb−a to Ma is also one to one. So, we only remain to prove that
φb−a maps Ma onto M b. Let y ∈ M b. There exist x = φa−b(y) ∈ Ma because, by (2.4.2),
we have

f(x) = f(φa−b(y)) ≤ b

and if f(φa−b(y)) > a, since f(φt(p)) is increasing, we obtain

a < f(φa−b(y)) < f(φ(f(x)−b)(y)) ≤ f(φ0(y)) ≤ b,

and this implies that

f(φa−b(y)) = a− b+ f(y) ≤ a− b+ b = a

which is contradiction. Therefore, the map φb−a is onto since

φb−a(x) = φb−a(φa−b(y)) = φ0(y) = y.

Now we proceed to prove the second part: Ma is a deformation retract ofM b. Consider
the family of maps rt : M b →M b defined by

rt(x) =

x if x ∈Ma

φ(a−f(x))t(x) if a ≤ f(x) ≤ b
, t ∈ [0, 1].

If x ∈Ma, then rt(x) = x ∈Ma ⊂M b. If a ≤ f(x) ≤ b, then (a− f(x))t ≤ 0 and by the
monotonicity of f(φt(p)), this implies that f(φ(a−f(x))t(x)) ≤ f(φ0(x)) = f(x) ≤ b. Thus
rt(x) = φ(a−f(x))t(x) ∈M b. This family also satisfies the following conditions:

• rt(x) is continuous on the product topology M b × [0, 1].

• r0(x) = x for all x ∈M b.

• r1(x) = φa−f(x)(x) ∈ Ma. Indeed, if x ∈ Ma, then r1(x) = x ∈ Ma and by the
monotonicity of f(φt(p)), if a ≤ f(x) ≤ b, then

f(r1(x)) = f(φa−f(x)(x)) ≤ f(φ0(x)) = f(x) ≤ b.

Case 1: if f(r1(x)) ≤ a, then r1(x) ∈Ma.
Case 2: if a ≤ f(r1(x)) ≤ b, then f(r1(x)) = a−f(x)+f(x) = a. Hence r1(x) ∈Ma.
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• It is clear that r1(x) = x for all x ∈Ma.

Therefore, Ma is a deformation retract of M b, so that the inclusion map Ma ↪→ M b is a
homotopy equivalence.

2.4.2 Second Fundamental Theorem

Now let us consider a region in which f has one critical point.

Theorem 2.4.2: Let p be a non degenerate critical point of f with index λ. Let c = f(p)
and assume f−1([c−ε, c+ε]) is compact and contains no other critical point of f for some
ε > 0. Then for all sufficiently small ε, the set M c+ε has the homotopy type of M c−ε with
a λ-cell attached.

Proof. By the Morse lemma, there is a local coordinate system X : Up → Rn defined by
X = (x1, x2, · · · , xn) in a neighborhood Up of p with X(p) = (x1(p), x2(p), · · · , xn(p)) = 0
and such that the identity

f = c− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

n

holds throughout Up.

Choose ε > 0 sufficiently small such that the set f−1([c − ε, c + ε]) is compact and
contains no critical point of f other than p and the image X(Up) contains the closed ball
B2ε = {(x1, x2, · · · , xn) |

n∑
i=1

x2
i ≤ 2ε}. We construct a smooth function ρ : R → R such
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that

ρ(t) ≥ 0 for all t ∈ R
ρ(0) > ε

ρ(t) = 0 for all t ≥ 2ε
− 1 < ρ′(t) ≤ 0 for all t ∈ R

(see Example 1.1.1). We define a new smooth function F : M → R by

F (q) =

f(q), if q /∈ Up
f(q)− ρ(x2

1(q) + · · ·+ x2
λ(q) + 2x2

λ+1(q) + · · ·+ 2x2
n(q)), if q ∈ Up

For convenience, we define functions X−, X+ : Up → [0,+∞) by X− = x2
1 + · · · + x2

λ and
X+ = x2

λ+1 + · · ·+ x2
n. In terms of these functions, we have

f(q) = c−X−(q) +X+(q) for all q ∈ Up,

and

F (q) =

f(q), if q /∈ Up
f(q)− ρ(X−(q) + 2X+(q)), if q ∈ Up

.

By definition of F, it is clear that F is smooth on the interior and exterior of Up. In
order to verify that F is smooth, it suffices to check that F is smooth on the boundary
of Up, that is, on the set {q ∈ X−1(B2ε) :

n∑
i=1

(xi(q))2 = X−(q) + X+(q) = 2ε}. Let
us prove that F is continuous on the boundary of Up. For any q0 ∈ ∂Up (boundary of
Up), let {qi} be a sequence that converges to q0. Then, there are subsequences {qij} ∈
X−1(B2ε) and {qik} /∈ X−1(B2ε) of {qi} such that both sequences converge to q0. If
{qij} ∈ X−1(B2ε), then F (qij) = f(qij) − ρ(X−(qij) + 2X+(qij)) and hence F (qij) →
f(q0) − ρ(X−(q0) + 2X+(q0)) as qij → q0. Since X−(q0) + 2X+(q0) = 2ε + X+(q0) and
ρ(t) = 0 for all t ≥ 2ε, limj→∞ F (qij)→ f(q0). If {qik} /∈ X−1(B2ε), then F (qik) = f(qik) so
that limk→∞ F (qik) = f(q0) This implies that F is continuous at q0 ∈ ∂Up. Next, we want
to prove that dF is continuous on the boundary of Up. We note that the derivatives of all
orders of ρ are identically 0 for all t ≥ 2ε since ρ ≡ 0 on this interval. If {qij} ∈ X−1(B2ε),
then

∂F

∂xi
(qij) =

−2xi(qij)− 2xi(qij)ρ′(X−(qij) + 2X+(qij)) if i ≤ λ

2xi(qij)− 4xi(qij)ρ′(X−(qij) + 2X+(qij)) if i ≥ λ+ 1
.

Since qij → q0 and ρ′(X−(q0) + 2X+(q0)) = ρ′(2ε+X+(q0)) = 0, we obtain

∂F

∂xi
(q0)→

−2xi(q0) if i ≤ λ

2xi(q0) if i ≥ λ+ 1
. (2.4.3)

If {qik} /∈ X−1(B2ε), then
∂F

∂xi
(qik) =

−2xi(qik) if i ≤ λ

2xi(qik) if i ≥ λ+ 1
. Similarly, since qik → q0,

we obtain
∂F

∂xi
(q0)→

−2xi(q0) if i ≤ λ

2xi(q0) if i ≥ λ+ 1
. (2.4.4)
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Therefore, by (2.4.3) and (2.4.4), we conclude that dF is continuous at q0 ∈ ∂Up. Now,
we prove that d2F is continuous on the boundary of Up. If {qij} ∈ X−1(B2ε), then

∂2F

∂x2
i

(qij) =

−2− 2ρ′(X−(qij) + 2X+(qij))− 4x2
i (qij)ρ′′(X−(qij) + 2X+(qij)) if i ≤ λ

2− 4ρ′(X−(qij) + 2X+(qij))− 16x2
i (qij)ρ′′(X−(qij) + 2X+(qij)) if i ≥ λ+ 1

.

Since qij → q0 and ρ′(2ε+X+(q0)) = 0 = ρ′′(2ε+X+(q0)), we have

∂2F

∂x2
i

(q0)→

−2 if i ≤ λ

2 if i ≥ λ+ 1
. (2.4.5)

If {qik} /∈ X−1(B2ε), then
∂2F

∂x2
i

(qik) =

−2 if i ≤ λ

2 if i ≥ λ+ 1
. Since qik → q0, we then have

∂2F

∂x2
i

(q0)→

−2 if i ≤ λ

2 if i ≥ λ+ 1
. (2.4.6)

By (2.4.5) and (2.4.6), we conclude that d2F is continuous at q0 ∈ ∂Up.

Similarly, it is easy to check that for all n ≥ 3, we have ∂
nF

∂xni
= 0 in the boundary of Up.

In conclusion, F is smooth on the boundary of Up

Claim 2.4.1: M c+ε = F−1((−∞, c+ ε]).

Proof. Since ρ(t) ≥ 0 for all t ∈ R, F (q) ≤ f(q) for all q ∈M .

• Case: q /∈ Up. We have F = f . Therefore

F−1((−∞, c+ ε]) = f−1((−∞, c+ ε]) = M c+ε.

• Case: q ∈ Up. For any q ∈ M c+ε, then f(q) ≤ c + ε and hence F (q) ≤ f(q) ≤
c + ε. Thus q ∈ F−1((−∞, c + ε]). Hence M c+ε ⊆ F−1((−∞, c + ε]). For any q ∈
F−1((−∞, c+ε]), then F (q) = f(q)−ρ(X−(q)+2X+(q)) ≤ c+ε. IfX−(q)+2X+(q) ≥
2ε, then ρ(X−(q)+2X+(q)) = 0 and so f(q) = F (q) ≤ c+ ε. If X−(q)+2X+(q) ≤ 2ε
(or X−(q)

2 +X+(q) ≤ ε), then f(q) = c−X−(q) +X+(q) ≤ c+ X−(q)
2 +X+(q) ≤ c+ ε.

We then have f(q) ≤ c+ ε for all q ∈ Up. Hence q ∈ f−1((−∞, c+ ε]) = M c+ε. That
is, F−1((−∞, c+ ε]) ⊆M c+ε. Therefore, M c+ε = F−1((−∞, c+ ε]).

Claim 2.4.2: F−1((−∞, c− ε]) is diffeomorphic to M c+ε.

Proof. By Theorem 2.4.1 and Claim 2.4.1, we only prove that the set F−1([c − ε, c + ε])
is compact and contains no critical point of F. First, we only show that the set F−1([c−
ε, c+ε]) is a closed subset of a compact set f−1([c−ε, c+ε]). For any q ∈ f−1((−∞, c−ε)),
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then f(q) < c− ε. Hence F (q) < c− ε since F (q) ≤ f(q). That is, q ∈ F−1((−∞, c− ε)).
We then have

f−1((−∞, c− ε)) ⊂ F−1((−∞, c− ε)) ⊂ F−1((−∞, c+ ε]) = f−1((−∞, c+ ε]).

Figure 2.1:

It follows that F−1([c − ε, c + ε]) ⊂ f−1([c − ε, c + ε]). Since F is a smooth function
and the set [c − ε, c + ε] is closed, the set F−1([c − ε, c + ε]) is closed. Thus the set
F−1([c− ε, c+ ε]) is compact.

Next, we show that the set F−1([c − ε, c + ε]) contains no critical point of F . Before
doing this, we prove that the functions f and F have the same critical points.

• Case: q /∈ Up. The functions F and f coincide. Then they have the same critical
points in this region.

• Case: q ∈ Up.We have F (X−, X+) = f−ρ(X−+2X+) = c−X−+X+−ρ(X−+2X+)
and X−1 : X(Up)→ Up as the inverse of X. We then have

d(F ◦X−1) = ∂F

∂X−
d(X− ◦X−1) + ∂F

∂X+
d(X+ ◦X−1)

= (−1− ρ′(X− + 2X+))d(X− ◦X−1) + (1− 2ρ′(X− + 2X+))d(X+ ◦X−1)
= Ad(X− ◦X−1) +Bd(X+ ◦X−1)

Since −1 < ρ′(t) ≤ 0 for all t, then the coefficients A = (−1 − ρ′(X− + 2X+)) and
B = (1− 2ρ′(X− + 2X+)) are nowhere zero. And also we have

d(X− ◦X−1)(x) = (2x1, 2x2, · · · , 2xλ, 0λ+1, · · · , 0n)

and
d(X+ ◦X−1)(x) = (01, · · · , 0λ, 2xλ+1, 2xλ+2, · · · , 2xn).

Therefore, d(F ◦ X−1)(x) = (2Ax1, 2Ax2, · · · , 2Axλ, 2Bxλ+1, 2Bxλ+2, · · · , 2Bxn)
and so d(F ◦ X−1)(x) = 0 if and only if x = 0. Since there is only point p in
Up such that (x1(p), x2(p), · · · , xn(p)) = 0, then x = 0 only at the point p ∈ Up.
This proves that p is the only critical point of F within Up.
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Now, we return to prove that the region F−1([c− ε, c+ ε]) contains no critical points
of F . By assumption, f−1([c − ε, c + ε]) contains no critical points of f other than
p and, since F−1([c− ε, c+ ε]) ⊂ f−1([c− ε, c+ ε]), then F−1([c− ε, c+ ε]) contains
no critical points of F with the possible exception of p. However, we note that
F (p) = f(p)−ρ(X−(p) + 2X+(p)) = c−ρ(0) < c− ε. That is, p ∈ F−1((−∞, c− ε))
cannot be in F−1([c − ε, c + ε]). By Theorem 2.4.1 and Claim 2.4.1, we see that
F−1((−∞, c− ε]) is diffeomorphic to F−1((−∞, c+ ε]) = M c+ε.

Define the λ-cell by eλ := {q ∈ Up | X−(q) ≤ ε and X+(q) = 0} and denote the closure
of the region F−1((−∞, c− ε]) \M c−ε by H (see Figure 2.1).

Claim 2.4.3: M c−ε ∪ eλ is a deformation retract of M c−ε ∪H.

Proof. First, we wish to see that eλ ⊂ H. For any q ∈ eλ, we have X−(q) ≤ ε and
X+(q) = 0. Hence f(q) = c − X−(q) ≥ c − ε. That is, q is a point of the closure of the
complement of M c−ε. Now consider a function g : R→ R defined by g(t) = ρ(t) + t. We
know that −1 < ρ′(t) ≤ 0 for all t, so g is increasing. Then ρ(X−(q))+X−(q) > ρ(0) since
g(0) < g(X−(q)). We also know that F (q) = c−X−(q)− ρ(X−(q)) < c− ρ(0) < c− ε, so
q ∈ F−1((−∞, c− ε]). Therefore, q ∈ H.

In the case ε ≤ X− ≤ X+ + ε,

0 ≤ X− − ε
X+

≤ 1,
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we define st : [0, 1]→ [0, 1] by

st = t+ (1− t)
√
X− − ε
X+

.

Thus the function stxi remains continuous for each i > λ as X+ → 0 and X− → ε. This
is true since for each i > λ, we have |xi| ≤

√
X+ and

|stxi| ≤
(
t+ (1− t)

√
X− − ε
X+

)√
X+ = t

√
X+ + (1− t)

√
X− − ε→ 0

as X+ → 0, X− → ε. We define a family rt : M c−ε ∪H →M c−ε ∪H by

rt(x1, · · · , xn) =


(x1, · · · , xn) if q /∈ Up or q ∈M c−ε

(x1, · · · , xλ, txλ+1, · · · , txn) if q ∈ H and X−(q) ≤ ε

(x1, · · · , xλ, stxλ+1, · · · , stxn) if ε ≤ X−(q) ≤ X+(q) + ε

, t ∈ [0, 1].

For each t ∈ [0, 1], this family is well defined because for any q ∈ M c−ε ∪ H, we obtain
rt(q) ∈ M c−ε ∪ H. Indeed, if q /∈ Up or q ∈ M c−ε, then it is clear that rt is the identity
map. Thus rt(q) ∈M c−ε ∪H. If q satisfies X−(q) ≤ ε or ε ≤ X−(q) ≤ X+(q) + ε, we then
consider the following

F (rt(q)) = c−X−(rt(q)) +X+(rt(q))− ρ(X−(rt(q)) +X+(rt(q))). (2.4.7)

By the proof of Claim 2.4.2, we recall that ∂F

∂X+
= 1 − 2ρ′(t) > 0 since −1 < ρ′(t) ≤ 0

for all t ∈ R. We also note that X−(rt) = X− is independent of t. Therefore, it suffices to
verify that r0(q) and r1(q) belong toM c−ε∪H since F is increasing and depends smoothly
on the variable X+.

• Case t = 1 : If q ∈ H and X−(q) ≤ ε, then it is clear that r1 is the identity map. If
ε ≤ X−(q) ≤ X+(q) + ε, then s1 = 1, which implies r1 is the identity map. Hence
r1 ∈M c−ε ∪H.

• Case t = 0 : If q ∈ H and X−(q) ≤ ε, then r0(x1, · · · , xn) = (x1, · · · , xλ, 0, · · · , 0)
and X+(r0(x1, · · · , xn)) = 0. Thus r0(x1, · · · , xn) ∈ eλ ⊂ H.

If ε ≤ X−(q) ≤ X+(q) + ε, then s0 =
√
X− − ε
X+

, so

X+(r0(x1, · · · , xn)) =
n∑

i=λ+1

(√
X− − ε
X+

xi

)2

= X− − ε.

Therefore, r0(x1, · · · , xn) ∈M c−ε since X−(rt) = X− and

f(r0(x1, · · · , xn)) = c−X−(r0(x1, · · · , xn)) +X+(r0(x1, · · · , xn)).

Now, we can conclude the following results:
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• for each t ∈ [0, 1], the family rt is well defined.

• r1 is the identity map.

• the image of r0 is contained in M c−ε ∪ eλ.

Finally, It is easy to check that r0(q) = q for all q ∈ M c−ε ∪ eλ. Indeed, it is clear for
q ∈M c−ε. If q ∈ eλ, then q ∈ H, X−(q) ≤ ε and X+(q) = 0. Then we have

r0(x1(q), · · · , xn(q)) = r0(x1(q), · · · , xλ(q), 0, · · · , 0) = (x1(q), · · · , xλ(q), 0, · · · , 0).

Therefore, we have proved the Claim 2.4.3.

By Claims 2.4.2 and 2.4.3, the proof of Theorem 2.4.2 is complete.

Proposition 2.4.1: (Generalization of Theorem 2.4.2) Suppose that p1, · · · , pk
are k non-degenerate critical points with indices λ1, · · · , λk in f−1(c). Then, M c+ε has
the homotopy type of M c−ε ∪ eλ1 ∪ · · · ∪ eλk .

Example 2.4.1: In the case k = 2, see Figures 2.2 and 2.3.

Figure 2.2: p1 and p2 are non-degenerate critical points with indices λ1 = λ2 = 1 in
f−1(c).

Figure 2.3: M c+ε has the homotopy type of M c−ε ∪ e1 ∪ e1.
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2.4.3 Consequence of the Fundamental Theorems

Theorem 2.4.3: If f : M → R is a smooth function on a compact smooth manifold M
with no degenerate critical points and if each Ma is compact, then M has the homotopy
type of a CW -complex, with one cell of dimension λ for each critical point of index λ.

To prove this theorem, we will need the following two lemmas.

Lemma 2.4.1: (Whitehead) Let ϕ0 and ϕ1 be homotopic maps from the sphere ∂(eλ)
to a topological space X. Then the identity map of X extends to a homotopy equivalence

k : X ∪ϕ0 e
λ → X ∪ϕ1 e

λ.

Proof. Let ϕt be a homotopy between ϕ0 and ϕ1. Define k : X ∪ϕ0 e
λ → X ∪ϕ1 e

λ by

k(x) =


x if x ∈ X
2ru if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ 1

2
ϕ2−2r(u) if x = ru, u ∈ ∂(eλ), 1

2 ≤ r ≤ 1,

and k̃ : X ∪ϕ1 e
λ → X ∪ϕ0 e

λ by

k̃(x) =


x if x ∈ X
2su if x = su, u ∈ ∂(eλ), 0 ≤ s ≤ 1

2
ϕ2s−1(u) if x = su, u ∈ ∂(eλ), 1

2 ≤ s ≤ 1.

Since the functions k and k̃ are continuous, there are the compositions

k̃ ◦ k(x) =


x if x ∈ X
4ru if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ 1

4
ϕ4r−1(u) if x = ru, u ∈ ∂(eλ), 1

4 ≤ r ≤ 1
2

ϕ2−2r(u) if x = ru, u ∈ ∂(eλ), 1
2 ≤ r ≤ 1,

and

k ◦ k̃(x) =


x if x ∈ X
4su if x = su, u ∈ ∂(eλ), 0 ≤ s ≤ 1

4
ϕ2−4s(u) if x = su, u ∈ ∂(eλ), 1

4 ≤ s ≤ 1
2

ϕ2s−1(u) if x = su, u ∈ ∂(eλ), 1
2 ≤ s ≤ 1.

We want to find a homotopy ht : X ∪ϕ0 e
λ → X ∪ϕ0 e

λ, t ∈ [0, 1] such that h0 = k̃ ◦ k and
h1 = id. Consider a family of maps ht : X ∪ϕ0 e

λ → X ∪ϕ0 e
λ defined by

ht(x) =



x if x ∈ X
4ru

1 + 3t if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ 1+3t
4

ϕ( 4r
1+3t−1)(1−t)(u) if x = ru, u ∈ ∂(eλ), 1+3t

4 ≤ r ≤ t+1
2

ϕ (2−2r)
1+3t (1−t)(u) if x = ru, u ∈ ∂(eλ), t+1

2 ≤ r ≤ 1.
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It is easy to check that ht is continuous, h0 = k̃ ◦ k and h1 = id.

We next consider a family of maps h′t : X ∪ϕ1 e
λ → X ∪ϕ1 e

λ defined by

h′t(x) =



x if x ∈ X
4su

1 + 3t if x = su, u ∈ ∂(eλ), 0 ≤ s ≤ 1+3t
4

ϕ1−( 4s
1+3t−1)(1−t)(u) if x = su, u ∈ ∂(eλ), 1+3t

4 ≤ s ≤ t+1
2

ϕ1− (2−2s)
1+3t (1−t)(u) if x = su, u ∈ ∂(eλ), t+1

2 ≤ s ≤ 1.

Again h′t is continuous and satisfies h′0 = k ◦ k̃, h′1 = id.

Lemma 2.4.2: (Hilton) Let ϕ : ∂(eλ) → X be an attaching map. A homotopy equiva-
lence f : X → Y can be extended to a homotopy equivalence

F : X ∪ϕ eλ → Y ∪f◦ϕ eλ.

Proof. Since f : X → Y is a homotopy equivalence, there exist a homotopy inverse
g : Y → X to f and ht : X → X a homotopy such that h0 = g ◦ f and h1 = idX . Let
H : [0, 1]×∂(eλ)→ X defined by H(t, x) = ht(ϕ(x)). Then we have H(0, x) = g ◦f ◦ϕ(x)
and H(1, x) = ϕ(x). Thus g ◦ f ◦ ϕ and ϕ are homotopic maps from ∂(eλ) to X. By the
Lemma 2.4.1, there exists a homotopy equivalence

k : X ∪g◦f◦ϕ eλ → X ∪ϕ eλ.

Define the following two maps F : X ∪ϕ eλ → Y ∪f◦ϕ eλ and G : Y ∪f◦ϕ eλ → X ∪g◦f◦ϕ eλ
as follows

F (x) =

f(x) if x ∈ X
x if x ∈ eλ

and

G(y) =

g(y) if y ∈ Y
y if y ∈ eλ.

We will first prove that F has a left homotopy inverse k ◦G. That is, the composition
k ◦G ◦ F : X ∪ϕ eλ → X ∪ϕ eλ is homotopic to the identity map. From the definition of
k, F and G, we note that

k ◦G ◦ F (x) =


g ◦ f(x) if x ∈ X
2ru if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ 1

2
h2−2r ◦ ϕ(u) if x = ru, u ∈ ∂(eλ), 1

2 ≤ r ≤ 1

is a continuous map. Define a family of maps qt : X ∪ϕ eλ → X ∪ϕ eλ by

qt(x) =


ht(x) if x ∈ X

2
t+ 1ru if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ t+1

2

h2−2r+t ◦ ϕ(u) if x = ru, u ∈ ∂(eλ), t+1
2 ≤ r ≤ 1.
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We then see that

q0(x) =


h0(x) = g ◦ f(x) if x ∈ X
2ru if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ 1

2
h2−2r ◦ ϕ(u) if x = ru, u ∈ ∂(eλ), 1

2 ≤ r ≤ 1,

and

q1(x) =


h1(x) = x if x ∈ X
ru if x = ru, u ∈ ∂(eλ), 0 ≤ r ≤ 1
h1 ◦ ϕ(u) = ϕ(u) if x = u, u ∈ ∂(eλ).

Since q0 = k ◦G ◦ F and q1 = id, the composition k ◦G ◦ F is homotopic to the identity
map and hence F has k ◦G as a left homotopy inverse.

Similarly, G has a left homotopy inverse, since φ = f ◦ ϕ : ∂(eλ) → Y is an attaching
map and g : Y → X is a homotopy equivalence, so G : Y ∪φ eλ → X ∪g◦φ eλ has a left
homotopy inverse.

Claim 2.4.4: If a map F has a left and a right homotopy inverse L and R respectively,
then F is a homotopy equivalence, and L (or R) is a 2-sided homotopy inverse.

Proof. Since L and R are left and right homotopy inverses to F, we have the relations
LF ' id and FR ' id. This implies that

L ' L(FR) = (LF )R ' R.

Hence
FL ' FR ' id (or RF ' LF ' id)

which proves that L (or R) is a 2-sided homotopy inverse.

To prove the Lemma 2.4.2, it only remains to prove that F has a right homotopy
inverse. By the Claim 2.4.4, we obtain the following:

• k◦(G◦F ) ' id implies that (G◦F )◦k ' id since k is known to have a left homotopy
inverse (by Lemma 2.4.1).

• G ◦ (F ◦ k) = (G ◦ F ) ◦ k ' id implies that (F ◦ k) ◦ G ' id since G is known to
have a left homotopy inverse.

• F ◦ (k ◦G) = (F ◦ k) ◦G ' id implies that F has k ◦G as a right homotopy inverse.

Therefore, F is a homotopy equivalence. This completes the proof of Lemma 2.4.2.

Proof. (of Theorem 2.4.3) Let a ∈ R and piki be critical points belonging to f−1(ci)
with index λiki . If f−1(a) = ∅, then Ma = ∅ and so we have nothing to do.

If f−1(a) 6= ∅, then Ma 6= ∅.

Base case: We may assume that c1 < a < c2. Since Ma is compact, f has a global
minimum value c1 ∈ R (i.e, c1 ≤ f(p) for all p ∈ M). According to the Theorem 2.4.1,
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M c1+ε is homotopy equivalent to Ma for some small ε > 0. Since the critical points
belonging to f−1(c1) have index 0, by Proposition 2.4.1, M c1+ε has the homotopy type of
a disjoint union of 0 cells. Therefore, Ma has the homotopy type of a CW -complex.

Induction hypothesis: Suppose that a 6= c1, c2, c3, · · · such that Ma is homotopy
equivalent to a CW -complex K via g. Let c = cj0 be the smallest critical value of f bigger
than a. According to the Theorem 2.4.1 and Proposition 2.4.1, for some small ε > 0 we
have that M c−ε is homotopy equivalent to Ma via h and that M c+ε has the homotopy
type of M c−ε ∪ϕj01 e

λj01 ∪ϕj02 · · · ∪ϕj0kj0 e
λj0kj0 for some attaching maps ϕj01, · · · , ϕj0kj0 .

Then, by Lemma 2.4.2 we see that

M c−ε ∪ϕj01 e
λj01 ∪ϕj02 · · · ∪ϕj0kj0 e

λj0kj0 'Ma ∪h◦ϕj01 e
λj01 ∪h◦ϕj02 · · · ∪h◦ϕj0kj0 e

λj0kj0 .

Since Ma is homotopy equivalent to K via g, Lemma 2.4.2 shows that

Ma ∪h◦ϕj01 e
λj01 ∪h◦ϕj02 · · · ∪h◦ϕj0kj0 e

λj0kj0 ' K ∪g◦h◦ϕj01 e
λj01 ∪g◦h◦ϕj02 · · · ∪g◦h◦ϕj0kj0 e

λj0kj0

By cellular approximation, for each r, 1 ≤ r ≤ kj0 , the map g ◦ h ◦ ϕj0r is homotopic to
a cellular map ψj0r : ∂(eλj0r)→ K(λj0r−1), where K(λj0r−1) is the (λj0r − 1)-skeleton of K.
Applying lemma 2.4.1 shows that

K ∪g◦h◦ϕj01 e
λj01 ∪g◦h◦ϕj02 · · · ∪g◦h◦ϕj0kj0 e

λj0kj0 ' K ∪ψj01 e
λj01 ∪ψj02 · · · ∪ψj0kj0 e

λj0kj0 .

Hence K ∪ψj01 e
λj01 ∪ψj02 · · · ∪ψj0kj0 e

λj0kj0 is a CW -complex since the attaching maps are
cellular. Therefore, we conclude that M c+ε has the homotopy type of a CW -complex.

By induction, if c̃ is the smallest critical value of cj’s such that cj > c, then M ã has
the homotopy type of a CW -complex for every ã ∈ (c, c̃).

Finally, sinceM is compact, the Morse function f has a finite number of critical points
(see Corollary 2.2.1) and a finite number of critical values. Thus the inductive step above
completes the proof for all of M.

2.5 The Morse Inequalities

In this section we will see a series of inequalities proved by Marston Morse which
give bounds on the Betti numbers of a smooth manifold M. More precisely, the Morse
inequalities establish a relationship between the number of critical points of index λ of a
real valued Morse function on M and the λ-th Betti number on M.

Let us denote a tuple of topological spaces such that Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 by
(Xn, Xn−1, · · · , X0). In particular, if the tuple consists of two spaces or three spaces, then
it is called a pair or triple respectively.

Definition 2.5.1: Let S be a function from a pair of spaces to the integers. We say that
S is subadditive if for all triples (X, Y, Z) the inequality S(X,Z) ≤ S(X, Y ) + S(Y, Z)
holds. If equality holds, then S is called additive.
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For any pair of spaces (X, Y ) and a given field F as coefficient of the λ-th relative
homology group Hλ(X, Y ), we denote by

bλ(X, Y ) = rank over F of Hλ(X, Y,F)

the λ-th Betti number of (X, Y ) and by

χ(X, Y ) =
∑

(−1)λbλ(X, Y )

the Euler characteristic of (X, Y ).

Given a pair (X, ∅), we will write S(X) := S(X, ∅).

Given a triple (X, Y, Z), we can construct the following long exact sequence of relative
homology

· · · hλ+1−→ Hλ(Y, Z) fλ−→ Hλ(X,Z) gλ−→ Hλ(X, Y ) hλ−→ Hλ−1(Y, Z) fλ−1−→ · · · (2.5.1)

Lemma 2.5.1: bλ is subadditive and χ is additive.

Proof. Form (2.5.1), we can construct short exact sequences as follows:

0 0 0
↓ ↓ ↓

Kerfλ Kergλ Kerhλ↪→ ↪→ ↪→

0 hn+1→ · · · hλ+1→ Hλ(Y, Z) fλ→ Hλ(X,Z) gλ→ Hλ(X, Y ) hλ→ Hλ−1(Y, Z) fλ−1→ · · · h0→ 0� � �

Imfλ Imgλ Imhλ
↓ ↓ ↓
0 0 0

(1λ) (2λ) (3λ)

By the short exact sequence (2λ) above, we have

bλ(X,Z) = rank(Hλ(X,Z))
= rank(Kergλ) + rank(Imgλ)
= rank(Imfλ) + rank(Kerhλ)
≤ rank(Kerfλ) + rank(Imfλ) + rank(Kerhλ) + rank(Imhλ)
= rank(Hλ(Y, Z)) + rank(Hλ(X, Y ))
= bλ(X, Y ) + bλ(Y, Z),

which shows that bλ is subadditive.

To see that χ is additive, we first note from the short exact sequence (2λ) above that

bλ(X,Z) = rank(Imfλ) + rank(Imgλ). (2.5.2)
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From the short exact sequences (1λ) and (3λ), similar reasoning leads to the following
results

bλ(Y, Z) = rank(Imhλ+1) + rank(Imfλ), (2.5.3)

and
bλ(X, Y ) = rank(Imgλ) + rank(Imhλ). (2.5.4)

Therefore, by putting (2.5.2), (2.5.3) and (2.5.4) together, gives

bλ(Y, Z)− bλ(X,Z) + bλ(X, Y ) = rank(Imhλ+1) + rank(Imhλ). (2.5.5)

Multiplying (2.5.5) by (−1)λ and summing over λ we then see that
n∑
λ=0

(−1)λ
(
bλ(Y, Z)− bλ(X,Z) + bλ(X, Y )

)
= (−1)nrank(Imhn+1) + rank(Imh0). (2.5.6)

Since we have rank(Imhn+1) = rank(Imh0) = 0, (2.5.6) shows that

χ(Y, Z)− χ(X,Z) + χ(X, Y ) = 0.

Lemma 2.5.2: If S is subadditive and we have a tuple of spaces (Xn, Xn−1, · · · , X0), then
S(Xn, X0) ≤

n∑
i=1

S(Xi, Xi−1). If S is additive then equality holds.

Proof. We will prove the lemma by induction on n.

Base case: If n = 2, then S(X2, X0) ≤ S(X2, X1) + S(X1, X0) since S is subadditive.

Induction hypothesis: We suppose that the inequality is true for n− 1, that is,

S(Xn−1, X0) ≤
n−1∑
i=1

S(Xi, Xi−1).

Since S is subadditive, we have S(Xn, X0) ≤ S(Xn, Xn−1) + S(Xn−1, X0). By hypothesis,
we then have S(Xn, X0) ≤ S(Xn, Xn−1) +

n−1∑
i=1

S(Xi, Xi−1) =
n∑
i=1

S(Xi, Xi−1). Therefore it
is true for n.

A similar proof shows that S(Xn, X0) =
n∑
i=1

S(Xi, Xi−1) if S is additive.

Theorem 2.5.1: (Weak Morse Inequalities) Let M be a compact smooth manifold
and f : M → R be a Morse function on M. We denote the number of critical points of f
of index λ by µλ. Then we have

bλ(M) ≤ µλ, (2.5.7)

and
χ(M) =

∑
(−1)λµλ. (2.5.8)
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Before proving this theorem, let us recall the following theorem (see theorem 2.20 of
[5]).

Theorem 2.5.2: (Excision) Let A,Z ⊂ X be topological spaces such that the closure
of Z is contained in the interior of A. Then the inclusion (X \ Z,A \ Z) ↪→ (X,A)
induces isomorphisms Hr(X \ Z,A \ Z)→ Hr(X,A) for all r. Equivalently, if we have a
subspaces A,B whose interior cover X, then the inclusion (B,A ∩ B) ↪→ (X,A) induces
isomorphisms Hr(B,A ∩B)→ Hr(X,A) for all r.

Proof. (of Theorem 2.5.1) Since f is a Morse function and M is compact, by Corol-
lary 2.2.1 f has a finite number of critical points and each critical point is isolated. Let
{p1, p2, · · · , pn} be the set of critical points of f with indices λ1, λ2, · · · , λn respectively.
For simplicity, assume that f(pi) 6= f(pj) for i 6= j. There exists ai with ai < ai+1 for
all i ∈ {0, 1, 2, · · · , n} such that Ma0 = ∅,Man = M, and Mai contains only the critical
point pi of f. That is, pj the only critical point of f with index λj in Maj \Maj−1 for
each j ∈ {1, 2, · · · , n}. By the Theorem 2.4.2, we then have Maj has the homotopy type
of Maj−1 ∪ eλj , and hence, by the Theorem 2.5.2,

Hr(Maj ,Maj−1 ,F) ' Hr(Maj−1 ∪ eλj ,Maj−1 ,F)
∼= Hr(eλj , ∂(eλj),F)
∼= Hr−1(∂(eλj),F) (by the exact sequence of a pair)
∼= Hr−1(Sλj−1,F)

∼=

F if r = λj

0 otherwise.

This shows that

br(Maj ,Maj−1 ,F) =

1 if r = λj

0 otherwise.

Since bλ is subadditive and we have a tuple of spaces (Man ,Man−1 , · · · ,Ma0), Lemma 2.5.2
gives us that

bλ(M) = bλ(Man ,Ma0)

≤
n∑
i=1

bλ(Mai ,Mai−1)

= µλ

since

bλ(Mai ,Mai−1) =

1 if λ = λi

0 otherwise.

This proves inequality (2.5.7).
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We prove the last part of this theorem by using Lemma 2.5.2,

χ(M) = χ(Man ,Ma0)

=
n∑
i=1

χ(Mai ,Mai−1)

=
n∑
i=1

∑
(−1)λbλ(Mai ,Mai−1)

=
∑

(−1)λ
( n∑
i=1

bλ(Mai ,Mai−1)
)

=
∑

(−1)λµλ

Observation 2.5.1: If µλ = 0, then bλ = 0.

Lemma 2.5.3: The function Sλ defined by Sλ(X, Y ) =
λ∑
i=0

(−1)ibλ−i(X, Y ) is subadditive.

Proof. Note that (2.5.5) can be expressed as

rank(Imhλ+1) = bλ(Y, Z)− bλ(X,Z) + bλ(X, Y )− rank(Imhλ). (2.5.9)

Since rank(Imhλ+1) ≥ 0 and rank(Imh0) = 0, (2.5.9) tells us that

λ∑
i=0

(−1)i
(
bλ−i(Y, Z)− bλ−i(X,Z) + bλ−i(X, Y )

)
≥ 0. (2.5.10)

This means that
Sλ(Y, Z)− Sλ(X,Z) + Sλ(X, Y ) ≥ 0

which implies that Sλ is subadditive.

Theorem 2.5.3: (Strong Morse Inequalities) Let M be a compact smooth manifold
and f : M → R be a Morse function on M. We denote the number of critical points of f
of index λ by µλ. Then the inequality

λ∑
i=0

(−1)ibλ−i(M) ≤
λ∑
i=0

(−1)iµλ−i (2.5.11)

holds for every λ ∈ {0, 1, · · · , n}.

Proof. Since we have a tuple of spaces (M = Man ,Man−1 , · · · ,Ma0 = ∅) and Sλ is sub-
additive, by Lemma 2.5.2

Sλ(M, ∅) = Sλ(M) ≤
n∑
j=1

Sλ(Maj ,Maj−1).
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Hence, applying Lemma 2.5.3 gives

λ∑
i=0

(−1)ibλ−i(M) ≤
n∑

‘j=1

λ∑
i=0

(−1)ibλ−i(Maj ,Maj−1)

=
λ∑
i=0

(−1)i
( n∑
j=1

bλ−i(Maj ,Maj−1)
)

=
λ∑
i=0

(−1)iµλ−i

since

bλ−i(Maj ,Maj−1) =

1 if λ− i = λj

0 otherwise.

To see that these inequalities are definitely stronger than the previous ones, we consider
the following cases of (2.5.11):

λ∑
i=0

(−1)ibλ−i(M) ≤
λ∑
i=0

(−1)iµλ−i, (2.5.12)

λ−1∑
i=0

(−1)ibλ−1−i(M) ≤
λ−1∑
i=0

(−1)iµλ−1−i (2.5.13)

By adding the inequalities (2.5.12) and (2.5.13), we get (2.5.7). If µλ = 0, then inequality
(2.5.12) together with Observation 2.5.1 imply

λ−1∑
i=0

(−1)ibλ−1−i(M) ≥
λ−1∑
i=0

(−1)iµλ−1−i, (2.5.14)

and so, by (2.5.13) and (2.5.14), we have the equality

bλ−1(M)− bλ−2(M) + · · ·+ (−1)λ−1b0(M) = µλ−1 − µλ−2 + · · ·+ (−1)λ−1µ0, (2.5.15)

or equivalently,

b0(M)− b1(M) + · · ·+ (−1)λ−1bλ−1(M) = µ0 − µ1 + · · ·+ (−1)λ−1µλ−1. (2.5.16)

Since µλ = 0 for every λ ≥ n + 1, if λ ≥ n + 1, then (2.5.16) is exactly the same as
(2.5.8).

Corollary 2.5.1: If µλ+1 = µλ−1 = 0, then bλ = µλ and bλ+1 = bλ−1 = 0.

Proof. If µλ+1 = µλ−1 = 0, then Observation 2.5.1 gives that

bλ+1 = bλ−1 = 0. (2.5.17)
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A similar calculation as that case of (2.5.15) leads to the following results

bλ(M)−���bλ−1 (M) + · · ·+ (−1)λb0(M) = µλ −���µλ−1 + · · ·+ (−1)λµ0, (2.5.18)

and

bλ−2(M)− bλ−3(M) + · · ·+ (−1)λ−2b0(M) = µλ−2 − µλ−3 + · · ·+ (−1)λ−2µ0. (2.5.19)

By subtracting the (2.5.19) from (2.5.18), we obtain bλ = µλ.

51



Chapter 3

Simple applications of Morse
theory

In this chapter, we will give some simple applications of theorems of the previous chap-
ter.

3.1 Examples

Example 3.1.1: (n-sphere Sn) As in Example 1.1.3, the height function f from Sn to
R has only two non-degenerate critical points, one of index 0 and one of index n.

Hence, Theorem 2.4.3 implies that Sn has the homotopy type of a CW -complex of the
form e0 ∪ en. So, the chain complex of Sn is of the form

0→ Cn(Sn) → 0→ · · · → 0→ C0(Sn) → 0= =

Z.en Z.e0
(3.1.1)

From (3.1.1), we see that the boundary homomorphisms are ∂r = 0 for all r. Therefore,
the homotopy groups of Sn are

Hr(Sn,Z) =

Z if r = 0, n
0 otherwise.

Example 3.1.2: (Complex projective space CP n) From Example 2.1.2, we know
that p0, p1, · · · , pn are the only critical points of f, and that the index of pj is equal to
twice the number of k with ck < cj. Hence, we will get every even index between 0 and 2n
exactly once.
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Applying Theorem 2.4.3 gives us that CP n has the homotopy type of a CW -complex of
the form e0∪ e2∪· · ·∪ e2n. This shows that the chain complex of CP n is of the form
0→ C2n(CP n) → 0→ C2(n−1)(CP n) → · · · → C2(CP n) → 0→ C0(CP n) → 0= = = =

Z.e2n Z.e2(n−1) Z.e2 Z.e0

(3.1.2)
(3.1.2) tells us that the boundary homomorphisms are ∂r = 0 for all r. Therefore, the
homotopy groups of CP n are given by:

Hr(CP n,Z) =

Z if r = 0, 2, · · · , 2n
0 otherwise

.

Remark 3.1.1: We can use Corollary 2.5.1 to find the homology groups of spaces above
without using Theorem 2.4.3. For the first example, since µn+1 = 0 and µn−1 = 0,
then bn = µn = 1. This implies that Hn(Sn,Z) = Z. Similarly, H0(Sn,Z) = Z since
b0 = µ0 = 1.

For the second example, we will have b0 = b2 = · · · = b2n = 1 since µk−1 = 0 and
µk+1 = 0 for each k = 0, 1, · · · , 2n. Therefore, Hk(CP n,Z) = Z for all k = 0, 2, · · · , 2n.

3.2 Reeb’s theorem

Theorem 3.2.1: Let f : M → R be a Morse function on a compact smooth manifold M
of dimension n with exactly two critical points. Then M is homeomorphic to Sn.

Proof. Let p and q be the critical points of f. We observe that p and q must be the
minimum and maximum points of f since M is compact. We suppose that f takes
minimum and maximum values at p and q respectively. According to Lemma 2.2.1, it is
easy to show that the index of p is 0. Indeed, if the index of p is λ 6= 0, then there exist a
suitable local coordinate system X : V ⊂ Rn → Up in a neighborhood Up of p with 0 ∈ V
and X(0) = p such that

f ◦X = f(p)−
λ∑
i=1

x2
i +

n∑
i=λ+1

x2
i (3.2.1)

holds throughout V. In particular, we have (δ, 0, · · · , 0) ∈ V for some δ > 0 and so
f ◦ X(δ, 0, · · · , 0) = f(p) − δ < f(p) which is contradiction since f takes the minimum
value at p.

Similarly, the index of q is n because f takes maximum value at this point.

Without loss of generality, we assume that f(p) = 0 and f(q) = 1. Therefore, f can be
expressed in terms of the coordinate systems (x1, · · · , xn) in a neighborhood Up of p and
(y1, · · · , yn) in a neighborhood Uq of q as the following form:

f =

x2
1 + x2

2 + · · ·+ x2
n

1− y2
1 − y2

2 − · · · − y2
n.

(3.2.2)
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Choose a small positive number ε such that 0 ≤
n∑
i=1

x2
i ≤ ε and 1 − ε ≤ 1 −

n∑
i=1

y2
i ≤ 1,

so that the sets f−1([0, ε]) and f−1([1− ε, 1]) are diffeomorphic to closed n-disks Dn
p and

Dn
q respectively. Moreover, since f−1([ε, 1 − ε]) is a closed subset of the compact set

M and contains no critical point of f, Theorem 2.4.1 tells us that f−1([0, ε]) = M ε is
diffeomorphic to f−1([0, 1 − ε]) = M1−ε. Hence, M = f−1([0, 1 − ε]) ∪ f−1([1 − ε, 1]) is
diffeomorphic to Dn

p ∪Sn−1 Dn
q which is the union of two closed n-disks glued along their

boundary.

To show that Dn
p ∪Sn−1 Dn

q is homeomorphic to Sn, we will use the following lemmas,
which we state here without proof.

Lemma 3.2.1: (The Universal Properties of the Quotient Topology) Let p :
X � Y be a quotient map and let Z be a topological space. Given any continuous function
f : X → Z with the property that f(x1) = f(x2) whenever p(x1) = p(x2), then there is a
unique continuous function f̃ : Y → Z so that f̃p = f.

X

p� f
−−−−−−−−→

Y
∃!f̃
99K Z

Lemma 3.2.2: Let h : X → Y be a continuous bijective function. If X is a compact
space and Y is a Hausdorff space, then h is homeomorphism.

Consider a map f : Dn
p ∪Dn

q → Sn defined by

f(x) =

fu(x) if x ∈ Dn
p

fl(x) if x ∈ Dn
q ,

where fu(x) = (x,
√

1− ||x||2) and fl(x) = (x,−
√

1− ||x||2) are homeomorphism from the
standard unit disk to the upper and lower hemispheres respectively. Then f is continuous
since fu and fl are continuous. Moreover, since Sn = Snu ∪ Snl , f is surjective. Note that
Dn
p ∪Sn−1 Dn

q is the quotient of Dn
p ∪Dn

q by the relation ” ∼ ” that identifies those points
in Dn

p and in Dn
q that lie in the intersection Dn

p ∩Dn
q = Sn−1. Since fu and fl are injective

and if x1 ∈ Dn
p and x2 ∈ Dn

q , then

f(x1) = f(x2)⇐⇒ fu(x1) = fl(x2)

⇐⇒
(
x1,

√
1− ||x1||2

)
=
(
x2,−

√
1− ||x2||2

)
⇐⇒ x1 = x2 and ||x1|| = ||x2|| = 1
⇐⇒ x1 ∼ x2

By Lemma 3.2.1, f induces a continuous map f̃ : Dn
p ∪Sn−1 Dn

q → Sn, which is bijective
since f is surjective and f(x1) = f(x2) implies that x1 ∼ x2.
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Since Dn
p and Dn

q are closed and bounded subsets of Rn, they are compact. Thus, the
finite union Dn

p ∪Dn
q is compact, and so is its quotient Dn

p ∪Sn−1 Dn
q . Since Sn is a metric

space, it is a Hausdorff space. Therefore, f̃ is a homeomorphism from Dn
p ∪Sn−1 Dn

q to Sn,
by Lemma 3.2.2.

Remark 3.2.1:

1. If n ≤ 6, then M is diffeomorphic to Sn and if n ≥ 7, then there exists M such
that homeomorphic to Sn, but it is not diffeomorphic to Sn. Such manifolds called
exotic spheres (see [6], [8]).

2. If f is smooth and its critical points are degenerate, then the theorem remains true
(see [9] or Theorem 1′ in Chapter 6 of [11]).

3.3 Morse Functions on Knots

Definition 3.3.1: A knot is a smooth embedding of the circle (M = S1) into the oriented
real Euclidean 3-dimensional space E = R3, with inner product 〈·, ·〉 .

Let φ : S1 ↪→ E be a smooth embedding as in the definition. We denote by K = φ(S1)
the image of this embedding which is a compact subset of E. Indeed, we will prove that
K is bounded and closed. Define

ψ : S1 → R by ψ(x) = ||φ(x)||.

It is clear that ψ is continuous on S1. Since S1 is a compact metric space, ψ attains its
maximum and minimum values on S1. Therefore, there exists M > 0 such that

0 ≤ ψ(x) ≤M, ∀x ∈ S1.

Equivalently,
0 ≤ ||φ(x)|| ≤M, ∀x ∈ S1.

Now, suppose that x∗ is an accumulation point of K = φ(S1). There exists a sequence
{yi} in K such that

lim
i→∞

yi = x∗.

Since φ is an embedding, φ is injective. Thus there exists a unique zi ∈ S1 such that
φ(zi) = yi, for every i. Since S1 is compact and {zi} is a sequence in S1, then there exists
a sub-sequence {zij} such that

lim
j→∞

zij = z∗ ∈ S1,

and
x∗ = lim

j→∞
yij = lim

j→∞
φ(zij) = φ( lim

j→∞
zij) = φ(z∗) ∈ K.

Therefore, K is a compact subset of E.
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Let S be the unit sphere in E. Then, for each v ∈ S, it determines a linear map

Lv : E → R
x 7→ 〈v, x〉 .

This function can be restricted to K ⊂ E to give a Morse function for almost all v, and
can be viewed as a height function

hv := Lv|K : K → R

(see Corollary 2.3.1). Let µK(v) be the number of critical points of hv.We define µK(v) = 0
if hv is not a Morse function, and if hv is a Morse function on K, Note that µK(v) ≥ 2
since a Morse function on a compact set has at least two critical points.

By the coarea formula (see Theorem 1.1.2), we have the following.

Theorem 3.3.1: Let g : S→ Z be the function defined by g(v) = µK(v). Then

(1) g is measurable.

(2) the average size of g is given by

µK = 1
area(S)

∫
S
µK(v)dA(v) = 1

4π

∫
S
µK(v)dA(v),

where dA denotes the Euclidean area element on S.

Consider the smooth embedding φ : S1 → E as a simple closed smooth curve

φ : [0, 2π]→ E.

Then
dφ(t)
dt

= φ′(t) 6= 0

since its derivative is injective. Let L be the length of K = φ([0, 2π]). Thus, we can obtain
a curve

ψ : [0, L]→ E

parametrized by arc length which has the same image set as φ. Indeed, we define

s : [0, 2π] → [0, L]

t 7→ s(t) =
∫ t

0
|φ′(u)|du.

Since ds
dt

= |φ′(t)| > 0, the function s = s(t) has a smooth inverse t = t(s) with

dt

ds
= 1
|φ′(t)| > 0.
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We set
ψ = φ ◦ t = φ(t) : [0, L]→ E.

Hence ψ([0, L]) = φ([0, 2π]) = K and

|dψ
ds
| = |φ′(t). dt

ds
| = |φ′(t). 1

φ′(t) | = 1.

If x ∈ K, then x = φ(sx) for some sx ∈ [0, L] and |φ′(sx)| = 1. Let

T (sx) = φ′(sx),

the unit vector tangent to K at x. Define

S(K) = {(x, v) ∈ K × S : v⊥T (sx)},

the unit sphere bundle associated to the normal bundle of K in E. Thus, there are natural
projections

λ : K × S → K,

ρ : K × S → S.

The restriction of these projections to S(K) give smooth maps

λK : S(K) → K

ρK : S(K) → S.

Lemma 3.3.1: The vector v ∈ S is a regular value of the map ρK : S(K) → S if and
only if hv : K → R is a Morse function. Moreover,

µK(v) = NρK (v), ∀v ∈ S. (3.3.1)

Proof. Consider the map

g : [0, L] φ−→ K
hv−→ R,

s 7→ hv(φ(s)) = 〈v, φ(s)〉 .

The differential of g at sy is given

dg

ds

∣∣∣
s=sy

= d

ds
〈v, φ(s)〉

∣∣∣
s=sy

= 〈v, φ′(sy)〉 .

This shows that φ(sy) is a critical point of hv if and only if φ′(sy) = T (sy)⊥v. Since

d2g

ds

∣∣∣
s=sy

= d

ds
〈v, φ′(s)〉

∣∣∣
s=sy

= 〈v, φ′′(sy)〉 = κ(sy) 〈v,N(sy)〉 ,

then

hv is a Morse function if and only if T (sy)⊥v and κ(sy) 〈v,N(sy)〉 6= 0. (3.3.2)
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Secondly, define

α : R/LZ× R/2πZ → S(K)
(s, θ) 7−→

(
φ(s), cos(θ)N(s) + sin(θ)B(s)

)
,

where
N(s) = φ′′(s)

||φ′′(s)||
and

B(s) = T (s)×N(s)

are the normal and binormal unit vectors respectively. It is clear that α is well defined
and smooth. Since

dα

ds
=
(
φ′(s), cos(θ)N ′(s) + sin(θ)B′(s)

)
and

dα

dθ
=
(
0,− sin(θ)N(s) + cos(θ)B(s)

)
are linearly independent for every (s, θ) ∈ R/LZ × R/2πZ, the map α has a smooth
inverse. Moreover, we observe that α is a diffeomorphism.

Let v ∈ S and
B = ρ−1

K (v) = {(x, v) ∈ S(K) : v⊥T (sx)}.

We assume that B 6= ∅. Suppose that z = (y, v) ∈ B. We can then express z and v as
follows:

z =
(
φ(sy), cos(θ)N(sy) + sin(θ)B(sy)

)
,

and
v = cos(θ)N(sy) + sin(θ)B(sy)

for some (sy, θ) ∈ R/LZ× R/2πZ. We have

ρK : S(K)→ S

is the restriction of

H : R3 × R3 → R3, (u, v) 7−→ (03, I3)
(
u
v

)
= v.

Thus,
(dρK)z : TzS(K) ⊂ R3 × R3 → TvS ⊂ R3

is the restriction of

(dH)z : R3 × R3 → R3, (u, v) 7−→ (03, I3)
(
u
v

)
= v.
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Then

(dρK)z
(dα
ds

)
= (dH)z

∣∣∣
TzS(K)

(
φ′(sy)

cos(θ)N ′(sy) + sin(θ)B′(sy)

)
= cos(θ)N ′(sy) + sin(θ)B′(sy)
= −κ(sy) cos(θ)T (sy)− τ(sy) sin(θ)N(sy) + τ(sy) cos(θ)B(sy),

and

(dρK)z
(dα
dθ

)
= (dH)z

∣∣∣
TzS(K)

(
0

− sin(θ)N(sy) + cos(θ)B(sy)

)
= − sin(θ)N(sy) + cos(θ)B(sy).

Therefore, v ∈ S is a regular value of ρK if and only if (dρK)z
(dα
ds

)
and (dρK)z

(dα
dθ

)
are

linearly independent. Equivalently,

v ∈ S is a regular value of ρK if and only if κ(sy) cos(θ) 6= 0 with (y, v) ∈ B. (3.3.3)

Note that

κ(sy) cos(θ) = κ(sy) 〈cos(θ)N(sy) + sin(θ)B(sy), N(sy)〉 = κ(sy) 〈v,N(sy)〉

for (y, v) ∈ B. This means that

hv is a Morse function by (3.3.2).

To prove the second assertion, we will show that for every v ∈ S, an element of
the set of critical points of hv produces only an element of ρ−1

K (v) and vice versa. If
φ(s), s ∈ R/LZ is a critical point of hv, then 〈φ′(s), v〉 = 0 and there exist a, b such that
v = aN(s) + bB(s) with ||v|| = 1. Since ||v|| = 1, there exists θ ∈ R/2πZ which satisfies
v = cos(θ)N(s) + sin(θ)B(s). Thus, there is (s, θ) ∈ R/LZ × R/2πZ which produces
a unique element of ρ−1

K (v) via the above diffeomorphism map α. If z = (y, v) ∈ B =
ρ−1
K (v), then v⊥T (sy) and there exist (sy, θ) such that v = cos(θ)N(sy) + sin(θ)B(sy) and
κ(sy) cos(θ) 6= 0 (since v is a regular value of ρK). Thus,

κ(sy) 〈v,N(sy)〉 = κ(sy) cos(θ) 6= 0

and
〈v, φ′(sy)〉 = 〈v, T (sy)〉 = 0,

i.e. φ(sy) is a critical point of hv. Therefore,

µK(v) = NρK (v), ∀v ∈ S.
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By Theorem 3.3.1, for every v ∈ S, we have that µK(v) is measurable, which together
with identity (3.3.1), implies NρK (v) is measurable and

µK = 1
4π

∫
S
NρK (v)dAgS(v), (3.3.4)

where dAgS denotes the area element on S with the induced metric gs = 〈·, ·〉 from the
usual inner product on E.

On the other hand, we will use the Theorem 1.1.2 for the map

ρK : (S(K), gK)→ (S, gs),

where gK denotes the metric on S(K) defined by gK = ds2 +dθ2 from the diffeomorphism
α. We will compute the Jacobian |JK | of ρK . Let

Φ := ρK ◦ α : R/LZ× R/2πZ → S
(s, θ) 7−→ cos(θ)N(s) + sin(θ)B(s).

Then
dΦ
ds

= DρK(α(s, θ)).dα
ds

= cos(θ)N ′(s) + sin(θ)B′(s)
= −κ(s) cos(θ)T (s)− τ(s) sin(θ)N(s) + τ(s) cos(θ)B(s)

and
dΦ
dθ

= DρK(α(s, θ)).dα
dθ

= − sin(θ)N(s) + cos(θ)B(s)

form the Jacobian JK as follows:

|JK |2 = det


〈
dΦ
ds
,
dΦ
ds

〉
gS

〈
dΦ
ds
,
dΦ
dθ

〉
gS〈

dΦ
dθ
,
dΦ
ds

〉
gS

〈
dΦ
dθ
,
dΦ
dθ

〉
gS

 = det
(
κ2(s) cos2(θ) + τ 2(s) τ(s)

τ(s) 1

)
.

Therefore, the Jacobian of ρK is |JK | = |κ(s) cos(θ)| and we can now apply Theo-
rem 1.1.2∫

S
NρK (v)dAgS(v) =

∫
S(K)
|Jk|dAgK (x, v)

=
∫ L

0

∫ 2π

0
|κ(s) cos(θ)|dθds

=
(∫ π

2

0
cos(θ)dθ −

∫ 3π
2

π
2

cos(θ)dθ +
∫ 2π

3π
2

cos(θ)dθ
)∫ L

0
|κ(s)|ds

= 4
∫ L

0
|κ(s)|ds

= 4TK ,
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where
TK =

∫ L

0
|κ(s)|ds

is called the total curvature of the knot K.

By (3.3.4), we conclude

µK = 1
4π

∫
S
µK(v)dAgS(v) = 1

4π

∫
S
NρK (v)dAgS(v) = 1

π
TK . (3.3.5)

Remark 3.3.1: TK measures how "twisted" is the curve K. That is, large TK means
that K is very twisted. Therefore, (3.3.5) shows that if K is very twisted, then the height
function hv will have lots of critical points on K (since TK is large when µK(v) is large).

In [7], the number
cK = 1

2µK (3.3.6)

was called the crookedness of the knotK.We observe from (3.3.5) and (3.3.6) that

cK = 1
4π

∫
S

1
2µK(v)dAgS(v) = 1

2πTK . (3.3.7)

Moreover, any Morse function h on a circle has an even number of critical points, half of
which are local minima. In order to see this, consider the composition

g : [0, L] ⊂ R ψ−→ K
h−→ R.

The function g has a finite number of non-degenerate critical points only. The values of g
on these points must alternate between local minima and maxima (by Rolle’s theorem),
which implies that there must be the same number of local minima as that of local
maxima. We then conclude that 1

2µK(v) is the number of local minima of the Morse
function hv.

Corollary 3.3.1: For any knot K ↪→ E, we have TK ≥ 2π.

Proof. Since every Morse function on K has at least two critical points, we have 1
2µK ≥ 1

and, by (3.3.7),

1
2πTK = cK = 1

4π

∫
S

1
2µK(v)dAgS(v) ≥ 1

4π

∫
S
dAgS(v) = 1.

That is, TK ≥ 2π.

Corollary 3.3.2: If K is a planar convex curve, then TK = 2π.

Proof. Note that

hv : K ⊂ R3 → R
x 7−→ 〈v, x〉
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is the restriction of a linear continuous function. We will now prove that if K is planar
and convex, then any local minimum of hv must be an absolute minimum.

Suppose hv has two local minima at x1, x2 ∈ K. If hv(x1) > hv(x2), by continuity of
hv on K, there exists x3 ∈ K − {x1, x2} such that

hv(x3) = hv(x1).

The straight line segment between x1 and x3 is totally contained in K and for any point
on that segment

〈v, tx1 + (1− t)x3〉 = t 〈v, x1〉+ (1− t) 〈v, x3〉
= thv(x1) + (1− t)hv(x3)
= thv(x1) + (1− t)hv(x1)
= hv(x1),

where t ∈ [0, 1]. There exist points on K arbitrarily close to x1 and they have to be on one
side of such a line. Since x1 is a local minimum, such points must be on the side where
〈v, ·〉 is greater that hv(x1), but this means that the line segment above is not contained
in K, which is a contradiction. Therefore, there is only an absolute minimum of hv. Thus,
(3.3.7) gives

1
2πTK = cK = 1

4π

∫
S

1
2µK(v)dAgS(v) = 1

4π

∫
S
dAgS(v) = 1.

That is, TK = 2π.

Corollary 3.3.3: If TK < 4π, then K is not knotted.

Proof. If TK < 4π and µK ≥ 4, then

TK = πµK = 1
4

∫
S
µK(v)dAgS(v) ≥ 1

4

∫
S

4dAgS(v) = 4π,

which contradicts to the hypothesis. Thus, there exists v ∈ S such that µK(v) < 4 and
hv is a Morse function. This proves that µK(v) = 2 so that hv has only two critical points
on K.
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Without loss of generality, by means of a ro-
tation and a translation, we can assume that
v = e3 = (0, 0, 1), and that 0 and M are the
global minimum and maximum values of hv re-
spectively. Let

α1, α2 : [0,M ]→ R2, h 7−→ α1(h), α2(h),

with α1(0) = α2(0) and α1(M) = α2(M). Next,
we observe that for every h ∈ [0,M ] the intersec-
tion of the hyperplane at height h with the knot
K consists precisely of two points α1(h) and α2(h)
(as in the figure on the right).

Let Ch = {tα1(h) + (1− t)α2(h) : 0 ≤ t ≤ 1}. We claim that the set

C :=
⋃

h∈[0,M ]
Ch

is a closed disk. Consider the homotopy map

F : [0, 1]× C → C

(s, tα1(h) + (1− t)α2(h)) 7→
(
(1− s)t+ s

)
α1(h) + (1− s)(1− t)α2(h).

We have

F (0, tα1(h) + (1− t)α2(h)) = tα1(h) + (1− t)α2(h)
F (1, tα1(h) + (1− t)α2(h)) = α1(h).

which means that when s = 0 it gives the identity map on C, and when s = 1 it maps
everything to the contractible curve described by α1.
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