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Introduction

This document discusses Schubert polynomials and how they relate to other parts of mathematics.
These other topics are noncommutative algebra, quantum groups, and combinatorics. There are
alternative definitions of them. They are also related to intersection problems in the Grassmanian
from the Algebraic Geometry viewpoint, but the perspective we take is combinatorial. This is
possible because they have non negative coefficients and non negative structure constants.

The first definition is given through the action of the nilCoxeter algebra in the polynomial ring
Z[x1, . . . , xa]. The nilCoxeter algebra is generated by differentials ∂i that satisfy some relations
similar to the symmetric group Sa. It is generated by a − 1 elements and is a subalgebra of the
nilHecke algebra NHa, which consists of Z〈x1, . . . , xa, ∂1, . . . , ∂a−1〉 and some relations. Khovanov
and Lauda use diagrammatics for this ring. This algebra has an action in the polynomial ring
Z[x1, . . . , xa] so that there is a representation of NHa in the endomorphism ring of the polynomial
ring. With this action the usual definition of Schubert polynomials is given. The nilCoxeter algebra
is similar to the symmetric group NHa with the exception that its generators are nilpotent, instead
of being their own inverses, as adjacent transpositions are in the symmetric group. The adjacent
transposition is represented diagrammatically by a crossing. Dots will stand for variables. The 0-
Hecke algebra generated by ∂̄i has the relation ∂̄2

i = ∂̄i is also related. Each 0-Hecke element encodes
certain information that relates the Schubert polynomial to the permutation it corresponds to, and
the generators of the 0-Hecke algebra consist of a dot followed by a crossing. If π̄ is a 0-Hecke
element then there is a mapping that forgets, or untangles, the crossings so that u(π̄) represents a
monomial m. Forgetting the dots in π̄ we get a diagram π ∈ NHa that also represents a reduced
wiring diagram for π. The leading monomial of sπ is u(π̄).

There is another way of interpreting the wiring diagram π such that we get u(π̄) from certain
isotopy of the diagram. This approach is more rigid and precedes ours but has some advantages. It
is very combinatorial, allowing us to read reduced words from the diagram. The set of RC graphs
of π was introduced by Billey, Bergeron and Stanley as a diagrammatic way to realize a formula for
calculating Schubert polynomials that depends on a subfamily of the reduced words for π that have
compatible sequences. With RC graphs Monk’s rule can be proved and it gives a computational
tool and easier understanding of the formula of Stanley for these polynomials. Reinterpreting their
diagrammatics does not intend to replace RC graphs but to provide other means of using them
while making them consistent with the diagrammatic approach for quantum groups that Khovanov
and Lauda developed. The diagrammatics use are inspired in diagrams for n-categories and by
previous work of Khovanov and Frenkel. Diagrammatics have helped study the canonical basis of
tensor products of sl2 representations since early work of Khovanov. There are relations to many
areas, from TQFTs and knot invariants to problems involving the Symmetric Group.

The document is organized in the following way. Chapter one consists in a review of the
main properties of the nilHecke ring and its action on the polynomial ring. We introduce the
diagrammatics of Khovanov and Lauda for the nilHecke ring. Here we define Schubert polynomials
and provide their first application. Chapter two aims to give a clear idea of how the nilHecke algebra
is related to Uq(sl2)+ and its role in the categorified theory. We introduce the quantum group
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Uq(sl2) and give some background on the Grothendieck group of an algebra A, denoted K0(A),
and calculate K0(NH) where NH =

⊕
a≥0NHa. We explain how the generators of Uq(sl2)+ are

elements of K0(NH). In order to do this we need to use Schubert polynomials and it is one of
the applications used in the categorified Uq(sl2). The categorification theorem is more complex,
more computations are needed to establish the bialgebra structure of K0(NH). Chapter three
consists in presenting the diagrammatic version for computing Schubert polynomials through RC
graphs, also called pipe dreams, and we reinterpret pipe dreams as nilHecke elements. We define
a set of diagrams, which we name the abacus of π. We compute it in an algorithmic fashion as
in the RC graph method. Using these diagrams a special type of Schubert polynomials is found,
related to inclusions of the symmetric group, which we call Hanoi Towers. Afterwards we try to
adapt an insertion in order to mimic Monk’s rule proof as given by Billey and Bergeron. However,
there is not an obvious way of realizing an analog of a Schensted insertion and it is more natural
to knit the monomials with the mapping that assigns 0-Hecke elements. Our method does not
even immediately prove Monk’s rule. At least, it allows us to introduce a bound for the structure
constants of Schubert polynomials through a diagrammatic method. The bound we give is very
natural, similar to the idea that {sπ}π∈S∞ is Gröbner basis for Z[x1, x2, . . . ].
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Chapter 1

The nilHecke algebra

The nilHecke ring is the ring that contains the nilCoxeter algebra and the polynomial ring Z[x1, . . . , xn].
The nilHecke algebra appears in different parts of mathematics. In the categorified quantum sl2
the nilHecke algebra represents the positive part of the quantum group. The nilCoxeter ring, the
subring generated by the differential operators, has an action on the polynomial ring, and hence, the
whole nilHecke ring acts on Z[x1, . . . , xn]. This action later helps us define Schubert polynomials.
In this chapter we introduce the nilHecke ring, its properties and its diagrammatics. We review the
diagrammatics for the symmetric group, which help us introduce diagrammatics for the nilCoxeter
ring and the nilHecke ring.

1.1 The symmetric group

Definition 1.1.1. The symmetric group Sa is the group of bijections of the set {1, . . . , a}. An
element of Sa is called a permutation.

We recall that Sa can be generated by transpositions. An adjacent transposition exchanges
two adjacent numbers. We write σi for the adjacent permutation (i, i+ 1). We have the following
lemma.

Lemma 1.1.2. Any permutation in Sa is a product of transpositions. Even more, it is the product
of adjacent transpositions σi for i = 1, . . . , a− 1.

Proof. Observe that every permutation is the product of disjoint cycles. To find a cycle take
i ∈ {1, . . . , a} and consider de sequence {π(i), π(i)2, . . . } which is finite because πn(i) cannot take
infinite different values.

We proceed by induction on the length of a cycle. Suppose that we have a cycle (i1, . . . , in). A
lenght one cycle is a transposition. By induction, assume that if an n cycle is given it is a product
of n − 1 transpositions. Given a n + 1 cycle, take the first two elements, (i1, i2) and then replace
the cycle (i1, . . . , in, in+1) by (i1, i3, . . . , in)(i1, i2). The induction is then complete.

Finally, note that every transposition can be written as a product of adjacent transpositions.
To move i1 to i2, where i1 < i2, just move i1 up to i2 using adjacent transpositions.

We can also represent Sa diagrammatically. We represent adjacent transpositions by a crossing
of adjacent strings. The following is taken from Allen Knutson notes on Schubert polynomials [13].

Let a string be a curve joining two given different points in R3. Considered a strings in space
aligned in order, so that the strings can be described by paths that begin and end in two fixed
hyperplanes. The Artin braid group Ba is the group of strings with crossings whose composition is

11



given by concatenation of strings, without allowing self-crossings, and whose generators are adjacent
string crossings.

Definition 1.1.3. The Artin Braid Group Ba is the fundamental group of the configuration space
of a points Xa. That is Ba = π1(Xa).

Lemma 1.1.4. The canonical presentation of Ba is Ba = 〈b1, . . . , ba|bibj = bjbi(i 6= j) bibi+1bi =
bi+1bibi+1〉.

Let us describe Ba’s relations. If crossings do not involve consecutive strings then they are
independent, so they commute. This is the first relation. We do not allow self-crossings, which
is the Redemeister 1 move. The braid move, the Redemeister 3 move, is the another relation. It
matters if one crosses two strings by bi or b−1

i , so the first string in the crossing is underneath or
above the second string. If one makes a loop then this loop goes around the second string and
is not isotopic to the identity braid. But if one makes the inverse crossing then one can pull the
string back, making a Redemiester 2 move, which represents the relation bib

−1
i . We have inverses

for generators, then also for every other element. The identity braid is a braid with no crossings.

Lemma 1.1.5. There is a nontrivial homomorphism φ : Ba → Sa where the new relation is σ2
i = 1

for adjacent transpositions. As a consequence Sa can be represented by planar string diagrams.

Proof. Let b be a braid. Label the starting points of the strings with the set {1,. . . ,a}. Define a
permutation by the action of the braid in these points, taking the starting point of the strings to
the permuted endpoints. We claim this defines a group homomorphism φ. The identity braid does
not permute the endpoints. The composition of braids gives composition of permutations. Then φ
is a homomorphism and by the first homomorphism theorem, Sa ∼= Ba/ kerφ.

We claim that kerφ = 〈σ2
i |σi is a generator of Ba〉. Given a generator σi of the braid group,

then σ2
i = 1 gives σi = σ−1

i . This means braiding below the next string or on top of the next string
is the same, it just matters that the strings cross. Thus, the diagram is planar.

We prove that the kernel is generated by the elements σ2
i . Let N be the normal subgroup

generated by elements σ2
i . Any permutation σ2

i has the same starting points as endpoints, then
σ2
i ∈ kerφ. Conjugations the form σi1 . . . σisσ

2
i σis . . . σi1 are also in kerφ, and products of these

elements also. So N ⊂ kerφ. If b ∈ kerφ then it has the same endpoints. For each string crossing
any other string, it has to cross back, so b ∈ N and kerφ ⊂ N .

It follows that a presentation for Sa is

〈σ1, . . . , σa−1|σiσj = σjσi if |i− j| > 1, σiσi+1σi = σi+1σiσi+1, σ
2
i = 1〉.

The kernel of this homomorphism is the subgroup of Ba called pure braids. We are motivated
to give the following definition.

Definition 1.1.6. A wiring diagram of a permutation π is a diagram that represents a permuta-
tion connecting a labeling of opposite sides numbered 1 to a, and for which a wire or string starting
at i is connected to π(i).

We map out a diagram to an expression for a permutation by reading the crossings. Set out
a starting position for the strings, say at the bottom, so we find the image of π in the top. A
self intersection is redundant so we do not take those into account. A crossing of two strings is an
adjacent transposition, so the expression is given by the multiplication of adjacent transpositions
in the order they appear.

Lemma 1.1.7 (Reduced expression in diagrammatics). An expression for π ∈ Sa is reduced if no
strings cross twice in its wiring diagram.
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Proof. Suppose a string crosses twice. Taking cases, suppose that the first crossings are consecutive
crossings following the path given by the string. This implies the expression contains σ2 for an
adjacent transposition and is not reduced. It could be the expression involved is more complicated.
Still two crossings can be eliminated and the diagram still has the same connectivity, which means
that it represents the same permutation. Then the expression of the permutation was not reduced.

In a wiring diagram two crossings indicate the expression is not reduced. We do not use these
diagrams but only reduced ones. We introduce some important definitions.

Definition 1.1.8. (Sign and inversions) An inversion in π is a pair (i, j) with i < j such that π(i) >
π(j). We define the sign of a permutation by (−1)#inversions. The length of a permutation π
is the minimal number of transpositions needed to write π as a product of adjacent transpositions.
Denote the length of π by l(π).

Proposition 1.1.9. There is a group homomorphism φ : Sa → {−1, 1} such that φ(σi) = −1 for
each adjacent transposition. This homomorphism satisfies φ(π)(−1)l(π) and φ(π) = (−1)#inversions.

Proof. Let π be a permutation. Let π(1, . . . , a) = (π(1), . . . , π(a)) be a permutation. Let i < j be
a pair such that i, j ∈ {1, . . . , a} and π(i) < π(j). Let w be a reduced expression for π and consider
the wiring diagram of w. Observe that string i has to cross string j in order that π(i) < π(j).
However, it cannot cross string j back otherwise the strings cross twice. For each inversion there is
a crossing of strings.

Now define φ : Sa → Z∗3 the multiplicative group isomorphic to the multiplicative group {−1, 1}
such that φ(σi) = −1. Then φ(σ2

i ) = 1 so it is a group homomorphism. This homomorphism counts
the parity of crossings in w, so φ(π) = (−1)l(π). The other equality comes from the observation in
the previous paragraph.

We can choose to draw a permutation’s wiring diagram in two ways. We can set the starting
positions [1, . . . , a] at the bottom of the diagram and have [π(1), . . . , π(a)] and the top of the
diagram. This will be the notation used later for RC graphs, though the bottom side is drawn at
the left making a tile such that the upper part of the antidiagonal is occupied by the drawing. In
the nilHecke algebra, the convention used by Ellis, Lauda and Khovanov is that the algebra acts on
the polynomial ring fed on the top. So a permutation will take the upper positions of the strings
to the image in the bottom. These two conventions are related by an algebra homomorphism we
define in the next section.

Example 1.1.10. A wiring diagram for the permutation (13). This permutation is the one with
the longest expression in S3, and it is a transposition (not adjacent). It’s length is 3 and in the
diagram we can see 3 crossings on it. Each string crosses every other string. The permutation with
the longest expression in Sa is the order reversing permutation for 1, . . . , a.

.

1.2 The nilHecke algebra

Let us introduce the algebra that motivates this work. The nilHecke algebra over Z represents the
positive part of the categorified quantum group Uq(sl2) and can be defined diagrammatically.
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Definition 1.2.1. (The nilHecke ring NHa in a variables). Let a ∈ N and consider the freely
generated algebra over Z with generators {x1, . . . , xa, ∂1, . . . , ∂a−1} and relations:

xixj = xjxi for all i, j ∈ {1, . . . , a}; (1.2.1)

∂i∂j = ∂j∂i for all i, j ∈ {1, . . . , a− 1} and |i− j| > 1; (1.2.2)

∂2
k = 0 for all k ∈ {1, . . . , a− 1}; (1.2.3)

∂i∂i+1∂i = ∂i+1∂i∂i+1 for all i, j ∈ {1, . . . , a− 2}; (1.2.4)

xk∂k − ∂kxk+1 = ∂kxk − xk+1∂k = 1 for all k ∈ {1, . . . , a− 1}. (1.2.5)

The subring generated by only the differentials {∂i}a−1
i=1 is called the nilCoxeter ring.

• We observe that the commutative polynomial ring Z[x1, . . . , xa] is a subring of NHa. For
simplicity write Z[x̄a] for the polynomial ring in a variables x1, . . . , xa.

• Write Z(NHa) = Z[x̄a]Sa , where the the superscript Sa for the invariant ring fixed by the
action of the symmetric group Sa on Z[x̄a]. We show later the invariant ring Z(NHa) =
Z[x1, . . . , xa]Sa is the center of NHa.

• The algebra NHa is noncommutative and finitely generated. There is a natural inclusion
NHa ↪→ NHb if b > a. In particular NHa ↪→ NHa+1.

• Observe ∂i is nilpotent. Thus the algebra NHa is not a domain, and the nilCoexter subring
is not a domain either.

• The nilHecke algebra is the nilHecke ring taken over a field, which we do in Chapter 2 by
extension of scalars to Q.

The next equation is an extension of 1.2.5.

Proposition 1.2.2. The following equation holds:

∂ix
m
i − xmi+1∂i = xmi ∂i − ∂ixmi+1 =

∑
l1+l2=m−1

xl1i x
l2
i+1. (1.2.6)

Proof. We prove only ∂ix
m
i − xmi+1∂i =

∑
l1+l2=m−1 x

l1
i x

l2
i+1 other computation is similar. By

induction on m, start with xi∂i − ∂ixi+1 = 1, and for the case m = 2

xi(xi∂i − ∂ixi+1) + (xi∂i − ∂ixi+1)xi+1.

On the other side of the equation we get

xi(1) + (1)xi+1 = xi + xi+1.

The induction step follows from a similar calculation. Using strong induction we replace the
relation for m− 1 and m− 2. From xmi ∂i− ∂ixmi+1 =

∑
l1+l2=m−1 x

l1
i x

l2
i+1 get, on the left hand side

of 1.2,

xi(x
m
i ∂i − ∂ixmi+1 + (xmi ∂i − ∂ixmi+1)xi+1

= xm+1
i ∂i − xi(xm−1

i ∂i − ∂ixm−1
i+1 )xi+1 − ∂ixm+1

i+1

= xm+1
i ∂i − ∂ixm+1

i+1 + xi

( ∑
l1+l2=m−2

xl1i x
l2
i+1

)
xi+1

14



and on the right hand side

xi

( ∑
l1+l2=m−1

xl1i x
l2
i+1

)
+

( ∑
l1+l2=m−1

xl1i x
l2
i+1

)
xi+1.

Observe that

xi

( ∑
l1+l2=m−1

xl1i x
l2
i+1

)
+

( ∑
l1+l2=m−1

xl1i x
l2
i+1

)
xi+1+xi

( ∑
l1+l2=m−2

xl1i x
l2
i+1

)
xi+1 =

∑
l1+l2=m

xl1i x
l2
i+1

so that 1.2 proves the equation.

Let w = si1 . . . sik be a reduced expression for w ∈ Sa. Write ∂w := ∂i1 . . . ∂ik . We now show
that ∂w is independent of the reduced expression for w. That is, if w is another reduced expression
we still get the same element ∂w. We have two relations for the set {∂i}. They are

∂i∂i+1∂i = ∂i+1∂i∂i+1 ∂i∂j = ∂j∂i if |i− j| > 1. (1.2.7)

Remember a reduced expression of a permutation never has a transposition two consecutive
times in its expression, so we should never find ∂2

i in a reduced expression. Two expressions for a
permutation are equivalent if each can be obtained from the other by a finite sequence of moves
involving the previous relations. The relations for the symmetric group besides si being idempotent
are

sisi+1si = si+1sisi sisj = sjsi,

the same conditions as for the nilCoxeter algebra generators. As a consequence the expression

∂w = ∂s1 . . . ∂sk for w = si1 . . . sik

is well defined. If we have that ∂w is not zero then w is a reduced expression for the corresponding
permutation. To see this observe that the two crossings Lemma 1.1.7 and the relation ∂2

i = 0 imply
a non reduced expression gives a zero nilCoxeter element. This leads to the following.

Lemma 1.2.3. Reduced expressions for the same permutation represent the same nilCoxeter ele-
ment. In particular the nilCoxeter subring of NHa is spanned by {∂π : π ∈ Sa}.

Lemma 1.2.4. The symmetric group Sa acts on Z[x1, . . . , xa].

Proof. The natural action of π ∈ Sa is given by πf(x1, . . . , xa) = f(xπ(1), . . . , xπ(a)).

Lemma 1.2.5. There is a subring Λa of Z[x̄a] that consists of polynomials that satisfy si(f) = f
for all i ∈ {1, . . . , a− 1}.

Proof. Let f and g be polynomials such that si(f) = f and si(g) = g for all i. Let α be a scalar.
For any i we have that

si(f + g) = si(f) + si(g) = f + g

si(fg) = si(f)si(g) = fg,

si(αf) = αsi(f) = αf,

si(1) = 1.

15



Definition 1.2.6. A polynomial f is symmetric in xi and xi+1 if si(f) = f . Define the ring of
symmetric polynomials in a variables as the ring of invariant polynomials under the Sa action. We
denote the symmetric polynomials as Λa. In the literature sometimes Z[x1, . . . , xa]Sa is used.

We introduce skew derivations [21] in relation to the nilHecke action on Z[x̄a]. It turns out that
∂i is a σi-derivation of the polynomial ring through the action we consider.

Definition 1.2.7. Let EndA denote the endomorphisms of A over R, where A is an algebra over
a ring R. Let σ ∈ EndA be given. A skew derivation of A is an R-linear map δ that satisfies

δ(ab) = δ(a)b+ σ(a)δ(b).

We say that δ is a σ-derivation and the set of all σ-derivations is DerαA.

If σ ∈ EndA then σ − 1 ∈ DerσA so it is not empty, as seen in the following example.

Example 1.2.8. Assume that δ is a σ derivation. We have that σ−1 and σδσ−1 are σ derivations.
We know σ − 1 is R-linear, and see that

(σ − 1)(ab) = σ(ab)− ab;
(σ − 1)(a)b+ σ(a)(σ − 1)(b) = σ(a)b− ab+ σ(a)σ(b)− σ(a)b

= σ(ab)− ab.

Now we prove σδσ−1 is a derivation. That it is R-linear is immediate. Note that

σδσ−1(ab) = σδσ−1(a)σ−1(b)

= σ
(
δ(σ−1(a))σ−1(b) + aδ(σ−1(b))

)
= (σδσ−1(a))σσ−1(b) + σ(a)(σδσ−1(b)).

Now suppose that A is commutative. For a ∈ A if a 6= σ(a) we have

δ(an) = (an−1 + an−2 + · · ·+ σ(a)n−1)δ(a) =

(
an − σ(an)

a− σ(a)

)
δ(a) (1.2.8)

If f is a function on A,

δ(f) =
f − σ(f)

a− σ(a)
δ(a).

Theorem 1.2.9. The nilHecke ring NHa acts on Z[x̄a]. Let f be a polynomial. This action is
defined by xi(f) = xif , multiplication, and ∂i by the divided difference operator

∂i(f) =
f − si(f)

xi − xi+1
.

We need to show that the action of ∂i satisfies the nilCoxeter relations, which we leave for
Lemma 1.2.14 and Corollary 1.2.15. In particular we prove that ∂i(f) is a polynomial. In the
following pages we prove that NHa acts on the polynomial ring. If NHa acts on Z[x̄a] then by
restriction to the nilCoxeter subring of NHa generated by the differentials the following corollary
is obtained.

Corollary 1.2.10. The nilCoxeter ring acts on Z[x̄a].

16



Example 1.2.11. We calculate the action on the variables.

∂i(xi) =
xi − xi+1

xi − xi+1
= 1 (1.2.9)

∂i(xi+1) =
xi+1 − xi
xi − xi+1

= −1 (1.2.10)

∂i(xj) =
xj − xj
xi − xi+1

= 0. (1.2.11)

Lemma 1.2.12. Let f ∈ Z[x̄a]. Then

1. If f is symmetric in xi and xi+1 then ∂i(f) = 0.

2. The image of ∂i consists of symmetric polynomials in xi and xi+1.

Proof. 1. If f is symmetric we get

∂i(f) =
f − si(f)

xi − xi+1
=

f − f
xi − xi+1

= 0.

2. Suppose that ∂i(f) 6= 0. We prove ∂i(f) is symmetric. This means si(∂i(f)) = ∂i(f).

si(∂i(f)) = si

(
f − si(f)

xi − xi+1

)
=

si(f − si(f)

si(xi − xi−1)
= − si(f)− f

xi − xi+1
=
f − si(f)

xi − xi+1
= ∂i(f).

Therefore, ∂i(f) is symmetric for xi and xi+1.

In particular if f ∈ Z (or f ∈ k for the nilHecke algebra) we have that ∂i(f) = 0. Transpositions
si that are adjacent also generate Sa. If ∂i(f) = 0 for 1 ≤ i < a then f = si(f) so f ∈ Λa, because
it is invariant under the action of a generating set of Sa.

Lemma 1.2.13. The kernel of ∂i are symmetric polynomials and the image of ∂i are symmetric
polynomials. That is, the ring Λa = ∩a−1

i=1 ker ∂i = ∩Im∂i. As a consequence the nilHecke relation
∂2
i (f) = 0 is satisfied.

Proof. Let f be a symmetric polynomial in all the variables. Then si(f) = f for any si, i =
1, . . . , a − 1. Thus ∂i(f) = 0 for all i, so f ∈ ker ∂i for all i. Given i ∈ {1, . . . , a − 1}, let g = xif .
We calculate ∂i(g) = ∂i(f) = (xif − si(xif))/(xi − xi+1) = (xif − xi+1f)/(xi − xi+1) = f . Then
f ∈ Im∂i, for each i ∈ {1, . . . , a− 1}. This gives two inclusions.

Given f such that f = ∂i(gi) for some polynomial gi is a symmetric polynomial in xi and xi+1.
If f ∈ ∩Im∂i then f = ∂i(gi) for some gi for each i ∈ {1, . . . , a − 1}. This implies f is symmetric
in all the variables, thus f ∈ Λa. Let ∂i(f) = 0. This implies f = si(f) so f is symmetric in xi
and xi+1. In the same fashion if ∂i(f) = 0 for each i, it is symmetric in all the variables, so that
f ∈ ∩Im∂i.

We already know that ∂i(f) is symmetric so ∂i(∂i(f)) = 0.

We derive our main tool for computations of ∂i(f), we prove the Liebniz rule. Then we verify
that the action we defined satisfies the nilHecke relations involving differentials.

Lemma 1.2.14. (Twisted Liebniz rule and nilHecke relations) Let f be a polynomial. Then

1. if ∂i(f) = 0, ∂(fg) = f∂(g).

2. ∂i(fg) = ∂i(f)g + si(f)∂i(g).
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3. ∂i∂i+1∂i(f) = ∂i+1∂i∂i+1(f).

4. ∂i∂j(f) = ∂j∂i(f) for |i− j| > 1.

5. (∂ixi − xi+1∂i)(f) = f and (xi∂i − ∂ixi+1)(f) = f .

Proof. Let us prove 2 first. Take the right hand side,

∂i(f)g + si(f)∂i(g) =
f − si(f)

xi − xi+1
g + si(f)

g − si(g)

xi − xi+1
(1.2.12)

=
fg − si(fg) + si(f)g − si(f)si(g)

xi − xi+1
(1.2.13)

=
fg − si(f)si(g)

xi − xi+1
(1.2.14)

=
fg − si(fg)

xi − xi+1
= ∂i(fg). (1.2.15)

Observe that si(f)si(g) = si(fg) because si simply exchanges xi and xi+1, so the product of
the polynomials with exchanged variables is the same as exchanging variables in the product. Now,
if ∂i(f) = 0 so f is symmetric in xi and xi+1, the formula reduces to

∂i(fg) = ∂(f)g − si(f)∂i(g) = f∂i(g)

using that si(f) = f . This proves 1.

We prove the nilHecke relations, which are 3-5. If |i− j| > 1

∂i∂j(f) = ∂i
f − si(f)

xi − xi+1
(1.2.16)

=
f − si(f)

(xi − xi+ 1)(xj − xj+1)
+ sj

f − si(f)

(xi − xi+1)(xj − xj+1)
(1.2.17)

=
f − si(f)− sj(f) + sjsi(f)

(xi − xi+1)(xj − xj+1)
(1.2.18)

=
f − si(f)− sj(f) + sjsi(f)

(xi − xi+1)(xj − xj+1)
= ∂j∂i(f). (1.2.19)

Rememeber that ∂i(f) is symmetric so si(∂i(f)) = ∂i(f). Get that
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∂i∂i+1∂i(f) = ∂i∂i+1

(
f − si(f)

xi − xi+1

)
= ∂i

(
f(xi − xi+2)− xi(si(f) + si+1(f)) + xi+2si(f) + xi+1si+1(f) + (xi − xi+1)si+1si(f)

(xi − xi+1)(xi − xi+2)(xi+1 − xi+2

)
=

f(xi − xi+2)− xi(si(f) + si+1(f)) + xi+2si(f) + xi+1si+1(f) + (xi − xi+1)si+1si(f)

(xi − xi+1)2(xi − xi+2)(xi+1 − xi+2)

+
f(xi − xi+1)− xisi(f)(xi − xi+1)− xisi+1(f)(xi − xi+1) + si+1si(f)(xi − xi+1)

(xi − xi+1)2(xi − xi+2)(xi+1 − xi+2)

+
sisi+1(f)(xi − xi+1)− sisi+1si(f)(xi − xi+1)

(xi − xi+1)2(xi − xi+2)(xi+1 − xi+2)

=
f − si(f)− si+1(f) + sisi+1(f) + si+1si(f)− sisi+1si(f)

(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

=
f − si(f)− si+1(f) + sisi+1(f) + si+1si(f)− si+1sisi+1(f)

(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)

= ∂i+1∂i∂i+1(f).

In the last step we use the braiding relation for si. At last,

(∂ixi − xi+1∂i)(f) =
xif − si(xif)

x− xi+1
− xi+1

f − si(f)

x− xi+1
(1.2.20)

=
xif − xi+1si(f)− xi+1f + xi+1si(f)

xi − xi+1
(1.2.21)

=
f(xi − xi+1)

xi − xi+1
= f (1.2.22)

In a similar way one can compute xi∂i − ∂ixi+1 = 1. Thus, the proof is complete.

Corollary 1.2.15. For any polynomial f , ∂i(f) is a polynomial.

Proof. Write f ∈ Z[x̄a] as a sum of monomials. As the operators ∂i are linear, we can apply them
to monomials. The operator applied to each monomial renders a polynomial using the Liebniz rule
we just proved, and the result follows.

In particular, ∂π for π ∈ Sa applied to a polynomial renders a polynomial.

The divided difference operator’s action satisfies the nilHecke relations. Thus, we have finally
proved theorem 1.2.9 that NHa acts on the polynomial ring Z[x̄a]. We return in section 1.5 to the
action of NHa in order to define Schubert polynomials. We wish to give the ring NHa a Z-grading.
s

Definition 1.2.16 (Additive Grading). Let A be an algebra and G a commutative group. A
grading on A by G is a decomposition of A,

A =
⊕
g∈G

Ag

of G−components such that AgAh ⊆ Ag+h. A component is called an homogeneous component,
and its elements homogeneous elements. A graded homomorphism of G-graded algebras f : A→ B
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satisfies that f(Ag) ⊂ Bg.1 A module M over a G-graded algebra is a G-graded module if AgMg′ ⊂
Mgg′ . A morphism of graded modules is a mapping f : N →M such that f(Ng) ⊂Mg.

Given a grading there is an implicit degree function associated to it. We define deg(f) = g
if and only if f ∈ Ag. Consider the additive group Z and A and algebra over a field. This way,
given n ∈ Z, the homogeneous components An are vector spaces and deg a = n for a ∈ An. We
consider Z additive gradings int the present work. Graded homomorphisms are more restrictive
that homomorphisms and many known algebras can be graded by the integers. In occasion we
would have that a Z-graded ring A has nonezero homogeneous components only for n ≥ 0. In that
case we say that A is graded by the semigroup of positive integers.

Example 1.2.17. The polynomial ring Z[x̄a] admits a Z grading. It is graded by the semiring of
positive integers. Let deg(xi) = 1 for i = 1, . . . , a. If f is a polynomial let deg(f) be the maximum
degree of its monomials. Then deg(fg) = deg(f) + deg(g) defines a grading, and deg is called the
total degree.

The ring Z[x̄a] admits other gradings, for example multi-indices. In such case we consider the
separate the degree of each variable, and set an order in the a-tuples using the lexicographic order.
These gradings are important in division algorithms.

Definition 1.2.18. An action of an algebra A in another algebra B is a graded action if its
action defines a graded endomorphism of B. Then the assignment from A to EndB is a graded
homomorphism. We say that the action defines a graded representation. The grading A and B
have are considered in the equation degB(a(b)) = degA(a) + degB(b).

Theorem 1.2.19. The algebra NHa is a graded algebra. The grading is given by deg(xi) = 2 and
deg(∂i) = −2 for all i. Furthermore, if the polynomial ring Z[x̄a] is graded with deg(xi) = 2 for all
i, then the action of NHa on polynomials defines a graded representation.

Proof. We show that the grading is well defined, that the relations preserve the grading. We also
show that the action of the nilHecke algebra in the polynomial ring is degree preserving.

First we check that NHa is a graded algebra. In particular we check equations involving
differentials. The commutation relation gives the same degree in both sides. The braiding relation
for differentials is also preserved. We verify that ∂ixi − xi+1∂i has degree zero, which is forced by
∂ixi − xi+1∂i = 1. Calculate deg(∂ixi) − deg(xi+1∂i) = (2 − 2) + (2 − 2) = 0, so the sum of two
elements in the zero degree is zero as we expected. The equation xi∂i − ∂ixi+1 = 1 is seen to be
preserved in a similar fashion. Then deg is a grading in NHa.

We prove the second part of the theorem, that the representation is graded. The action on
polynomials in Z[x̄a] is degree preserving by setting deg(xi) = 2 for all i = 1, . . . , a. This means
the following equation holds for a polynomial p and h ∈ NHa,

deg(hp) = deg(h) + deg(p).

Notice that it is enough to check the action on generators of NHa. For the action of the variables
xi it is clear this works. For the action differentials ∂i by the previous equations we have

∂ixi = 1 (1.2.23)

∂ixi+1 = −1 (1.2.24)

∂ixj = 0 if j 6= i, i+ 1 (1.2.25)

(1.2.26)

1A graded homomorphism is of degree s if f(Ag) ⊂ Bg+s. We use only degree zero homomorphisms in this
document, and we are not interested in other gradings at the moment, such as gradings by noncommutative groups.
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with degrees

deg(∂i(xi)) = deg(∂i) + deg(xi) = −2 + 2 = 0 (1.2.27)

deg(∂i(xi+1) = deg ∂i + deg xi = −2 + 2 = 0 (1.2.28)

deg(∂ixj) = deg ∂i + deg xj (1.2.29)

deg(1) = deg(−1) = deg(0) = 0. (1.2.30)

Thus, the degree is well defined and the degree is preserved in the action of NHa.

Remark 1.2.20. The reason a 2Z grading is used is that the nilHecke algebra has an interpretation
in terms of complex cohomology of flag varieties. The algebra NHa is one example of a family
of algebras called KLR algebras associated to semisimple Lie algebras. The nilHecke algebra
corresponds to the simplest Lie algebra sl2, as seen in Chapter 2. For other Lie algebras the full
Z-grading appears.

Example 1.2.21. (Action of NHa) We have that:

∂1(x2
1x2) = x1x2∂1(x1) = x1x2 (1.2.31)

∂1(x2
1) =

x2
1 − x2

2

x1 − x2
=

(x1 − x2)(x1 + x2)

x1 − x2
= x1 + x2. (1.2.32)

1.3 Diagrammatics for the nilHecke algebra

The diagrammatic approach to the nilHecke algebra comes from the work of Lauda in the categori-
fication of the quantum algebra Uq(sl2). Graphical calculus related to Quantum Groups and sl2
are traced back to Kauffman and Penrose, later Frenkel and Khovanov.

First, we describe the diagrammatics for the polynomial ring k[x̄a]. Take a vertical ordered
strands representing each variable. For each power of xi, i ∈ {1, . . . , a}, place a dot into the strand.
In this way, the unit element 1 is encoded by

1 :=

1 2

· · ·
a

(1.3.1)

where we have a strings. Now we encode the a variables xi, 1 ≤ i ≤ a by

xk :=

1

· · ·
k

· · ·
a

Take linear combinations of diagrams to form, for example x1 + 2x2
2, in the following way

1 2

· · ·
a

+ 2

1 2

· · ·
a

.

Multiplication of polynomials is done by stacking up diagrams. Multiplying the last equation
by x1 slides one dot in the first string in both of the diagrams above as x1(x1 + 2x2

2) = x2
1 + 2x1x

2
2.

Instead of placing several dots on one string we can write a number m at the side of the dot to
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signal m dots. In the polynomial ring we have the commutativity relation xixj = xjxi, so the order,
or height of the dot, is not important. This relation is an isotopy of the diagram. But in case of
NHa, the algebra is noncommutative. Following the convention of Lauda and Khovanov, we stack
up diagrams from top to bottom, and read the expression from left to right.

The differentials ∂k in NHa are encoded by

∂k :=

1

· · ·
xk xk+1

· · ·
a

.

We may omit the extra vertical lines and represent the relations locally around the affected
strands. The relations for our generators, drawing only affected strands, are depicted as follows:

= 0 ∂2
k = 0;

i

· · ·
j

=

i

· · ·
j

xixj = xjxi;

= ∂i∂i+1∂i = ∂i+1∂i∂i+1

and

− = − =

which stands for

∂kxk − xk+1∂k = xk∂k − ∂kxk+1 = 1;

where 1 ≤ i, j, k ≤ a and we omit strands that are not altered in the relations for brevity. The
other relations are

∂i∂j = ∂j∂i

for |i − j| > 1, which is depicted as two crossings on separate strands that commute, and other
relations which are also given by planar isotopy of the diagrams.

1.4 The 0-Hecke Algebra

Definition 1.4.1. The 0-Hecke subring is the subring of NHa generated by the elements ∂̄i := xi∂i,
for i = 1, . . . , a− 1.

Remark 1.4.2. Diagrammatically the 0-Hecke subring is generated by elements that consist of a dot
followed by a crossing. We note the similarity with the nilCoxeter ring. The nilCoxeter subring of
NHa is generated diagrammatically by crossings. Even more, a wiring diagram that represents a
reduced expression is a nonzero nilCoxeter element.
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Theorem 1.4.3. The 0-Hecke algebra generators satisfy the following relations

∂̄2
i = ∂̄i; (1.4.1)

∂̄i∂̄i+1∂̄i = ∂̄i+1∂̄i∂̄i+1; (1.4.2)

∂̄i∂̄j = ∂̄j ∂̄i if |i− j| > 1. (1.4.3)

Proof. That ∂̄i∂̄j = ∂̄j ∂̄i for |i− j| > 1 follows from an isotopy of the diagram.
Let us prove the generators are idempotent. For this we use the nilHecke relation xk∂k =

1 + ∂kxk+1, xk+1∂k = ∂kxk − 1, and ∂2
k = 0 in the following way:

∂̄2
k = (xk∂k)2 = (1 + ∂kxk+1)(1 + ∂kxk+1) (1.4.4)

= 1 + ∂kxk+1 + ∂xk+1 + ∂k(xk+1∂k)xk+1 (1.4.5)

= 1 + ∂kxk+1 + ∂xk+1 + ∂k(∂kxk − 1)xk+1 (1.4.6)

= 1 + ∂kxk+1 + ∂kxk+1 + ∂2
kxk − ∂kxk+1 (1.4.7)

= 1 + ∂kxk+1 = ∂̄k. (1.4.8)

Finally, we calculate the braiding relation,

∂̄i∂̄i+1∂̄i = xi∂ixi+1∂i+1xi∂i (1.4.9)

= xi∂i(xixi+1)∂i+1∂i (1.4.10)

= x2
ixi+1∂i∂i+1∂i (1.4.11)

= x2
ixi+1∂i+1∂i∂i+1 (1.4.12)

= xi+1∂i+1x
2
i ∂i∂i+1 (1.4.13)

= xi+1∂i+1xi(xi∂i)∂i+1 (1.4.14)

= xi+1∂i+1xi(1 + ∂ixi+1)∂i+1 (1.4.15)

= xi+1∂i+1xi∂i+1 + xi+1∂i+1xi∂ixi+1∂i+1 (1.4.16)

= xi+1xi∂
2
i+1 + ∂̄i+1∂̄i∂̄i+1 (1.4.17)

= ∂̄i+1∂̄i∂̄i+1. (1.4.18)

Example 1.4.4. Diagrammatics can work better. We see how to prove the braiding relation again:

= = + = . (1.4.19)

Example 1.4.5. The action of 0-Hecke elements preserves the relation ∂̄2
i = ∂̄i. By direct calcula-

tion,

∂̄i∂̄i(f) = ∂̄i (xi∂i(f)) (1.4.20)

= xi

(
xi∂i(f)− xi+1∂i(f)

xi − xi+1

)
(1.4.21)

= xi∂i(f) (1.4.22)

= ∂̄i(f). (1.4.23)
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Lemma 1.4.6. Let π be a nilCoxeter element. We can assign π a 0-Hecke element π̄ by setting
∂i 7→ ∂̄i. The number of dots in π̄ is the length of the permutation that it represents.

Remark 1.4.7. This is not an algebra map. If we are given two permutations π and π′ such that
l(π) + l(π′) is bigger than the length for the longest permutation in Sa we have that ∂π∂π′ = 0, but
the composition of the 0-Hecke images in nonzero because ∂̄i is idempotent.

For the 0-Hecke elements we face an issue with notation. The RC graphs we use later have
the image on the top, but the convention of Ellis, Lauda and Khovanov is to stack diagrams from
top to bottom, as in [5, 16, 17]. We handle these notations through the following trick. Let ψ be
the nilHecke automorphism given by reflecting the diagram vertically, and let σ be the nilHecke
anti-homomorphism given by reflecting the diagram in a horizontal line. Both maps are defined
easily in terms of diagrammatics. The change of notation between the RC graph convention and
the nilHecke convention is given by σ.

Let π̄ be a 0-Hecke element. Then there is an underlying wiring diagram of a permutation
obtained by forgetting the dots in the diagram. Observe that w(π̄) = 0 if the number of dots in π̄
is greater than l(w0), the permutation with longest length w0. In any other case, this gives us a
reduced wiring diagram of some permutation. Write that as w(π̄) = π. In section 3.3 we define a
similar map u that untangles the diagram.

Lemma 1.4.8. The map w is extended to the nilHecke algebra as a forgetful map that omits the
dots of diagrams. The image of w is the nilCoxeter algebra.

Remark 1.4.9. The map w is not an algebra map. However, it is diagrammatic.

Theorem 1.4.10. Given a permutation with and a reduced wiring diagram for π, the diagram is a
nilCoxeter element, for which we write π ∈ NHa. To π there corresponds a unique 0-Hecke element
such that w(π̄) = π.

There is an odd theory for the nilHecke ring introduced by Khovanov, Lauda, and Ellis [5]. The
theory changes by defining an analog of the nilHecke ring that acts on the anticommuting polynomial
ring Z〈x̄a〉/〈xixj = −xjxi〉 for i 6= j, and i = 1, . . . , a. The odd nilHecke algebra relations change
by some signs, for example the one in the quotient for the skew ring and ∂i∂j = −∂j∂i, for i 6= j.
The 0-Hecke algebra is a subalgebra of the odd nilHecke algebra also. In this odd theory the 0-Hecke
algebra is important because these elements commute with the elements in the algebra, instead of
anticommuting as most elements do.

1.5 Schubert Polynomials

In this section we define Schubert polynomials using the nilCoxeter action and prove some important
properties.

Definition 1.5.1. Fix a positive integer a. Let w0 be the permutation with the longest length in
Sa and let xδ = xa1x

a−1
2 . . . xa, so xδ ∈ Z[x̄a]. Define the Schubert polynomial sπ by

sπ = ∂π−1w0
(xδ).

The following lemma is very useful in our study.

Lemma 1.5.2. The action of divided difference operators on Schubert polynomials is given by

∂wsπ =

{
sπw−1 if l(πw−1) = l(π)− l(w)

0 otherwise
. (1.5.1)
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Proof. By definition sπ = ∂π−1w0
(xδ). Given u, v ∈ Sa it is immediate that

∂u∂v =

{
∂uv if l(uv) = l(u) + l(v);

0 otherwise.

This way, if l(πw−1) = l(π)− l(w),

∂w(sπ) = ∂w∂π−1w0
(xδ) = ∂wπ−1w0

(xδ) = ∂πw−1−1w0
(xδ) = sπw−1 .

In particular ∂π(sπ) = 1 for any π ∈ Sa.

Theorem 1.5.3. The set of Schubert polynomials {sπ : π ∈ Sa} is linearly independent over Z.

Proof. Let
∑
π cπsπ = 0 where cπ ∈ Z and finitely many terms are different from zero. We proceed

by induction on Coxeter length. A direct calculation then goes as follows. As the sum is finite then
we can assume all permutations belong to some group Sa and that all coefficients for elements of
length greater than l(π) are zero. We apply the endomorphism ∂w for some w ∈ Sa, to get

∂w

(∑
π

cπsπ

)
=
∑
π

cπ∂w(sπ) = 0.

Then ∂w(sπ) = 1 if and only if w = π. Therefore cw = 0. We can do this for any permutation
in the sum.

We leave the proof of the following lemma for the end of Chapter 3.

Lemma 1.5.4. Any monomial in Ha := {xα1
1 . . . xαaa |αi ≤ a − i, ∀i such that 1 ≤ i ≤ a} can be

written as a linear combination
∑
π∈Sa cπsπ such that cπ ∈ Z for all π ∈ Sa.

If xα ∈ Ha say that α ⊆ δ or α ≤ δ, which means αi ≤ ai as δi = a− i. We have that |H| = a!
using the multiplication principle. There is one Schubert polynomial for each π ∈ Sa, so there are
a! different ones. The cardinalities of both sets coincide.

Lemma 1.5.5. [19] Let δ = (a−1, a−2, . . . , 1) for a ∈ N. The polynomial ring Z[x̄a] ∼=
∑
α⊂δ Λax

α

where α ∈ Na−1, and the abelian group Ha generated by {xα : α ⊂ δ} has rank a!.

Theorem 1.5.6. The set of Schubert polynomials S = {sπ : π ∈ Sa} is a basis for the free module
Z[x̄a] over Λa. That is, Z[x̄a] is a free module over Λa of rank a! with basis the set of Schubert
polynomials.

Proof. We sketch the proof as it can be found in Manivel’s book [19, 2.5.5]. The idea of the
proof is a change of basis. The polynomial ring can be written in terms of a more classical basis,
Ha := {xα1

1 . . . xαaa |αi ≤ a − i∀1 ≤ i ≤ a} has rank a!. This basis of monomials can be written
terms of Schubert polynomials from lemma 1.5.4 with integral coefficients. We have a! Schubert
polynomials and |Ha| = a! also. 2 The change of basis from the Schubert basis to the monomial
basis is immediate. The bases have the same cardinalities so the homogeneous components of
Λa ⊗Ha and Λa ⊗ {sπ}π∈Sn have all the same dimension.

2Schubert polynomials for Sa and the abelian groupHa have the same graded ranks. Lauda in [16,17] gives another
proof when he compares graded ranks to ensure the mapping is an isomorphism. By tensoring by Λa we get again
the same graded rank, so there should be an isomorphism of graded rings. The graded rank is an analog for groups of
a Hilbert series. This idea appears in several parts of mathematics where we have graded rings. For example, one is
cohomology rings, Euler characteristics, the categorified Jones Polynomial, and the Hilbert polynomial in algebraic
geometry.
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Corollary 1.5.7. The matrix ring Mat(a!,Λa) is isomorphic to EndΛa(Z[x̄a]) through the Schubert
polynomial basis.

We have the following formulas presented in the notes of Allen Knutson on Schubert Polynomials
and Pipe Dreams [13]. Recall i < a is a descent if π(i) < π(i+ 1).

Theorem 1.5.8. (Lascoux’s transition formula) Let π be different of 1 and i a descent of π. Let
j := max{i′ : π(i′) < π(i)} so j ≥ i+ 1. Let π′ = π(ij). Then

sπ = xisπ′ +
∑

a<i,π′(ai)≥Bπ′
sπ′(ai).

This last result is useful because it expresses Schubert polynomials in terms of other previous
Schubert polynomials in a non negative linear combination. Then Schubert polynomials are seen,
inductively, to have non negative coefficients.

Corollary 1.5.9. Schubert polynomials have non negative coefficients.

1.6 The nilHecke algebra as a matrix ring.

We give some applications of Schubert polynomials and describe NHa through its natural repre-
sentation in the endomorphism ring EndΛa(Z[x̄a]). Proofs of these propositions can be found in
Lauda’s papers [16,17] and for the odd case by Ellis, Khovanov and Lauda in [5].

Lemma 1.6.1. In the nilHecke algebra xixi+1∂i = ∂ixixi+1.

Proof. By the employment of the nilHecke relation twice,

∂ixixi+1 = xi+1 + xi+1∂ixi+1 == xi+1 + xixi+1∂i − xi+1 = xixi+1∂i. (1.6.1)

Lemma 1.6.2. Let f ∈ Λa and g ∈ Z[x̄a]. For any reduced expression w of a permutation π ∈ Sa
we have that ∂w(fg) = f∂wg. The converse holds, f commutes with ∂w for reduced expressions
of any permutation π ∈ Sa only if f ∈ Λa. In particular f commutes with ∂i if and only if f is
symmetric in xi and xi+1.

Proof. It is enough to consider generators of the nilCoxeter algebra. Suppose that f ∈ Λa so
∂i(f) = 0 and si(f) = f . Using the twisted Liebniz rule we get

∂i(fg) = ∂i(f)g + si(f)∂i(g) = f∂i(g).

On the other hand, we can also calculate explicitly that

∂i(fg) =
fg − si(fg)

xi − xi+1
=
fg − fsi(g)

xi − xi+1
= f∂i(g).

Now, we prove the converse. We show first that if a polynomial commutes with the action of ∂i
then it is symmetric in xi and xi+1. Let g be a polynomial, and assume ∂i(fg) = f∂i(g). Calculate

∂i(fg) =
fg − si(fg)

xi − xi+1
; f

g − si(g)

xi − xi+1
= f∂i(g),

which combined give fg − si(fg) = f(g − si(g)). This implies that fsi(g) = si(fg), so that f
is invariant under si. Therefore it is symmetric in xi and xi+1. If this happens for every ∂i,
i = 1, . . . , a, then f ∈ Λa.
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Theorem 1.6.3. (Basis for NHa) Consider the set B = {xA∂π}π∈Sa,A∈Na in End(Z[x̄a]). Ele-
ments in B are linearly independent in the natural representation.

Proof. We proceed again by induction on length. For l(π) = 0, from lemma 1.5.2 we get that
xA∂π1 = xA if π = 1 and zero otherwise. Suppose that it is true for all π′ such that l(π) > l(π′).
Notice that, if l(π′) < l(π),

xA∂πsπ′ = 0

and if l(π) = l(π′),

xA∂πsπ′ =

{
xA π = π′

0 otherwise.

We claim that if xA∂π′′ is a linear combination of other elements in the representation, then it is a
linear combination of previous elements. If it is a linear combination of elements of bigger length
then its action on sπ′′ is zero, from the previous equation, which is not true. But it contradicts the
induction hypothesis. Then they are linearly independent.

Theorem 1.6.4. The nilHecke algebra NHa is isomorphic to Mat(a!,Λa). In particular, the
regular representation of NHa is faithful.

Proof. We give an isomorphism to the matrix ring Mat(a!,Λa) of matrices of size a! over the
symmetric polynomials Λa. Remember a! is the cardinality of the Schubert basis for the polynomial
ring as a free module over Λa.

Let A be the polynomial ring in a variables. Let NHa act on A =
⊕

π∈Sa Λasπ through φ.
This way φ : NHa → End(Λa) is a representation of NHa and we prove it is an isomorphism. For
a NHa element f =

∑
π∈Sa fπ∂π we assign the natural element in the endomorphism ring of A

that corresponds to f . We can write that as φ(f) = f(−), where f(−) ∈ EndA. Let p ∈ A be a
polynomial. We want to see that the representation φ is faithful, that is, φ(f)(p) = 0 only if f is
zero. Assume φ(f)(p) = 0. But now choose π′ ∈ Sa of minimal length in the expression of f . Then
φ(f)(sπ′) = 0 and also

∂πsπ′ =

{
sπ′π−1 if l(π′π) = l(π′)− l(π)

0 otherwise.

That implies the only contribution comes from π ∈ Sa such that l(π) = l(π′). From l(π′π−1) =
l(π′)− l(π) = 0, get that π = π′ and fπ = 0. By induction on Coxeter length we get the result.

The surjectivity of φ comes from making sure that the elementary matrices, which span the
matrix ring, are in the image. Order the Schubert basis using the length of permutations, so that
the matrix acts on a column vector f1s1 + · · ·+ fπsπ + · · ·+ fw0

sw0
. From the formula get

φ(sπ∂w0
)(sπ′ =

{
sπ π′ = w0

0 otherwise.

Observe that the last equation, using the ordered basis, translates to

φ(sπ∂w0
) 7→



0 . . . 0 0
...

. . .
...

...
0 . . . 0 1
...

. . .
... 0

0 . . . 0 0


27



with the entry one in the position (π,w0). This gives the elements in the last column. If w has
length l(w0)− 1, so w = σiw0, for a transposition σi, our formula says

φ(sπ∂w)(sπ′) =


sσi if π′ = w0

sπ if π′ = w

0 otherwise

.

For the case π′ = w0 the computation is

sπ∂w(sw0) = ∂π−1w0w(xδ) = ∂w−1
0 w0w

(xδ) = ∂w(xδ) = ∂σiσ−1
i w(xδ) = ∂σiw0(xδ) = sσi .

This matrix is the sum of two elementary matrices, and the one corresponding to π′ = w0 is in
the last column which we computed before. Subtracting the elementary matrix we had before we
get the elementary matrix with one on the entry (π,w). We can proceed by induction and the
computation is similar to the one we just did. Therefore, we obtain the desired isomorphism.

Corollary 1.6.5. From the last theorem we derive that:

1. The nilHecke algebra can be seen as a free module over Λa.

2. The center of the nilHecke algebra is Z[x̄a]Sa = Λa.

Proof. For the first part observe that Mat(Λa, a!) is a Λa module.
We calculate the center of the matrix ring. Remember that if z ∈ Z(Mat(n,R)), the center of

Mat(n,R), then z is a multiple of I. It should be clear z has to be sum of the diagonal elements,
which are idempotents in Mat(n,R). Write ei for i = 1, . . . , n for the orthogonal basic idempotents
in Mat(n,R), i.e. the diagonal elements in the basis. Let A ∈ Mat(n,R). Then Aei is the i−th
column of A, and eiA is the i-th row of A. Let z =

∑
i ciei with ci ∈ R then ci 6= 0. Otherwise

there is a matrix A such that Az 6= zA from the last calculation. If Az = zA then non diagonal
elements are nonzero and coincide, so ci = cj for all i, j ∈ {1, . . . , n}. The identity In generates
the center, so RIn ∼= R is the center of the matrix ring. Thus, the center of NHa is isomorphic to
Λa.
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Chapter 2

Categorification

In this section we review how the nilHecke algebra categorifies Uq(sl2)+. The idea of categorification
goes back to Igor Frenkel, who conjectured higher categorical quantum groups existed. This was
possible from the existence of the algebra AU̇, the idempotented integral version of the quantum
enveloping algebra introduced by Lusztig. We need some preliminaries in categorification, and
to describe the quantum group Uq(sl2). After describing Uq(sl2) we make the modification that
gives the integral version. The integral version of the enveloping algebra is due to Kostant, and
is generalized to quantum groups by Lusztig. In the work of Khovanov and Lauda the algebra
categorified is Lusztig’s integral idempotented version U̇ of Uq(sl2), the algebra that has a canonical
basis that was categorified diagrammatically, where the nilHecke algebra plays a part. It turns
out that U̇+ = Uq(sl2)+ and we skip U̇ and give an easier introduction. We focus on showing
an application of Schubert polynomials, they help to categorify the generators of Uq(sl2)+. The
algebras that categorify the positive parts of the deformed enveloping algebras are called KLR
algebras, studied in Khovanov and Lauda’s work in [12, 16, 17] and by Rouquier in 2-Kac Moody
algebras [23]. The nilHecke algebra is the KLR algebra associated to sl2.

Remark 2.0.1. The ring of polynomials Z[x̄a] seen as a Λa module is a free module with basis the
set of Schubert polynomials {sπ : π ∈ Sa}. As it is free we can always make an extension of scalars
−⊗Z Q and consider the nilHecke algebra over Q. We will deal with the nilHecke algebra and not
the nilHecke ring in the present chapter in order to apply the categorification theorems of Section
2.2. The nilHecke algebra acts over Q[x̄a] and the results in the previous chapter still hold. In
Chapter 3 we work again over Z.

2.1 The quantum group Uq(sl2)

Here we review some important facts of the algebra sl2 and the quantum group Uq(sl2). Most of
this section’s material can be found in Kassel’s book on Quantum Groups. For this reason we omit
most of the proofs. We show that Uq(sl2) is a Hopf algebra, so we can call it a quantum group, in
the sense of Drinfeld. We also review how representations behave.

Definition 2.1.1. The Lie algebra sl2 over any field of characteristic different from 2 is the Lie
algebra of traceless square matrices of size 2. The Lie bracket is defined as [a, b] = ab− ba.

Lemma 2.1.2. The algebra sl2 is generated by the matrices

e =

[
0 1
0 0

]
f =

[
0 0
1 0

]
h =

[
1 0
0 −1

]
.
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with product [−,−] and with relations

[e, f ] = h [h, e] = 2e [h, f ] = −2f.

We study the representations of sl2 over C. This algebra is nonassociative and the operation
[a, b] = ab− ba is called a Lie bracket. In this case this is a simple Lie algebra of dimension 3 and
it is very important in the classification of finite dimensional Lie algebras. It turns out that the
representation categories of sl2 and the enveloping algebra U(sl2) are the same, though we do not
give a proof of this. With this excuse, we are concerned with finite dimensional representations
of sl2. Call v the highest weight vector of an sl2 representation if ev = 0 and if it has the
highest eigenvalue for H. An irreducible sl2 representation is a vector space V in which h is
diagonalizable and it has a decomposition into the eigenvectors of h such that it has no non trivial
subrepresentation. From the sl2 relations it can be proved that if v′ has eigenvalue λ then ev′ has
eigenvalue λ+ 2 and fv′ has eigenvalue λ− 2. Induction on these elements give a description of the
irreducible representations Vn with highest weight λ = n.

Theorem 2.1.3 (Kassel [10]). Let vk be as we just defined, then

hvk = (n− 2k)vk, evk = (n− k + 1)vk−1, fvk = (k + 1)vk+1.

We do not study sl2 as it is nonassociative, but prefer the enveloping algebra U(sl2). This
algebra is the associative algebra generated by elements {E,F,H} with the sl2 relations

[E,F ] = H, [H,E] = 2E [H,F ] = −2F.

It has the universal property that it factors any Lie homomorphsim from sl2 to any associative
algebra with unit. The enveloping algebra has a Hopf structure. This algebra can be ‘deformed’ to
give another algebra Uq(sl2) which is the one of interest for us. Before doing that we introduce an
algebra presented by Kostant in Groups over Z [15, p. 485]. As stated there, if we select the basis
of the irreducible representation V in a way that evi = ±iv1+i then the Z span of the basis {vi}i
is stable under the divided powers Em/m! and Fn/n! for m,n ∈ Z. The algebra generated by the
divided powers and h is called the integral version of U(sl2) denoted ZU(sl2).

Now, we introduce the quantum case. Let q be a nonzero element in the field. In our case it
will be a generic element different from the roots of unity1. We introduce the quantum version of
sl2. Define the quantum factorial

[n] =
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1

with analog definitions of factorials and binomials as follows

[− n] = −[n] (2.1.1)

[m+ n] = qn[m] + q−m[n] (2.1.2)

[k]! = [1][2] · · · [k] (2.1.3)[
n
k

]
:=

[n]!

[k]![n− k]!
(2.1.4)

[n] = q−(n−1)(n)q2 . (2.1.5)

(2.1.6)

1We do not deal with that case in this document.
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Definition 2.1.4. Let q ∈ Q∗ such that q is not a root of unity. Let Uq(sl2) be the algebra freely
generated over Q(q) the field of rational functions over Q, by four variables E,F,K,K−1 that satisfy
the following relations

KK−1 = K−1K = 1 (2.1.7)

KEK−1 = q2E, (2.1.8)

KFK−1 = q−2F (2.1.9)

[E,F ] =
K −K−1

q − q−1
. (2.1.10)

Theorem 2.1.5. (PBW theorem for Uq(sl2)) The algebra Uq(sl2) is Noetherian and has no nonzero
divisors. The set {EiF jKl}i,j∈N,l∈Z is a basis of Uq(sl2).

The proof of the theorem rests in a noncommutative tool called an Ore extension. A proof of
the previous theorem can be found in the book by Kassel [10]. The Ore extension is used to get the
analog version of Hilbert Basis Theorem in the noncommutative setting. If R is Noetherian the Ore
extension is unique and Noetherian too. To define an Ore extension one needs an α−derivation.
This derivation is a twisted type of derivation, just as the action ∂i(fg) = ∂i(f)g + si(f)∂i(g) is
twisted by the automorphism si.

One expects to get back U(sl2) by setting q = 1 but it is not achieved form this presentation of
Uq(sl2), it has to be modified. The presentation we use is the usual one. The representation theory
of Uq(sl2) is similar to the one of sl2. The highest eigenvalue and eigenvector for eigenspaces of H
in the representation is called the highest weight and highest weight vector. This determines the
irreducible representations also.

Theorem 2.1.6 (Finite dimensional representations of Uq(sl2)). Let Vn be the n+1 dimensional
representation of Uq(sl2) with basis {vm}, m ≤ |n|, m = 2 mod 2, such that

Kvm = qmvm; (2.1.11)

Evm =

[
n+m

2
+ 1

]
vm+2; (2.1.12)

Fvm =

[
n−m

2
+ 1

]
vm−2. (2.1.13)

These are all the irreducible finite dimensional representations of Uq(sl2).

Representations of U(sl2) and Uq(sl2) are very similar. Let n and an irreducible representation
of U(sl2) of dimension n be given. The matrix for E in this representation has the numbers
n− 1, . . . , 1 in the diagonal just above the main diagonal. For Uq(sl2) the matrix has the quantum
numbers [n− 1], . . . , [1]. Our objective now is to endow Uq(sl2) a Hopf algebra structure.

Definition 2.1.7. A coalgebra is an algebraic structure with a counit and comultiplication. These
are maps that satisfy dual diagrams to the unit and multiplication diagrams. Cocommutativity is
defined in the same fashion. A bialgebra is an algebra with a coalgebra and an algebra structure
that are compatible and the counit and unit maps are algebra maps.

If A is an algebra then let the map µ : A ⊗ A → A multiply the entries. Let ∗ represent the
convolution of A maps, so that f ∗g : Aop⊗Aop → A⊗A is given by f⊗g. Let ν denote the unit map
ν : k → A. Recall that ∆ : A → A ⊗ A. An antipode S : A → Aop in A is an antihomomorphism
such that the following equations hold:

µ ◦ (I ∗ S) ◦∆ = µ ◦ (S ∗ I) ◦∆ = ν ◦ ε.
A Hopf algebra is a bialgebra with an antipode.
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Example 2.1.8. Let G be a finite group and and consider the group algebra kG. Define the
coalgebra structure by ∆(x) = x ⊗ x and ε(x) = 1. Let S(x) = x−1. Extend these maps linearly
to give a Hopf structure for kG. Elements in a Hopf algebra that satisfy ∆(x) = x ⊗ x are called
grouplike elements.

We define a comultiplication ∆, antipode S, and counit ε for Uq(sl2). The map ∆ and ε are
defined as

∆(E) = 1⊗ E + E ⊗K; (2.1.14)

∆(F ) = K−1 ⊗ F + F ⊗ 1 (2.1.15)

∆(K) = K ⊗K (2.1.16)

∆(K−1) = K−1 ⊗K−1 (2.1.17)

ε(E) = ε(F ) = 0; (2.1.18)

ε(K) = ε(K−1) = 1 (2.1.19)

and

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1, S(K−1) = K. (2.1.20)

Theorem 2.1.9. The algebra Uq(sl2) has a Hopf algebra structure.

Proof. We use the counit, antipode and comultiplication as defined above on generators. The
theorem is broken into the following steps, where we check that the maps satisfy the desired relations
on the algebra’s generators.

(1) The map ∆ is an algebra map.

∆(K)∆(K−1) = (K ⊗K)(K−1 ⊗K−1) = 1⊗ 1 ∼= 1 (2.1.21)

∆(K−1)∆(K) = (K−1 ⊗K−1)(K ⊗K) = 1⊗ 1 ∼= 1 (2.1.22)

∆(K)∆(E)∆(K−1) = (K ⊗K)(1⊗ E + E ⊗K)(K−1 ⊗K−1) (2.1.23)

= 1⊗KEK−1 +KEK−1 ⊗K (2.1.24)

= q2(1⊗ E + E ⊗K) (2.1.25)

= q2∆(E); (2.1.26)

∆(K)∆(F )∆(K−1) = (K ⊗K)(K−1 ⊗ F + F ⊗ 1)(K−1 ⊗K−1) (2.1.27)

= (K−1 ⊗KFK−1 +KFK−1 ⊗ 1) (2.1.28)

= q−2(K−1 ⊗ F + F ⊗ 1) (2.1.29)

= q−2∆(F ); (2.1.30)

[∆(E),∆(F )] = (1⊗ E + E ⊗K)(K−1 ⊗ F + F ⊗ 1) (2.1.31)

= K−1 ⊗ EF + F ⊗ E + EK−1 ⊗KF + EF ⊗K (2.1.32)

− K−1 ⊗ FE −K−1E ⊗ FK − F ⊗ E − FE ⊗K (2.1.33)

= K−1 ⊗ EF −K−1 ⊗ FE + EF ⊗K − FE ⊗K (2.1.34)

= K−1 ⊗ [E,F ] + [E,F ]⊗K (2.1.35)

=

(
1

q − q−1

)(
K−1 ⊗ (K −K−1) + (K −K−1)⊗K

)
(2.1.36)

=
∆(K)−∆(K−1)

q − q−1
. (2.1.37)

In the last equation we use that K−1E ⊗ FK = q2EK−1 ⊗ q−2KF = EK−1 ⊗KF .
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(2) The map ∆ is coassociative.

(∆⊗ Id)∆(E) = (∆⊗ Id)(1⊗ E + E ⊗K) (2.1.38)

= 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K (2.1.39)

(Id⊗∆)∆(E) = (Id⊗∆)(1⊗ E + E ⊗K) (2.1.40)

= 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K (2.1.41)

(∆⊗ Id)∆(F ) = (∆⊗ Id)(K−1 ⊗ F + F ⊗ 1) (2.1.42)

= K−1 ⊗K−1 ⊗ F +K−1 ⊗ 1 + F ⊗ 1⊗ 1 (2.1.43)

(Id⊗∆)∆(F ) = (Id⊗∆)(K−1 ⊗ F + F ⊗ 1) (2.1.44)

= K−1 ⊗K−1 ⊗ F +K−1 ⊗ 1 + F ⊗∆(1) (2.1.45)

(∆⊗ Id)∆(K) = K ⊗K ⊗K = (Id⊗∆)∆(K) (2.1.46)

(∆⊗ Id)∆(K−1) = K−1 ⊗K−1 ⊗K−1 = (Id⊗∆)∆(K−1) (2.1.47)

(3) The map ε is an algebra map.

ε(K)ε(K−1) = 1 = ε(K−1)ε(K) (2.1.48)

ε(K)ε(E)ε(K−1) = 0 = q2 × 0 = q2ε(E) (2.1.49)

ε(K)ε(F )ε(K−1) = 0 = q−2 × 0 = q−2ε(F ) (2.1.50)

[ε(E), ε(F )] = 0; (2.1.51)

ε(K)− ε(K−1)

q − q−1
=

1− 1

q − q−1
= 0. (2.1.52)

(4) ε satisfies the counit axiom. Let η be the map that sends A 7→ k ⊗ A. The counit axiom
states that

(ε⊗ Id) ◦∆ = η = (Id⊗ ε) ◦∆.

We just check that the left hand side equals η. We have that

(ε⊗ 1)∆(K) = (ε⊗ 1)(K ⊗K) = 1⊗K; (2.1.53)

(ε⊗ 1)∆(K−1) = (ε⊗ 1)(K−1 ⊗K−1) = 1⊗K−1; (2.1.54)

(ε⊗ 1)∆(E) = (ε⊗ 1)(1⊗ E + E ⊗K) (2.1.55)

= ε(1)⊗ E + ε(E)⊗K = 1⊗ E + 0 = 1⊗ E; (2.1.56)

(ε⊗ 1)∆(F ) = (ε⊗ 1)(K−1 ⊗ F + F ⊗ 1) (2.1.57)

= ε(K−1)⊗ F + ε(F )⊗ 1 = 1⊗ F + 0 = 1⊗ F. (2.1.58)

(5) The map S : Uq(sl2)→ Uq(sl2)op is an algebra map.

S(K)S(K−1) = K−1K = 1 = KK−1 = S(K−1)S(K); (2.1.59)

S(K−1)S(E)S(K) = −K(EK−1)K−1 = −q2EK−1 = q2S(E); (2.1.60)

S(K−1)S(F )S(K) = K(−KF )K−1 = −K(q−2F ) = −q−2KF = q−2S(F );(2.1.61)

[S(F ), S(E) = KFEK−1 − EK−1KF = [F,E] (2.1.62)

=
K−1 −K
q − q−1

=
S(K)− S(K−1)

q − q−1
. (2.1.63)
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(6) The map S is an antipode. We prove that the antipode equation holds on generators.

µ ◦ (S ∗ 1) ◦∆(K) = µ(K−1 ⊗K) = K−1K = 1 = ε(K); (2.1.64)

µ ◦ (1 ∗ S) ◦∆(K−1) = µ(K−1 ⊗K) = K−1K = 1 = ε(K−1); (2.1.65)

µ ◦ (S ∗ 1) ◦∆(E) = µ(1⊗ S(E) + E ⊗ S(K)) (2.1.66)

= µ(1⊗−EK−1 + E ⊗K−1) = −EK−1 + EK−1 (2.1.67)

= 0 = ε(E); (2.1.68)

µ ◦ (S ∗ 1) ◦∆(F ) = µ(K−1 ⊗ S(F ) + F ⊗ S(1)) (2.1.69)

= µ(K−1 ⊗−KF + F ⊗ 1) = K−1(−KF ) + F (2.1.70)

= F − F = 0 = ε(F ). (2.1.71)

Theorem 2.1.10. We have that S2(u) = KuK−1 for any u ∈ Uq(sl2). This means that S2 is not
the identity, but it is an inner automorphism.

That S2 6= Id implies that Uq(sl2) is neither commutative or cocommutative. The generators
K and K−1 are grouplike elements. Remember the tensor product of representations carries an
action defined by a(v ⊗ w) = (av ⊗ aw). There is the important formula for tensor product of
representations

Vn ⊗ Vm ∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ Vn−m
which is proved verifying that Vn ⊗ Vm contains a highest weight vector of weight qn+m−2p for

0 ≤ p ≤ m.

2.2 Categorification and K0 of a ring

It might be unclear what we mean by categorification. Khovanov’s article Linearization and cat-
egorification [11] is a short and simple introduction. To categorify is to do the inverse problem of
decategorifying. A decategorification is a functor from an n−category C to a n− 1 category C′. It
is natural to understand some algebras as categories, for example, path algebras, in the sense of
Grabriel. Given a category C a functor C → R, where R is a ring or algebra is a decategorification
functor. To categorify is to construct a category C and a functor with this property. What we dis-
cuss comes from [3, 22]. We are interested in the split Grothendieck group of a monoidal category.
For the definiion of a monoidal category we refer the reader to Etingof’s book [7].

Definition 2.2.1. A monoidal category C categorifies an algebra B if K0(C) = B.

In the following we introduce the Grothendieck group of the module category of a ring.

Definition 2.2.2. Let C be an abelian category C. The Grothendieck group K0(C) is the quotient
of the free abelian group generated by isoclasses of objects of C by split exact sequences in C. That
is, take Fr(C) = {[X]|X ∈ C} with quotient induced by the relations [X] = [Y ] + [Z] if there is a
split exact sequence 0→ Y → X → Z → 0 in C.

Remark 2.2.3. Equivalent categories give rise to the same Grothendieck groups. In particular Morita
equivalent rings will have isomorphic Grothendieck groups.

Theorem 2.2.4. If the additive category C is an abelian monoidal category the Grothendieck group
K0(C) has a ring structure with multiplication induced from the tensor product in C.
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We wish to calculate K0(NHa) and define an algebra NH such that K0(NH) =A Uq(sl2)+.
Not every module category is monoidal. In the case of NH we do not have a bialgebra, but the
induction and restriction functors for modules from the tower of algebras that we define in Section
2.3 give K0(NH) a Hopf algebra structure. That K0(NH) is a bialgebra is a result of Khovanov-
Lauda, which also holds for towers of finite dimensional algebras, a notable theorem of Nantel
Bergeron [2]. We start making our way to present Grothendieck groups of rings.

Definition 2.2.5. A projective module is a summand of a free module.

Lemma 2.2.6. An exact sequence ending in a projective R module splits. In particular an exact
sequence of projective modules splits.

Definition 2.2.7. A module M in modA is called flat if −⊗AM is an exact functor.

Remark 2.2.8. A projective module is flat.

Definition 2.2.9. Given an algebra A the Grothendieck group of A, K0(A), is the Grothendieck
group of the category of finitely generated projective left A modules.

Remark 2.2.10. We wish to make theorem 2.2.4 more clear in the case C is the module category
of a ring. If we consider a bialgebra A the module category is a monoidal category where the
coproduct makes the tensor product of modules M and N , M ⊗ N , also an A module through
a · (m ⊗ n) = ∆(a)(m ⊗ n) for m ⊗ n ∈ M ⊗ N and a ∈ A. Associativity for product in the
ring K0(A) follows from associativity in the tensor product. The tensor product of projective
modules is projective: If M is a summand of M ′ and N is a summand of N ′ where M ′ and N ′

are free, M ⊗ N is a summand of M ′ ⊗ N ′, which is free. Therefore M ⊗ N is projective. The
ring has an identity [A], as A ⊗AM ∼= M ∼= M ⊗A A. The zero of K0(A) is the zero module. We
check the distributivity also holds. Given a direct sum M ⊕N and an A module S we can tensor
by S and the relation (M ⊕ N) ⊗A S ∼= (M ⊗A S) ⊕ (N ⊗A S) is an isomorfism. To prove the
distributivity we can look at the split exact sequence 0 → M → M ⊕ N → N → 0 and tensor
getting 0→M ⊗S → (M ⊗S)⊕ (N ⊗S)→ N ⊗S → 0 what we want. The module S is projective,
so it is flat and the sequence is exact.

If A is commutative M ⊗N is an A module and there is an isomorphism M ⊗N ∼= N ⊗M .

Corollary 2.2.11. If A is a commutative ring then K0(A) is a commutative algebra.

Let us categorify Z. Given the ring of integers Z we wish to find a category such that K0(C) = Z.
The algebra or category C of this example must be simple. Picture the additive semigroup of integers.
We want it to have a generator corresponding to 1 and a semigroup of elements generated by it,
additively, such that by adding two copies we get the direct sum of them. The category C is a
category of modules. An indecomposable in the category can generate the Grothendick group and
this indecomposable has to be unique. In the case of vector spaces over a field k of characteristic
zero we have an indecomposable one dimensional vector space that factors any othe vector space.
We also have a zero vector space which is neutral element for addition. Let us choose C as the
category of finite dimensional vector spaces over the field k. Call this category V ectk. The group
induced from that semigroup is the additive group of integers Z. A decategorification functor from
V ectk to Z is given by dimension. The ring Z has also a product. In the category V ectk we have
a product given by the tensor product. It satisfies that dim(V ⊗W ) = dimV × dimW . The one
dimensional generator [k] satisfies [k] ⊗ W ∼= W ⊗ [k] ∼= W has the same dimension. We have
explained the following example.

Example 2.2.12. Let V ectk be the category of finite dimensional vector spaces over an arbitrary
field of characteristic zero. Then K0(V ectk) ∼= Z, where the product in the Grothendieck ring is
the tensor product of modules. There is decategorification functor dim : V ectk → Z that sends any
vector space V to its corresponding class dim(V ) ∈ Z. In this case K0(V ectk) is a ring.
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We want to calculate two examples of Grothendieck groups, for commutative local rings and
for matrix rings. The following proof requires a common tool in ring theory. The main idea of the
proof is that the rank, or dimension, is well defined modulo the radical and can be lifted up. It is
important to bear in mind the characterizations of the radical.

Definition 2.2.13. The Jacobson radical of a not necessarily commutative ring R is the inter-
section of all maximal left ideals. We write radA for the Jacobson radical.

Lemma 2.2.14. The Jacobson radical equals both of the following sets.

1. The intersection of maximal right ideals,

2. and {x ∈ A : ∀a ∈ A, 1− ax has a left inverse}.

Lemma 2.2.15. (Nakayama) Let A be a ring and M a finitely generated A-module with rad(AM) =
M . Then M = 0.

Corollary 2.2.16. Let M be a finitely generated module over A. A set {xi}mi=1 generate M if and
only if their images generate M/(radA)M .

Lemma 2.2.17. Let A be a local commutative ring. Then K0(A) = Z.

Remark 2.2.18. The last result can be made more general. Namely, if A is a local noncommutative
ring then K0(A) = Z. Given a module M by the radical of the A-module M we can lift the basis
used here to give a rank function. Through Nakayama’s lemma the result is obtained. Even more,
if A is commutative and local by Kaplansky’s theorem a projective module is free.

The function dim is a decategorification functor. It is well defined for isoclasses of finitely
generated projective modules. In particular it gives an isomorphism of K0(A) and Z by passing to
the quotient dim : K0(A)→ Z.

We review the theorem of Morita to give more background on the importance of K0 as an
algebraic invariant. The best way to state the theorem of Morita is as it appears in [24]. The other
way is to show that the progenerator gives rise to a Morita context, which through some bimodules
give a pair of functors that define an equivalence.

Definition 2.2.19. A generator G for a module category C is a module such that any module
M ∈ C we have that M is the image of GJ for some index set J . A progenerator is a finitely
generated projective generator.

Theorem 2.2.20 (Morita). Let A and A′ be rings. Then A is Morita equivalent to A′ if there is
a progenerator P of A′ such that A ∼= EndA′(P ).

Lemma 2.2.21. A full matrix ring of size n over a ring A is Morita equivalent to A.

Proof. We show how to apply the theorem of Morita as we stated it. Let Mat(n,A) be the matrix
ring of n × n matrices over A. The category we consider is of finitely generated left modules. Let
c be a column vector. As an A module c is projective, because it is a summand of An+1, which is
free. We claim it is a progenerator. The modules over the matrix rings consist of sums of columns,
which can be of different sizes, of some A modules. The module c is finitely generated as c is the
sum of n times A. Observe that A itself is the image of c and is a generator for R-mod. The column
modules are built from finite sums of projective A modules and thus any finitely generated module
is the image of cJ for some index J .2

Now observe that the matrix ring is the endomorphism ring of c over A, then Mat(n,A) =
EndA(c). By Morita’s theorem their module categories are equivalent.

2In the category of A modules G is a generator if there is a surjective map G→ A.
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The progenerator of the category is the column vector, which is also the module that generates
the Grothendieck group. Ussing Morita’s theorem may seem obscure, so we focus on a direct
calculation given by Rosenberg in [22] for the next lemma.

Lemma 2.2.22. Let Mat(A,n) be the matrix ring of n × n matrices over A a commutative ring.
Then K0(Mat(A,n)) ∼= K0(A).

Proof. We studyK0(A) through idempotents. Suppose P is a projective module so that P⊕M = An

for some n > 0. Let π be the projection in P so that π2 = π. As An has a rank and π is an
idempotent in EndA(An) it is a matrix idempotent! This module is equivalent to any other P ′ such
that its corresponding endomorphism π′ is conjugate in Mat(m,A) for largely enough m. One can
embed the matrices by filling the rest of the entries with zeroes.

On the other hand consider S := Mat(n,A) the ring of matrices and SS over itself as a module.
The matrix ring has n left ideals which are isomorphic. These left ideals are columns in the matrix
ring, and given a column c, we have that cn = S as S modules. This module is a summand of S so
it is projective, and even indecomposable. Observe that c is generated by the column vector c with
a one in the first entry and zero elsewhere. Informally, we claim this identifies c with A.

The matrix idempotent π corresponding to the column c inside End(M) for any module M with
summand c is primitive. That means π = e1 + e2 for other idempotents e1 and e2, then e1 = 0
or e2 = 0 as c is indecomposable. Any sum of columns is isomorphic to a sum of this module
inductively, obtained from the split sequence 0→ c→ c2 → c→ 0.

Now, we look at idempotents in the matrix ring. These correspond to sums of diagonal elements
πi,i for i = 1, . . .dimEnd(M). Observe that EndS(M) has finite dimension, it is a matrix ring
of matrices with size dimM × dimM where M = An. Under conjugation we only have one class
corresponding to π1,1 and this corresponds to a column c vector of S.

Let A be any ring. Consider the inclusions of matrices stacking matrix rings in the upper left
corner for Mat(n,A) and any n. We can take the union of them and end up with M(A) the infinite
ring of matrices. In this sense we take the union of invertible matrices Gl(n,R) and get Gl(A)
the invertible matrices in M(A). Idempotents in this matrices under conjugation correspond to
isoclasses of indecomposable projective modules. A projective module in this presentation is the
finite sum of primitive idempotents in M(A), as observed in Rosbenberg’s book [22].

There is the usual isomorphism Mr(S) ∼= Mnr(A) which induces isomorphisms of M(A) and
M(S), and also for the conjugations. Then the previous description of the Grothendieck group
implies that K0(S) ∼= K0(A).

This proof gives a more tangible explanation of the Morita equivalence, where we have that the
indecomposable progenerator c of S corresponds to the indecomposable progenerator R under the
equivalence.

Corollary 2.2.23. We have that K0(NHa) = Z.

Proof. Simply consider the last two theorems we proved. If R is a unital commutative ring we have
that K0(Mat(n,R))) ∼= K0(R). If R is a local commutative unital ring then K0(R) = Z through
the dimension functor. We obtained in the last chapter that NHa ∼= Mat(a!,Λa). Putting these
together

K0(NHa) ∼= K0(Mat(a!,Λa) ∼= K0(Λa) ∼= Z.

We introduce the Grothendieck group of a graded algebra. In order to do so we follow again the
example of the category V ectk of vector spaces.

Example 2.2.24. Define the category of graded vector spaces over the field k, denoted by
gV ectk, in the following way. Let the objects be Z graded vector spaces, so that V = ⊕i∈ZVi. A
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morphism of graded vector spaces, such as a morphism of graded algebras is given componentwise. In
the case of graded modules we want the compatibility AgMg′ ⊂Mgg′ preserved under the morphism.
We calculate K0(gV ectk). For a vector space V ∈ gV ectk set

[V ] = [⊕i∈ZVi] =
∑
i∈Z

qi[Vk] =
∑
i∈Z

qi dimk Vi[k].

Then define dimq V =
∑
i∈Z q

i dimk Vi, to obtain [V ] = dimq V [k]. This implies K0(gV ectk) =
Z[q, q−1].

Definition 2.2.25. Let A be a Z graded ring. The graded Grothendieck group of an algebra A is
the Grothendieck group of the graded module category of projective modules with the additional
relation

[xt] = qt[x]

for xt ∈Mt that makes K0(A) a Z[q, q−1] module.

In a similar form as before we have the following results.

Corollary 2.2.26. 1. If the category of modules is monoidal then the graded K0(R) is a ring.

2. Let R be a local commutative unital graded ring. Then K0(R) = Z[q, q−1].

3. We still have that K0(Mat(n,R)) ∼= K0(R) for the graded version of K0.

Example 2.2.27 (Euler characteristic). Let C• be the category of complexes of gV ectk. We define
a map from complexes of graded vector spaces to K0(gV ectk) which is isomorphic to Z[q, q−1] with
the Euler characteristic χ(C•) =

∑
i∈Z(−1)i[Ci] =

∑
i∈Z(−1)i dimq(Ci)[k] ∈ K0(gV ectk).

To apply this theorem to NHa through the isomorphism NHa = Mat(a!,Λa) we need the
following lemma.

Lemma 2.2.28. The ring of symmetric functions over a field is a graded local commutative unital
ring.

Proof. Let the ground field be k. Consider k[x̄a]. We claim that there is a graded maximal ideal
I in kx̄a]. The grading is given by the non negative integers. If we multiply by a polynomial f , in
the extreme case the lowest degree is for f ∈ k , and for any g ∈ I, deg(fg) = deg(g) + deg(f) =
deg(g) > 0, so fg ∈ I. Now take the quotient Λa/I = A0 = k. Then I is maximal. We claim that
m := I ∩ Λa is a maximal graded ideal in Λa. If it was not maximal then there is an ideal m′ such
that I ( m′. But, if f ∈ m′ − I then f ∈ 〈m′〉 −m in k[x̄a] and if 〈m′〉 does not equal m it has to
be k[x̄a]. Then m′ = k[x̄a] ∩ Λa = Λa is not a maximal proper ideal.

Theorem 2.2.29. Let NHa be considered as a graded algebra. Thus K0(NHa) ∼= Z[q, q−1].

2.3 The categorification of Uq(sl2)
+.

Our final objective in the chapter is to briefly explain part of Lauda’s work, showing how Schubert
polynomials are related to the sl2 categorification theorem. For sl2 the diagrammatic category
that includes the nilHecke ring as a subring is not exactly what categorifies Uq(sl2). There are
several technical steps, taking a subcategory of morphisms that preserve degree and a categorical
construction called a Karoubi envelope. Then the Grothendieck group is computed and K0(K(U))
gives U̇. As reviewing the entire sl2 paper is too much for the present document, we are be concerned
in explaining the main role of the nilHecke algebra in the sl2 categorification.
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We define the positive part of Uq(sl2) in the following way. The algebra admits a triangular
decomposition Uq(sl2) ∼= U− ⊗Uz ⊗U+ where U− is generated by F , Uz by K and K−1, and U+

by E. The positive part is U+. Our goal is to prove the following theorem.

Theorem 2.3.1 (Khovanov, Lauda [12, 17]). The nilHecke algebra NH categorifies the positive
part of the integral idempotented version of Uq(sl2).

We need to introduce two algebras, the positive part of the integral quantum group AUq(sl2)+

and the nilHecke algebra NH. The algebra Uq(sl2) is defined by Lusztig over Q(q). He also
introduced an analog quantum integral version, denoted by AUq(sl2), where A = Z[q, q−1]. This is
an integral subalgebra of Uq(sl2) generated by K, K−1, and the divided powers

E(n) =
En

[n]!
and F (n) =

Fn

[n]!
.

By taking account that

E(a)E(b) =

[
a+ b
a

]
E(a+b) with

[
a+ b
a

]
∈ A,

it is an algebra over A, as mentioned in [18, 4.1,4.2]. The last equation is shown in Lusztig’s
book [18, 1.3.1.(d)]. The positive part of the integral quantum group is the A algebra generated
by the divided powers. Thus, as a Z[q, q−1] algebra, Uq(sl2)+ := 〈E(a)|a ∈ N〉. This is the same as

U̇+ for sl2, where U̇ is the idempotented version of Uq(sl2) introduced by Lusztig.
We already know that NHa ∼= Mat(a!,Λa). We introduce NH =

⊕
a≥0NHa.

Definition 2.3.2. A tower of algebras is a collection {An}n≥0 of unital algebras over a field k with
mappings µm,n : Am ⊗An → An+m that satisfy µl+m,n ◦ (µl,m ⊗ idn) = µl,m+n ◦ (idl ⊗ µm,n). We
say A = (

⊕
nAn, µ) is a tower of algebras.

Lemma 2.3.3. The nilHecke algebras {NHa}a≥1 form a tower of algebras.

Sketch. We already mentioned before the inclusion NHa ↪→ NHa+1. Let the map µ be defined by
taking the juxtaposition of diagrams, multiplying coefficients. That is putting one at the side of
each other. This gives the desired associative product, as explained in [12].

We have the following notable result of Bergeron, though it does not apply directly to the case
of NH because NHa is not finite dimensional. We use another result of Bergeron in Chapter 3.

Theorem 2.3.4 (Nantel Bergeron [2]). The Grothendieck group of a tower of finite dimensional
algebras has a Hopf algebra structure.

Theorem 2.3.5 (Khovanov-Lauda [12,17]). There is a mapping K0(NH)→ AUq(sl2)+.

Sketch. Take NH =
⊕

a≥0NHa. We calculate K0(NH). As NH is a tower of algebras we know
it should have a Hopf structure. A projective module for NH is a projective module splits in a
sum of finite projective modules over NHaij for j = 1, . . . , s. These each need to be NHaij finitely

generated projective modules. The module category we are interested in is⊕
a≥0

Finitely generated projective modules of NHa.

We already know that K0(NHa) ∼= Z[q, q−1] for the graded version of K0. Thus

K0(NH) ∼=
⊕

K0(NHa) ∼=
⊕
a≥0

Z[q, q−1].
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The product for K0 comes from induction functors and the coproduct comes from restriction
functors. They give K0(NH) a bialgebra structure. It is harder to define the antipode. We describe
how multiplication is induced through induction functors. The key idea is that we need to multiply
the regular way representation such that there is a mapping

NHa ⊗NHb −→ NHa+b.

Given an NHa module M to multiply this module by a NHb module M ′ we need to embed both
modules into modules over NHc where c = a+ b (at least). To embed these modules we can look
at the nonunital embedding of unital modules i : NHa ↪→ NHb and setting i(1) = e an idempotent
in NHb take

M 7→ NHbe⊗NHa M.

This functor turns out to have an adjoint, the restriction functor, taking M to eM , viewed as a
NHb module. With the induction of two modules we can take the tensor product of the modules
as NHc modules for c = a+ b.

We show how to categorify the divided powers and to define the mapping of algebras. Consider
the regular representation ra of NHa, which is isomorphic to Mat(a!,Λa). Let the column ca
correspond to the first column of the matrix ring as a representation. As the matrix ra has size
a! × a! from the cardinality of the Schubert basis (or Sa actually) we find the relation ra = [a]!ca.
Define a map from K0(NH) to AUq(sl2)+ as follows. Let

ra 7→ E(a); (2.3.1)

ca 7→ Ea. (2.3.2)

As a consequence we find the categorified relation Ea = [a]!E(a) for the divided powers of E.

More details are found in Lauda’s work on sl2 [16,17]. We leave the curious reader to investigate
more about the 2-category for sl2.

Remark 2.3.6. The diagrammatic version of the induction functor NHa ↪→ NHb ⊗ NHa of a
diagram in NHa places b strings before the diagram. A similar idea is used to define Hanoi Towers.
The result of Bergeron we mentioned also uses induction and restriction functors.
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Chapter 3

Schubert polynomials

In this chapter we study the combinatorial definition of Schubert polynomials, there are alternative
definitions for them. In Chapter 1 we used the formula Sw = ∂w−1w0

(xδ). We work with a
combinatorial definition that arises of permutation diagrams called RC graphs, or pipe dreams. We
introduce a class of rings called Z+ rings.

Definition 3.0.1. Let A be an algebra (or ring) that is free as a Z module, such that there is
a basis B = {bi}i∈I with nonnegative structure constants. That means bibj =

∑
λ∈I c

λ
i,jbλ where

cλi,j ≥ 0 are integers. A ring A that is freely generated over the integers with a Z+ basis B that is
unital, which means 1 ∈ A is called a Z+ ring. If 1 ∈ B we say that A is a Z+ unital ring.

Some Z+ rings are important in the theory of quantum groups. They are related to tensor
categories and treated in more depth in Etingof’s book [7]. The polynomial ring with the basis of
Schubert polynomials is a Z+ unital ring.

Theorem 3.0.2. The basis of Schubert polynomials Sπ for π ∈ S∞ makes the integer polynomial
ring Z[x1, x2, ..] a unital Z+ ring. That is, the product of Schubert polynomials is a Z linear com-
bination of Schubert polynomials; the coefficients of this expansion are called structure constants
which are non negative integers.

Remark 3.0.3. The proof of the previous theorem is not combinatorial. The positivity and integrality
of structure constants can be proved using algebraic geometry and gives rise to a topic called
Schubert calculus. It is related to the cohomology of the Schubert variety and Poincaré Duality.

The nilHecke algebra gives another setting in which they are important.

Theorem 3.0.4. The Schubert polynomials for Sa give an additive basis of Z[x1, . . . , xa] as a
module over the symmetric polynomials Λa.

The aim of the current chapter is to carry the diagrammatics of the categorified quantum group
for sl2 to the combinatorial and diagrammatic presentation of Schubert polynomials, which are
already present in the categorification theory. For this endeavor we turn to a diagrammatic formula
of Bergeron and Billey [1] shown first in Some combinatorial properties of Schubert polynomials [4].

3.1 Pipe Dreams and the combinatorial construction

The following is taken from Billey, Jockusch and Stanley’s paper Some combinatorial properties of
Schubert polynomials [4]. The formula presented has a diagrammatic interpretation made possible
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by a result of Fomin and Kirrilov [8]. That is how RC graphs were introduced. These diagrams
represent a history of the inversions of a permutation. The sketch of the following proof describes
the proof that appears in [4] but the formula we use is stated in the paper on RC graphs of Billey
and Bergeron [1, Theorem 2.1] and in Allen Knutson’s notes on Schubert polynomials [13].

Definition 3.1.1. Let R(π) denote the set of reduced expressions for π. Let w ∈ R(π) and
w = w1 . . . wp. We say that a p-tuple α = (α1, . . . , αp) of strictly positive integers is w-compatible
if

α1 ≤ α2 ≤ · · · ≤ αp;
αi ≤ αj ; for 1 ≤ j ≤ p;

αj < αj+1; if wj < wj+1.

Let C(a) denote the set of compatible sequences associated to a.

Theorem 3.1.2. Let π ∈ S∞. We have the positive formula

Sπ =
∑

w∈R(π), α∈C(w)

xα1 . . . xαp

with the diagrammatic version

Sπ =
∑

D∈RC(π)

xD

where RC(π) is the set of RC graphs for π we define in this section.

Sketch of proof. The proof of Billey, Jockusch and Stanley [4, 1.1,1.2] follows this order. The
expression they give is not diagrammatic.

• Define a polynomialRπ that depends on descending initial expressions for w that are a−compatible
sequences, that is given in the formula.

• Prove the formula of Lauscoux for the polynomial Rπ.

• Separate two cases for Rπ. We may have that π(1) 6= 1, assuming that π is the a−cycle one
reduces the formula to a previous case, as it found in Section 3.4 in this document. Then
prove the case for π(1) < π(2). A computation using the nilCoxeter algebra is required.

• Interpret Rπ diagrammatically through RC graphs. Each compatible sequence can be read
from one of the diagrams, which are wiring diagrams of a permutation set up in a tiling.

There might be reduced expressions with no compatible sequences. Compatible sequences can
be read from the RC graphs.

We describe how to make an RC graph. In the literature they are also called pipe dreams. Let
a be a positive number and consider a tiling of size a × a. We draw crosses in some of the boxes
such that every cross is above the antidiagonal. In the rest draw elbows so that one can connect the
strings to obtain the wiring diagram of a permutation. We want the wiring diagram to be reduced.
We label 1, 2, . . . , a in the left side of the diagram and follow the string to the top of the diagram,
taking i to a position π(i). The image of π is in the top of the diagram.

Definition 3.1.3. A reduced word compatible sequence graph, or RC graph, for π is a
reduced wiring diagram for a permutation set up in a tiling as described above.
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Several of these tilings correspond to the same reduced expression and different reduced expres-
sions of a permutation, but always to different compatible sequences. Given a reduced expression
Q of π we write Dπ or DQ for an RC graph for it. We can write just D if there is no confusion.
Let set of RC graphs of π be denoted as RC(π). For brevity we write the configuration of crosses
and dots instead of drawing the complete wiring diagram in the RC graph.

Remark 3.1.4. We describe the notations we use for permutations, as there are several ways to
write them. We denote a permutation by π(1) . . . π(n), represent it in the cycle notation by

(a1
1 . . . a

1
n1

)(a2
1 . . . a

2
n2

) . . . (ak1 . . . a
k
nk

)

in k disjoint cycles, and by i1 . . . il(π) for a reduced expression.

Example 3.1.5. This example is from Billey’s paper [4]. We draw an RC graph with only crosses
and the full diagram. The RC graph drawn with just + and dots contains all the information.

+ + · · · ·
· · · · ·
+ · · ·
+ + ·
+ ·
·

(3.1.1)

w2 w6 w1 w3 w5 w4

1 �� �� �� �
2 �� �� �� �� �
3 �� �� �
4 �
5 �
6 �

(3.1.2)

We introduce an operation in RC(π). The following properties are required:

• The operation changes the configuration of crosses.

• The permutation is preserved. If we do an operation such that a cross is moved to a new row
where the row is full the permutation is changed.

• We do not create a double crossing. When this happens the expression is not reduced and
the diagram is not in RC(π).

• We do not run out of space to move the cross a slot up.

Definition 3.1.6 (Operations in RC graphs). A ladder move in an RC graph is an operation
changing the configuration of crosses in the following way

· ·
+ +
...

...
+ +
+ ·

−→

· +
+ +
...

...
+ +
· ·

where the number of rows involved is arbitrary.
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A chute move in an RC graph is an operation changing the configuration of crosses in the
following way

· + + · · · + +
· + + · · · + · −→

· + + · · · + ·
+ + + · · · + ·

where the number of columns involved is arbitrary.

Proposition 3.1.7. [1, 3.5] Ladder and chute moves preserve the permutation associated with an
RC-graph. Even more, they generate the set of RC graphs of π.

Example 3.1.8. In an RC graph the following moves do not preserve the permutation.

+ ·
+ · −→

+ +
· ·

· ·
+ +

−→ · +
· +

+ ·
+ +
+ ·

−→
+ +
+ +
· ·

Remark 3.1.9. The proof of 3.1.7 and of the example are given by inspection. This gives a hint of
how RC graph moves work, which is topological in the sense that a move preserves a permutation if
it locally preserves it. This lemma allows us to translate the algorithm for generating pipe dreams.
Both moves represent isotopies of the wiring diagram and the other moves change the permutation
or create an unreduced RC graph, which represents another permutation also.

We follow the next convention when drawing an RC graph. Write the reduced expression and
the permutation in cycle notation each time we make a diagram. We label the corner in order to
see how the diagram is placed. To read the action of π in the ordered tuple (1, . . . , a) then we label
the column 1, . . . a and the expression wi for i = 1, . . . , a in the top of the diagram.

Example 3.1.10. We list RC graphs for S2 and S3. We have first the only element in S1.

() ∅
NW 1

1 .

Then the first transposition.

(12) 2 1
NW 1 2

1 + .
2 .

We list S3 elements remaining, which are (23), (123), (132), (13).

(23) [2]
NW 1 3 2

1 . . .
2 + .
3 .

(23)
NW 1 3 2

1 . + .
2 . .
3 .

(13) [121]
NW 3 2 1

1 + + .
2 + .
3 .
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(123) [21]
NW 3 1 2

1 + + .
2 . .
3 .

(132) [12]
NW 2 3 1

1 + . .
2 + .
3 .

Remark 3.1.11. Similarly, reduced expressions can be obtained by performing moves on expressions.
Observe there is a distinguished diagram that has more crosses to the left.

Definition 3.1.12. We say an RC graph flushes left or is flush left if the crosses(+) are stacked
in each row from the begging, read from left to right, starting at column one and on, in all of the
rows of the RC graph.

Theorem 3.1.13. Let Q be a reduced expression for π. Other reduced expressions are obtained by
making the following changes in the expression:

1. Switching adjacent numbers ij such that |i− j| > 1, that is they are not consecutive.

2. Swiching i(i+ 1)i for (i+ 1)i(i+ 1).

Proof. We recall that the symmetric group Sa is finitely presented by the adjacent transpositions
si for i = 1, . . . , a− 1 and satisfy the relations:

sisj = sjsi for |i− j| > 1 sisi+1si = si+1sisi+1

To each RC graph we associate a monomial. This allows us to calculate the Schubert polynomial.

Definition 3.1.14. Let D be a reduced RC graph of a permutation π ∈ Sa. The monomial xD

associated to an RC graph is defined as follows. Let ci be the number of crosses in the i-th row of
the reduced RC graph D. Then xD :=

∏
i x

ci
i for i ∈ {1, . . . , a}.

Remark 3.1.15. This is well defined for π ∈ S∞. Let π ∈ Sk. If m is the biggest entry permuted
by π then we have that π(k) = k for k > m and this rows have no crosses on D. In this case we
can take a subdiagram D′ such that D′ is an RC graph of a permutation in Sm and xD

′
= xD.

Example 3.1.16. The maximal RC graph, the one with the most + is the RC graph with the
permutation of longest length, which is the order reversing permutation. The order reversing per-
mutation might be the product of disjoint cycles, for example (14)(23) which has the longest length
in S4.

Lemma 3.1.17. The number of inversions of the permutation π corresponds to the number of +
in a RC graph Pw of a reduced expression w of π. That is, the number of + in the RC graph is the
length of π. This is also the degree of the monomial mP of the RC graph, which is a homogeneous
element.

Example 3.1.18. Multiplication table of S4.
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length cyclefactorization
1 ()
2 (12) (23) (34)

(13) (14) (24)
3 (123) (132) (124)

(142) (134) (143)
(234) (243)

4 (12)(34) (13)(24) (14)(23)
(1234) (1243) (1342)
(1324) (1432) (1432)

Example 3.1.19. RC graphs for S4. We already have those for S3, so we only need to do 18
permutations more, and diagrams for each reduced expression for them. We start with length 1 and
the longest permutation (24).

(24)
NW 1 4 3 2

1 . . . .
2 + + .
3 + .
4 .

(24)
NW 1 4 3 2

1 . + . .
2 + + .
3 . .
4 .

(24)
NW 1 4 3 2

1 . . + .
2 + . .
3 + .
4 .

(24)
NW 1 4 3 2

1 . + + .
2 . . .
3 + .
4 .

(24)
NW 1 4 3 2

1 . + + .
2 . + .
3 . .
4 .

(14) 32123
NW 4 2 3 1

1 + + + .
2 + . .
3 + .
4 .

(34) 3
NW 1 2 4 3

1 . . . .
2 . . .
3 + .
4 .

(34) 3
NW 1 2 4 3

1 . . . .
2 . + .
3 . .
4 .

(34) 3
NW 1 2 4 3

1 . . + .
2 . . .
3 . .
4 .

Length 2 permutations.

(234) 32
NW 1 4 2 3

1 . . . .
2 + + .
3 . .
4 .

(234)
NW 1 4 2 3

1 . . + .
2 + . .
3 . .
4 .

(243)
NW 1 4 2 3

1 . + + .
2 . . .
3 . .
4 .

46



(243) 23
NW 1 3 4 2

1 . . . .
2 + . .
3 + .
4 .

(243)
NW 1 3 4 2

1 . + . .
2 . . .
3 + .
4 .

(234)
NW 1 4 2 3

1 . + . .
2 . + .
3 . .
4 .

(124) 3213
NW 4 1 3 2

1 + + + .
2 . . .
3 + .
4 .

(124)
NW 4 1 3 2

1 + + + .
2 . + .
3 . .
4 .

(142) 1323
NW 2 4 3 1

1 + . . .
2 + + .
3 + .
4 .

(142)
NW 2 4 3 1

1 + . + .
2 + . .
3 + .
4 .

(134) 3212
NW 4 2 1 3

1 + + + .
2 + . .
3 . .
4 .

(143) 2123
NW 3 2 4 1

1 + + . .
2 + . .
3 + .
4 .

Length 2, 2 disjoint cycles.

(12)(34) 13
NW 2 1 4 3

1 + . . .
2 . . .
3 + .
4 .

(12)(34) 13
NW 2 1 4 3

1 + . . .
2 . + .
3 . .
4 .

(12)(34) 13
NW 2 1 4 3

1 + . + .
2 . . .
3 . .
4 .

(13)(24) 2132
NW 3 4 1 2

1 + + . .
2 + + .
3 . .
4 .
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Order reversing permutation of length 6.

(14)(23) 321323
NW 4 3 2 1

1 + + + .
2 + + .
3 + .
4 .

Length 3, we have the 4 cycles.

(1234) 321
NW 4 1 2 3

1 + + + .
2 . . .
3 . .
4 .

(1243) 213
NW 3 1 4 2

1 + + . .
2 . . .
3 + .
4 .

(1243) 213
NW 3 1 4 2

1 + + . .
2 . + .
3 . .
4 .

(1324) 132
NW 3 5 2 4

2 + . . .
3 + + .
4 . .
5 .

(1324) 2 4 1 3
NW 1 2 3 4

1 + . + .
2 + . .
3 . .
4 .

(1432) 123
NW 2 3 471

1 + . . .
2 + . .
3 + .
4 .

And to finish, the length 5 permutations.

(1342) 32132
NW 4 3 2 1

1 + + + .
2 + + .
3 . .
4 .

(1423) 21323
NW 3 4 2 1

1 + + . .
2 + + .
3 + .
4 .
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3.2 Bumping and Schur polynomials

The reason to introduce Schur polynomials is the discussion of the Schensted insertion for RC
graphs in Section 3.2.1 and the material of Sections 3.3 and 3.4. Let a be a positive integer. The
ways to write n =

∑
i ki for 0 < ki ≤ a in decreasing order are called the partitions of a number,

and one of these sums is a partition of the number a. A partition has size k if it has k summands.1

We associate polynomials to partitions. The theory of Schur polynomials and its combinatorics is
beautifully presented in Fulton’s Young Tableaux, with applications to Representation Theory and
Geometry [9]. Given a partition of a number of size k we can associate a diagram to it as follows.

Definition 3.2.1. A semi standard Young tableaux (SSYT) of a partition [λ1, . . . , λa] in a parts
is the set of boxes {(i, j) : j ≤ λ(i)} with numbers such that the labeling is weakly increasing in
columns and strictly increasing in rows.

Example 3.2.2. The SSYT for the partition λ = [5, 3, 1] are:

11111
222
3

11112
222
3

11122
222
3

11222
223
3

12222
233
3

12223
233
3

12233
233
3

We want to associate a monomial to the tableau τ .

Definition 3.2.3. Given a tableau τ define by α(i) the number of times that i appears in the
tableau. In this way α(i) : N → N is a function that is zero for i > a, where a is the number of

rows in the tableau. We can associate a monomial to τ by xτ := x
α(1)
1 x

α(2)
2 . . . x

α(a)
n . The Schur

polynomial sλ is defined by the formula

sλ =
∑
τ

xτ

where the sum runs over all SSYT τ for λ.

Definition 3.2.4. Given a > 0, an integer, we define the complete homogeneous polynomials
by

hk(x1, . . . , xa) =
∑

1≤l1≤···≤lk≤a

xl1 . . . xlk .

and the elementary symmetric polynomials by

ek(x1, . . . , xa) =
∑

1≤l1<···<lk≤a

xl1 . . . xlk .

Remark 3.2.5. Both families of polynomials are bases for the symmetric polynomial ring.

Lemma 3.2.6. All complete homogeneous polynomials are Schur polynomials.

Proof. The array of n 1’s, 11111. . . 1, defines a tableau that can be increassed weakly with no
restriction imposed by the second row and covers all possible combinations, thus the polynomial is
completely homogeneous. This is the shape λ = (a).

Lemma 3.2.7. All elementary symmetric polynomials are Schur polynomials.

1How many partitions are there for a given number n?
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Proof. We find the appropriate tableau. Allow letters from {1, . . . , a} and consider the shape
λ = (1, 1, 1, . . . , 1), an m−tuple. Then fill up the numbers strictly decreasing from the top starting
with 1. We can have another strictly decreasing sequence by adding 1 to each entry until the last
one is a. This gives each monomial of an elementary symmetric polynomial em(x1, . . . , xa).

Lemma 3.2.8. The polynomial defined by taking the sum of the monomials of all tableaux for a
partition λ, sλ =

∑
τ x

τ is a symmetric polynomial.

Theorem 3.2.9. The set of Schur polynomials in a parts is an additive basis for the symmetric
polynomial ring.

The Littlewood-Richardson rule of multiplication of Schur polynomials uses SSYT, and skew
shapes λ/µ for tableaux µ ⊂ λ. These skew shapes are also called skew tableaux. They encode
the product of Schur polynomials. Two operations are involved. These are the Schensted insertion
and the Schützenberger slide. The first is the inspiration for the RC graphs insertion for Schubert
polynomials of Billy and Bergeron. The slide operation is similar to the jeu de taquin, the French
name of a game in which one slides tiles around on a board of tiles that has only one free space.
We describe the Schensted insertion, which we refer to as bumping, as Fulton does. The following
is taken from Fulton’s book on Young Tableaux [9].

Let x be a positive integer and T a tableau. We insert x into T getting a tableau T ← x. The
algorithm is:

1. Bump x into the first row. For this, look for a number as large as all the entries in the first
row, and add x in a new box at the end.

2. This may not happen. If not, find the left most entry in the first row that is strictly larger
than x. Bump this entry with x and take the new entry instead.

3. Do this procedure in the next row with the new entry until it stops.

We claim that the new diagram is a SSYT. As in each row we place the bump where it suits the
weakly increasing order, columns are weakly increasing. We move the bigger element down, so a
bump is placed below the strictly bigger element making the rows strictly increasing. This defines a
SSYT. The path of the bumps define a bumping route. A route R can be strictly to the left (weakly
left) of a route R′ if in each row which contains a box of R′, R has a box which is left of (left or
equal to) the box of R′. This is an issue with the insertion algorithm in RC graphs, mentioned in
Billey and Bergeron’s article, RC graphs and Schubert polynomials [1]. In the example they show
the path of consecutive insertions might fail to remain weakly to the right of the first insertion, as
in the case of s12543 s12453.

Lemma 3.2.10. Let consecutive row insertions T ← x and (T ← x)← x′ which give rise to routes
R and R′ be given. If x ≤ x′ then R is strictly to the left of R′ and if X > x′ then R′ is weakly to
the left of R.

Definition 3.2.11. (Skew shape) A skew shape or diagram is obtained by removing a smaller
Young diagram from a larger one. If λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) then we have µ ⊂ λ if
the diagram of µ is contained in that of λ. This means that µi ≤ λi. The resulting skew shape is
denoted λ/µ, which consists of the remaining boxes.

Theorem 3.2.12. The multiplication of Schur polynomials is determined by tableaux in the fol-
lowing way. Let λ and µ be partitions such that sλ and sµ are their Schur polynomials. Then
sλsµ =

∑
π c

π
λ,µSπ where the number cπλ,µ only depends on λ, µ and π, such that |λ|+ |µ| = |π| and

π contains both tableaux.
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There are variants of the bumping procedure reviewed in the appendix A of Fulton’s book [9].
For example, we can bump columns also. Bumpings in SSYT have inverse operations also, given
some not too stringent conditions.

3.2.1 Bumping an RC graph

We bump RC graphs in Fulton’s style as was done by Billey, Bergeron and Stanley. Here is an
example of how to bump RC graphs of π with one cross(+), to get an RC graph of a permutation
with length l(τ) = l(π) + 1. Suppose the RC graph is flush left. Then bumping is given just by
including one more cross in the end of the row.

Example 3.2.13. The diagram
+ + .
+ .
.

when bumped in the second row gives

+ + . .
+ + .
. .
.

which is a permutation in S4 and not in S3.

Lemma 3.2.14. Bumping a flush left RC graph is invertible. Bumping a flush left RC graph gives
a flush left RC graph.

Bumping is more involved if the diagram is not flush left. If we insert a cross one could be
lucky to obtain an RC graph. In case we do not the RC graph corresponds to an unreduced wiring
diagram of a permutation of smaller length. We repair this. One can flush left the crosses in
the double crossing, in an ordered fashion, until one gets a well posed RC graph. The path of the
modifications is the insertion path. Insertion paths are known not to be well behaved in consecutive
insertions. This gives an obstacle for the generalization of Monk’s rule to arbitrary multiplications.
The procedure introduced by Billey and Bergeron makes the RC graphs a monoid. It gives an
elegant proof of Monk’s rule [1]. This is an example similar to the one in the paper.

Example 3.2.15. The insertion path for the insertion shown is (3,1), (1,3), (1,2).

+ . +
. .
.

→

+ . + .
. . .
+ .
.

→

+ + . .
. . .
+ .
.

Lemma 3.2.16. Let i be the greatest nonempty row in a flush left RC graph D. Denote by X a
full column of crosses, from 1 to i, such that if we bump D ← X we get another flush left RC graph
D′. This operation is invertible and the family of RC graphs of the permutation that represents D
is the same cardinality as the one of D′.

Theorem 3.2.17. The family of RC graphs is a monoid.

The identity is the empty diagram. The multiplication is given by bumping. If we bump the
RC graphs of σ with the RC graphs of π we should get the same as when bumping the RC graphs
of π with those of σ. We are set to define a commutative operation π ∗ σ.

3.3 Reinterpreting pipe dreams

In this section we introduce the diagrammatic method for Schubert polynomials. We make a slight
modification that allows us to perceive the RC graphs as compatible with the diagrammatics of
Khovanov and Lauda. We understand diagrammatically the Lehmer code, the permutation, and
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the largest monomial in the lexicographic order of the Schubert polynomial in a natural way. The
diagram we introduce is related to the flush left RC graph that appears in the theory. Schubert
polynomials are defined through the action of the nilCoxeter algebra on the ring of polynomials
Z[x̄a]. The formula is Sπ = ∂π−1w0

(xδ) for π ∈ Sa where xδ = xn1x
n−1
2 . . . xa. Here is the diagram-

matic version of Stanley’s formula of Schubert polynomials, which uses the family of RC graphs of
π.

Theorem 3.3.1 ( [1, 13]). Let π be a permutation. Let P denote a reduced RC graph and πP the
permutation it represents. The Schubert polynomial for π equals

Sπ :=
∑

P∈RC(π)

∏
i

x#+ in i-th row of P
i .

Example 3.3.2 ( Schubert polynomials for n=2 and sσi). We only have two RC graphs. One is
the identity which has no crossings and σ1 = (12) with only a crossing in the northwest corner, the
only place to put a cross. The Schubert polynomials are S() = 1 and S(12) = x1, respectively.

Let σi = (i, i + 1) the adjacent transposition. Let us prove that Sσi =
∑i
k=1 xk. The flush left

RC graph is the diagram with one cross on the first column, i−th row. We can do ladder moves
until we move the cross up to the first row. That is, we get Pi, Pi−1, . . . P1, a sequence of diagrams
where Pk is obtained by a ladder move on Pk+1. These RC graphs all have one cross in the i-row so
their monomial is xi. Adding up gives the sum we want. Observe that they only have one crossing
and that these ladder moves preserve the permutation.

Example 3.3.3 (Schubert polynomials for n=3). The generators of S3 are (12) := 1 and (23) := 2.
We have the following table.

length permutation cycle factorization expression
0 123 () ∅
1 213 (12) 1
1 132 (23) 2
2 312 (123) 12
2 231 (132) 21
3 321 (13) 121, 212

Observe how the braid move 121 = 212 gives equivalent expressions. We omit the corresponding
table for S4 as it is too big. The polynomials are

S(23) = x1 + x2; (3.3.1)

S(123) = x2
1; (3.3.2)

S(132) = x1x2; (3.3.3)

S(13) = x2
1x2. (3.3.4)
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Example 3.3.4. (Products of Sπ for π ∈ S3).

S(12)S(23) = x1(x1 + x2) = x2
1 + x1x2 = S(123) + S(132);

S(12)S(123) = x1x
2
1 = x3

1 = S(1234);

S(12)S(132) = x1(x1x2) = x2
1x2 = S(13);

S(12)S(13) = x1(x2
1x2) = x3

1x2 = S(134);

S(23)S(123) = (x1 + x2)x2
1 = x3

1 + x2
1x2 = S(1234) + S(13);

S(23)S(132) = (x1 + x2)x2
1 = x2

1x2 + x3
1 = S(13) + S(1234);

S(23)S(13) = (x1 + x2)x2
1x2 = x3

1x2 + x2
1x

2
2 = S(1324) + S(13)(24);

S(13)S(123) = (x2
1x2)x2

1 = x4
1x2 = S(1345);

S(13)S(132) = x2
1x2(x1x2) = x3

1x
2
2 = S(13)(14);

S(13)S(132) = x2
1x2(x1x2) = x3

1x
2
2 = S(13)(14);

S(123)S(132) = x2
1(x1x2) = x3

1x2 = S(134).

Example 3.3.5. The list of Schubert polynomials for the missing elements in S4 are:

S14 = x3
1x2x3;

S(24) = x2
1x2 + x2

1x2 + x2
1x3 + x1x2x3 + x2

2;x3

S(34) = x1 + x2 + x3;

S(124) = x3
1x3 + x3

1x2;

S(142) = x2x3(x1x2 + x2
1) = x1x

2
2x3 + x2

1x2x3;

S(234) = x2
1 + x1x2 + 2x;

S(243) = x1x2 + x1x3 + x2x3;

S(12)(34) = x2
1 + x1x2 + x1x3;

S(13)(24) = x2
1x

2
2;

S(14)(23) = x3
1x

2
2x1;

S(1234) = x1x2x3;

S(1243) = x1x
2
2x

2
1x2;

S(1342) = x2
1(x2 + x3) = x2

1x2 + x2
1x3;

S(1324) = x1x
2
2 + x2

1x2;

S(1432) = x3
1;

S(1423) = x3
1x

2
2.

Example 3.3.6 (xi and xn1 ). We look for an expression for xi and xn1

• Remember S(i,i+1) =
∑i
k=1 xi. This is precisely S(12), the RC graph with a + on the northwest

corner. To get xi for i > 1 we need to subtract, Si − Si−1 = xi.

• The polynomial xn1 corresponds to the permutation 23 . . . (n− 1)n1.

Definition 3.3.7 (Lehmer code [13]). Let π ∈ Sa. The Lehmer code of π is the list of a numbers
cπ(i) := #{i > j : π(j) < π(i)} with cπ(i) ∈ {0, . . . , a− i}. For example, the Lehmer code of 15423
is 03200.
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Example 3.3.8. The table following are the Lehmer codes for S3.

Permutation 123 213 132 312 231 321
Lehmer code 000 100 010 110 200 210

Lemma 3.3.9. Let π ∈ Sa.

1. The Lehmer code of π always ends in zero.

2. A permutation is uniquely determined by its Lehmer code.

3. Adding a zero at the end of the Lehmer code does not change the permutation, it represents
the same permutation inside Sa+1.

4. Given a Lehmer code c, and given any other code such that it equals c with more zeroes at the
right, the code still represents a permutation with the same action as the original permutation.

5. Let c be a sequence that is eventually zero. We can choose π ∈ S∞ such that c is the Lehmer
code of π. Actually, π ∈ Sa where i+ c(i) ≤ a.

6. There is an equivalence relation induced by Lehmer codes on sequences that are eventually
zero.

7. The sum
∑
i c(i) equals l(π).

Proof. Using the notation π−1(1) . . . π−1(n), the last number in the permutation cannot be bigger
that any other before. Thus, the Lehmer code ends in zero. We argue a permutation is uniquely
determined by a Lehmer code. The permutation cannot have a wiring diagram with less than c(i)+i
strings. Let a ≥ i+ c(i) for every i with cπ(i) 6= 0. We build a wiring diagram for π.

Let c = c(1)c(2) . . . be the Lehmer code of π. Then c(1) is the number of times string one
crosses bigger strings, c(2) the number times string two crosses bigger strings, and so on. To be
precise we build the corresponding RC graph. A crossing of string one produces a cross in the first
row, placed on the first entry. The same for the second with a slight change. If the crossing involves
string one, then this crossing was already taken in account. In general in each row we add a cross
left-most (in the first column) if the string i crosses some string k with k > i. This defines a flush
left RC graph, which means it does not admit a chute move. This is the flush left RC graph of π.
We prove a key statement to complete the argument.

We claim a flush left RC graph gives an reduced wiring diagram for π. We show that l(π) equals
the number of crosses in the flush left diagram we have described. Take any string i and suppose it
crosses other strings. There are only two cases. If it crosses a string j > i then there are crosses in
row i until this happens, as it is flush left. If it crosses a string j < i then it the cross was already
considered in row j. The flush left RC graph of a permutation defines it completely. We can see
the last part here. As each crossing is needed, the number of crosses in each row is c(i) and the
number of inversions is the number of crosses. Therefore l(π) =

∑
c(i).

When we add a zero at the end we see π as included in the next symmetric group of size a+ 1.
As we do not permute the last letters, set c(i) = 0, for i > a. This could be carried on to identify
π with the same permutation in any Sb with b > a. This is precisely the quotient identification for
S∞. So sequences that are eventually zero identify the equivalence class of π in S∞.

We can also exhibit the inverse of the permutation, as in terms of RC graphs it is given by the
transpose of the graph. That is, take the transpose and flush it left to get the flush left RC graph
of π−1. This also proves that l(π) = l(π−1). In the last lemma we can observe that the Lehmer
code of π and the flush left RC graph of π are related. By the previous lemma we know that the
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diagram we build is flush left. Now, notice that there was no ambiguity in the process so the flush
left diagram is unique. If we do not have a flush left diagram then we can move a cross down and
to the left, which is the chute or ladder move, so any other RC graph of π has a monomial that is
strictly smaller in the lexicographic order.

Lemma 3.3.10. Let D be a flush left RC graph of π. The following hold.

1. The flush left RC graph is the only diagram of π whose crosses flush left.

2. An RC graph that is not flush left admits a chute or ladder move.

3. The flush left RC graph encodes largest monomial in the lexicographic order of Sπ.

Theorem 3.0.2 is an important theorem concerning Schubert polynomials as a basis of Z[x1, x2, . . . ]
as a Z module. We show the proof given in Knutson’s notes.

Proof of Theorem 3.0.2. By lemma 1.5.3 we know that Schubert polynomials are linearly indepen-
dent. Let p ∈ Z[x1, x2, . . . ] and let m be its largest monomial in the lexicographic order. We choose
the permutation π such that the Lehmer code of π, cπ, gives the powers of the variables in the
monomial m. Choose π ∈ S∞ such that deg(p) − deg(aπSπ) < deg(p), with aπ ∈ Z, and continue
the division inductively.

We find a diagrammatic way of making the assignment m → cπ and m → π very precise. The
code cπ gives the number of crosses in row i in the flush left RC graph of π as shown in Lemma 3.3.9.
This is the motivation of the following definition that does not involve RC graphs but the usual
string diagrams. We translate the RC graphs RC(π) of a permutation into a family of monomials
in the nilHecke algebra. We do not worry about the isotopies that the diagram has, which is rather
technical in the RC graph approach. The flush left RC graph is represented by a 0-Hecke element
in NHa.

Definition 3.3.11. An irreducible pipe dream π is a 0-Hecke monomial with coefficient one
such that w(π) is a nonzero nilCoxeter element.

Example 3.3.12. The nilHecke irreducible pipe dream monomial for the permutation π = 361452.

There is a permutation of the a strings attached to the monomial (and viceversa). Let the
irreducible pipe dream be denoted by π. In the nilHecke algebra we write π̄ for the 0-Hecke element
but the nilHecke algebra is not discussed in this chapter. By convention we always draw a strings
even if they are not permuted.

The dot configuration determined locally by ∂i 7→ ∂̄i. We define an abacus move which replaces
chute/ladder moves. The abacus move generates a set of diagrams through which we can calculate
the Schubert polynomial for π.

Lemma 3.3.13. The irreducible pipe dream does not depend on the reduced expression of π.

Proof. The underlying wiring diagram for the permutation in the nilHecke irreducible pipe dream
of π is well defined from the flush left RC graph for π. From the wiring diagram we obtain a
nilCoxeter element. The nilCoxeter generators are nilpotent. But the pipe dream represents a
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reduced expression, the only possible equivalent expressions are obtained through wiring diagrams
by isotopies ∂i∂j = ∂i∂j or by the braid relation. The 0-Hecke elements for these wiring diagrams
are also equivalent. The dot configuration for these monomials is the same so the Lehmer code of
π is read from the dots of any reduced 0-Hecke element.

We draw the irreducible pipe dream string diagram from the Lehmer code. Take the monomial
xcπ and to each dot we anticipate a crossing, setting xi 7→ ∂̄i, as a local relation. Then we connect
the strings in a way such that we do not introduce other crossings. There are several wiring diagrams
of a permutation. To draw the irreducible pipe dream in a way such that the underlying wiring
diagram is the flush left RC graph wiring diagram we can do the following. Start by connecting
first the string i such that π(i) = 1, then draw the string i′ such that π(i′) = 2, and so on. Drawing
the strands in this order draws the wiring diagram of the flush left RC graph.

There is an issue in notation we mentioned in Section 1.4. The RC graphs are drawn where
the initial strand configuration is in the left side and the top of the diagram has the images π(i).
With an isotopy we carry the left side to the bottom. This is not the convention for the categorified
quantum group Uq(sl2). Drawing the wiring diagram upside down gives the inverse permutation.
This is equivalent to the transpose RC graph representing π−1. Refer to the drawing convention
that has the images of the permutation on top as the RC graph convention and to the usual one
the nilHecke convention. To maintain similarity with RC graphs we use the RC graph convention
which is obtained through the antihomomorphism σ of Section 1.4.

We continue with our diagrammatic construction.

Definition 3.3.14. A pipe dream is a diagram obtained from another pipe dream by an abacus
move. This makes sense as irreducible pipe dreams are already given.

Definition 3.3.15. (Untangling map) To each monomial τ ∈ NHa we assign a monomial u(τ) ∈ Pa
by untangling the strings. That is, the powers of xk in the monomial are obtained by counting the
dots in the k−th string of the diagram τ . This map can be extended linearly to NHa. We call
u : NHa → Pa the untangling map.

Remark 3.3.16. This is not a homomorphism of algebras. We might have two non zero nilHecke
monomials such that their multiplication is zero but their untangled multiplication is clearly not
zero.

Corollary 3.3.17. There is an implicit map that assigns to a monomial a 0-Hecke element. To a
Lehmer code c there corresponds a permutation π such that π is the underlying wiring diagram of
the natural 0-Hecke element that corresponds to c. This element π satisfies that u(π) = xD for the
flush left RC graph D of π.

When mapping the monomial to the 0-Hecke element we knit the monomial m to get the irre-
ducible pipe dream π. The underlying wiring diagram of π is the wiring diagram of the permutation.

We can also say we knit the Lehmer code, by knitting the monomial
∏
i x

cπ(i)
i . This means we have

four objects that are directly related to each other, which are: a permutation, a 0-Hecke element,
a monomial, and a Schubert polynomial.

Example 3.3.18. (Also taken form [1]) Consider the following diagram of the permutation 314652.
The expression 521345 is obtained by reading the position of each cross starting from row one going
down from right to left. If the cross is in the position (i, j) the number it represents is j + i. The
compatible sequence 111235 is obtained by counting the number of crosses in the corresponding row.
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The diagram is depicted below with the flush left RC graph also.

+ + · · + ·
· + · · ·
· + · ·
· · ·
+ ·
·

+ + · · · ·
· · · · ·
+ · · ·
+ + ·
+ ·
·

The pipe dream and flush left pipe dream are:

w2 w6 w1 w3 w5 w4

1 �� �� �
2 �� �� �� �
3 �� �� �
4 �� �� �
5 �
6 �

w2 w6 w1 w3 w5 w4

1 �� �� �� �
2 �� �� �� �� �
3 �� �� �
4 �
5 �
6 �

The nilHecke pipe dream and irreducible pipe dream monomials are:

Our objective is to create two coordinates as in the RC graphs to mimic the ladder moves and
chute moves.We already have the row coordinates of the crossings encoded in each string, so the
strings need to have heights, which we refer to as levels that the dots can occupy. These play the
role of columns in the RC graph. Only one dot can occupy a level in a string. A wiring diagram of
a permutation in Sa has at most a levels. The k− th string has a−k+ 1 levels. The levels of string
i are determined by the strings crossing it. If we see a dot placed just before the k crossing on it,
then the dot is in the level k. When we perform an abacus move on the irreducible pipe dream it
is convenient to place below the string the levels occupied by dots. We define the abacus move in
what follows. We follow the same algorithm that the one for RC graphs, but instead of crosses in
the diagrams we have dots in the diagram, and the moves performed are the same. The irreducible
pipe dream determines the initial dot configuration.

Definition 3.3.19. An abacus move is a ladder move or chute move performed on dots in the
strings within the boundaries given by levels in the strings.

We mimic the restrictions for ladder/chute moves in RC graphs. Several things can obstruct an
abacus move:

1. The dot reached or is in the biggest level.

2. There is a dot in the same level at its immediate left. The left-most dot in that level has to
be moved first, if it is possible.

3. There is a dot in the same string at the next level.

4. There is a dot in the string at the left in the next level, we cannot move the dot to a place
already taken.
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Recall that in an RC graph D(w, a) the expression and the compatible sequence are read from
the diagram. The expression is read by the position of the crosses in the columns read in order,
from top to bottom. In the pipe dream monomial we can find the expression by reading the levels
in decreasing order in each string, always reading strings from left to right. The monomial of the
compatible sequence is obtained by multiplying xi once for each cross in the i-th row, in the case
of RC graphs. In the pipe dream monomial is obtained by adding a power of xi once for each dot
in the i-th string. This is stated as follows.

Lemma 3.3.20. The position of the dots in the strings of a pipe dream correspond to a compatible
sequence of a reduced expression of π. The levels of dots in a pipe dream read in decreasing order
from the first string to the last string correspond to the reduced expression of the pipe dream. The
length of the permutation is the number of dots in the monomial.

We recall that not every reduced expression has compatible sequences, sometimes there is no
pipe dream corresponding to a reduced expression.

Lemma 3.3.21. The reduced expression and compatible sequence corresponding to an irreducible
pipe dream is the highest weighted compatible sequence among all compatible sequences of the per-
mutation.

Proof. By the construction we just have to argue that the wiring diagram of the irreducible pipe
dream itself corresponds to the flush left RC graph of π. Consider a wiring diagram given by the
RC graph as in done in Lemma 3.3.9, which is flush left. Any abacus move, as a chute/ladder move,
gives a diagram with a smaller monomial. Then u(π) is the largest in the lexicographic order as it
has the biggest number of dots in the farthest most string. The monomial u(π) is the monomial of
the flush left RC graph.

Remark 3.3.22 (Topological construction of π̄ from the flush left RC graph). Let D be the flush
left RC graph of π. Replace locally ∂i by ∂̄i, so we have the dots in the same configurations as the
+ in the RC graph. Move with an isotopy the strings crossing in horizontal direction towards the
right side of the columns in the RC graph diagram. Then we can identify the strings with rows
in the RC graph and the horizontal crossings with columns, or levels in the pipe dream once the
ambient space is changed. That is, once the left side of the diagram is moved downwards so that π̄
is a wiring diagram as it is usually drawn.

Lemma 3.3.23. Let D be an RC graph and D′ be another RC graph obtained from a chute or
ladder move on D. There is a pipe dream τ that corresponds to D or D′ such that τ ′ corresponds
to the remaining RC graph and τ ′ is obtained from τ by an abacus move.

Proof. Let D be flush left. By the construction given a ladder/chute move on the RC graph can
happen if and only if an abacus move is admissible. The diagram D corresponds to an irreducible
pipe dream τ . Performing the same sequence of moves gives a pipe dream τ ′ such that u(τ ′) = xD

′
.

This is enough to assert the lemma.

Lemma 3.3.24. Let D be any RC graph of a given permutation. There exists a pipe dream τ
obtained by abacus moves from an irreducible pipe dream π such that u(τ) = xD.

Proof. Let D be an RC graph with expression w and compatible sequence a. It is obtained by
moves from the flush left RC graph D. Then D(w, a) can be assigned a pipe dream by making the
same abacus moves made to get D(w, a) from the flush left RC graph D. As the configuration of
crosses matches the configuration of dots we have that u(τ) = xD.

Lemma 3.3.25. The Schubert polynomial satisfies the formula Sπ =
∑
τ u(τ) where the sum runs

over pipe dreams τ of π.
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Proof. The formula of Stanley in terms of RC graphs2 is Sπ =
∑
D x

D. As there is a pipe dream
with xD = u(τ) by the previous lemma, the last formula is rewritten as Sπ =

∑
D x

D =
∑
τ u(τ)

where the sum goes over pipe dreams τ of π.

Theorem 3.3.26. To each irreducible pipe dream there corresponds a Schubert polynomial.

Definition 3.3.27. The set of pipe dreams of a permutation π, which includes π, obtained by
abacus moves, is the abacus of π. This set is denoted Aπ and its cardinality by a(π).3

Definition 3.3.28. A permutation is dominant if a(π) = 1.

Lemma 3.3.29. The Lehmer code of a dominant permutation is non increasing. A permutation
with a non increasing Lehmer code is a dominant permutation.

Proof. Let π have a Lehmer code such that cπ(i) < cπ(i + 1) for some i and the inequality is
strict. Then an abacus move can be performed on π and a(π) > 1. Suppose that a(π) > 1. For
the irreducible pipe dream to allow an abacus move on a given dot we need to have an increasing
Lehmer code for an abacus move. If the move takes more space on the left the sequence has to be
increasing also. As both moves need space at their left to be allowed, the Lehmer code is not non
increasing.

There is a natural operation in Lehmer codes which preserves a(π).

Definition 3.3.30. A permutation is a step permutation if the Lehmer code of π is a step
function such that cπ(1) > 0. In this way, for some m ≥ 1,

cπ(i) =

{
n i ∈ {1, . . . ,m}
0 i > m.

The integer m is the size of the step permutation π and n the height of the step permutation.

Remark 3.3.31. Let π be a step permutation as defined above. The total degree deg(Sπ) = m and
m is the largest variable with nonzero exponent, Sπ is symmetric, and a(π) = 1.

Lemma 3.3.32. A step permutation is a dominant permutation. Whenever there is a permutation
π such that we can subtract the Lehmer code of a step permutation σ and get a new Lehmer code,
that is cπ − cσ ≥ 0, then Sσ divides Sπ.

Proof. Let cλ = cπ− cσ define λ. Then a(λ) = a(π), as the abaci produced have the same behavior,
and we can factor the symmetric polynomial Sσ from Sπ getting SσSλ = Sπ.

Another proof uses that the symmetric polynomial Sσ can be factored as NHa is a Λa module.
We can also consider an untangled abacus where we forget the original underlying wiring diagram.
However, to build it we cannot leave out the levels on the pipe dream. An untangled pipe dream τ
contains more information than u(τ).

The untangling map is defined for the nilHecke algebra, but it is implicitly defined in a set of
monomials if we use the convention that it simply adds them. In order to obtain a polynomial, the
set has to be finite. That means, if S is a set of polynomials in the nilHecke algebra, let i : S → NH
be the inclusion map that adds all elements in S, define u(S) := u(i(S)).

Lemma 3.3.24 implies there is an algorithm to obtain the abacus. We can start with the
irreducible diagram π and make a graph in the following way. Let the vertices be pipe dreams and
connect them if one is obtained from the other through an abacus move. The graph is connected
because the irreducible pipe dream generates them.

2Or pipe dreams, used with this meaning by other authors, like Knutson [13], but we want to keep the name for
nilHecke elements.

3The abacus is strictly a set. Each monomial xD or u(τ) appears only once in the polynomial.
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Example 3.3.33. Consider the permutation 1432. This is the abacus is obtained through moves
making a tree as mentioned before. In this case there are two branches, where one of them has only
one diagram given by an abacus braid move.

1,2 1 3 1 1 3,2 1 3,2 1 2 2,1

This is the whole abacus. In the last diagram, the dot in string two cannot take position 2 in
the first string. The Schubert polynomial associated is

S1432 = u(A1432) = x2
2x3 + x1x2x3 + x2

1x3 + x2
1x2 + x1x

2
2.

The algorithm produces more than a tree. If we add the edges to the repeated monomials in the
process we obtain a graph that can be understood as a CW complex and by adding the unreduced
RC graphs in between the vertices we can paste two cells that make this 2 skeleton CW complex
homeomorphic to a sphere. This apparently has some remarkable properties we skip, but to the
curious reader we refer to Knutson and Miller’s work [14] or to Escobar and Mézráros paper [6].

Lemma 3.3.34. Let τ ∈ Aπ. If τ(1) = 1 if and only if τ = π. In addition, τ(1) = 0 if and only if
τ 6= π, that is, τ(1) = 0 in any other case.

Proof. It is straightforward to see π(1) = 1. Note that if τ is any other pipe dream, to some crossing
there anticipates no dot. If the diagram does not feed any other dot, then the application of this
crossing gives zero. Thus, τ(1) = 0 in any other case. If τ(1) is not zero, every crossing was fed a
dot at the left string to be crossed, so the action gives 1, and the final untangling sums 1. As every
crossing was fed a dot at the left, this means τ = π.

3.4 Hanoi Towers

We study a special case of the Schubert polynomials here. These arise from certain inclusions of
the symmetric group. Consider the inclusion Sa ↪→ Sb with b > a acting in the last entries. For
example, take i : S3 ↪→ S5 into the last entries, then i(321) = 12543. We speculate the Schubert
polynomials of π and the inclusion i(π) should be related.

Definition 3.4.1. Let π ∈ Sa be a permutation. The inclusion of π into Sb with b > a permuting
the last entries b−a, . . . , b gives a permutation h(π) = σ. The abacus of σ is called a Hanoi Tower,
denoted π ↪→ σ, and the inclusion h used here is the Hanoi inclusion. We say that the Hanoi
Tower and the inclusion are of size a into b.

If we choose another inclusion such that the entries permuted are not consecutive, then we
change the diagrams, the length of the permutation changes, and they are not similar. However, if
we use a Hanoi inclusion we do not. It is be redundant to refer to Hanoi Towers of permutations
that do not fix one. Assume π(1) 6= 1 for any Hanoi tower π ↪→ σ.

Lemma 3.4.2. Let h be a Hanoi inclusion and π a permutation. The diagram of h(π) is the
diagram π anticipated by a number of strings; these strings are not tangled and have no dots. If a
diagram is not the identity map and starts with a number of untangled strings with no dots then it
is an image of a Hanoi inclusion.
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Theorem 3.4.3. The Hanoi inclusion Sa ↪→ Sb for b ≥ a is a homomorphism of groups.

The first example of a Hanoi Tower is the one for adjacent transpositions σi = (i, i+ 1).

Example 3.4.4. The Schubert polynomial of σi is Sσi = x1 + · · ·+ xi. The abacus of σi carries a
dot from the i− th string all the way to the first. It is a Hanoi Tower of size 2 into i.

There are several Hanoi inclusions into a fixed Sb and each Sa can be injected to all b > a. For
a fixed b write hl : Sl ↪→ Sb for l = 1, . . . , b, the set of Hanoi inclusions, where hb = idSb . For a
fixed a and l > a write hl for l = 1, 2, . . . for the Hanoi inclusions hl : Sa ↪→ Sl. Write only h when
a Hanoi inclusion is fixed.

Example 3.4.5. Consider the polynomial for the Hanoi inclusion σ = (12) ↪→ Sa. We always have
a monomial x1, which is u(σ), a monomial xa, which is the monomial u(h(σ)) for σ = (12) and we
have the remaining set which we shall refer to as transition diagrams. The transition diagrams are
u ◦ hl(12) for l = 2, 3, . . . a− 2.

We calculate Hanoi towers of some elements in S3.

312 The polynomial of is S312 = x1x2. Some Hanoi Towers are

x1x2 + x1x3 + x2x3

x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + x1x4 +

x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + x1x4 + x3x5 + x4x5 + x1x5 + x2x5.

231 The polynomial is S231 = x2
1. Some Hanoi Towers are

x2
1 + x1x2 + x2

2

x2
1 + x1x2 + x2

2 + x2x3 + x2
3 + x1x3

x2
1 + x1x2 + x2

2 + x2x3 + x2
3 + x1x3 + x3x4 + x2

4 + x2x4 + x1x4.

321 The polynomial is S321 = x2
1x2 + x2

2x3 + x1x2x3 + x2
1x3 + x1x

2
2. Hanoi Towers rapidly seem

to get more complicated!

By observing the above example we can see that the abacus of the Hanoi Tower is split into
sets in the following way. We have several inclusions of the abacus in consecutive strings, but we
have some other monomials. These other monomials added in the process are called transition
monomials, and form the transition set of the Hanoi Tower, with respect to the previous Hanoi
Tower. That is, each time we add another string, we include the previous Hanoi Tower, the one
with one string less, in the first strings, in the last strings, and get some transition set. We have
counted more monomials because the two Hanoi Towers intersect in the middle consecutive strings
in a Hanoi Tower that has two strings less. Thus, we can use the inclusion-exclusion principle to
count the abacus.

Theorem 3.4.6. The cardinality of the k-th Hanoi tower Hk of a permutation σ is given by the
recursive formula |Hk| = 2|Hk−1| − |Hk−2|+ |Tk| where Tk is the transition set of the abacus Hk.

In a combinatorial setting it should be clear that the inclusion-exclusion principle can be used
to get an expression in terms of |Hi| for any i < k. It turns out that this expression should be also
obtained from the application of the theorem to |Hk−1| in the formula repeatedly, so we do not
bother going further.

The Lehmer code that corresponds to Hanoi Towers is special as the one that corresponds to
the natural inclusion of Sa ↪→ Sa+1. The Lehmer code in that case that corresponds to the same
permutation seen inside Sa+1 we just define cπ(a+ 1) = 0. For Hanoi towers we do have to change
all values, but they are defined in terms of the code cπ.
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Lemma 3.4.7. Let π ∈ Sa with Lehmer code cπ(i) : {1, . . . , a} → N. Let b > a an h : Sa ↪→ Sb.
The Lehmer code of h(π) satisfies the shifting rule ch(π)(i+(b−a)) = cπ(i). In addition ch(π)(i) = 0
for i < b− a.

Proof. As the Lehmer code cπ is the function that counts the dots on the strings of π, the result is
immediate from observing the diagram h(π). The new code ch(π) is

ch(π)(i) :=

{
0 i < b− a, i > b,

cπ(k) k = i− (b− a).
(3.4.1)

We could have given a more constructive proof of the function ch(π) : {1, . . . , b} → N using the
definition but our proof is simpler. The Hanoi Tower can be seen then as an operation in Lehmer
codes also. It can be interesting to study abaci of Hanoi Towers of dominant permutations but we
restrict ourselves now to step permutations hoping for an easy description of their Hanoi Towers.
Remember a step permutation is dominant. Then the following is true.

Lemma 3.4.8. A step permutation π is always dominant and a(π) = 1.

Example 3.4.9. Let π be a step permutation with a 1 size step Lehmer code. Then π is a a−cycle
for some a > 0. If a(π) = 1 and u(π) = xa1 then π is the reversed a−cycle, and is a step permutation.

Lemma 3.4.10. A Hanoi Tower π ↪→ σ is the Hanoi Tower of a step permutation π if and only if
σ exchanges two consecutive sets of strings which may differ in cardinality.

Proof. Let cπ be the Lehmer code of a step permutation. We know then that cπ(i) = s for
i = 1, . . . , a, some a > 0. This means that s strings cross the first string, and the second string also,
and so on. The diagram of π is such that two adjacent groups of strings are exchanged without
braiding themselves. A Hanoi tower of such permutation looks the same but has some strings in the
beginning that are untangled. Then, any Hanoi tower of π exchanges consecutive sets of strings.

We consider the next special case to calculate a(π ↪→ σ),

cn(i) :=

{
1 1 ≤ i ≤ n
0 otherwise,

(3.4.2)

and

cn(i) :=

{
n i = 1

0 otherwise .
(3.4.3)

Lemma 3.4.11. Let k ≥ 2. The abacus of ck satisfies

a(hm(ck)) =

m−1∑
j=0

a(hj(ck−1)).

Proof. Let n > 0 be big enough so that RC graph of hm(ck) can be drawn in the n× n tiling. By
fixing the first dot we look at the square [1, . . . , n] × [2, . . . , n] which fixes the first column of the
RC graph. In the 0-Hecke element it fixes the first string level. Then, we move k− 1 dots just as in
hm(ck−1), fixing the last dot. Now move the fixed dot up and to the left making an abacus move,
and fix it again. We move k − 1 dots just as in hm−1(ck−1). If we continue this process we count
smaller Hanoi Towers until we consider ck−1, and we have all the summands.

Corollary 3.4.12. The same formula holds for ck.
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Proof. We consider a mirror argument. Let ∆ = {(n, n) : n ∈ N′} where N′ = N − {0}. Denote
by R the operation of reflecting the pipe dream’s dots along this diagonal. We have that Rck = ck
and that Rck = ck. Observe chute and ladder moves are inverses of each other if there are zero
rows and zero columns involved. Given a pipe dream of ck and a chute move performed on it
reflecting both pipe dreams we get a pipe dream of ck and a ladder move performed on it. Thus,
RAhj(ck) = Ahj(ck), and in particular a(hj(ck)) = a(hj(ck)).

The previous result may help calculating a(π ↪→ σ) in more generality.

Definition 3.4.13. The Hanoi sequence of π is the sequence (a(hk(π))k.

Example 3.4.14. We have that a(hm(c2(i))) = m(m+1)
2 as a particular case of 3.4.11. For each

Hanoi Tower π ↪→ σ the Hanoi sequence of σ is a subsequence of the Hanoi sequence of π.

3.5 Special cases of products

In this section we discuss some products of Schubert polynomials. We will prove a new rule that
shifts the structure constants in one case, and bound the constants in all cases through the diagram-
matic method we presented. Monk’s rule is a well known result and the one below is mentioned in
Billey and Bergeron’s paper of RC graphs. Monk’s rule is proved by bumping RC graphs. Both
results are found there and we just write them in our new terms.

Theorem 3.5.1. (Disjoint permutations) Let σ ∈ Sa and λ ∈ Sb with b > a such that λ arises
from a Hanoi tower ω ↪→ λ such that λ fixes {1, . . . , a}. If γ is the permutation that corresponds to
the juxtaposition of irreducible pipe dreams σ and ω in this order, then

SσSλ = Sγ .

This rule was proved Monk in [20], and simultaneously by Chevalley.

Theorem 3.5.2 (Monk’s rule). Let σ be a Hanoi tower of (12), and π be any permutation. Let σi
exchange i and i+ 1. Then

SπSσi =
∑

λ=πσab

Sλ

where l(λ) = l(π) + 1 and k runs over transpositions σab that exchange a and b, with a ≤ i < b,
λa < λb and there is no k with a < k < b such that λa < λk < λb (these are covers in the Bruhat
order).

We can approach this result in another way. A way of generalizing Monk’s rule is to consider
the Hanoi towers of permutations in S3, which we already studied before. The permutation (13)
might be a bit complicated but the other Hanoi towers for S3 are simpler.

In the following we should assume that the action of π and σ do not fix one. We recall the case
of the step permutations which we proved before in 3.3.32.

Theorem 3.5.3. Let π be a step permutation and σ any permutation. If λ is the permutation
whose Lehmer code satisfies cλ = cπ + cσ then SπSσ = Sλ.

Conjecture 3.5.4. Let π, σ ∈ Sa. Suppose we know the coefficients for the expression SπSσ =∑
λ c

λ
σ,πSλ, where cλσ,π ∈ N. Given a Hanoi inclusion the coefficients c

h(λ)
h(π),h(σ) of Sh(π)Sh(σ) could

be predicted also. There is a partition of the set of coefficients where some are determined by cλπ,σ
and some are transition coefficients. We are using the same inclusion for both permutations. The
product for the Hanoi tower hk is the k-th Hanoi product. We refer to this statement as the Hanoi
rule for structure constants.
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We sketch an algorithm for calculating Hanoi products. Shift the coefficients as indicated by the

Hanoi inclusion h. That is, we take c
h(λ
h(π),h(σ) = cλπ,σ for all coefficients in the original product. Then

repair the additional constants identifying the sequences of powers of the product monomials that
are not weakly decreasing, after removing the known constants. The new biggest leading monomials
may be chosen from this set by inspection. The last constants should be abaci of one element.

Now, we proceed to define a set of (irreducible) pipe dreams that are obtained from the knitting
of the monomials of the product. Knit the Lehmer codes of the monomials to get the set of pipe
dreams. Note that for each diagram we have two options, the diagram represents a plus one added
to the coefficients of the expansion or signals that the monomial is obtained by untangling a pipe
dream of another permutation that is counted in the expansion. Informally, say that is counted in
a constant. We formalize these ideas.

Definition 3.5.5. The family of irreducible pipe dreams knitted from the product of SλSπ, taking
as a disjoint union to count repetitions, is called the Lehmer set of π and σ. Denote it by L(π, σ)
or π ∗σ. The number of occurrences of λ in π ∗σ is called the Lehmer number of λ, denoted Lλπ,σ
or just Lλ to avoid redundancy.

Example 3.5.6. The case for a(π)a(σ) = 1 should give the appropriate constant. Suppose that
a(π) = a(σ) = 1 (that they are dominant permutations). Observe that π ∗ σ = {λ} where u(λ) =
u(π)u(σ). Then Lλ = 1 = cλ and the Lehmer set predicts the constant in the trivial case. Our
statement, the product of polynomials of dominant permutations is the polynomial of the dominant
permutation knitted from the unique monomial in the Lehmer set. Even more, the Lehmer code,
with domain N, of the knitted permutation satisfies cλ(i) = cπ(i) + cσ(i) for all i.

This multiplication is similar to an insertion. The multiplication of the ring Z[x̄a] in diagram-
matics slides new dots to the monomials. But this is the multiplication of the polynomial ring and
is commutative. The Lehmer set satisfies L(π, σ) = L(σ, π) which was not clear when bumping
RC graphs. In the case of SSYT bumping them makes the tableaux a monoid that sometimes has
inverses. We do not worry about each bumping being ‘good’ in the sense of SSYT, where paths are
well behaved, which RC graph bumping needs. The previous example motivates the following.

Definition 3.5.7. The product induced by the addition of Lehmer codes of permutations in S∞ is
called the Lehmer product, denoted ∗L, of π and σ, so that π ∗L σ = λ where λ is the permutation
knitted from the addition of Lehmer codes.

These definitions can be made more general. The advantage of the case of Schubert polyno-
mials is that the Lehmer map is diagrammatic. Let the Lehmer map be an assignment of basis
elements of a polynomial ring to monomials, which is well defined whenever we can divide. The
diagram knitted from the monomial is the image of the Lehmer map of Schubert polynomials. For
noncommutative rings in good cases we have left and right division, or just one of them. We can
repair this by setting a right Lehmer map and a left Lehmer map. The Lehmer map would have
the property that it assigns the monomial the basis element which has this monomial as a largest
monomial, in the order used for division, which is required. If this Lehmer map is defined it also
defines a Lehmer set and Lehmer numbers for a product (of positive linear combinations). It even
defines a Lehmer product for the polynomials (not for permutations) where the leading monomial
of the permutation is chosen and uses the Lehmer map (in permutations Sπ ∗L Sσ = Sπ∗Lσ is the
same product).

Example 3.5.8. Consider Z[x1, . . . , xa] with the monomial basis. The Lehmer map is the identity
on the set of monomials and can be extended linearly. The Lehmer constants match the constants
in the expansion for products of positive linear combinations of the basis elements.
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Definition 3.5.9. Let R be a Z+ ring that admits one sided division, not necessarily commutative
and not necesarilly with 1. Let B = {bλ} a basis with non negative structure constants. Let the
Lehmer map L : B × B → B × N be a map that assigns the set of basis elements whose leading
monomial appears in the expression of b′b′′ for b′, b′′ ∈ B and the number of times such monomial
appears. The number of Lλ in the pair (bλ, Lλ) assigned to b′ and b′′ is called the Lehmer number
of b′ and b′′ and we say it counts the number of occurrences of bλ in the Lehmer set L(b′, b′′). The
Lehmer set L(b′, b′′) is the subset L(B × B) of B × N.

Corollary 3.5.10. If R admits a Lehmer map then the Lehmer numbers are non negative and
greater than or equal to the structure constants for R.

We attempt to provide an application of the Lehmer set. Consider the case we have a finite
dimensional Z+ ring, such that the following theorem holds. A proof of this theorem and more on
Z+ rings is found in Etingof’s book [7]. In this case the multiplication by an element is coded into an
integer matrix satisfying the Frobenius-Perron theorem and we can define a Frobenius dimension.
The corollary is a simple implication of the theorem.

Theorem 3.5.11. Let R be a Z+ ring of finite dimension. Define the group homomorphism FDim :
B → C such that FDim(x) is the biggest eigenvalue in the multiplication matrix associated to
multiplication by x by the left. The norm, or spectral radius, of the matrix is positive. This mapping
is extended to the whole ring R by additivity.

Corollary 3.5.12. Let R be a ring that admits a Lehmer map. In the conditions of the previous
theorem, fix an element x ∈ B and let lλ be the Lehmer number of a basis element bλ ∈ B for
multiplication by x. Then if lλ > c · FDim(x) for some c ∈ N, there is a another nonzero positive
constant different from lλ in the product xbλ.

It is possible to choose c as the maximum between the dimension of the ring R over Z. Then
dimZR accounts for the change of basis to eigenvectors in the theorem. We return to our study of
Schubert polynomials.

Example 3.5.13. Division by Schubert polynomials can be done by hand. This is not in essence
combinatorial except by the knitting of monomials. Consider a product SπSσ. Find the biggest
monomial in the lexicographic order. Knit the monomial and get Sλ. Now subtract, S1 := SπSσ−Sλ,
and repeat the process. In this division we have to calculate Sλ, subtract it, and inspect again Sk
looking for the monomial to knit.

Theorem 3.5.14. Let π and σ be given, and denote cλπ,σ the Schubert structure constant of SσSπ.

Then Lλ ≥ cλ. Even more, Lλ = cλ + nλ, where nλ is the number of occurences of the monomial
u(λ) in the product SπSσ on other constants. Then |π ∗ σ| = a(π)a(σ).

Proof. It follows from Theorem 3.0.2 that searching for the largest degree we find a polynomial to
divide by. The Lehmer code of the polynomial does not only determine it, but any polynomial with
that monomial has a bigger order monomial. We are left with the unique choice of the permutation
knitted by this code. Each Schubert constant has to be knitted thus is found in the Lehmer set.
The Lehmer number does not always match the constant, but exceeds it. The number by which it
exceeds counts the number of occurrences the monomial is found in other abaci.

Corollary 3.5.15. The equation a(π)a(σ)−
∑
λ n(λ) =

∑
λ c

λ holds.

Proof. The number of coefficients in the product is a(π)a(σ) and it equals
∑
λ Lλ. Then

a(π)a(σ)−
∑
λ

n(λ) =
∑
λ

Lλ −
∑
λ

n(λ) = cλ.
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Corollary 3.5.16. Given a known constant cλ, the number of λ ∈ L(σ, π) with nonzero constants
is at least n(λ).

Corollary 3.5.17. If Lλ = 1 for all λ then no structure constant is greater than one. The biggest
structure constant cannot be greater than the L′λs. Let L := maxLλ so that max cλ ≤ L. There
always exists a constant Lλ = 1.

Proof. The result follows from the theorem except the last conclusion. Each polynomial has a
largest monomial in the lexicographic order whose powers are the Lehmer code of the permutation.
The multiplication of these largest monomials is a largest monomial in the product, with coefficient
one, so Lλ = 1. As it is the largest the monomial, it is not untangled from the abacus of another
permutation. Then there is a constant cλ = 1 where λ has Lehmer code u(π)u(σ) and Lλ = cλ.

We can restate the last conclusion by saying that π ∗L σ ∈ L(π, σ) and cπ∗Lσ = 1. As Schubert
polynomials are a basis over Z for the ring Z[x1, x2, . . . ] we know the coefficients are determined
uniquely.

Definition 3.5.18. A subcover B of π ∗ σ is a family of abaci for λ ∈ π ∗ σ such that the number
of occurrences of λ is less than Lλ. Define D := u(π ∗ σ) −

∑
bλu(λ). Denote by bλ ≤ Lλ the

number of occurrences of λ in B. Define the cardinality of a subcover to be
∑
λ bλa(λ). Say that

the subcover is non intersecting if D ≥ 0.

We are looking for the maximum subcover properly contained in π ∗ σ. If the contention is not
proper then D < 0. In the Littlewood-Richardson rule the constants count some number of skew
shapes and in the present case, the constants could be related to a(−) and the Bruhat order. The
uniqueness of the coefficients and the non intersecting property whose requirement implies D ≥ 0
gives the following theorem. There is not much added meaning because we still check that D ≥ 0.

Theorem 3.5.19. The structure constants determine uniquely the nonintersecting subcover B which
equals σ ∗π in cardinality and D = 0. We solve the equation

∑
bλa(λ) = |π ∗σ| and then bλ = cλπ,σ.

Remark 3.5.20. We do not know if the solution
∑
bλa(λ) = |π ∗ σ| is unique.

Conjecture 3.5.21. There is a way of weakening the condition of the theorem to subcovers such
that D < 0. If we do not need to check D ≥ 0 for subcovers, there might be another condition
missing that assures the solution to

∑
bλa(λ) = |π ∗ σ| is unique for covers such that bλ ≤ Lλ.

Even if this is true we still have to look for appropriate methods of calculating cλπ,σ. For example,
one could hope that there is a relation of the abacus, Lehmer codes, and the nilHecke action on the
product that gives the value of the constants. We hope there exists a closed formula for the number
a(π) for any permutation. There is a special case where the Lehmer set comes out naturally.

Corollary 3.5.22. Suppose that a(λ) = 1 for all λ ∈ L(π, σ). Then every λ ∈ L(π, σ) is a dominant
permutation and cλ = 1 = Lλ for all λ.

With this new terminology we state a lemma towards the Hanoi rule. For the proof of the lemma
just observe that the shifted monomials u(h(τ))u(h(τ ′)) = u(h(λ)) are now in the product of the
Hanoi Towers of σ and π.

Lemma 3.5.23. Let λ be a permutation such that Sλ has a nonzero coefficient in the expression
for SπSσ. Then λ is in the Lehmer set π ∗ σ and h(λ) ∈ h(π) ∗ h(σ).

We can do a bit more, but in a more traditional way. We set to prove that each h(λ) increments
by one a constant if λ did before. Assume for the following that the diagrams of π and σ have no
unpermuted strings in the beginning (they do not fix one).
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Of the Hanoi rule. Picture the coefficients as boxes with a counter. There are finite boxes as
indicated by the knitting of the Lehmer set of SπSσ. For each time u(λ) appears in the sum
the box with label λ goes up by one. There is an order for these counter increments imposed by
the division algorithm. The Lehmer set of the product of the Hanoi towers have the shifted boxes
h(λ) ∈ L(h(π), h(σ)). This same increment of counters appears in the shifted counters for the Hanoi
Towers in the same order. For each time u ◦ h(λ) appears in the sum the box with label h(λ) goes
up by one, so the structure constants are shifted. Only one inconvenient can arise which we are set
to rule out. Any other monomial in the Hanoi Towers cannot have be larger in the lexicographic
order than u ◦ h(λ). The other monomials come from the same abacus but with monomials shifted
to a lower degree, so these cannot be bigger. Then the other monomials that have bigger variables
are transition monomials. Any transition monomial always has a nonzero exponent for a smaller
variable than the smallest variable with power bigger than zero in u(λ). Then the transition
monomial is smaller in the lexicographic order and h(λ) is chosen also to increment the counters in

the division algorithm. As this happens for each λ, by the division algorithm c
h(λ)
h(π),h(σ) = cλπ,σ.

The rest of the coefficients are called transition coefficients. The Hanoi rule cannot be used re-
peatedly for each inclusion generating new coefficients inductively, for the new transition monomials
in the Hanoi towers are bigger than these inductive transition coefficients. Unless we prove that the
products of these new transition monomials are transition monomials of the shifted constants, they
interrupt the order of the division and we cannot iterate the rule by adding one string and comput-
ing the constants, and adding the next string and shifting all the previous constants. This might
be proved for special permutations, such as dominant permutations or for adjacent transpositions
(as the transition set is empty). Transition monomials are yet to be determined.

At a first glance there are two things that can account for the constants. First, the cardinalities
a(λ) for λ ∈ L(σ, π), and the Bruhat order or weak Bruhat order for the Lehmer set. An algorithm
could be:

• Given σ, π ∈ S∞ build L(σ, π).

• For λ ∈ L(σ, π) calculate a(λ).

• For λ ∈ L(σ, π) identify if π ≤B λ or σ ≤B λ and call this subset of L(σ, π) the Bruhat set;
denote the Bruhat set by B(σ, π). Order B(σ, π) using the lexicographic order ≤L.

• Starting from the biggest element, add the numbers a(λ) for λ ∈ B(σ, π) in such way that∑
λ a(λ) = |π∗σ| and that bigger monomials are not left out; so they are chosen by descending

the chain given by ≤L in B(σ, π).

Definition 3.5.24. Define the Lehmer set of π as the set of permutations L(π) knitted from the
monomials of Sπ. It is understood that L(π) also represents a polynomial given by the untangling
map; the polynomial is L(π) := u(L(π)) = u(Aπ) = Sπ.

We give another method through brute knitting. We find the expansion of any monomial in
the Schubert basis. If we know how to expand through knitting any monomial into the Schubert
basis we can compute the constants by adding all the expansions of the monomials u(λ) ∈ L(σ, π).
In this case we do not need to study the product L(σ, π) but instead we should understand L(π).
The idea is as follows. Take the monomial m and we have no choice but to knit m so we get
L(π1) and a Schubert polynomial Sπ. If this is not a dominant permutation we have a(π1) > 1,
so we need to add correction terms. We subtract then Sπi for πi 6= π1 in L(π1) and get a(π1) − 1
polynomials. Repeat the procedure recursively. Our claim is that the algorithm stops. Each time
we add correction terms we knit polynomials such that in the step i we have degL(πk) < degL(πi)
for k > i. The set

{π : l(π) = π1 and deg(Sπ) ≤L deg(Sπ1
)}
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is finite. The permutations with the lowest monomials in the lexicographic order in the set are dom-
inant. When we decrease order we make our way to dominant permutations. Thus, the algorithm
stops. Let

S(π) = Sπ −
∑

λ∈L(π);λ6=π

Sλ

and the recursion is given by, if u(π) = m and r(π) = {λ ∈ L(π) : a(λ) > 1, λ 6= π},

R(π) = S(π)−
∑

λ∈r(π)

R(λ),

so that m = R(π1).
We give an example for a product p := x1x2x3(x1 +x2 +x3 +x4) = x2

1x2x3 +x1x
2
2x3 +x1x2x

2
3 +

x1x2x3x4. By Monk’s rule we know that knitting the Lehmer codes 1111 and 112 give the two
permutations λ1 and λ2 in the expansion with coefficient one. We hope that the recursion is not
over complicated. To simplify the notation write, for example, L(111) = u(Aπ(111)) where π(111)
is the permutation that is knitted from the Lehmer code 111. Get

x1x2x3x4 = Sλ1 ; (3.5.1)

x1x2x
2
3 = Sλ2 − L(121)− L(211) + L(211) = Sλ2 − L(121); (3.5.2)

x1x
2
2x3 = L(121)− L(211); (3.5.3)

x2
1x2x3 = L(211); (3.5.4)

p : = Sλ1 + Sλ2 − L(121) + L(121)− L(211)− L(211) = Sλ1 + Sλ2 . (3.5.5)

With our efforts we are able to finally prove Lemma 1.5.4 of Chapter 1.

Lemma 3.5.25. Let xα be a monomial in Z[x̄a] such that α ⊂ δ where δ is the Lehmer code of w0,
the powers of xδ. Then xα is a linear combination of Schubert polynomials xα =

∑
π∈Sa cπSπ such

that π ∈ Sa.

Proof. Using the brute knitting formula of monomials for xα, every Schubert polynomial in the sum
has lexicographic degree less than or equal to xα. Write π for the permutation with u(π̄) = xα. For
any D ∈ RC(π) we have that D is a configuration of l(π) crosses that sit in the upper antidiagonal
matrix with dots and crosses. If α′ is the sequence of powers of the monomial xD then α′ ⊂ δ.
Thus, every monomial xα

′
we knit in the recursion satisfies α′ ⊂ δ and knits the permutation π′

with u(π′) = xD where π′ ∈ Sa.
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