The Baldwin Effect as an Optimization Strategy

Edgar Alfredo Duénez Guzman

July 30th, 2005

i

Contents

Introduction 1
1 Optimization 3
1.1 Basic Concepts 3
1.2 Localsearch 4
1.3 Constrained Optimization 6
1.3.1 Constrained optimization problem definition 6

1.3.2 Techniques to handle constraints 6
1.3.2.1 Penalty functions L. 7

1.3.2.2 Rules of feasibility 8

1.3.3 Stochastic Ranking00 10
1.3.3.1 Constraint handling 11

1.3.3.2 The Stochastic ranking algorithm 12

2 Evolutionary Algorithms 15
2.1 Definition of an Evolutionary Algorithm 15
2.2 Genetic Algorithmso 17
2.2.1 The Simple Genetic Algorithm 18
2.2.2 More operators and codings 19

2.3 Evolutionary Strategies L. 22
231 The ES(14+1) 23
232 ES(u,N)and ES(u+A)o 24
2.3.3 More operatorso 25
2.3.4 A simple evolutionary strategy for constrained optimization . 28

2.4 Memetic Algorithms 29
2.4.1 Definition of a Memeo 29
2.4.1.1 Memes and Lamarckism 29

2.4.2 Definition of a memetic algorithm 29

2.5 Differential Evolution 30
2.5.1 The DE 1 algorithm. 31
2.5.2 The DE 2 algorithm 32
2.5.3 More operators 32
2.5.4 Differential evolution for constrained optimization 33

il

v

3 The Baldwin Effect

3.1 Basic Concepts
3.1.1 Benefits of phenotypic rigidity
3.1.2 Benefits of phenotypic plasticity
3.1.3 Lamarckism and Baldwin Effect
3.1.4 The Darwinian mechanism

3.2 Baldwin Effect and Computer Science
3.2.1 Hinton and Nowlan’s experiment

3.2.1.1 Harvey’s experiment
3.2.2 Turney’s experiments

3.2.2.1 Definition and types of bias

3.2.2.2 Shiftofbias
3.2.2.3 The Baldwinian model
3.2.2.4 The algorithm
3.2.2.5 Experiments

4 Baldwinian Optimization

4.1 'The Learning Operator
4.2 Baldwinian Algorithms
4.2.1 Baldwinian evolutionary strategy
4.2.2 Baldwinian Differential Evolution
4.3 Conclusions on the Experiments

Conclusions

A Benchmark functions

B Results for the Mezura-Coello Benchmark

CONTENTS

57

......... o8
......... 60
......... 61
......... 68
......... 69

77

81

93

List of Figures

2.1
2.2
2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.9

3.6
3.7
3.8
3.9

The schematic view of the simple mutation operator.
The schematic view of the one-point crossover operator.

The schematic view of the two-point crossover operator. Observe that
the genotype is viewed as if it were aring.

The schematic representation of the uniform crossover operator. Note
that at every crossover spot, the offspring has the genes of the second
parent, while it has the genes of the first elsewhere.

The schematic view of the pseudo-crossover operator for differential
evolution. We can observe that the crossed vector has 3 values of the
original vector, and 3 from the new one.

Schematic view of the fitness landscape for Hinton and Nowlan’s search
problem. All genotypes have fitness 0 except for the correct one with
fitness 1.

Schematic fitness landscape after learning.
The search problem is smoother with a zone of increased fitness con-
taining individual able to learn the correct connection settings.

Relative frequencies of 1’s (dotted), 0’s (dashed) and undecided (solid)
alleles in the population plotted over 50 generations.

The average fitness, bias strength, and bias correctness of a population
of 1000 individuals, plotted for generations 1 to 10000, with three noise
levels.

Experiment result for p = 0.5. The population is skewed towards
stronger bias. e

Bias strength fixed at 0.75. oo oo
Bias strength fixed at 0.5. oo
Bias strength fixed at 0.25. oo

Bias strength increases linearly from 0 in the first generation to 1 in
the generation 5000. Afterwards, the bias is held constant at 1.

18
19

20

21

33

44

45

o1

52
33
33
54

54

vi

4.1

LIST OF FIGURES

Schematic representation of the Baldwinian implementation for learn-
ing. The upper left individual is the original individual before learning.
Then, at the upper right corner, the individual after learning with mod-
ified fitness and/or genotype. Finally, at the bottom, the individual as
is to be compared with other individuals. Observe that it retains its
original genome, and only the fitness is changed.

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28

Reproduction of tradeoffs in evolution between phenotypic rigidity and
phenotypic plasticity [20] 40

The known or reported optimum values for the test functions. The
column maz/min tells whether the problem is a maximization or a

minimization to better interpret the results. 60
Results for function ¢gO1 62
Results for function ¢g02 62
Results for function ¢g03 oL 63
Results for function ¢g04 oo 63
Results for function ¢gO5o oo 63
Results for function ¢gO6 64
Results for function ¢gO7o 64
Results for function ¢gO8 64
Results for function ¢g09 65
Results for function ¢g10o 65
Results for function g11 65
Results for function g12o 66
Results for function ¢g13 66
Results for function¢1 66
Results for function 42 67
Results for function¢3 67
Results for function ¢gO1 L. 69
Results for function ¢g02 70
Results for function ¢g03 oL 70
Results for function ¢g04 o oo 70
Results for function ¢gO5 Lo 71
Results for function ¢g06 71
Results for function ¢gO7 oo 71
Results for function ¢gO8 oo 72
Results for function ¢g09 oL 72
Results for function ¢g10o 72
Results for function g11 73

vil

viil

LIST OF TABLES
4.29 Results for function g12o oo 73
4.30 Results for function g13 oo 73
4.31 Results for function 41 74
4.32 Results for function 42o 74
4.33 Results for function 43o 74

B.1 The known or reported optimum values for the rest of the test func-

tions. The column maz/min tells whether the problem is a maximiza-

tion or a minimization to better interpret the results. 93
B.2 Results for function ¢01. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 94
B.3 Results for function c02. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 94
B.4 Results for function c03. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 94
B.5 Results for function c04. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 95
B.6 Results for function c05. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 95
B.7 Results for function c06. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 95
B.8 Results for function c07. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 96
B.9 Results for function c08. The second and third column represent the

comparison between the normal ES and the Baldwinian one, respec-

tively. The fourth and fifth is the comparison between the normal DE

and the Baldwinian one respectively. 96

Dedicatory

This thesis is dedicated to three broad groups of people.

To my family for their support since the early stages of my life to present and
future. Specially to my wife Claudia because if it were not by her I would have never
done my Masters of Science. To my parents Margarita and Ernesto for the uncondi-
tional help they have always given me, and the impeccable formation I received from
them. To my brothers Ernesto and Eduardo who made my life much better, each one
in his very special and complementary way.

To my friends, who are as a second family to me, and who always were there
when [was particularly down. To the Plano as a community, but very specially to
Beta, Carlos, Eugenio, Inder, Limolin, Marte, Ponchito, Ranl, Satil and Veronica (in
strictly alphabetical order) for making my years in Guanajuato the happiest of my
life.

To my professors, who build my temper and knowledge in a way I never thought
possible. I will not mention anyone since I would surely omit very important people.
My gratitude to them all.

X

LIST OF TABLES

Acknowledgments

I would like to thank Arturo Hernidndez Aguirre, my thesis advisor, for believing in
me and helping me to finish my degree. Also, thanks to Mariano Rivera and Johan
Van Horebeek for being a corner-stone in my late Bachelor’s and early Masters’ years.

Very specially, I want to thank the community CIMAT-FAMAT for being a shelter
of knowledge and formation. They believed in me and allowed many activities on my
behalf, always supporting and helpful.

xi

xii

LIST OF TABLES

Introduction

Biologically inspired models in computer science used for problem solving have re-
sulted invaluable to the community. It has been almost half a century since the
first attempt were made towards successful applications of these models to real world
problems.

A model is by definition a simplification of reality, and it is usually the case that it
can end in over-simplification of observed phenomenon. In evolutionary computation
this might be the case since, from the point of view of biology, neo-Darwinism is a
more complex model than any current evolutionary algorithm. This is also the case
in many biologically inspired models as artificial neural networks, machine learning,
automata theory, and more.

Making more and more complex models seems to be a trend of changing strength.
While some researchers like more sophisticated methods for problem solving, others
suggest that we should be trying to discover the inners of the current algorithms in
order to set them on more formal foundations.

The main aim of this thesis is to present a biologically inspired, and to some
extent, biologically accurate new trend in evolutionary computation by expressely
trying to emulate the observed behavior known as the Baldwin Effect.

A number of researchers have observed (in both, evolutionary computation and
evolutionary biology) a synergy between learning and evolution to a certain extent.
This synergy is commonly (and mistakenly) known as the Baldwin Effect. While it
is true that the Baldwin Effect explains this observed synergy, it is equally interested
with the costs of learning over instinct. Concerning learning and instinct as a pecu-
liar duality, the Baldwin Effect can be thought as the synergy, costs and trade-offs
occurring between them.

Some experiments have been made by a handful of researchers, acquainted to
some degree with both biology and computation, to study the Baldwin Effect in
its complete form. The results were promising and inspired the author in further
studying this phenomenon.

This thesis is organized as follows:

In the first Chapter we give a brief introduction to Optimization without wanting
to make it the central point. The key terms are explored and an introduction to
local search and constrained optimization will be given. These concepts will be used
throughout the thesis, and it is recommended that the reader at least flips though
them to be sure to understand the notation adopted and get used with names of

2 LIST OF TABLES

already known terms.

The second Chapter is devoted to evolutionary algorithms. There, we develop the
basic definitions and algorithms. There is no attention given to results concerning
proofs of convergence rate or underlying mechanisms for the algorithms, instead we
try to develop the reader’s intuition on the required steps to create and understand
an evolutionary algorithm. Some of the main branches of this field are inspected,
and a number of variants are discussed. The notions of evolutionary strategies and
differential evolution will be the key for the presented experiments, and should be
given special consideration.

In the next Chapter, we discuss about the Baldwin Effect. We are concentrated on
a detailed explanation of the concepts and trends in this matter. We present the work
of several other researchers in order to support our remarks, and give special attention
to the Baldwin Effect as a whole. After developing the Baldwinian and Lamarckism
concepts, we continue with a Section devoted to Baldwin Effect in computer science.
There we present the more traditional works in this field, and give explanations of
the observed behaviors.

The last Chapter is then filled with the central portion of this thesis. We present
the term Baldwinian Optimization, which to the extent of our knowledge has never
been used before. There we express the viability of using Baldwinian mechanisms to
solve difficult constrained optimization problems, and also give the key ideas on how
to adapt a Baldwinian version of virtually any population based algorithm. We also
present a comparison between Baldwinian and non-Baldwinian versions of the same
algorithm, and close with a small conclusion on the results obtained.

The conclusions on the work presented follow these Chapters. There we argue
about the possibilities of the Baldwinian optimization as a research resource. We
briefly argue that biologically inspired algorithms are more easily understood and
adapted on the long run than other, more obscure, ones.

Chapter 1
Optimization

The body of mathematical results and numerical methods for finding and identify-
ing the best candidate from a collection of alternatives without having to explicitly
enumerate all possible alternatives is called Optimization. With the advent of the
information era, the computational power have made the optimization task easier,
but at the same time have brought a new range of questions concerning the efficiency
and correctness of the algorithms used in optimization.

In this Chapter we provide the basis for global and constrained optimization. The
aims of this Chapter are to develop the required definitions and to present a range of
general-purpose techniques to attack an optimization problem.

1.1 Basic Concepts

The general optimization problem can be stated as follows. Given the pair (S; f),
where S is an arbitrary search space, and f : S — R is a real-valued function to
optimize. With the optimum of the problem, we mean either the maximum of the
function or the minimum.

For purposes of this thesis, the optimization problem will always be regarded as a
maximization problem. Observe that every minimization problem can be transformed
into a maximization one by simply taking the problem as (S; —f).

The value z* is called the optimum (maximum) of the optimization problem (.S; f)
if and only if it satisfies f(z*) > f(z) for every x € S. When if along with the search
space we have a neighboring structure N : S — 2% defined on it, we can define
the notion of local optimum as every value x}, ., satistying f(z},..,) > f(x) for every
x € N(z},.,;)- By notation we will define X* = {z|z is an optimal solution of (S; f)},
and X/ ., = {x|z is a local optimal solution of (S, N; f)}.

Observe that the definition of a local optimum is dependent on the neighboring
structure associated to the search space. With the appropriate neighboring structure,
we can avoid local optimum solutions that are not global ones. We can also note that
X* C X} .. regardless of the neighboring structure N.

o]
In general, we will have that S C R™, for continuous optimization, and S C N,

4 CHAPTER 1. OPTIMIZATION

for discrete optimization. We will call the elements x € S solutions of the optimization
problem, as they represent the possible solution values of an optimization problem.
Similarly, we will call f(z), for x € S, the values of a solution. By notation, f(z*)
will be called the optimum value of the optimization problem.

In general, we can only tell if we are at a local optimum or not, since the notion
of local optimum is based on a neighboring structure that is potentially very small
compared to the size of the search space S. In order to be sure that we are in the
global optimum, we have to enumerate all possible solutions and check if all of them
are not greater than our proposed solution.

We also require a little more from the neighboring structure, as not every structure
is useful. Given an optimization problem (S, N; f), the neighboring structure is said
to be consistent if for every pair of solutions z,y € S, there exists a sequence (not
necessarily finite) {z;}iez, such that = lim; ., z; and y = lim; o 2;, and z;41 €
N(z;) for every i € Z. If the sequence is finite, N is said to be finitely consistent.

This definition defines whether a neighboring structure can lead from one point in
the search space to every other passing only through the neighbors (and the neighbors
of the neighbors) of the points to be united. Observe that if S is finite, then every N
is finitely consistent.

Let us now define a relation for neighboring. Given the relation ~C S x .S, such
that x ~ y if and only if x € N(y), we can define certain desirable properties of the
neighboring structure N. We will say that N is coherent, if and only if ~ is reflexive
(i.e. © ~ x) and symmetric (i.e. x ~y <y~ x).

The notion of consistency is used by many stochastic local search algorithms to
assert global optimality, while the notion of coherency is mainly used for convenience.

There is also another definition that will prove useful in our study. We will say
that the function f is unimodal in T' C S if and only if X ., of the reduced problem
(T, N|r, f) has cardinality 1 (in other words, if there is only one local optimum in 7T')
If the function f is not unimodal in 7', then it is said to be multi-modal.

1.2 Local search

The first type of algorithms we might find in optimization history are the local search
algorithms. This early attempt to solve optimization problems can be regarded as a

function
a:S — 2° where a(z) € N(x) for each z € S (1.1)

The algorithm can be either deterministic (i.e. a function as proposed above) or
stochastic in which case we can generalize the above definition to be

a:S x[0,1] — 2% where a(x,r) € N(x) for each z € S,r € [0,1] (1.2)

where the number r is considered to be the random portion of the algorithm.
The pseudo-code for the local search algorithm is given below to express the way
in which the local search algorithm work.

1.2. LOCAL SEARCH 3

Local search (stochastic)

¢ =initialSolution();

best =1i;

iwterations = 0;

while(depth-not-satisfied)

{
count = 0;
// Here starts the algorithm a.
while(pivot-rule-not-satisfied)
{
j =next(N(i));
count + +;
ifC f(j) > f(best))
best = 7;
}
// We think of best as the production
//of the algorithm best = a(i)
1 = best;
iterations + +;
}

In this pseudo-code we can observe a couple of conditions, the depth condition and
the pivot rule. This pair of conditions determine the local search algorithm.

The pivot rule is the algorithm itself, and can be for instance steepest ascent,
meaning that the whole neighborhood of the solution ¢ is to be searched for the best
solution available (count = |N(7)]). In the case of greedy ascent, we might use the
pivot rule of stopping when the first better solution in the neighborhood is found
(count = |N(7)| or best = 7). In practice, as the cardinality of the neighborhood N (i)
can be infinite, it is natural to consider only a random sample of size n < |N(i)].
This type of algorithms are deterministic in nature, but stochastic in behavior.

The depth condition is the termination criteria of the local search. It can range
from the one-time local search (when iterations = 1), to the local optimality condition
(count = |N(7)| and best = i).

Another important remark is that stochastic local search algorithms will have a
non-deterministic pivot rule. This means that they might accept a solution generated
within the neighborhood based on a probabilistic condition. Algorithms like simulated
annealing fall into this category, where a worst solution might be accepted with low
probability.

6 CHAPTER 1. OPTIMIZATION

1.3 Constrained Optimization

Most real world optimization problems are more complex than the problems presented
in the last section. In particular, the solutions offered by the optimization process
might not be applicable to real world after the over-simplification process of the
model.

In order to overcome this problem, the notion of constrained optimization was
born. It adds to the definition of an optimization problems the notion of feasible
region and constraints that must be satisfied in order for the solution to be acceptable,
but that are not objectives themselves.

1.3.1 Constrained optimization problem definition

A constrained optimization problem is a tuple (S, N; f: 91,92, .., Gn; h1, ho, .. hun),
where S is the arbitrary search space, N : S — 2% is the neighboring structure, f :
S — R is the fitness function, g; : S — R which represent the inequality constraints,
and h; : S — R which represent the equality constraints.

We call feasible region to the set

F ={x € Slgi(z) <0Vl <i<nand hj(z) =0Vl < j<m} (1.3)

and a solution x to the problem is acceptable if and only if x € F. When there is a
solution x such that g;(x) = 0, the constraint g; is said to be active for .
The constrained optimization problem is typically stated as

optimize f(x)
subject to

gilr) < 0,i=1,2,...,n
h](l') = O,j:1,2,...,m

and in both cases, equality and inequality constraints, can be linear or non-linear.
The constrained optimum is the value x* such that is acceptable and the global
optimum of the transformed problem (F, N|z; f|#).

1.3.2 Techniques to handle constraints

In order to solve this type of optimization problems, researchers have developed a
number of techniques. Most of them are variation of an already existing technique,
or the transformation of the problem to a standard optimization problem that has its
global optimum at the constrained optimum of the original problem.

In the following section we will examine many of this techniques.

1.3. CONSTRAINED OPTIMIZATION 7

1.3.2.1 Penalty functions

The first idea used to solve constrained optimization problems was to transform the
problem to global optimization one over S, and applying a penalty in fitness to those
solutions that lay outside the feasible region. Here we will examine two different
techniques that use this idea as inspiration.

Total violation of constraints The first technique used to solve constrained op-
timization problems was the total violation of constraints. This technique consists
of changing the fitness function to add a penalty based on constraint violation. Its
general form allows a set of parameters to be adjusted for each constraint.

The problem is then transformed to (S, N; ') where

F@) = @) =Yg @) — 3 b (1.4
with ¢/ (z) = max{0,g;(z)}

where the numbers w;, € R, for each 1 < k < n+m represent the weights associated
to that constraint function. These weights are not necessarily fixed during the whole
optimization process. One my start with small weights in the first stages of the
algorithms to then increase them to enforce the constraints later on.

Observe that depending upon the values of {w;}, the global optimum of f” can
be the constrained optimization. In general, when the weights approach infinity, the
global optimum of the function f" approaches the constrained optimum of the function
f.

There has been a number of attempts to set this parameters in a self-adapting way,
but, because of the simplicity of this technique, they have not worked as expected.

Maximum violation of constraints As with the last technique, this is an early
attempt to solve constrained problems. The basic idea behind mazimum violation of
constraints is to take the maximum value of violation of the individual as the penalty
to the fitness function, instead of taking the sum of violations.
The problem is then transformed to (S, N; f)
’ _ - AT _ .
fll) = f(z) - max{wig/ (z)} — max {wny;h;(@)} (1.5)
with ¢/ (z) = max{0,g;(z)}
and hf(z) = |hy(z)| (1.6)

where the numbers wy, € R, for each 1 < k < n + m represent, as in the previous
case, the weights associated to that constraint function. As before, the weights are
not necessarily fixed during the whole optimization process. And yet again, when
the weights are close to infinity, the global optimum of f” approaches the constrained
optimum of f.

8 CHAPTER 1. OPTIMIZATION

More penalty techniques We can see the last two techniques to handle con-
straints as a special case of a more general approach. The idea is to create a function
to transform the violation value of each constraint to match the desired behavior.
Hence, we will define two penalty functions ¢ and v taking values of the constraints
g; and h; respectively to assign a penalty to the original function.

The problem is then transformed to (S, N; f',{G;}, {H;}) with

f'(w) = f(2) + 0(g1(2), g2(x), - - gn(2)) + (M (@), ha(@), - hn(x)) — (1.7)

with the only constraint that the functions ¢ and ¢ should be non-negative, and be
evaluated as 0 when x € F.

There is a wide range of selection for the functions ¢ and 1, but they shall not be
discussed here, as they are of secondary interest to the aims of this thesis.

1.3.2.2 Rules of feasibility

A more sophisticated approach to solving the constrained problem is the use of rules
to decide when a solution is better than another one. The main advantage of these
techniques is that they do not need to set parameters to balance the strength of the
penalty. Instead, they use a set of rules to establish a natural order of fitness and
violation of constraints.

These techniques are well-suited for evolutionary algorithms and other population
based problem-solvers, as the comparison of two solutions is made based upon the
established rules. The fitness function is then replaced by a binary function

—1 if z is worst than y
b(z,y) =14 1 if x is better than y
0 if they are incomparables or the same

Total violation rule The first approach on this group of techniques is very similar
to the first approach on penalty functions. The binary comparison function uses
the total sum of constraints in a similar way than in Equation (1.4). Let ¢(z) =
S wigh (x), Y(x) = YT weyih (), and R(z) = ¢(z) +¢(z), then the binary

function can be regarded as

—1 if R(z) > R(y) or, R(z) =0 = R(y) and f(z) < f(y)
b(x,y) =< 1 if R(z) < R(y) or, R(x) =0 = R(y) and f(x) > f(y)
0 if either R(x) = R(y) =0 and f(z) = f(y)

This function can be interpreted as follows: z is better than y if and only if z
violates less the constraints than y or, they are both feasibles but = has better fitness
than y.

This technique can be generalized much like the penalty function techniques, but
again, that generalization is out of the scope of this thesis and the exact generalization
process is left to the reader.

1.3. CONSTRAINED OPTIMIZATION 9

Multi-objective rules Other, more recent type of rules, are concerned with the
notion of multi-objective optimization. This is mainly due to the natural way in which
we might transform the constrained optimization problem into a multi objective one,
in which every constraint function is also an objective. For this to work, the constraint
functions must be transformed to g; and k" as before.

Once this is done, the solution to the multi-objective optimization problem defined
by the tuple (S, N; f,{g;"},{h]}), contains the solution to the constrained optimiza-
tion problem (S, N; f;{g:}; {h;}).

Before we can define the binary function we need to develop several concepts from
the theory of multi-objective optimization.

Given two vectors T, € R* Z is said to Pareto-dominate 3 if and only if, z; < y;
for every i = 1,2,...,k, and z; < y; for at least one j = 1,2,... k. The notation for
dominance is ¥ > ¢ which is read ¥ dominates 3. This definition gives us a possibility
to compare two multi-objective solutions, in the sense that if £ > 1/, then solution ¥
is considered better than solution .

When we have a set of solutions (vectors) X = {Z;}, we can define the Pareto
levels in a recursive manner

PL(0) = {#Vie X,ij} @) (1.8)

PL(i+1) = {#vje X\|JPL(i),§# 7}

i=1

The zero-Pareto level has a special name, it is called the Pareto front. For conve-
nience, we will define the function level(Z, X) as the Pareto level of the vector Z in
the set of solutions X.

Before we can define the multi-objective rules, the following notation will be used
in the definitions of the binary comparison functions. Let us define the set

R = {r(z)|lr € X}
where r(z) = (g (2), 9, (x),..., g, (), hi (), hy (x),.. ., hy(2))

representing all the constraint values of a set of solutions X C S. Observe that
r(x) = 0 means that z € F.

Pareto-rank We are, now, ready to define one of the binaries functions, describ-
ing what is known as Pareto-rank rules. We define the binary comparison function
as

1 if level(r(x), R) > level(r(y), R)
or level(r(xz), R) = 0 =level(r(y), R) and f(z) < f(y)

b(z,y) = 1 it level(r(x), R) < level(r(y), R)
or level(r(x),R) =0 = level(r (), R) and f(z) > f(y)

0 if level(r(z), R) = level(r(y), R) #

10 CHAPTER 1. OPTIMIZATION

for any two values z,y € X. The condition level(z, R(X)) = level(y, R(X)) and
r(y) = r(x), is not required as one solution cannot dominate any other one of the
same Pareto level. Observe that, although R depends on X, this dependence is not
made clear for clarity in the formulas.

Feasibility and dominance Another, widely used multi-objective rules is the
known as feasibility and dominance. The binary comparison function can be described
as

(it r(y) = r(x))
-1 or 7’(:1:)7&9& nd r(y) =0
or 7(x) =0=r(y) and f(z) < f(y)
b, y) = it r(a) = r(y)]
1 or r(y)#(ladr(:v)—O
or r(z)=0=r(y)and f(y) < f(z)
L 0 otherwise

for any two values z,y € X. This function can be interpreted as, from two feasible
solutions the best is the one with best fitness function, from two non-feasible solutions
take the one that Pareto-dominates, if one is feasible and the other is not take the
feasible.

The biggest draw-backs of this rules are that it might be very difficult to find
the feasible region in the first place, and that the Pareto dominance decreases in
intensity! with increasing dimensionality.

1.3.3 Stochastic Ranking

The rules as a strategy for constrained optimization are good way to solve a problem,
however, due to the problems just mentioned, many researchers in constrained op-
timization are searching for new techniques that can solve problems more efficiently
and in a better way than with the previous techniques.

One of the better attempts to solve these intrinsic problems was made by Runars-
son [17] when he proposed the stochastic ranking. The main idea behind stochastic
ranking is based on a parameter used by the traditional penalty function approach.
His notation, however, is a little different from our own, but for clarity, his notation
will be used for the rest of this section.

The penalty function approach is

f'(x) = f(x) +rg0(g1(2), ga(), .. . gn()) (1.9)

where
n

0(91(2), g2(2), - ., gu(2)) = Y _(max{0, g;(2)})*

i=1

IThe probability than one random vector dominates another random one decreases exponentially
as 27¢ with the dimension.

1.3. CONSTRAINED OPTIMIZATION 11

or any other penalty function. The value r, may be variable over the generation
number g.

Runarsson notes that, while this approach works quite well with some problems,
it is in general very sensitive to the value of r, as said in Section 1.3.2.1. If r, is too
small, a non-feasible solution may not be penalized enough, and if it is too big, there
will be no room in the optimization process to improve the solution once they are in
the feasible region. This is specially true if the feasible region is not connected, and
the exploration brought the search in one portion of the feasible region that does not
contain the constrained optimum of the problem.

The optimal setting for the values ry is problem dependent and an optimization
problem in it own. As an alternative to this issue, the stochastic ranking defines a
way to simulate a dynamic adaptation of the parameters r,.

1.3.3.1 Constraint handling

For any given penalty coefficient r, > 0 let the ranking of A individuals be

filan) < fllae) << fl(an)

where [’ is the transformation of the fitness function given by Equation (1.9). We
will use an abbreviation of Equation (1.9) to simplify notation, and let f'(x;) = f/ =
fitredi = f(:) +ryo(z:).

If we examine two adjacent individuals in the order induced by r, in function f’,
we can observe that

fi+1y0i < fiy1 +790ina

forevery 1 =1,2,..., A — 1.
We define the critical penalty coefficient r; for the adjacent pair ¢ and i + 1, as

T = (fz‘+1 - fz)/(¢z - ¢i+1)

where it is assumed that ¢; # ¢;11. Note that if we have 7, fixed, then there are three
cases for the inequality to hold.

1. fi < fix1 and ¢; > ¢;41: The comparison is said to be dominated by fitness
function and 0 < r, <775, meaning that the ordering in fitness function is what
is deciding the ordering in f’.

2. fi > fix1 and ¢; < ¢;11: The comparison is said to be dominated by penalty
function and 0 < 7; < ry4, meaning that the ordering in penalty function is what
is deciding the ordering in f’.

3. fi < fix1 and ¢; < ¢;11: The comparison is said to be non-dominated and
7; < 0, meaning that the ordering in f is not decided neither by f nor by ¢.

12 CHAPTER 1. OPTIMIZATION

Observe that the last possible case f; > fii1 and ¢; > ¢;41 is not necessary, because
it contradicts the assumption that fj < f/ ;. The non-dominated case is also one in
which the value of r, has no relevance. Its value is critical, however, when comparing
in the first two cases, as the value of 7; acts as a threshold to decide whether a solution
x; is better or not than a solution z;,;. For example, if we increase the value of r, in
the first case to be higher than 7, then the solution x; will pass from being better, to
being worse than x;;;. For the entire population, the chosen value of r,will determine
the fraction of individuals ranked only according to the penalty function, and the one
ranked by fitness function.

Observe that not every possible value for r, can influence this selection. There
are upper 7, and lower 4, bounds such that, if r, < ry, then every comparison among
solutions will be based upon fitness function?, and if 7, > 7, then every comparison
among solutions will be based upon penalty function®. Observe that the values of 7,
and 7, are dependant on the current solutions z;,7 =1,2,..., A

It has been discussed previously that neither of those cases will lead to the optimal
constrained solution. In this sense, the optimal value for 7, must lay in the range from
ry to T4 , so that the comparison among solutions will be balanced between penalty
and fitness function.

1.3.3.2 The Stochastic ranking algorithm

The stochastic ranking is concerned with the simulation of maintaining the value r,
in the range r, € [ry,7,]. Stochastic ranking uses a probability ps of using only the
fitness function for comparisons in ranking individuals in the infeasible region of the
search space.

The ranking is achieved by a bubble-sort-like procedure with an stochastic com-
paring operator. Th procedure is halted when no change in the rank ordering occurs
within a complete sweep. This stochastic ranking procedure can be used as the se-
lection operator of any evolutionary algorithm in which the selection is a sorting of
the individuals according to a certain order, and then keeping the best individuals
for the next generation. This will be explained in detail in Chapter 2.

Stochastic ranking procedure

for(j=1 to A)
I =17;
for(i=1to N)
{
for(j=1to A—1)
{
if(¢(L;) = ¢(L;4+1) =0 or rand()< py)

2Called under-penalization
3Called over-penalization

1.3. CONSTRAINED OPTIMIZATION 13

{
it C f(1) > f(Lj41))
swap(I;, Ijs1);
}
else

if C o(1;) > ¢(Ijta))
swap(I, L1);
}
if (no-swap-performed)
i=N; //break the for
}

Observe from this procedure, that the algorithm is performing at most N sweeps
through the whole population. When ps = 0, the ranking is over-penalized, and
when ps = 1, the ranking is under-penalized, so it is a good idea to take values for p;
that are neither close to 0 nor to 1.

Runarsson [17] notes that if the number N of sweeps the algorithm performs tends
to infinity, then the ranking will be determined as follows, if p; > 1/2 then the ranking
will be under-penalized, and if p; < 1/2 then the ranking will be over-penalized. This
can be regarded as increasing NV is effectively the same as varying ps. By this reason,
he decided to set NV = A, and modify py to control the performance of the algorithm.

The result of stochastic ranking in the well known benchmark are given in the
appendix, with exception of the function g02 since the values obtained in this thesis
are much better than the reported by Runarsson.

14

CHAPTER 1.

OPTIMIZATION

Chapter 2

Evolutionary Algorithms

The origins of evolutionary computation can be traced back to the late 1950’s, how-
ever, the new-born field remained relatively unknown to the scientific community for
almost three decades, mainly due to the lack of computational power in the early
stages of evolutionary computation. With the works of Holland [11], Rechenberg [16],
Schwefel [18] and Fogel [8], the evolutionary computation started to grow, and we
currently observe a steady increase in the number of publications and conferences in
the field.

The most significant advantage of using evolutionary algorithms over other opti-
mization techniques lies in the great adaptability and flexibility of the evolutionary
search, along with the robust performance and global search characteristics [1]. In
fact, evolutionary computation should be regarded as a general adaptable concept for
problem solving, specially well suited for difficult optimization problems, rather than
a collection of related and ready-to-use algorithms.

2.1 Definition of an Evolutionary Algorithm

Given an optimization problem (S; f), defined as in Section 1.1, with a search space
S, and a function f :S — R, an evolutionary algorithm is a tuple

EA(Q k1, m; 0, ®,0;0) (2.1)

where, Q is the search space of the algorithm, II, = QF is the set of all possible
populations of size k and 7 : Q — S is a function mapping the search space of
the optimization problem to the search space of the evolutionary algorithm; ¥ =
(1,89, ..., 1y,), where 9; @ IIy x [0,1] — II; for every 1 < ¢ < n, and represent
the mutation operators; ® = (¢1, 2, ..., Om), where ¢; : Iy x [0,1] — II; for every
1 < i < m, and represent the crossover operators; o : I, x IT;, x R*¥ x R¥ x 0, 1] — Tl
and represent the selection operator; and O : Iy x [0,1] — Il represents the order
of the operators.

By notation, let K = {1,2,...,k}. We will call ¢, mutation functions, and ¢;
crossover functions. Also, we call populations to the elements of I1;; they will usually

15

16 CHAPTER 2. EVOLUTIONARY ALGORITHMS

be represented by P, = (P;1, P,o,...,FP;x). For the sake of clarity, we will define
U (P, 1) =1,0...000011(P;,r), and (P, 1) = ¢ppp0...002001(F;,) to assume the
same 7 will be used in every internal function. This r represents the random number
generated to make the operators non-deterministic. 1t is not hard to see that one
random number is enough to create an arbitrary amount of random data.

Some times it will be useful to apply the operators directly to individuals (i.e.
elements of populations) instead of populations.

In the case of mutation, we will overload' the ¢; functions to the functions 1; :
Q2 x [0,1] — Q, and assume that, if P, = (p;1,pi2, ..., Pik), then

Vi (P, r) = (Vi(Pins), i(Pi2s 7)o 0 (Diks 7)) (2.2)

As for the crossover operators, we will usually require a more complex mechanism
to overload the functions. Lets assume that the set of integers R = {ry,ra,...,7,} is
such that we can redefine the crossover operators as ¢; : 27 x [0, 1] — Q, and assume
we have a function s; : [0,1] — K"5. This function will obtain a vector containing
the indexes of r; individuals from the population P; to be crossed by the new ¢,
function. In this sense, obtaining k& uniform random numbers v; from r—one for each
new individual in the population | the crossover function will be given by

Tjw = 8j(v,) for 1 <u<k
Let Gjut = PVl <t <y
¢i(Fir) = (05(¢Gan G- Gy T 0@kt Gy - - Qi3 7)) (23)

Observe that Z;, is a vector with r; elements, and that each element (z;,); of the
vector is a number between 1 and k, so they can serve as indexes for individuals in
the population.

The function O is usually defined as

O(P,1) = Vo ®(P,7) (2.4)

where P, = (p;1,Di2,--.,Dik), and p; ; € Q for every j € K.

In a more general setting, the operators may be applied to populations with a size
other than £, but the generalization of the definition of an evolutionary algorithm as
stated before is simple and is left to the reader.

The general sketch for the evolutionary algorithm is

Evolutionary Algorithm
initialize-population Fp;

Let 7 =0;
while(termination-criteria-is-not-met)

! As in programming, two functions with the same name, but with different kind (number of type)
of arguments. In general, it is clear from context whether we are referring to one or another.

2.2. GENETIC ALGORITHMS 17

{
P;=0(C P, rand());
F; = computeFitness(FP;) ;
Fy = computeFitness (Py) ;
Pipw=0(C Py, B, Fy, F;, rand());
1=1+1;
}

Each of the loop’s cycles are called generations, and the termination criteria could
be that a certain number of generations have passed, or that a certain amount of
fitness function evaluations have been reached, or a more sophisticated test such as a
population convergence rate or a generational difference threshold has been met, etc.

Given a population P = (py,ps, ..., pk), the fitness is usually computed as F' =
(for(p1),foT(p2),...,for(pk)), where fo7(p;) is called the fitness of individual
pi-

The majority of current implementation of evolutionary algorithms descend from
three related but independently developed approaches: Genetic Algorithms, Evolu-
tionary Programming and FEvolutionary Strategies.

Evolutionary programming was originally offered as an attempt to create artificial
intelligence. The approach was to create finite state machines (FSM) to predict events
based upon former observations. A FSM is an abstract machine which transforms a
sequence of input symbols into a sequence of output symbols. The transformation
depends on a finite set of states and a finite set of transition rules.

The other two main evolutionary algorithms are more popularly used to optimiza-
tion and will be given greater attention.

2.2 Genetic Algorithms

Genetic algorithms (GA) were invented by Holland [11] in the 1960’s, and were de-
veloped by Holland, his students and his colleagues at the university of Michigan for
over a decade. Holland’s goal, in contrast to that of evolutionary strategies and evo-
lutionary programming, was not to design algorithms to solve specific problems, but
rather to formally study the phenomenon of adaptation as it occurs in nature and to
develop a theory that could aid to import those mechanisms to computer systems.

What Holland developed was a method to move a population of chromosomes? to
a new population by using an artificial implementation of natural selection together
with the genetic-inspired operators of crossover, mutation and inversion. In this
mechanism, we have another selection operator to decide which individuals are going
to be selected for reproduction. This and the other operators will be analyzed later
in greater detail.

?In its simplest form this chromosomes are strings of bits.

18 CHAPTER 2. EVOLUTIONARY ALGORITHMS

In the last several years there has been widespread interaction among researchers
studying various evolutionary computation methods, and the boundaries between GA,
evolutionary strategies, evolutionary computation, and other evolutionary approaches
have broken down to some extent.

Nowadays, researchers often use the term genetic algorithm to refer to something
quite different from Holland’s original conception. In general terms, GAs are the more
flexible evolutionary computation algorithms in terms of the available operators and
representations.

2.2.1 The Simple Genetic Algorithm

The traditional GA, also known as Simple Genetic Algorithm (SGA) is detailed as
follows. Using the notation for evolutionary algorithms, we define the simple ge-
netic algorithm as SGA(pe, pm) = EA(Q, k, I, 739, ®, 0;0), where Q = Z,, and the
function 7 is problem dependent.

It only contains one mutation (m = 1) function which, given an individual p € €,
and getting random numbers s € {0,1} and ¢t € {1,2,...,1} from r,

p ifs=0
) =) 2.5
77Z)(p T) { (p17p27"'7pt—171_ptapt+17"’7pl) ifs=1 ()

where the probability of s = 1 being known as the mutation probability p,,, which
is usually set to 1/I. On the other hand, ¢ is expected to be uniform. We can see a
schematic representation in Figure 2.1, where we can observe the mutation spot, and
that position is flipped in the individual as a result of the mutation.

i - N

Mutation spot

Figure 2.1: The schematic view of the simple mutation operator.

[t contains also only one crossover function (n = 1) in its crossover operator which
first selects the parents with what is called fitness proportion or roulette wheel. The
amount of parents is always 2, which means r; = 2. The fitness proportional is the
function which, given the population P = (p1,ps, ..., pr)

s1(r) = (x1,22) (2.6)

such that P(x; =i) = %

pi)

(
and P(xy =1i) = M
> F(r(py)

2.2. GENETIC ALGORITHMS 19

CIT]]
® 1.
HEE.

Crossover point

Figure 2.2: The schematic view of the one-point crossover operator.

which can be interpreted as one individual having a probability proportional to that
individual’s fitness of being selected in the current population. The crossing function
is then defined as follows

— (pwl,lvpm,?v’--7pm1,t—17pm2,t,---,pm,l) lfS = 1
QS(pxl’pI‘Z?/r) - { pxl ifSIO (2'7)
with ¢t € {2,3,...,1} being a random number obtained (from r) with uniform prob-

ability, and s € {0,1} is a random number which probability of being 1 is equal
to a constant known as the crossover probability p. which is usually set to 0.7, and
(x1,22) = s1(r). The schematic representation of this operator is in Figure 2.2, where
we can observe the crossover point, and the resulting individual.

This crossover function is known as one-point crossover, because it is equivalent
to taking one crossover spot (i.e. the number ¢) and taking the first ¢ genes from the
first parent and the rest from the second to create a new individual.

2.2.2 More operators and codings

There are a number of operators for crossing and mutation other than the reviewed
in the last section. There are also some coding possibilities for the genotype, instead
of the usual Z,. We can even use different cardinalities for every gene, i.e. Q =
Ly X Ly X ... X L, where t; € Nand 1 < j </.

There is also a possibility of using data structures in the place of genes. When
a GA has data structures as genes, and operators to act on them are provided, the
evolutionary algorithm resulting from it is known as Genetic Programming [12].

Inversion operator There is a biologically inspired mutation operator that we will
review. It is called inversion mutator, and, given the random numbers s € {0, 1}, as
in the simple mutation, 1 <¢ <[—1, and ¢t + 1 < u <[uniform numbers obtained

20 CHAPTER 2. EVOLUTIONARY ALGORITHMS

from r, it can be viewed as the function

| (p1p2s D1 Dusts - D1 P Py - -, 01) i s =1
¢(p>7’)—{p ifs=0

It could be used to preserve some qualities of the genotype that other mutation
operators would destroy, as the sum of the 1’s in the genome, or the genes itself, but
to change the order3.

Shuffle operator Another useful mutation operator that preserves the genes in the
individual is the shuffle operator. It consists of choosing a permutation of size [. This
operator assumes an uniform type of genes in each position, i.e. Q = A!, where A is
the set of possible genes. This operator can be mathematically expressed by

_ (pa(l)apa(2)> s 7pa(l)) ifs=1
w(p,r)_{p if s=0

where s € {0,1} as usual representing the mutation probability, and the function
a:{1,2,...,1} —{1,2,...,1} a permutation (i.e. 1-1 and onto) obtained from r.

Two-point crossover There is another widely used crossover operator for GAs,
and is known as two-point crossover, because it resembles the one-point crossover,
but with two crossover spots. Formally, given the random numbers s € {0,1} as in
the one-point crossover, 1 <t <[—1, and t + 1 < u < [uniform numbers obtained
from r, it can be viewed as

Crossover points

;0

Figure 2.3: The schematic view of the two-point crossover operator. Observe that
the genotype is viewed as if it were a ring.

_ (pm1,17 co vy Py t—15Pagity -+ -y Prou—15 Pxyuy - - - 7pm1,l) ifs=1
¢(px1>p962’r) - { Day lf s=0

3Useful for solving problems as the traveling salesman problem (TSP).

2.2. GENETIC ALGORITHMS 21

This operator has a fame of being better than the classical one-point crosser, and
also, it is easy to see that it generalizes it. But there is an even more renown crossover
operator.

Uniform crossover The uniform crossover is the crossover operator that better
preserves diversity in the population. It is a generalization of the one and two-point
crossover operators. As its predecessors, it requires a set of random numbers, the
first of which is exactly the same as before, s € {0,1}, while the others vary a little;
obtain t1,ts,...,t, where t; € {0,1} for every 1 < i < [, with uniform probability.
The function of this operator can then be viewed as

oy EE

Crossowver spots

Figure 2.4: The schematic representation of the uniform crossover operator. Note
that at every crossover spot, the offspring has the genes of the second parent, while
it has the genes of the first elsewhere.

¢(pw17pw27r> = (qlquv' .. 7ql) (28)
where “ = { DPaxysi if t;i=20

This operator is schematically presented in Figure 2.4.

Tournament Aside from crossover and mutation operators, there are many selec-
tion operators. Maybe the best known is the tournament selection, and its variations.
In simple words, it takes a set of individuals at random (usually with uniform prob-
ability), and selects the fittest one of them to be part of the next generation. The
most used type of tournament is the binary tournament, where we are to select a pair
of individuals in each step, and then select the best one. Formally, we can define
the n-tournament as, getting, as usual from the random number 7, uniform random
integers 411,912, .., 0105021, - -5 %2n) lk 1, - - -5 Uk, the selection operator would be

O-(PanvaFQﬂn) = (b17b27"’7bk)

and b, = arg max {f o 7(¢i,;)}

22 CHAPTER 2. EVOLUTIONARY ALGORITHMS

Observe that this selection mechanism ignores the previous generation P and is
only concerned with the fitness of the newly generated population (). This is the
usual form of the selection operators in newer genetic algorithms.

One of the main advantages of this selection mechanism is that we don’t need to
evaluate the fitness of the individuals directly if we have a less-expensive mechanism
to decide whether one individual is better than the other.

For example, if we want to solve the problem of controlling a system without
making it crash, and the individuals represent the actions to take, we only require to
know if one individual is able to maintain the system working for more time than the
other, instead of knowing exactly how much time they can both keep it working.

The main disadvantage of them is that the best solution found so far could be lost
(i.e. not selected). In order to avoid the lost of the best individual during selection, the
operator can be changed to include a number of the best individuals of the previous
generation automatically into the next one. This type of selection mechanisms are
known as elitist selection. The elitism can be of one or two individuals or even the
whole population.

Challenge (Probabilistic Tournament) There is a variation of the tournament,
less used in the literature, which instead of always selecting the best out of the set of
selected individuals, selects the best only with a certain probability. This mechanism
is sometimes referred to as challenge selection or probabilistic tournament.

The selection pressure is a measure of the probability of selecting individuals with
low fitness. A high selection pressure gives small or zero probability of selecting the
worst individual. The tournament is a good example of a high pressure selection
mechanism, while the roulette wheel is the classic example of a middle pressure se-
lection. In the challenge the selection pressure is relaxed compared to the normal
tournament, but preserves the good qualities of the tournament over the roulette
wheel.

2.3 Evolutionary Strategies

The evolutionary strategies (ES) were developed in Germany in the 1960s |16, 18| to
solve difficult hydrodynamical problems. It simulates the evolution at an individual
level, and as a result, the crossover operator is considered secondary.

The main ideas behind evolutionary strategies are a self-adapting mutation on
the individuals, along with a deterministic and extinctive selection!. ESs are also
under the influence of the neo-Darwinism used in many evolutionary algorithms, and
in particular in GAs. The uses and roles are, though, substantially different in ESs
than in GAs [4], and we will discuss a little about this differences.

4The best individuals are to form the next generation, in consequence, the worst individuals will
never be selected.

2.3. EVOLUTIONARY STRATEGIES 23

To begin with, evolutionary strategies are more concerned with phenotype as
there is no coding from genotype to phenotype. Also, the crossover is as important
to GAs as the mutation is important to ESs. The GA’s search progresses through
recombination of genes in good individuals, while the search progresses in ES’s via
the mutation of promising individuals.

The order of the operators is also changed, and the next generation’s population
is selected after evaluating the offsprings of the last generation, in contrast to the
GA’s way, in which the selection process is carried away to create the offsprings.
This obeys to a philosophical remark. As mutation is viewed as the main operator,
mutation is constructing the actual solutions, and its effect should not be disrupted
crossing over. The good solutions are thought to come from prior good solutions via
mutation. After this, the crossover can try to improve the exploration, but without
loosing any mutated individual.

2.3.1 The ES(1+1)

The first evolutionary strategy ever made was the ES(1 + 1), in which only one
offspring was generated from one single parent. Needless to say there was no crossover
operator in this early version of the ESs. Traditionally, Q = R, and although we can
think of other type of codings, apparently it is part of the definition of a ES to be real
coded. This simplifies the function 7 in the sense it is simply the identity function.
We will use the notation p = (x1, za, ..., ;) for the individual.

The first mutation operator used was simply to add a normal value to every z;.
Formally, this operator can be thought of as obtaining normal values s; ~ N (0, 1) for
1 < i <[, and then the mutation function is

Y(p,r) =p+(s1,82...,8) (2.9)

This operator offers the advantage of no extra parameters to adapt, but unfor-
tunately has proven insufficient to solve many problems. This si mainly due to the
inability of the mutation operator to adapt to a rescaling of the function. It is obvi-
ously not the same task to optimize the function f(7) = Hle x; as it is to optimize
f(@) = Hle 10%z;, although conceptually the problems are of the same difficulty.

For this reason, a more complex operator was developed.

The 1/5-rule The first attempt to create a self-adapting mutation was the so-called
1/5-rule. The idea behind this is to have a control value representing the intensity of
mutation to apply. The value of I = 1, and by simplicity, we use [instead of l5. The
individual is then defined as

p= (371,$2,...,xl;0)

where o is the intensity of mutation. Then, a new individual is constructed by adding
a normal value with the parameter o as standard deviation. The operator can be

24 CHAPTER 2. EVOLUTIONARY ALGORITHMS

viewed as, obtaining normal values s; ~ N(0,0) with 1 <7 <[, and the function is

w(pﬂ’) :p+ (81752a"'751)

This operator would not be very different from the one in (2.9) if the value of o
were fixed. This value, however, is not fixed, but it is updated every certain number
of generation (usually 20) as follows

0.820 ife<1/5
o=1¢ 1220 ife>1/5
o otherwise

where e is the number of successful offsprings in the last (20) generations. By the
number of successful offspring individuals we mean the number of individuals that
improved their parent.

As we can see, if the individual is trapped in a particularly difficult local optimum,
the number of successful offsprings will very likely be less than 1/5 thus decreasing
even more the value of o and consequently making more and more difficult to escape
this local optimum.

This is the main reason why the generalization of the £S(1+ 1) was developed.

2.3.2 ES(u,\) and ES(u+ A)

The basic scheme of the generic ES is, following the formal notation, defined by
ES(p+ X)) = FAQ kI, 7;9,®,0;0) or ES(u, \) = FA(Q, k, I, 7; 0, 0;0).
The difference between them is in the selection operator, p represents the number
of parents in the population, while A is the number of offsprings that the parents
will have. In ES(u + A), the parents are to be compared with their offspring during
selection to decide what is going to be the next generation, while in ES(u, \), the
best u offspring will completely replace the parents population as the next generation
(1 < N).

ES(p, A) can be seen as the non-elitist version of ES(u+\), which has full elitism®.

The most important idea behind the new operators of the more sophisticated ESs
is to add a number of new values to the individuals, and use those values to direct the
mutation and the search itself. In this sense, the individuals consist of an objective
portion (namely, the values of ;) and a control portion. This is effectively the same
as changing 0 = R!* x R" instead of the usual = R!. We will use the notation

p=(x1,2T2,...,2y;C1,Co,...,CL) (2.10)

and we will use ¥ = (21, x9, . . ., x;,) to refer to the objective part, and ¢ = (¢yca, . .., c,)
to refer to the control portion of the individual. For clarity, we will still use the num-
ber [, but we will set it to [= [; + [5.

We mean by full elitism the behavior of a selection operator in which the only way for an
individual to be part of the next generation is by being better (in fitness) and replacing one of the
last generation.

2.3. EVOLUTIONARY STRATEGIES 25

Observe that we can define the function 7(p) = &, as the control values are not
part of the optimization process.

In these methods a deterministic rule as the 1/5-rule , is no longer used. In-
stead, we let the control parameters to self-adapt, and add those parameters for each
objective value.

The control parameters are also subject to mutation and recombination, which will
allow evolution to select the best values of the parameters by itself. It is expected that
those individuals with good control values will end up having a good fitness value,
and in the long run, will give birth to better individuals.

2.3.3 More operators

The obvious introduction of crossover operators surges from the availability of many
individuals in the population. In ESs there are two types of crossover: sezual and
panmitic. In the sexual crossover, the offspring is generated by exactly two parents,
and in the panmitic crossover, we select one individual to play the role of one parent,
and for every objective and control value we choose another random (with replace-
ment) parent. In the formal notation, the sexual crossover has values r; = 2, while in
the panmitic version, r; = [+ 1.

The panmitic version of the crossover operators creates more diversity in the
population, but slows down convergence. It is normally used in very difficult problems.

Discrete crossover The first crossover operator used in ESs was the discrete
crossover. It consists of interchanging values from the parents to create the offspring.
This is very similar to the uniform crossover of the GAs. The formal function is as
follows

¢(p7p/7r> = (Q17(J27---7QI) (211)
o p; ifs; =1
where q = { p; if s = 0

where s; € {0,1} is an uniform random number for 1 <4 < [. The panmitic version
of this operator can be defined as

o0, p1,p2,---1,7) = (@1, 2, @)
F

' B p, ifs; =1 (2.12)
where g; = pis ifsi=0

This crossover is the easiest to compute from all, but it is also the one with
the worst diversity. Observe that no new value is generated as we only generate a
new individual with values already in the population. For this reason, even more
sophisticated operators were created.

26 CHAPTER 2. EVOLUTIONARY ALGORITHMS

Intermediate crossover The next used crossover operator is called intermediate
crossover, and was proposed, as its name implies, to make an offspring at the average
of two parents. The formal function of this operator requires no random numbers
(except for the selected parents), and is

p1+p) p2+ P P+ P
oo, r) = (T) (2.13)
and its panmitic version is
!+ L+ !+
S0, p1,pas ... i) = (P P2 Paz DL Py (2.14)

5 5 g

Observe that this crossover does create new values for the individual. By always
averaging two parents (in its sexual form), it tends to make the population converge
easily. By generalizing this idea of the average, new operators were proposed.

Generalized intermediate crossover There also exists a generalized version of
the intermediate crossover, to allow a weighted average of the two parents. This
is known as the generalized intermediate crossover. The formal version requires an
uniform random number 7 € [0, 1], and the function is

o(p,p',r) = (npr + (1 —n)py,mp2 + (L —)by .., npr + (1 — n)p)) (2.15)

and the panmitic version is

o' p1,p2,s - o) = (P + (L—=n)pra, py+ (1 —=n)p2s2, - -, oy +(1—1)py) (2.16)

Observe that this crossover has the possibility of generating new individuals along
the line segment joining the two parents (in the sexual version). This notion can be
even more general, as we are still confining the search for offsprings to a relatively
small space.

Generalized crossover The last crossover to discuss here is called generalized
crossover, and creates offsprings on the hyper-cuboid with corners on the parents.
That is, instead of using the same value as the weighted average of the parents, a
random value 7; € [0, 1] is created for each value 1 <i < k, and the weighted average
is created for each value. The formal function is

o(p,p',r) = (mp1 + (1 — m)pi, mepa + (1 = m2)py, - . ,mpr + (1 — m)py) (2.17)

and its panmitic version is

o', 1, P2y - o) = (P + (1= 00)p11, meph + (1 = m2)paa, -,y + (1 — n)piy)
(2.18)
An important remark is that, unlike the GA’s crossover operators, these operators
can be applied to either only the objective values (Z) or to the control values (), thus
increasing the matching possibilities to create a complete crossover operator.
In general, it is used the generalized intermediate, or the generalized crossover on
the objective values, and discrete on the control values, but other combinations are
equally possible.

2.3. EVOLUTIONARY STRATEGIES 27

Control mutation The natural way to extend the individuals is to add a control
parameter for each objective parameter to optimize. In this sense, the mutation will
be controlled by these parameters. In this case, [; =I5, and Q = R" x le, and thus

p=(Z;0) = (x1,22,...,24,;01,02,...,01) (2.19)

Observe the difference against (2.10), in which only one control value was used.
As stated before, the control values are not to be changed by a deterministic rule,
but by another mechanism.

The control mutator function can be defined with {; + 1 standard normal values
t';t; ~ N(0,1), and [; normal values s; ~ N(0, 0; exp(7"t'+7't;)), for every 1 < i < [y.
The function is then defined as

U(p,r) = (T+(s1, 82, ..., 81,); 01 exp(T"t'+7't1), o0 exp(T"t' +7't), . . ., oy, exp(T"t'+7't1,))
(2.20)
ﬁ and 7'”\/2#71. These values are parameters to compensate the high
dimensionality of some problems, and are functionally equivalent to the learning factor
used in artificial neural networks. These constants are usually referred to as 7 and 7/
instead of 7" and 7", however, due to the existence of the mapping 7 in the definition
of the EA, we opted to avoid the ambiguity by using an extra prime in the constants.
Observe that the values of the o’s are updated before the objective values, and
also, observe that only one random value is generated to be multiplied by 7", while

new random numbers are generated for every value to be multiplied by 7'.

where 7 =

Correlated mutation Another type of mutation proposed by Schwefel was the
correlated mutation, which main objective was to perform mutations in directions
not aligned with the coordinate axis. By performing a rotation in space, we allow the
mutations to align with more general search directions, and make the optimization
process faster.

Schwefel observed that, in general, the path of one individual and its offspring
is roughly perpendicular to the optimal step (i.e. the vector joining the present
individual to the optimal one). By this reason, a better direction can be used to
allow a faster convergence ratio. A natural way to do this was to use the correlation
matrix of the successful offsprings to choose a direction. It has been proved, however,
that the same effect can be achieved by using a series of canonical rotation angles.

A correlated mutation is achieved by rotating a non-correlated mutation by an
angle # over one hyper-plane. The total number of angles required to define every

possible rotation in an [;-dimensional space is (121) = l1(ly — 1)/2. We can, then,

define Q = R% x R x (=7, 7]41=1/2 which sets the individuals as

—

P = (f, 6, 9) = (1’1, ey L5071, - .,O'll,el, c. ,Oll(ll_l)/g) (2.21)

—

where ¢ = (7,0), and Iy =11 + 1, (l; — 1)/2.

28 CHAPTER 2. EVOLUTIONARY ALGORITHMS

This mutation operator is very similar to the control mutation, except that the
@’s are updated before the objective values. That is, getting l;(l; — 1)/2 standard
normal values o; ~ N(0,1), and [; more normal values v; ~ N(0, C(c, 0)), the formal
operator can be regarded as

(p,) = (T+ (y1,. -,); 01 exp(T"t + 7't1), ... o, exp(T"t + T't,); é) (2.22)

where 8 ~ 0.0873, 0 = 0 + Bon, oz, ..., 0q,0,-1)2), and C(o, 9) is the covariance
matrix. And one way to obtain this covariance directions is given in the next algorithm

Covariance directions

for(i=1 to l;)
Ax; = o;exp(7"t + 7't;)s:;
for(m = ll(ll — 1)/2 to 1)

{
(7,7) =index0f (m); //Get the indexes that 6,, affects.
Az; = Ax; cos ém — Az sin ém;
Az; = Az;sin O, + Ax; cos 0, :

}

for(i=1 to [;)

As we can see, the directions are given in inverse order. This is due to the canonical
transformation in Euler’s rotations in a k;-dimensional space, as the rotations end up
representing the product of the rotation matrices with rotation angle 6,,.

2.3.4 A simple evolutionary strategy for constrained optimiza-
tion

In this section we will give an example of a simple evolutionary strategy to solve
constrained optimization problems using rules to rank individuals.

The ES used is a ES(70 + 130), with control individuals as in Equation 2.10,
using intermediate generalized crossover—Equation(2.15)— on objective values and
discrete crossover —Equation (2.11)— on control values. The mutation used is the
standard for control individuals as in Equation (2.20).

The binary comparison function used to sort the individuals for selection is the
total violation rule explained in Section 1.3.2.2.

This ES is used for comparison with the Baldwinian algorithms explained in Chap-
ter 4.

2.4. MEMETIC ALGORITHMS 29

2.4 Memetic Algorithms

Another type of evolutionary algorithms are known as memetic algorithms (MA).
They can be thought of as hybrid algorithms as they incorporate a local search in
their search process [7].

2.4.1 Definition of a Meme

The concept of a meme was first introduced by Dawkins [6], where he proposes a
social equivalent to the gene as a basic unit for inheritance. According to Dawkins,
ideas evolve in culture much like organisms evolve in biological evolution. The basic
unit of cultural transmission is then called a meme.

Examples of memes are spoken sentences, written sentences, live music, recorded
music, theater, cinema and many more. They are the means by which we express our
ideas, while the ideas themselves can be regarded as the phenotype of the meme.

2.4.1.1 Memes and Lamarckism

Dawkins suggested that memes evolve by Lamarckian mechanisms. However, it is
possible that memes are a type of Darwinian evolution |[20]. When a human brain
receives a meme, the meme slowly matures into an idea. Eventually the host person
can decide to communicate his idea to another person.

This process seem to be less Lamarckian than originally thought, as the changed
meme itself (genotype) is not transmitted, but the idea (phenotype) instead. If the
meme were changed by an individual, it is not tractable to recognize the meme, but
perhaps the similarities that the idea (phenotype) has with the original meme; also,
if the meme itself changed, instead of just its representation, it would mean that a
reverse engineering process actually occurred in the host brain. Besides, the new host
receives the idea, but the meme that colonizes this new host is different from the
actual idea he received, as the idea was transformed by the previous person.

This might point to an internal evolution where the received meme interacts with
many other memes in the host brain giving birth to new memes with crossover and
mutation. The transmitted memes are also selected from a pool of memes inside the
host brain. These mechanisms tend to point to a Darwinian model of memes.

Memes, though, are generally regarded a Lamarckian, and the definition of a
memetic algorithm states this clearly. This discussion will be useful, nevertheless,
in Chapter 3, when we will try to create a new algorithm based on the idea of non-
Lamarckian local searches.

2.4.2 Definition of a memetic algorithm

From the point of view of the study of adaptive systems, it is the idea of memes as
agents that can transform an individual what is of major interest. We can consider
the addition of a learning phase to the evolutionary cycle as a form of meme—gene

30 CHAPTER 2. EVOLUTIONARY ALGORITHMS

interaction. This interaction can aid evolution considering the genes to be plastic and
allowing them to be guided by the learning mechanism.

The basic idea behind MAs is to have at least one local search mutation operator
among its operators (an in the evolutionary algorithm). This local search operator is
usually applied after the crossover and mutation operators have been applied.

The result of the local search replaces (Lamarckian) the individual if the found
solution is better than the initial one. In this sense, if we have a local search algorithm
a :) — € that takes initial points and returns the result of the local search, the
memetic learning can be viewed as

o [piFer(a) > for(y)
bmma0) = {) 8 12T < Forty

A more rigorous definition of a local search algorithm can be found in Section 1.2.
In general, the only thing that makes a MA different from other EAs is the inclusion
of this other algorithm. The local search is used to smooth the fitness landscape as
we are now searching with evolution not on the normal search space, but on the set
of local optimum solutions.

Within a memetic algorithm, we can consider the local search stage to occur as
an improvement within the evolutionary cycle, and we should consider if whether the
changes made to the individual should be kept or whether the improvement is only
to affect the fitness associated with it.

This idea is precisely the motivation of this thesis, and will be dedicated a Chapter
on its own. In short, the decision of whether the change is made to the individual
(a Lamarckian behavior) or to the fitness (a Darwinian behavior) is what makes the
difference between the memetic algorithms and the Baldwinian algorithms.

All this might make more sense if we think of meme evolution as a Darwinian
mechanism instead of a Lamarckian one. Turney |20| gives reasons why memes are
not necessarily Lamarckian, as well as reasons why memes could be Baldwinian. This
discussion might be relevant to decide whether the name memetic algorithm is a
misnomer or not, but is not of direct interest to this thesis.

2.5 Differential Evolution

One of the most recent and famous evolutionary algorithms in the literature is the
differential evolution (DE). Created by Price and Storn [15], the DE is a little different
from traditional evolutionary algorithms in the sense that it has only one operator
to perform all the searching process. It is, in contrast to genetic algorithms and
evolutionary strategies, not based on recombination and mutation to perform the
search, but on a more mathematical than biological operator that gives his name to
the algorithm.

The basic idea behind DE is to take the difference of two randomly chosen vectors
in the population and make a weighted sum of this difference with another randomly

2.5. DIFFERENTIAL EVOLUTION 31

chosen vector and compare it with the original one to place a new individual for the
next generation. If this new individual turns out to be better than the individual in
the current position, then the old individual is replaced by the new one.

Because no crossover is performed, DE is highly susceptible to parallelization. It
is also fast and efficient for global optimization, and it also has a small number of
parameters, which have, in great measure, won for itself most of its fame.

2.5.1 The DE 1 algorithm

The formal specification of the differential evolution can be regarded as DE 1(F) =
EA(Q, k1L, 7; ¥, ®,0;0), where Q = R!, the function 7 is the identity, and @ is also
the identity (i.e. no crossover), thus O = W, and the selection mechanism is as follows

o(P,Q,r) = (b1,bs....00)
where b; = argmax{fo7(p;),fo7(q)}

i.e. it compares only the individuals at corresponding positions in the current popu-
lation P and the newly generated one Q).
The individuals are vectors defined by

P = (ZL’l,ZL’g,...,ZL’l)

The only mutation operator is, as described above, what gives its name to the
differential evolution, and the classical one is defined next. Getting random integer
numbers i, So, 53 € {1,2,..., k} without replacement from r, the difference operator
can be defined as

V(p, 1) =ps; + F(ps, — Ps3) (2.23)

Observe that the only thing that matters about the parameter p is its position in
the current population P, as it is not used to decide the new vector generated by).

Once we have generated the population Py from the population P;, we can proceed
to selection, and then to the iterative step in the evolutionary algorithm.

The parameter F' controls the strength of the difference operator. It is usually
close to 1, but depend on the size k of the population. If the population size is small,
a F' =1 should be used, if the population size is large, a F' < 0.9 should work fine.

This is due to the special behavior of the difference operator. Mathematically,
if the population is near convergence, it is expected that the operator will create
small changes®, on the other hand, if we take one good solution with a bad one for
the difference, the rough direction of the difference will be towards the optimum (or
completely away from it if it has the opposite sign), this is why it manages to find
optimal solution while searching.

This method has the risk, however, of premature convergence, and as it does not
have a mechanism to avoid it, several runs might be necessary to achieve the actual
optimum.

6The difference among two vectors will be small if the individuals are close enough.

32 CHAPTER 2. EVOLUTIONARY ALGORITHMS

The selection pressure of this EA is also interesting to analyze. As one individual
is only compared to a newly generated one in the selection process, it is fairly easy
that the worst individual will survive. In fact, when in the middle of the process, the
worst individual so far might very well survive for several generations if is has a bit of
luck. This might suggest that the selection pressure of the selection operator is weak.

On the other hand, however, once a cluster of the population starts to converge,
the probability of having new individuals generated near that cluster increases very
quickly, thus creating a cycle in which more and more individuals are dragged to
this zone. In consequence, the selection pressure for individuals far from this cluster
increases almost exponentially.

In conclusion, differential evolution seems to have, implicitly, a self-adaptive se-
lection pressure, starting weak and maintaining so for several generations, and then
abruptly starting to grow to the point in which no new solutions out of the (sub)optimal
cluster are tolerated by the selection operator.

2.5.2 The DE 2 algorithm

The second variation known as DE 2(\, F) is somehow based on particle swarm
optimization as it uses the current best found solution to direct the search. Formally,
this difference operator can be regarded as

1/1(]9, T) = Ps +)‘(pb - ps1) + F(psz - p33> (224)

where p, = arg 1II<12a<>§g{f oT(pi)}

and the variable A is a control value used to control the greediness towards the best
solution so far. It should be small normally, unless the global optimum is relatively
easy to find.

2.5.3 More operators

As is usually the case with evolutionary algorithms, there is a number of other oper-
ators used to improve the performance of the DE algorithm.

Here we will only discuss the pseudo-crossover performed to increase the diversity
in the population. When this operator is working, it is used over one of the difference
operators explained in Equation (2.23) and in (2.24). This operator requires another
variable, C'R, representing the crossover rate. It is usually set to a high value (near
1), except for easy optimization problems.

Suppose the function ¢ is defined as either (2.23) or (2.24), and obtain two random
integers d € {1,2,...,l} and L such that P(L > v) = (CR)*™', v > 0. The new
mutation (pseudo-crossover) operator is defined as

7\p(p7 T) = ('Ul,'UQ, e ,’Ul)
/ o _ _
where v; = {1/1(]),7”)9 ifd=d,d+1,...,d+ L —1(mod)

Dj otherwise

2.5. DIFFERENTIAL EVOLUTION 33

where ¢'(p,r); is the j-th value of the vector ¢/'(p,r).

Criginal Mew vector Crossed

1] | 1 —
2 | 2 2
3] | 3 3
4| | 4 4
5 5 —
6| | 6

d=5

L=3

Figure 2.5: The schematic view of the pseudo-crossover operator for differential evo-
lution. We can observe that the crossed vector has 3 values of the original vector,
and 3 from the new one.

The sketch of this operator can be observed in Figure 2.5. The individual depicted
there has length [= 6, the values used for the pseudo-crossover are d = 5 and L = 3,
and then the new individual shares three values with the original one, and three with
the new one, beginning at d and circling around in a modular fashion. This operator
resembles the two-point crossover of GAs.

2.5.4 Differential evolution for constrained optimization

In this section we will give an example of a simple evolutionary strategy to solve
constrained optimization problems using rules to rank individuals. As in Section
2.3.4, we will adapt the DE 1 to solve a benchmark of constrained optimization
problems.

The DE picked uses the pseudo-crossover operator mentioned above, and it is
then stated as a DE 1(0.9,0.9), with normal parameters. The binary comparison
function used to accept individuals in selection is the total violation rule explained in
Section 1.3.2.2.

This DE is used for comparison with the Baldwinian algorithms in Chapter 4.

34

CHAPTER 2. EVOLUTIONARY ALGORITHMS

Chapter 3

The Baldwin Effect

Many researcher have drawn analogies between learning and evolution as two intel-
ligent processes, one taking place during the lifetime of an organism, and the other
taking place over the evolutionary history of life on Earth. We tend to regard the
evolutionary process as adaptive and intelligent in the sense that individuals are
(sub)optimal solutions to the problem of staying alive. In this sense, there is an opti-
mization process undergoing evolution. The question remains, though, as if learning
can have an impact at all in the evolutionary mechanisms in nature, and if so, to
what extent.

Since the moment in 1987 that Hinton and Nowlan [10] published their classic pa-
per, a large number of researcher have worked in experiments concerning the Baldwin
Effect in evolutionary computation|[14, 2]. Many of them have also observed the syn-
ergic effect that learning' can have in the evolutionary mechanisms when there is an
evolving population of individuals. This synergy is what is usually called the Baldwin
Effect. In general, there seems to exist a misunderstanding of the real aspects behind
this effect, and, apparently, the researchers have left aside another equally important
aspect of it.

At a first approach, we can think of the whole Baldwin Effect as a two-sided coin.
In one face, one has the observed behavior that lifetime learning can, under certain
circumstances, accelerate the evolutionary process in a population. In the other one,
we must take into account that it is costly for an individual to learn.

In this line, there is indeed a synergy effect that can occur during evolution with
individuals that are able to learn, but there is also a cost associated with that learning
ability. The Baldwin Effect is concerned with both aspects.

This chapter is mainly concerned with the understanding of the Baldwin Effect as
a biological mechanism that may or may not be present in nature, but that can be of
use for the evolutionary computation community as a new search strategy. It is also
the aim to demystify the relation between Lamarckism and Baldwinism in a system,
and the possible uses that both may have in optimization problems.

I Actually, phenotypic plasticity, but we will talk about it later in this chapter.

35

36 CHAPTER 3. THE BALDWIN EFFECT

3.1 Basic Concepts

In order to fully understand the Baldwin Effect, a number of concepts must be de-
veloped in advance. The Baldwin Effect is a misnomer because it was discovered
independently by Baldwin, Morgan and Osborn (1896), and also because it is not a
single effect, but rather a cluster of effects or observations.

It is relatively well know the difference between the genotype and the phenotype.
The genotype stands for the internal heritable material of an individual, it codes the
final utter aspects of the individual in a persistent and unchangeable? way. It is typ-
ically represented by the organism’s DNA. It obtains its name from the genes, which
are considered the atoms of inheritance. On the other hand, the phenotype is the
physical realization of an organism’s genotype. It refers to every represented aspect
that was implicit in the genetic code, and was developed as part of the individual.
It includes from the body composition to the behavioral traits, and the abilities to
adapt any of these based on an inherited characteristic. They can be viewed as the
observable aspects of the organism’s genotype. It obtains its name from the Greek
word phainein, which means to show.

The key term in the Baldwin Effect is known as phenotypic plasticity, which can be
regarded as the ability of an organism to adapt to its environment due to the features
of the phenotype. There are many examples of phenotypic plasticity in nature, most
of which have a direct relation with the organism’s body in its environment; for
instance the ability of the skin to tan when exposed to the Sun, or to form callus
when constantly abraded, or many conditioned behaviors acquired by association®.

Another concept is the notion of lifetime learning, which is the set of learning that
happens during the lifetime of an individual. It is only concerned with the learning
made by a single individual and not with the macroscopic population level of learning
in which the evolution may fall into. The impact of lifetime learning on evolution is
only one example of the Baldwin Effect; in its most general sense, it deals with the
impact of phenotypic plasticity as a whole, on the evolution of a species.

In contrast to the phenotypic plasticity, we call phenotypic rigidity the inability
of an individual to adapt to a new problem. This inability, contrary to what the
intuition dictates us, may be an advantage over more plastic individuals. We will
explore this in more detail.

3.1.1 Benefits of phenotypic rigidity

Phenotypic rigidity can be advantageous to an organism in many situations. A hard-
coded behavior is potentially less hazardous to an individual than a plastic one. For
example, learning requires experimentation, and in the case of a potentially fatal

2Not quite unchangeable since the individual can mutate, but in general terms it is not susceptible
to changes.
3Like the famous Ivan Pavlov’s experiments on conditioned response on dogs.

3.1. BASIC CONCEPTS 37

behaviors?, instinct will certainly have an advantage over learning, because an indi-

vidual will be born with a natural avoidance behavior instead of with trial-and-error
learning ability. Another example could be the time required to form a callus which
could be used in some other activities if the organism were born with a thick skin®.

In general, an individual with an instinctive behavior, will require much less energy
and will save time. The behaviors are ready for him to use at birth-time. In con-
trast, plasticity offers the possibility to adapt, but the cost of developing the required
behavior, has potentially fatal consequences.

3.1.2 Benefits of phenotypic plasticity

In contrast, phenotypic plasticity enables an organism to explore new possibilities of
potentially better behaviors. This may be a great advantage in changing environments
or in environments that abruptly changed and are to remain so. The specialization
is an observed characteristic of phenotypic rigidity, but can lead to a disaster when
taken to the limit®. If the rigidity will not allow an individual to adapt to an already
changed environment, then, clearly the plasticity will bestow the individual that has
it with an evolutionary advantage over those who does not have it.

In general terms, the phenotypic plasticity smooths the fitness landscape enabling
the organism to explore neighboring areas of the phenotype space, and thus allowing
the individual to have an effective fitness of a local maximum in this space. If a certain
continuity in the mapping from genotype to phenotype is assumed, a (potentially)
worst genotype would have a better fitness through plasticity than a better genotype.

Behaviors tend to be more plastic than physical structures. The process of learning
a behavior represents appropriate changes in the nervous system, and it is in general
true that the nervous system of an organism is more flexible than many other physical
structures.

3.1.3 Lamarckism and Baldwin Effect

The Lamarckian hypothesis states that the traits acquired during an organism lifetime
can be transmitted via inheritance to the organism’s offsprings. This hypothesis is
generally interpreted as referring to acquired physical traits”, but something learned
during lifetime can also be considered an acquired trait.

To put it in simple terms, Lamarck says that the son of an athlete is more likely
to be a good athlete, and the son of a scientist tends to be more intelligent. Thus, a
Lamarckian view would hold that learned knowledge can (and will) guide evolution by
directly passing the knowledge to the next generation. However, due to overwhelming
evidence against it, the Lamarckian hypothesis has been rejected by virtually all

4Like learning not to eat a poisonous fruit.

5For example the elephant.

6As is the case with the Koala, whose diet is confined to a single dish: the eucalyptus’ leaves
"Such as physical defects due to environmental toxins

38 CHAPTER 3. THE BALDWIN EFFECT

biologists. Lamarckism requires an inverse mapping from phenotype and environment
to genotype, and this mapping is biologically implausible |14, 20].

It would seem that the rejection of the Lamarckian hypothesis leaves out the
question of if learning has any impact on evolution, but the answer seems to be that
learning can indeed have a significant effect, though in a less direct way than Lamarck
suggested. The Baldwin Effect is purely Darwinian (in contrast to Lamarckism) and
it does not involve any reverse mapping.

Suppose the typical example of Lamarckism, with a short-necked animal that
learns to stretch its neck to reach leaves on a tall tree. Lamarck believed that the
animal’s offsprings would inherit slightly longer necks than they would otherwise have
had. It requires a mechanism for modifying the parent’s genes based on the habit of
stretching its neck.

The Baldwin Effect has observable consequences that are similar to Lamarckian
evolution. Baldwin would have pointed that if stretching their necks helps towards
their survival, then the organisms that are more able to learn to stretch their necks
will have the most offspring, thus effectively increasing the frequency of the genes
responsible for learning. In this sense, if the environment remains relatively fixed,
so that the best thing to learn remain constant, this can lead, via selection, to a
population of animals very good at stretching their necks.

There can be advantages, however, in being born with a longer neck. And it is
believed that if given enough time, the evolution process will be able to evolve longer
necks in the population, which will lead in its turn, to a genetical encoding of longer
necks.

One may view this process as if the Baldwin Effect were Lamarckian in its results,
but not Lamarckian in its mechanism. Given a desirable trait, the Baldwin Effect
only provides the required time (via acquiring the trait due to phenotypic plasticity)
for the trait to appear in the population’s genes (via the evolutionary process).

3.1.4 The Darwinian mechanism

The evolutionary biologist G. G. Simpson, studied the conjectures made by Baldwin
[19] and pointed out that it is not clear how the necessary correlation between phe-
notypic plasticity and genetic variation can take place. We mean by correlation the
requirement that genetic variations happen to occur and produce the same adapta-
tion that was previously learned. This kind of correlation would be easy understood
if genetic variations were directed towards some particular outcome rather than at
random. But randomness is central in modern evolution theory, especially concerning
genetic variation, and a specific correlation would mean a Lamarckian mechanism for
evolution.

It seems that Baldwin was assuming that, given the laws of probability, correlation
between phenotypic adaptations and random genetic variation will happen, especially
if the phenotypic adaptations keep the lineage alive long enough for these variation
to occur. It does not point, however, to a specific correlation among them. Simpson

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 39

agreed that this was possible in principle, but remains unknown if it is an important
force in evolution.

While it appears that we are at a dead end, it may not be the case, as the answer
to that question may be found in the work of Waddington [22], who proposed a mech-
anism called genetic assimilation. This mechanism is concerned with the inheritance
of acquired traits, but tries to explain the underlying process from a slightly differ-
ent point of view. It states that some sudden and potentially deadly changes in an
environment would require phenotypic adaptation that are not necessary in normal
environments. If organisms are subject to such changes, they can sometimes adapt
during its lifetime because of their inherent plasticity, thereby acquiring new physical
or behavioral traits. If the genes of these traits are already in the population, but
are dormant®, they can fairly quickly be expressed in the changed environments, and
as in the Baldwin Effect case, especially if the acquired traits prevent the individuals
from dying.

Waddington even demonstrated that it has happened in several experiments on
fruit flies. It suffers, however, of the same skeptical point of view offered by Simpson:
there is no final proof that this effect is indeed an important force in evolution.
However, although the genetic assimilation is better known in the evolutionary biology
community than the Baldwin Effect is, the later has been recently picked up by
evolutionary computing researchers mainly because of the experiment made by Hinton
and Nowlan, and because it has proven useful in several research areas.

3.2 Baldwin Effect and Computer Science

There is a common feeling to think that learning is always good, at least that is
what our nature tends to tell us. As we have observed before, this may not always
be the case, and this might be particularly true when confronted to the world of
computers, when CPU time and memory requirements are crucial in the analysis of
a new algorithm. Evolution is constantly selecting the best balance between learning
and instinct, and this balance is usually not fixed during all the optimization process.
It varies dramatically when species are confronted with an abrupt change in their
environment and also when the environment has achieved an epistatic state®.

There is a number of interesting experiments applying the Baldwin Effect to evo-
lutionary computing on various settings, mainly dedicated to observe the interactions
between learning and instinct. Peter Turney [20| presented a list of observations,
based on the fundamental insight that there are trade-offs between learning and in-
stinct!?, and are reproduced in Table 3.1.

8Here we say that a gene is dormant if it is not usually expressed in the population’s phenotype,
in contrast to expressed if the trait it codes actually appears in the population.

9Roughly speaking, an state in which there are no more sudden changes.

10We have been using learning as a form of phenotypic plasticity and instinct as phenotypic rigidity,
the generalization to other kinds of phenotypic behaviors is fairly straightforward and is left to the
reader.

40 CHAPTER 3. THE BALDWIN EFFECT
dimension of trade-off phenotypic rigidity (in- phenotypic plasticity
stinct) (learning)
1 time scale of environmen- relatively static relatively dynamic
tal change
2 variance, reliability low variance, high relia- high variance, low relia-
bility bility
3 energy, CPU consump- low energy, low CPU high energy, high CPU
tion
4 length of learning period short learning period long learning period
5 global versus local search more global search more local search
6 adaptability brittle adaptive
7 fitness landscape rugged smooth
8 reinforcement learn- reinforcement learning supervised learning
ing versus supervised
learning
9 bias direction string bias; direction of weak bias; direction of
bias crucial to success bias not as important
10 global goals versus local emphasis on global goals emphasis on local goals

goals

Table 3.1: Reproduction of tradeoffs in evolution between phenotypic rigidity and
phenotypic plasticity [20]

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 41

According to Turney |20], the course of the balance is not the main concern of
the Baldwin Effect, but the fact that there are trade-offs. In this sense, we try to
examine the trade-offs offered by Turney in order to clarify the possible applications
of the Baldwin Effect.

Time scale of environmental change. Evolution and learning operate at different time
scales. In a dynamic environment, evolution cannot adapt fast enough,
so learning is better. In a static environment, evolution can adapt, so
learning is a waste of time.

Variance and reliability. Learning is heavily based on experience and requires that the
right kind of experience is present in order to acquire the desired learned
behavior. This makes learning more stochastic than instinct. Learning in-
crements the variation in the population (different stimuli lead to different
behaviors) which can aid evolution.

Energy and CPU consumption. Any individual must expend energy in order to learn.
The local search associated with learning consumes evaluation of the fit-
ness function (CPU time), and less resources are left for evolution.

Length of learning period Once an individual is born, it must dedicate some time
to learn a trait, if it is instinctive, it is available at birth-time. Shorter
learning times are usually preferred by evolution.

Global versus local search. Evolution performs a global search, while individuals per-
form a local search (in phenotypic space). This trade-off varies greatly
depending on the stage of the evolution and the current population.

Adaptability. Learning is more able to adapt to a variation in the environment while
instinct tends to be brittle.

Fitness landscape. Learning, as discussed before, smooths the fitness landscape ef-
fectively removing rugged areas in the phenotypic search space. It is only
advantageous if the landscape was not already smooth in which case it is
less useful.

Reinforcement versus supervised learning. An evolutionary algorithm is a type of re-
inforcement learning for high fitness areas of the search space. In terms
of feedback from the environment, it is situated somewhere between un-
supervised and supervised learning. Supervised learning obtains more
feedback from the environment and is more alike to the local search per-
formed by learning as phenotypic plasticity.

Bias direction. The bias is a term widely used in machine learning, but has recently
attracted the attention of the constrained optimization community. The
bias direction has two components, the direction and the strength. If the

42 CHAPTER 3. THE BALDWIN EFFECT

direction is wrong to a certain problem, the strength will either allow or
restrict the exploration process of the algorithm, and learning is better
suited. If the direction is correct, an strong bias (instinct) will be better
suited for the problem.

Global versus local goals. Evolution and learning have different goals. Evolution
seeks to maximize fitness while individuals have more immediate goals.
Learning is used by individuals to help them achieve their immediate goals
in a better way. It is usually said in Game Theory that every individual
must pursue its own (simple) goals for the global (more complex) goals to
be fulfilled, and in this sense, yet again we get a synergy from learning to
evolution.

As explained before, the trade-offs shown here are not exhaustive and, as Turney
himself says, there may be some overlap in the terms. The list will tend to grow as
new aspects of the Baldwin Effect are known, and new applications are found for it.

3.2.1 Hinton and Nowlan’s experiment

Some recent work in Genetic Algorithms has been directed towards the analysis of
the benefits of phenotypic plasticity, phenotypic rigidity and the plasticity of learning.
Perhaps the first attempt made in this direction was performed by Hinton and Nowlan
[10] as stated at the beginning of this chapter.

Their observations seem to imply that learning can facilitate evolution but these
learned behaviors will eventually be replaced by instinctive behaviors if the environ-
ment remains constant during a relatively long time. An extremely simple neural-
network!!' learning algorithm was created to model learning in a population. Every
individual in the population codifies a candidate for solution to the neural network,
thus a genetic algorithm played the role of evolution on the population of evolving
individuals with learning capabilities.

In this simplified model, every individual consists of 20 potential connections
among neurons. A connection can have one of three values: present, absent, and
learnable; which are coded as 1, 0 and ? respectively, where each question mark
can be set during learning to either 0 or 1. Then, the representation is a string
of 20 values, so an individual is represented by ajas...as where a; € {0,1,7} for
each i € {1,2,...,20}. There is only one correct setting of the neural network’s
connections (which, by simplicity is all present'?), and no other setting confers any
fitness to the individual. We will say that a connection is fized if it is either 0 or 1,
and that it is not fized if it has a question mark.

The problem to be solved is to find this single correct set of connections. Is will
not be possible for those networks that have incorrect fixed connections to find the

'Which is actually transparent to the process, so no prior knowledge about artificial neural
networks is required to understand it.
12This means all the connections present, or, as an individual, a chromosome consisting of 20 ones.

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 43

solution, but those networks that have correct values in all fixed places, have the
opportunity to learn the correct setting. In this experiment, the simplest learning
method was used: random guessing. On each trial, an individual guesses 0 or 1 at
random (uniform) on each question mark it possesses.

This problem is, by design, a needle in a haystack search problem, since there is
only one correct setting out of the 220 possibilities. The fitness landscape for this
problem is schematically represented in Figure 3.1—the single spike represents the
single correct connection setting. Introducing the ability to learn, as expected by the

Fithess

0.0 genotype

Figure 3.1: Schematic view of the fitness landscape for Hinton and Nowlan’s search
problem. All genotypes have fitness 0 except for the correct one with fitness 1.

Baldwin Effect, the landscape it smoother, and now we observe in Figure 3.2 a zone
of increased fitness, meaning that there are individuals that can learn the correct
setting and have a reward of fitness (inversely proportional to the number of trials).
This zone includes individuals with only correct fixed positions and question marks.
Once the individual is inside this zone, evolution makes it possible to climb to the
peak.

The initial population consisted of 1000 individuals, each consisting of 20 genes,
generated at random, with each gene having probability 0.25 of being 0, probability
0.25 of being 1, and probability 0.5 of question mark. At each generation, each
individual was given 1000 learning trials. On each learning trial, the individual tried
a random combination of settings for the question marks.

The fitness was calculated by the following formula,

19(1000 — 7)
1000
where ¢ stands for the number of trial in which the individual guessed the correct
setting of connections. The fitness is an inverse function of the number of trials needed

Fitness = 1+ (3.1)

44 CHAPTER 3. THE BALDWIN EFFECT

zone of increased
fitness

Fithess

0.0 genotype

Figure 3.2: Schematic fitness landscape after learning.
The search problem is smoother with a zone of increased fitness containing individual
able to learn the correct connection settings.

by an individual to find the correct solution. With this function, an individual with
all its positions fixed and equal to 1, would get the maximum fitness value of 20, while
an individual that was never able to correctly guess the solution or that has at least
one wrong fixed position would get the minimum fitness value of 1.

In this experiment we can observe the trade-off of the Baldwin Effect as many
question marks mean that, on average, many guesses are needed to arrive to the
solution, but the more fixed positions, the more likely it is that at least one value is
wrong thus effectively killing the individual. This trade-off depicts the one existing
between efficiency and plasticity in a very straightforward way.

In expectation, an individual has half of its positions fixed in the initial population.
The expected number of individuals in the initial population that have no wrong fixed
position is about one (the 2'° possible values for half fixed positions are about 1000).
In the ending, it is expected that at least one individual will be able to learn the
correct settings, but this is no surprise because 1000 * 1000 = 10° ~ 2% so this
experiment could be considered invalid because of this analysis, however, it is an
example of a simple experiment and the ability of the Baldwin Effect to smooth the
fitness landscape, as it was stated by Mitchell [14]| that the mean fitness was not
observed to improve over generations in the case of pure evolution.

Hinton and Nowlan’s genetic algorithm used to solve this problem was very similar
to the simple genetic algorithm discussed in Section 2.2. The selection mechanism
was by roulette wheel, with replacement. They used one-point crossover and simple
mutation; also, the chromosome of the individual was obviously not affected by learn-
ing that took place during its lifetime. Originally, they let the algorithm run for 50
generations. They observed that 0 genes were rapidly eliminated from the population

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 45

1.0+
. A
L1}
E 5
©
l-la —
> e eeemmm——————
0 1 JPTPE
C ‘f
@ .
E 0.5¢= :-
o= ’
m — II
2 :
b [B L P
1 — [—
& ” \
T \
\
1 \
0.0 | _|———-|————I-—__|_
0 10 20 30 40 50

Generations

Figure 3.3: Relative frequencies of 1’s (dotted), 0’s (dashed) and undecided (solid)
alleles in the population plotted over 50 generations.

46 CHAPTER 3. THE BALDWIN EFFECT

and that the frequency of 1’s increased accordingly. In Figure 3.3 we show the relative
frequencies of correct (ones), incorrect (zeros) and undecided (question marks) alleles
in the population plotted over 50 generations.

3.2.1.1 Harvey’s experiment

The main concern resulting from the plot is why did the frequency of undecided alleles
stays so high. With the frequency of question marks stable at 45%, and the frequency
of 1’s stable at 55%), an average individual with 20 genes would have eleven 1’s and
nine ?’s. A more detailed study of this experiment was performed by Harvey [9],
and Belew [3], and according to them, the expected fitness of such an individual is
roughly 11.6. Also, they performed an statistical analysis of the expected fitness of
the algorithm if only evolution was allowed to search (i.e. not learning), and resulted
at 1.009.

This points clearly to the first aspect of the Baldwin Effect, in which learning aided
evolution to improve the expected fitness from 1.009 to 11.6, but this experiment, as it
was made, did not say much about the evolution’s preference of instinct over learning
on the long term. To answer this question, Harvey |9] reproduced and augmented the
original experiment in order to address the so-called Puzzle of the persistent question
marks. In his work, he ran the model for 500 generations, and he observed that the
frequency of question marks indeed decreased in time towards 0%. However, it did
not matter how many generation he ran the model, that percentage never reached
zZero.

The reason seems to be the genetic drift, due to random mutation in the pop-
ulation. Mutation exerts a constant pressure that maintains a certain frequency of
undecided alleles in the population, and eventually, the population will achieve an
equilibrium state where the pressure of genetic drift balances with the selection pres-
sure that favors instinct.

3.2.2 Turney’s experiments

We will analyze now a model that is a bit closer to a more complete Baldwinian
scenario. In his paper, Turney [21] used the Baldwin Effect as a method to shift
the bias in a machine learning problem. His experiment is also simple as he argues
that a more complex experiment would only obscure the role of Baldwinism in the
optimization process. His work is of interest to us since he introduces a new type of
coding for learning in the genotype. In order to understand his work, we will have to
develop a few concepts.

3.2.2.1 Definition and types of bias

Excluding the input data, every factor that influences the selection of one particular
concept (in machine learning) constitute the bias of a learning algorithm. Bias in-
cludes such factors as the language in which the learner expresses its concepts, the

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 47

algorithm used to search the space, and the criterion for deciding whether a concept
is compatible with the training data.

As we saw at the beginning of Section 3.2, the bias consists of two factors: direction
and strength. A correct bias is one that allows the concept learner to select the target
concept. The correctness of the direction is thus measured by the performance of the
learned concept on a test data. A strong bias is one that focuses the concept learner
on a relatively small number of concepts.

3.2.2.2 Shift of bias

A growing body of research in machine learning is concerned with algorithms that
shift bias as they acquire more experience. Shift of bias performs two levels of search,
one through concept space and one through bias space.

We have seen that a strong bias is somewhat analogous to an instinctive behavior,
while a weak bias is to a learned behavior. The cost of having a strong bias is that
the bias can be incorrect, and the disadvantage of having a weak bias is a poor
performance or efficiency on the long term. Unless we have high confidence that the
bias is correct, it is in general risky to have a strong bias. All of this is in accordance
to the Baldwin Effect, so it seems reasonable to incorporate it as a bias shifter.

3.2.2.3 The Baldwinian model

Turney generalized the experiment of Hinton and Nowlan and adapted it to the
machine learning problem as a shift of bias problem. It may not be clear that a shift
of bias was used in Hinton and Nowlan’s experiment, but we might see the amount
of question marks as the strength of the bias. Having many undecided alleles would
result in a weak bias, while having just a few would result in a stronger bias. The plot
of question marks’ frequencies in the population can be regarded as the population’s
trajectory of search in bias space. For this new experiment, this distinction is made
explicitly, and might be clarified better with the experiment itself.

Let us consider the example of concept learning. Suppose the examples to classify
are all five-dimensional Boolean vectors ¥ € {0,1}°, and that they may belong to one
of two classes {0, 1}. By simplicity, let us call this space T' = {0, 1}°. In this sense, the
search space of concepts is the space of functions F' = {f|f : T — {0,1}}, mapping
vectors to classes. To simplify the notation, we see that it is possible to identify each
concept (i.e. each function in F) with its truth table. The truth table lists all of the
2% = 32 possible vectors in lexicographical order, and the value of the function for
each vector. As the vectors are in lexicographical order'®, we can implicitly assume
the vectors in the truth table, and compactly write the associations of the function
as a 32-bit string, with the ¢-th position in the string corresponding to the class of
the 7-th 5 -bit vector.

13 Actually, any order may work.

48 CHAPTER 3. THE BALDWIN EFFECT

For example, the function that maps every vector ¥ € T to 1, would be coded
as the bit string consisting of 32 ones, and conversely; the binary string given by
11101111111101111111110111111111 represents the function that maps the vectors
00011, 01100 and 10110 ' to the class 0, and the rest to the class 1. In this way, we
have a total of 232 = 4294967296 possible functions, and thus, the amount of possible
solutions to the classifier problem are also 232.

Suppose that one particular target concept is what we want to find, as was the case
with Hinton and Nowlan’s neural network. To facilitate comparison with Harvey |9],
we will suppose that the target function is the function that classifies every vector to
the class 1 (i.e., f(¥) =1 for each Z € T'). We assume, also, the standard supervised
learning paradigm, with a training phase followed by a testing phase.

During training, the learner is taught the class of each of the 32 possible input
vectors. To make the problem interesting, we will assume there is a certain probability
p that the learner is taught the wrong class. During test, the learner must guess the
class of the supplied input vector. Again, there is a probability that the test is
mistaken about the correct class for an input vector. That is, the probability p is the
level of noise in the classifier.

We will use the next notation,

target = (t1,ta,...,132) t
train = (Oél, Ao, ... ,0632) = a
test = (01, B2, ...,03) = [

where t;, a;, 5; € {0,1}. We generate a and 5 from ¢ by randomly flipping bits in ¢
with probability p. The probability that the class of a training example or a testing
example matches the target is 1 — p, but the probability that the class of the training
example matches the class of the testing example is 1 — 2p + 2p?. Namely,

PBi=t) = 1-p
Plo; = ;) = 1-2p+2p*

and we observe that either a; = 3; = t;, with probability (1—p)?, or a; = 3; # t;, with
probability p?, which yields (1 —p)? +p? = 1 —2p + 2p?. This model is very common

in statistics, and can be thought as the observed class (@ or () being composed of a
signal (£) plus some random noise (p).

3.2.2.4 The algorithm

We will use a genetic algorithm to solve this example problem. FEach genotype consists
of 64 genes, 32 of which determine the bias direction, and 32 that determine the bias

14je. the 3rd, 12th and 22nd in the string.

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 49

strength. The bias direction genes are either 0 or 1, and represent the class to be
proposed for that entry. The bias strength genes are real values in the interval [0, 1],
each one coded with 8 bits, as illustrated next

genotype G = (D;5)
bias direction D = (dy,da, ..., dss)

bias strength S = (s1,59,...,S32)

where d; € {0,1}, and 0 < s; < 1, and the use of the strength is as follows: if the i-th

bias strength gene has a value s;, then there is a probability s; that the individual

will guess d;, similarly, there is a probability 1 — s; that the individual will guess «.
The guess vector is expressed as

guess § = (g1,92,---,932)
P(gi = di|ld; # ;) = s;
Plgi=woildi £ ;) = 1—3;
Plgi=d; =a;|ld; = ;) = 1

which can be interpreted as, if the bias is weak (s; close to zero), then the individual
will guess based on what it observed in the training data (i.e. it guesses «;); if the bias
is strong (s; close to one), the individual ignores the training and relies on instinct
(i.e. it guesses d;).

Turney [21]| points out that his simplified model does not describe the learning
mechanism. He also states that the level of abstraction used in this experiment
is one in which the mechanism is not important, and in a more complex problem,
the genotype could encode for example the architecture of a neural network, and a
learning algorithm as back propagation could be used as a learn method.

In this experiment we could see a number of features of the Baldwin Effect, for
instance, if an individual relies entirely on instinct (for each i € {1,2,...,32},s; = 1),
and its instinct is correct, (for each i € {1,2,...,32},d; = t;), then the probability
that it will correctly classify all the 32 input vectors in the testing phase is (1 — p)3?;
while if an individual relies entirely on learning (for each ¢ € {1,2,...,32},s; = 0),
then the probability that it will correctly classify all testing vectors is (1 —2p+2p?)32.
Observe that with increasing noise level (p), the correct instinct has an advantage over
pure learning. This is due to a small catch in the phrasing, as we require the instinct
to be correct in advance.

For convenience, the fitness of the individuals will range from 0 to 1. As with
Hinton and Nowlan, we will require the individuals to correctly guess the class of all
32 testing examples. We assign a fitness score of 0 when the guess does not perfectly
match the testing data, and a score of 1 when the match is perfect!®.

15In contrast to Turney, who assign (1 — p)~32 by an unknown reason.

50 CHAPTER 3. THE BALDWIN EFFECT

In order to better understand what is going on in a run of the algorithm, we will
measure the bias correctness and the bias strength as follows

3
1
bias correctness = — 21 [d; = t]
32
L3
bi t th = — 2,-1S;
ias streng % 18

where the bias correctness is represented by the frequency with which the bias direc-
tion matches the target, and bias strength is the average of the strengths s;.

We can view the genotype in Hinton and Nowlan as a special case of Turney’s
genotype:

0 <« diZO,Sizl
1 & dizl,Sizl
7 & s51=0,d; € {0,1}

In Hinton and Nowlan’s genotype, the only way to increase bias strength is to
change one or more question marks to a fixed number (either 0 or 1), and conversely
to decrease it. In Turney’s genotype, we can alter the bias strength without changing
bias direction.

The Baldwin Effect predicts that, initially, when the bias correctness is low, selec-
tion pressure will favor weak bias. Later, when bias correctness is improving, selection
pressure will favor a stronger bias.

3.2.2.5 Experiments

The algorithm was set to a genetic algorithm, with population of 1000, with a
crossover probability of 0.6 and a mutation rate of 0.001. The algorithm was left
to run for 10000 generations. Various parameters of p were used in the experiments,
and in general, the behavior can be observed in Figure 3.4.

In each experiment, Turney plotted the average bias correctness in the popula-
tion, bias strength, and fitness as a function of the generation number. He used a
logarithmic scale in the generations to allow an improved visibility of the features of
the Baldwin Effect, since the first aspect of the effect (selection for learning) tends to
take place quite rapidly in the early generations, while the second aspect (selection
for instinct) tends to take place much more slowly.

We can see this behavior in Figure 3.3, were, on the long run, we should expect
the question marks to approach zero. The logarithmic scale was used to be able to
see both behaviors in the same figure.

Turney performed a number of experiments modifying the bias strength in an
external way, and allowing the evolution to adapt with those strength paths by itself
(i.e. no Baldwin Effect was allowed). He concluded that, compared against a constant
and a linear increment bias strength, the Baldwin Effect performed better. This points

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE

51

0.1% Noise
| _5 T T T
" L .
0 L]
[<}]
= L A
© 1 : .
o Bias Caorrectness
= 10
Q - \]
= = Fitness E
g -
B 05— e ot - T
g L. el T S e W= Lo |
g
2 L H
T N \ Bias Strength T
0.0 1 L
1 10 100 1000 10000
Generation Number
0.5% Noise
1_5 T T T
“ L g
@ L]
@ L il
5 L i
=
S 1o~ e =
5] -
=
E=] L
=
@ -
N g lese s oy
"l e T Imniy , LUt SR P
oy
@ b=
E El
0.0 1 1
1 10 100 1000 10000
Generation Number
1% Noise
'I _5 T T T

Fitness, Strength, Correctness

ool

1
1 10 100 1000 10000
Generation Number

Figure 3.4: The average fitness, bias strength, and bias correctness of a population
of 1000 individuals, plotted for generations 1 to 10000, with three noise levels.

52 CHAPTER 3. THE BALDWIN EFFECT

to the quality of the path traversed in bias space by the Baldwin Effect. It is not
demonstrated though, that the Baldwinian path is optimal, but at least it is a good
one.

We present here a number of reproductions of the graphs obtained by Turney.
The original plots were made for three p parameter values, however, for the sake of
clarity, we will only present here the plots for p = 0.5%. The rest of the figures are
very similar.

Skewed strength Turney tested the robustness of the phenomena observed in the
experiment. He deliberately skewed the first generation by assigning a random in-
dividual generator which favors a strong bias. The bias genes were generated so
that there was a probability of 75% that 0.9 < s; < 1, a probability of 25% that
0.5 < s; < 0.9, and a probability of 5% that 0 < s; < 0.5.

0.5% Noise
15 T T T
o i]
i
S - -
¥} L. .
il
5 1.0l
o B i e R
€ [TTTTTTTT T
2 v Tl
@ B 3
[T | A G S VP AP,
% -
g L
& s
o.0l B s D sy
1 10 100

Generation Number

Figure 3.5: Experiment result for p = 0.5. The population is skewed towards stronger
bias.

In Figure 3.5 we can see the results for the experiment. There are a number of
remarks that can be done:

1. The population eventually settled into (approximately) the same equilibrium
state that was observed in the first experiment.

2. The skewed bias strength slowed down the creation of the first individual with
non zero fitness.

3. Once this individual is created, there is little difference among the experiments.

4. During the time for which all individuals have zero fitness, genetic drift pushes
bias strength towards 0.5.

5. After the first non-zero individual is created, the strength still decreased for a
small number of generations.

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 93

This observations are expected from the Baldwin Effect, as a result of the observations
made on Table 3.1.

Forced bias strength Another experiment made, was the one concerning forced
bias strength trajectories. The idea was to create a fixed trajectory on bias space by
a priori setting the bias strength of the individuals as a function of the generation
number.

The Baldwin Effect explained fairly well the behavior of the model created by
Turney. However, it seems fair to compare it to some other trajectories forced upon
the bias strength. In general, a non-Baldwinian algorithm will have a strength of
zero. Turney considers some other possible trajectories to compare to.

0.5% Noise

1.5
@ B]
i -]
5 | il
g
5 1.0
s [5% i 8
2 FTTTTTTTTTTT C T T T
o5 — — — — — — — — — I
33. |
g -
E =
0.0 . ;
1 10 100
Generation Number
Figure 3.6: Bias strength fixed at 0.75.
0.5% Noise
15 T
@ =
€L
e B
=] B
s .
E el
S B
@ : ﬂﬂﬂﬂﬂ A
— 0 T WA - T
% =
2 L
E 18
ool , 5
10 100

Generation Number

Figure 3.7: Bias strength fixed at 0.5.

By directly manipulating the bias strength, Turney compared the Baldwin Effect
to 4 other trajectories:

Fixed 0.75 This experiment is plotted in Figure 3.6, and as expected from Baldwin
Effect’s aspects, this is the experiment with the longer wait until the first
individual with non-zero fitness is found.

54 CHAPTER 3. THE BALDWIN EFFECT

0.5% Noise

1.5 T T

. |

2 &

& E
o |

2y

£ 1Q-
(&) |
£ |

% B -

[== - -
& os5l= "

L] =

@ B
E A e e T | B o R g i e - S A L i = 3 2 o 0 e i/ - o =X 2.
= -

0.0 L L L
1 10 100 1000 10000
Generation Number
Figure 3.8: Bias strength fixed at 0.25.
0.5% Noise
1.5 T T T

@ B]
@ L]
E - il
5 1.0~

(&) i i
i L "
k= L i
o L . 4 .
7 1 o 7 S R R R T /./ —
o b= -
:é L //' I
= E P]

0.0 . e il G .
1 10 100 1000 10000

Generation Number

Figure 3.9: Bias strength increases linearly from 0 in the first generation to 1 in the
generation 5000. Afterwards, the bias is held constant at 1.

3.2. BALDWIN EFFECT AND COMPUTER SCIENCE %)

Fixed 0.5 Plotted in Figure 3.7, it is just a middle case between the first and third
trajectories.

Fixed 0.25 From the last three trajectories, this trajectory, Figure 3.8, finds the first
non-zero individual faster. Its final fitness value will be the worst of all
four trajectories.

6 As this experiment resembles more to the Baldwin Effect than the others,

it is expected to outperform all others, but will be outperformed by the
true Baldwinian. It is plotted in Figure 3.9.

Linear'

56

CHAPTER 3. THE BALDWIN EFFECT

Chapter 4

Baldwinian Optimization

In the previous Chapter we reviewed a number of experiments conducted in evolu-
tionary computation created to improve our understanding of the Baldwin Effect.
In this Chapter, we provide hints on where and how an algorithm could be turned
Baldwinian, and give an adaptation for constrained optimization for two well-known
algorithms.

The idea behind a Baldwinian algorithm is very similar to the memetic algorithm
reviewed in Section 2.4, in the sense that learning is a local search. A Baldwinian
algorithm is an evolutionary algorithm with an extra operator!', whose main purpose is
to perform a learning stage, in many ways similar to the local search stage performed
by memetic algorithms.

There are two main differences between memetic algorithms and Baldwinian algo-
rithms: first of all, the local search in memetic algorithms is performed on genotypic
space, while in the Baldwinian case, it is performed in phenotypic space; second,
the genotype of the individual is not changed by the local search in the Baldwinian
algorithm in contrast to the memetic algorithms. This last point is mainly due to
the intractability of the reverse mapping from phenotype to genotype we discussed in
Section 3.1.3.

In this sense, we can think of memetic algorithms to be Lamarckian in nature.
It has been stated, however, that the memes could behave more like a Baldwinian
factor than a Lamarckian one [20]. In this thesis, however, we are not interested in
discussing whereas this is actually true or not, and is left to the reader to come up
with his own conclusions.

At every stage in the evolutionary algorithm where a local search can be per-
formed, we can make a Baldwinian search (i.e. lifetime learning in contrast to genetic
modification). Figure 4.1 gives a schematic representation of the learning process.

In many complex evolutionary algorithms there is a clear difference among the
phenotype and the genotype. It is crucial to take into account that learning takes place
in phenotypic space. Although some simpler algorithms don’t make the difference

Tt has been proposed that the learning should substitute the mutation in evolutionary strategies,
but we consider it to be an additional operator.

o7

58 CHAPTER 4. BALDWINIAN OPTIMIZATION

Original individual After learning
genolype fitness ﬁ:::vt:::r fitnass
genotype fitness

Individual for comparison

Figure 4.1: Schematic representation of the Baldwinian implementation for learning.
The upper left individual is the original individual before learning. Then, at the upper
right corner, the individual after learning with modified fitness and/or genotype.
Finally, at the bottom, the individual as is to be compared with other individuals.
Observe that it retains its original genome, and only the fitness is changed.

between phenotype and genotype, or the coding is straightforward, we must try our
best to state the difference as clearly as possible in order to better introduce the
Baldwinian concept in the algorithms.

If any representation is being made to create the phenotype, this representation
is to be used as the basis for learning. This might be straightforward in genetic
algorithms, but could be less than clear in evolutionary strategies. In the following
section we will try to introduce the learning operator to two of the most well-known
algorithms; and give general ideas on where can any other algorithm be transformed
into a Baldwinian algorithm.

4.1 The Learning Operator

Every evolutionary algorithm has a number of evolutionary operators associated with
it. The exact type of these operators and the order in which they are applied to the
population is what defines the algorithm itself. The reader should be familiar with
the concepts developed in Section 2 before he attempts to read this chapter.

Virtually every evolutionary algorithm has a mutation operator associated?. This
operator will serve as the basis for the learning operator in the Baldwinian version
of the algorithm. The basic idea is to create a loop of mutation-like local variations,
each time the individual is allowed to learn.

The scheme of the algorithm is as follows:

Baldwinian Algorithm

initialize-population Fj;

2Qr, at least, a mutation step inside an operator.

4.1. THE LEARNING OPERATOR 59

Let 1 =0;
while(termination-criteria-is-not-met)
{

Py =0C(C P;, rand());
Fp,=L(P;, rand());
FBf:L(P, rand());
Pia=0CPB, P, Fp,, Fp,, rand());
1=1+1;
}

In the algorithm, we note the function L which represents the learning step of the
algorithm. It is important to note that the selection (Py11 = o(F;, Py, Fip,, F'z;)) is
performed over the same individuals with the adjusted fitness values.

We will use the algorithm developed by Turney in Section 3.2.2.4 as a model to
create our own algorithm. Mainly, the idea of including the bias strength in the
genotype, but an independent part of it will be used. This bias strength will be
changed in concept to best fit the learning concept of search instead of machine
learning.

We will use the term instinct strength as an analogous to Turney’s bias strength
in the sense that it measures the probability that the individual may follow instinct
instead of learning. This strengths are going to be introduced in the genotype in
a way that resembles the introduction of the control values o; in the evolutionary
strategy (Section 2.3).

The general form of the learning operator is sketched in the next algorithm:

Learning Operator

function L(population P, real r)

{
F =vector[sizeof(P) J];
x =getRandomValue(r);
for(1 =0 to sizeof(P))
{
if(strength(p;) < x)
F; =Baldwinian(p;) ;
else
Fi=for(p);
x = getRandomValue(r);
+
return F';
}

Observe that the main part of this operator is in the function called Baldwinian. This
function returns the Baldwinian fitness associated to the individual, which is problem

60 CHAPTER 4. BALDWINIAN OPTIMIZATION

dependant. It will usually be the result of a local search. Note that the original
individual is not changed as only a number (the Baldwinian fitness) is associated to
its position. The selection method will only be interested in this number to either
select the individual or not.

4.2 Baldwinian Algorithms

In this section we will provide the examples of Baldwinian algorithms developed as
the main contribution of this thesis. We will define the learning operators® used, and
will compare the results with the non-Baldwinian version of the same algorithm to
place them into an equal-rights state. The parameters of the algorithms will be set
to the same values and we will report a number of statistical values over 30 runs
for every problem to be solved. In each case, the algorithm was left to run until
350000 evaluations of the fitness function were performed. This is accordance to the
experiments made by Runarsson |17] in the same benchmark. This was done to allow
a comparison between this results and those obtained by him. The best known or
optimal solutions to the benchmark functions are in Table 4.1.

| Function | Optimum known | max/min |

g01 —15 Minimize
g02 0.803619 Maximize
g03 1 Maximize
g04 —30665.539 Minimize
g05 5126.4981 Minimize
g06 —6961.81388 Minimize
g07 24.3062091 Minimize
g08 0.095825 Minimize
g09 680.6300573 Minimize
gl0 7049.3307 Minimize
gll 0.75 Minimize
gl2 1 Maximize
gl3 0.0539498 Minimize

11 1.724852309 Minimize

12 6059.71434795 | Minimize

13 0.012665 Minimize

Table 4.1: The known or reported optimum values for the test functions. The column
mazx/min tells whether the problem is a maximization or a minimization to better
interpret the results.

3In particular, the implementation of the Baldwinian function to calculate the Baldwinian fitness
of individuals.

4.2. BALDWINIAN ALGORITHMS 61

The test functions are of constrained optimization, and they can be found in

the appendix. For a detailed explanation on the functions, the reader should check
[17, 13].

4.2.1 Baldwinian evolutionary strategy

The classical evolutionary strategy ES(u,A) with self-adaptation parameters (o),
reviewed in Section 2.3, with a technique of rules with total sum of violations seen in
Section 1.3.2.2 will be used.

The genotype will be augmented with the values of strength, so that it will be

p:(xlax2>"'axl;01702a"'70l;81752a"'751)

where 0 < s; < 1 for every 1 < ¢ < [, and they represent the strength of instinct in
the objective i. We will use ¥ = (x1, 23, ..., ;) to denote the objective portion of the
genotype, ¢ = (01, 09,...,0;) to denote the control portion, and § = (s1,Ss,...,58;)
to denote the strength portion.

This new evolution strategy will be compared with the strategy discussed in Sec-
tion 2.3.4, and it will have the same parameter setting, except for the added strength
portion.

The idea behind the learning operator is to use the same local search introduced
by the o’s in the learning step. This is to avoid the appearance of unnecessary
parameters in the algorithm.

The crossover operator used in the objective values will be intermediate-generalized,
while in the control values and strengths will be discrete (see Section 2.3.3). The mu-
tation will be as usual for the self-adaptive evolutionary strategy for objective and
control values, and the strength will be mutated as follows

si* = max{0, min{s; + Normal(0, 1), 1}}

i.e. the strength will be added a standard normal value, cropped to [0,1]. The

function
m

pla) = 3 g (x) + 3 07 ()
i=1 i=1
represents the total sum of violations of x € S, with all the weights equal to 1.
In order to calculate the Baldwinian fitness value of an individual, we will use the
following algorithm

Baldwinian fitness

fB = f;

for(i=1 to [)
if(s; <rand())
{

62 CHAPTER 4. BALDWINIAN OPTIMIZATION

7. =2p—(0,0,...,04...,0); //at the i-th position.
7y =2p+(0,0,...,04...,0); //at the i-th position.
Tp =argmin{po 7(Zp),po7(Z_),po1(ZL)};

}

setFitness(@, for7(¥g));

As we can observe, the learning can take place in every objective value, or in none.
It all depends on the values of the learning strength. Here, in contrast to Turney, we
are not interested in the evolutionary process affecting the strengths, or whether the
strengths follow the path predicted by the Baldwin Effect; that is left for a future work.
Instead we are interested in whether this Baldwinian learning aids the optimization
process or not.

‘ Statistic value

| Normal ES(uu+ 2) | Baldwinian ES(u +) |

best 14.999983 15.643469
worst 12.884572 13.029993
mean 14.524280 15.0092431
median 14.999897 15.296720
variance 0.564467 0.404876
standard deviation 0.751310 0.636299
feasibles 30 21°*
e-feasibles 30 30

Table 4.2: Results for function g01

‘ Statistic value

| Normal ES(u+ A) | Baldwinian ES(u+) |

best 0.403915 0.416605
worst 0.295487 0.284842
mean 0.360394 0.358947
median 0.366991 0.3610752
variance 6.5839E-4 0.001052
standard deviation 0.025659 0.032445
feasibles 30 13*
e-feasibles 30 30

Table 4.3: Results for function g02

The results for the benchmark functions are summarized in Tables 4.2—4.14. The
results for the engineering problems are in Tables 4.15-4.17.

It is important to explain the apparently lower number of true feasible solution
found by the algorithms. First of all, when the problem has equality constraints, it
is impossible, due to a discretization error, to achieve the actual equality. Instead,
every solution is e-feasible, with an € ~ 107°. For the rest of the problems, the status

4.2. BALDWINIAN ALGORITHMS

‘ Statistic value

Normal ES(u+)) | Baldwinian ES(u + A) |

best 0.999759 1.002580
worst 0.963843 0.99873
mean 0.996605 1.000645
median 0.998753 1.000156
variance 4.14449E-5 1.34930E-6
standard deviation 0.006438 0.0011659
feasibles 0 0
e-feasibles 30 30

Table 4.4: Results for function ¢g03

‘ Statistic value

Normal ES(u+)) | Baldwinian ES(u + A) |

best -30573.688537 -30684.810456
worst -30298.460286 -30364.822278
mean -30414.804487 -30593.128911
median -30413.755796 -30663.190301
variance -3372.159939 8785.872779
standard deviation 58.070301 93.732986
feasibles 30 1*
e-feasibles 30 30

Table 4.5: Results for function ¢g04

‘ Statistic value

Normal ES(uu+)) | Baldwinian ES(p +) |

best 5126.50995 5126.51885
worst 5285.52789 5263.58777
mean 5191.10762 0177.33432
median 5186.64882 5168.70377
variance 1706.38217 1241.9597
standard deviation 41.30838 35.24145
feasibles 0 0
e-feasibles 30 30

Table 4.6: Results for function g05

CHAPTER 4. BALDWINIAN OPTIMIZATION

‘ Statistic value

Normal ES(u+)) | Baldwinian ES(u +) |

best -6961.81382 -6961.816175
worst -1206.19807 -6961.813383
mean -6576.84885 -6961.813834
median -6961.21074 -6961.813767
variance 2046571.365351 2.36233E-7
standard deviation 1430.58427 4.86038E-4
feasibles 30 13*
e-feasibles 30 30

Table 4.7: Results for function g06

‘ Statistic value

Normal ES(u+)) | Baldwinian ES(u + A) |

best 24.876975 24.584865
worst 28.592849 29.549636
mean 26.196125 25.654459
median 25.924144 25.163657
variance 0.866379 1.233E-7
standard deviation 0.930795 1.110668
feasibles 30 14*
e-feasibles 30 30

Table 4.8: Results for function ¢g07

‘ Statistic value

Normal ES(uu+)) | Baldwinian ES(p +) |

best 0.095825 0.095825
worst 0.004505 0.013637
mean 0.068281 0.059710
median 0.095825 0.065143
variance 0.001185 0.001188
standard deviation 0.034431 0.034478
feasibles 30 30
e-feasibles 30 30

Table 4.9: Results for function g08

4.2. BALDWINIAN ALGORITHMS

Statistic value

Normal ES(u+)) | Baldwinian ES(u + A) |

best 680.656456 677.608343
worst 685.906514 680.676598
mean 681.738274 680.465658
median 681.149711 680.636904
variance 1.4761804 0.3083865
standard deviation 1.2149816 0.555325
feasibles 30 4%
e-feasibles 30 30

Table 4.10: Results for function g09

Statistic value

Normal ES(u+)) | Baldwinian ES(u + A) |

best 14743.296345 12903.07097
worst 20334.78599 19457.0973
mean 16775.12296 16503.5519
median 16668.745345 16354.4338
variance 1094703.55833 2162402.151
standard deviation 1046.280821 1470.5108
feasibles 1 2%
e-feasibles 30 30

Table 4.11: Results for function ¢g10

Statistic value

Normal ES(uu+)) | Baldwinian ES(p +) |

best 0.749955 0.731125
worst 0.751152 0.750204
mean 0.750309 0.743945
median 0.750214 0.747179
variance 8.3655E-8 4.5196E-5
standard deviation 2.8923E-4 0.006723
feasibles 0 0
e-feasibles 30 30

Table 4.12: Results for function g11

CHAPTER 4. BALDWINIAN OPTIMIZATION

‘ Statistic value

Normal ES(uu+)) | Baldwinian ES(p +) |

best 1.0 1.0
worst 0.939999 0.9699999
mean 0.986333 0.9903333
median 0.99000 0.990000
variance 1.2322E-4 6.9888E-5
standard deviation 0.011100 0.008359
feasibles 30 30
e-feasibles 30 30

Table 4.13: Results for function g12

‘ Statistic value

Normal ES(uu+)) | Baldwinian ES(p +) |

best 0.624860 0.4664885
worst 0.99990 0.9999465
mean 0.91796 0.8497140
median 0.989343 0.899186
variance 0.013152 0.017600
standard deviation 0.114683 0.132667
feasibles 0 0
e-feasibles 30 30

Table 4.14: Results for function ¢g13

‘ Statistic value

Normal ES(uu+)) | Baldwinian ES(p+) |

best 1.836054 1.724852
worst 2.384537 2.574196
mean 2.050582 1.974465
median 2.006084 1.924799
variance 0.016603 0.03675
standard deviation 0.128856 0.19172
feasibles 30 15%*
e-feasibles 30 30

Table 4.15: Results for function 71

4.2. BALDWINIAN ALGORITHMS

‘ Statistic value

Normal ES(u+)) | Baldwinian ES(u + A) |

best 6488.3890 6890.85390
worst 16783.24940 13053.0751
mean 10811.4691 10113.5241
median 10796.35730 9850.33251
variance 4984724.191 3011815.7516
standard deviation 2232.6495 1735.4583
feasibles 30 13*
e-feasibles 30 30

Table 4.16: Results for function 72

‘ Statistic value

Normal ES(uu+)) | Baldwinian ES(p+) |

best 0.012704 0.0124919
worst 0.013231 0.0130756
mean 0.012875 0.0128605
median 0.012838 0.0128425
variance 1.5581E-8 1.3777E-8
standard deviation 1.2482E-4 1.1737E-4
feasibles 30 20%*
e-feasibles 30 30

Table 4.17: Results for function 3

68 CHAPTER 4. BALDWINIAN OPTIMIZATION

of e-feasible is changing; it is about 107% times the maximum achieved absolute value
of the fitness function.

In the ending, it might seem that the Baldwinian algorithm fails to reach feasible
solution in almost every problem, but this is just a misinterpretation of the results.
As the best individual is often one who has learned (i.e. has an increased fitness value
due to learning), but the genotype remains unchanged, it is fairly difficult to know
for sure what is its Baldwinian violation by just looking at the genes. The numbers
presented in the tables are only the individual’s genetical violations, not the actual
best violations. In order to obtain that value of fitness, the individual had a violation
of effectively 0 after learning, making him feasible in its Baldwinian value®.

Under the light shed by the last observation, we are safe to assure that the Bald-
winian version of the algorithm outperforms, in general, the non-Baldwinian version.
And actually, it performed fairly well for such a simple algorithm used on well-known
difficult optimization problems.

In the next section we will introduce a Baldwinian version of a more powerful
evolutionary algorithm.

4.2.2 Baldwinian Differential Evolution

The differential evolution algorithm DE 1(CR, F') reviewed in Section 2.5 | with a
technique of rules with total sum of violations seen in Section 1.3.2.2 will be used.
The genotype will be augmented with the value of strength, so that it will be

p:(.]}'l,.]}'g,...,.]}'l;S)

where 0 < s < 1, and it represents the strength of instinct. If the individual is
to learn, it will have M AX attempts to improve its constraint vector from a local
variation on the F' parameter. Usually, the value of M AX is set to 2, but various
tries pointed to the good robustness of this parameter.

This new differential evolution will be compared with the differential evolution
discussed in Section 2.5.4, and it will have the same parameter setting, except for the
added strength portion.

The idea behind the learning operator is to use the local search with the parameter
Fin the learning step, as a solution with values near the produced individual is likely
to have similar values in the difference part of the process.

As in the last section, we will use & = (z1,x2,...,2;) to denote the objective
portion of the genotype.

The crossover operator used is the same than in the normal algorithm. The
strength of the created vector will be set to the parent’s value, plus a normal random
number with standard deviation 0.1, with a probability of C, otherwise it is set to
0.9s. The value of C' can be used to control the increasing ratio of the strength.

The creation of a new individual changes a bit in this algorithm, but it is essentially
the same as the original differential evolution. Assume we are creating the offspring

4That is the reason for the asterisk at the tables’ # feasibles row.

4.2. BALDWINIAN ALGORITHMS 69

of individual 7 in the population P, i.e. ¥ is the objective part of the individual p;,
and s is the strength part.

Baldwinian comparison

T,p5 =create0ffspring (F);
Tp = Toff;
if (s <rand())

for(i1=1 to MAX)

{
Tyemp =create0ffspring (F'+Normal(0,0.1);
if(po1(Zp) > poT(Tiemp))
fB = ftemp;
}

if (better(Zg, ¥))
if(0.9 <rand())
pnext,i:(foff: 0.9s);
else
pnemt,i:(j:‘off, rand());
else

Prexti = Pis

As we can observe, the learning can take place M AX times or 0 times. As with the
case of the evolutionary strategy, it depends on the values of the learning strength.

Again, the individual is not modified; observe that the offspring @, is assigned to
the next generation if the Baldwinian individual is better than the parent individual’s
part .

| Statistic value | Normal DE(0.9,0.9) | Baldwinian DE(0.9,0.9) |

best -15 -15

worst -15 -15

mean -15 -15
median -15 -15
variance 0 0
standard deviation 0 0
feasibles 30 30

e-feasibles 30 30

Table 4.18: Results for function g01

The results for the benchmark functions are summarized in Tables 4.18-4.30, and
the results for the engineering problems are in Tables 4.31-4.33.

70

CHAPTER 4. BALDWINIAN OPTIMIZATION

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 0.8036189 0.8036189
worst 0.8029367 0.8014754
mean 0.8035043 0.8032154
median 0.8036163 0.8036028
variance 3.45886E-8 3.67254E-7
standard deviation 1.8598E-4 6.06014E-4
feasibles 30 30
e-feasibles 30 30

Table 4.19: Results for function g02

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 1 1
worst 0.9999873 0.9998754
mean 0.9999990 0.9999846
median 0.9999999 0.9999998
variance 5.47056E-12 1.0087E-9
standard deviation 2.33892E-6 3.17606E-5
feasibles 0 0
e-feasibles 30 30

Table 4.20: Results for function ¢g03

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DE(0.9,0.9) |

best 30665.538671 30665.538671
worst 30665.538671 30665.538671
mean 30665.538671 30665.538671
median 30665.538671 30665.538671
variance 1.2837E-22 1.4999E-22
standard deviation 1.1330E-11 1.2247E-11
feasibles 30 30
e-feasibles 30 30

Table 4.21: Results for function g04

4.2. BALDWINIAN ALGORITHMS

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 5126.49686 5126.498109
worst 5126.49839 5126.522733
mean 5126.49784 5126.501413
median 5126.498106 5126.498126
variance 1.9935E-7 3.4270E-5
standard deviation 4.4649E-4 0.005854
feasibles 30 30
e-feasibles 30 30

Table 4.22: Results for function g05

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best -6961.813875 -6961.813875
worst -6961.813875 -6961.813875
mean -6961.813875 -6961.813875
median -6961.813875 -6961.813875
variance 3.3087E-24 3.3087E-24
standard deviation 1.8189E-12 1.8189E-12
feasibles 30 30
e-feasibles 30 30

Table 4.23: Results for function g06

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DE(0.9,0.9) |

best 24.306209 24.306209
worst 24.306643 24.313465
mean 24.306327 24.307553
median 24.306209 24.30620
variance 2.8891E-8 4.8469E-6
standard deviation 1.6997E-4 0.0022015
feasibles 30 30
e-feasibles 30 30

Table 4.24: Results for function g07

72

CHAPTER 4. BALDWINIAN OPTIMIZATION

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 0.09582 0.095825
worst 0.09582 0.095825
mean 0.09582 0.095825
median 0.09582 0.095825
variance 5.6493E-34 4.0445E-34
standard deviation 2.3768E-17 2.0110E-17
feasibles 30 30
e-feasibles 30 30

Table 4.25: Results for function g08

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 680.630057 680.630057
worst 680.630057 680.630057
mean 680.630057 680.630057
median 680.630057 680.630057
variance 1.7879E-25 2.4987E-25
standard deviation 4.2283E-13 4.9987E-13
feasibles 30 30
e-feasibles 30 30

Table 4.26: Results for function g09

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DE(0.9,0.9) |

best 7049.248020 7049.248020
worst 7049.260829 7049.359981
mean 7049.250584 7049.270574
median 7049.248020 7049.24802
variance 1.6376E-5 2.29355E-4
standard deviation 0.004046 0.01514
feasibles 30 30
e-feasibles 30 30

Table 4.27: Results for function ¢g10

4.2. BALDWINIAN ALGORITHMS

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 0.749904 0.750000
worst 0.750028 0.750813
mean 0.749982 0.750163
median 0.749999 0.750001
variance 1.1238E-9 6.0038E-8
standard deviation 3.3524E-5 2.4502E-4
feasibles 0 0
e-feasibles 30 30

Table 4.28: Results for function g11

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 0.98 1.0
worst 0.59 0.520018
mean 0.852052 0.775251
median 0.865 0.784590
variance 0.007546 0.012312
standard deviation 0.086868 0.110963
feasibles 30 30
e-feasibles 30 30

Table 4.29: Results for function g12

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DE(0.9,0.9) |

best 0.053943 0.053949
worst 0.438851 0.73930
mean 0.272058 0.35564
median 0.438829 0.43885
variance 0.036378 0.034533
standard deviation 0.190731 0.18583
feasibles 30 30
e-feasibles 30 30

Table 4.30: Results for function ¢g13

74

CHAPTER 4. BALDWINIAN OPTIMIZATION

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 1.724852 1.724852
worst 1.724852 1.724852
mean 1.724852 1.724852
median 1.724852 1.724852
variance 1.2325E-30 1.2325E-30
standard deviation 1.1102E-15 1.1102E-15
feasibles 30 30
e-feasibles 30 30

Table 4.31: Results for function 71

‘ Statistic value

Normal DE(0.9,0.9) | Baldwinian DE(0.9,0.9) |

best 6059.774753 6059.774753
worst 6059.774753 6059.775651
mean 6059.774753 6059.77481
median 6059.774753 6059.77475
variance 3.3087E-24 2.9341E-8
standard deviation 1.8189E-12 1.7129E-4
feasibles 30 30
e-feasibles 30 30

Table 4.32: Results for function 72

‘ Statistic value

| Normal DE(0.9,0.9) | Baldwinian DFE(0.9,0.9) |

best 0.012665 0.012665
worst 0.012665 0.012665
mean 0.012665 0.012665
median 0.012665 0.012665
variance 3.5910E-35 3.3202E-35
standard deviation 5.9925E-18 5.7621E-18
feasibles 30 30
e-feasibles 30 30

Table 4.33: Results for function 3

4.3. CONCLUSIONS ON THE EXPERIMENTS 75

4.3 Conclusions on the Experiments

As we might see in the tables, the performance of the Baldwinian version of well-
known optimization algorithms is fairly better or equal than the non-Baldwinian
counterpart. As expected, the variance is greater, but the best value is usually better
or equal to the one obtained by the normal version.

Our main observation in the tables is that, when the problem is a difficult one,
the Baldwinian version outperforms, on average, the normal version of the algorithm;
whereas this means that the Baldwinian algorithm is better® than the normal one or
not remains unknown as the variance is usually greater in the Baldwinian case. At
least this behavior proves what we expected from the observations on the Baldwin
Effect in Chapter 3.

The learning operator for both cases is very simple as it was only used to illustrate
the effects that learning can have on evolution. Better learning operators will lead to
better results, but, as the Baldwin Effect teaches us, we must exercise caution when
using learning because the computation time expend in learning is time lost from
evolution.

All the experiments performed until now studied the Baldwinian algorithms to see
whether the Baldwin Effect was present or not in the evolution learning interactions.
What we wanted to measure was the strengths of Baldwinian Algorithms, and if they
are worth the try.

In order to see a full Baldwinian behavior on evolutionary algorithms, a huge
amount of computational power was spent in order to better understand its effects.
As we can see in the experiments performed by Hinton, Nowlan, Belew and Turney,
the longer we let the algorithm run, the better the results we obtain are.

In contrast, we wanted to see if Baldwinian optimization can be applied to a
problem with limited computational resources (as are 350000 evaluations of the fit-
ness function) and still succeed in the optimization process by obtaining respectable
solutions.

5In the sense of statistical robustness and behavior.

76

CHAPTER 4. BALDWINIAN OPTIMIZATION

Conclusions

It is undeniable that more and more researchers are being attracted by the offerings
of new hybridization techniques. Nature has always been a source of inspiration to
man-kind, and we can clearly see this in the development of biologically inspired
algorithms.

The Baldwin Effect might be a not-well-understood force in evolution, or can be
just a biological curiosity. Either case, we can exploit it to be of use to evolutionary
computation. Early experiments pointed to the strength of learning by solving prob-
lems of the type needle in a hay stack which are well known difficult optimization
problems. The catch seems to be in learning and the way it was implemented. Learn-
ing is costly, and the experiments were more concerned with idealized algorithms with
virtually unlimited computation resources.

In this thesis we wanted to issue the performance problem derived from learning.
We compared the algorithm Baldwinian algorithm with the non-Baldwinian version
of it, and the results are presented. Whether the Baldwinian version is better or
not is something that we are not directly interested in. Instead we wanted to verify
if it was possible to create a competitive algorithm based on the concepts from the
Baldwin Effect.

Fortunately, most results were expected, and the issue of better is not easy to
address with high variance results as obtained. However, learning was expected to in-
crease the variance of results, and in general, the Baldwinian algorithm demonstrated
an excellent better result, fairly good mean and median, and slightly large standard
deviation.

We see the Baldwinian algorithms as a promising area of research, and expect the
ideas to spread in the computing community. A good example of this can be seen
in the birth of memetic algorithms, which resemble Baldwinian ones to the point in
which many people even think they are the same.

In addition, if the concepts of Lamarckism have been used as valid computer mod-
els (although not biologically accurate) for optimization, using Baldwinian models is
certainly as valid as Lamarckian. In the end, we can exploit more the Baldwinian con-
cepts as are susceptible to be further studied in biology and, in consequence, better
understood by computer scientists.

7

78

CHAPTER 4. BALDWINIAN OPTIMIZATION

Bibliography

[1] Béck. T., Hammel, U. and Schwefel, H.-P., (1997). Evolutionary Computation:
comments on the history and current state. IEEE Trans. on Evo. Comp. 1 (1):
3-17.

|2] Baldwin, J. M. (1896). A new factor in evolution. American Naturalist 30: 441-
451, 536-553.

[3] Belew, R. K. (1990). Evolution, learning and culture. Computational metaphors
for adaptive algorithms. Complex Systems /: 11-49.

|4] Buckles, B. P., Coello, C. A. and Hernandez, A. (1998). Estrategias evoluti-
vas: La version alemana del algoritmo genético. (I & II). Soluciones Avanzadas.
Tecnologias de Informacion y Estrategias de Negocios. Ano 6, (62), 38-45.

[5] Coello, C. and Mezura, E. (2004). What makes a constrained optimization prob-
lem difficult to solve. Evolutionary Computation Group at CINVESTAV, D.F.,
Mexico.

[6] Dawkins, R. (1976). The selfish gene. Ozford: Ozford University Press.

[7] Eiben, A. E. and Smith, J. E., (2003), Introduction to evolutionary computing.
Natural computing series. Springer. (10): 173-180.

|8] Fogel, L. J., (1962). Autonomous automata, Industrial Research 4: 14-19.

[9] Harvey, 1. (1993). The puzzle of the persistent question marks: A case study of
genetic drift. Proceedings of the 5th International Conference on GA. Morgan
Kaufmann

[10] Hinton, G. E., and Nowlan, S. J. (1987). How learning can guide evolution.
Complex Systems, 1, 495-502.

[11] Holland, J. H., (1975). Adaptation in natural and artificial systems. The Univer-
sity of Michigan Press, Ann Abor, MI.

[12] Koza, J. R., (1992). Genetic Programming: On the programming of computers
by means of natural selection. MIT Press.

79

80 BIBLIOGRAPHY

[13| Koziel, S., and Michalewicz, Z., (1999). Evolutionary algorithms, homomorphous
mappings, and constrained parameter optimization. Evolutionary Computation,
7(1), 19-44.

[14] Mitchell, M. (1998). An introduction to Genetic Algorithms. The MIT Press (3),
87-95.

[15] Price, K. and Storn, R. (1996). Differential evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces. Technical Report

TR-95-012, ICSI.

[16] Rechenberg, 1., (1965). Cybernetic solution path of an experimental problem.
Journal of the ACM 3, 297-314.

[17] Runarsson, T. P., and Yao, X. (2000). Stochastic Ranking for constrained evo-
lutionary optimization. IEEE Trans. on Evo. Comp., TEC#311R.

[18] Schwefel, H.-P., (1968). Projekt MHD-Staustrahlrohr: Experimentelle Opti-
mierung einer Zweiphasenéddse, Teil 1. Technischer Bericht 11.034/68, 35.

[19] Simpson, G. G. (1956). The Baldwin Effect. Fvolution 7, 110-117.

[20] Turney, P. (1996). Myths and legends of the Baldwin Effect. Evo. Comp. and
Machine Learning (ICML-96), 135-142. NRC-39220.

[21] Turney, P. (1996). How to shift Bias: Lessons from the Baldwin Effect. National
Research Council Canada, Institute for I'T. K1IA OR6.

[22] Waddington, C. H. (1942). Canalization of development and the inheritance of
acquired characters. Nature 150, 563-565.

Appendix A

Benchmark functions

Here we present the test bed used to compare the algorithms in this thesis. The
benchmark functions g01 to g12 were put together by Michalewicz and Koziel, and
are described in [13]. The function ¢g13 was proposed by Runarsson and Yao in [17].
The engineering problems i1, i2 and i3 are described in [?7?|. Another proposed
engineering (thought to be very hard) problems, here referred as c01 to 08, were
proposed by Mezura and Coello in [5|. Only for the sake of completeness, all the
functions are reproduced here.

1. g01
Minimize:
4 4 13
7) = 521} — 5Z:Bf — Zx,
i=1 i=1 =5
subject to:
91(%) = 221 + 219 + 210 + 211 — 10 < 0
92(%) = 21 + 223 + 210+ 112 — 10 < 0
93(%) = 229 + 223 + 211 + 112 — 10 < 0
94(T) = =8x1+ 110 < 0
95(F) = =8z + 11 < 0
96(T) = —8x3+ 112 < 0
g7(%) = =224 — w5 + 210 < 0
9s(¥) = —2vs —@r +an < 0
Go(¥) = =218 — w9 + 712 < 0
where the bounds are 0 < z; <1 (i=1,2,...,9), 0 < z; <100 (i = 10, 11, 12)
and 0 < z13 < 1. The global minimum is at = (1 1,1,1,1,1,1,1,1,3,3,3,1)
where six constraints are active (g1, g2, g3, g7, gs and go) nd f(@*) = —15

81

82

APPENDIX A. BENCHMARK FUNCTIONS
2. g02
Maximize:
. v cost(z;) — 210, cos?(z;
f($): Zz_l () — H2_1 ()
> e 1T
subject to:

g1(@) =075z < 0
i=1
i=1

where n = 20, the bounds are 0 < z; < 10 (¢ = 1,2,...,n). The global mini-
mum is unknown, the best found reported previously is f(Z) = 0.803619, with
T* =(3.171456, 3.175499, 3.121430, 3.065424, 3.024695, 2.985945, 2.956863,
2.880306, 0.506161, 0.509743, 0.486445, 0.481882, 0.487077, 0.459685, 0.467321,
0.445682, 0.439956, 0.444745, 0.431957, 0.424569) with the constraint g02 being
close to active.

3. ¢g03

Maximize:

subject to:
h(E) =) a27-1 = 0
i=1

where n = 10 and the bounds are 0 < z; < 1 (i = 1,2,...,n). The global
maximum is at f = 1/y/n (i = 1,2,...,n) where f(Z*) = 1.

4. g04

Minimize:
f(Z) = 5.3578547x% + 0.8356891x 75 + 37.293239z, — 40792.141
subject to:

91(Z) = 85.334407 + 0.0056858x5x5 + 0.000626221 x4

—0.0022053z325 — 92 < O
g2(7) = —85.334407 — 0.0056858z925 — 0.0006262x1 24
+0.0022053z325; < 0O

93(Z) = 80.51249 + 0.0071317x9x5 + 0.00299552; 29

83

4+0.002181323 — 110 < 0
94(%) = —80.51249 — 0.007131 72225 — 0.00299552 77
—0.002181373 +90 < 0

95(Z) = 9.300961 + 0.004702623x5 + 0.001254 71 x5
+0.0019085z324 — 25 < 0

g6(7) = —9.300961 — 0.0047026x325 — 0.0012547 123
—0.0019085z324 +20 < 0

where the bounds are 78 < z; < 102, 33 < 29 < 45, and 27 < z; < 45

(i = 3,4,5). The best solution is #* = (78,33, 29.995256, 45, 36.775813) where
f(Z*) = —30665.539. Two constraints are active (g; and gg).

. g05
Minimize:
f(&) =3z, + 0.000001xi’ + 229 + (0.000002/3)x§’

subject to:

91(%¥) = —x4 + 23 — 0.55

92(%) = —x3 + x4 — 0.55
7) = 1000 sin(—x3 — 0.25) + 1000 sin(—z4 — 0.25) 4+ 894.8 — 24
) = 1000 sin(z3 — 0.25) 4+ 1000 sin(z3 — 24 — 0.25) 4+ 894.8 — x4
hs(Z) = 1000 sin(xy — 0.25) + 1000 sin(zy — x3 — 0.25) + 1294.8 =
where the bounds are 0 < x; < 1200, 0 < 25 < 1200 —0.55 < 23 < 0.55,
and —0.55 < x4 < 0.55. The best known solution is Z* = (679.9453, 1026.067,

0.118876, —0.396234) where two constraints are active (g, and gg), and f(Z*) =
5126.4981.

IAINA

hs(
ha(Z

o O O o O

. g06
Minimize:
f(@) = (v1 — 10)* + (2o — 20)*
subject to:
91(%) = —(z1 — 5)* — (12 — 5)* + 100 0
92(T) = — (71 — 6)* + (12 — 5)* — 82.81 0
where the bounds are 13 < x; < 100 and 0 < 29 < 100. The optimum

solution is * = (14.095, 0.84296) where both constraints are active, and f(Z*) =
—6961.81388.

. g07

Minimize:

<
<

(&) = af + a3+ 1m0 — 1oy — 1622 + (23 — 10)* + 4(z4 — 5)* + (25 — 3)°
+2(wg — 1)® + 522 + T(wg — 11)* + 2(wg — 10)* + (210 — 7)* + 45

84 APPENDIX A. BENCHMARK FUNCTIONS

subject to:

91(%) = =105 + 41 + bae — 3z7 + 98

92(%) = 10x; — 8xy — 1727 + 228

93(%) = —8x1 + 29 + by — 2219 — 12

94(Z) = 3(wy — 2)® + 4(x9 — 3)* + 223 — Tay — 120
g5(Z) = 522 + 81y + (z3 — 6)* — 214 — 40

96(T) = 27 + 2(wy — 2)? — 27115 + 1425 — 676
g7(Z) = 0.5(x; — 8)? + 2(zy — 4)* + 322 — w6 — 30
gs(%) = =311 + 629 + 12(z9 — 8)% — Tz 10

(VAN VAN VANER VANSN VANSN VAR VARSI VAN
O O o o0 o o o o

where the bounds are —10 < z; < 10 (i = 1,2,...,10). The optimum solution
is @ =(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) where six constraints are active (g1, g2, 93, 94, g5
and gg), and f(2*) = 24.3062091.

8. g08
Minimize:
£(7) = sin3(2;rzcl) sin(27mxs)
3 (1 + 29)
subject to:
gl(f):x%—xg%—l < 0
gg(f):1—$1+($2—4)2 < 0

where the bounds are 0 < z; < 10 and 0 < 29 < 10. The optimum is at
7 = (1.2279713,4.2453733) where f(Z*) = 0.095825.

9. ¢09
Minimize:
f(@) = (1 —10)? +5(xy — 12)* + 25 + 3(24 — 11)?
+1028 + 722 + 23 — dwgrr — 1026 — Sz7
subject to:
g1(Z) = —127 4 222 + 325 + a3 + 4275 + 525
92(ZT) = —282 4 Tay + 3wy + 1023 + 24 — 75

g3(Z) = —196 + 2321 + x5 + 637 — Sx7
94(Z) = 42? + 23 — 33129 + 203 + 56 — 1127

VAN VAR VAN VAN
o o o o

where the bounds are —10 < z; < 10 (i = 1,2,...,7). The optimum solution
is at ¥ =(2.330499, 1.951372, —0.4775414, 4.365726, —0.6244870, 1.038131,
1.594227) where two constraints are active (g; and g4), and f(z*) = 680.6300573.

85

10. ¢10
Minimize:
f(f) =T + i) + I3

subject to:

91(¥) = =14 0.0025(z4s +26) < O

g2(T) = —1 + 0.0025(z5 + w7 —24) < 0

93(%) = =1+ 0.01(zg —x5) < 0

94(¥) = —x1w6 4 8.33252x4 + 1002, — 83333.333 < 0
g5(%) = —xowy + 125025 + 2924 — 125024 < 0

96(%) = —xgxsg + 1250000 + 375 — 250025 < 0

where the bounds are 100 < z; < 10000, 1000 < z; < 10000 (i = 2,3), and
10 < x; < 1000 (i = 4,5,...,8). The optimum solution is #* =(579.3167,
1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979) where
three constraints are active (g1, go and g¢3), and f(2*) = —15.

11. ¢g11
Minimize:

f(@) =i + (2 = 1)°
subject to:

() =x0—27 = 0
where the bounds are —1 < 2y <1, —1 < 25 < 1. The optimum solution is at
7 = (£1/v/2,1/2) where f(2*) = 0.75.

12. ¢g12
Maximize:

f(#) = (100 — (z1 — 5)* — (23 — 5)* — (x5 — 5)%)/100
subject to:

g1(Z) = min{ (21 — p)* — (2 — ¢)* — (x5 — r)* — 0.0625|p,q,7 € {1,2,...,9}} < 0
p,q,T

where the bounds are 0 < z; <1 (i = 1,2,3). This problem has been restated
to fit the standard definition. The global maximum is at @* = (5,5,5) where

fl@) =1.

13. ¢g13
Minimize:

T1T2X3TATS

f(Z) = exp

86 APPENDIX A. BENCHMARK FUNCTIONS

subject to:

h(Z)=af+a5+a5+a;+22—-10 = 0
hQ(f) :$2I3—5SL’4I5 =0
ha(Z) =i +a5+1 = 0
where the bounds are —2.3 < z; < 23 (i = 1,2) and —=3.2 < z; < 3.2

(i = 3,4,5). The optimum solution is #* =(—1.717143, 1.595709, 1.827247,
—0.7636413, —0.763645) where f(Z*) = 0.0539498.

14. il
Minimize:
f(Z) = 1.10471z72s + 0.0481 12324 (14 + 72)

subject to:

91(%) = 7(Z) — Tmax < 0
92(T) = 0(Z) = Omax < 0
g3(Z) =21 —24 < O
94(Z) = 01047127 + 0.04811z324(14.0 + 25) =5 < 0
g5(F) =0125 —z; < 0
96(*75) = 5(5) - 5max S 0
g7(7) =P —P(7) < 0
where:
(%) = \/(T’)2 + 27”7”’;—; + (72
, P
T \/59311'2
. MR
TSy
M = P(L+%)

. 6PL
U(x) = 2
APL3
o(7) =

15.

16.

87

4.013F
i - 5 ()

and P = 6000lp, L = 14in, F = 30 x 10%psi, g = 12 x 10°psi, Tmax = 13600psi,
Omax = 30000psi, dmax = 0.25in. The bounds are 0.1 < z; < 2, 0 1 <y <10,
0.1 <x3 <10 and 0.1 < x4y < 2. The best known solution is * =(0.2057296,
3.4704887, 9.0366239, 0.205729) where f(Z*) = 1.7248523009.

12
Minimize:

f(@) = (0.6224)0.0625 |21] z374 + (1.7781)0.0625 |5]| 25
+3.1661(0.0625 |1 |)2x4 + 19.84(0.0625 |1 |)23

subject to:

g1(Z) = —0.0625 |z1] +0.0193z5 < 0

g2(Z) = —0.0625 |z5] + 0.0095425 < 0
4

93(Z) = —maiwy — 37r:c§+1296000 < 0
ga(T) =24 —240 < 0

where the bounds are 1 < :L'Z <99 (i = 1,2) and 10 < z; < 200 (i = 3,4).
The best known solution is 7 =(0.8125, 0.4375, 42.098445, 176.636597) where
f(&*) = 6059.71434795.

13
Minimize:

(%) = (w3 + 2)x0273
subject to:

ZL’%LEB

9@ =1-zmega = 0
2
9:(7) = 1252:(652(:5_2:21%:5‘{) +51018:@ —t=0
93(%) =1— % < 0
94(2) = xQ;,fEl -1 <0

where the bounds are 0.05 < 7 <2, 0.25 < 29 < 1.3 and 2 < x3 < 15. The
best known solution is #* =(0.051683, 0.0356577, 11.297236) where f(z*) =
0.012665.

88 APPENDIX A. BENCHMARK FUNCTIONS

17. c01
Minimize:
ZZBZ ¢+ In 10)
(Z] 1%j
subject to:

hl(f):l’1+2$2+21’3+l’6—|—l’10—2
hg(f):l’4+2l’5+l’6+l’7—1 = 0
h3(f):$3+$7+$8+2$9+$10—1 = 0

where the bounds are 0 < z; < 1, (i = 1,2,...,10), and ¢; = —6.089, cs =
—17.164, cg = —34.0054, ¢4 = — — 5.914, c¢5 = —24.721, ¢g = —14.986, ¢; =
—24.1, cg = —10.708, cg = —26.662, c19p = —22.179. The best known solution
is @ =(0.0407, 0.1477, 0.7832, 0.0014, 0.4853, 0.0007, 0.0274, 0.018, 0.0373,
0.0969) where f(Z*) = —47.761.

18. 02
Minimize:
f(&) = 1000 — 22 — 222 — 23 — 1179 — 7173

subject to:

hy(%) =27 +a5+25—-25 = 0
hg(f):8l'1—|—14l’2—|—71'3—56 =0

where the bounds are 0 < z; < 10, (¢ = 1,2,3). The global optimum is at
—(3.512, 0.217, 3.552) where f(Z*) = 961.715.

19. 03
Minimize:

f(@) = fi(x1)+ fa(z2) and
30z if 0 <z <300
31z if 300 <z < 400

28z if 0 <z < 100
folz) = 29z if 100 <z < 200
30z if 200 < z < 1000

subject to:

hl(l’) =T — 300 +

1.4 -
131 078 cos(1.48577 — xg)

0.90798
e O78x§ cos(1.47588) = 0

T34
1.4
131078 cos(1.48577 + x¢)

hg(f) = X9 +

20.

21.

0.90798
131.078

— X3T4
h —
3(7) =25+ s

0.90798
— X
131.078 4

T3y

131078
0.90798 |,

T 131.07873

ha (%) = 200

89

cos(1.47588)

sin(1.48577 + w¢)

sin(1.47588)

sin(1.48577 — xg)

sin(1.47588) = 0

where the bounds are 0 < z; < 400, 0 < 25 < 1000, 340 < x3 < 420, 340 <
xy < 420, —1000 < x5 < 1000, 0 < x3 < 0.5236. The best known solution is
7* =(107.81, 196.32, 373.83, 420, 21.31, 0.153) where f(*) = 8927.5888.

c04

Maximize:

subject to:

where the bounds are —1 < z; <1 (i = 1,2,...,8).

f(Z) = 0.5(x124 — 2923 + 2329 — T5T9 + T5Tg — TeT7)
@) =22+22-1 < 0
g(f)=15—-1 < 0
g3(@) =at422-1 < 0
g4(T) = I? +(zg—19)? =1 < 0
95(%) = (v1 —25)° + (22 —26)° =1 < 0
96(Z) = (21 —27)* + (22 —25)? =1 < 0
g7(%) = (v3 —25)> + (24 —26)° =1 < 0
9s(Z) = (x5 —w7)* + (x4 —a5)? =1 < 0
Go(%) = 22 + (25 —19)* —1 < 0
910(%) = wow3 — 124 < 0
g1 (%) = —w3r9 < 0
912(%) = w509 < 0
913(%) = xw7 — w508 < 0

The best known solu-

tion is * =(0.9971, —0.0758, 0.553, 0.8331, 0.9981, —0.0623, 0.5642, 0.8256,

0.0000024)

c05
Maximize:

where f(2*) = 0.866.

10
f@ = b -
i=1

i=1 j=1

5 5
g g Cz',jZE10+z'!L"10+j—2

5

3
Z djx10+j
Jj=1

APPENDIX A. BENCHMARK FUNCTIONS

subject to:

5
— E E 2
= Qg L5 — 2 Ci i X10+i — ijx10+j — €5 S 0

and
e = (- 15, —27,-36,—18,—12)
a = (30,-20,-10,32,—10)
o = (—20, 39 —6,39, —20)
c3 = (—10,-6,10,—6,—10)
cy = (32,-31,-6,39,—-20)
cs = (—10, 32 —10, —20, 30)
d = (4,8,10,6,2)
a = (-16,2,0,1,0)
aa = (0,-2,0,4,2)
a3 = (—=35,0,2,0,0)
a; = (0,-2,0,—4,-1)
as = (0, -2,1,-2.8)
ag = (2,0, 4 0,0)
a; = (-1,-1,-1,—1,-1)
ag = (—1,-2,-3,-2,-1)
ag = (1,2,3,4,5)
ao = (1,1,1,1,1)

where the bounds are 0 < z; <100 (¢ = 1,2,...,15). The best known solution
=(0, 0, 5.147, 0, 3.0611, 11.8395, 0, 0, 0.1039, 0, 0.3, 0.3335, 0.4, 0.4283,
0.224) where f(#*) = —32.386.

. c06
Minimize:

subject to:

91(7) = —21 + 35250 + 3525F

ha(%) = —300x3 + 750025 — 750025 — 252475 + 2524m6 + w324 =
hs(%) = 100xe 4+ 155.365x4 + 250027 — xoxy — 252427 — 15536.5 =
hy(Z) = —z5 + In(—x4 +900) =

hs(Z) = —x¢ + In(zy +300) =

he(Z) = —x7 + In(—2x4 + 700) =

o O O O O O

23.

24.

91

where the bounds are 0 < x; < 1000, 0 < 25 <40, 0 < 23 <40, 100 < a4 <
300, 6.3 < x5 < 6.7, 5.9 < 25 <64, and 4.5 < 7 < 6.25. The best known
solution is #* =(193.77835, 0, 17.3272, 100.01566, 6.6846, 5.9915, 6.2145) where
f(&*) = 193.7783.

c07

Minimize:
f(Z) = —9x5 — 1528 + 621 + 1625 + 10(26 + 27)
subject to:

hl(f) =T + 29 — T3 — Xy =
hg(f) = 0031’1 + 0011’2 — 1’9(1'3 + 1’4) =

hg(f) = XT3 + T — Iy

I
o oo o oo

hy(Z) = x4 + 7 — 28
g5(%) = w3 + 0.02z6 — 0.0255
gﬁ(f) = x9x4 + 0.0227 — 0.0252%

IA A

where the bounds are 0 < x; < 300 (: = 1,2,6), 0 < x; < 100 (i« = 3,5,7),
0 < x; <200 (i = 4,8), and 0.01 < z9 < 0.03. The optimum solution is at
Z* =(0, 100, 0, 100, 0, 0, 100, 200, 0.1) where f(z*) = —400.

c08

Minimize:

subject to:

1(Z) = =227 + 82% — 827 + x5 — 2

< 0
92(T) = —dat + 3227 — 8827 + 9621 + 15 — 36 < 0
where the bounds are 0 < z; < 3 and 0 < x5 < 4. The optimum solution is at

7" =(2.3295, 3.17846) where f(i*) = —5.5079.

92

APPENDIX A. BENCHMARK FUNCTIONS

Appendix B

Results for the Mezura-Coello

Benchmark

The results for the engineering problems proposed as benchmark by Mezura and
Coello [5] are in Tables B.2 B.9. The optimal values for these problems are summa-

rized in Table B.1.

| Function | Optimal value | max/min

c01 —47.761 Minimize
c02 961.715 Minimize
c03 8927.5888 Minimize
c04 0.866 Maximize
c05 —32.386 Maximize
06 193.7783493 | Minimize
c07 —400 Minimize
c08 5.5079 Minimize

Table B.1: The known or reported optimum values for the rest of the test functions.
The column maz/min tells whether the problem is a maximization or a minimization
to better interpret the results.

93

APPENDIX B. RESULTS FOR THE MEZURA-COELLO BENCHMARK

| Statistic value | ES(u+A) | B-ES(u+A) || DE_1 | B-DE_1 |

best -45.14793 -47.761 47.761 47.761
worst -40.4601 -42.47365 47.759 47.6708
mean -43.4492 -46.81045 47.7609 47.757
median -43.449 -46.81045 47.761 47.761
variance 0.947 1.6654 1.021E-7 | 2.602E-4
standard dev. 0.973 1.2654 3.196E-4 0.016
feasibles 0 0 0 0
e-feasibles 30 30 30 30

Table B.2: Results for function c01. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fifth is the comparison between the normal DE and the Baldwinian one respectively.

| Statistic value | ES(u+) [B-ES(u+A) | DE_1 | B-DE_1 |

best 961.7181 961.7244 961.7151 | 961.7151
worst 969.401 966.21389 961.7151 | 961.7151
mean 964.003 963.11675 961.7151 | 961.7151
median 963.3009 962.8708 961.7151 | 961.7151
variance 4.689 1.74 3.761E-14 | 2.457E-12
standard dev. 2.1654 1.319 1.939E-7 | 1.567E-6

feasibles 0 0 0 0

e-feasibles 30 30 30 30

Table B.3: Results for function c02. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

| Statistic value | ES(u+) | B-ES(u+\) | DE_1 | B-DE_1 |
best
worst

mean

median

variance
standard dev.
feasibles 0 0 0 0
e-feasibles 30 30 30 30

Table B.4: Results for function c03. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

95

| Statistic value | ES(u+A) | B-ES(u+A) || DE_1 | B-DE 1

best 0.866 0.866 0.866 0.866
worst 0.512 0.571 0.866 0.866
mean 0.7657 0.828 0.866 0.866
median 0.8623 0.864 0.866 0.866
variance 0.0167 0.0081 5.05E-13 | 5.739E-11
standard dev. 0.1294 0.0904 7.106E-7 | 7.575E-6
feasibles 30 30 30 30
e-feasibles 30 30 30 30

Table B.5: Results for function c04. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

| Statistic value | ES(u+A) | B-ES(u+\) || DE_1|B-DE_1 |
best

worst
mean

median

variance
standard dev.
feasibles 30 30 30 30
e-feasibles 30 30 30 30

Table B.6: Results for function c05. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

| Statistic value | ES(u+) | B-ES(u+) | DE_1 | B-DE_1 |

best 452.557 440.694 193.786 | 193.785
worst 691.273 657.992 325.149 | 325.157
mean 550.058 544.574 220.059 | 206.923
median 539.914 536.7099 193.786 | 193.786
variance 3482.56 3481.63 2760.89 | 1553.06
standard dev. 59.013 59.005 52.544 39.408
feasibles 0 0 0 0
e-feasibles 30 30 30 30

Table B.7: Results for function c06. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

APPENDIX B. RESULTS FOR THE MEZURA-COELLO BENCHMARK

| Statistic value | ES(u+) [B-ES(u+\) || DE 1 [B-DE 1
best -401.92 -402.426 400 400
worst -397.906 -397.756 399.943 | 399.789
mean -400.21 -399.955 399.995 | 399.962
median -400.335 -400.28 399.999 | 399.999
variance 1.0639 1.1892 1.17E-4 | 0.0036
standard dev. 1.0314 1.0905 0.0108 0.0602
feasibles 0 0 0 0
e-feasibles 30 30 30 30

Table B.8: Results for function c07. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

| Statistic value | ES(u+A) [B-ES(u+A) || DE_1 | B-DE_1 |
best 5.50801 5.50801 5.50801 5.50801
worst 5.50801 5.50801 5.50801 5.50801
mean 5.50801 5.50801 5.50801 5.50801
median 5.50801 5.50801 5.50801 5.50801
variance 1.908E-16 7.045E-13 3.155E-30 | 3.155E-30
standard dev. | 1.381E-8 8.393E-7 1.776E-15 | 1.776E-15
feasibles 30 30 30 30
e-feasibles 30 30 30 30

Table B.9: Results for function c08. The second and third column represent the com-
parison between the normal ES and the Baldwinian one, respectively. The fourth and
fiftth is the comparison between the normal DE and the Baldwinian one respectively.

