CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS, A.C. MATHEMATICS RESEARCH CENTER

MORSE THEORY AND APPLICATIONS

A THESIS SUBMITTED
IN
PARTIAL FULFILLMENT OF THE REQUIREMENT
FOR
THE MSC DEGREE

Advisors:

Dr. Rafael Herrera Guzmán Dr. Carlos Valero Valdés

Student:
Rithivong Chhim

Contents

Acknowledgments i
Introduction ii
1 Basic Definitions and Examples 1
1.1 Differential Geometry of Manifolds 1
1.1.1 Smooth Functions in Euclidean space 1
1.1.2 Smooth manifolds 2
1.1.3 Smooth Maps between Smooth Manifolds 3
1.1.4 Tangent Vectors and Tangent Spaces 3
1.1.5 Hessian, Regular points, Critical Points of a Function 4
1.1.6 Vector Fields and One-Parameter Tranformation Groups 8
1.1.7 Jacobian of a map and coarea formula 9
1.1.8 Frenet-Serret formulas 11
1.2 Topology of Manifolds 12
1.2.1 Homotopy 12
1.2.2 CW-Complexes 12
2 Morse Theory 14
2.1 Morse Function 14
2.2 Morse lemma 16
2.3 Existence of Morse Functions 21
2.4 Fundamental Theorems of Morse Theory 32
2.4.1 First Fundamental Theorem 32
2.4.2 Second Fundamental Theorem 35
2.4.3 Consequence of the Fundamental Theorems 42
2.5 The Morse Inequalities 45
3 Simple applications of Morse theory 52
3.1 Examples 52
3.2 Reeb's theorem 53
3.3 Morse Functions on Knots 55

Acknowledgments

I would like to thank my advisors, Dr. Rafael Herrera Guzmán and Dr. Carlos Valero Valdés, without whom this thesis could not have been written. The only thing more precious than their comments, notes, and advice were their patience and optimism.

I would like to extend my gratitude to all professors and staff of CIMAT who gave us nice lectures and good advice, and also CONACyT for the generous scholarship during the academic years between 2015 and 2017.

I also would like to express my heartfelt thanks to all my friends who helped me to make this possible.

I would like to thank my parents, Mr Chhim Sinarabo and Mrs Chhim Kimchin, who always supported and encouraged me to finish my studies successfully.

Introduction

Morse theory is a powerful method to study the topological structure of a smooth manifold M by examining the critical points of a Morse function defined on it. For example, let $M=\mathbb{T}^{2} \subset \mathbb{R}^{3}$ be the two dimensional torus and $f: M \rightarrow \mathbb{R}$ the height function $f((x, y, z))=z$. The functon f has four critical points p, q, r and s on M with indices $0,1,1$ and 2 respectively. Let M^{a} denote the set of all points $x \in M$ such that $f(x) \leq a$, and " \simeq " denote homotopy equivalence. We can describe the change in homeomorphism and homotopic types of M^{a} as a passes through each critical value of f as follows:

Case $a<f(p)$:

Case $f(p)<a<f(q)$:

Case $f(q)<a<f(r)$:

Case $f(r)<a<f(s)$:

* M^{a} is homeomorphic to a 2 -cell or a disk.
* The homotopy type of M^{a} is a single 0-cell since the index of p is 0 .
* M^{a} is homeomorphic to a cylinder.
* The homotopy type of M^{a} is a disk with a 1-cell attached since the index of q is 1 .

* M^{a} is homeomorphic to a torus with a disk removed.
* The homotopy type of M^{a} is a cylinder with a 1-cell attached since the index of r is 1 .

Case $f(s)<a$:

* M^{a} is homeomorphic to the full torus.
* The homotopy type of M^{a} is a torus minus a disk with a 2-cell attached since the index of s is 2 .

In this thesis, we will present Morse theory on smooth finite-dimensional manifolds and one application based on the books [10, 13].

Chapter 1

Basic Definitions and Examples

We shall use the words "differentiable" and "smooth" and "differentiable of class $C^{\infty "}$ as synonyms. Before the main chapter of this thesis, let us recall some definitions and examples from differential geometry and topology.

1.1 Differential Geometry of Manifolds

1.1.1 Smooth Functions in Euclidean space

Definition 1.1.1: Let $U \subseteq \mathbb{R}^{n}$ and $V \subseteq \mathbb{R}^{m}$ be open subsets. We say that a function $f: U \rightarrow V$ is smooth if it has derivatives of all orders everywhere in U. The map f is called a diffeomorphism from U to V if it is a smooth bijection and its inverse $f^{-1}: V \rightarrow U$ is again smooth. We denote by $C^{\infty}(U, V)$ the set of smooth functions from U to V.

Example 1.1.1: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1.1 \epsilon & \text { if } x \leq 0 \\ \frac{1.1 \epsilon\left(1+e^{1 / 4 \epsilon^{2}}\right)}{1+e^{1 /\left(4 \epsilon^{2}-x^{2}\right)}} & \text { if } x \in(0,2 \epsilon) \\ 0 & \text { if } x \geq 2 \epsilon\end{cases}
$$

is smooth for any $\epsilon>0$.

1.1.2 Smooth manifolds

To formalize the definition of a smooth manifold we need the following notions.
Definition 1.1.2: Let M be a Hausdorff and second countable topological space.
(1) A coordinate chart or just chart of M is a pair (U, X) where U is an open subset of M and $X: U \rightarrow \mathbb{R}^{n}$ is a map such that $X(U)$ is an open subset of \mathbb{R}^{n} and X is a homeomorphism from U to $X(U)$.
(2) Two charts (U, X) and (V, Y) are called compatible if the subsets $X(U \cap V)$ and $Y(U \cap V)$ are open subsets of \mathbb{R}^{n}, and the transition map

$$
X \circ Y^{-1}: Y(U \cap V) \rightarrow X(U \cap V)
$$

is a diffeomorphism.

Figure 1.1: Compatible charts
(3) A collection of charts $\mathcal{A}=\left\{\left(U_{i}, X_{i}\right)\right\}$ is an n-dimensional atlas on M if any two charts are compatible and $\cup_{i} U_{i}=M$.
(4) Two atlases \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent if $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is again an atlas.
(5) A differentiable manifold structure on M is an equivalence class of atlases.
(6) A smooth manifold of dimension n is a topological space M together with a differentiable manifold structure on it.

Remark 1.1.1: From Definition 1.1.2:
(a) If $p \in U \subset M$, then $X(p)=\left(x_{1}(p), x_{2}(p), \cdots, x_{n}(p)\right) \in \mathbb{R}^{n}$.
(b) Since X is continuous, so $x_{i}: U \rightarrow \mathbb{R}$ is a real valued continuous function for each $i=1,2, \ldots, n$.
(c) The pair (U, X) is called a coordinate neighborhood (or a coordinate chart or a chart) of M.
(d) $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is called the local coordinate system (or local coordinate) on (U, X).

Example 1.1.2: The n-sphere $S^{n}=\left\{x=\left(x_{1}, \cdots, x_{n+1}\right):\|x\|=1\right\} \subset \mathbb{R}^{n+1}$ is a smooth manifold.

1.1.3 Smooth Maps between Smooth Manifolds

Definition 1.1.3: Let M_{1} and M_{2} be smooth manifolds of dimension m and n respectively. A map $f: M_{1} \rightarrow M_{2}$ is smooth at $p \in M_{1}$ if given a chart (V, Y) at $f(p) \in M_{2}$ there exists a chart (U, X) at $p \in M_{1}$ such that $f(U) \subseteq V$ and the mapping $Y \circ f \circ X^{-1}$: $X(U) \subset \mathbb{R}^{m} \rightarrow Y(V) \subset \mathbb{R}^{n}$ is smooth at $X(p)$. A map f is smooth if it is smooth at every point of M_{1}. The set of smooth functions from M_{1} to M_{2} is denoted $C^{\infty}\left(M_{1}, M_{2}\right)$.

In particular, a map $f: M \rightarrow \mathbb{R}$ on a smooth manifold M is called smooth if for all $p \in M$ there is a chart (U, X) about p such that the map $f \circ X^{-1}: X(U) \rightarrow \mathbb{R}$ is smooth. We denote by $C^{\infty}(M, \mathbb{R})=C^{\infty}(M)$ the set of real valued smooth functions on M.

Definition 1.1.4: Let M and N be two smooth manifolds. We say that a mapping

$$
\varphi: M \rightarrow N
$$

(1) is a diffeomorphism if it is bijection, and the maps φ and φ^{-1} are smooth;
(2) is a local diffeomorphism at $p \in M$ if there exist neighborhoods U of p and V of $\varphi(p)$ such that the map $\varphi_{\left.\right|_{U}}: U \rightarrow V$ is a diffeomorphism.

1.1.4 Tangent Vectors and Tangent Spaces

Definition 1.1.5: Let M be a smooth manifold. For any $p \in M$, choose a smooth curve $\alpha:(-\epsilon, \epsilon) \rightarrow M$ with $\alpha(0)=p$. Let \mathcal{D} be the set of all real valued functions on M that
are smooth at p. The tangent vector to the curve α at $t=0$ (or the tangent vector to M at p) is a function $\alpha^{\prime}(0): \mathcal{D} \rightarrow \mathbb{R}$ given by

$$
\alpha^{\prime}(0) f=\left.\frac{d(f \circ \alpha)}{d t}\right|_{t=0}, f \in \mathcal{D}
$$

The tangent space of M at p, denoted by $T_{p} M$, is the set of all tangent vectors to M at p.

Definition 1.1.6: Let M and N be smooth manifolds of dimension m and n respectively, and let $g: M \rightarrow N$ be a smooth map. For any $p \in M$ and for each $v \in T_{p} M$, choose a smooth curve $\alpha:(-\epsilon, \epsilon) \rightarrow M$ with $\alpha(0)=p, \alpha^{\prime}(0)=v$. The differential of g at p is the linear map $d g_{p}: T_{p} M \rightarrow T_{g(p)} N$ given by $d g_{p}(v)=\beta^{\prime}(0)$, where $\beta=g \circ \alpha$ is independent of the choice of α.

1.1.5 Hessian, Regular points, Critical Points of a Function

Definition 1.1.7: Let M be a smooth manifold of dimension n, and let $f: M \rightarrow \mathbb{R}$ be a smooth map of M. For each point $p \in M$, we choose a chart about $p, X: U \rightarrow V \subset \mathbb{R}^{n}$ such that $X(p)=\left(x_{1}(p), \cdots, x_{n}(p)\right) \in V$. Let

$$
F=f \circ X^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

and the derivative

$$
d F_{X(p)}: T_{X(p)} \mathbb{R}^{n} \rightarrow T_{F(X(p))} \mathbb{R}
$$

Then
(1) The Hessian of f with respect to X is defined as the symmetric matrix of second order partial derivatives:

$$
H_{F}=H\left(f \circ X^{-1}\right)=\left(\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i, j \leq n}
$$

(2) p is a critical point or singular point of f if $d F_{X(p)}$ is not surjective, this means that the partial derivatives

$$
\frac{\partial F}{\partial x_{1}}(X(p))=0, \cdots, \frac{\partial F}{\partial x_{n}}(X(p))=0
$$

The real value $f(p)=F(X(p))$ is then called a critical value of f.
(3) Any point which is not a critical point of f is called a regular point of f, and any real value which is not a critical value of f is called a regular value of f.
(4) p is a non-degenerate critical point of f if the Hessian is non-singular, that is, $\operatorname{det}\left(H_{F}(X(p))\right) \neq 0$.
(5) Any critical point whose Hessian is singular is called a degenerate critical point.
(6) The index of a non-degenerate critical point p with respect to f is the number of negative eigenvalues of the Hessian $H_{F}(X(p))$.

Example 1.1.3: Let $M=S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ be the unit sphere in \mathbb{R}^{3}. The function $f: M \rightarrow \mathbb{R}$ by $(x, y, z) \mapsto z$ is a Morse function.

Proof. Let

$$
\phi_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{x_{1}}{1-x_{3}}, \frac{x_{2}}{1-x_{3}}\right) \quad \text { and } \quad \phi_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{x_{1}}{1+x_{3}}, \frac{x_{2}}{1+x_{3}}\right)
$$

be two charts of S^{2}. The inverses of ϕ_{1} and ϕ_{2} are

$$
\phi_{1}^{-1}\left(y_{1}, y_{2}\right)=\left(\frac{2 y_{1}}{y_{1}^{2}+y_{2}^{2}+1}, \frac{2 y_{2}}{y_{1}^{2}+y_{2}^{2}+1}, \frac{y_{1}^{2}+y_{2}^{2}-1}{y_{1}^{2}+y_{2}^{2}+1}\right)
$$

and

$$
\phi_{2}^{-1}\left(x_{1}, x_{2}\right)=\left(\frac{2 x_{1}}{1+x_{1}^{2}+x_{2}^{2}}, \frac{2 x_{2}}{1+x_{1}^{2}+x_{2}^{2}}, \frac{1-x_{1}^{2}-x_{2}^{2}}{1+x_{1}^{2}+x_{2}^{2}}\right)
$$

respectively. In order to determine the critical points of f, consider the map $f \circ \phi_{i}^{-1}$: $\mathbb{R}^{2} \rightarrow \mathbb{R}$ for each $i=1,2$. Note that $\left(S^{2} \backslash\{S\}, \phi_{2}\right)$ is the coordinate chart around $(0,0,1)$ and define a map $g=f \circ \phi_{2}^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
g\left(x_{1}, x_{2}\right):=f \circ \phi_{2}^{-1}\left(x_{1}, x_{2}\right)=\frac{1-x_{1}^{2}-x_{2}^{2}}{1+x_{1}^{2}+x_{2}^{2}}
$$

Since

$$
d g_{\left(x_{1}, x_{2}\right)}=\left(\frac{-4 x_{1}}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{2}}, \frac{-4 x_{2}}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{2}}\right)
$$

we have

$$
d g_{\left(x_{1}, x_{2}\right)}=0 \text { if and only if } x_{1}=x_{2}=0
$$

Hence $\phi_{2}^{-1}(0,0)=(0,0,1)$ is the only critical point of f in $S^{2} \backslash\{S\}$. We will now find the Hessian of f at $(0,0,1)$. By Definition 1.1.7,

$$
\begin{aligned}
H_{g}\left(\phi_{2}(0,0,1)\right)=H_{g}(0,0) & =\left(\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(0,0)\right)_{1 \leq i, j \leq 2} \\
& =\left(\begin{array}{cc}
\frac{-4\left(1-3 x_{1}^{2}+x_{2}^{2}\right)}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{3}} & \left.\frac{16 x_{1} x_{2}}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{3}}\right|_{(0,0)} \\
\frac{16 x_{1} x_{2}}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{3}}{ }_{\left.\right|_{(0,0)}} & \frac{-4\left(1+x_{1}^{2}-3 x_{2}^{2}\right)}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{3}}{ }_{\left.\right|_{(0,0)}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-4 & 0 \\
0 & -4
\end{array}\right)
\end{aligned}
$$

This shows that $(0,0,1)$ is a non-degenerate critical point of f with index 2 . For the point $(0,0,-1)$, we use the chart $\left(S^{2} \backslash\{N\}, \phi_{1}\right)$, and a similar calculation shows that $(0,0,-1)$ is the only critical point of f in $S^{2} \backslash\{N\}$ with index 0 .

Example 1.1.4: Let r and R be real numbers satisfying $0<r<R$, and let

$$
M=\mathbb{T}^{2}=\left\{(x, y, z): x^{2}+\left(\sqrt{y^{2}+z^{2}}-R\right)^{2}=r^{2}\right\}
$$

be a two dimensional torus. The function $f: \mathbb{T}^{2} \rightarrow \mathbb{R}$ defined by $f((x, y, z))=z$ is a Morse funtion which has four non-degenerate critical points

$$
(0,0,-(R+r)),(0,0,-(R-r)),(0,0, R-r) \text { and }(0,0, R+r)
$$

with indices $0,1,1$ and 2 respectively.
Proposition 1.1.1: The notions (2), (3), (4) defined in Definition 1.1.7 do not depend on the choice of chart.

Proof. Let $\left(U_{1}, \varphi_{1}\right)$ and $\left(U_{2}, \varphi_{2}\right)$ be coordinate charts of M around a critical point p of f such that $\varphi_{1}(p)=\left(x_{1}(p), \cdots, x_{n}(p)\right)=\left(y_{1}(p), \cdots, y_{n}(p)\right)=\varphi_{2}(p)$. We note that

$$
\begin{equation*}
f \circ \varphi_{1}^{-1}=\left(f \circ \varphi_{2}^{-1}\right) \circ\left(\varphi_{2} \circ \varphi_{1}^{-1}\right) \tag{1.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f \circ \varphi_{2}^{-1}=\left(f \circ \varphi_{1}^{-1}\right) \circ\left(\varphi_{1} \circ \varphi_{2}^{-1}\right) \tag{1.1.2}
\end{equation*}
$$

(2) We will prove that $\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i}}\left(\varphi_{1}(p)\right)=0$ if and only if $\frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{i}}\left(\varphi_{2}(p)\right)=0$, for all $i=1,2, \cdots, n$.
Suppose that for all i, we have $\frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{i}}\left(\varphi_{2}(p)\right)=0$, and let $\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{j}$ be the j th coordinate function of $\varphi_{2} \circ \varphi_{1}^{-1}$. By equation (1.1.1) and $\varphi_{2} \circ \varphi_{1}^{-1}\left(\varphi_{1}(p)\right)=\varphi_{2}(p)$, using the chain rule we obtain

$$
\begin{equation*}
\left.\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i}}\right|_{\varphi_{1}(p)}=\left.\left.\sum_{j=1}^{n} \frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{j}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)} \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{j}}{\partial x_{i}}\right|_{\varphi_{1}(p)} \tag{1.1.3}
\end{equation*}
$$

Hence

$$
\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i}}\left(\varphi_{1}(p)\right)=\sum_{j=1}^{n} \frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{j}}\left(\varphi_{2}(p)\right) \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{j}}{\partial x_{i}}\left(\varphi_{1}(p)\right)
$$

By hypothesis, $\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i}}\left(\varphi_{1}(p)\right)=0$. Similarly, by equation (1.1.2) and the chain rule, if we have $\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i}}\left(\varphi_{1}(p)\right)=0$, for all i, then we have $\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial y_{i}}\left(\varphi_{2}(p)\right)=0$.
(3) It follows from the previous point.
(4) We will prove that $\operatorname{det}\left(H_{f \circ \varphi_{1}^{-1}}\left(\varphi_{1}(p)\right)\right) \neq 0$ if and only if $\operatorname{det}\left(H_{f \circ \varphi_{2}^{-1}}\left(\varphi_{2}(p)\right)\right) \neq 0$.

From equation (1.1.3), for $1 \leq j \leq n$, we have

$$
\left.\frac{\partial\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{j}}\right|_{\varphi_{1}(p)}=\left.\left.\sum_{k=1}^{n} \frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{k}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)} \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{k}}{\partial x_{j}}\right|_{\varphi_{1}(p)}
$$

By applying the chain rule again and $\varphi_{2} \circ \varphi_{1}^{-1}\left(\varphi_{1}(p)\right)=\varphi_{2}(p)$,

$$
\begin{aligned}
\left.\frac{\partial^{2}\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i} \partial x_{j}}\right|_{\varphi_{1}(p)} & =\frac{\partial}{\partial x_{i}}\left(\left.\left.\sum_{k=1}^{n} \frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{k}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)} \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{k}}{\partial x_{j}}\right|_{\varphi_{1}(p)}\right) \\
& =\sum_{k=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left.\left.\frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{k}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)} \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{k}}{\partial x_{j}}\right|_{\varphi_{1}(p)}\right) \\
& =\left.\sum_{k=1}^{n}\left(\left.\left.\sum_{l=1}^{n} \frac{\partial^{2}\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{l} \partial y_{k}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)} \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{l}}{\partial x_{i}}\right|_{\varphi_{1}(p)}\right) \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{k}}{\partial x_{j}}\right|_{\varphi_{1}(p)} \\
& +\left.\left.\sum_{k=1}^{n} \frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{k}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)} \frac{\partial^{2}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{k}}{\partial x_{i} \partial x_{j}}\right|_{\varphi_{1}(p)} \\
& =\sum_{k=1}^{n}\left(\sum_{l=1}^{n} \frac{\partial^{2}\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{l} \partial y_{k}}\left(\varphi_{2}(p)\right) \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{l}}{\partial x_{i}}\left(\varphi_{1}(p)\right)\right) \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{k}}{\partial x_{j}}\left(\varphi_{1}(p)\right)
\end{aligned}
$$

Since p is a critical point of f,

$$
\left.\frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{k}}\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\right|_{\varphi_{1}(p)}=\frac{\partial\left(f \circ \varphi_{2}^{-1}\right)}{\partial y_{k}}\left(\varphi_{2}(p)\right)=0, \forall k .
$$

Now, for $1 \leq k, l \leq n$, the above expression can be written as:

$$
\frac{\partial^{2}\left(f \circ \varphi_{1}^{-1}\right)}{\partial x_{i} \partial x_{j}}\left(\varphi_{1}(p)\right)=\left(\frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{1}}{\partial x_{i}}, \cdots, \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{n}}{\partial x_{i}}\right)_{\varphi_{1}(p)} H_{2}\left(\begin{array}{c}
\frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{1}}{\partial x_{j}} \\
\vdots \\
\frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{n}}{\partial x_{j}}
\end{array}\right)_{\varphi_{1}(p)}
$$

where $H_{2}=H_{f \circ \varphi_{2}^{-1}}\left(\varphi_{2}(p)\right)$. Hence, for all $1 \leq i, j \leq n$, we obtain

$$
\begin{equation*}
H_{f \circ \varphi_{1}^{-1}}\left(\varphi_{1}(p)\right)=J^{t} H_{f \circ \varphi_{2}^{-1}}\left(\varphi_{2}(p)\right) J, \tag{1.1.4}
\end{equation*}
$$

where

$$
J=J\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\left(\varphi_{1}(p)\right)=\left(\begin{array}{ccc}
\frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{1}}{\partial x_{1}} & \cdots & \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{n}}{\partial x_{1}} & \cdots & \frac{\partial\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)_{n}}{\partial x_{n}}
\end{array}\right)_{\varphi_{1}(p)}
$$

is the Jacobian of $\varphi_{2} \circ \varphi_{1}^{-1}$ at $\varphi_{1}(p)$ and J^{t} is its transpose. Since $\varphi_{2} \circ \varphi_{1}^{-1}$ is a smooth map with smooth inverse, the matrix $J=J\left(\varphi_{2} \circ \varphi_{1}^{-1}\right)\left(\varphi_{1}(p)\right)$ is nonsingular. Therefore, equation (1.1.4) implies $\operatorname{det}\left(H_{f \circ \varphi_{1}^{-1}}\left(\varphi_{1}(p)\right)\right) \neq 0$ if and only if $\operatorname{det}\left(H_{f \circ \varphi_{2}^{-1}}\left(\varphi_{2}(p)\right)\right) \neq 0$.

Proposition 1.1.2: The index of a non-degenerate critical point is independent of the chart.

Proof. According to equation (1.1.4), $H_{f \circ \varphi_{1}^{-1}}\left(\varphi_{1}(p)\right)$ and $H_{f \circ \varphi_{2}^{-1}}\left(\varphi_{2}(p)\right)$ are congruent. Therefore, by Sylvester's Law, $H_{f \circ \varphi_{1}^{-1}}\left(\varphi_{1}(p)\right)$ and $H_{f \circ \varphi_{2}^{-1}}\left(\varphi_{2}(p)\right)$ have the same index.

We need to state, without proof, the Morse-Sard-Federer theorem (see Theorem 3.4.3 of [4] or Theorem 4, p. 10 of [2] or p. 16 of [12]).

Theorem 1.1.1: (Morse-Sard-Federer theorem) Let $f: M \rightarrow N$ be a smooth map between smooth finite dimensional manifolds.
(1) The set of critical values of f has measure zero in N.
(2) If $f(M)$ has nonempty interior, then the set of regular values is dense in the image $f(M)$.

1.1.6 Vector Fields and One-Parameter Tranformation Groups

Definition 1.1.8: A smooth vector field on a smooth manifold M is a smooth map $X: M \rightarrow T M$, such that for each $p \in M$ we assign a vector $X_{p} \in T_{p} M, X: p \longmapsto\left(p, X_{p}\right)$.

Definition 1.1.9: Let $c: I \rightarrow M$ be a smooth curve. A smooth vector field V along c is a smooth map that associates to every $t \in I$ a tangent vector $V(t) \in T_{c(t)} M$. A velocity vector (or tangent vector field), $\frac{d c}{d t} \in T_{c(t)} M$, is defined by

$$
\frac{d c}{d t}(f)=\lim _{h \rightarrow 0} \frac{f(c(t+h))-f(c(t))}{h}, f \in \mathcal{D}
$$

Definition 1.1.10: A one-parameter group of diffeomorphisms of a smooth manifold M is a smooth map $\phi: \mathbb{R} \times M \rightarrow M$ satisfying the following properties:
(a) For each $t \in \mathbb{R}$, the map $\phi_{t}: M \rightarrow M$ defined by $\phi_{t}(q)=\phi(t, q)$ is a diffeomorphism of M onto itself.
(b) For all $s, t \in \mathbb{R}$, we have $\phi_{s+t}=\phi_{s} \circ \phi_{t}$.

Next, given a one-parameter group of diffeomorphisms ϕ on a smooth manifold M, we define a vector field X on M by

$$
\begin{equation*}
X_{q}(f)=\lim _{h \rightarrow 0} \frac{f\left(\phi_{h}(q)\right)-f(q)}{h} \tag{1.1.5}
\end{equation*}
$$

where f is any smooth real valued function on M. This smooth vector field is said to generate the group ϕ.

Example 1.1.5: Let M be the 1 -sphere S^{1}. The map

$$
\left.\begin{array}{rl}
\phi: \mathbb{R} \times S^{1} & \longrightarrow S^{1} \\
(t,(x, y)) & \mapsto
\end{array} \begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)\binom{x}{y}, ~ \$
$$

is a one-parameter group of diffeomorphisms.
Definition 1.1.11: A Riemannian manifold is a smooth manifold endowed with an inner product on each tangent space which vary smoothly.

Definition 1.1.12: Let M be a Riemannian manifold. Let $\langle X, Y\rangle$ denote the inner product of two tangent vectors, as defined by this metric, and let $f \in \mathcal{D}$. The gradient of f as a vector field $\boldsymbol{g r a d f}$ on M defined by

$$
\langle X, \operatorname{grad} f\rangle=X(f)
$$

In other words,

$$
\langle v, \operatorname{gradf}(p)\rangle=d f_{p}(v), p \in M, \forall v \in T_{p} M
$$

Remark 1.1.2:

(a) The vector field $\operatorname{grad} f(p)=0$ if p is a critical point of f.
(b) If we have a curve $c: \mathbb{R} \rightarrow M$ with velocity vector $\frac{d c}{d t}$, then

$$
\frac{d(f \circ c)}{d t}=d f_{c(t)}\left(\frac{c(t)}{d t}\right)=\left\langle\frac{d c}{d t}, \operatorname{gradf}(c(t))\right\rangle
$$

Lemma 1.1.1: A smooth vector field X on M which vanishes outside of a compact subset K of M generates a unique one-parameter group of diffeomorphisms ϕ of M.

1.1.7 Jacobian of a map and coarea formula

Let M_{0} and M_{1} be smooth, connected, Riemannian manifolds of dimension n, equipped with Riemann metrics g_{0} and g_{1} respectively. Let $F: M_{0} \rightarrow M_{1}$ be a smooth map. For any $x_{0} \in M_{0}$, the differential map of F at x_{0} is a linear map

$$
d F_{x_{0}}: T_{x_{0}} M_{0} \rightarrow T_{F\left(x_{0}\right)} M_{1}
$$

If we choose an orthonormal basis $\left\{\vec{e}_{i}\right\}_{1 \leq i \leq n}$ of $T_{x_{0}} M_{0}$ and let $\vec{f}_{k}=d F_{x_{0}}\left(\vec{e}_{k}\right)$, then we can form an $n \times n$ symmetric matrix

$$
G_{F}\left(x_{0}\right):=\left(\left\langle\vec{f}_{i}, \vec{f}_{j}\right\rangle_{g_{1}}\right)_{1 \leq i, j \leq n}
$$

The matrix $G_{F}\left(x_{0}\right)$ is non-negative because for any $y=\left(y_{1}, \cdots, y_{n}\right) \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
y G_{F}\left(x_{0}\right) y^{T} & =\left(\sum_{i=1}^{n}\left\langle f_{i}, f_{1}\right\rangle y_{i}, \cdots, \sum_{i=1}^{n}\left\langle f_{i}, f_{n}\right\rangle y_{i}\right) y^{T} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle f_{i}, f_{j}\right\rangle y_{i} y_{j} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle f_{i} y_{i}, f_{j} y_{j}\right\rangle \\
& =\sum_{j=1}^{n}\left\langle\sum_{i=1}^{n} f_{i} y_{i}, f_{j} y_{j}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} f_{i} y_{i}, \sum_{j=1}^{n} f_{j} y_{j}\right\rangle \\
& =\left\|\sum_{k=1}^{n} f_{k} y_{k}\right\|^{2} \\
& \geq 0
\end{aligned}
$$

Since $G_{F}\left(x_{0}\right)$ is non-negative, all of its eigenvalues are non-negative so that

$$
\operatorname{det}\left(G_{F}\left(x_{0}\right)\right) \geq 0
$$

The Jacobian of F is the smooth non-negative function

$$
\begin{aligned}
\left|J_{F}\right|: M_{0} & \rightarrow[0,+\infty) \\
x_{0} & \mapsto \sqrt{\operatorname{det} G_{F}\left(x_{0}\right)} .
\end{aligned}
$$

Since $G_{F}\left(x_{0}\right)$ is a symmetric matrix, it can be expressed as

$$
G_{F}\left(x_{0}\right)=Q_{F} D_{F} Q_{F}^{T}
$$

(the spectral decomposition) where Q is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is a diagonal matrix formed with the egenvalues $\lambda_{1}, \cdots, \lambda_{n}$ of $G_{F}\left(x_{0}\right)$. By the non-negativity of the eigenvalues of $G_{F}\left(x_{0}\right)$, we have

$$
G_{F}\left(x_{0}\right)=Q_{F} D_{F} Q_{F}^{T}=Q_{F} \sqrt{D_{F}} Q_{F}^{T} Q_{F} \sqrt{D_{F}} Q_{F}^{T}=B_{F}\left(x_{0}\right) B_{F}\left(x_{0}\right)
$$

where $B_{F}\left(x_{0}\right)=Q_{F} \sqrt{D_{F}} Q_{F}^{T}$. Therefore,

$$
\operatorname{det} G_{F}\left(x_{0}\right)=\operatorname{det}\left(B_{F}\left(x_{0}\right) B_{F}\left(x_{0}\right)\right)=\operatorname{det} B_{F}\left(x_{0}\right) \operatorname{det} B_{F}\left(x_{0}\right)=\left(\operatorname{det} B_{F}\left(x_{0}\right)\right)^{2} .
$$

According to Theorem 1.1.1, if $F: M_{0} \rightarrow M_{1}$ is a smooth map between smooth finite dimensional manifolds, then almost every $x_{1} \in M_{1}$ is a regular value of F. For such x_{1} 's, the fiber $F^{-1}\left(x_{1}\right)$ is a finite set and we denote by $N_{F}\left(x_{1}\right) \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ its cardinality.

Now we state the coarea formula theorem without proof.
Theorem 1.1.2: (Coarea formula) Let $F:\left(M_{0}, g_{0}\right) \rightarrow\left(M_{1}, g_{1}\right)$ be a smooth map between two smooth, compact, connected, oriented, finite-dimensional Riemannian manifolds. Then the function

$$
M_{1} \ni x_{1} \longmapsto N_{F}\left(x_{1}\right) \in \mathbb{Z}_{\geq 0} \cup\{\infty\}
$$

is measurable with respect to the Lebesgue measure defined by the volume form $d V_{g_{1}}$, and

$$
\int_{M_{1}} N_{F}\left(x_{1}\right) d V_{g_{1}}\left(x_{1}\right)=\int_{M_{0}}\left|J_{F}\right|\left(x_{0}\right) d V_{g_{0}}\left(x_{0}\right)
$$

where $x_{1}=F\left(x_{0}\right)$.

1.1.8 Frenet-Serret formulas

Let $\alpha: I \subset \mathbb{R} \rightarrow E=\mathbb{R}^{3}$ be a curve parametrized by arc length s. The tangent, normal, and binormal unit vectors, often called $T(s), N(s)$, and $B(s)$ (or simply T, N, and B) form an orthonormal basis spanning \mathbb{R}^{3} and are defined as follows:

$$
\begin{aligned}
T(s) & =\alpha^{\prime}(s) \\
N(s) & =\frac{\alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime \prime}(s)\right\|} \\
B(s) & =T(s) \times N(s)
\end{aligned}
$$

The Frenet-Serret Formulas are the following

$$
\begin{aligned}
& T^{\prime}=\kappa N \\
& N^{\prime}=-\kappa T+\tau B \\
& B^{\prime}=\tau N,
\end{aligned}
$$

where
$\kappa=\kappa(s)=\left\|\alpha^{\prime \prime}(s)\right\|$ is called the curvature or bending of α at s, $\tau=\tau(s)$ is called the torsion or twisting of α at s.

1.2 Topology of Manifolds

In this section we will assume that X and Y are topological spaces unless stated otherwise.

1.2.1 Homotopy

Definition 1.2.1: A family of maps $h_{t}: X \rightarrow Y, t \in[0,1]$ is called a homotopy if the associated map $H: X \times[0,1] \rightarrow Y$ given by $H(x, t)=h_{t}(x)$ is continuous on $X \times[0,1]$.

Definition 1.2.2: Let $f, g: X \rightarrow Y$ be two continuous maps.Then the maps f and g are homotopic if there exists a homotopy $h_{t}: X \rightarrow Y$ such that $h_{0}(x)=f(x)$ and $h_{1}(x)=g(x)$ for all $x \in X$, and we write $f \simeq g$.

Definition 1.2.3: A continuous map $f: X \rightarrow Y$ is a homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that $f \circ g \simeq i d_{Y}$ and $g \circ f \simeq i d_{X}$. In this case, the spaces X and Y are said to be homotopy equivalent (or to have the same homotopy type).

Remark 1.2.1: The map g mentioned in Definition 1.2.3 is called a homotopy inverse of f.

Example 1.2.1: Let $p \in \mathbb{R}^{n}$. The space $\mathbb{R}^{n} \backslash\{p\}$ is homotopy equivalent to S^{n-1}.
Definition 1.2.4: A subspace A of X is a deformation retract of X if there exists a homotopy $h_{t}: X \rightarrow X, t \in[0,1]$ satisfying:
(i) $h_{0}(x)=x$ for all $x \in X$,
(ii) $h_{1}(x) \in A$ for all $x \in X$,
(iii) $h_{t}(a)=a$, for all $a \in A$ and $t \in[0,1]$.

1.2.2 CW-Complexes

Definition 1.2.5: (Attaching a λ-cell)
Let Y be any topological space, and let $e^{\lambda}=\left\{x \in \mathbb{R}^{\lambda}:\|x\| \leq 1\right\}$ be the λ-cell with boundary $\partial\left(e^{\lambda}\right)=\left\{x \in \mathbb{R}^{\lambda}:\|x\|=1\right\}=S^{\lambda-1}$. If $g: S^{\lambda-1} \rightarrow Y$ is a continuous map, then Y with a λ-cell attached by g, denoted by $Y \cup_{g} e^{\lambda}$, is obtained by taking the disjoint union of Y and e^{λ}, and identifying each $x \in S^{\lambda-1}$ with $g(x) \in Y$.

Remark 1.2.2: e^{0} is a point and $\partial\left(e^{0}\right)=S^{-1}$ is the empty set.
Definition 1.2.6: Let X be a Hausdorff space. X is said to be a $\boldsymbol{C W}$-complex (or cell complex) if there exists a sequence of subspaces $X^{(0)} \subset X^{(1)} \subset X^{(3)} \subset \cdots \subset X$ such that
(i) $X^{(0)}$ is a discrete (disjoint union of 0-cells).
(ii) $X^{(i+1)}$ is obtained from $X^{(i)}$ by attaching $(i+1)$-cells.
(iii) The set $X=\cup_{n} X^{(n)}$ is endowed with the weak topology (if $A \subset X$ is open (or closed) if and only if $A \cap X^{(n)}$ is open (or closed) in $X^{(n)}$ for each n).

Definition 1.2.7: Let X be a $C W$ complex. The n-skeleton of X, denoted by $X^{(n)}$, is the union of all the cells of dimensions less than or equal to n in X.

Definition 1.2.8: Let X, Y be two $C W$ complexes. A map $f: X \rightarrow Y$ is a cellular map if $f\left(X^{(n)}\right) \subseteq Y^{(n)}$ for all n.

Chapter 2

Morse Theory

In this chapter we will give the definition of Morse functions, prove their existence and describe their properties.

2.1 Morse Function

Definition 2.1.1: Let f be a smooth function on a smooth manifold $M . f$ is said to be a Morse function if every critical point of f is non-degenerate.

Example 2.1.1: The height functions on the sphere S^{2} and the torus \mathbb{T}^{2} (Examples 1.1.3 and 1.1.4) are Morse functions.

Example 2.1.2: Let $\left[z_{0}, z_{1}, \cdots, z_{n}\right]$ be an equivalence class of $(n+1)$-tuples $\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ of complex numbers, with $\sum_{j=0}^{n}\left|z_{j}\right|^{2}=1$, and let $M=\mathbb{C} P^{n}=\left\{\left[z_{0}, z_{1}, \cdots, z_{n}\right]\right\}$ be the complex projective n-space. Define $f: M \rightarrow \mathbb{R}$ by

$$
\left[z_{0}, z_{1}, \cdots, z_{n}\right] \mapsto \sum_{j=0}^{n} c_{j}\left|z_{j}\right|^{2}
$$

where $c_{0}, c_{1}, \cdots, c_{n}$ are distinct real constants. Such a function f is a Morse function.
Proof. In order to determine the critical points of f and their indices, we consider the following local coordinate system. For each $j \in\{0,1, \cdots, n\}$, let U_{j} be the set of equivalence classes of $(n+1)$-tuples $\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ of complex numbers with $z_{j} \neq 0$. That is,

$$
\begin{aligned}
U_{j} & =\left\{\left[z_{0}, z_{1}, \cdots, z_{j}, \cdots, z_{n}\right]: z_{j} \neq 0\right\} \\
& =\left\{\left[\frac{z_{0}}{z_{j}}, \frac{z_{1}}{z_{j}}, \cdots, 1, \cdots, \frac{z_{n}}{z_{j}}\right]\right\} \\
& =\left\{\left[\left|z_{j}\right| \frac{z_{0}}{z_{j}},\left|z_{j}\right| \frac{z_{1}}{z_{j}}, \cdots,\left|z_{j}\right|, \cdots,\left|z_{j}\right| \frac{z_{n}}{z_{j}}\right]\right\} \\
& =\left\{\left[x_{0}+i y_{0}, \cdots, \sqrt{1-\sum_{k \neq j}\left(x_{k}^{2}+y_{k}^{2}\right)}, \cdots, x_{n}+i y_{n}\right]\right\},
\end{aligned}
$$

where

$$
\left|z_{j}\right| \frac{z_{k}}{z_{j}}=x_{k}+i y_{k}
$$

and

$$
\left|z_{j}\right|=\sqrt{1-\sum_{k \neq j}\left(x_{k}^{2}+y_{k}^{2}\right)}
$$

Let $B_{1}(0)$ be the open unit ball in $\mathbb{R}^{2 n}$. We now prove that U_{j} is diffeomorphic to $B_{1}(0)$. We define $g_{j}: U_{j} \rightarrow B_{1}(0)$ by

$$
g_{j}(u)=\left(x_{0}, y_{0}, x_{1}, y_{1}, \cdots, x_{j}, y_{j}, \cdots, x_{n}, y_{n}\right)
$$

where $u=\left[x_{0}+i y_{0}, x_{1}+i y_{1}, \cdots, \sqrt{1-\sum_{k \neq j}\left(x_{k}^{2}+y_{k}^{2}\right)}, \cdots, x_{n}+i y_{n}\right]$. The map g_{j} is well defined since for any

$$
u=\left[x_{0}+i y_{0}, x_{1}+i y_{1}, \cdots, \sqrt{1-\sum_{k \neq j}\left(x_{k}^{2}+y_{k}^{2}\right)}, \cdots, x_{n}+i y_{n}\right] \in U_{j}
$$

we have

$$
\begin{array}{rlr}
\left|g_{j}(u)\right|^{2} & =\left|\left(x_{0}, y_{0}, x_{1}, y_{1}, \cdots, x_{j}, y_{j}, \cdots, x_{n}, y_{n}\right)\right| \\
& =\sum_{k=0}^{n}\left(x_{k}^{2}+y_{k}^{2}\right)-\left(x_{j}^{2}+y_{j}^{2}\right) & \\
& <\sum_{k=0}^{n}\left(x_{k}^{2}+y_{k}^{2}\right) & \\
& <1 & \\
& \left(\text { since } z_{j} \neq 0, \text { so } x_{j}^{2}+y_{j}^{2}>0\right) \\
& \text { (since } \left.\sum_{k=0}^{n}\left(x_{k}^{2}+y_{k}^{2}\right)=1\right) .
\end{array}
$$

This means that $\operatorname{Im}\left(g_{j}\right) \subset B_{1}(0)$. In addition, it is clear that g is bijective and smooth. Hence $\left(U_{j}, g_{j}\right)$ is a coordinate chart of M around $\left[0, \cdots, 1_{j}, \cdots, 0\right]$. Note that for any

$$
v=\left(x_{0}, y_{0}, x_{1}, y_{1}, \cdots, x_{j}, y_{j}, \cdots, x_{n}, y_{n}\right) \in B_{1}(0)
$$

we have

$$
g_{j}^{-1}(v)=\left[x_{0}+i y_{0}, x_{1}+i y_{1}, \cdots, \sqrt{1-\sum_{k \neq j}\left(x_{k}^{2}+y_{k}^{2}\right)}, \cdots, x_{n}+i y_{n}\right] \in U_{j}
$$

We now define $F:=f \circ g_{j}^{-1}: B_{1}(0) \subset \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F(v) & =\sum_{k \neq j} c_{k}\left(x_{k}^{2}+y_{k}^{2}\right)+c_{j}\left(\sqrt{1-\sum_{k \neq j}\left(x_{k}^{2}+y_{k}^{2}\right)^{2}}\right) \\
& =c_{j}+\sum_{k \neq j}\left(c_{k}-c_{j}\right)\left(x_{k}^{2}+y_{k}^{2}\right) \\
& =c_{j}+\sum_{k \neq j} b_{k}\left(x_{k}^{2}+y_{k}^{2}\right),
\end{aligned}
$$

with $b_{k}=c_{k}-c_{j} \neq 0, \forall k \neq j$, where $v=\left(x_{0}, y_{0}, \cdots, x_{j}, y_{j}, \cdots, x_{n}, y_{n}\right) \in B_{1}(0)$.
To find the critical point of f, we have to solve the equation $d F_{v}=0$. For any $v=\left(x_{0}, y_{0}, \cdots, x / y^{\prime}, y_{j}, \cdots, x_{n}, y_{n}\right) \in B_{1}(0)$, we have

$$
d F_{v}=2\left(b_{0} x_{0}, b_{0} y_{0}, \cdots, b_{j} x_{j}, b_{j} y_{j}, \cdots, b_{n} x_{n}, b_{n} y_{n}\right)
$$

This shows that $d F_{v}=0$ if and only if $v=0$. Hence

$$
p_{j}=g_{j}^{-1}(0)=\left[0, \cdots, 1_{j}, \cdots, 0\right]
$$

is the only critical point in U_{j}. We next find the Hessian of f at p_{j}. Let $t_{2 s}=x_{s}$ and $t_{2 s+1}=y_{s}$ for $s=0,1, \cdots, n$ and so by definition 1.1.7,

$$
H_{F}\left(g_{j}\left(p_{j}\right)\right)=H_{F}(0)=\left(\frac{\partial^{2} F}{\partial t_{k} \partial t_{l}}(0)\right)_{k, l \in\{0,1, \cdots, 2 n+1\} \backslash\{2 j, 2 j+1\}}=\left(\begin{array}{ccccc}
2 b_{0} & 0 & \cdots & 0 & 0 \\
0 & 2 b_{0} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 2 b_{n} & 0 \\
0 & 0 & \cdots & 0 & 2 b_{n}
\end{array}\right)
$$

This shows that p_{j}, for each $j=0,1, \cdots, n$, is a non-degenerate critical point of f since $b_{k} \neq 0, \forall k \neq j$, so that $H_{F}\left(g_{j}\left(p_{j}\right)\right)$ is non-singular. The critical point p_{j} has index equal to twice the number of k with $b_{k}<0$ (or $c_{k}<c_{j}$). Therefore, f is a Morse function.

2.2 Morse lemma

Lemma 2.2.1: (Morse lemma) Let p be non degenerate critical point of f with index λ. Then there is a local coordinate system $Y: V \subset \mathbb{R}^{n} \rightarrow U_{p}$ in a neighborhood U_{P} of p with $0 \in V$ and $Y(0)=p$ such that the identity

$$
\begin{equation*}
(f \circ Y)\left(y_{1}, y_{2}, \cdots, y_{n}\right)=f(p)-y_{1}^{2}-\cdots-y_{\lambda}^{2}+y_{\lambda+1}^{2}+\cdots+y_{n}^{2} \tag{2.2.1}
\end{equation*}
$$

holds throughout V.

Before proving the Morse lemma we prove the following.

Lemma 2.2.2: Let $f \in C^{\infty}$ be function in a convex neighborhood V of 0 in \mathbb{R}^{n}, with $f(0)=0$. Then

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} x_{i} g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

for some suitable C^{∞} functions g_{i} defined in V, with $g_{i}(0)=\frac{\partial f}{\partial x_{i}}(0)$.
Proof. Let $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in V$. Since V is convex, then $t\left(x_{1}, x_{2}, \cdots, x_{n}\right)+(1-t) 0 \in V$, for all $0 \leq t \leq 1$. In other words, $\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right) \in V$, for all $0 \leq t \leq 1$. Define

$$
\begin{aligned}
F:[0,1] & \rightarrow \mathbb{R} \\
F(t) & =f\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right)
\end{aligned}
$$

By the Fundamental Theorem of Calculus

$$
F(1)-F(0)=\int_{0}^{1} \frac{d F(t)}{d t} d t
$$

Since $F(1)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $F(0)=f(0)=0$,

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =\int_{0}^{1} \frac{d f}{d t}\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right) d t \\
& =\int_{0}^{1}\left(\frac{\partial f\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right)}{\partial x_{1}} x_{1}+\cdots+\frac{\partial f\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right)}{\partial x_{n}} x_{n}\right) d t \\
& =\int_{0}^{1} \sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right) d t \\
& =\sum_{i=1}^{n} x_{i} \int_{0}^{1} \frac{\partial f}{\partial x_{i}}\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right) d t
\end{aligned}
$$

We define

$$
\begin{aligned}
g_{i}: V & \rightarrow \mathbb{R} \\
g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =\int_{0}^{1} \frac{\partial f}{\partial x_{i}}\left(t x_{1}, t x_{2}, \cdots, t x_{n}\right) d t
\end{aligned}
$$

Since $f \in C^{\infty}$, so is g_{i} for each i. Furthermore, $g_{i}(0)=\frac{\partial f}{\partial x_{i}}(0) \int_{0}^{1} d t=\frac{\partial f}{\partial x_{i}}(0)$. Therefore, $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} x_{i} g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

Proof. (of the Morse lemma) Without loss of generality, assume that $f(p)=0$, since we can replace f by $f-f(p)$ if necessary. Choose a local coordinate system $X: V_{0} \subset$ $\mathbb{R}^{n} \rightarrow U_{p}$ in a neighborhood U_{p} of p such that $X(0)=p$. Since $f(p)=(f \circ X)(0)=0$ and
$(f \circ X) \in C^{\infty}$, by Lemma 2.2.2, there exists n suitable functions $g_{i} \in C^{\infty}$ defined in a convex neighborhood $V_{1} \subset \mathbb{R}^{n}$ of 0 such that

$$
(f \circ X)\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} x_{i} g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

and satisfy

$$
g_{i}(0)=\frac{\partial(f \circ X)}{\partial x_{i}}(0), \text { for any } i=1,2, \cdots, n .
$$

Now we have $g_{i}(0)=\frac{\partial(f \circ X)}{\partial x_{i}}(0)=\frac{\partial f}{\partial x_{i}}(p)=0$. Using Lemma 2.2.2 again, for every $i=1,2, \cdots, n$, we have

$$
g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{j=1}^{n} x_{j} h_{i j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

where for each $1 \leq j \leq n, h_{i j}$ is a C^{∞} function defined in a convex neighborhood $V_{2} \subseteq V_{1}$ of 0 , with $h_{i j}(0)=\frac{\partial g_{i}}{\partial x_{j}}(0)$, for any $j=1,2, \cdots, n$. Hence

$$
\begin{aligned}
(f \circ X)\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} x_{j} h_{i j}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} h_{i j}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2} h_{i i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\sum_{i<j} x_{i} x_{j}\left(h_{i j}+h_{j i}\right)\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2} H_{i i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)+2 \sum_{i<j} x_{i} x_{j} H_{i j}\left(x_{1}, x_{2}, \cdots, x_{n}\right),
\end{aligned}
$$

where $H_{i j}=\frac{1}{2}\left(h_{i j}+h_{j i}\right)=H_{j i}$. Now let us compute $H_{f}^{x}(p):=\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(p)\right)_{1 \leq i, j \leq n}$, the Hessian matrix of f at p. We know that $\frac{\partial f}{\partial x_{i} \partial x_{j}}(p)=\frac{\partial(f \circ X)}{\partial x_{i} \partial x_{j}}(0)$. So, let us compute the second order partial derivative of $f \circ X$ at the origin. From the computation above, we have defined $f \circ X$ in a convex neighborhood V_{2} of 0 by

$$
\begin{equation*}
(f \circ X)\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2} H_{i i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)+2 \sum_{i<j} x_{i} x_{j} H_{i j}\left(x_{1}, x_{2}, \cdots, x_{n}\right) . \tag{2.2.2}
\end{equation*}
$$

Therefore,

$$
\frac{\partial(f \circ X)}{\partial x_{i} \partial x_{i}}(0)=2 H_{i i}(0)
$$

and

$$
\frac{\partial(f \circ X)}{\partial x_{i} \partial x_{j}}(0)=\frac{\partial(f \circ X)}{\partial x_{j} \partial x_{i}}(0)=2 H_{i j}(0), \text { for all } i<j .
$$

Therefore,

$$
\frac{\partial(f \circ X)}{\partial x_{i} \partial x_{j}}(0)=2 H_{i j}(0), \text { for all } 1 \leq i, j \leq n .
$$

By hypothesis, p is a non degenerate critical point of f, so

$$
0 \neq \operatorname{det}\left(H_{f}^{x}(p)\right)=\operatorname{det}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(p)\right)=\operatorname{det}\left(\frac{\partial f \circ X}{\partial x_{i} \partial x_{j}}(0)\right)=\operatorname{det}\left(2 H_{i j}(0)\right)_{1 \leq i, j \leq n}
$$

We can assume that $H_{r r}^{x}(p)=2 H_{r r}(0) \neq 0$. If $H_{r r}(0)=0$ and $\operatorname{det}\left(H_{i j}(0)\right)_{1 \leq i, j \leq n} \neq 0$, then there exists $i>r$ such that $H_{i r} \neq 0$. Hence we choose a new suitable local coordinate system
$\left(\widehat{x}_{1}, \cdots, \widehat{x}_{r-1}, \widehat{x}_{r}, \cdots, \widehat{x}_{i-1}, \widehat{x}_{i}, \cdots, \widehat{x}_{n}\right)=\left(x_{1}, \cdots, x_{r-1}, \frac{x_{r}+x_{i}}{2}, \cdots, x_{i-1}, \frac{x_{r}-x_{i}}{2}, \cdots, x_{n}\right)$.
Therefore, $\widehat{H}_{r r}=H_{r r}+H_{i r} \neq 0$. We wish to prove this lemma by induction. Now suppose that $H_{11}(0) \neq 0$ and by the continuity of $H_{i j}\left(H_{i j} \in C^{\infty}\right.$, for every $\left.i, j\right)$, there is a neighborhood $V_{3} \subseteq V_{2}$ of 0 such that $H_{11} \neq 0$ on it. We define a new first coordinate y_{1} near V_{3} by

$$
y_{1}=\sqrt{\left|H_{11}\right|}\left(x_{1}+\sum_{j=2}^{n} x_{j} \frac{H_{1 j}}{H_{11}}\right)
$$

and for each $2 \leq j \leq n$, we keep the x_{j}-coordinate as it is. Thus

$$
x_{1}=\frac{1}{\sqrt{\left|H_{11}\right|}} y_{1}-\sum_{j=2}^{n} x_{j} \frac{H_{1 j}}{H_{11}}
$$

and

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}}(0) & \frac{\partial x_{1}}{\partial x_{2}}(0) & \cdots & \frac{\partial x_{1}}{\partial x_{n}}(0) \\
\frac{\partial x_{2}}{\partial y_{1}}(0) & \frac{\partial x_{2}}{\partial x_{2}}(0) & \cdots & \frac{\partial x_{2}}{\partial x_{n}}(0) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{n}}{\partial y_{1}}(0) & \frac{\partial x_{n}}{\partial x_{2}}(0) & \cdots & \frac{\partial x_{n}}{\partial x_{n}}(0)
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cccc}
\frac{1}{\sqrt{\left|H_{11}(0)\right|}} & -\frac{H_{12}(0)}{H_{11}(0)} & \cdots & -\frac{H_{1 n}(0)}{H_{11}(0)} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \\
& =\frac{1}{\sqrt{\left|H_{11}(0)\right|} \neq 0 .}
\end{aligned}
$$

Since the determinant of the Jacobian matrix of the transformation from ($y_{1}, x_{2}, \cdots, x_{n}$) to $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ evaluated at 0 is not zero, $\left(y_{1}, x_{2}, \cdots, x_{n}\right)$ is a local coordinate system on the neighborhood V_{3} of 0 . In V_{3}, we square y_{1} and

$$
\begin{aligned}
y_{1}^{2} & =\left|H_{11}\right| x_{1}^{2}+2\left|H_{11}\right| \sum_{j=2}^{n} x_{1} x_{j} \frac{H_{1 j}}{H_{11}}+\left|H_{11}\right|\left(\sum_{j=2}^{n} x_{j} \frac{H_{1 j}}{H_{11}}\right)^{2} \\
& = \begin{cases}H_{11} x_{1}^{2}+2 \sum_{j=2}^{n} x_{1} x_{j} H_{1 j}+\frac{\left(\sum_{j=2}^{n} x_{j} H_{1 j}\right)^{2}}{H_{11}} & \text { if } H_{11}>0 \\
-H_{11} x_{1}^{2}-2 \sum_{j=2}^{n} x_{1} x_{j} H_{1 j}-\frac{\left(\sum_{j=2}^{n} x_{j} H_{1 j}\right)^{2}}{H_{11}} & \text { if } H_{11}<0 .\end{cases}
\end{aligned}
$$

Hence

$$
H_{11} x_{1}^{2}+2 \sum_{j=2}^{n} x_{1} x_{j} H_{1 j}= \begin{cases}y_{1}^{2}-2 \sum_{2 \leq i<j} x_{i} x_{j} \frac{H_{1 i} H_{1 j}}{H_{11}}-\sum_{j=2}^{n} x_{j}^{2} \frac{H_{1 j}^{2}}{H_{11}} & \text { if } H_{11}>0 \tag{2.2.3}\\ -y_{1}^{2}-2 \sum_{2 \leq i<j} x_{i} x_{j} \frac{H_{1 i} H_{1 j}}{H_{11}}-\sum_{j=2}^{n} x_{j}^{2} \frac{H_{1 j}^{2}}{H_{11}} & \text { if } H_{11}<0\end{cases}
$$

Therefore, by equations (2.5.10) and (2.2.3),

$$
\begin{aligned}
f \circ X & =\sum_{i=1}^{n} x_{i}^{2} H_{i i}+2 \sum_{i<j} x_{i} x_{j} H_{i j} \\
& =x_{1}^{2} H_{11}+2 \sum_{j=2}^{n} x_{1} x_{j} H_{1 j}+\sum_{i=2}^{n} x_{i}^{2} H_{i i}+2 \sum_{2 \leq i<j} x_{i} x_{j} H_{i j} \\
& = \begin{cases}y_{1}^{2}+\sum_{j=2}^{n} x_{j}^{2}\left(H_{j j}-\frac{H_{1 j}^{2}}{H_{11}}\right)+2 \sum_{2 \leq i<j} x_{i} x_{j}\left(H_{i j}-\frac{H_{1 i} H_{1 j}}{H_{11}}\right) & \text { if } H_{11}>0 \\
-y_{1}^{2}+\sum_{j=2}^{n} x_{j}^{2}\left(H_{j j}-\frac{H_{1 j}^{2}}{H_{11}}\right)+2 \sum_{2 \leq i<j} x_{i} x_{j}\left(H_{i j}-\frac{H_{1 i} H_{1 j}}{H_{11}}\right) & \text { if } H_{11}<0\end{cases} \\
& = \begin{cases}y_{1}^{2}+\sum_{j=2}^{n} x_{j}^{2} H_{j j}^{(1)}+2 \sum_{2 \leq i<j} x_{i} x_{j} H_{i j}^{(1)} & \text { if } H_{11}>0 \\
-y_{1}^{2}+\sum_{j=2}^{n} x_{j}^{2} H_{j j}^{(1)}+2 \sum_{2 \leq i<j} x_{i} x_{j} H_{i j}^{(1)} & \text { if } H_{11}<0,\end{cases} \\
& = \pm y_{1}^{2}+\sum_{j=2}^{n} x_{j}^{2} H_{j j}^{(1)}+2 \sum_{2 \leq i<j} x_{i} x_{j} H_{i j}^{(1)}
\end{aligned}
$$

where $H_{i j}=\frac{1}{2}\left(h_{i j}+h_{j i}\right)=H_{j i}$. Suppose that there is $r>1$ such that the following equation holds:

$$
\begin{equation*}
f \circ Y= \pm y_{1}^{2} \pm y_{2}^{2} \pm \cdots \pm y_{r-1}^{2}+\sum_{j=r}^{n} x_{j}^{2} H_{j j}^{(r)}+2 \sum_{r \leq i<j} x_{i} x_{j} H_{i j}^{(r)} \tag{2.2.4}
\end{equation*}
$$

We will prove that the equation (2.2.4) holds for $r+1$. We have assumed that $H_{r r}^{(r)}(0) \neq 0$ and again by the continuity of $H_{i j}^{(r)}$, there is a neighborhood $V_{r+2} \subseteq V_{r+1} \subseteq \cdots \subseteq V_{3}$ of 0 such that $H_{r r}^{(r)} \neq 0$ on it. As in the base case, we define a new $r^{t h}$ coordinate y_{r} near V_{r+2} by

$$
y_{r}=\sqrt{\left|H_{r r}^{(r)}\right|}\left(x_{r}+\sum_{j=r+1}^{n} x_{j} \frac{H_{r j}^{(r)}}{H_{r r}^{(r)}}\right)
$$

and for each $j \neq r$, we keep the x_{j}-coordinate as it is. We obtain that ($y_{1}, y_{2}, \cdots, y_{r-1}, y_{r}, x_{r+1}, \cdots, x_{n}$) is a local coordinate system of V_{r+2}. By a similar calculation as that of equation (2.2.3), we have

$$
x_{r}^{2} H_{r r}^{(r)}+2 \sum_{j=r+1} x_{r} x_{j} H_{r j}^{(r)}= \pm y_{r}^{2}-2 \sum_{r+1 \leq i<j} x_{i} x_{j} \frac{H_{r i} H_{r j}}{H_{r r}}-\sum_{j=r+1}^{n} x_{j}^{2} \frac{H_{r j}^{2}}{H_{r r}} .
$$

This, together with equation (2.2.4), gives

$$
\begin{aligned}
f \circ Y & =\sum_{i \leq r-1} \pm y_{i}^{2}+\sum_{j=r}^{n} x_{j}^{2} H_{j j}^{(r)}+2 \sum_{r \leq i<j} x_{i} x_{j} H_{i j}^{(r)} \\
& =\sum_{i \leq r-1} \pm y_{i}^{2}+x_{r}^{2} H_{r r}^{(r)}+2 \sum_{j=r+1} x_{r} x_{j} H_{r j}^{(r)}+\sum_{j=r+1}^{n} x_{j}^{2} H_{j j}^{(r)}+2 \sum_{r+1 \leq i<j} x_{i} x_{j} H_{i j}^{(r)} \\
& =\sum_{i \leq r} \pm y_{i}^{2}-2 \sum_{r+1 \leq i<j} x_{i} x_{j} \frac{H_{r i} H_{r j}}{H_{r r}}-\sum_{j=r+1}^{n} x_{j}^{2} \frac{H_{r j}^{2}}{H_{r r}}+\sum_{j=r+1}^{n} x_{j}^{2} H_{j j}^{(r)}+2 \sum_{r+1 \leq i<j} x_{i} x_{j} H_{i j}^{(r)} \\
& =\sum_{i \leq r} \pm y_{i}^{2}+\sum_{j=r+1}^{n} x_{j}^{2}\left(H_{j j}^{(r)}-\frac{H_{r j}^{2}}{H_{r r}}\right)+2 \sum_{r+1 \leq i<j} x_{i} x_{j}\left(H_{i j}^{(r)}-\frac{H_{r i} H_{r j}}{H_{r r}}\right) \\
& =\sum_{i \leq r} \pm y_{i}^{2}+\sum_{j=r+1}^{n} x_{j}^{2} H_{j j}^{(r+1)}+2 \sum_{r+1 \leq i<j} x_{i} x_{j} H_{i j}^{(r+1)},
\end{aligned}
$$

where $H_{j j}^{(r+1)}=H_{j j}^{(r)}-\frac{H_{r j}^{2}}{H_{r r}}$ and $H_{i j}^{(r+1)}=H_{i j}^{(r)}-\frac{H_{r i} H_{r j}}{H_{r r}}$.
Corollary 2.2.1: Let $f: M \rightarrow \mathbb{R}$ be a smooth function on a smooth manifold M. A non-degenerate critical point of a smooth function f is isolated. In particular, if f is a Morse function and M is compact, then f has a finite number of critical points.

Proof. By Lemma 2.2.1, we observe that if f has a non-degenerate critical point at p, then there is a coordinate chart $\left(U_{p}, Y^{-1}\right)$ of M about p that satisfies equation (2.2.1). This chart contains no other critical point of f other than p since, by equation (2.2.1),

$$
d(f \circ Y)_{\left(y_{1}, \cdots, y_{n}\right)}=\left(\pm 2 y_{1}, \cdots, \pm 2 y_{n}\right)
$$

and $d(f \circ Y)_{\left(y_{1}, \cdots, y_{n}\right)}=0$ if and only if $\left(y_{1}, \cdots, y_{n}\right)=0$. Hence $Y(0)=p$ is the only critical point of f in U_{p}. Therefore, p is isolated.

Now suppose that M is compact. If the set of critical points were infinite, it would have an accumulation point. By continuity of $d f$, such a point would also be a critical point which is not isolated, which is a contradiction.

2.3 Existence of Morse Functions

The goal of this section is to show the existence of Morse functions on any smooth manifold. Since the Whitney embedding theorem (see [14], Chapter IV) tells us that any smooth manifold is embedded in a suitable Euclidean vector space, let M be a smooth n-dimensional manifold embedded in $E=\mathbb{R}^{n+k}$ for some $k \in \mathbb{N}$.

Let Λ be a smooth finite dimensional manifold. We will consider the families of smooth functions $f_{\lambda}: M \rightarrow \mathbb{R}$, for all $\lambda \in \Lambda$, and investigate the conditions on λ such that f_{λ} has no degenerate critical points. To do this, we will produce a smooth map $\pi: Z \rightarrow \Lambda$ and then prove that f_{λ} has no degenerate critical points for every $\lambda \in \Lambda$, which is a regular
value of π. Moreover, Theorem 1.1.1 implies that f_{λ} is a Morse function for almost all $\lambda \in \Lambda$.

Let us recall that $E^{*}=\{\alpha \mid \alpha: E \rightarrow \mathbb{R}$ is a linear map $\}$ is the dual space of real vector space E, and the following useful definitions:

Definition 2.3.1: The dual of the tangent space $T_{x} M$ of a smooth manifold M is called the cotangent space at x denoted by

$$
T_{x}^{*} M=\left(T_{x} M\right)^{*}
$$

An element of $T_{x}^{*} M$ is called cotangent vector or covector.
Definition 2.3.2: Let $f: M \rightarrow N$ be a smooth map between smooth finite dimensional manifolds. The differential map of f at x is the linear map $d f_{x}: T_{x} M \rightarrow T_{f(x)} N$.
(1) f is called immersion if $d f_{x}$ is injective for every $x \in M$.
(2) f is called submersion if $d f_{x}$ is surjective for every $x \in M$

Definition 2.3.3: Let $f: M \rightarrow N$ be a smooth map and $x \in M$. We have the cotangent map

$$
d^{*} f_{x}:=\left(d f_{x}\right)^{*}: T_{f(x)}^{*} N \rightarrow T_{x}^{*} M
$$

defined as the dual to the tangent map (the differential map of f at x)

$$
d f_{x}: T_{x} M \rightarrow T_{f(x)} N
$$

In particular, if $N=\mathbb{R}$, then $d f_{x}$ is a covector (i.e. $d f_{x} \in T_{x}^{*} M$).
Let $F: \Lambda \times E \rightarrow \mathbb{R}$ be a smooth function. We associate to F a smooth family of functions $F_{\lambda}: E \rightarrow \mathbb{R}$ given as $F_{\lambda}(x)=F(\lambda, x)$, for all $(\lambda, x) \in \Lambda \times E$. Let f and f_{λ}, respectively, be the restriction of F to $\Lambda \times M$ and of F_{λ} to M. That is

$$
F_{\mid \Lambda \times M}:=f: \Lambda \times M \subset \Lambda \times E \rightarrow \mathbb{R}
$$

and

$$
F_{\left.\lambda\right|_{M}}:=f_{\lambda}:\{\lambda\} \times M \cong M \rightarrow \mathbb{R}
$$

Let $x \in M$. Since $i: M \hookrightarrow E$ is an embedding, $d i_{x}: T_{x} M \hookrightarrow T_{x} E=E$ is injective and there is a natural surjective linear map $\left(d i_{x}\right)^{*}:=P_{x}: E^{*} \rightarrow T_{x}^{*} M$ defined by

$$
\alpha \mapsto \alpha\left(d i_{x}\right)
$$

In particular, we have the following identity

$$
d\left(f_{\lambda}\right)_{x}=P_{x} d\left(F_{\lambda}\right)_{x}
$$

since $T_{x} M \xrightarrow{d i_{x}} T_{x} E \xrightarrow{d\left(F_{\lambda}\right)_{x}} \mathbb{R}$ determined $d\left(f_{\lambda}\right)_{x}: T_{x} M \longrightarrow \mathbb{R}$ by

$$
d\left(f_{\lambda}\right)_{x}=d\left(F_{\lambda}\right)_{x} \circ d i_{x}=\left(d i_{x}\right)^{*}\left(d\left(F_{\lambda}\right)_{x}\right)=P_{x} d\left(F_{\lambda}\right)_{x} .
$$

Remark 2.3.1: The surjective linear map P_{x} is a submersion since the differential of the linear map P_{x} is P_{x} and it is surjective.

For every $x \in M$, we define a smooth partial differential map of $f, \partial^{x} f: \Lambda \rightarrow T_{x}^{*} M$ by

$$
\partial^{x} f(\lambda)=d\left(f_{\lambda}\right)_{x} .
$$

Definition 2.3.4: Let $F: \Lambda \times E \rightarrow \mathbb{R}$ be a family of smooth functions. We say that
(1) F is sufficiently large relative to the submanifold $M \hookrightarrow E$ if $\operatorname{dim} \Lambda \geq \operatorname{dim} M$ and for every $x \in M$, the point $0 \in T_{x}^{*} M$ is a regular value for $\partial^{x} f$.
(2) F is large if for every $x \in E$ the partial differential map

$$
\partial^{x} F: \Lambda \rightarrow E^{*}
$$

defined by $\partial^{x} F(\lambda)=d\left(F_{\lambda}\right)_{x}$ is a submersion.
Example 2.3.1: Let E be Euclidean space with the standard inner product $\langle\cdot, \cdot\rangle$.
(a) Suppose $\Lambda=E^{*}$ and let $H: E^{*} \times E \rightarrow \mathbb{R}$ be the function defined by

$$
H(\lambda, x)=\lambda(x), \text { for all }(\lambda, x) \in E^{*} \times E
$$

(b) Suppose $\Lambda=E$ and let $R: E \times E \rightarrow \mathbb{R}$ be the function defined by

$$
R(\lambda, x)=\frac{1}{2}\|x-\lambda\|^{2}, \text { for all }(\lambda, x) \in E \times E
$$

(c) Let Λ be the space of positive definite symmetric endomorphisms $A: E \rightarrow E$, and let $F: \Lambda \times E \rightarrow \mathbb{R}$ be the function defined by

$$
F(A, x)=\frac{1}{2}\langle A x, x\rangle, \quad \text { for all }(A, x) \in \Lambda \times E
$$

The first two functions above are large and the last function is sufficiently large relative to any submanifold of E not passing through the origin.

Proof. (a) Let $x \in E$. We will prove that the differential of

$$
\partial^{x} H: E^{*} \rightarrow E^{*}, \lambda \longmapsto d\left(H_{\lambda}\right)_{x}
$$

is surjective for all $\lambda \in E^{*}$. Since $H_{\lambda}: E \rightarrow \mathbb{R}$ is given by $H_{\lambda}(y)=\lambda(y)$.
For every $v \in T_{x} E=E$, we choose $\alpha:(-\epsilon, \epsilon) \rightarrow E$ be the smooth curve on E which is defined by

$$
\begin{equation*}
\alpha(t)=x+t v \tag{2.3.1}
\end{equation*}
$$

Then
$d\left(H_{\lambda}\right)_{x}(v)=\frac{d}{d t}\left(H_{\lambda}(\alpha(t))\right)_{\left.\right|_{t=0}}=\frac{d}{d t}(\lambda(x+t v))_{\left.\right|_{t=0}}=\frac{d}{d t}(\lambda(x)+t \lambda(v))_{\left.\right|_{t=0}}=\lambda(v)$.
Then $\partial^{x} H$ is the identity and hence the differential of $\partial^{x} H$ is surjective. Therefore, H is large.
(b) Let $x \in E$. We wish to show that the differential of

$$
\partial^{x} R: E \rightarrow E^{*}, \lambda \longmapsto d\left(R_{\lambda}\right)_{x}
$$

is surjective. We will first find $d\left(R_{\lambda}\right)_{x}$, where $R_{\lambda}: E \rightarrow \mathbb{R}$ is given by

$$
R_{\lambda}(y)=\frac{1}{2}\|y-\lambda\|^{2} .
$$

For every $v \in E$, using the smooth curve on E as in (2.3.1), we have

$$
\begin{aligned}
d\left(R_{\lambda}\right)_{x}(v) & =\left.\frac{d}{d t}\left(R_{\lambda}(\alpha(t))\right)\right|_{t=0} \\
& =\left.\frac{1}{2} \frac{d}{d t}\left(\|(x-\lambda)+t v\|^{2}\right)\right|_{t=0} \\
& =\left.\frac{1}{2} \frac{d}{d t}(\langle(x-\lambda)+t v,(x-\lambda)+t v\rangle)\right|_{t=0} \\
& =\left.\frac{1}{2} \frac{d}{d t}(\langle(x-\lambda),(x-\lambda)\rangle+2\langle(x-\lambda), t v\rangle+\langle t v, t v\rangle)\right|_{t=0} \\
& =\left.\frac{1}{2} \frac{d}{d t}\left(\|(x-\lambda)\|^{2}+2 t\langle(x-\lambda), v\rangle+t^{2}\|v\|^{2}\right)\right|_{t=0} \\
& =\langle(x-\lambda), v\rangle
\end{aligned}
$$

Thus $\partial^{x} R$ is a linear function which is defined by

$$
\partial^{x} R(\lambda)=d\left(R_{\lambda}\right)_{x}=\langle(x-\lambda), \cdot\rangle=(x-\lambda)^{*}
$$

where $(x-\lambda)^{*}$ is the metric dual.
Now we will prove that the differential of $\partial^{x} R$ is surjective. It suffices to prove that $\partial^{x} R$ is surjective since $\partial^{x} R$ is a linear function. To see this, let e_{1}, \cdots, e_{n+k} be the orthonormal basis of E. Define $\left\{e_{i}^{*}=\left\langle e_{i}, \cdot\right\rangle\right\}$ as a basis of E^{*}. Let $\alpha \in E^{*}, \alpha: E \rightarrow \mathbb{R}$, and let

$$
\lambda=x-\sum_{i=1}^{n+k} \alpha\left(e_{i}\right) e_{i} \in E
$$

Then $\langle x-\lambda, \cdot\rangle=\alpha$. Indeed, for every $v \in E, v=\sum_{i=1}^{n+k} v_{i} e_{i}$, we have

$$
\langle x-\lambda, v\rangle=\left\langle\sum_{i=1}^{n+k} \alpha\left(e_{i}\right) e_{i}, \sum_{i=1}^{n+k} v_{i} e_{i}\right\rangle=\sum_{i=1}^{n+k} \alpha\left(e_{i}\right) v_{i}=\alpha\left(\sum_{i=1}^{n+k} v_{i} e_{i}\right)=\alpha(v)
$$

since $\left\{e_{1}, \cdots, e_{n+k}\right\}$ is the orthonormal basis of E and α is linear function.
(c) Let M be a submanifold of E which does not pass through the origin. We will prove that $F: \Lambda \times E \rightarrow \mathbb{R}$ is sufficiently large relative to M. For every $x \in M$, we consider the partial differential map

$$
\partial^{x} f:=g: \Lambda \rightarrow T_{x}^{*} M
$$

which is given by $A \mapsto d\left(f_{A}\right)_{x}$. Since $f_{A}: M \rightarrow \mathbb{R}$ is defined by $y \mapsto \frac{1}{2}\langle A y, y\rangle$ for every $v \in T_{x} M$, take a smooth curve $\alpha:(-\varepsilon, \varepsilon) \rightarrow M$: such that $\alpha(0)=x$ and $\frac{d \alpha}{d t}(0)=v$, so that

$$
\begin{aligned}
d\left(f_{A}\right)_{x}(v) & =\frac{d}{d t}\left(f_{A}(\alpha(t))\right)_{t=0} \\
& =\frac{1}{2}\left(\left\langle\frac{d}{d t} A(\alpha(t)), \alpha(t)\right\rangle+\left\langle A(\alpha(t)), \frac{d}{d t} \alpha(t)\right\rangle\right)_{\left.\right|_{t=0}} \\
& =\left.\frac{1}{2}\left(\left\langle A \frac{d \alpha}{d t}(t), \alpha(t)\right\rangle+\left\langle A(\alpha(t)), \frac{d \alpha}{d t}(t)\right\rangle\right)\right|_{t=0} \\
& =\frac{1}{2}(\langle A v, x\rangle+\langle A x, v\rangle) \\
& =\langle A x, v\rangle
\end{aligned}
$$

Define $g(A)=\langle A x, \cdot\rangle=(A x)^{*}$. To prove that $0 \in T_{x}^{*} M$ is a regular value of $\partial^{x} f$, it suffices to prove that

$$
d g_{B}: T_{B} \Lambda \rightarrow T_{(B x)^{*}}\left(T_{x}^{*} M\right)=T_{x}^{*} M
$$

is surjective for every $B \in g^{-1}(0)$. Note that $g^{-1}(0)=\left\{B \in \Lambda: B x \perp T_{x} M\right\}$. Let $B \in g^{-1}(0), C \in T_{B} \Lambda$, and $\beta:(-\epsilon, \epsilon) \rightarrow \Lambda$ be a smooth curve with $\beta(0)=B$ and $\beta^{\prime}(0)=C$. Then, for every $v \in T_{x} M$ we have

$$
\begin{aligned}
d g_{B}(C)(v) & =\frac{d}{d t}(g(\beta(t))(v))_{t=0} \\
& =\frac{d}{d t}(\langle\beta(t) x, v\rangle)_{\left.\right|_{t=0}} \\
& =\left.\left(\left\langle\beta^{\prime}(t) x, v\right\rangle+\left\langle\beta(t) x, \frac{d v}{d t}\right\rangle\right)\right|_{t=0} \\
& =\langle C x, v\rangle
\end{aligned}
$$

Since Λ is an open set of the vector space of symmetric matrices, $T_{B} \Lambda$ is isomorphic to the space of symmetric matrices. Let $\rho \in T_{x}^{*} M, \rho: T_{x} M \rightarrow \mathbb{R}$ (linear). We will then find an element C of $T_{B} \Lambda$ such that $\langle C x, v\rangle=\rho(v)$, for all $v \in T_{x} M$. To see this, we claim that for every $\rho(v)$, there exists $w \in T_{x} M$ such that $\rho(v)=\langle w, z\rangle$. Indeed, let $\alpha_{1}, \cdots, \alpha_{n+k}$ be orthonormal basis of E such that

$$
v=\sum_{i=1}^{n+k} v_{i} \alpha_{i}=\sum_{i=1}^{n+k} \alpha_{i}^{*}(v) \alpha_{i}
$$

where $\left\{\alpha_{i}^{*}\right\}_{1 \leq i \leq n+k}$ is the dual basis of E. Thus

$$
\rho(v)=\rho\left(\sum_{i=1}^{n+k} \alpha_{i}^{*}(v) \alpha_{i}\right)=\sum_{i=1}^{n+k} \alpha_{i}^{*}(v) \rho\left(\alpha_{i}\right)=\left(\sum_{i=1}^{n+k} \rho\left(\alpha_{i}\right) \alpha_{i}^{*}\right)(v)
$$

and we choose $w=\rho^{*}=\sum_{i=1}^{n+k} \rho\left(\alpha_{i}\right) \alpha_{i}$. Therefore,

$$
\langle w, v\rangle=\left\langle\sum_{i=1}^{n+k} \rho\left(\alpha_{i}\right) \alpha_{i}, \sum_{i=1}^{n+k} v_{i} \alpha_{i}\right\rangle=\sum_{i=1}^{n+k} v_{i} \rho\left(\alpha_{i}\right)=\rho\left(\sum_{i=1}^{n+k} v_{i} \alpha_{i}\right)=\rho(v) .
$$

Now, for any $x \in M, x \neq 0$, we can choose an orthonormal basis $\left\{\beta_{i}\right\}_{1 \leq i \leq n+k}$ of E such that $x=\sum_{i=1}^{n+k} x_{i} \beta_{i}$ with $x_{i} \neq 0$ for all i and we have

$$
w=\rho^{*}=\sum_{i=1}^{n+k} \rho\left(\beta_{i}\right) \beta_{i}
$$

such that $\rho(v)=\langle w, v\rangle$. In this basis, we can find a symmetric matrix

$$
C=\left(\begin{array}{ccc}
\frac{\rho\left(\beta_{1}\right)}{x_{1}} & 0 & \\
& \ddots & \\
& 0 & \frac{\rho\left(\beta_{n+k}\right)}{x_{n+k}}
\end{array}\right)
$$

such that $C x=w$. That is, there exists $C=\left(\begin{array}{ccc}\frac{\rho\left(\beta_{1}\right)}{x_{1}} & 0 & \\ & \ddots & \\ & 0 & \frac{\rho\left(\beta_{n+k}\right)}{x_{n+k}}\end{array}\right) \in T_{B} \Lambda$ such that $\langle C x, v\rangle=\langle w, v\rangle=\rho(v), \forall v \in T_{x} M$. This proves that $d g_{B}$ is surjective.

Lemma 2.3.1: If $F: \Lambda \times E \rightarrow \mathbb{R}$ is large, then it is sufficiently large relative to any smooth submanifold $M \subset E$.

Proof. Suppose that F is large. Then, for every $x \in E$, we have

$$
\partial^{x} F: \Lambda \rightarrow E^{*}, \lambda \mapsto d\left(F_{\lambda}\right)_{x}
$$

is a submersion. We wish to prove that $0 \in T_{x}^{*} M$ is a regular value for

$$
\partial^{x} f: \Lambda \rightarrow T_{x}^{*} M, \lambda \mapsto d\left(f_{\lambda}\right)_{x}
$$

Using the identity $d\left(f_{\lambda}\right)_{x}=P_{x} d\left(F_{\lambda}\right)_{x}$, we have

$$
\partial^{x} f=P_{x} \partial^{x} F
$$

Hence $\partial^{x} f$ is a submersion since it is a composition of two submersions P_{x} and $\partial^{x} F$. This means that the differential of $\partial^{x} f$ is surjective and so it has no critical values. This proves that $0 \in T_{x}^{*} M$ is a regular value for $\partial^{x} f$.

Theorem 2.3.1: If $F: \Lambda \times E \rightarrow \mathbb{R}$ is sufficiently large relative to a smooth submanifold $M \subset E$, then there exists a subset $\Lambda_{\infty} \subset \Lambda$ of measure zero such that $f_{\lambda}=\left.F_{\lambda}\right|_{M}: M \rightarrow \mathbb{R}$ is a Morse function for all $\lambda \in \Lambda \backslash \Lambda_{\infty}$.

Proof. It will be convenient to divide it proof into various steps, claims and lemmas.
Step 1. First assume that M is special, i.e. that there exist global coordinates

$$
\left(x_{1}, \cdots, x_{n}, \cdots, x_{n+k}\right)
$$

on E such that M can be identified with an open subset $W \subset F=\mathbb{R}^{n}$ of the coordinate subspace

$$
\left\{x_{n+1}=\cdots=x_{n+k}=0\right\}
$$

For every $\lambda \in \Lambda$, we now consider the function $f_{\lambda}: M \rightarrow \mathbb{R}$ as a function

$$
f_{\lambda}: M=W \rightarrow \mathbb{R}
$$

and the differential of f_{λ} at $w=\left(x_{1}, \cdots, x_{n}\right) \in W$,

$$
d\left(f_{\lambda}\right)_{w}: T_{w} W=F=\mathbb{R}^{n} \rightarrow T_{f_{\lambda}(w)} \mathbb{R}=\mathbb{R}
$$

is given by

$$
v \mapsto\left\langle\operatorname{grad}\left(f_{\lambda}\right)(w), v\right\rangle,
$$

and we have a function $\varphi_{\lambda}: W \rightarrow \mathbb{R}^{n}$,

$$
\varphi_{\lambda}(w)=\operatorname{grad}\left(f_{\lambda}\right)(w)=\left(\left.\frac{\partial f_{\lambda}}{\partial x_{1}}\right|_{w}, \cdots,\left.\frac{\partial f_{\lambda}}{\partial x_{n}}\right|_{w}\right)
$$

Thus a point $w \in W$ is a non-degenerate critical point of f_{λ} if and only if $\varphi_{\lambda}(w)=0$ and the map $d \varphi_{\lambda}: T_{w} W \rightarrow \mathbb{R}^{n}$ is bijective (i.e., the Hessian matrix of f_{λ} is non-singular). Hence, we deduce that f_{λ} is a Morse function if and only if for every $w \in W$ such that $\varphi_{\lambda}(w)=0, w$ is not a critical point of φ_{λ} (since $d \varphi_{\lambda}$ is surjective at the point w). Equivalently, $0 \in \mathbb{R}^{n}$ is a regular value of φ_{λ}.

We now consider the smooth function $\Phi: \Lambda \times W \rightarrow \mathbb{R}^{n}$ defined by

$$
\Phi(\lambda, w)=\varphi_{\lambda}(w)
$$

Claim 2.3.1: $0 \in \mathbb{R}^{n}$ is a regular value of Φ.
It suffices to prove that for every $\left(\lambda_{0}, w_{0}\right) \in \Phi^{-1}(0) \subset \Lambda \times W$, the differential map $d \Phi_{\left(\lambda_{0}, w_{0}\right)}: T_{\left(\lambda_{0}, w_{0}\right)}(\Lambda \times W) \rightarrow \mathbb{R}^{n}$ is surjective (i.e. $\left(\lambda_{0}, w_{0}\right) \in \Phi^{-1}(0)$ is not a critical point of Φ). Since F is sufficiently large relative to M, by our definition of F, we have the differential map

$$
\partial^{w_{0}} f: \Lambda \rightarrow T_{w_{0}}^{*} M, \lambda \mapsto d\left(f_{\lambda}\right)_{w_{0}}=\left\langle\operatorname{grad} f_{\lambda}\left(w_{0}\right), \cdot\right\rangle=\left\langle\varphi_{\lambda}\left(w_{0}\right), \cdot\right\rangle=\left(\varphi_{\lambda}\left(w_{0}\right)\right)^{*}
$$

is surjective for every $\left(\lambda, w_{0}\right) \in \Lambda \times\left\{w_{0}\right\} \subset \Lambda \times W$ such that

$$
\partial^{w_{0}} f(\lambda)=0
$$

i.e. $\varphi_{\lambda}\left(w_{0}\right)=\Phi\left(\lambda, w_{0}\right)=0$. We then have

$$
d\left(\partial^{w_{0}} f\right)_{\lambda_{0}}: T_{\lambda_{0}} \Lambda \rightarrow T_{\partial^{w_{0}} f\left(\lambda_{0}\right)}\left(T_{w_{0}}^{*} M\right)=T_{w_{0}}^{*} M=\left(\mathbb{R}^{n}\right)^{*}
$$

is surjective for every $\left(\lambda_{0}, w_{0}\right) \in \Lambda \times\left\{w_{0}\right\} \subset \Phi^{-1}(0)$. Next, we will prove that the partial differential map

$$
\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}: T_{\lambda_{0}} \Lambda \rightarrow \mathbb{R}^{n}
$$

is surjective so that we can conclude that the differential

$$
d \Phi_{\left(\lambda_{0}, w_{0}\right)}: T_{\left(\lambda_{0}, w_{0}\right)}(\Lambda \times W) \rightarrow \mathbb{R}^{n}
$$

is surjective. To see $\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}$ is surjective, we first note that for every $v \in T_{\lambda_{0}} \Lambda$ we have

$$
\begin{equation*}
d\left(\partial^{w_{0}} f\right)_{\lambda_{0}}(v)=\left\langle\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}(v), \cdot\right\rangle=\left(\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}(v)\right)^{*}, \tag{2.3.2}
\end{equation*}
$$

since, if α is a smooth curve in Λ with $\alpha(0)=\lambda_{0}$ and $\alpha^{\prime}(0)=v$

$$
\begin{aligned}
d\left(\partial^{w_{0}} f\right)_{\lambda_{0}}(v) & =\left.\frac{d}{d t}\right|_{t=0}\left(\partial^{w_{0}} f(\alpha(t))\right)=\left.\frac{d}{d t}\right|_{t=0}\left\langle\varphi_{\alpha(t)}\left(w_{0}\right), \cdot\right\rangle \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\sum_{i=1}^{n}\left\langle\varphi_{\alpha(t)}\left(w_{0}\right), e_{i}\right\rangle e_{i}^{*}\right), \text { where }\left\{e_{i}\right\} \text { is an orthonormal basis of } \mathbb{R}^{n} \\
& =\sum_{i=1}^{n}\left(\left.\frac{d}{d t}\right|_{t=0}\left\langle\varphi_{\alpha(t)}\left(w_{0}\right), e_{i}\right\rangle e_{i}^{*}\right)=\sum_{i=1}^{n}\left\langle\varphi_{\alpha(0)}^{\prime}\left(w_{0}\right)\left(\alpha^{\prime}(0)\right), e_{i}\right\rangle e_{i}^{*} \\
& =\sum_{i=1}^{n}\left\langle\left.\frac{\partial}{\partial \lambda} \varphi_{\lambda}\left(w_{0}\right)\right|_{\lambda_{0}}(v), e_{i}\right\rangle e_{i}^{*}=\left\langle\left.\frac{\partial}{\partial \lambda} \varphi_{\lambda}\left(w_{0}\right)\right|_{\lambda_{0}}(v), \cdot\right\rangle \\
& =\left\langle\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}(v), \cdot\right\rangle=\left(\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}(v)\right)^{*}
\end{aligned}
$$

We now let $B \in \mathbb{R}^{n}$. Then $\langle B, \cdot\rangle \in\left(\mathbb{R}^{n}\right)^{*}$ and by surjectivity of $d\left(\partial^{w_{0}} f\right)_{\lambda_{0}}$, there exists $A \in T_{\lambda_{0}} \Lambda$ such that

$$
d\left(\partial^{w_{0}} f\right)_{\lambda_{0}}(A)=\langle B, \cdot\rangle
$$

By (2.3.2),

$$
\left\langle\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}(A), \cdot\right\rangle=\langle B, \cdot\rangle .
$$

This shows that $\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}(A)=B$. Therefore, $\frac{\partial}{\partial \lambda} \Phi_{\left(\lambda_{0}, w_{0}\right)}$ is surjective.
Now, we wish to produce a smooth map $\pi: Z \rightarrow \Lambda$ as we planned at the beginning of this section. According to the Regular Value Theorem (see Lemma 1 on page 11 of [12]), we obtain

$$
\Phi^{-1}(0)=\left\{(\lambda, w) \in \Lambda \times W \mid \varphi_{\lambda}(w)=0\right\}
$$

as a closed smooth submanifold of $\Lambda \times W$ of dimension

$$
\begin{equation*}
\operatorname{dim}\left(\Phi^{-1}(0)\right)=\operatorname{dim}(\Lambda \times W)-\operatorname{dim}\left(\mathbb{R}^{n}\right) \tag{2.3.3}
\end{equation*}
$$

We set $Z=\Phi^{-1}(0)$. Since Z is a smooth submanifold of $\Lambda \times W$, the smooth map $\pi: Z \rightarrow \Lambda$ is induced by the natural projection $p: \Lambda \times W \rightarrow \Lambda$. We have the condition on λ as follows:

Lemma 2.3.2: If λ is a regular value of π, then 0 is a regular value of φ_{λ}, which means that f_{λ} is a Morse function.

To prove this we need the following lemma from linear algebra:
Lemma 2.3.3: Let T_{1}, T_{2} and V be finite dimensional real vector spaces. If

$$
D_{i}: T_{i} \rightarrow V, i=1,2
$$

are linear maps such that $D_{1}+D_{2}: T_{1} \oplus T_{2} \rightarrow V$ is surjective and the restriction of the natural projection $P: T_{1} \oplus T_{2} \rightarrow T_{1}$ to $\operatorname{Ker}\left(D_{1}+D_{2}\right)$ is surjective, then D_{2} is surjective.

Proof. Let $v \in V$. Since $D_{1}+D_{2}$ is surjective, there exists $\left(t_{1}, t_{2}\right) \in T_{1} \oplus T_{2}$ such that

$$
\begin{equation*}
\left(D_{1}+D_{2}\right)\left(t_{1}, t_{2}\right)=D_{1}\left(t_{1}\right)+D_{2}\left(t_{2}\right)=v \tag{2.3.4}
\end{equation*}
$$

By the surjectivity of

$$
P_{\mid \operatorname{Ker}\left(D_{1}+D_{2}\right)}: \operatorname{Ker}\left(D_{1}+D_{2}\right) \rightarrow T_{1},
$$

for every $t_{1} \in T_{1}$, there exists $\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \in \operatorname{Ker}\left(D_{1}+D_{2}\right) \subset T_{1} \oplus T_{2}$ such that $P\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=t_{1}$ and

$$
\begin{equation*}
D_{1}\left(t_{1}^{\prime}\right)+D_{2}\left(t_{2}^{\prime}\right)=0 \tag{2.3.5}
\end{equation*}
$$

But $P\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=t_{1}^{\prime}$ so that $t_{1}^{\prime}=t_{1}$. Next, by (2.3.4), (2.3.5) and the linearity of D_{2}, we have the following
$v=D_{1}\left(t_{1}\right)+D_{2}\left(t_{2}\right)=D_{1}\left(t_{1}\right)+D_{2}\left(t_{2}\right)-\left(D_{1}\left(t_{1}\right)+D_{2}\left(t_{2}^{\prime}\right)\right)=D_{2}\left(t_{2}\right)-D_{2}\left(t_{2}^{\prime}\right)=D_{2}\left(t_{2}-t_{2}^{\prime}\right)$, so $v \in \operatorname{Im} D_{2}$. Therefore D_{2} is surjective.

Proof. (of Lemma 2.3.2) Suppose that λ is a regular value of π. If $\lambda \notin \pi(Z)$, then $(\lambda, w) \notin Z$ and hence $\varphi_{\lambda}(w) \neq 0$. This shows that f has no critical points on M, and so it is a Morse function. If $\lambda \in \pi(Z)$, then the differential map $d \pi_{(\lambda, w)}: T_{(\lambda, w)} Z \rightarrow T_{\lambda} \Lambda$ is surjective for every $(\lambda, w) \in \pi^{-1}(\lambda) \subseteq Z$. We wish to prove that 0 is a regular value of φ_{λ}, i.e. for every $w \in W$ such that $\varphi_{\lambda}(w)=0$ the differential map

$$
d\left(\varphi_{\lambda}\right)_{w}=\frac{\partial}{\partial w} \Phi(\lambda, w): T_{w} W \rightarrow \mathbb{R}^{n}
$$

is surjective.
For every $(\lambda, w) \in \Lambda \times W$, let

$$
\frac{\partial}{\partial \lambda} \Phi(\lambda, w): T_{\lambda} \Lambda \rightarrow \mathbb{R}^{n}
$$

and

$$
\frac{\partial}{\partial w} \Phi(\lambda, w): T_{w} W \rightarrow \mathbb{R}^{n}
$$

Then we observe that

$$
d \Phi_{(\lambda, w)}=\frac{\partial}{\partial \lambda} \Phi(\lambda, w)+\frac{\partial}{\partial w} \Phi(\lambda, w): T_{\lambda} \Lambda \oplus T_{w} W \rightarrow \mathbb{R}^{n}
$$

Since $d \Phi_{(\lambda, w)}$ is surjective for every $(\lambda, w) \in Z$ (as we saw the proof of Claim 2.3.1), then so is

$$
\frac{\partial}{\partial \lambda} \Phi(\lambda, w)+\frac{\partial}{\partial w} \Phi(\lambda, w): T_{\lambda} \Lambda \oplus T_{w} W \rightarrow \mathbb{R}^{n}
$$

Thus $\frac{\partial}{\partial w} \Phi(\lambda, w)$ is surjective by Lemma 2.3.3, since $\frac{\partial}{\partial \lambda} \Phi(\lambda, w)$ and $\frac{\partial}{\partial w} \Phi(\lambda, w)$ are linear maps, and $d \pi_{(\lambda, w)}: T_{(\lambda, w)} Z \rightarrow T_{\lambda} \Lambda$ is surjective with

$$
T_{(\lambda, w)} Z=\operatorname{Ker}\left(\frac{\partial}{\partial \lambda} \Phi(\lambda, w)+\frac{\partial}{\partial w} \Phi(\lambda, w)\right)
$$

for every $(\lambda, w) \in Z$. To prove the last assertion, let $z=(\lambda, w) \in Z=\Phi^{-1}(0), v \in T_{z} Z$, and $\gamma:(-\epsilon, \epsilon) \rightarrow Z$ be a smooth curve on Z with $\gamma(0)=z$ and $\gamma^{\prime}(0)=v$. Thus

$$
\Phi(\gamma(t))=0
$$

Then we have

$$
0=\left.\frac{d}{d t} \Phi(\gamma(t))\right|_{t=0}=d \Phi_{\gamma(0)}\left(\gamma^{\prime}(0)\right)=d \Phi_{z}(v)
$$

This shows that $v \in \operatorname{ker}\left(d \Phi_{z}\right)$. Hence $T_{(\lambda, w)} Z \subseteq \operatorname{ker}\left(d \Phi_{(\lambda, w)}\right)$. Since

$$
\begin{aligned}
\operatorname{dim}\left(T_{z} Z\right) & =\operatorname{dim}(Z)=\operatorname{dim}\left(\Phi^{-1}(0)\right) \\
& =\operatorname{dim}(\Lambda \times W)-n \\
& =\operatorname{dim}\left(T_{z}(\Lambda \times W)\right)-n \\
& =\operatorname{dim}\left(\operatorname{ker}\left(d \Phi_{z}\right)\right)+\operatorname{dim}\left(\operatorname{Im}\left(d \Phi_{z}\right)\right)-n \\
& =\operatorname{dim}\left(\operatorname{ker}\left(d \Phi_{z}\right)\right)
\end{aligned}
$$

since $d \Phi_{z}$ is surjective, so $\operatorname{dim}\left(\operatorname{Im}\left(d \Phi_{z}\right)\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$. Therefore, we conclude that

$$
T_{(\lambda, w)} Z=\operatorname{ker}\left(d \Phi_{(\lambda, w)}\right)=\operatorname{ker}\left(\frac{\partial}{\partial \lambda} \Phi(\lambda, w)+\frac{\partial}{\partial w} \Phi(\lambda, w)\right) .
$$

Let $\Lambda_{M} \subset \Lambda$ be the set of critical values of $\pi: Z \rightarrow \Lambda$. Theorem 1.1.1 implies that Λ_{M} has measure zero in Λ. Set $\Lambda_{\infty}=\Lambda_{M}$. Then, by Lemma 2.3.2, the function $f_{\lambda}: M \rightarrow \mathbb{R}$ is a Morse function for all $\lambda \in \Lambda \backslash \Lambda_{\infty}$.

Step 2. M is a general manifold. We can cover M by a countable open cover $\left(M_{k}\right)_{k \geq 1}$ such that M_{k} is special. Thus, for every $k \geq 1$ there exists a subset $\Lambda_{M_{k}} \subset \Lambda$ of measure zero such that $f_{\lambda}: M_{k} \rightarrow \mathbb{R}$ is a Morse function for all $\lambda \in \Lambda \backslash \Lambda_{M_{k}}$ by Step 1. Let us set $\Lambda_{\infty}=\bigcup_{k \geq 1} \Lambda_{M_{k}}$. Then Λ_{∞} a set of measure zero in Λ since it is the union of the measure zero sets in Λ. Therefore, the function $f_{\lambda}: M \subseteq \bigcup_{k \geq 1} M_{k} \rightarrow \mathbb{R}$ is a Morse function for all $\lambda \in \Lambda \backslash \Lambda_{\infty}$.

From Example 2.3.1, Lemma 2.3.1 and Theorem 2.3.1, we have the following corollary.

Corollary 2.3.1: Suppose that M is a submanifold of the Euclidean space E. Thus
(1) For almost all $v \in E^{*}$ and $p \in E$, the functions $h_{v}, r_{p}: M \rightarrow \mathbb{R}$ defined by

$$
h_{v}(x)=v(x) \text { and } r_{p}(x)=\frac{1}{2}\|x-p\|^{2}
$$

are Morse functions.
(2) If M does not contain the origin, then the function $q_{A}: M \rightarrow \mathbb{R}$ defined by

$$
q_{A}(x)=\frac{1}{2}\langle A x, x\rangle
$$

is a Morse function for almost all positive symmetric endomorphism A of E.
Lemma 2.3.4: Let M be a compact smooth manifold, and let $f: M \rightarrow \mathbb{R}$ be a Morse function on M. Then f can be viewed as a height function h_{v} with respect to some suitable embedding of M in a Euclidean space.

Proof. Let $\Phi: M \hookrightarrow E=\mathbb{R}^{N}$ be an embedding (inclusion). We define a new embedding relative to f as follows:

$$
\begin{aligned}
\Phi_{f}: M & \hookrightarrow \mathbb{R} \times \mathbb{R}^{N} \\
x & \mapsto(f(x), \Phi(x)) .
\end{aligned}
$$

Let $\left\{\vec{e}_{i}\right\}_{1 \leq i \leq N+1}$ be the canonical basis of $\left(\mathbb{R} \times \mathbb{R}^{N}\right)^{*}=\mathbb{R} \times \mathbb{R}^{N}$. According to Corollary 2.3.1, we have a Morse function as a height function $h_{\vec{e}_{1}}: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ which is given by

$$
h_{\vec{e}_{1}}(z)=\vec{e}_{1}(z)=\left\langle\vec{e}_{1}, z\right\rangle .
$$

Therefore, f can be written as follows:

$$
f(x)=\left\langle\vec{e}_{1},(f(x), \Phi(x))\right\rangle=\vec{e}_{1}\left(\Phi_{f}(x)\right)=h_{\vec{e}_{1}} \circ \Phi_{f}(x) .
$$

2.4 Fundamental Theorems of Morse Theory

In this section, we let $f: M \rightarrow \mathbb{R}$ be a real valued function on a smooth manifold M, and let

$$
M^{a}=f^{-1}((-\infty, a])=\{p \in M: f(p) \leq a\} .
$$

2.4.1 First Fundamental Theorem

We first consider the region that f has no critical points as follows:
Theorem 2.4.1: Let $f: M \rightarrow \mathbb{R}$ be a smooth real valued function on a manifold M. Let a and b be regular values of f with $a<b$ such that the set

$$
f^{-1}([a, b])=\{p \in M \mid a \leq f(p) \leq b\}
$$

is compact and contains no critical points of f. Then M^{a} is diffeomorphic to M^{b}. Furthermore, M^{a} is a deformation retract of M^{b}, so that the inclusion map $M^{a} \hookrightarrow M^{b}$ is a homotopy equivalence.

Proof. Since $f^{-1}([a, b])$ is compact and contains no critical points, there exists $\epsilon>0$ small enough such that the set $f^{-1}((a-\epsilon, b+\epsilon))$ contains no critical points of f. Let $\rho: M \rightarrow \mathbb{R}$

be a smooth function defined by

$$
\rho(x)= \begin{cases}\frac{1}{\|\operatorname{grad} f(x)\|^{2}}, & \text { if } x \in f^{-1}((a-\epsilon, b+\epsilon)) \\ 0 & \text { otherwise }\end{cases}
$$

Now we can define a smooth vector field X on M by

$$
X_{x}=\rho(x) \operatorname{grad} f(x) \text { for all } x \in M .
$$

That is,

$$
X_{x}= \begin{cases}\frac{1}{\|\operatorname{grad} f(x)\|^{2}} \operatorname{grad} f(x), & \text { if } x \in f^{-1}((a-\epsilon, b+\epsilon)) \tag{2.4.1}\\ 0 & \text { otherwise },\end{cases}
$$

which satisfies the conditions of Lemma 1.1.1. Thus X generates a 1- parameter group of diffeomorphism $\phi: \mathbb{R} \times M \rightarrow M$. Then for each fixed $p \in M$ the map $c:=\phi_{p}: \mathbb{R} \rightarrow M$ is a smooth curve in M defined by $c(t)=\phi_{t}(p)$ and $c(0)=\phi_{0}(p)=p$, because $\phi_{0}=i d_{M}$. Therefore, by Remark 1.1.2,

$$
\begin{aligned}
\frac{d\left(f \circ \phi_{t}(p)\right)}{d t} & =\frac{d(f \circ c)}{d t} \\
& =\left\langle\frac{d c(t)}{d t}, \operatorname{grad} f(c(t))\right\rangle \\
& =\left\langle\frac{d \phi_{t}(p)}{d t}, \operatorname{grad} f\left(\phi_{t}(p)\right)\right\rangle \\
& =\left\langle X_{\phi_{t}(p)}, \operatorname{grad} f\left(\phi_{t}(p)\right)\right\rangle
\end{aligned}
$$

since $\frac{d \phi_{t}(p)}{d t}=X_{\phi_{t}(p)}$. Hence, the last equality together with equation (2.4.1) give us that

$$
\frac{d f\left(\phi_{t}(p)\right)}{d t}=\left\{\begin{array}{ll}
1 & \text { if } \phi_{t}(p) \in f^{-1}((a-\epsilon, b+\epsilon)) \\
0 & \text { otherwise }
\end{array} .\right.
$$

We then have

$$
f\left(\phi_{t}(p)\right)= \begin{cases}t+f(p) & \text { if } \phi_{t}(p) \in f^{-1}((a-\epsilon, b+\epsilon)) \tag{2.4.2}\\ f(p) & \text { otherwise }\end{cases}
$$

since $\phi_{0}(p)=p$. In addition, $f\left(\phi_{t}(p)\right)$ is increasing since $\frac{d f\left(\phi_{t}(p)\right)}{d t} \geq 0$ for all $t \in \mathbb{R}$ and $p \in M$.

Consider the diffeomorphism $\phi_{b-a}: M \rightarrow M$. We claim that $\left.\phi_{b-a}\right|_{M^{a}}: M^{a} \rightarrow M^{b}$ is a diffeomorphism.

First, we prove that ϕ_{b-a} maps M^{a} into M^{b}. We wish to prove that for every $x \in M^{a}$, then $f\left(\phi_{b-a}(x)\right) \leq b\left(\right.$ i.e $\left.\phi_{b-a}(x) \in M^{b}\right)$. Let $x \in M^{a}$. Since $f\left(\phi_{t}(p)\right)$ is increasing,

$$
f\left(\phi_{0}(x)\right)=f(x)<f\left(\phi_{b-a}(x)\right) .
$$

There are two cases:

- if $f\left(\phi_{b-a}(x)\right) \leq b$, then $\phi_{b-a}(x) \in M^{b}$.
- if $f\left(\phi_{b-a}(x)\right)>b$, then by (2.4.2), $f(x)-a>0$ and $f(x)>b$ which is a contradiction.

Therefore, ϕ_{b-a} maps M^{a} into M^{b}. Since $\phi_{t}: M \rightarrow M$ is a diffeomorphism for each t, then the restriction of ϕ_{b-a} to M^{a} is also one to one. So, we only remain to prove that ϕ_{b-a} maps M^{a} onto M^{b}. Let $y \in M^{b}$. There exist $x=\phi_{a-b}(y) \in M^{a}$ because, by (2.4.2), we have

$$
f(x)=f\left(\phi_{a-b}(y)\right) \leq b
$$

and if $f\left(\phi_{a-b}(y)\right)>a$, since $f\left(\phi_{t}(p)\right)$ is increasing, we obtain

$$
a<f\left(\phi_{a-b}(y)\right)<f\left(\phi_{(f(x)-b)}(y)\right) \leq f\left(\phi_{0}(y)\right) \leq b
$$

and this implies that

$$
f\left(\phi_{a-b}(y)\right)=a-b+f(y) \leq a-b+b=a
$$

which is contradiction. Therefore, the map ϕ_{b-a} is onto since

$$
\phi_{b-a}(x)=\phi_{b-a}\left(\phi_{a-b}(y)\right)=\phi_{0}(y)=y
$$

Now we proceed to prove the second part: M^{a} is a deformation retract of M^{b}. Consider the family of maps $r_{t}: M^{b} \rightarrow M^{b}$ defined by

$$
r_{t}(x)=\left\{\begin{array}{ll}
x & \text { if } x \in M^{a} \\
\phi_{(a-f(x)) t}(x) & \text { if } a \leq f(x) \leq b
\end{array}, t \in[0,1]\right.
$$

If $x \in M^{a}$, then $r_{t}(x)=x \in M^{a} \subset M^{b}$. If $a \leq f(x) \leq b$, then $(a-f(x)) t \leq 0$ and by the monotonicity of $f\left(\phi_{t}(p)\right)$, this implies that $f\left(\phi_{(a-f(x)) t}(x)\right) \leq f\left(\phi_{0}(x)\right)=f(x) \leq b$. Thus $r_{t}(x)=\phi_{(a-f(x)) t}(x) \in M^{b}$. This family also satisfies the following conditions:

- $r_{t}(x)$ is continuous on the product topology $M^{b} \times[0,1]$.
- $r_{0}(x)=x$ for all $x \in M^{b}$.
- $r_{1}(x)=\phi_{a-f(x)}(x) \in M^{a}$. Indeed, if $x \in M^{a}$, then $r_{1}(x)=x \in M^{a}$ and by the monotonicity of $f\left(\phi_{t}(p)\right)$, if $a \leq f(x) \leq b$, then

$$
f\left(r_{1}(x)\right)=f\left(\phi_{a-f(x)}(x)\right) \leq f\left(\phi_{0}(x)\right)=f(x) \leq b
$$

Case 1: if $f\left(r_{1}(x)\right) \leq a$, then $r_{1}(x) \in M^{a}$.
Case 2: if $a \leq f\left(r_{1}(x)\right) \leq b$, then $f\left(r_{1}(x)\right)=a-f(x)+f(x)=a$. Hence $r_{1}(x) \in M^{a}$.

- It is clear that $r_{1}(x)=x$ for all $x \in M^{a}$.

Therefore, M^{a} is a deformation retract of M^{b}, so that the inclusion map $M^{a} \hookrightarrow M^{b}$ is a homotopy equivalence.

2.4.2 Second Fundamental Theorem

Now let us consider a region in which f has one critical point.
Theorem 2.4.2: Let p be a non degenerate critical point of f with index λ. Let $c=f(p)$ and assume $f^{-1}([c-\epsilon, c+\epsilon])$ is compact and contains no other critical point of f for some $\epsilon>0$. Then for all sufficiently small ϵ, the set $M^{c+\epsilon}$ has the homotopy type of $M^{c-\epsilon}$ with a λ-cell attached.

Proof. By the Morse lemma, there is a local coordinate system $X: U_{p} \rightarrow \mathbb{R}^{n}$ defined by $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in a neighborhood U_{p} of p with $X(p)=\left(x_{1}(p), x_{2}(p), \cdots, x_{n}(p)\right)=0$ and such that the identity

$$
f=c-x_{1}^{2}-\cdots-x_{\lambda}^{2}+x_{\lambda+1}^{2}+\cdots+x_{n}^{2}
$$

holds throughout U_{p}.

$$
\begin{aligned}
& \xrightarrow{X: U_{p} \rightarrow \mathbb{R}^{n}} \\
& (p)=\left(x_{1}(\mathrm{p}), \ldots, \mathrm{x}_{n}(\mathrm{p})\right)=0
\end{aligned}
$$

Choose $\epsilon>0$ sufficiently small such that the set $f^{-1}([c-\epsilon, c+\epsilon])$ is compact and contains no critical point of f other than p and the image $X\left(U_{p}\right)$ contains the closed ball $B_{2 \epsilon}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i}^{2} \leq 2 \epsilon\right\}$. We construct a smooth function $\rho: \mathbb{R} \rightarrow \mathbb{R}$ such
that

$$
\begin{aligned}
& \rho(t) \geq 0 \text { for all } t \in \mathbb{R} \\
& \rho(0)>\epsilon \\
& \rho(t)=0 \text { for all } t \geq 2 \epsilon \\
& -1<\rho^{\prime}(t) \leq 0 \text { for all } t \in \mathbb{R}
\end{aligned}
$$

(see Example 1.1.1). We define a new smooth function $F: M \rightarrow \mathbb{R}$ by

$$
F(q)= \begin{cases}f(q), & \text { if } q \notin U_{p} \\ f(q)-\rho\left(x_{1}^{2}(q)+\cdots+x_{\lambda}^{2}(q)+2 x_{\lambda+1}^{2}(q)+\cdots+2 x_{n}^{2}(q)\right), & \text { if } q \in U_{p}\end{cases}
$$

For convenience, we define functions $X_{-}, X_{+}: U_{p} \rightarrow[0,+\infty)$ by $X_{-}=x_{1}^{2}+\cdots+x_{\lambda}^{2}$ and $X_{+}=x_{\lambda+1}^{2}+\cdots+x_{n}^{2}$. In terms of these functions, we have

$$
f(q)=c-X_{-}(q)+X_{+}(q) \text { for all } q \in U_{p}
$$

and

$$
F(q)=\left\{\begin{array}{ll}
f(q), & \text { if } q \notin U_{p} \\
f(q)-\rho\left(X_{-}(q)+2 X_{+}(q)\right), & \text { if } q \in U_{p}
\end{array} .\right.
$$

By definition of F, it is clear that F is smooth on the interior and exterior of U_{p}. In order to verify that F is smooth, it suffices to check that F is smooth on the boundary of U_{p}, that is, on the set $\left\{q \in X^{-1}\left(B_{2 \epsilon}\right) \quad: \quad \sum_{i=1}^{n}\left(x_{i}(q)\right)^{2}=X_{-}(q)+X_{+}(q)=2 \epsilon\right\}$. Let us prove that F is continuous on the boundary of U_{p}. For any $q_{0} \in \partial U_{p}$ (boundary of U_{p}), let $\left\{q_{i}\right\}$ be a sequence that converges to q_{0}. Then, there are subsequences $\left\{q_{i_{j}}\right\} \in$ $X^{-1}\left(B_{2 \epsilon}\right)$ and $\left\{q_{i_{k}}\right\} \notin X^{-1}\left(B_{2 \epsilon}\right)$ of $\left\{q_{i}\right\}$ such that both sequences converge to q_{0}. If $\left\{q_{i_{j}}\right\} \in X^{-1}\left(B_{2 \epsilon}\right)$, then $F\left(q_{i_{j}}\right)=f\left(q_{i_{j}}\right)-\rho\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right)$ and hence $F\left(q_{i_{j}}\right) \rightarrow$ $f\left(q_{0}\right)-\rho\left(X_{-}\left(q_{0}\right)+2 X_{+}\left(q_{0}\right)\right)$ as $q_{i_{j}} \rightarrow q_{0}$. Since $X_{-}\left(q_{0}\right)+2 X_{+}\left(q_{0}\right)=2 \epsilon+X_{+}\left(q_{0}\right)$ and $\rho(t)=0$ for all $t \geq 2 \epsilon, \lim _{j \rightarrow \infty} F\left(q_{i_{j}}\right) \rightarrow f\left(q_{0}\right)$. If $\left\{q_{i_{k}}\right\} \notin X^{-1}\left(B_{2 \epsilon}\right)$, then $F\left(q_{i_{k}}\right)=f\left(q_{i_{k}}\right)$ so that $\lim _{k \rightarrow \infty} F\left(q_{i_{k}}\right)=f\left(q_{0}\right)$ This implies that F is continuous at $q_{0} \in \partial U_{p}$. Next, we want to prove that $d F$ is continuous on the boundary of U_{p}. We note that the derivatives of all orders of ρ are identically 0 for all $t \geq 2 \epsilon$ since $\rho \equiv 0$ on this interval. If $\left\{q_{i_{j}}\right\} \in X^{-1}\left(B_{2 \epsilon}\right)$, then

$$
\frac{\partial F}{\partial x_{i}}\left(q_{i_{j}}\right)=\left\{\begin{array}{ll}
-2 x_{i}\left(q_{i_{j}}\right)-2 x_{i}\left(q_{i_{j}}\right) \rho^{\prime}\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right) & \text { if } i \leq \lambda \\
2 x_{i}\left(q_{i_{j}}\right)-4 x_{i}\left(q_{i_{j}}\right) \rho^{\prime}\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right) & \text { if } i \geq \lambda+1
\end{array} .\right.
$$

Since $q_{i_{j}} \rightarrow q_{0}$ and $\rho^{\prime}\left(X_{-}\left(q_{0}\right)+2 X_{+}\left(q_{0}\right)\right)=\rho^{\prime}\left(2 \epsilon+X_{+}\left(q_{0}\right)\right)=0$, we obtain

$$
\frac{\partial F}{\partial x_{i}}\left(q_{0}\right) \rightarrow \begin{cases}-2 x_{i}\left(q_{0}\right) & \text { if } i \leq \lambda \tag{2.4.3}\\ 2 x_{i}\left(q_{0}\right) & \text { if } i \geq \lambda+1\end{cases}
$$

If $\left\{q_{i_{k}}\right\} \notin X^{-1}\left(B_{2 \epsilon}\right)$, then $\frac{\partial F}{\partial x_{i}}\left(q_{i_{k}}\right)=\left\{\begin{array}{ll}-2 x_{i}\left(q_{i_{k}}\right) & \text { if } i \leq \lambda \\ 2 x_{i}\left(q_{i_{k}}\right) & \text { if } i \geq \lambda+1\end{array}\right.$. Similarly, since $q_{i_{k}} \rightarrow q_{0}$, we obtain

$$
\frac{\partial F}{\partial x_{i}}\left(q_{0}\right) \rightarrow \begin{cases}-2 x_{i}\left(q_{0}\right) & \text { if } i \leq \lambda \tag{2.4.4}\\ 2 x_{i}\left(q_{0}\right) & \text { if } i \geq \lambda+1\end{cases}
$$

Therefore, by (2.4.3) and (2.4.4), we conclude that $d F$ is continuous at $q_{0} \in \partial U_{p}$. Now, we prove that $d^{2} F$ is continuous on the boundary of U_{p}. If $\left\{q_{i_{j}}\right\} \in X^{-1}\left(B_{2 \epsilon}\right)$, then

$$
\frac{\partial^{2} F}{\partial x_{i}^{2}}\left(q_{i_{j}}\right)=\left\{\begin{array}{ll}
-2-2 \rho^{\prime}\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right)-4 x_{i}^{2}\left(q_{i_{j}}\right) \rho^{\prime \prime}\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right) & \text { if } i \leq \lambda \\
2-4 \rho^{\prime}\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right)-16 x_{i}^{2}\left(q_{i_{j}}\right) \rho^{\prime \prime}\left(X_{-}\left(q_{i_{j}}\right)+2 X_{+}\left(q_{i_{j}}\right)\right) & \text { if } i \geq \lambda+1
\end{array} .\right.
$$

Since $q_{i_{j}} \rightarrow q_{0}$ and $\rho^{\prime}\left(2 \epsilon+X_{+}\left(q_{0}\right)\right)=0=\rho^{\prime \prime}\left(2 \epsilon+X_{+}\left(q_{0}\right)\right)$, we have

$$
\frac{\partial^{2} F}{\partial x_{i}^{2}}\left(q_{0}\right) \rightarrow \begin{cases}-2 & \text { if } i \leq \lambda \tag{2.4.5}\\ 2 & \text { if } i \geq \lambda+1\end{cases}
$$

If $\left\{q_{i_{k}}\right\} \notin X^{-1}\left(B_{2 \epsilon}\right)$, then $\frac{\partial^{2} F}{\partial x_{i}^{2}}\left(q_{i_{k}}\right)=\left\{\begin{array}{ll}-2 & \text { if } i \leq \lambda \\ 2 & \text { if } i \geq \lambda+1\end{array}\right.$. Since $q_{i_{k}} \rightarrow q_{0}$, we then have

$$
\frac{\partial^{2} F}{\partial x_{i}^{2}}\left(q_{0}\right) \rightarrow \begin{cases}-2 & \text { if } i \leq \lambda \tag{2.4.6}\\ 2 & \text { if } i \geq \lambda+1\end{cases}
$$

By (2.4.5) and (2.4.6), we conclude that $d^{2} F$ is continuous at $q_{0} \in \partial U_{p}$.
Similarly, it is easy to check that for all $n \geq 3$, we have $\frac{\partial^{n} F}{\partial x_{i}^{n}}=0$ in the boundary of U_{p}. In conclusion, F is smooth on the boundary of U_{p}

Claim 2.4.1: $M^{c+\epsilon}=F^{-1}((-\infty, c+\epsilon])$.
Proof. Since $\rho(t) \geq 0$ for all $t \in \mathbb{R}, F(q) \leq f(q)$ for all $q \in M$.

- Case: $q \notin U_{p}$. We have $F=f$. Therefore

$$
F^{-1}((-\infty, c+\epsilon])=f^{-1}((-\infty, c+\epsilon])=M^{c+\epsilon}
$$

- Case: $q \in U_{p}$. For any $q \in M^{c+\epsilon}$, then $f(q) \leq c+\epsilon$ and hence $F(q) \leq f(q) \leq$ $c+\epsilon$. Thus $q \in F^{-1}((-\infty, c+\epsilon])$. Hence $M^{c+\epsilon} \subseteq F^{-1}((-\infty, c+\epsilon])$. For any $q \in$ $F^{-1}((-\infty, c+\epsilon])$, then $F(q)=f(q)-\rho\left(X_{-}(q)+2 X_{+}(q)\right) \leq c+\epsilon$. If $X_{-}(q)+2 X_{+}(q) \geq$ 2ϵ, then $\rho\left(X_{-}(q)+2 X_{+}(q)\right)=0$ and so $f(q)=F(q) \leq c+\epsilon$. If $X_{-}(q)+2 X_{+}(q) \leq 2 \epsilon$ (or $\frac{X_{-}(q)}{2}+X_{+}(q) \leq \epsilon$), then $f(q)=c-X_{-}(q)+X_{+}(q) \leq c+\frac{X_{-}(q)}{2}+X_{+}(q) \leq c+\epsilon$. We then have $f(q) \leq c+\epsilon$ for all $q \in U_{p}$. Hence $q \in f^{-1}((-\infty, c+\epsilon])=M^{c+\epsilon}$. That is, $F^{-1}((-\infty, c+\epsilon]) \subseteq M^{c+\epsilon}$. Therefore, $M^{c+\epsilon}=F^{-1}((-\infty, c+\epsilon])$.

Claim 2.4.2: $F^{-1}((-\infty, c-\epsilon])$ is diffeomorphic to $M^{c+\epsilon}$.
Proof. By Theorem 2.4.1 and Claim 2.4.1, we only prove that the set $F^{-1}([c-\epsilon, c+\epsilon])$ is compact and contains no critical point of F. First, we only show that the set $F^{-1}([c-$ $\epsilon, c+\epsilon])$ is a closed subset of a compact set $f^{-1}([c-\epsilon, c+\epsilon])$. For any $q \in f^{-1}((-\infty, c-\epsilon))$,
then $f(q)<c-\epsilon$. Hence $F(q)<c-\epsilon$ since $F(q) \leq f(q)$. That is, $q \in F^{-1}((-\infty, c-\epsilon))$. We then have

$$
f^{-1}((-\infty, c-\epsilon)) \subset F^{-1}((-\infty, c-\epsilon)) \subset F^{-1}((-\infty, c+\epsilon])=f^{-1}((-\infty, c+\epsilon])
$$

Figure 2.1:
It follows that $F^{-1}([c-\epsilon, c+\epsilon]) \subset f^{-1}([c-\epsilon, c+\epsilon])$. Since F is a smooth function and the set $[c-\epsilon, c+\epsilon]$ is closed, the set $F^{-1}([c-\epsilon, c+\epsilon])$ is closed. Thus the set $F^{-1}([c-\epsilon, c+\epsilon])$ is compact.

Next, we show that the set $F^{-1}([c-\epsilon, c+\epsilon])$ contains no critical point of F. Before doing this, we prove that the functions f and F have the same critical points.

- Case: $q \notin U_{p}$. The functions F and f coincide. Then they have the same critical points in this region.
- Case: $q \in U_{p}$. We have $F\left(X_{-}, X_{+}\right)=f-\rho\left(X_{-}+2 X_{+}\right)=c-X_{-}+X_{+}-\rho\left(X_{-}+2 X_{+}\right)$ and $X^{-1}: X\left(U_{p}\right) \rightarrow U_{p}$ as the inverse of X. We then have

$$
\begin{aligned}
d\left(F \circ X^{-1}\right) & =\frac{\partial F}{\partial X_{-}} d\left(X_{-} \circ X^{-1}\right)+\frac{\partial F}{\partial X_{+}} d\left(X_{+} \circ X^{-1}\right) \\
& =\left(-1-\rho^{\prime}\left(X_{-}+2 X_{+}\right)\right) d\left(X_{-} \circ X^{-1}\right)+\left(1-2 \rho^{\prime}\left(X_{-}+2 X_{+}\right)\right) d\left(X_{+} \circ X^{-1}\right) \\
& =A d\left(X_{-} \circ X^{-1}\right)+B d\left(X_{+} \circ X^{-1}\right)
\end{aligned}
$$

Since $-1<\rho^{\prime}(t) \leq 0$ for all t, then the coefficients $A=\left(-1-\rho^{\prime}\left(X_{-}+2 X_{+}\right)\right)$and $B=\left(1-2 \rho^{\prime}\left(X_{-}+2 X_{+}\right)\right)$are nowhere zero. And also we have

$$
d\left(X_{-} \circ X^{-1}\right)(x)=\left(2 x_{1}, 2 x_{2}, \cdots, 2 x_{\lambda}, 0_{\lambda+1}, \cdots, 0_{n}\right)
$$

and

$$
d\left(X_{+} \circ X^{-1}\right)(x)=\left(0_{1}, \cdots, 0_{\lambda}, 2 x_{\lambda+1}, 2 x_{\lambda+2}, \cdots, 2 x_{n}\right)
$$

Therefore, $d\left(F \circ X^{-1}\right)(x)=\left(2 A x_{1}, 2 A x_{2}, \cdots, 2 A x_{\lambda}, 2 B x_{\lambda+1}, 2 B x_{\lambda+2}, \cdots, 2 B x_{n}\right)$ and so $d\left(F \circ X^{-1}\right)(x)=0$ if and only if $x=0$. Since there is only point p in U_{p} such that $\left(x_{1}(p), x_{2}(p), \cdots, x_{n}(p)\right)=0$, then $x=0$ only at the point $p \in U_{p}$. This proves that p is the only critical point of F within U_{p}.

Now, we return to prove that the region $F^{-1}([c-\epsilon, c+\epsilon])$ contains no critical points of F. By assumption, $f^{-1}([c-\epsilon, c+\epsilon])$ contains no critical points of f other than p and, since $F^{-1}([c-\epsilon, c+\epsilon]) \subset f^{-1}([c-\epsilon, c+\epsilon])$, then $F^{-1}([c-\epsilon, c+\epsilon])$ contains no critical points of F with the possible exception of p. However, we note that $F(p)=f(p)-\rho\left(X_{-}(p)+2 X_{+}(p)\right)=c-\rho(0)<c-\epsilon$. That is, $p \in F^{-1}((-\infty, c-\epsilon))$ cannot be in $F^{-1}([c-\epsilon, c+\epsilon])$. By Theorem 2.4.1 and Claim 2.4.1, we see that $F^{-1}((-\infty, c-\epsilon])$ is diffeomorphic to $F^{-1}((-\infty, c+\epsilon])=M^{c+\epsilon}$.

Define the λ-cell by $e^{\lambda}:=\left\{q \in U_{p} \mid X_{-}(q) \leq \epsilon\right.$ and $\left.X_{+}(q)=0\right\}$ and denote the closure of the region $F^{-1}((-\infty, c-\epsilon]) \backslash M^{c-\epsilon}$ by H (see Figure 2.1).

Claim 2.4.3: $M^{c-\epsilon} \cup e^{\lambda}$ is a deformation retract of $M^{c-\epsilon} \cup H$.
Proof. First, we wish to see that $e^{\lambda} \subset H$. For any $q \in e^{\lambda}$, we have $X_{-}(q) \leq \epsilon$ and $X_{+}(q)=0$. Hence $f(q)=c-X_{-}(q) \geq c-\epsilon$. That is, q is a point of the closure of the complement of $M^{c-\epsilon}$. Now consider a function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(t)=\rho(t)+t$. We know that $-1<\rho^{\prime}(t) \leq 0$ for all t, so g is increasing. Then $\rho\left(X_{-}(q)\right)+X_{-}(q)>\rho(0)$ since $g(0)<g\left(X_{-}(q)\right)$. We also know that $F(q)=c-X_{-}(q)-\rho\left(X_{-}(q)\right)<c-\rho(0)<c-\epsilon$, so $q \in F^{-1}((-\infty, c-\epsilon])$. Therefore, $q \in H$.

In the case $\epsilon \leq X_{-} \leq X_{+}+\epsilon$,

$$
0 \leq \frac{X_{-}-\epsilon}{X_{+}} \leq 1
$$

we define $s_{t}:[0,1] \rightarrow[0,1]$ by

$$
s_{t}=t+(1-t) \sqrt{\frac{X_{-}-\epsilon}{X_{+}}} .
$$

Thus the function $s_{t} x_{i}$ remains continuous for each $i>\lambda$ as $X_{+} \rightarrow 0$ and $X_{-} \rightarrow \epsilon$. This is true since for each $i>\lambda$, we have $\left|x_{i}\right| \leq \sqrt{X_{+}}$and

$$
\left|s_{t} x_{i}\right| \leq\left(t+(1-t) \sqrt{\frac{X_{-}-\epsilon}{X_{+}}}\right) \sqrt{X_{+}}=t \sqrt{X_{+}}+(1-t) \sqrt{X_{-}-\epsilon} \rightarrow 0
$$

as $X_{+} \rightarrow 0, X_{-} \rightarrow \epsilon$. We define a family $r_{t}: M^{c-\epsilon} \cup H \rightarrow M^{c-\epsilon} \cup H$ by

$$
r_{t}\left(x_{1}, \cdots, x_{n}\right)=\left\{\begin{array}{ll}
\left(x_{1}, \cdots, x_{n}\right) & \text { if } q \notin U_{p} \text { or } q \in M^{c-\epsilon} \\
\left(x_{1}, \cdots, x_{\lambda}, t x_{\lambda+1}, \cdots, t x_{n}\right) & \text { if } q \in H \text { and } X_{-}(q) \leq \epsilon \quad, t \in[0,1] . \\
\left(x_{1}, \cdots, x_{\lambda}, s_{t} x_{\lambda+1}, \cdots, s_{t} x_{n}\right) & \text { if } \epsilon \leq X_{-}(q) \leq X_{+}(q)+\epsilon
\end{array}, t\right.
$$

For each $t \in[0,1]$, this family is well defined because for any $q \in M^{c-\epsilon} \cup H$, we obtain $r_{t}(q) \in M^{c-\epsilon} \cup H$. Indeed, if $q \notin U_{p}$ or $q \in M^{c-\epsilon}$, then it is clear that r_{t} is the identity map. Thus $r_{t}(q) \in M^{c-\epsilon} \cup H$. If q satisfies $X_{-}(q) \leq \epsilon$ or $\epsilon \leq X_{-}(q) \leq X_{+}(q)+\epsilon$, we then consider the following

$$
\begin{equation*}
F\left(r_{t}(q)\right)=c-X_{-}\left(r_{t}(q)\right)+X_{+}\left(r_{t}(q)\right)-\rho\left(X_{-}\left(r_{t}(q)\right)+X_{+}\left(r_{t}(q)\right)\right) \tag{2.4.7}
\end{equation*}
$$

By the proof of Claim 2.4.2, we recall that $\frac{\partial F}{\partial X_{+}}=1-2 \rho^{\prime}(t)>0$ since $-1<\rho^{\prime}(t) \leq 0$ for all $t \in \mathbb{R}$. We also note that $X_{-}\left(r_{t}\right)=X_{-}$is independent of t. Therefore, it suffices to verify that $r_{0}(q)$ and $r_{1}(q)$ belong to $M^{c-\epsilon} \cup H$ since F is increasing and depends smoothly on the variable X_{+}.

- Case $t=1$: If $q \in H$ and $X_{-}(q) \leq \epsilon$, then it is clear that r_{1} is the identity map. If $\epsilon \leq X_{-}(q) \leq X_{+}(q)+\epsilon$, then $s_{1}=1$, which implies r_{1} is the identity map. Hence $r_{1} \in M^{c-\epsilon} \cup H$.
- Case $t=0$: If $q \in H$ and $X_{-}(q) \leq \epsilon$, then $r_{0}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \cdots, x_{\lambda}, 0, \cdots, 0\right)$ and $X_{+}\left(r_{0}\left(x_{1}, \cdots, x_{n}\right)\right)=0$. Thus $r_{0}\left(x_{1}, \cdots, x_{n}\right) \in e^{\lambda} \subset H$.
If $\epsilon \leq X_{-}(q) \leq X_{+}(q)+\epsilon$, then $s_{0}=\sqrt{\frac{X_{-}-\epsilon}{X_{+}}}$, so

$$
X_{+}\left(r_{0}\left(x_{1}, \cdots, x_{n}\right)\right)=\sum_{i=\lambda+1}^{n}\left(\sqrt{\frac{X_{-}-\epsilon}{X_{+}}} x_{i}\right)^{2}=X_{-}-\epsilon
$$

Therefore, $r_{0}\left(x_{1}, \cdots, x_{n}\right) \in M^{c-\epsilon}$ since $X_{-}\left(r_{t}\right)=X_{-}$and

$$
f\left(r_{0}\left(x_{1}, \cdots, x_{n}\right)\right)=c-X_{-}\left(r_{0}\left(x_{1}, \cdots, x_{n}\right)\right)+X_{+}\left(r_{0}\left(x_{1}, \cdots, x_{n}\right)\right)
$$

Now, we can conclude the following results:

- for each $t \in[0,1]$, the family r_{t} is well defined.
- r_{1} is the identity map.
- the image of r_{0} is contained in $M^{c-\epsilon} \cup e^{\lambda}$.

Finally, It is easy to check that $r_{0}(q)=q$ for all $q \in M^{c-\epsilon} \cup e^{\lambda}$. Indeed, it is clear for $q \in M^{c-\epsilon}$. If $q \in e^{\lambda}$, then $q \in H, X_{-}(q) \leq \epsilon$ and $X_{+}(q)=0$. Then we have

$$
r_{0}\left(x_{1}(q), \cdots, x_{n}(q)\right)=r_{0}\left(x_{1}(q), \cdots, x_{\lambda}(q), 0, \cdots, 0\right)=\left(x_{1}(q), \cdots, x_{\lambda}(q), 0, \cdots, 0\right)
$$

Therefore, we have proved the Claim 2.4.3.
By Claims 2.4.2 and 2.4.3, the proof of Theorem 2.4.2 is complete.
Proposition 2.4.1: (Generalization of Theorem 2.4.2) Suppose that p_{1}, \cdots, p_{k} are k non-degenerate critical points with indices $\lambda_{1}, \cdots, \lambda_{k}$ in $f^{-1}(c)$. Then, $M^{c+\epsilon}$ has the homotopy type of $M^{c-\epsilon} \cup e^{\lambda_{1}} \cup \cdots \cup e^{\lambda_{k}}$.

Example 2.4.1: In the case $k=2$, see Figures 2.2 and 2.3.

$$
M^{c-\varepsilon} \simeq
$$

Figure 2.2: p_{1} and p_{2} are non-degenerate critical points with indices $\lambda_{1}=\lambda_{2}=1$ in $f^{-1}(c)$.

$$
M^{c+\varepsilon} \simeq \sim \text { nn } \simeq \sim \text { nup }
$$

Figure 2.3: $M^{c+\epsilon}$ has the homotopy type of $M^{c-\epsilon} \cup e^{1} \cup e^{1}$.

2.4.3 Consequence of the Fundamental Theorems

Theorem 2.4.3: If $f: M \rightarrow \mathbb{R}$ is a smooth function on a compact smooth manifold M with no degenerate critical points and if each M^{a} is compact, then M has the homotopy type of a CW-complex, with one cell of dimension λ for each critical point of index λ.

To prove this theorem, we will need the following two lemmas.
Lemma 2.4.1: (Whitehead) Let φ_{0} and φ_{1} be homotopic maps from the sphere $\partial\left(e^{\lambda}\right)$ to a topological space X. Then the identity map of X extends to a homotopy equivalence

$$
k: X \cup_{\varphi_{0}} e^{\lambda} \rightarrow X \cup_{\varphi_{1}} e^{\lambda}
$$

Proof. Let φ_{t} be a homotopy between φ_{0} and φ_{1}. Define $k: X \cup_{\varphi_{0}} e^{\lambda} \rightarrow X \cup_{\varphi_{1}} e^{\lambda}$ by

$$
k(x)= \begin{cases}x & \text { if } x \in X \\ 2 r u & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq \frac{1}{2} \\ \varphi_{2-2 r}(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{1}{2} \leq r \leq 1\end{cases}
$$

and $\widetilde{k}: X \cup_{\varphi_{1}} e^{\lambda} \rightarrow X \cup_{\varphi_{0}} e^{\lambda}$ by

$$
\tilde{k}(x)= \begin{cases}x & \text { if } x \in X \\ 2 s u & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), 0 \leq s \leq \frac{1}{2} \\ \varphi_{2 s-1}(u) & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), \frac{1}{2} \leq s \leq 1\end{cases}
$$

Since the functions k and \widetilde{k} are continuous, there are the compositions

$$
\widetilde{k} \circ k(x)= \begin{cases}x & \text { if } x \in X \\ 4 r u & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq \frac{1}{4} \\ \varphi_{4 r-1}(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{1}{4} \leq r \leq \frac{1}{2} \\ \varphi_{2-2 r}(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{1}{2} \leq r \leq 1\end{cases}
$$

and

$$
k \circ \widetilde{k}(x)= \begin{cases}x & \text { if } x \in X \\ 4 s u & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), 0 \leq s \leq \frac{1}{4} \\ \varphi_{2-4 s}(u) & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), \frac{1}{4} \leq s \leq \frac{1}{2} \\ \varphi_{2 s-1}(u) & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), \frac{1}{2} \leq s \leq 1\end{cases}
$$

We want to find a homotopy $h_{t}: X \cup_{\varphi_{0}} e^{\lambda} \rightarrow X \cup_{\varphi_{0}} e^{\lambda}, t \in[0,1]$ such that $h_{0}=\widetilde{k} \circ k$ and $h_{1}=i d$. Consider a family of maps $h_{t}: X \cup_{\varphi_{0}} e^{\lambda} \rightarrow X \cup_{\varphi_{0}} e^{\lambda}$ defined by

$$
h_{t}(x)= \begin{cases}x & \text { if } x \in X \\ \frac{4 r u}{1+3 t} & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq \frac{1+3 t}{4} \\ \varphi_{\left(\frac{4 r}{1+3 t}-1\right)(1-t)}(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{1+3 t}{4} \leq r \leq \frac{t+1}{2} \\ \varphi_{\frac{(2-2 r)}{1+3 t}(1-t)}(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{t+1}{2} \leq r \leq 1\end{cases}
$$

It is easy to check that h_{t} is continuous, $h_{0}=\widetilde{k} \circ k$ and $h_{1}=i d$.
We next consider a family of maps $h_{t}^{\prime}: X \cup_{\varphi_{1}} e^{\lambda} \rightarrow X \cup_{\varphi_{1}} e^{\lambda}$ defined by

$$
h_{t}^{\prime}(x)= \begin{cases}x & \text { if } x \in X \\ \frac{4 s u}{1+3 t} & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), 0 \leq s \leq \frac{1+3 t}{4} \\ \varphi_{1-\left(\frac{4 s}{1+3 t}-1\right)(1-t)}(u) & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), \frac{1+3 t}{4} \leq s \leq \frac{t+1}{2} \\ \varphi_{1-\frac{(2-2 s)}{1+3 t}(1-t)}(u) & \text { if } x=s u, u \in \partial\left(e^{\lambda}\right), \frac{t+1}{2} \leq s \leq 1\end{cases}
$$

Again h_{t}^{\prime} is continuous and satisfies $h_{0}^{\prime}=k \circ \widetilde{k}, h_{1}^{\prime}=i d$.
Lemma 2.4.2: (Hilton) Let $\varphi: \partial\left(e^{\lambda}\right) \rightarrow X$ be an attaching map. A homotopy equivalence $f: X \rightarrow Y$ can be extended to a homotopy equivalence

$$
F: X \cup_{\varphi} e^{\lambda} \rightarrow Y \cup_{f \circ \varphi} e^{\lambda}
$$

Proof. Since $f: X \rightarrow Y$ is a homotopy equivalence, there exist a homotopy inverse $g: Y \rightarrow X$ to f and $h_{t}: X \rightarrow X$ a homotopy such that $h_{0}=g \circ f$ and $h_{1}=i d_{X}$. Let $H:[0,1] \times \partial\left(e^{\lambda}\right) \rightarrow X$ defined by $H(t, x)=h_{t}(\varphi(x))$. Then we have $H(0, x)=g \circ f \circ \varphi(x)$ and $H(1, x)=\varphi(x)$. Thus $g \circ f \circ \varphi$ and φ are homotopic maps from $\partial\left(e^{\lambda}\right)$ to X. By the Lemma 2.4.1, there exists a homotopy equivalence

$$
k: X \cup_{g \circ f \circ \varphi} e^{\lambda} \rightarrow X \cup_{\varphi} e^{\lambda}
$$

Define the following two maps $F: X \cup_{\varphi} e^{\lambda} \rightarrow Y \cup_{f \circ \varphi} e^{\lambda}$ and $G: Y \cup_{f \circ \varphi} e^{\lambda} \rightarrow X \cup_{g \circ f \circ \varphi} e^{\lambda}$ as follows

$$
F(x)= \begin{cases}f(x) & \text { if } x \in X \\ x & \text { if } x \in e^{\lambda}\end{cases}
$$

and

$$
G(y)= \begin{cases}g(y) & \text { if } y \in Y \\ y & \text { if } y \in e^{\lambda}\end{cases}
$$

We will first prove that F has a left homotopy inverse $k \circ G$. That is, the composition $k \circ G \circ F: X \cup_{\varphi} e^{\lambda} \rightarrow X \cup_{\varphi} e^{\lambda}$ is homotopic to the identity map. From the definition of k, F and G, we note that

$$
k \circ G \circ F(x)= \begin{cases}g \circ f(x) & \text { if } x \in X \\ 2 r u & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq \frac{1}{2} \\ h_{2-2 r} \circ \varphi(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{1}{2} \leq r \leq 1\end{cases}
$$

is a continuous map. Define a family of maps $q_{t}: X \cup_{\varphi} e^{\lambda} \rightarrow X \cup_{\varphi} e^{\lambda}$ by

$$
q_{t}(x)= \begin{cases}h_{t}(x) & \text { if } x \in X \\ \frac{2}{t+1} r u & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq \frac{t+1}{2} \\ h_{2-2 r+t} \circ \varphi(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{t+1}{2} \leq r \leq 1\end{cases}
$$

We then see that

$$
q_{0}(x)= \begin{cases}h_{0}(x)=g \circ f(x) & \text { if } x \in X \\ 2 r u & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq \frac{1}{2} \\ h_{2-2 r} \circ \varphi(u) & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), \frac{1}{2} \leq r \leq 1\end{cases}
$$

and

$$
q_{1}(x)= \begin{cases}h_{1}(x)=x & \text { if } x \in X \\ r u & \text { if } x=r u, u \in \partial\left(e^{\lambda}\right), 0 \leq r \leq 1 \\ h_{1} \circ \varphi(u)=\varphi(u) & \text { if } x=u, u \in \partial\left(e^{\lambda}\right)\end{cases}
$$

Since $q_{0}=k \circ G \circ F$ and $q_{1}=i d$, the composition $k \circ G \circ F$ is homotopic to the identity map and hence F has $k \circ G$ as a left homotopy inverse.

Similarly, G has a left homotopy inverse, since $\phi=f \circ \varphi: \partial\left(e^{\lambda}\right) \rightarrow Y$ is an attaching map and $g: Y \rightarrow X$ is a homotopy equivalence, so $G: Y \cup_{\phi} e^{\lambda} \rightarrow X \cup_{g \circ \phi} e^{\lambda}$ has a left homotopy inverse.

Claim 2.4.4: If a map F has a left and a right homotopy inverse L and R respectively, then F is a homotopy equivalence, and L (or R) is a 2-sided homotopy inverse.

Proof. Since L and R are left and right homotopy inverses to F, we have the relations $L F \simeq$ id and $F R \simeq$ id. This implies that

$$
L \simeq L(F R)=(L F) R \simeq R
$$

Hence

$$
F L \simeq F R \simeq \mathrm{id}(\text { or } R F \simeq L F \simeq \mathrm{id})
$$

which proves that L (or R) is a 2 -sided homotopy inverse.
To prove the Lemma 2.4.2, it only remains to prove that F has a right homotopy inverse. By the Claim 2.4.4, we obtain the following:

- $k \circ(G \circ F) \simeq \mathrm{id}$ implies that $(G \circ F) \circ k \simeq$ id since k is known to have a left homotopy inverse (by Lemma 2.4.1).
- $G \circ(F \circ k)=(G \circ F) \circ k \simeq$ id implies that $(F \circ k) \circ G \simeq$ id since G is known to have a left homotopy inverse.
- $F \circ(k \circ G)=(F \circ k) \circ G \simeq$ id implies that F has $k \circ G$ as a right homotopy inverse. Therefore, F is a homotopy equivalence. This completes the proof of Lemma 2.4.2.

Proof. (of Theorem 2.4.3) Let $a \in \mathbb{R}$ and $p_{i k_{i}}$ be critical points belonging to $f^{-1}\left(c_{i}\right)$ with index $\lambda_{i k_{i}}$. If $f^{-1}(a)=\emptyset$, then $M^{a}=\emptyset$ and so we have nothing to do.

If $f^{-1}(a) \neq \emptyset$, then $M^{a} \neq \emptyset$.
Base case: We may assume that $c_{1}<a<c_{2}$. Since M^{a} is compact, f has a global minimum value $c_{1} \in \mathbb{R}$ (i.e, $c_{1} \leq f(p)$ for all $p \in M$). According to the Theorem 2.4.1,
$M^{c_{1}+\epsilon}$ is homotopy equivalent to M^{a} for some small $\epsilon>0$. Since the critical points belonging to $f^{-1}\left(c_{1}\right)$ have index 0 , by Proposition 2.4.1, $M^{c_{1}+\epsilon}$ has the homotopy type of a disjoint union of 0 cells. Therefore, M^{a} has the homotopy type of a $C W$-complex.

Induction hypothesis: Suppose that $a \neq c_{1}, c_{2}, c_{3}, \cdots$ such that M^{a} is homotopy equivalent to a $C W$-complex K via g. Let $c=c_{j_{0}}$ be the smallest critical value of f bigger than a. According to the Theorem 2.4.1 and Proposition 2.4.1, for some small $\epsilon>0$ we have that $M^{c-\epsilon}$ is homotopy equivalent to M^{a} via h and that $M^{c+\epsilon}$ has the homotopy type of $M^{c-\epsilon} \cup_{\varphi_{j_{0}} 1} e^{\lambda_{j_{0} 1}} \cup_{\varphi_{j_{0} 2}} \cdots \cup_{\varphi_{j_{0} k_{j}}} e^{\lambda_{j_{0} k_{j}}}$ for some attaching maps $\varphi_{j_{0} 1}, \cdots, \varphi_{j_{0} k_{j}}$. Then, by Lemma 2.4.2 we see that

$$
M^{c-\epsilon} \cup_{\varphi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{\varphi_{j_{0}}} \cdots \cup_{\varphi_{j_{0} k_{j}}} e^{\lambda_{j_{0} k_{j}}} \simeq M^{a} \cup_{h \circ \varphi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{h \circ \varphi_{j_{0} 2}} \cdots \cup_{h \circ \varphi_{j_{0} k_{j}}} e^{\lambda_{j_{0} k_{j}}}
$$

Since M^{a} is homotopy equivalent to K via g, Lemma 2.4.2 shows that
$M^{a} \cup_{h \circ \varphi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{h \circ \varphi_{j_{0}} 2} \cdots \cup_{h \circ \varphi_{j_{0} k_{j}}} e^{\lambda_{j_{0} k_{j}}} \simeq K \cup_{g \circ h \circ \varphi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{g \circ h \circ \varphi_{j_{0} 2}} \cdots \cup_{g \circ h \circ \varphi_{j_{0} k_{j 0}}} e^{\lambda_{j_{0} k_{j_{0}}}}$
By cellular approximation, for each $r, 1 \leq r \leq k_{j_{0}}$, the map $g \circ h \circ \varphi_{j_{0} r}$ is homotopic to a cellular map $\psi_{j_{0} r}: \partial\left(e^{\lambda_{j_{0} r}}\right) \rightarrow K^{\left(\lambda_{j_{0} r}-1\right)}$, where $K^{\left(\lambda_{j_{0} r}-1\right)}$ is the $\left(\lambda_{j_{0} r}-1\right)$-skeleton of K. Applying lemma 2.4.1 shows that

$$
K \cup_{g \circ h \circ \varphi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{g \circ h \circ \varphi_{j_{0} 2}} \cdots \cup_{g \circ h \circ \varphi_{j_{0} k_{j}}} e^{\lambda_{j_{0} k_{j}}} \simeq K \cup_{\psi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{\psi_{j_{0} 2}} \cdots \cup_{\psi_{j_{0} k_{j_{0}}}} e^{\lambda_{j_{0} k_{j_{0}}}}
$$

Hence $K \cup_{\psi_{j_{0} 1}} e^{\lambda_{j_{0} 1}} \cup_{\psi_{j_{0} 2}} \cdots \cup_{\psi_{j_{0} k_{j_{0}}}} e^{\lambda_{j_{0} k_{j}}}$ is a $C W$-complex since the attaching maps are cellular. Therefore, we conclude that $M^{c+\epsilon}$ has the homotopy type of a $C W$-complex.

By induction, if \widetilde{c} is the smallest critical value of c_{j} 's such that $c_{j}>c$, then $M^{\widetilde{a}}$ has the homotopy type of a $C W$-complex for every $\widetilde{a} \in(c, \widetilde{c})$.

Finally, since M is compact, the Morse function f has a finite number of critical points (see Corollary 2.2.1) and a finite number of critical values. Thus the inductive step above completes the proof for all of M.

2.5 The Morse Inequalities

In this section we will see a series of inequalities proved by Marston Morse which give bounds on the Betti numbers of a smooth manifold M. More precisely, the Morse inequalities establish a relationship between the number of critical points of index λ of a real valued Morse function on M and the λ-th Betti number on M.

Let us denote a tuple of topological spaces such that $X_{n} \supset X_{n-1} \supset \cdots \supset X_{0}$ by $\left(X_{n}, X_{n-1}, \cdots, X_{0}\right)$. In particular, if the tuple consists of two spaces or three spaces, then it is called a pair or triple respectively.

Definition 2.5.1: Let S be a function from a pair of spaces to the integers. We say that S is subadditive if for all triples (X, Y, Z) the inequality $S(X, Z) \leq S(X, Y)+S(Y, Z)$ holds. If equality holds, then S is called additive.

For any pair of spaces (X, Y) and a given field \mathbb{F} as coefficient of the λ-th relative homology group $H_{\lambda}(X, Y)$, we denote by

$$
b_{\lambda}(X, Y)=\operatorname{rank} \text { over } \mathbb{F} \text { of } H_{\lambda}(X, Y, \mathbb{F})
$$

the λ-th Betti number of (X, Y) and by

$$
\chi(X, Y)=\sum(-1)^{\lambda} b_{\lambda}(X, Y)
$$

the Euler characteristic of (X, Y).
Given a pair (X, \emptyset), we will write $S(X):=S(X, \emptyset)$.
Given a triple (X, Y, Z), we can construct the following long exact sequence of relative homology

$$
\begin{equation*}
\cdots \xrightarrow{h_{\lambda+1}} H_{\lambda}(Y, Z) \xrightarrow{f_{\lambda}} H_{\lambda}(X, Z) \xrightarrow{g_{\lambda}} H_{\lambda}(X, Y) \xrightarrow{h_{\lambda}} H_{\lambda-1}(Y, Z) \xrightarrow{f_{\lambda-1}} \cdots \tag{2.5.1}
\end{equation*}
$$

Lemma 2.5.1: b_{λ} is subadditive and χ is additive.
Proof. Form (2.5.1), we can construct short exact sequences as follows:

By the short exact sequence $\left(2_{\lambda}\right)$ above, we have

$$
\begin{aligned}
b_{\lambda}(X, Z) & =\operatorname{rank}\left(H_{\lambda}(X, Z)\right) \\
& =\operatorname{rank}\left(\operatorname{Kerg}_{\lambda}\right)+\operatorname{rank}\left(\operatorname{Img}_{\lambda}\right) \\
& =\operatorname{rank}\left(\operatorname{Im} f_{\lambda}\right)+\operatorname{rank}\left(\operatorname{Kerh}_{\lambda}\right) \\
& \leq \operatorname{rank}\left(\operatorname{Ker} f_{\lambda}\right)+\operatorname{rank}\left(\operatorname{Imf}_{\lambda}\right)+\operatorname{rank}\left(\operatorname{Kerh}_{\lambda}\right)+\operatorname{rank}\left(\operatorname{Imh}_{\lambda}\right) \\
& =\operatorname{rank}\left(H_{\lambda}(Y, Z)\right)+\operatorname{rank}\left(H_{\lambda}(X, Y)\right) \\
& =b_{\lambda}(X, Y)+b_{\lambda}(Y, Z),
\end{aligned}
$$

which shows that b_{λ} is subadditive.
To see that χ is additive, we first note from the short exact sequence $\left(2_{\lambda}\right)$ above that

$$
\begin{equation*}
b_{\lambda}(X, Z)=\operatorname{rank}\left(I m f_{\lambda}\right)+\operatorname{rank}\left(I m g_{\lambda}\right) . \tag{2.5.2}
\end{equation*}
$$

From the short exact sequences $\left(1_{\lambda}\right)$ and $\left(3_{\lambda}\right)$, similar reasoning leads to the following results

$$
\begin{equation*}
b_{\lambda}(Y, Z)=\operatorname{rank}\left(I m h_{\lambda+1}\right)+\operatorname{rank}\left(\operatorname{Im} f_{\lambda}\right), \tag{2.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{\lambda}(X, Y)=\operatorname{rank}\left(I m g_{\lambda}\right)+\operatorname{rank}\left(I m h_{\lambda}\right) . \tag{2.5.4}
\end{equation*}
$$

Therefore, by putting (2.5.2), (2.5.3) and (2.5.4) together, gives

$$
\begin{equation*}
b_{\lambda}(Y, Z)-b_{\lambda}(X, Z)+b_{\lambda}(X, Y)=\operatorname{rank}\left(I m h_{\lambda+1}\right)+\operatorname{rank}\left(I m h_{\lambda}\right) \tag{2.5.5}
\end{equation*}
$$

Multiplying (2.5.5) by $(-1)^{\lambda}$ and summing over λ we then see that

$$
\begin{equation*}
\sum_{\lambda=0}^{n}(-1)^{\lambda}\left(b_{\lambda}(Y, Z)-b_{\lambda}(X, Z)+b_{\lambda}(X, Y)\right)=(-1)^{n} \operatorname{rank}\left(I m h_{n+1}\right)+\operatorname{rank}\left(I m h_{0}\right) \tag{2.5.6}
\end{equation*}
$$

Since we have $\operatorname{rank}\left(I m h_{n+1}\right)=\operatorname{rank}\left(I m h_{0}\right)=0,(2.5 .6)$ shows that

$$
\chi(Y, Z)-\chi(X, Z)+\chi(X, Y)=0 .
$$

Lemma 2.5.2: If S is subadditive and we have a tuple of spaces $\left(X_{n}, X_{n-1}, \cdots, X_{0}\right)$, then $S\left(X_{n}, X_{0}\right) \leq \sum_{i=1}^{n} S\left(X_{i}, X_{i-1}\right)$. If S is additive then equality holds.

Proof. We will prove the lemma by induction on n.
Base case: If $n=2$, then $S\left(X_{2}, X_{0}\right) \leq S\left(X_{2}, X_{1}\right)+S\left(X_{1}, X_{0}\right)$ since S is subadditive.
Induction hypothesis: We suppose that the inequality is true for $n-1$, that is,

$$
S\left(X_{n-1}, X_{0}\right) \leq \sum_{i=1}^{n-1} S\left(X_{i}, X_{i-1}\right)
$$

Since S is subadditive, we have $S\left(X_{n}, X_{0}\right) \leq S\left(X_{n}, X_{n-1}\right)+S\left(X_{n-1}, X_{0}\right)$. By hypothesis, we then have $S\left(X_{n}, X_{0}\right) \leq S\left(X_{n}, X_{n-1}\right)+\sum_{i=1}^{n-1} S\left(X_{i}, X_{i-1}\right)=\sum_{i=1}^{n} S\left(X_{i}, X_{i-1}\right)$. Therefore it is true for n.

A similar proof shows that $S\left(X_{n}, X_{0}\right)=\sum_{i=1}^{n} S\left(X_{i}, X_{i-1}\right)$ if S is additive.
Theorem 2.5.1: (Weak Morse Inequalities) Let M be a compact smooth manifold and $f: M \rightarrow \mathbb{R}$ be a Morse function on M. We denote the number of critical points of f of index λ by μ_{λ}. Then we have

$$
\begin{equation*}
b_{\lambda}(M) \leq \mu_{\lambda} \tag{2.5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(M)=\sum(-1)^{\lambda} \mu_{\lambda} . \tag{2.5.8}
\end{equation*}
$$

Before proving this theorem, let us recall the following theorem (see theorem 2.20 of [5]).

Theorem 2.5.2: (Excision) Let $A, Z \subset X$ be topological spaces such that the closure of Z is contained in the interior of A. Then the inclusion $(X \backslash Z, A \backslash Z) \hookrightarrow(X, A)$ induces isomorphisms $H_{r}(X \backslash Z, A \backslash Z) \rightarrow H_{r}(X, A)$ for all r. Equivalently, if we have a subspaces A, B whose interior cover X, then the inclusion $(B, A \cap B) \hookrightarrow(X, A)$ induces isomorphisms $H_{r}(B, A \cap B) \rightarrow H_{r}(X, A)$ for all r.

Proof. (of Theorem 2.5.1) Since f is a Morse function and M is compact, by Corollary 2.2.1 f has a finite number of critical points and each critical point is isolated. Let $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be the set of critical points of f with indices $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ respectively. For simplicity, assume that $f\left(p_{i}\right) \neq f\left(p_{j}\right)$ for $i \neq j$. There exists a_{i} with $a_{i}<a_{i+1}$ for all $i \in\{0,1,2, \cdots, n\}$ such that $M^{a_{0}}=\emptyset, M^{a_{n}}=M$, and $M^{a_{i}}$ contains only the critical point p_{i} of f. That is, p_{j} the only critical point of f with index λ_{j} in $M^{a_{j}} \backslash M^{a_{j-1}}$ for each $j \in\{1,2, \cdots, n\}$. By the Theorem 2.4.2, we then have $M^{a_{j}}$ has the homotopy type of $M^{a_{j-1}} \cup e^{\lambda_{j}}$, and hence, by the Theorem 2.5.2,

$$
\begin{aligned}
H_{r}\left(M^{a_{j}}, M^{a_{j-1}}, \mathbb{F}\right) & \simeq H_{r}\left(M^{a_{j-1}} \cup e^{\lambda_{j}}, M^{a_{j-1}}, \mathbb{F}\right) \\
& \cong H_{r}\left(e^{\lambda_{j}}, \partial\left(e^{\lambda_{j}}\right), \mathbb{F}\right) \\
& \cong H_{r-1}\left(\partial\left(e^{\lambda_{j}}\right), \mathbb{F}\right) \\
& \cong H_{r-1}\left(S^{\lambda_{j}-1}, \mathbb{F}\right) \\
& \cong\left\{\begin{array}{ll}
\mathbb{F} & \text { if } r=\lambda_{j} \\
0 & \text { otherwise } .
\end{array} \quad\right. \text { (by the exact sequence of a pair) }
\end{aligned}
$$

This shows that

$$
b_{r}\left(M^{a_{j}}, M^{a_{j-1}}, \mathbb{F}\right)= \begin{cases}1 & \text { if } r=\lambda_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Since b_{λ} is subadditive and we have a tuple of spaces $\left(M^{a_{n}}, M^{a_{n-1}}, \cdots, M^{a_{0}}\right)$, Lemma 2.5.2 gives us that

$$
\begin{aligned}
b_{\lambda}(M) & =b_{\lambda}\left(M^{a_{n}}, M^{a_{0}}\right) \\
& \leq \sum_{i=1}^{n} b_{\lambda}\left(M^{a_{i}}, M^{a_{i-1}}\right) \\
& =\mu_{\lambda}
\end{aligned}
$$

since

$$
b_{\lambda}\left(M^{a_{i}}, M^{a_{i-1}}\right)= \begin{cases}1 & \text { if } \lambda=\lambda_{i} \\ 0 & \text { otherwise }\end{cases}
$$

This proves inequality (2.5.7).

We prove the last part of this theorem by using Lemma 2.5.2,

$$
\begin{aligned}
\chi(M) & =\chi\left(M^{a_{n}}, M^{a_{0}}\right) \\
& =\sum_{i=1}^{n} \chi\left(M^{a_{i}}, M^{a_{i-1}}\right) \\
& =\sum_{i=1}^{n} \sum(-1)^{\lambda} b_{\lambda}\left(M^{a_{i}}, M^{a_{i-1}}\right) \\
& =\sum(-1)^{\lambda}\left(\sum_{i=1}^{n} b_{\lambda}\left(M^{a_{i}}, M^{a_{i-1}}\right)\right) \\
& =\sum(-1)^{\lambda} \mu_{\lambda}
\end{aligned}
$$

Observation 2.5.1: If $\mu_{\lambda}=0$, then $b_{\lambda}=0$.
Lemma 2.5.3: The function S_{λ} defined by $S_{\lambda}(X, Y)=\sum_{i=0}^{\lambda}(-1)^{i} b_{\lambda-i}(X, Y)$ is subadditive.
Proof. Note that (2.5.5) can be expressed as

$$
\begin{equation*}
\operatorname{rank}\left(\operatorname{Im} h_{\lambda+1}\right)=b_{\lambda}(Y, Z)-b_{\lambda}(X, Z)+b_{\lambda}(X, Y)-\operatorname{rank}\left(\operatorname{Im} h_{\lambda}\right) \tag{2.5.9}
\end{equation*}
$$

Since $\operatorname{rank}\left(\operatorname{Imh}_{\lambda+1}\right) \geq 0$ and $\operatorname{rank}\left(E m h_{0}\right)=0$, (2.5.9) tells us that

$$
\begin{equation*}
\sum_{i=0}^{\lambda}(-1)^{i}\left(b_{\lambda-i}(Y, Z)-b_{\lambda-i}(X, Z)+b_{\lambda-i}(X, Y)\right) \geq 0 \tag{2.5.10}
\end{equation*}
$$

This means that

$$
S_{\lambda}(Y, Z)-S_{\lambda}(X, Z)+S_{\lambda}(X, Y) \geq 0
$$

which implies that S_{λ} is subadditive.
Theorem 2.5.3: (Strong Morse Inequalities) Let M be a compact smooth manifold and $f: M \rightarrow \mathbb{R}$ be a Morse function on M. We denote the number of critical points of f of index λ by μ_{λ}. Then the inequality

$$
\begin{equation*}
\sum_{i=0}^{\lambda}(-1)^{i} b_{\lambda-i}(M) \leq \sum_{i=0}^{\lambda}(-1)^{i} \mu_{\lambda-i} \tag{2.5.11}
\end{equation*}
$$

holds for every $\lambda \in\{0,1, \cdots, n\}$.
Proof. Since we have a tuple of spaces $\left(M=M^{a_{n}}, M^{a_{n-1}}, \cdots, M^{a_{0}}=\emptyset\right)$ and S_{λ} is subadditive, by Lemma 2.5.2

$$
S_{\lambda}(M, \emptyset)=S_{\lambda}(M) \leq \sum_{j=1}^{n} S_{\lambda}\left(M^{a_{j}}, M^{a_{j-1}}\right)
$$

Hence, applying Lemma 2.5.3 gives

$$
\begin{aligned}
\sum_{i=0}^{\lambda}(-1)^{i} b_{\lambda-i}(M) & \leq \sum^{\prime} \sum_{j=1}^{n} \sum_{i=0}^{\lambda}(-1)^{i} b_{\lambda-i}\left(M^{a_{j}}, M^{a_{j-1}}\right) \\
& =\sum_{i=0}^{\lambda}(-1)^{i}\left(\sum_{j=1}^{n} b_{\lambda-i}\left(M^{a_{j}}, M^{a_{j-1}}\right)\right) \\
& =\sum_{i=0}^{\lambda}(-1)^{i} \mu_{\lambda-i}
\end{aligned}
$$

since

$$
b_{\lambda-i}\left(M^{a_{j}}, M^{a_{j-1}}\right)= \begin{cases}1 & \text { if } \lambda-i=\lambda_{j} \\ 0 & \text { otherwise }\end{cases}
$$

To see that these inequalities are definitely stronger than the previous ones, we consider the following cases of (2.5.11):

$$
\begin{gather*}
\sum_{i=0}^{\lambda}(-1)^{i} b_{\lambda-i}(M) \leq \sum_{i=0}^{\lambda}(-1)^{i} \mu_{\lambda-i}, \tag{2.5.12}\\
\sum_{i=0}^{\lambda-1}(-1)^{i} b_{\lambda-1-i}(M) \leq \sum_{i=0}^{\lambda-1}(-1)^{i} \mu_{\lambda-1-i} \tag{2.5.13}
\end{gather*}
$$

By adding the inequalities (2.5.12) and (2.5.13), we get (2.5.7). If $\mu_{\lambda}=0$, then inequality (2.5.12) together with Observation 2.5.1 imply

$$
\begin{equation*}
\sum_{i=0}^{\lambda-1}(-1)^{i} b_{\lambda-1-i}(M) \geq \sum_{i=0}^{\lambda-1}(-1)^{i} \mu_{\lambda-1-i} \tag{2.5.14}
\end{equation*}
$$

and so, by (2.5.13) and (2.5.14), we have the equality

$$
\begin{equation*}
b_{\lambda-1}(M)-b_{\lambda-2}(M)+\cdots+(-1)^{\lambda-1} b_{0}(M)=\mu_{\lambda-1}-\mu_{\lambda-2}+\cdots+(-1)^{\lambda-1} \mu_{0} \tag{2.5.15}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
b_{0}(M)-b_{1}(M)+\cdots+(-1)^{\lambda-1} b_{\lambda-1}(M)=\mu_{0}-\mu_{1}+\cdots+(-1)^{\lambda-1} \mu_{\lambda-1} \tag{2.5.16}
\end{equation*}
$$

Since $\mu_{\lambda}=0$ for every $\lambda \geq n+1$, if $\lambda \geq n+1$, then (2.5.16) is exactly the same as (2.5.8).

Corollary 2.5.1: If $\mu_{\lambda+1}=\mu_{\lambda-1}=0$, then $b_{\lambda}=\mu_{\lambda}$ and $b_{\lambda+1}=b_{\lambda-1}=0$.
Proof. If $\mu_{\lambda+1}=\mu_{\lambda-1}=0$, then Observation 2.5.1 gives that

$$
\begin{equation*}
b_{\lambda+1}=b_{\lambda-1}=0 \tag{2.5.17}
\end{equation*}
$$

A similar calculation as that case of (2.5.15) leads to the following results

$$
\begin{equation*}
b_{\lambda}(M)-b_{\lambda-1}(M)+\cdots+(-1)^{\lambda} b_{0}(M)=\mu_{\lambda}-\mu_{\lambda-1}+\cdots+(-1)^{\lambda} \mu_{0} \tag{2.5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{\lambda-2}(M)-b_{\lambda-3}(M)+\cdots+(-1)^{\lambda-2} b_{0}(M)=\mu_{\lambda-2}-\mu_{\lambda-3}+\cdots+(-1)^{\lambda-2} \mu_{0} . \tag{2.5.19}
\end{equation*}
$$

By subtracting the (2.5.19) from (2.5.18), we obtain $b_{\lambda}=\mu_{\lambda}$.

Chapter 3

Simple applications of Morse theory

In this chapter, we will give some simple applications of theorems of the previous chapter.

3.1 Examples

Example 3.1.1: (n-sphere S^{n}) As in Example 1.1.3, the height function f from S^{n} to \mathbb{R} has only two non-degenerate critical points, one of index 0 and one of index n.

Hence, Theorem 2.4.3 implies that S^{n} has the homotopy type of a $C W$-complex of the form $e^{0} \cup e^{n}$. So, the chain complex of S^{n} is of the form

$$
\begin{array}{ccc}
0 \rightarrow C_{n}\left(S^{n}\right) \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow & C_{0}\left(S^{n}\right) \rightarrow 0 \\
\| & \| \tag{3.1.1}\\
\mathbb{Z} . e^{n} & \mathbb{Z} . e^{0}
\end{array}
$$

From (3.1.1), we see that the boundary homomorphisms are $\partial_{r}=0$ for all r. Therefore, the homotopy groups of S^{n} are

$$
H_{r}\left(S^{n}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } r=0, n \\ 0 & \text { otherwise }\end{cases}
$$

Example 3.1.2: (Complex projective space $\mathbb{C} P^{n}$) From Example 2.1.2, we know that $p_{0}, p_{1}, \cdots, p_{n}$ are the only critical points of f, and that the index of p_{j} is equal to twice the number of k with $c_{k}<c_{j}$. Hence, we will get every even index between 0 and $2 n$ exactly once.

Applying Theorem 2.4 .3 gives us that $\mathbb{C} P^{n}$ has the homotopy type of a $C W$-complex of the form $e^{0} \cup e^{2} \cup \cdots \cup e^{2 n}$. This shows that the chain complex of $\mathbb{C} P^{n}$ is of the form

$$
\begin{array}{cccccc}
0 \rightarrow C_{2 n}\left(\mathbb{C} P^{n}\right) & \rightarrow 0 \rightarrow & C_{2(n-1)}\left(\mathbb{C} P^{n}\right) & \rightarrow \cdots \rightarrow & C_{2}\left(\mathbb{C} P^{n}\right) & \rightarrow 0 \rightarrow \tag{3.1.2}\\
\| & \| & C_{0}\left(\mathbb{C} P^{n}\right) & \rightarrow 0 \\
\mathbb{Z} . e^{2 n} & \mathbb{Z} \cdot e^{2(n-1)} & & \mathbb{Z} . e^{2} & \|
\end{array}
$$

(3.1.2) tells us that the boundary homomorphisms are $\partial_{r}=0$ for all r. Therefore, the homotopy groups of $\mathbb{C} P^{n}$ are given by:

$$
H_{r}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } r=0,2, \cdots, 2 n \\ 0 & \text { otherwise }\end{cases}
$$

Remark 3.1.1: We can use Corollary 2.5.1 to find the homology groups of spaces above without using Theorem 2.4.3. For the first example, since $\mu_{n+1}=0$ and $\mu_{n-1}=0$, then $b_{n}=\mu_{n}=1$. This implies that $H_{n}\left(S^{n}, \mathbb{Z}\right)=\mathbb{Z}$. Similarly, $H_{0}\left(S^{n}, \mathbb{Z}\right)=\mathbb{Z}$ since $b_{0}=\mu_{0}=1$.

For the second example, we will have $b_{0}=b_{2}=\cdots=b_{2 n}=1$ since $\mu_{k-1}=0$ and $\mu_{k+1}=0$ for each $k=0,1, \cdots, 2 n$. Therefore, $H_{k}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)=\mathbb{Z}$ for all $k=0,2, \cdots, 2 n$.

3.2 Reeb's theorem

Theorem 3.2.1: Let $f: M \rightarrow \mathbb{R}$ be a Morse function on a compact smooth manifold M of dimension n with exactly two critical points. Then M is homeomorphic to S^{n}.

Proof. Let p and q be the critical points of f. We observe that p and q must be the minimum and maximum points of f since M is compact. We suppose that f takes minimum and maximum values at p and q respectively. According to Lemma 2.2.1, it is easy to show that the index of p is 0 . Indeed, if the index of p is $\lambda \neq 0$, then there exist a suitable local coordinate system $X: V \subset \mathbb{R}^{n} \rightarrow U_{p}$ in a neighborhood U_{p} of p with $0 \in V$ and $X(0)=p$ such that

$$
\begin{equation*}
f \circ X=f(p)-\sum_{i=1}^{\lambda} x_{i}^{2}+\sum_{i=\lambda+1}^{n} x_{i}^{2} \tag{3.2.1}
\end{equation*}
$$

holds throughout V. In particular, we have $(\delta, 0, \cdots, 0) \in V$ for some $\delta>0$ and so $f \circ X(\delta, 0, \cdots, 0)=f(p)-\delta<f(p)$ which is contradiction since f takes the minimum value at p.

Similarly, the index of q is n because f takes maximum value at this point.
Without loss of generality, we assume that $f(p)=0$ and $f(q)=1$. Therefore, f can be expressed in terms of the coordinate systems $\left(x_{1}, \cdots, x_{n}\right)$ in a neighborhood U_{p} of p and $\left(y_{1}, \cdots, y_{n}\right)$ in a neighborhood U_{q} of q as the following form:

$$
f=\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \tag{3.2.2}\\
1-y_{1}^{2}-y_{2}^{2}-\cdots-y_{n}^{2}
\end{array}\right.
$$

Choose a small positive number ϵ such that $0 \leq \sum_{i=1}^{n} x_{i}^{2} \leq \epsilon$ and $1-\epsilon \leq 1-\sum_{i=1}^{n} y_{i}^{2} \leq 1$, so that the sets $f^{-1}([0, \epsilon])$ and $f^{-1}([1-\epsilon, 1])$ are diffeomorphic to closed n-disks D_{p}^{n} and D_{q}^{n} respectively. Moreover, since $f^{-1}([\epsilon, 1-\epsilon])$ is a closed subset of the compact set M and contains no critical point of f, Theorem 2.4.1 tells us that $f^{-1}([0, \epsilon])=M^{\epsilon}$ is diffeomorphic to $f^{-1}([0,1-\epsilon])=M^{1-\epsilon}$. Hence, $M=f^{-1}([0,1-\epsilon]) \cup f^{-1}([1-\epsilon, 1])$ is diffeomorphic to $D_{p}^{n} \cup_{S^{n-1}} D_{q}^{n}$ which is the union of two closed n-disks glued along their boundary.

To show that $D_{p}^{n} \cup_{S^{n-1}} D_{q}^{n}$ is homeomorphic to S^{n}, we will use the following lemmas, which we state here without proof.

Lemma 3.2.1: (The Universal Properties of the Quotient Topology) Let p: $X \rightarrow Y$ be a quotient map and let Z be a topological space. Given any continuous function $f: X \rightarrow Z$ with the property that $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $p\left(x_{1}\right)=p\left(x_{2}\right)$, then there is a unique continuous function $\widetilde{f}: Y \rightarrow Z$ so that $\widetilde{f} p=f$.

Lemma 3.2.2: Let $h: X \rightarrow Y$ be a continuous bijective function. If X is a compact space and Y is a Hausdorff space, then h is homeomorphism.

Consider a map $f: D_{p}^{n} \cup D_{q}^{n} \rightarrow S^{n}$ defined by

$$
f(x)= \begin{cases}f_{u}(x) & \text { if } x \in D_{p}^{n} \\ f_{l}(x) & \text { if } x \in D_{q}^{n}\end{cases}
$$

where $f_{u}(x)=\left(x, \sqrt{1-\|x\|^{2}}\right)$ and $f_{l}(x)=\left(x,-\sqrt{1-\|x\|^{2}}\right)$ are homeomorphism from the standard unit disk to the upper and lower hemispheres respectively. Then f is continuous since f_{u} and f_{l} are continuous. Moreover, since $S^{n}=S_{u}^{n} \cup S_{l}^{n}, f$ is surjective. Note that $D_{p}^{n} \cup_{S^{n-1}} D_{q}^{n}$ is the quotient of $D_{p}^{n} \cup D_{q}^{n}$ by the relation " \sim " that identifies those points in D_{p}^{n} and in D_{q}^{n} that lie in the intersection $D_{p}^{n} \cap D_{q}^{n}=S^{n-1}$. Since f_{u} and f_{l} are injective and if $x_{1} \in D_{p}^{n}$ and $x_{2} \in D_{q}^{n}$, then

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Longleftrightarrow f_{u}\left(x_{1}\right)=f_{l}\left(x_{2}\right) \\
& \Longleftrightarrow\left(x_{1}, \sqrt{1-\left\|x_{1}\right\|^{2}}\right)=\left(x_{2},-\sqrt{1-\left\|x_{2}\right\|^{2}}\right) \\
& \Longleftrightarrow x_{1}=x_{2} \text { and }\left\|x_{1}\right\|=\left\|x_{2}\right\|=1 \\
& \Longleftrightarrow x_{1} \sim x_{2}
\end{aligned}
$$

By Lemma 3.2.1, f induces a continuous map $\tilde{f}: D_{p}^{n} \cup_{S^{n-1}} D_{q}^{n} \rightarrow S^{n}$, which is bijective since f is surjective and $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies that $x_{1} \sim x_{2}$.

Since D_{p}^{n} and D_{q}^{n} are closed and bounded subsets of \mathbb{R}^{n}, they are compact. Thus, the finite union $D_{p}^{n} \cup D_{q}^{n}$ is compact, and so is its quotient $D_{p}^{n} \cup_{S^{n-1}} D_{q}^{n}$. Since S^{n} is a metric space, it is a Hausdorff space. Therefore, \widetilde{f} is a homeomorphism from $D_{p}^{n} \cup_{S^{n-1}} D_{q}^{n}$ to S^{n}, by Lemma 3.2.2.

Remark 3.2.1:

1. If $n \leq 6$, then M is diffeomorphic to S^{n} and if $n \geq 7$, then there exists M such that homeomorphic to S^{n}, but it is not diffeomorphic to S^{n}. Such manifolds called exotic spheres (see [6], [8]).
2. If f is smooth and its critical points are degenerate, then the theorem remains true (see [9] or Theorem 1' in Chapter 6 of [11]).

3.3 Morse Functions on Knots

Definition 3.3.1: A knot is a smooth embedding of the circle $\left(M=S^{1}\right)$ into the oriented real Euclidean 3-dimensional space $\boldsymbol{E}=\mathbb{R}^{3}$, with inner product $\langle\cdot, \cdot\rangle$.

Let $\phi: S^{1} \hookrightarrow \mathbf{E}$ be a smooth embedding as in the definition. We denote by $K=\phi\left(S^{1}\right)$ the image of this embedding which is a compact subset of \mathbf{E}. Indeed, we will prove that K is bounded and closed. Define

$$
\psi: S^{1} \rightarrow \mathbb{R} \text { by } \psi(x)=\|\phi(x)\| .
$$

It is clear that ψ is continuous on S^{1}. Since S^{1} is a compact metric space, ψ attains its maximum and minimum values on S^{1}. Therefore, there exists $M>0$ such that

$$
0 \leq \psi(x) \leq M, \forall x \in S^{1}
$$

Equivalently,

$$
0 \leq\|\phi(x)\| \leq M, \forall x \in S^{1}
$$

Now, suppose that x^{*} is an accumulation point of $K=\phi\left(S^{1}\right)$. There exists a sequence $\left\{y_{i}\right\}$ in K such that

$$
\lim _{i \rightarrow \infty} y_{i}=x^{*}
$$

Since ϕ is an embedding, ϕ is injective. Thus there exists a unique $z_{i} \in S^{1}$ such that $\phi\left(z_{i}\right)=y_{i}$, for every i. Since S^{1} is compact and $\left\{z_{i}\right\}$ is a sequence in S^{1}, then there exists a sub-sequence $\left\{z_{i_{j}}\right\}$ such that

$$
\lim _{j \rightarrow \infty} z_{i_{j}}=z^{*} \in S^{1}
$$

and

$$
x^{*}=\lim _{j \rightarrow \infty} y_{i_{j}}=\lim _{j \rightarrow \infty} \phi\left(z_{i_{j}}\right)=\phi\left(\lim _{j \rightarrow \infty} z_{i_{j}}\right)=\phi\left(z^{*}\right) \in K .
$$

Therefore, K is a compact subset of \mathbf{E}.

Let \mathbf{S} be the unit sphere in \mathbf{E}. Then, for each $v \in \mathbf{S}$, it determines a linear map

$$
\begin{aligned}
L_{v}: \mathbf{E} & \rightarrow \mathbb{R} \\
x & \mapsto\langle v, x\rangle .
\end{aligned}
$$

This function can be restricted to $K \subset \mathbf{E}$ to give a Morse function for almost all v, and can be viewed as a height function

$$
h_{v}:=\left.L_{v}\right|_{K}: K \rightarrow \mathbb{R}
$$

(see Corollary 2.3.1). Let $\mu_{K}(v)$ be the number of critical points of h_{v}. We define $\mu_{K}(v)=0$ if h_{v} is not a Morse function, and if h_{v} is a Morse function on K, Note that $\mu_{K}(v) \geq 2$ since a Morse function on a compact set has at least two critical points.

By the coarea formula (see Theorem 1.1.2), we have the following.
Theorem 3.3.1: Let $g: S \rightarrow \mathbb{Z}$ be the function defined by $g(v)=\mu_{K}(v)$. Then
(1) g is measurable.
(2) the average size of g is given by

$$
\overline{\mu_{K}}=\frac{1}{\operatorname{area}(\boldsymbol{S})} \int_{S} \mu_{K}(v) d A(v)=\frac{1}{4 \pi} \int_{S} \mu_{K}(v) d A(v),
$$

where $d A$ denotes the Euclidean area element on \boldsymbol{S}.
Consider the smooth embedding $\phi: S^{1} \rightarrow \mathbf{E}$ as a simple closed smooth curve

$$
\phi:[0,2 \pi] \rightarrow \mathbf{E} .
$$

Then

$$
\frac{d \phi(t)}{d t}=\phi^{\prime}(t) \neq 0
$$

since its derivative is injective. Let L be the length of $K=\phi([0,2 \pi])$. Thus, we can obtain a curve

$$
\psi:[0, L] \rightarrow \mathbf{E}
$$

parametrized by arc length which has the same image set as ϕ. Indeed, we define

$$
\begin{aligned}
s:[0,2 \pi] & \rightarrow[0, L] \\
t & \mapsto s(t)=\int_{0}^{t}\left|\phi^{\prime}(u)\right| d u
\end{aligned}
$$

Since $\frac{d s}{d t}=\left|\phi^{\prime}(t)\right|>0$, the function $s=s(t)$ has a smooth inverse $t=t(s)$ with

$$
\frac{d t}{d s}=\frac{1}{\left|\phi^{\prime}(t)\right|}>0
$$

We set

$$
\psi=\phi \circ t=\phi(t):[0, L] \rightarrow \mathbf{E} .
$$

Hence $\psi([0, L])=\phi([0,2 \pi])=K$ and

$$
\left|\frac{d \psi}{d s}\right|=\left|\phi^{\prime}(t) \cdot \frac{d t}{d s}\right|=\left|\phi^{\prime}(t) \cdot \frac{1}{\phi^{\prime}(t)}\right|=1
$$

If $x \in K$, then $x=\phi\left(s_{x}\right)$ for some $s_{x} \in[0, L]$ and $\left|\phi^{\prime}\left(s_{x}\right)\right|=1$. Let

$$
T\left(s_{x}\right)=\phi^{\prime}\left(s_{x}\right)
$$

the unit vector tangent to K at x. Define

$$
\mathbf{S}(\mathbf{K})=\left\{(x, v) \in K \times \mathbf{S}: v \perp T\left(s_{x}\right)\right\}
$$

the unit sphere bundle associated to the normal bundle of K in \mathbf{E}. Thus, there are natural projections

$$
\begin{aligned}
\lambda: K \times \mathbf{S} & \rightarrow \\
\rho: K \times \mathbf{S} & \rightarrow \mathbf{S}
\end{aligned}
$$

The restriction of these projections to $\mathbf{S}(\mathbf{K})$ give smooth maps

$$
\begin{aligned}
& \lambda_{K}: \mathbf{S}(\mathbf{K}) \\
& \rho_{K}: \mathbf{S}(\mathbf{K})
\end{aligned} \rightarrow \mathbf{S} .
$$

Lemma 3.3.1: The vector $v \in \boldsymbol{S}$ is a regular value of the map $\rho_{K}: \boldsymbol{S}(\boldsymbol{K}) \rightarrow \boldsymbol{S}$ if and only if $h_{v}: K \rightarrow \mathbb{R}$ is a Morse function. Moreover,

$$
\begin{equation*}
\mu_{K}(v)=N_{\rho_{K}}(v), \forall v \in \boldsymbol{S} \tag{3.3.1}
\end{equation*}
$$

Proof. Consider the map

$$
\begin{aligned}
& g:[0, L] \xrightarrow{\longrightarrow} K \xrightarrow{h_{v}} \mathbb{R}, \\
& s \mapsto \\
& h_{v}(\phi(s))=\langle v, \phi(s)\rangle .
\end{aligned}
$$

The differential of g at s_{y} is given

$$
\left.\frac{d g}{d s}\right|_{s=s_{y}}=\left.\frac{d}{d s}\langle v, \phi(s)\rangle\right|_{s=s_{y}}=\left\langle v, \phi^{\prime}\left(s_{y}\right)\right\rangle .
$$

This shows that $\phi\left(s_{y}\right)$ is a critical point of h_{v} if and only if $\phi^{\prime}\left(s_{y}\right)=T\left(s_{y}\right) \perp v$. Since

$$
\left.\frac{d^{2} g}{d s}\right|_{s=s_{y}}=\left.\frac{d}{d s}\left\langle v, \phi^{\prime}(s)\right\rangle\right|_{s=s_{y}}=\left\langle v, \phi^{\prime \prime}\left(s_{y}\right)\right\rangle=\kappa\left(s_{y}\right)\left\langle v, N\left(s_{y}\right)\right\rangle
$$

then

$$
\begin{equation*}
h_{v} \text { is a Morse function if and only if } T\left(s_{y}\right) \perp v \text { and } \kappa\left(s_{y}\right)\left\langle v, N\left(s_{y}\right)\right\rangle \neq 0 . \tag{3.3.2}
\end{equation*}
$$

Secondly, define

$$
\begin{aligned}
\alpha: \mathbb{R} / L \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z} & \rightarrow \mathbf{S}(\mathbf{K}) \\
(s, \theta) & \longmapsto(\phi(s), \cos (\theta) N(s)+\sin (\theta) B(s))
\end{aligned}
$$

where

$$
N(s)=\frac{\phi^{\prime \prime}(s)}{\left\|\phi^{\prime \prime}(s)\right\|}
$$

and

$$
B(s)=T(s) \times N(s)
$$

are the normal and binormal unit vectors respectively. It is clear that α is well defined and smooth. Since

$$
\frac{d \alpha}{d s}=\left(\phi^{\prime}(s), \cos (\theta) N^{\prime}(s)+\sin (\theta) B^{\prime}(s)\right)
$$

and

$$
\frac{d \alpha}{d \theta}=(0,-\sin (\theta) N(s)+\cos (\theta) B(s))
$$

are linearly independent for every $(s, \theta) \in \mathbb{R} / L \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z}$, the map α has a smooth inverse. Moreover, we observe that α is a diffeomorphism.

Let $v \in \mathbf{S}$ and

$$
B=\rho_{K}^{-1}(v)=\left\{(x, v) \in \mathbf{S}(\mathbf{K}): v \perp T\left(s_{x}\right)\right\}
$$

We assume that $B \neq \emptyset$. Suppose that $z=(y, v) \in B$. We can then express z and v as follows:

$$
z=\left(\phi\left(s_{y}\right), \cos (\theta) N\left(s_{y}\right)+\sin (\theta) B\left(s_{y}\right)\right)
$$

and

$$
v=\cos (\theta) N\left(s_{y}\right)+\sin (\theta) B\left(s_{y}\right)
$$

for some $\left(s_{y}, \theta\right) \in \mathbb{R} / L \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z}$. We have

$$
\rho_{K}: \mathbf{S}(\mathbf{K}) \rightarrow \mathbf{S}
$$

is the restriction of

$$
H: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(u, v) \longmapsto\left(0_{3}, I_{3}\right)\binom{u}{v}=v
$$

Thus,

$$
\left(d \rho_{K}\right)_{z}: T_{z} \mathbf{S}(\mathbf{K}) \subset \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow T_{v} \mathbf{S} \subset \mathbb{R}^{3}
$$

is the restriction of

$$
(d H)_{z}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(u, v) \longmapsto\left(0_{3}, I_{3}\right)\binom{u}{v}=v
$$

Then

$$
\begin{aligned}
\left(d \rho_{K}\right)_{z}\left(\frac{d \alpha}{d s}\right) & =\left.(d H)_{z}\right|_{T_{z} \mathbf{S}(\mathbf{K})}\binom{\phi^{\prime}\left(s_{y}\right)}{\cos (\theta) N^{\prime}\left(s_{y}\right)+\sin (\theta) B^{\prime}\left(s_{y}\right)} \\
& =\cos (\theta) N^{\prime}\left(s_{y}\right)+\sin (\theta) B^{\prime}\left(s_{y}\right) \\
& =-\kappa\left(s_{y}\right) \cos (\theta) T\left(s_{y}\right)-\tau\left(s_{y}\right) \sin (\theta) N\left(s_{y}\right)+\tau\left(s_{y}\right) \cos (\theta) B\left(s_{y}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(d \rho_{K}\right)_{z}\left(\frac{d \alpha}{d \theta}\right) & =\left.(d H)_{z}\right|_{T_{z} \mathbf{S} \mathbf{(K)}}\binom{0}{-\sin (\theta) N\left(s_{y}\right)+\cos (\theta) B\left(s_{y}\right)} \\
& =-\sin (\theta) N\left(s_{y}\right)+\cos (\theta) B\left(s_{y}\right)
\end{aligned}
$$

Therefore, $v \in \mathbf{S}$ is a regular value of ρ_{K} if and only if $\left(d \rho_{K}\right)_{z}\left(\frac{d \alpha}{d s}\right)$ and $\left(d \rho_{K}\right)_{z}\left(\frac{d \alpha}{d \theta}\right)$ are linearly independent. Equivalently,
$v \in \mathbf{S}$ is a regular value of ρ_{K} if and only if $\kappa\left(s_{y}\right) \cos (\theta) \neq 0$ with $(y, v) \in B$.
Note that

$$
\kappa\left(s_{y}\right) \cos (\theta)=\kappa\left(s_{y}\right)\left\langle\cos (\theta) N\left(s_{y}\right)+\sin (\theta) B\left(s_{y}\right), N\left(s_{y}\right)\right\rangle=\kappa\left(s_{y}\right)\left\langle v, N\left(s_{y}\right)\right\rangle
$$

for $(y, v) \in B$. This means that

$$
h_{v} \text { is a Morse function by (3.3.2). }
$$

To prove the second assertion, we will show that for every $v \in \mathbf{S}$, an element of the set of critical points of h_{v} produces only an element of $\rho_{K}^{-1}(v)$ and vice versa. If $\phi(s), s \in \mathbb{R} / L \mathbb{Z}$ is a critical point of h_{v}, then $\left\langle\phi^{\prime}(s), v\right\rangle=0$ and there exist a, b such that $v=a N(s)+b B(s)$ with $\|v\|=1$. Since $\|v\|=1$, there exists $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$ which satisfies $v=\cos (\theta) N(s)+\sin (\theta) B(s)$. Thus, there is $(s, \theta) \in \mathbb{R} / L \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z}$ which produces a unique element of $\rho_{K}^{-1}(v)$ via the above diffeomorphism map α. If $z=(y, v) \in B=$ $\rho_{K}^{-1}(v)$, then $v \perp T\left(s_{y}\right)$ and there exist $\left(s_{y}, \theta\right)$ such that $v=\cos (\theta) N\left(s_{y}\right)+\sin (\theta) B\left(s_{y}\right)$ and $\kappa\left(s_{y}\right) \cos (\theta) \neq 0$ (since v is a regular value of ρ_{K}). Thus,

$$
\kappa\left(s_{y}\right)\left\langle v, N\left(s_{y}\right)\right\rangle=\kappa\left(s_{y}\right) \cos (\theta) \neq 0
$$

and

$$
\left\langle v, \phi^{\prime}\left(s_{y}\right)\right\rangle=\left\langle v, T\left(s_{y}\right)\right\rangle=0
$$

i.e. $\phi\left(s_{y}\right)$ is a critical point of h_{v}. Therefore,

$$
\mu_{K}(v)=N_{\rho_{K}}(v), \forall v \in \mathbf{S}
$$

By Theorem 3.3.1, for every $v \in \mathbf{S}$, we have that $\mu_{K}(v)$ is measurable, which together with identity (3.3.1), implies $N_{\rho_{K}}(v)$ is measurable and

$$
\begin{equation*}
\bar{\mu}_{K}=\frac{1}{4 \pi} \int_{\mathbf{S}} N_{\rho_{K}}(v) d A_{g_{S}}(v) \tag{3.3.4}
\end{equation*}
$$

where $d A_{g_{S}}$ denotes the area element on \mathbf{S} with the induced metric $g_{s}=\langle\cdot, \cdot\rangle$ from the usual inner product on E.

On the other hand, we will use the Theorem 1.1.2 for the map

$$
\rho_{K}:\left(\mathbf{S}(\mathbf{K}), g_{K}\right) \rightarrow\left(\mathbf{S}, g_{s}\right),
$$

where g_{K} denotes the metric on $\mathbf{S}(\mathbf{K})$ defined by $g_{K}=d s^{2}+d \theta^{2}$ from the diffeomorphism α. We will compute the Jacobian $\left|J_{K}\right|$ of ρ_{K}. Let

$$
\begin{aligned}
\Phi:=\rho_{K} \circ \alpha: \mathbb{R} / L \mathbb{Z} \times \mathbb{R} / 2 \pi \mathbb{Z} & \rightarrow \mathbf{S} \\
(s, \theta) & \longmapsto \cos (\theta) N(s)+\sin (\theta) B(s) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d \Phi}{d s} & =D \rho_{K}(\alpha(s, \theta)) \cdot \frac{d \alpha}{d s} \\
& =\cos (\theta) N^{\prime}(s)+\sin (\theta) B^{\prime}(s) \\
& =-\kappa(s) \cos (\theta) T(s)-\tau(s) \sin (\theta) N(s)+\tau(s) \cos (\theta) B(s)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d \Phi}{d \theta} & =D \rho_{K}(\alpha(s, \theta)) \cdot \frac{d \alpha}{d \theta} \\
& =-\sin (\theta) N(s)+\cos (\theta) B(s)
\end{aligned}
$$

form the Jacobian J_{K} as follows:

$$
\left|J_{K}\right|^{2}=\operatorname{det}\left(\begin{array}{ll}
\left\langle\frac{d \Phi}{d s}, \frac{d \Phi}{d s}\right\rangle_{g_{S}} & \left\langle\frac{d \Phi}{d s}, \frac{d \Phi}{d \theta}\right\rangle_{g_{S}} \\
\left\langle\frac{d \Phi}{d \theta}, \frac{d \Phi}{d s}\right\rangle_{g_{S}} & \left\langle\frac{d \Phi}{d \theta}, \frac{d \Phi}{d \theta}\right\rangle_{g_{S}}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\kappa^{2}(s) \cos ^{2}(\theta)+\tau^{2}(s) & \tau(s) \\
\tau(s) & 1
\end{array}\right)
$$

Therefore, the Jacobian of ρ_{K} is $\left|J_{K}\right|=|\kappa(s) \cos (\theta)|$ and we can now apply Theorem 1.1.2

$$
\begin{aligned}
\int_{\mathbf{S}} N_{\rho_{K}}(v) d A_{g_{S}}(v) & =\int_{\mathbf{S}(\mathbf{K})}\left|J_{k}\right| d A_{g_{K}}(x, v) \\
& =\int_{0}^{L} \int_{0}^{2 \pi}|\kappa(s) \cos (\theta)| d \theta d s \\
& =\left(\int_{0}^{\frac{\pi}{2}} \cos (\theta) d \theta-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \cos (\theta) d \theta+\int_{\frac{3 \pi}{2}}^{2 \pi} \cos (\theta) d \theta\right) \int_{0}^{L}|\kappa(s)| d s \\
& =4 \int_{0}^{L}|\kappa(s)| d s \\
& =4 T_{K}
\end{aligned}
$$

where

$$
T_{K}=\int_{0}^{L}|\kappa(s)| d s
$$

is called the total curvature of the knot K.
By (3.3.4), we conclude

$$
\begin{equation*}
\bar{\mu}_{K}=\frac{1}{4 \pi} \int_{\mathbf{S}} \mu_{K}(v) d A_{g_{S}}(v)=\frac{1}{4 \pi} \int_{\mathbf{S}} N_{\rho_{K}}(v) d A_{g_{S}}(v)=\frac{1}{\pi} T_{K} \tag{3.3.5}
\end{equation*}
$$

Remark 3.3.1: T_{K} measures how "twisted" is the curve K. That is, large T_{K} means that K is very twisted. Therefore, (3.3.5) shows that if K is very twisted, then the height function h_{v} will have lots of critical points on K (since T_{K} is large when $\mu_{K}(v)$ is large).

In [7], the number

$$
\begin{equation*}
c_{K}=\frac{1}{2} \bar{\mu}_{K} \tag{3.3.6}
\end{equation*}
$$

was called the crookedness of the knot K. We observe from (3.3.5) and (3.3.6) that

$$
\begin{equation*}
c_{K}=\frac{1}{4 \pi} \int_{\mathbf{S}} \frac{1}{2} \mu_{K}(v) d A_{g_{S}}(v)=\frac{1}{2 \pi} T_{K} \tag{3.3.7}
\end{equation*}
$$

Moreover, any Morse function h on a circle has an even number of critical points, half of which are local minima. In order to see this, consider the composition

$$
g:[0, L] \subset \mathbb{R} \xrightarrow{\psi} K \xrightarrow{h} \mathbb{R} .
$$

The function g has a finite number of non-degenerate critical points only. The values of g on these points must alternate between local minima and maxima (by Rolle's theorem), which implies that there must be the same number of local minima as that of local maxima. We then conclude that $\frac{1}{2} \mu_{K}(v)$ is the number of local minima of the Morse function h_{v}.

Corollary 3.3.1: For any knot $K \hookrightarrow \boldsymbol{E}$, we have $T_{K} \geq 2 \pi$.
Proof. Since every Morse function on K has at least two critical points, we have $\frac{1}{2} \mu_{K} \geq 1$ and, by (3.3.7),

$$
\frac{1}{2 \pi} T_{K}=c_{K}=\frac{1}{4 \pi} \int_{\mathbf{S}} \frac{1}{2} \mu_{K}(v) d A_{g_{S}}(v) \geq \frac{1}{4 \pi} \int_{\mathbf{S}} d A_{g_{S}}(v)=1
$$

That is, $T_{K} \geq 2 \pi$.
Corollary 3.3.2: If K is a planar convex curve, then $T_{K}=2 \pi$.
Proof. Note that

$$
\begin{aligned}
h_{v}: K \subset \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
x & \longmapsto\langle v, x\rangle
\end{aligned}
$$

is the restriction of a linear continuous function. We will now prove that if K is planar and convex, then any local minimum of h_{v} must be an absolute minimum.

Suppose h_{v} has two local minima at $x_{1}, x_{2} \in K$. If $h_{v}\left(x_{1}\right)>h_{v}\left(x_{2}\right)$, by continuity of h_{v} on K, there exists $x_{3} \in K-\left\{x_{1}, x_{2}\right\}$ such that

$$
h_{v}\left(x_{3}\right)=h_{v}\left(x_{1}\right) .
$$

The straight line segment between x_{1} and x_{3} is totally contained in K and for any point on that segment

$$
\begin{aligned}
\left\langle v, t x_{1}+(1-t) x_{3}\right\rangle & =t\left\langle v, x_{1}\right\rangle+(1-t)\left\langle v, x_{3}\right\rangle \\
& =t h_{v}\left(x_{1}\right)+(1-t) h_{v}\left(x_{3}\right) \\
& =t h_{v}\left(x_{1}\right)+(1-t) h_{v}\left(x_{1}\right) \\
& =h_{v}\left(x_{1}\right),
\end{aligned}
$$

where $t \in[0,1]$. There exist points on K arbitrarily close to x_{1} and they have to be on one side of such a line. Since x_{1} is a local minimum, such points must be on the side where $\langle v, \cdot\rangle$ is greater that $h_{v}\left(x_{1}\right)$, but this means that the line segment above is not contained in K, which is a contradiction. Therefore, there is only an absolute minimum of h_{v}. Thus, (3.3.7) gives

$$
\frac{1}{2 \pi} T_{K}=c_{K}=\frac{1}{4 \pi} \int_{\mathbf{S}} \frac{1}{2} \mu_{K}(v) d A_{g_{S}}(v)=\frac{1}{4 \pi} \int_{\mathbf{S}} d A_{g_{S}}(v)=1 .
$$

That is, $T_{K}=2 \pi$.
Corollary 3.3.3: If $T_{K}<4 \pi$, then K is not knotted.
Proof. If $T_{K}<4 \pi$ and $\mu_{K} \geq 4$, then

$$
T_{K}=\pi \bar{\mu}_{K}=\frac{1}{4} \int_{\mathbf{S}} \mu_{K}(v) d A_{g_{S}}(v) \geq \frac{1}{4} \int_{\mathbf{S}} 4 d A_{g_{S}}(v)=4 \pi
$$

which contradicts to the hypothesis. Thus, there exists $v \in \mathbf{S}$ such that $\mu_{K}(v)<4$ and h_{v} is a Morse function. This proves that $\mu_{K}(v)=2$ so that h_{v} has only two critical points on K.

Without loss of generality, by means of a rotation and a translation, we can assume that $v=e_{3}=(0,0,1)$, and that 0 and M are the global minimum and maximum values of h_{v} respectively. Let

$$
\alpha_{1}, \alpha_{2}:[0, M] \rightarrow \mathbb{R}^{2}, h \longmapsto \alpha_{1}(h), \alpha_{2}(h),
$$

with $\alpha_{1}(0)=\alpha_{2}(0)$ and $\alpha_{1}(M)=\alpha_{2}(M)$. Next, we observe that for every $h \in[0, M]$ the intersection of the hyperplane at height h with the knot K consists precisely of two points $\alpha_{1}(h)$ and $\alpha_{2}(h)$ (as in the figure on the right).

Let $C_{h}=\left\{t \alpha_{1}(h)+(1-t) \alpha_{2}(h): 0 \leq t \leq 1\right\}$. We claim that the set

$$
C:=\bigcup_{h \in[0, M]} C_{h}
$$

is a closed disk. Consider the homotopy map

$$
\begin{aligned}
F:[0,1] \times C & \rightarrow C \\
\left(s, t \alpha_{1}(h)+(1-t) \alpha_{2}(h)\right) & \mapsto((1-s) t+s) \alpha_{1}(h)+(1-s)(1-t) \alpha_{2}(h) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& F\left(0, t \alpha_{1}(h)+(1-t) \alpha_{2}(h)\right)=t \alpha_{1}(h)+(1-t) \alpha_{2}(h) \\
& F\left(1, t \alpha_{1}(h)+(1-t) \alpha_{2}(h)\right)=\alpha_{1}(h) .
\end{aligned}
$$

which means that when $s=0$ it gives the identity map on C, and when $s=1$ it maps everything to the contractible curve described by α_{1}.

Bibliography

[1] Arnol'd, V. I.: Ordinary Differential Equations, Third Edition.
[2] de Rham, G.; Smith, F. R.; Chern, S. S.: Differentiable Manifolds, Springer, 1984.
[3] do Carmo, M. P.: Riemannian Geometry, 1992.
[4] Federer, H.: Geometric Measure Theory-Springer-Verlag, 1969.
[5] Hatcher, A.: Algebraic Topology, Cambridge University Press, 2001.
[6] Matsummoto, Y.: An Introduction to Morse Theory (Translations of Mathematical Monographs, Vol. 208), American Mathematical Society, 2001.
[7] Milnor, J.: On the Total Curvature of Knots, Annals of Mathematics, Second Series, Vol. 52, No. 2 (Sep., 1950), pp. 248 - 257.
[8] Milnor, J.: Manifolds homeomorphic to the 7-sphere, Annals of Mathematics vol.64(1956), 399-405.
[9] Milnor, J.: Sommes de variétes différentiables et structurees différentiables des sphéres, Bulletin de la S.M.F.,tome 87(1959), p.439-444.
[10] Milnor, J.: Morse THEORY, Annals of Mathematics Studies, vol. 51, Princeton University Press, 1963.
[11] Milnor, J.: Differential topology. In Lectures on Modern Mathematics, vol. II, T. Saaty, editor, pages 165-183. Wiley, New York, 1965
[12] Milnor, J.: Topology from the Differentiable Viewpoint, University Press Of Virginia, 1965.
[13] Nicolaescu, L.: An Invitation to Morse Theory, Second Edition, Springer-Verlag New York, 2011.
[14] Whitney, H.: Geometric Integration Theory, Princeton University Press, 1957.

