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IntrodutionBiologially inspired models in omputer siene used for problem solving have re-sulted invaluable to the ommunity. It has been almost half a entury sine the�rst attempt were made towards suessful appliations of these models to real worldproblems.A model is by de�nition a simpli�ation of reality, and it is usually the ase that itan end in over-simpli�ation of observed phenomenon. In evolutionary omputationthis might be the ase sine, from the point of view of biology, neo-Darwinism is amore omplex model than any urrent evolutionary algorithm. This is also the asein many biologially inspired models as arti�ial neural networks, mahine learning,automata theory, and more.Making more and more omplex models seems to be a trend of hanging strength.While some researhers like more sophistiated methods for problem solving, otherssuggest that we should be trying to disover the inners of the urrent algorithms inorder to set them on more formal foundations.The main aim of this thesis is to present a biologially inspired, and to someextent, biologially aurate new trend in evolutionary omputation by expresselytrying to emulate the observed behavior known as the Baldwin E�et.A number of researhers have observed (in both, evolutionary omputation andevolutionary biology) a synergy between learning and evolution to a ertain extent.This synergy is ommonly (and mistakenly) known as the Baldwin E�et. While itis true that the Baldwin E�et explains this observed synergy, it is equally interestedwith the osts of learning over instint. Conerning learning and instint as a peu-liar duality, the Baldwin E�et an be thought as the synergy, osts and trade-o�sourring between them.Some experiments have been made by a handful of researhers, aquainted tosome degree with both biology and omputation, to study the Baldwin E�et inits omplete form. The results were promising and inspired the author in furtherstudying this phenomenon.This thesis is organized as follows:In the �rst Chapter we give a brief introdution to Optimization without wantingto make it the entral point. The key terms are explored and an introdution toloal searh and onstrained optimization will be given. These onepts will be usedthroughout the thesis, and it is reommended that the reader at least �ips thoughthem to be sure to understand the notation adopted and get used with names of1



2 LIST OF TABLESalready known terms.The seond Chapter is devoted to evolutionary algorithms. There, we develop thebasi de�nitions and algorithms. There is no attention given to results onerningproofs of onvergene rate or underlying mehanisms for the algorithms, instead wetry to develop the reader's intuition on the required steps to reate and understandan evolutionary algorithm. Some of the main branhes of this �eld are inspeted,and a number of variants are disussed. The notions of evolutionary strategies anddi�erential evolution will be the key for the presented experiments, and should begiven speial onsideration.In the next Chapter, we disuss about the Baldwin E�et. We are onentrated ona detailed explanation of the onepts and trends in this matter. We present the workof several other researhers in order to support our remarks, and give speial attentionto the Baldwin E�et as a whole. After developing the Baldwinian and Lamarkismonepts, we ontinue with a Setion devoted to Baldwin E�et in omputer siene.There we present the more traditional works in this �eld, and give explanations ofthe observed behaviors.The last Chapter is then �lled with the entral portion of this thesis. We presentthe term Baldwinian Optimization, whih to the extent of our knowledge has neverbeen used before. There we express the viability of using Baldwinian mehanisms tosolve di�ult onstrained optimization problems, and also give the key ideas on howto adapt a Baldwinian version of virtually any population based algorithm. We alsopresent a omparison between Baldwinian and non-Baldwinian versions of the samealgorithm, and lose with a small onlusion on the results obtained.The onlusions on the work presented follow these Chapters. There we argueabout the possibilities of the Baldwinian optimization as a researh resoure. Webrie�y argue that biologially inspired algorithms are more easily understood andadapted on the long run than other, more obsure, ones.



Chapter 1OptimizationThe body of mathematial results and numerial methods for �nding and identify-ing the best andidate from a olletion of alternatives without having to expliitlyenumerate all possible alternatives is alled Optimization. With the advent of theinformation era, the omputational power have made the optimization task easier,but at the same time have brought a new range of questions onerning the e�ienyand orretness of the algorithms used in optimization.In this Chapter we provide the basis for global and onstrained optimization. Theaims of this Chapter are to develop the required de�nitions and to present a range ofgeneral-purpose tehniques to attak an optimization problem.1.1 Basi ConeptsThe general optimization problem an be stated as follows. Given the pair (S; f),where S is an arbitrary searh spae, and f : S → R is a real-valued funtion tooptimize. With the optimum of the problem, we mean either the maximum of thefuntion or the minimum.For purposes of this thesis, the optimization problem will always be regarded as amaximization problem. Observe that every minimization problem an be transformedinto a maximization one by simply taking the problem as (S;−f).The value x∗ is alled the optimum (maximum) of the optimization problem (S; f)if and only if it satis�es f(x∗) ≥ f(x) for every x ∈ S. When if along with the searhspae we have a neighboring struture N : S → 2S de�ned on it, we an de�nethe notion of loal optimum as every value x∗local satisfying f(x∗local) ≥ f(x) for every
x ∈ N(x∗local). By notation we will de�ne X∗ = {x|x is an optimal solution of (S; f)},and X∗

local = {x|x is a loal optimal solution of (S,N ; f)}.Observe that the de�nition of a loal optimum is dependent on the neighboringstruture assoiated to the searh spae. With the appropriate neighboring struture,we an avoid loal optimum solutions that are not global ones. We an also note that
X∗ ⊂ X∗

local regardless of the neighboring struture N .In general, we will have that S ⊂ Rm, for ontinuous optimization, and S ⊂ Nm,3



4 CHAPTER 1. OPTIMIZATIONfor disrete optimization. We will all the elements x ∈ S solutions of the optimizationproblem, as they represent the possible solution values of an optimization problem.Similarly, we will all f(x), for x ∈ S, the values of a solution. By notation, f(x∗)will be alled the optimum value of the optimization problem.In general, we an only tell if we are at a loal optimum or not, sine the notionof loal optimum is based on a neighboring struture that is potentially very smallompared to the size of the searh spae S. In order to be sure that we are in theglobal optimum, we have to enumerate all possible solutions and hek if all of themare not greater than our proposed solution.We also require a little more from the neighboring struture, as not every strutureis useful. Given an optimization problem (S,N ; f), the neighboring struture is saidto be onsistent if for every pair of solutions x, y ∈ S, there exists a sequene (notneessarily �nite) {zi}i∈Z, suh that x = limi→−∞ zi and y = limi→∞ zi, and zi+1 ∈
N(zi) for every i ∈ Z. If the sequene is �nite, N is said to be �nitely onsistent.This de�nition de�nes whether a neighboring struture an lead from one point inthe searh spae to every other passing only through the neighbors (and the neighborsof the neighbors) of the points to be united. Observe that if S is �nite, then every Nis �nitely onsistent.Let us now de�ne a relation for neighboring. Given the relation ∼⊂ S × S, suhthat x ∼ y if and only if x ∈ N(y), we an de�ne ertain desirable properties of theneighboring struture N . We will say that N is oherent, if and only if ∼ is re�exive(i.e. x ∼ x) and symmetri (i.e. x ∼ y ⇔ y ∼ x).The notion of onsisteny is used by many stohasti loal searh algorithms toassert global optimality, while the notion of ohereny is mainly used for onveniene.There is also another de�nition that will prove useful in our study. We will saythat the funtion f is unimodal in T ⊂ S if and only if X∗

local of the redued problem
(T,N |T , f) has ardinality 1 (in other words, if there is only one loal optimum in T )If the funtion f is not unimodal in T , then it is said to be multi-modal.1.2 Loal searhThe �rst type of algorithms we might �nd in optimization history are the loal searhalgorithms. This early attempt to solve optimization problems an be regarded as afuntion

a : S → 2S where a(x) ∈ N(x) for eah x ∈ S (1.1)The algorithm an be either deterministi (i.e. a funtion as proposed above) orstohasti in whih ase we an generalize the above de�nition to be
a : S × [0, 1] → 2S where a(x, r) ∈ N(x) for eah x ∈ S, r ∈ [0, 1] (1.2)where the number r is onsidered to be the random portion of the algorithm.The pseudo-ode for the loal searh algorithm is given below to express the wayin whih the loal searh algorithm work.



1.2. LOCAL SEARCH 5Loal searh (stohasti)
i =initialSolution();
best =i;
iterations = 0;while( depth-not-satisfied ){

count = 0;// Here starts the algorithm a.while( pivot-rule-not-satisfied ){
j =next( N(i) );
count+ +;if( f(j) > f(best) )

best = j;}// We think of best as the prodution//of the algorithm best = a(i)
i = best;
iterations + +;}In this pseudo-ode we an observe a ouple of onditions, the depth ondition andthe pivot rule. This pair of onditions determine the loal searh algorithm.The pivot rule is the algorithm itself, and an be for instane steepest asent,meaning that the whole neighborhood of the solution i is to be searhed for the bestsolution available (count = |N(i)|). In the ase of greedy asent, we might use thepivot rule of stopping when the �rst better solution in the neighborhood is found(count = |N(i)| or best = i). In pratie, as the ardinality of the neighborhood N(i)an be in�nite, it is natural to onsider only a random sample of size n ≪ |N(i)|.This type of algorithms are deterministi in nature, but stohasti in behavior.The depth ondition is the termination riteria of the loal searh. It an rangefrom the one-time loal searh (when iterations = 1), to the loal optimality ondition(count = |N(i)| and best = i).Another important remark is that stohasti loal searh algorithms will have anon-deterministi pivot rule. This means that they might aept a solution generatedwithin the neighborhood based on a probabilisti ondition. Algorithms like simulatedannealing fall into this ategory, where a worst solution might be aepted with lowprobability.



6 CHAPTER 1. OPTIMIZATION1.3 Constrained OptimizationMost real world optimization problems are more omplex than the problems presentedin the last setion. In partiular, the solutions o�ered by the optimization proessmight not be appliable to real world after the over-simpli�ation proess of themodel.In order to overome this problem, the notion of onstrained optimization wasborn. It adds to the de�nition of an optimization problems the notion of feasibleregion and onstraints that must be satis�ed in order for the solution to be aeptable,but that are not objetives themselves.1.3.1 Constrained optimization problem de�nitionA onstrained optimization problem is a tuple (S,N ; f ; g1, g2, . . . , gn; h1, h2, . . . , hm),where S is the arbitrary searh spae, N : S → 2S is the neighboring struture, f :
S → R is the �tness funtion, gi : S → R whih represent the inequality onstraints,and hi : S → R whih represent the equality onstraints.We all feasible region to the set

F = {x ∈ S|gi(x) ≤ 0∀1 ≤ i ≤ n and hj(x) = 0∀1 ≤ j ≤ m} (1.3)and a solution x to the problem is aeptable if and only if x ∈ F . When there is asolution x suh that gi(x) = 0, the onstraint gi is said to be ative for x.The onstrained optimization problem is typially stated asoptimize f(x)subjet to
gi(x) ≤ 0, i = 1, 2, . . . , n

hj(x) = 0, j = 1, 2, . . . , mand in both ases, equality and inequality onstraints, an be linear or non-linear.The onstrained optimum is the value x∗ suh that is aeptable and the globaloptimum of the transformed problem (F , N |F ; f |F).1.3.2 Tehniques to handle onstraintsIn order to solve this type of optimization problems, researhers have developed anumber of tehniques. Most of them are variation of an already existing tehnique,or the transformation of the problem to a standard optimization problem that has itsglobal optimum at the onstrained optimum of the original problem.In the following setion we will examine many of this tehniques.



1.3. CONSTRAINED OPTIMIZATION 71.3.2.1 Penalty funtionsThe �rst idea used to solve onstrained optimization problems was to transform theproblem to global optimization one over S, and applying a penalty in �tness to thosesolutions that lay outside the feasible region. Here we will examine two di�erenttehniques that use this idea as inspiration.Total violation of onstraints The �rst tehnique used to solve onstrained op-timization problems was the total violation of onstraints. This tehnique onsistsof hanging the �tness funtion to add a penalty based on onstraint violation. Itsgeneral form allows a set of parameters to be adjusted for eah onstraint.The problem is then transformed to (S,N ; f ′) where
f ′(x) = f(x) −

n
∑

i=1

wig
+
i (x) −

m
∑

j=1

wn+jhj(x) (1.4)with g+
i (x) = max{0, gi(x)}where the numbers wk ∈ R+ for eah 1 ≤ k ≤ n+m represent the weights assoiatedto that onstraint funtion. These weights are not neessarily �xed during the wholeoptimization proess. One my start with small weights in the �rst stages of thealgorithms to then inrease them to enfore the onstraints later on.Observe that depending upon the values of {wi}, the global optimum of f ′ anbe the onstrained optimization. In general, when the weights approah in�nity, theglobal optimum of the funtion f ′ approahes the onstrained optimum of the funtion

f . There has been a number of attempts to set this parameters in a self-adapting way,but, beause of the simpliity of this tehnique, they have not worked as expeted.Maximum violation of onstraints As with the last tehnique, this is an earlyattempt to solve onstrained problems. The basi idea behind maximum violation ofonstraints is to take the maximum value of violation of the individual as the penaltyto the �tness funtion, instead of taking the sum of violations.The problem is then transformed to (S,N ; f ′)

f ′(x) = f(x) − max
0≤i≤n

{wig
+
i (x)} − max

1≤j≤m
{wn+jhj(x)} (1.5)with g+

i (x) = max{0, gi(x)}and h+
j (x) = |hj(x)| (1.6)where the numbers wk ∈ R+ for eah 1 ≤ k ≤ n + m represent, as in the previousase, the weights assoiated to that onstraint funtion. As before, the weights arenot neessarily �xed during the whole optimization proess. And yet again, whenthe weights are lose to in�nity, the global optimum of f ′ approahes the onstrainedoptimum of f .



8 CHAPTER 1. OPTIMIZATIONMore penalty tehniques We an see the last two tehniques to handle on-straints as a speial ase of a more general approah. The idea is to reate a funtionto transform the violation value of eah onstraint to math the desired behavior.Hene, we will de�ne two penalty funtions φ and ψ taking values of the onstraints
gi and hj respetively to assign a penalty to the original funtion.The problem is then transformed to (S,N ; f ′, {Gi}, {Hj}) with

f ′(x) = f(x) + φ(g1(x), g2(x), . . . , gn(x)) + ψ(h1(x), h2(x), . . . , hm(x)) (1.7)with the only onstraint that the funtions φ and ψ should be non-negative, and beevaluated as 0 when x ∈ F .There is a wide range of seletion for the funtions φ and ψ, but they shall not bedisussed here, as they are of seondary interest to the aims of this thesis.1.3.2.2 Rules of feasibilityA more sophistiated approah to solving the onstrained problem is the use of rulesto deide when a solution is better than another one. The main advantage of thesetehniques is that they do not need to set parameters to balane the strength of thepenalty. Instead, they use a set of rules to establish a natural order of �tness andviolation of onstraints.These tehniques are well-suited for evolutionary algorithms and other populationbased problem-solvers, as the omparison of two solutions is made based upon theestablished rules. The �tness funtion is then replaed by a binary funtion
b(x, y) =







−1 if x is worst than y
1 if x is better than y
0 if they are inomparables or the sameTotal violation rule The �rst approah on this group of tehniques is very similarto the �rst approah on penalty funtions. The binary omparison funtion usesthe total sum of onstraints in a similar way than in Equation (1.4). Let φ(x) =

∑n
i=1wig

+
i (x), ψ(x) =

∑m
j=1wn+jh

+
i (x), and R(x) = φ(x) + ψ(x), then the binaryfuntion an be regarded as

b(x, y) =







−1 if R(x) > R(y) or, R(x) = 0 = R(y) and f(x) < f(y)
1 if R(x) < R(y) or, R(x) = 0 = R(y) and f(x) > f(y)
0 if either R(x) = R(y) 6= 0 or, R(x) = R(y) = 0 and f(x) = f(y)This funtion an be interpreted as follows: x is better than y if and only if xviolates less the onstraints than y or, they are both feasibles but x has better �tnessthan y.This tehnique an be generalized muh like the penalty funtion tehniques, butagain, that generalization is out of the sope of this thesis and the exat generalizationproess is left to the reader.



1.3. CONSTRAINED OPTIMIZATION 9Multi-objetive rules Other, more reent type of rules, are onerned with thenotion of multi-objetive optimization. This is mainly due to the natural way in whihwe might transform the onstrained optimization problem into a multi objetive one,in whih every onstraint funtion is also an objetive. For this to work, the onstraintfuntions must be transformed to g+
i and h+

j as before.One this is done, the solution to the multi-objetive optimization problem de�nedby the tuple (S,N ; f, {g+
i }, {h+

j }), ontains the solution to the onstrained optimiza-tion problem (S,N ; f ; {gi}; {hj}).Before we an de�ne the binary funtion we need to develop several onepts fromthe theory of multi-objetive optimization.Given two vetors ~x, ~y ∈ Rk ~x is said to Pareto-dominate ~y if and only if, xi ≤ yifor every i = 1, 2, . . . , k, and xj < yj for at least one j = 1, 2, . . . , k. The notation fordominane is ~x � ~y whih is read ~x dominates ~y. This de�nition gives us a possibilityto ompare two multi-objetive solutions, in the sense that if ~x � ~y, then solution ~xis onsidered better than solution ~y.When we have a set of solutions (vetors) X = {~xi}, we an de�ne the Paretolevels in a reursive manner
PL(0) = {~x|∀~y ∈ X, ~y � ~x} (1.8)

PL(i+ 1) = {~x|∀~y ∈ X \
k
⋃

i=1

PL(i), ~y � ~x}The zero-Pareto level has a speial name, it is alled the Pareto front. For onve-niene, we will de�ne the funtion level(~x,X) as the Pareto level of the vetor ~x inthe set of solutions X.Before we an de�ne the multi-objetive rules, the following notation will be usedin the de�nitions of the binary omparison funtions. Let us de�ne the set
R = {r(x)|x ∈ X}where r(x) = (g+

1 (x), g+
n (x), . . . , g+

n (x), h+
1 (x), h+

2 (x), . . . , h+
m(x))representing all the onstraint values of a set of solutions X ⊂ S. Observe that

r(x) = ~0 means that x ∈ F .Pareto-rank We are, now, ready to de�ne one of the binaries funtions, desrib-ing what is known as Pareto-rank rules. We de�ne the binary omparison funtionas
b(x, y) =























−1

{ if level(r(x), R) > level(r(y), R)or level(r(x), R) = 0 = level(r(y), R) and f(x) < f(y)

1

{ if level(r(x), R) < level(r(y), R)or level(r(x), R) = 0 = level(r(y), R) and f(x) > f(y)
0 if level(r(x), R) = level(r(y), R) 6= 0



10 CHAPTER 1. OPTIMIZATIONfor any two values x, y ∈ X. The ondition level(x,R(X)) = level(y, R(X)) and
r(y) � r(x), is not required as one solution annot dominate any other one of thesame Pareto level. Observe that, although R depends on X, this dependene is notmade lear for larity in the formulas.Feasibility and dominane Another, widely used multi-objetive rules is theknown as feasibility and dominane. The binary omparison funtion an be desribedas

b(x, y) =







































−1







if r(y) � r(x)or r(x) 6= ~0 and r(y) = ~0or r(x) = ~0 = r(y) and f(x) < f(y)

1







if r(x) � r(y)or r(y) 6= ~0 and r(x) = ~0or r(x) = ~0 = r(y) and f(y) < f(x)
0 otherwisefor any two values x, y ∈ X. This funtion an be interpreted as, from two feasiblesolutions the best is the one with best �tness funtion, from two non-feasible solutionstake the one that Pareto-dominates, if one is feasible and the other is not take thefeasible.The biggest draw-baks of this rules are that it might be very di�ult to �ndthe feasible region in the �rst plae, and that the Pareto dominane dereases inintensity1 with inreasing dimensionality.1.3.3 Stohasti RankingThe rules as a strategy for onstrained optimization are good way to solve a problem,however, due to the problems just mentioned, many researhers in onstrained op-timization are searhing for new tehniques that an solve problems more e�ientlyand in a better way than with the previous tehniques.One of the better attempts to solve these intrinsi problems was made by Runars-son [17℄ when he proposed the stohasti ranking. The main idea behind stohastiranking is based on a parameter used by the traditional penalty funtion approah.His notation, however, is a little di�erent from our own, but for larity, his notationwill be used for the rest of this setion.The penalty funtion approah is

f ′(x) = f(x) + rgφ(g1(x), g2(x), . . . , gn(x)) (1.9)where
φ(g1(x), g2(x), . . . , gn(x)) =

n
∑

i=1

(max{0, gi(x)})21The probability than one random vetor dominates another random one dereases exponentially�as 2−d� with the dimension.



1.3. CONSTRAINED OPTIMIZATION 11or any other penalty funtion. The value rg may be variable over the generationnumber g.Runarsson notes that, while this approah works quite well with some problems,it is in general very sensitive to the value of rg as said in Setion 1.3.2.1. If rg is toosmall, a non-feasible solution may not be penalized enough, and if it is too big, therewill be no room in the optimization proess to improve the solution one they are inthe feasible region. This is speially true if the feasible region is not onneted, andthe exploration brought the searh in one portion of the feasible region that does notontain the onstrained optimum of the problem.The optimal setting for the values rg is problem dependent and an optimizationproblem in it own. As an alternative to this issue, the stohasti ranking de�nes away to simulate a dynami adaptation of the parameters rg.1.3.3.1 Constraint handlingFor any given penalty oe�ient rg > 0 let the ranking of λ individuals be
f ′(x1) ≤ f ′(x2) ≤ . . . ≤ f ′(xλ)where f ′ is the transformation of the �tness funtion given by Equation (1.9). Wewill use an abbreviation of Equation (1.9) to simplify notation, and let f ′(xi) = f ′

i =
fi + rgφi = f(xi) + rgφ(xi).If we examine two adjaent individuals in the order indued by rg in funtion f ′,we an observe that

fi + rgφi ≤ fi+1 + rgφi+1for every i = 1, 2, . . . , λ− 1.We de�ne the ritial penalty oe�ient r̆i for the adjaent pair i and i+ 1, as
r̆i = (fi+1 − fi)/(φi − φi+1)where it is assumed that φi 6= φi+1. Note that if we have rg �xed, then there are threeases for the inequality to hold.1. fi < fi+1 and φi ≥ φi+1: The omparison is said to be dominated by �tnessfuntion and 0 < rg ≤ r̆i, meaning that the ordering in �tness funtion is whatis deiding the ordering in f ′.2. fi ≥ fi+1 and φi ≤ φi+1: The omparison is said to be dominated by penaltyfuntion and 0 < r̆i < rg, meaning that the ordering in penalty funtion is whatis deiding the ordering in f ′.3. fi < fi+1 and φi < φi+1: The omparison is said to be non-dominated and

r̆i < 0, meaning that the ordering in f ′ is not deided neither by f nor by φ.



12 CHAPTER 1. OPTIMIZATIONObserve that the last possible ase fi ≥ fi+1 and φi ≥ φi+1 is not neessary, beauseit ontradits the assumption that f ′
i ≤ f ′

i+1. The non-dominated ase is also one inwhih the value of rg has no relevane. Its value is ritial, however, when omparingin the �rst two ases, as the value of r̆i ats as a threshold to deide whether a solution
xi is better or not than a solution xi+1. For example, if we inrease the value of rg inthe �rst ase to be higher than r̆i, then the solution xi will pass from being better, tobeing worse than xi+1. For the entire population, the hosen value of rgwill determinethe fration of individuals ranked only aording to the penalty funtion, and the oneranked by �tness funtion.Observe that not every possible value for rg an in�uene this seletion. Thereare upper rg and lower rg bounds suh that, if rg < rg, then every omparison amongsolutions will be based upon �tness funtion2, and if rg > rg, then every omparisonamong solutions will be based upon penalty funtion3. Observe that the values of rgand rg are dependant on the urrent solutions xi, i = 1, 2, . . . , λ.It has been disussed previously that neither of those ases will lead to the optimalonstrained solution. In this sense, the optimal value for rg must lay in the range from
rg to rg , so that the omparison among solutions will be balaned between penaltyand �tness funtion.1.3.3.2 The Stohasti ranking algorithmThe stohasti ranking is onerned with the simulation of maintaining the value rgin the range rg ∈ [rg, rg]. Stohasti ranking uses a probability pf of using only the�tness funtion for omparisons in ranking individuals in the infeasible region of thesearh spae.The ranking is ahieved by a bubble-sort-like proedure with an stohasti om-paring operator. Th proedure is halted when no hange in the rank ordering ourswithin a omplete sweep. This stohasti ranking proedure an be used as the se-letion operator of any evolutionary algorithm in whih the seletion is a sorting ofthe individuals aording to a ertain order, and then keeping the best individualsfor the next generation. This will be explained in detail in Chapter 2.Stohasti ranking proedurefor( j = 1 to λ )

Ij = j;for( i = 1 to N ){ for( j = 1 to λ− 1 ){ if( φ(Ij) = φ(Ij+1) = 0 or rand()< pf )2Called under-penalization3Called over-penalization



1.3. CONSTRAINED OPTIMIZATION 13{ if( f(Ij) > f(Ij+1) )swap( Ij, Ij+1 );}elseif( φ(Ij) > φ(Ij+1) )swap( Ij, Ij+1 );}if( no-swap-performed )
i = N; //break the for}Observe from this proedure, that the algorithm is performing at most N sweepsthrough the whole population. When pf = 0, the ranking is over-penalized, andwhen pf = 1, the ranking is under-penalized, so it is a good idea to take values for pfthat are neither lose to 0 nor to 1.Runarsson [17℄ notes that if the number N of sweeps the algorithm performs tendsto in�nity, then the ranking will be determined as follows, if pf > 1/2 then the rankingwill be under-penalized, and if pf < 1/2 then the ranking will be over-penalized. Thisan be regarded as inreasing N is e�etively the same as varying pf . By this reason,he deided to set N = λ, and modify pf to ontrol the performane of the algorithm.The result of stohasti ranking in the well known benhmark are given in theappendix, with exeption of the funtion g02 sine the values obtained in this thesisare muh better than the reported by Runarsson.



14 CHAPTER 1. OPTIMIZATION



Chapter 2Evolutionary AlgorithmsThe origins of evolutionary omputation an be traed bak to the late 1950's, how-ever, the new-born �eld remained relatively unknown to the sienti� ommunity foralmost three deades, mainly due to the lak of omputational power in the earlystages of evolutionary omputation. With the works of Holland [11℄, Rehenberg [16℄,Shwefel [18℄ and Fogel [8℄, the evolutionary omputation started to grow, and weurrently observe a steady inrease in the number of publiations and onferenes inthe �eld.The most signi�ant advantage of using evolutionary algorithms over other opti-mization tehniques lies in the great adaptability and �exibility of the evolutionarysearh, along with the robust performane and global searh harateristis [1℄. Infat, evolutionary omputation should be regarded as a general adaptable onept forproblem solving, speially well suited for di�ult optimization problems, rather thana olletion of related and ready-to-use algorithms.2.1 De�nition of an Evolutionary AlgorithmGiven an optimization problem (S; f), de�ned as in Setion 1.1, with a searh spae
S, and a funtion f : S → R, an evolutionary algorithm is a tuple

EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O) (2.1)where, Ω is the searh spae of the algorithm, Πk = Ωk is the set of all possiblepopulations of size k and τ : Ω → S is a funtion mapping the searh spae ofthe optimization problem to the searh spae of the evolutionary algorithm; Ψ =
(ψ1, ψ2, . . . , ψn), where ψi : Πk × [0, 1] → Πk for every 1 ≤ i ≤ n, and representthe mutation operators; Φ = (φ1, φ2, . . . , φm), where φi : Πk × [0, 1] → Πk for every
1 ≤ i ≤ m, and represent the rossover operators; σ : Πk×Πk×Rk×Rk× [0, 1] → Πk,and represent the seletion operator ; and O : Πk × [0, 1] → Πk represents the orderof the operators.By notation, let K = {1, 2, . . . , k}. We will all ψi mutation funtions, and φirossover funtions. Also, we all populations to the elements of Πk; they will usually15



16 CHAPTER 2. EVOLUTIONARY ALGORITHMSbe represented by Pi = (Pi,1, Pi,2, . . . , Pi,k). For the sake of larity, we will de�ne
Ψ(Pi, r) = ψn ◦ . . .◦ψ2 ◦ψ1(Pi, r), and Φ(Pi, r) = φm ◦ . . .◦φ2 ◦φ1(Pi, r) to assume thesame r will be used in every internal funtion. This r represents the random numbergenerated to make the operators non-deterministi. It is not hard to see that onerandom number is enough to reate an arbitrary amount of random data.Some times it will be useful to apply the operators diretly to individuals (i.e.elements of populations) instead of populations.In the ase of mutation, we will overload1 the ψj funtions to the funtions ψj :
Ω × [0, 1] → Ω, and assume that, if Pi = (pi,1, pi,2, . . . , pi,k), then

ψj(Pi, r) = (ψj(pi,1, r), ψj(pi,2, r), . . . , ψj(pi,k, r)) (2.2)As for the rossover operators, we will usually require a more omplex mehanismto overload the funtions. Lets assume that the set of integers R = {r1, r2, . . . , rn} issuh that we an rede�ne the rossover operators as φj : Ωrj × [0, 1] → Ω, and assumewe have a funtion sj : [0, 1] → Krj . This funtion will obtain a vetor ontainingthe indexes of rj individuals from the population Pi to be rossed by the new φjfuntion. In this sense, obtaining k uniform random numbers vi from r�one for eahnew individual in the population�, the rossover funtion will be given by
−→xj,u = sj(vu) for 1 ≤ u ≤ kLet qj,u,t = p(xj,u)t

∀1 ≤ t ≤ rj

φj(Pi, r) = (φj(qj,1,1, qj,1,2, . . . , qj,1,rj
; r), . . . , φj(qj,k,1, qj,k,2, . . . , qj,k,rj

; r)) (2.3)Observe that −→xj,u is a vetor with rj elements, and that eah element (xj,u)t of thevetor is a number between 1 and k, so they an serve as indexes for individuals inthe population.The funtion O is usually de�ned as
O(Pi, r) = Ψ ◦ Φ(Pi, r) (2.4)where Pi = (pi,1, pi,2, . . . , pi,k), and pi,j ∈ Ω for every j ∈ K.In a more general setting, the operators may be applied to populations with a sizeother than k, but the generalization of the de�nition of an evolutionary algorithm asstated before is simple and is left to the reader.The general sketh for the evolutionary algorithm isEvolutionary Algorithminitialize-population P0;Let i = 0;while( termination-riteria-is-not-met )1As in programming, two funtions with the same name, but with di�erent kind (number of type)of arguments. In general, it is lear from ontext whether we are referring to one or another.



2.2. GENETIC ALGORITHMS 17{
Pf = O( Pi, rand() );
Fi = computeF itness(Pi);
Ff = computeF itness(Pf);
Pi+1 = σ( Pf, Pi, Ff, Fi, rand() );
i = i+ 1;}Eah of the loop's yles are alled generations, and the termination riteria ouldbe that a ertain number of generations have passed, or that a ertain amount of�tness funtion evaluations have been reahed, or a more sophistiated test suh as apopulation onvergene rate or a generational di�erene threshold has been met, et.Given a population P = (p1, p2, . . . , pk), the �tness is usually omputed as F =

(f ◦ τ(p1), f ◦ τ(p2), . . . , f ◦ τ(pk)), where f ◦ τ(pi) is alled the �tness of individual
pi. The majority of urrent implementation of evolutionary algorithms desend fromthree related but independently developed approahes: Geneti Algorithms, Evolu-tionary Programming and Evolutionary Strategies.Evolutionary programming was originally o�ered as an attempt to reate arti�ialintelligene. The approah was to reate �nite state mahines (FSM) to predit eventsbased upon former observations. A FSM is an abstrat mahine whih transforms asequene of input symbols into a sequene of output symbols. The transformationdepends on a �nite set of states and a �nite set of transition rules.The other two main evolutionary algorithms are more popularly used to optimiza-tion and will be given greater attention.2.2 Geneti AlgorithmsGeneti algorithms (GA) were invented by Holland [11℄ in the 1960's, and were de-veloped by Holland, his students and his olleagues at the university of Mihigan forover a deade. Holland's goal, in ontrast to that of evolutionary strategies and evo-lutionary programming, was not to design algorithms to solve spei� problems, butrather to formally study the phenomenon of adaptation as it ours in nature and todevelop a theory that ould aid to import those mehanisms to omputer systems.What Holland developed was a method to move a population of hromosomes2 toa new population by using an arti�ial implementation of natural seletion togetherwith the geneti-inspired operators of rossover, mutation and inversion. In thismehanism, we have another seletion operator to deide whih individuals are goingto be seleted for reprodution. This and the other operators will be analyzed laterin greater detail.2In its simplest form this hromosomes are strings of bits.



18 CHAPTER 2. EVOLUTIONARY ALGORITHMSIn the last several years there has been widespread interation among researhersstudying various evolutionary omputation methods, and the boundaries between GA,evolutionary strategies, evolutionary omputation, and other evolutionary approaheshave broken down to some extent.Nowadays, researhers often use the term geneti algorithm to refer to somethingquite di�erent from Holland's original oneption. In general terms, GAs are the more�exible evolutionary omputation algorithms in terms of the available operators andrepresentations.2.2.1 The Simple Geneti AlgorithmThe traditional GA, also known as Simple Geneti Algorithm (SGA) is detailed asfollows. Using the notation for evolutionary algorithms, we de�ne the simple ge-neti algorithm as SGA(pc, pm) = EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O), where Ω = Zl
2, and thefuntion τ is problem dependent.It only ontains one mutation (m = 1) funtion whih, given an individual p ∈ Ω,and getting random numbers s ∈ {0, 1} and t ∈ {1, 2, . . . , l} from r,

ψ(p, r) =

{

p if s = 0
(p1, p2, . . . , pt−1, 1 − pt, pt+1, . . . , pl) if s = 1

(2.5)where the probability of s = 1 being known as the mutation probability pm, whihis usually set to 1/l. On the other hand, t is expeted to be uniform. We an see ashemati representation in Figure 2.1, where we an observe the mutation spot, andthat position is �ipped in the individual as a result of the mutation.
Figure 2.1: The shemati view of the simple mutation operator.It ontains also only one rossover funtion (n = 1) in its rossover operator whih�rst selets the parents with what is alled �tness proportion or roulette wheel. Theamount of parents is always 2, whih means r1 = 2. The �tness proportional is thefuntion whih, given the population P = (p1, p2, . . . , pk)

s1(r) = (x1, x2) (2.6)suh that P (x1 = i) =
f(τ(pi))

∑k
j=1 f(τ(pj))and P (x2 = i) =
f(τ(pi))

∑k
j=1 f(τ(pj))
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Figure 2.2: The shemati view of the one-point rossover operator.whih an be interpreted as one individual having a probability proportional to thatindividual's �tness of being seleted in the urrent population. The rossing funtionis then de�ned as follows
φ(px1

, px2
, r) =

{

(px1,1, px1,2, . . . , px1,t−1, px2,t, . . . , px2,l) if s = 1
px1

if s = 0
(2.7)with t ∈ {2, 3, . . . , l} being a random number obtained (from r) with uniform prob-ability, and s ∈ {0, 1} is a random number whih probability of being 1 is equalto a onstant known as the rossover probability pc whih is usually set to 0.7, and

(x1, x2) = s1(r). The shemati representation of this operator is in Figure 2.2, wherewe an observe the rossover point, and the resulting individual.This rossover funtion is known as one-point rossover, beause it is equivalentto taking one rossover spot (i.e. the number t) and taking the �rst t genes from the�rst parent and the rest from the seond to reate a new individual.2.2.2 More operators and odingsThere are a number of operators for rossing and mutation other than the reviewedin the last setion. There are also some oding possibilities for the genotype, insteadof the usual Zl
2. We an even use di�erent ardinalities for every gene, i.e. Ω =

Zi1 × Zi2 × . . .× Zil , where ij ∈ N and 1 ≤ j ≤ l.There is also a possibility of using data strutures in the plae of genes. Whena GA has data strutures as genes, and operators to at on them are provided, theevolutionary algorithm resulting from it is known as Geneti Programming [12℄.Inversion operator There is a biologially inspired mutation operator that we willreview. It is alled inversion mutator, and, given the random numbers s ∈ {0, 1}, asin the simple mutation, 1 ≤ t ≤ l − 1, and t+ 1 ≤ u ≤ l uniform numbers obtained



20 CHAPTER 2. EVOLUTIONARY ALGORITHMSfrom r, it an be viewed as the funtion
ψ(p, r) =

{

(p1, p2, . . . , pt−1, pu−1, . . . , pt+1, pt, pu, . . . , pl) if s = 1
p if s = 0It ould be used to preserve some qualities of the genotype that other mutationoperators would destroy, as the sum of the 1's in the genome, or the genes itself, butto hange the order3.Shu�e operator Another useful mutation operator that preserves the genes in theindividual is the shu�e operator. It onsists of hoosing a permutation of size l. Thisoperator assumes an uniform type of genes in eah position, i.e. Ω = Al, where A isthe set of possible genes. This operator an be mathematially expressed by
ψ(p, r) =

{

(pα(1), pα(2), . . . , pα(l)) if s = 1
p if s = 0where s ∈ {0, 1} as usual representing the mutation probability, and the funtion

α : {1, 2, . . . , l} → {1, 2, . . . , l} a permutation (i.e. 1�1 and onto) obtained from r.Two-point rossover There is another widely used rossover operator for GAs,and is known as two-point rossover, beause it resembles the one-point rossover,but with two rossover spots. Formally, given the random numbers s ∈ {0, 1} as inthe one-point rossover, 1 ≤ t ≤ l − 1, and t+ 1 ≤ u ≤ l uniform numbers obtainedfrom r, it an be viewed as

Figure 2.3: The shemati view of the two-point rossover operator. Observe thatthe genotype is viewed as if it were a ring.
φ(px1

, px2
, r) =

{

(px1,1, . . . , px1,t−1, px2,t, . . . , px2,u−1, px1,u, . . . , px1,l) if s = 1
px1

if s = 03Useful for solving problems as the traveling salesman problem (TSP).



2.2. GENETIC ALGORITHMS 21This operator has a fame of being better than the lassial one-point rosser, andalso, it is easy to see that it generalizes it. But there is an even more renown rossoveroperator.Uniform rossover The uniform rossover is the rossover operator that betterpreserves diversity in the population. It is a generalization of the one and two-pointrossover operators. As its predeessors, it requires a set of random numbers, the�rst of whih is exatly the same as before, s ∈ {0, 1}, while the others vary a little;obtain t1, t2, . . . , tl, where ti ∈ {0, 1} for every 1 ≤ i ≤ l, with uniform probability.The funtion of this operator an then be viewed as

Figure 2.4: The shemati representation of the uniform rossover operator. Notethat at every rossover spot, the o�spring has the genes of the seond parent, whileit has the genes of the �rst elsewhere.
φ(px1

, px2
, r) = (q1, q2, . . . , ql) (2.8)where qi =

{

px1,i if ti = 1
px2,i if ti = 0This operator is shematially presented in Figure 2.4.Tournament Aside from rossover and mutation operators, there are many sele-tion operators. Maybe the best known is the tournament seletion, and its variations.In simple words, it takes a set of individuals at random (usually with uniform prob-ability), and selets the �ttest one of them to be part of the next generation. Themost used type of tournament is the binary tournament, where we are to selet a pairof individuals in eah step, and then selet the best one. Formally, we an de�nethe n-tournament as, getting, as usual from the random number r, uniform randomintegers i1,1, i1,2, . . . , i1,n; i2,1, . . . , i2,n; ik,1, . . . , ik,n, the seletion operator would be

σ(P,Q, FP , FQ, r) = (b1, b2, . . . , bk)and ba = arg max
0≤j≤n

{f ◦ τ(qia,j
)}



22 CHAPTER 2. EVOLUTIONARY ALGORITHMSObserve that this seletion mehanism ignores the previous generation P and isonly onerned with the �tness of the newly generated population Q. This is theusual form of the seletion operators in newer geneti algorithms.One of the main advantages of this seletion mehanism is that we don't need toevaluate the �tness of the individuals diretly if we have a less-expensive mehanismto deide whether one individual is better than the other.For example, if we want to solve the problem of ontrolling a system withoutmaking it rash, and the individuals represent the ations to take, we only require toknow if one individual is able to maintain the system working for more time than theother, instead of knowing exatly how muh time they an both keep it working.The main disadvantage of them is that the best solution found so far ould be lost(i.e. not seleted). In order to avoid the lost of the best individual during seletion, theoperator an be hanged to inlude a number of the best individuals of the previousgeneration automatially into the next one. This type of seletion mehanisms areknown as elitist seletion. The elitism an be of one or two individuals or even thewhole population.Challenge (Probabilisti Tournament) There is a variation of the tournament,less used in the literature, whih instead of always seleting the best out of the set ofseleted individuals, selets the best only with a ertain probability. This mehanismis sometimes referred to as hallenge seletion or probabilisti tournament.The seletion pressure is a measure of the probability of seleting individuals withlow �tness. A high seletion pressure gives small or zero probability of seleting theworst individual. The tournament is a good example of a high pressure seletionmehanism, while the roulette wheel is the lassi example of a middle pressure se-letion. In the hallenge the seletion pressure is relaxed ompared to the normaltournament, but preserves the good qualities of the tournament over the roulettewheel.2.3 Evolutionary StrategiesThe evolutionary strategies (ES) were developed in Germany in the 1960s [16, 18℄ tosolve di�ult hydrodynamial problems. It simulates the evolution at an individuallevel, and as a result, the rossover operator is onsidered seondary.The main ideas behind evolutionary strategies are a self-adapting mutation onthe individuals, along with a deterministi and extintive seletion4. ESs are alsounder the in�uene of the neo-Darwinism used in many evolutionary algorithms, andin partiular in GAs. The uses and roles are, though, substantially di�erent in ESsthan in GAs [4℄, and we will disuss a little about this di�erenes.4The best individuals are to form the next generation, in onsequene, the worst individuals willnever be seleted.



2.3. EVOLUTIONARY STRATEGIES 23To begin with, evolutionary strategies are more onerned with phenotype asthere is no oding from genotype to phenotype. Also, the rossover is as importantto GAs as the mutation is important to ESs. The GA's searh progresses throughreombination of genes in good individuals, while the searh progresses in ES's viathe mutation of promising individuals.The order of the operators is also hanged, and the next generation's populationis seleted after evaluating the o�springs of the last generation, in ontrast to theGA's way, in whih the seletion proess is arried away to reate the o�springs.This obeys to a philosophial remark. As mutation is viewed as the main operator,mutation is onstruting the atual solutions, and its e�et should not be disruptedrossing over. The good solutions are thought to ome from prior good solutions viamutation. After this, the rossover an try to improve the exploration, but withoutloosing any mutated individual.2.3.1 The ES(1 + 1)The �rst evolutionary strategy ever made was the ES(1 + 1), in whih only oneo�spring was generated from one single parent. Needless to say there was no rossoveroperator in this early version of the ESs. Traditionally, Ω = Rl, and although we anthink of other type of odings, apparently it is part of the de�nition of a ES to be realoded. This simpli�es the funtion τ in the sense it is simply the identity funtion.We will use the notation p = (x1, x2, . . . , xl) for the individual.The �rst mutation operator used was simply to add a normal value to every xi.Formally, this operator an be thought of as obtaining normal values si ∼ N(0, 1) for
1 ≤ i ≤ l, and then the mutation funtion is

ψ(p, r) = p+ (s1, s2, . . . , sl) (2.9)This operator o�ers the advantage of no extra parameters to adapt, but unfor-tunately has proven insu�ient to solve many problems. This si mainly due to theinability of the mutation operator to adapt to a resaling of the funtion. It is obvi-ously not the same task to optimize the funtion f(~x) =
∏k

i=1 xi as it is to optimize
f(~x) =

∏k
i=1 109xi, although oneptually the problems are of the same di�ulty.For this reason, a more omplex operator was developed.The 1/5-rule The �rst attempt to reate a self-adapting mutation was the so-alled

1/5-rule. The idea behind this is to have a ontrol value representing the intensity ofmutation to apply. The value of l2 = 1, and by simpliity, we use l instead of l2. Theindividual is then de�ned as
p = (x1, x2, . . . , xl; σ)where σ is the intensity of mutation. Then, a new individual is onstruted by addinga normal value with the parameter σ as standard deviation. The operator an be



24 CHAPTER 2. EVOLUTIONARY ALGORITHMSviewed as, obtaining normal values si ∼ N(0, σ) with 1 ≤ i ≤ l, and the funtion is
ψ(p, r) = p+ (s1, s2, . . . , sl)This operator would not be very di�erent from the one in (2.9) if the value of σwere �xed. This value, however, is not �xed, but it is updated every ertain numberof generation (usually 20) as follows
σ =







0.82σ if e < 1/5
1.22σ if e > 1/5
σ otherwisewhere e is the number of suessful o�springs in the last (20) generations. By thenumber of suessful o�spring individuals we mean the number of individuals thatimproved their parent.As we an see, if the individual is trapped in a partiularly di�ult loal optimum,the number of suessful o�springs will very likely be less than 1/5 thus dereasingeven more the value of σ and onsequently making more and more di�ult to esapethis loal optimum.This is the main reason why the generalization of the ES(1 + 1) was developed.2.3.2 ES(µ, λ) and ES(µ+ λ)The basi sheme of the generi ES is, following the formal notation, de�ned by

ES(µ + λ) = EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O) or ES(µ, λ) = EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O).The di�erene between them is in the seletion operator, µ represents the numberof parents in the population, while λ is the number of o�springs that the parentswill have. In ES(µ+ λ), the parents are to be ompared with their o�spring duringseletion to deide what is going to be the next generation, while in ES(µ, λ), thebest µ o�spring will ompletely replae the parents population as the next generation(µ ≤ λ).
ES(µ, λ) an be seen as the non-elitist version of ES(µ+λ), whih has full elitism5.The most important idea behind the new operators of the more sophistiated ESsis to add a number of new values to the individuals, and use those values to diret themutation and the searh itself. In this sense, the individuals onsist of an objetiveportion (namely, the values of xi) and a ontrol portion. This is e�etively the sameas hanging Ω = Rl1 × Rl2 instead of the usual Ω = Rl. We will use the notation

p = (x1, x2, . . . , xl1 ; c1, c2, . . . , cl2) (2.10)and we will use ~x = (x1, x2, . . . , xl1) to refer to the objetive part, and ~c = (c1c2, . . . , cl2)to refer to the ontrol portion of the individual. For larity, we will still use the num-ber l, but we will set it to l = l1 + l2.5We mean by full elitism the behavior of a seletion operator in whih the only way for anindividual to be part of the next generation is by being better (in �tness) and replaing one of thelast generation.



2.3. EVOLUTIONARY STRATEGIES 25Observe that we an de�ne the funtion τ(p) = ~x, as the ontrol values are notpart of the optimization proess.In these methods a deterministi rule�as the 1/5-rule�, is no longer used. In-stead, we let the ontrol parameters to self-adapt, and add those parameters for eahobjetive value.The ontrol parameters are also subjet to mutation and reombination, whih willallow evolution to selet the best values of the parameters by itself. It is expeted thatthose individuals with good ontrol values will end up having a good �tness value,and in the long run, will give birth to better individuals.2.3.3 More operatorsThe obvious introdution of rossover operators surges from the availability of manyindividuals in the population. In ESs there are two types of rossover: sexual andpanmiti. In the sexual rossover, the o�spring is generated by exatly two parents,and in the panmiti rossover, we selet one individual to play the role of one parent,and for every objetive and ontrol value we hoose another random (with replae-ment) parent. In the formal notation, the sexual rossover has values ri = 2, while inthe panmiti version, ri = l + 1.The panmiti version of the rossover operators reates more diversity in thepopulation, but slows down onvergene. It is normally used in very di�ult problems.Disrete rossover The �rst rossover operator used in ESs was the disreterossover. It onsists of interhanging values from the parents to reate the o�spring.This is very similar to the uniform rossover of the GAs. The formal funtion is asfollows
φ(p, p′, r) = (q1, q2, . . . , ql) (2.11)where qi =

{

pi if si = 1
p′i if si = 0where si ∈ {0, 1} is an uniform random number for 1 ≤ i ≤ l. The panmiti versionof this operator an be de�ned as

φ(p′, p1, p2, . . . pl, r) = (q1, q2, . . . , ql)where qi =

{

p′i if si = 1
pi,i if si = 0

(2.12)This rossover is the easiest to ompute from all, but it is also the one withthe worst diversity. Observe that no new value is generated as we only generate anew individual with values already in the population. For this reason, even moresophistiated operators were reated.



26 CHAPTER 2. EVOLUTIONARY ALGORITHMSIntermediate rossover The next used rossover operator is alled intermediaterossover, and was proposed, as its name implies, to make an o�spring at the averageof two parents. The formal funtion of this operator requires no random numbers(exept for the seleted parents), and is
φ(p, p′, r) = (

p1 + p′1
2

,
p2 + p′2

2
, . . . ,

pl + p′l
2

) (2.13)and its panmiti version is
φ(p′, p1, p2, . . . pl, r) = (

p′1 + p1,1

2
,
p′2 + p2,2

2
, . . . ,

p′l + pl,l

2
) (2.14)Observe that this rossover does reate new values for the individual. By alwaysaveraging two parents (in its sexual form), it tends to make the population onvergeeasily. By generalizing this idea of the average, new operators were proposed.Generalized intermediate rossover There also exists a generalized version ofthe intermediate rossover, to allow a weighted average of the two parents. Thisis known as the generalized intermediate rossover. The formal version requires anuniform random number η ∈ [0, 1], and the funtion is

φ(p, p′, r) = (ηp1 + (1 − η)p′1, ηp2 + (1 − η)p′2, . . . , ηpl + (1 − η)p′l) (2.15)and the panmiti version is
φ(p′, p1, p2, . . . , pl, r) = (ηp′1 +(1−η)p1,1, ηp

′
2+(1−η)p2,2, . . . , ηp

′
l +(1−η)pl,l) (2.16)Observe that this rossover has the possibility of generating new individuals alongthe line segment joining the two parents (in the sexual version). This notion an beeven more general, as we are still on�ning the searh for o�springs to a relativelysmall spae.Generalized rossover The last rossover to disuss here is alled generalizedrossover, and reates o�springs on the hyper-uboid with orners on the parents.That is, instead of using the same value as the weighted average of the parents, arandom value ηi ∈ [0, 1] is reated for eah value 1 ≤ i ≤ k, and the weighted averageis reated for eah value. The formal funtion is

φ(p, p′, r) = (η1p1 + (1 − η1)p
′
1, η2p2 + (1 − η2)p

′
2, . . . , ηlpl + (1 − ηl)p

′
l) (2.17)and its panmiti version is

φ(p′, p1, p2, . . . , pl, r) = (η1p
′
1 + (1 − η1)p1,1, η2p

′
2 + (1 − η2)p2,2, . . . , ηlp

′
l + (1 − ηl)pl,l)(2.18)An important remark is that, unlike the GA's rossover operators, these operatorsan be applied to either only the objetive values (~x) or to the ontrol values (~c), thusinreasing the mathing possibilities to reate a omplete rossover operator.In general, it is used the generalized intermediate, or the generalized rossover onthe objetive values, and disrete on the ontrol values, but other ombinations areequally possible.



2.3. EVOLUTIONARY STRATEGIES 27Control mutation The natural way to extend the individuals is to add a ontrolparameter for eah objetive parameter to optimize. In this sense, the mutation willbe ontrolled by these parameters. In this ase, l1 = l2, and Ω = Rl1 × Rl1
+, and thus

p = (~x;~σ) = (x1, x2, . . . , xl1 ; σ1, σ2, . . . , σl1) (2.19)Observe the di�erene against (2.10), in whih only one ontrol value was used.As stated before, the ontrol values are not to be hanged by a deterministi rule,but by another mehanism.The ontrol mutator funtion an be de�ned with l1 + 1 standard normal values
t′, ti ∼ N(0, 1), and l1 normal values si ∼ N(0, σi exp(τ ′′t′+τ ′ti)), for every 1 ≤ i ≤ l1.The funtion is then de�ned as
ψ(p, r) = (~x+(s1, s2, . . . , sl1); σ1 exp(τ ′′t′+τ ′t1), σ2 exp(τ ′′t′+τ ′t2), . . . , σl1 exp(τ ′′t′+τ ′tl1))(2.20)where τ ′ = 1

4 4
√

k1

and τ ′′ 1√
2k1

. These values are parameters to ompensate the highdimensionality of some problems, and are funtionally equivalent to the learning fatorused in arti�ial neural networks. These onstants are usually referred to as τ and τ ′instead of τ ′ and τ ′′, however, due to the existene of the mapping τ in the de�nitionof the EA, we opted to avoid the ambiguity by using an extra prime in the onstants.Observe that the values of the σ's are updated before the objetive values, andalso, observe that only one random value is generated to be multiplied by τ ′′, whilenew random numbers are generated for every value to be multiplied by τ ′.Correlated mutation Another type of mutation proposed by Shwefel was theorrelated mutation, whih main objetive was to perform mutations in diretionsnot aligned with the oordinate axis. By performing a rotation in spae, we allow themutations to align with more general searh diretions, and make the optimizationproess faster.Shwefel observed that, in general, the path of one individual and its o�springis roughly perpendiular to the optimal step (i.e. the vetor joining the presentindividual to the optimal one). By this reason, a better diretion an be used toallow a faster onvergene ratio. A natural way to do this was to use the orrelationmatrix of the suessful o�springs to hoose a diretion. It has been proved, however,that the same e�et an be ahieved by using a series of anonial rotation angles.A orrelated mutation is ahieved by rotating a non-orrelated mutation by anangle θ over one hyper-plane. The total number of angles required to de�ne everypossible rotation in an l1-dimensional spae is ( l1
2

)

= l1(l1 − 1)/2. We an, then,de�ne Ω = Rl1 × Rl1
+ × (−π, π]l1(l1−1)/2, whih sets the individuals as

p = (~x, ~σ, ~θ) = (x1, . . . , xl1 ; σ1, . . . , σl1 , θ1, . . . , θl1(l1−1)/2) (2.21)where ~c = (~σ, ~θ), and l2 = l1 + l1(l1 − 1)/2.



28 CHAPTER 2. EVOLUTIONARY ALGORITHMSThis mutation operator is very similar to the ontrol mutation, exept that the
θ's are updated before the objetive values. That is, getting l1(l1 − 1)/2 standardnormal values αi ∼ N(0, 1), and l1 more normal values γi ∼ N(0, C(σ, θ̂)), the formaloperator an be regarded as

ψ(p, r) = (~x+ (γ1, . . . , γl1); σ1 exp(τ ′′t′ + τ ′t1), . . . , σl1 exp(τ ′′t′ + τ ′tl1); θ̂) (2.22)where β ≈ 0.0873, θ̂ = ~θ + β(α1, α2, . . . , αl1(l1−1)/2), and C(σ, θ̂) is the ovarianematrix. And one way to obtain this ovariane diretions is given in the next algorithmCovariane diretionsfor( i = 1 to l1 )
∆xi = σi exp(τ ′′t′ + τ ′ti)si;for( m = l1(l1 − 1)/2 to 1 ){
(i, j) =indexOf(m); //Get the indexes that θm affets.
∆xi = ∆xi cos θ̂m − ∆xj sin θ̂m;
∆xj = ∆xi sin θ̂m + ∆xj cos θ̂m;}for( i = 1 to l1 )
xi = xi + ∆xi;As we an see, the diretions are given in inverse order. This is due to the anonialtransformation in Euler's rotations in a k1-dimensional spae, as the rotations end uprepresenting the produt of the rotation matries with rotation angle θ̂m.2.3.4 A simple evolutionary strategy for onstrained optimiza-tionIn this setion we will give an example of a simple evolutionary strategy to solveonstrained optimization problems using rules to rank individuals.The ES used is a ES(70 + 130), with ontrol individuals as in Equation 2.10,using intermediate generalized rossover�Equation(2.15)� on objetive values anddisrete rossover �Equation (2.11)� on ontrol values. The mutation used is thestandard for ontrol individuals as in Equation (2.20).The binary omparison funtion used to sort the individuals for seletion is thetotal violation rule explained in Setion 1.3.2.2.This ES is used for omparison with the Baldwinian algorithms explained in Chap-ter 4.



2.4. MEMETIC ALGORITHMS 292.4 Memeti AlgorithmsAnother type of evolutionary algorithms are known as memeti algorithms (MA).They an be thought of as hybrid algorithms as they inorporate a loal searh intheir searh proess [7℄.2.4.1 De�nition of a MemeThe onept of a meme was �rst introdued by Dawkins [6℄, where he proposes asoial equivalent to the gene as a basi unit for inheritane. Aording to Dawkins,ideas evolve in ulture muh like organisms evolve in biologial evolution. The basiunit of ultural transmission is then alled a meme.Examples of memes are spoken sentenes, written sentenes, live musi, reordedmusi, theater, inema and many more. They are the means by whih we express ourideas, while the ideas themselves an be regarded as the phenotype of the meme.2.4.1.1 Memes and LamarkismDawkins suggested that memes evolve by Lamarkian mehanisms. However, it ispossible that memes are a type of Darwinian evolution [20℄. When a human brainreeives a meme, the meme slowly matures into an idea. Eventually the host personan deide to ommuniate his idea to another person.This proess seem to be less Lamarkian than originally thought, as the hangedmeme itself (genotype) is not transmitted, but the idea (phenotype) instead. If thememe were hanged by an individual, it is not tratable to reognize the meme, butperhaps the similarities that the idea (phenotype) has with the original meme; also,if the meme itself hanged, instead of just its representation, it would mean that areverse engineering proess atually ourred in the host brain. Besides, the new hostreeives the idea, but the meme that olonizes this new host is di�erent from theatual idea he reeived, as the idea was transformed by the previous person.This might point to an internal evolution where the reeived meme interats withmany other memes in the host brain giving birth to new memes with rossover andmutation. The transmitted memes are also seleted from a pool of memes inside thehost brain. These mehanisms tend to point to a Darwinian model of memes.Memes, though, are generally regarded a Lamarkian, and the de�nition of amemeti algorithm states this learly. This disussion will be useful, nevertheless,in Chapter 3, when we will try to reate a new algorithm based on the idea of non-Lamarkian loal searhes.2.4.2 De�nition of a memeti algorithmFrom the point of view of the study of adaptive systems, it is the idea of memes asagents that an transform an individual what is of major interest. We an onsiderthe addition of a learning phase to the evolutionary yle as a form of meme�gene



30 CHAPTER 2. EVOLUTIONARY ALGORITHMSinteration. This interation an aid evolution onsidering the genes to be plasti andallowing them to be guided by the learning mehanism.The basi idea behind MAs is to have at least one loal searh mutation operatoramong its operators (an in the evolutionary algorithm). This loal searh operator isusually applied after the rossover and mutation operators have been applied.The result of the loal searh replaes (Lamarkian) the individual if the foundsolution is better than the initial one. In this sense, if we have a loal searh algorithm
a : Ω → Ω that takes initial points and returns the result of the loal searh, thememeti learning an be viewed as

ψmemetic(p, r) =

{

p if f ◦ τ(a(p)) > f ◦ τ(p)
a(p) if f ◦ τ(a(p)) ≤ f ◦ τ(p)A more rigorous de�nition of a loal searh algorithm an be found in Setion 1.2.In general, the only thing that makes a MA di�erent from other EAs is the inlusionof this other algorithm. The loal searh is used to smooth the �tness landsape aswe are now searhing with evolution not on the normal searh spae, but on the setof loal optimum solutions.Within a memeti algorithm, we an onsider the loal searh stage to our asan improvement within the evolutionary yle, and we should onsider if whether thehanges made to the individual should be kept or whether the improvement is onlyto a�et the �tness assoiated with it.This idea is preisely the motivation of this thesis, and will be dediated a Chapteron its own. In short, the deision of whether the hange is made to the individual(a Lamarkian behavior) or to the �tness (a Darwinian behavior) is what makes thedi�erene between the memeti algorithms and the Baldwinian algorithms.All this might make more sense if we think of meme evolution as a Darwinianmehanism instead of a Lamarkian one. Turney [20℄ gives reasons why memes arenot neessarily Lamarkian, as well as reasons why memes ould be Baldwinian. Thisdisussion might be relevant to deide whether the name memeti algorithm is amisnomer or not, but is not of diret interest to this thesis.2.5 Di�erential EvolutionOne of the most reent and famous evolutionary algorithms in the literature is thedi�erential evolution (DE). Created by Prie and Storn [15℄, the DE is a little di�erentfrom traditional evolutionary algorithms in the sense that it has only one operatorto perform all the searhing proess. It is, in ontrast to geneti algorithms andevolutionary strategies, not based on reombination and mutation to perform thesearh, but on a more mathematial than biologial operator that gives his name tothe algorithm.The basi idea behind DE is to take the di�erene of two randomly hosen vetorsin the population and make a weighted sum of this di�erene with another randomly



2.5. DIFFERENTIAL EVOLUTION 31hosen vetor and ompare it with the original one to plae a new individual for thenext generation. If this new individual turns out to be better than the individual inthe urrent position, then the old individual is replaed by the new one.Beause no rossover is performed, DE is highly suseptible to parallelization. Itis also fast and e�ient for global optimization, and it also has a small number ofparameters, whih have, in great measure, won for itself most of its fame.2.5.1 The DE_1 algorithmThe formal spei�ation of the di�erential evolution an be regarded as DE_1(F ) =
EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O), where Ω = Rl, the funtion τ is the identity, and Φ is alsothe identity (i.e. no rossover), thus O = Ψ, and the seletion mehanism is as follows

σ(P,Q, r) = (b1, b2, . . . , bl)where bi = arg max{f ◦ τ(pi), f ◦ τ(qi)}i.e. it ompares only the individuals at orresponding positions in the urrent popu-lation P and the newly generated one Q.The individuals are vetors de�ned by
p = (x1, x2, . . . , xl)The only mutation operator is, as desribed above, what gives its name to thedi�erential evolution, and the lassial one is de�ned next. Getting random integernumbers s1, s2, s3 ∈ {1, 2, . . . , k} without replaement from r, the di�erene operatoran be de�ned as

ψ(p, r) = ps1
+ F (ps2

− ps3
) (2.23)Observe that the only thing that matters about the parameter p is its position inthe urrent population P , as it is not used to deide the new vetor generated by ψ.One we have generated the population Pf from the population Pi, we an proeedto seletion, and then to the iterative step in the evolutionary algorithm.The parameter F ontrols the strength of the di�erene operator. It is usuallylose to 1, but depend on the size k of the population. If the population size is small,a F = 1 should be used, if the population size is large, a F ≤ 0.9 should work �ne.This is due to the speial behavior of the di�erene operator. Mathematially,if the population is near onvergene, it is expeted that the operator will reatesmall hanges6, on the other hand, if we take one good solution with a bad one forthe di�erene, the rough diretion of the di�erene will be towards the optimum (orompletely away from it if it has the opposite sign), this is why it manages to �ndoptimal solution while searhing.This method has the risk, however, of premature onvergene, and as it does nothave a mehanism to avoid it, several runs might be neessary to ahieve the atualoptimum.6The di�erene among two vetors will be small if the individuals are lose enough.



32 CHAPTER 2. EVOLUTIONARY ALGORITHMSThe seletion pressure of this EA is also interesting to analyze. As one individualis only ompared to a newly generated one in the seletion proess, it is fairly easythat the worst individual will survive. In fat, when in the middle of the proess, theworst individual so far might very well survive for several generations if is has a bit ofluk. This might suggest that the seletion pressure of the seletion operator is weak.On the other hand, however, one a luster of the population starts to onverge,the probability of having new individuals generated near that luster inreases veryquikly, thus reating a yle in whih more and more individuals are dragged tothis zone. In onsequene, the seletion pressure for individuals far from this lusterinreases almost exponentially.In onlusion, di�erential evolution seems to have, impliitly, a self-adaptive se-letion pressure, starting weak and maintaining so for several generations, and thenabruptly starting to grow to the point in whih no new solutions out of the (sub)optimalluster are tolerated by the seletion operator.2.5.2 The DE_2 algorithmThe seond variation known as DE_2(λ, F ) is somehow based on partile swarmoptimization as it uses the urrent best found solution to diret the searh. Formally,this di�erene operator an be regarded as
ψ(p, r) = ps1

+ λ(pb − ps1
) + F (ps2

− ps3
) (2.24)where pb = arg max

1≤i≤k
{f ◦ τ(pi)}and the variable λ is a ontrol value used to ontrol the greediness towards the bestsolution so far. It should be small normally, unless the global optimum is relativelyeasy to �nd.2.5.3 More operatorsAs is usually the ase with evolutionary algorithms, there is a number of other oper-ators used to improve the performane of the DE algorithm.Here we will only disuss the pseudo-rossover performed to inrease the diversityin the population. When this operator is working, it is used over one of the di�ereneoperators explained in Equation (2.23) and in (2.24). This operator requires anothervariable, CR, representing the rossover rate. It is usually set to a high value (near

1), exept for easy optimization problems.Suppose the funtion ψ′ is de�ned as either (2.23) or (2.24), and obtain two randomintegers d ∈ {1, 2, . . . , l} and L suh that P (L ≥ v) = (CR)v−1, v > 0. The newmutation (pseudo-rossover) operator is de�ned as
ψ(p, r) = (v1, v2, . . . , vl)where vj =

{

ψ′(p, r)j if d ≡ d, d+ 1, . . . , d+ L− 1(mod l)
pj otherwise



2.5. DIFFERENTIAL EVOLUTION 33where ψ′(p, r)j is the j-th value of the vetor ψ′(p, r).

Figure 2.5: The shemati view of the pseudo-rossover operator for di�erential evo-lution. We an observe that the rossed vetor has 3 values of the original vetor,and 3 from the new one.The sketh of this operator an be observed in Figure 2.5. The individual depitedthere has length l = 6, the values used for the pseudo-rossover are d = 5 and L = 3,and then the new individual shares three values with the original one, and three withthe new one, beginning at d and irling around in a modular fashion. This operatorresembles the two-point rossover of GAs.2.5.4 Di�erential evolution for onstrained optimizationIn this setion we will give an example of a simple evolutionary strategy to solveonstrained optimization problems using rules to rank individuals. As in Setion2.3.4, we will adapt the DE_1 to solve a benhmark of onstrained optimizationproblems.The DE piked uses the pseudo-rossover operator mentioned above, and it isthen stated as a DE_1(0.9, 0.9), with normal parameters. The binary omparisonfuntion used to aept individuals in seletion is the total violation rule explained inSetion 1.3.2.2.This DE is used for omparison with the Baldwinian algorithms in Chapter 4.
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Chapter 3The Baldwin E�etMany researher have drawn analogies between learning and evolution as two intel-ligent proesses, one taking plae during the lifetime of an organism, and the othertaking plae over the evolutionary history of life on Earth. We tend to regard theevolutionary proess as adaptive and intelligent in the sense that individuals are(sub)optimal solutions to the problem of staying alive. In this sense, there is an opti-mization proess undergoing evolution. The question remains, though, as if learningan have an impat at all in the evolutionary mehanisms in nature, and if so, towhat extent.Sine the moment in 1987 that Hinton and Nowlan [10℄ published their lassi pa-per, a large number of researher have worked in experiments onerning the BaldwinE�et in evolutionary omputation[14, 2℄. Many of them have also observed the syn-ergi e�et that learning1 an have in the evolutionary mehanisms when there is anevolving population of individuals. This synergy is what is usually alled the BaldwinE�et. In general, there seems to exist a misunderstanding of the real aspets behindthis e�et, and, apparently, the researhers have left aside another equally importantaspet of it.At a �rst approah, we an think of the whole Baldwin E�et as a two-sided oin.In one fae, one has the observed behavior that lifetime learning an, under ertainirumstanes, aelerate the evolutionary proess in a population. In the other one,we must take into aount that it is ostly for an individual to learn.In this line, there is indeed a synergy e�et that an our during evolution withindividuals that are able to learn, but there is also a ost assoiated with that learningability. The Baldwin E�et is onerned with both aspets.This hapter is mainly onerned with the understanding of the Baldwin E�et asa biologial mehanism that may or may not be present in nature, but that an be ofuse for the evolutionary omputation ommunity as a new searh strategy. It is alsothe aim to demystify the relation between Lamarkism and Baldwinism in a system,and the possible uses that both may have in optimization problems.1Atually, phenotypi plastiity, but we will talk about it later in this hapter.35



36 CHAPTER 3. THE BALDWIN EFFECT3.1 Basi ConeptsIn order to fully understand the Baldwin E�et, a number of onepts must be de-veloped in advane. The Baldwin E�et is a misnomer beause it was disoveredindependently by Baldwin, Morgan and Osborn (1896), and also beause it is not asingle e�et, but rather a luster of e�ets or observations.It is relatively well know the di�erene between the genotype and the phenotype.The genotype stands for the internal heritable material of an individual, it odes the�nal utter aspets of the individual in a persistent and unhangeable2 way. It is typ-ially represented by the organism's DNA. It obtains its name from the genes, whihare onsidered the atoms of inheritane. On the other hand, the phenotype is thephysial realization of an organism's genotype. It refers to every represented aspetthat was impliit in the geneti ode, and was developed as part of the individual.It inludes from the body omposition to the behavioral traits, and the abilities toadapt any of these based on an inherited harateristi. They an be viewed as theobservable aspets of the organism's genotype. It obtains its name from the Greekword phainein, whih means to show.The key term in the Baldwin E�et is known as phenotypi plastiity, whih an beregarded as the ability of an organism to adapt to its environment due to the featuresof the phenotype. There are many examples of phenotypi plastiity in nature, mostof whih have a diret relation with the organism's body in its environment; forinstane the ability of the skin to tan when exposed to the Sun, or to form alluswhen onstantly abraded, or many onditioned behaviors aquired by assoiation3.Another onept is the notion of lifetime learning, whih is the set of learning thathappens during the lifetime of an individual. It is only onerned with the learningmade by a single individual and not with the marosopi population level of learningin whih the evolution may fall into. The impat of lifetime learning on evolution isonly one example of the Baldwin E�et; in its most general sense, it deals with theimpat of phenotypi plastiity as a whole, on the evolution of a speies.In ontrast to the phenotypi plastiity, we all phenotypi rigidity the inabilityof an individual to adapt to a new problem. This inability, ontrary to what theintuition ditates us, may be an advantage over more plasti individuals. We willexplore this in more detail.3.1.1 Bene�ts of phenotypi rigidityPhenotypi rigidity an be advantageous to an organism in many situations. A hard-oded behavior is potentially less hazardous to an individual than a plasti one. Forexample, learning requires experimentation, and in the ase of a potentially fatal2Not quite unhangeable sine the individual an mutate, but in general terms it is not suseptibleto hanges.3Like the famous Ivan Pavlov's experiments on onditioned response on dogs.



3.1. BASIC CONCEPTS 37behaviors4, instint will ertainly have an advantage over learning, beause an indi-vidual will be born with a natural avoidane behavior instead of with trial-and-errorlearning ability. Another example ould be the time required to form a allus whihould be used in some other ativities if the organism were born with a thik skin5.In general, an individual with an instintive behavior, will require muh less energyand will save time. The behaviors are ready for him to use at birth-time. In on-trast, plastiity o�ers the possibility to adapt, but the ost of developing the requiredbehavior, has potentially fatal onsequenes.3.1.2 Bene�ts of phenotypi plastiityIn ontrast, phenotypi plastiity enables an organism to explore new possibilities ofpotentially better behaviors. This may be a great advantage in hanging environmentsor in environments that abruptly hanged and are to remain so. The speializationis an observed harateristi of phenotypi rigidity, but an lead to a disaster whentaken to the limit6. If the rigidity will not allow an individual to adapt to an alreadyhanged environment, then, learly the plastiity will bestow the individual that hasit with an evolutionary advantage over those who does not have it.In general terms, the phenotypi plastiity smooths the �tness landsape enablingthe organism to explore neighboring areas of the phenotype spae, and thus allowingthe individual to have an e�etive �tness of a loal maximum in this spae. If a ertainontinuity in the mapping from genotype to phenotype is assumed, a (potentially)worst genotype would have a better �tness through plastiity than a better genotype.Behaviors tend to be more plasti than physial strutures. The proess of learninga behavior represents appropriate hanges in the nervous system, and it is in generaltrue that the nervous system of an organism is more �exible than many other physialstrutures.3.1.3 Lamarkism and Baldwin E�etThe Lamarkian hypothesis states that the traits aquired during an organism lifetimean be transmitted via inheritane to the organism's o�springs. This hypothesis isgenerally interpreted as referring to aquired physial traits7, but something learnedduring lifetime an also be onsidered an aquired trait.To put it in simple terms, Lamark says that the son of an athlete is more likelyto be a good athlete, and the son of a sientist tends to be more intelligent. Thus, aLamarkian view would hold that learned knowledge an (and will) guide evolution bydiretly passing the knowledge to the next generation. However, due to overwhelmingevidene against it, the Lamarkian hypothesis has been rejeted by virtually all4Like learning not to eat a poisonous fruit.5For example the elephant.6As is the ase with the Koala, whose diet is on�ned to a single dish: the eualyptus' leaves7Suh as physial defets due to environmental toxins



38 CHAPTER 3. THE BALDWIN EFFECTbiologists. Lamarkism requires an inverse mapping from phenotype and environmentto genotype, and this mapping is biologially implausible [14, 20℄.It would seem that the rejetion of the Lamarkian hypothesis leaves out thequestion of if learning has any impat on evolution, but the answer seems to be thatlearning an indeed have a signi�ant e�et, though in a less diret way than Lamarksuggested. The Baldwin E�et is purely Darwinian (in ontrast to Lamarkism) andit does not involve any reverse mapping.Suppose the typial example of Lamarkism, with a short-neked animal thatlearns to streth its nek to reah leaves on a tall tree. Lamark believed that theanimal's o�springs would inherit slightly longer neks than they would otherwise havehad. It requires a mehanism for modifying the parent's genes based on the habit ofstrething its nek.The Baldwin E�et has observable onsequenes that are similar to Lamarkianevolution. Baldwin would have pointed that if strething their neks helps towardstheir survival, then the organisms that are more able to learn to streth their nekswill have the most o�spring, thus e�etively inreasing the frequeny of the genesresponsible for learning. In this sense, if the environment remains relatively �xed,so that the best thing to learn remain onstant, this an lead, via seletion, to apopulation of animals very good at strething their neks.There an be advantages, however, in being born with a longer nek. And it isbelieved that if given enough time, the evolution proess will be able to evolve longerneks in the population, whih will lead in its turn, to a genetial enoding of longerneks.One may view this proess as if the Baldwin E�et were Lamarkian in its results,but not Lamarkian in its mehanism. Given a desirable trait, the Baldwin E�etonly provides the required time (via aquiring the trait due to phenotypi plastiity)for the trait to appear in the population's genes (via the evolutionary proess).3.1.4 The Darwinian mehanismThe evolutionary biologist G. G. Simpson, studied the onjetures made by Baldwin[19℄ and pointed out that it is not lear how the neessary orrelation between phe-notypi plastiity and geneti variation an take plae. We mean by orrelation therequirement that geneti variations happen to our and produe the same adapta-tion that was previously learned. This kind of orrelation would be easy understoodif geneti variations were direted towards some partiular outome rather than atrandom. But randomness is entral in modern evolution theory, espeially onerninggeneti variation, and a spei� orrelation would mean a Lamarkian mehanism forevolution.It seems that Baldwin was assuming that, given the laws of probability, orrelationbetween phenotypi adaptations and random geneti variation will happen, espeiallyif the phenotypi adaptations keep the lineage alive long enough for these variationto our. It does not point, however, to a spei� orrelation among them. Simpson



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 39agreed that this was possible in priniple, but remains unknown if it is an importantfore in evolution.While it appears that we are at a dead end, it may not be the ase, as the answerto that question may be found in the work of Waddington [22℄, who proposed a meh-anism alled geneti assimilation. This mehanism is onerned with the inheritaneof aquired traits, but tries to explain the underlying proess from a slightly di�er-ent point of view. It states that some sudden and potentially deadly hanges in anenvironment would require phenotypi adaptation that are not neessary in normalenvironments. If organisms are subjet to suh hanges, they an sometimes adaptduring its lifetime beause of their inherent plastiity, thereby aquiring new physialor behavioral traits. If the genes of these traits are already in the population, butare dormant8, they an fairly quikly be expressed in the hanged environments, andas in the Baldwin E�et ase, espeially if the aquired traits prevent the individualsfrom dying.Waddington even demonstrated that it has happened in several experiments onfruit �ies. It su�ers, however, of the same skeptial point of view o�ered by Simpson:there is no �nal proof that this e�et is indeed an important fore in evolution.However, although the geneti assimilation is better known in the evolutionary biologyommunity than the Baldwin E�et is, the later has been reently piked up byevolutionary omputing researhers mainly beause of the experiment made by Hintonand Nowlan, and beause it has proven useful in several researh areas.3.2 Baldwin E�et and Computer SieneThere is a ommon feeling to think that learning is always good, at least that iswhat our nature tends to tell us. As we have observed before, this may not alwaysbe the ase, and this might be partiularly true when onfronted to the world ofomputers, when CPU time and memory requirements are ruial in the analysis ofa new algorithm. Evolution is onstantly seleting the best balane between learningand instint, and this balane is usually not �xed during all the optimization proess.It varies dramatially when speies are onfronted with an abrupt hange in theirenvironment and also when the environment has ahieved an epistati state9.There is a number of interesting experiments applying the Baldwin E�et to evo-lutionary omputing on various settings, mainly dediated to observe the interationsbetween learning and instint. Peter Turney [20℄ presented a list of observations,based on the fundamental insight that there are trade-o�s between learning and in-stint10, and are reprodued in Table 3.1.8Here we say that a gene is dormant if it is not usually expressed in the population's phenotype,in ontrast to expressed if the trait it odes atually appears in the population.9Roughly speaking, an state in whih there are no more sudden hanges.10We have been using learning as a form of phenotypi plastiity and instint as phenotypi rigidity,the generalization to other kinds of phenotypi behaviors is fairly straightforward and is left to thereader.
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dimension of trade-o� phenotypi rigidity (in-stint) phenotypi plastiity(learning)1 time sale of environmen-tal hange relatively stati relatively dynami2 variane, reliability low variane, high relia-bility high variane, low relia-bility3 energy, CPU onsump-tion low energy, low CPU high energy, high CPU4 length of learning period short learning period long learning period5 global versus loal searh more global searh more loal searh6 adaptability brittle adaptive7 �tness landsape rugged smooth8 reinforement learn-ing versus supervisedlearning reinforement learning supervised learning9 bias diretion string bias; diretion ofbias ruial to suess weak bias; diretion ofbias not as important10 global goals versus loalgoals emphasis on global goals emphasis on loal goalsTable 3.1: Reprodution of tradeo�s in evolution between phenotypi rigidity andphenotypi plastiity [20℄



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 41Aording to Turney [20℄, the ourse of the balane is not the main onern ofthe Baldwin E�et, but the fat that there are trade-o�s. In this sense, we try toexamine the trade-o�s o�ered by Turney in order to larify the possible appliationsof the Baldwin E�et.Time sale of environmental hange. Evolution and learning operate at di�erent timesales. In a dynami environment, evolution annot adapt fast enough,so learning is better. In a stati environment, evolution an adapt, solearning is a waste of time.Variane and reliability. Learning is heavily based on experiene and requires that theright kind of experiene is present in order to aquire the desired learnedbehavior. This makes learning more stohasti than instint. Learning in-rements the variation in the population (di�erent stimuli lead to di�erentbehaviors) whih an aid evolution.Energy and CPU onsumption. Any individual must expend energy in order to learn.The loal searh assoiated with learning onsumes evaluation of the �t-ness funtion (CPU time), and less resoures are left for evolution.Length of learning period One an individual is born, it must dediate some timeto learn a trait, if it is instintive, it is available at birth-time. Shorterlearning times are usually preferred by evolution.Global versus loal searh. Evolution performs a global searh, while individuals per-form a loal searh (in phenotypi spae). This trade-o� varies greatlydepending on the stage of the evolution and the urrent population.Adaptability. Learning is more able to adapt to a variation in the environment whileinstint tends to be brittle.Fitness landsape. Learning, as disussed before, smooths the �tness landsape ef-fetively removing rugged areas in the phenotypi searh spae. It is onlyadvantageous if the landsape was not already smooth in whih ase it isless useful.Reinforement versus supervised learning. An evolutionary algorithm is a type of re-inforement learning for high �tness areas of the searh spae. In termsof feedbak from the environment, it is situated somewhere between un-supervised and supervised learning. Supervised learning obtains morefeedbak from the environment and is more alike to the loal searh per-formed by learning as phenotypi plastiity.Bias diretion. The bias is a term widely used in mahine learning, but has reentlyattrated the attention of the onstrained optimization ommunity. Thebias diretion has two omponents, the diretion and the strength. If the



42 CHAPTER 3. THE BALDWIN EFFECTdiretion is wrong to a ertain problem, the strength will either allow orrestrit the exploration proess of the algorithm, and learning is bettersuited. If the diretion is orret, an strong bias (instint) will be bettersuited for the problem.Global versus loal goals. Evolution and learning have di�erent goals. Evolutionseeks to maximize �tness while individuals have more immediate goals.Learning is used by individuals to help them ahieve their immediate goalsin a better way. It is usually said in Game Theory that every individualmust pursue its own (simple) goals for the global (more omplex) goals tobe ful�lled, and in this sense, yet again we get a synergy from learning toevolution.As explained before, the trade-o�s shown here are not exhaustive and, as Turneyhimself says, there may be some overlap in the terms. The list will tend to grow asnew aspets of the Baldwin E�et are known, and new appliations are found for it.3.2.1 Hinton and Nowlan's experimentSome reent work in Geneti Algorithms has been direted towards the analysis ofthe bene�ts of phenotypi plastiity, phenotypi rigidity and the plastiity of learning.Perhaps the �rst attempt made in this diretion was performed by Hinton and Nowlan[10℄ as stated at the beginning of this hapter.Their observations seem to imply that learning an failitate evolution but theselearned behaviors will eventually be replaed by instintive behaviors if the environ-ment remains onstant during a relatively long time. An extremely simple neural-network11 learning algorithm was reated to model learning in a population. Everyindividual in the population odi�es a andidate for solution to the neural network,thus a geneti algorithm played the role of evolution on the population of evolvingindividuals with learning apabilities.In this simpli�ed model, every individual onsists of 20 potential onnetionsamong neurons. A onnetion an have one of three values: present, absent, andlearnable; whih are oded as 1, 0 and ? respetively, where eah question markan be set during learning to either 0 or 1. Then, the representation is a stringof 20 values, so an individual is represented by a1a2 . . . a20 where ai ∈ {0, 1, ?} foreah i ∈ {1, 2, . . . , 20}. There is only one orret setting of the neural network'sonnetions (whih, by simpliity is all present12), and no other setting onfers any�tness to the individual. We will say that a onnetion is �xed if it is either 0 or 1,and that it is not �xed if it has a question mark.The problem to be solved is to �nd this single orret set of onnetions. Is willnot be possible for those networks that have inorret �xed onnetions to �nd the11Whih is atually transparent to the proess, so no prior knowledge about arti�ial neuralnetworks is required to understand it.12This means all the onnetions present, or, as an individual, a hromosome onsisting of 20 ones.



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 43solution, but those networks that have orret values in all �xed plaes, have theopportunity to learn the orret setting. In this experiment, the simplest learningmethod was used: random guessing. On eah trial, an individual guesses 0 or 1 atrandom (uniform) on eah question mark it possesses.This problem is, by design, a needle in a haystak searh problem, sine there isonly one orret setting out of the 220 possibilities. The �tness landsape for thisproblem is shematially represented in Figure 3.1�the single spike represents thesingle orret onnetion setting. Introduing the ability to learn, as expeted by the

Figure 3.1: Shemati view of the �tness landsape for Hinton and Nowlan's searhproblem. All genotypes have �tness 0 exept for the orret one with �tness 1.Baldwin E�et, the landsape it smoother, and now we observe in Figure 3.2 a zoneof inreased �tness, meaning that there are individuals that an learn the orretsetting and have a reward of �tness (inversely proportional to the number of trials).This zone inludes individuals with only orret �xed positions and question marks.One the individual is inside this zone, evolution makes it possible to limb to thepeak.The initial population onsisted of 1000 individuals, eah onsisting of 20 genes,generated at random, with eah gene having probability 0.25 of being 0, probability
0.25 of being 1, and probability 0.5 of question mark. At eah generation, eahindividual was given 1000 learning trials. On eah learning trial, the individual trieda random ombination of settings for the question marks.The �tness was alulated by the following formula,

Fitness = 1 +
19(1000− i)

1000
(3.1)where i stands for the number of trial in whih the individual guessed the orretsetting of onnetions. The �tness is an inverse funtion of the number of trials needed
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Figure 3.2: Shemati �tness landsape after learning.The searh problem is smoother with a zone of inreased �tness ontaining individualable to learn the orret onnetion settings.by an individual to �nd the orret solution. With this funtion, an individual withall its positions �xed and equal to 1, would get the maximum �tness value of 20, whilean individual that was never able to orretly guess the solution or that has at leastone wrong �xed position would get the minimum �tness value of 1.In this experiment we an observe the trade-o� of the Baldwin E�et as manyquestion marks mean that, on average, many guesses are needed to arrive to thesolution, but the more �xed positions, the more likely it is that at least one value iswrong thus e�etively killing the individual. This trade-o� depits the one existingbetween e�ieny and plastiity in a very straightforward way.In expetation, an individual has half of its positions �xed in the initial population.The expeted number of individuals in the initial population that have no wrong �xedposition is about one (the 210 possible values for half �xed positions are about 1000).In the ending, it is expeted that at least one individual will be able to learn theorret settings, but this is no surprise beause 1000 ∗ 1000 = 106 ∼ 220, so thisexperiment ould be onsidered invalid beause of this analysis, however, it is anexample of a simple experiment and the ability of the Baldwin E�et to smooth the�tness landsape, as it was stated by Mithell [14℄ that the mean �tness was notobserved to improve over generations in the ase of pure evolution.Hinton and Nowlan's geneti algorithm used to solve this problem was very similarto the simple geneti algorithm disussed in Setion 2.2. The seletion mehanismwas by roulette wheel, with replaement. They used one-point rossover and simplemutation; also, the hromosome of the individual was obviously not a�eted by learn-ing that took plae during its lifetime. Originally, they let the algorithm run for 50generations. They observed that 0 genes were rapidly eliminated from the population
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Figure 3.3: Relative frequenies of 1's (dotted), 0's (dashed) and undeided (solid)alleles in the population plotted over 50 generations.



46 CHAPTER 3. THE BALDWIN EFFECTand that the frequeny of 1's inreased aordingly. In Figure 3.3 we show the relativefrequenies of orret (ones), inorret (zeros) and undeided (question marks) allelesin the population plotted over 50 generations.3.2.1.1 Harvey's experimentThe main onern resulting from the plot is why did the frequeny of undeided allelesstays so high. With the frequeny of question marks stable at 45%, and the frequenyof 1's stable at 55%, an average individual with 20 genes would have eleven 1's andnine ?'s. A more detailed study of this experiment was performed by Harvey [9℄,and Belew [3℄, and aording to them, the expeted �tness of suh an individual isroughly 11.6. Also, they performed an statistial analysis of the expeted �tness ofthe algorithm if only evolution was allowed to searh (i.e. not learning), and resultedat 1.009.This points learly to the �rst aspet of the Baldwin E�et, in whih learning aidedevolution to improve the expeted �tness from 1.009 to 11.6, but this experiment, as itwas made, did not say muh about the evolution's preferene of instint over learningon the long term. To answer this question, Harvey [9℄ reprodued and augmented theoriginal experiment in order to address the so-alled Puzzle of the persistent questionmarks. In his work, he ran the model for 500 generations, and he observed that thefrequeny of question marks indeed dereased in time towards 0%. However, it didnot matter how many generation he ran the model, that perentage never reahedzero.The reason seems to be the geneti drift, due to random mutation in the pop-ulation. Mutation exerts a onstant pressure that maintains a ertain frequeny ofundeided alleles in the population, and eventually, the population will ahieve anequilibrium state where the pressure of geneti drift balanes with the seletion pres-sure that favors instint.3.2.2 Turney's experimentsWe will analyze now a model that is a bit loser to a more omplete Baldwiniansenario. In his paper, Turney [21℄ used the Baldwin E�et as a method to shiftthe bias in a mahine learning problem. His experiment is also simple as he arguesthat a more omplex experiment would only obsure the role of Baldwinism in theoptimization proess. His work is of interest to us sine he introdues a new type ofoding for learning in the genotype. In order to understand his work, we will have todevelop a few onepts.3.2.2.1 De�nition and types of biasExluding the input data, every fator that in�uenes the seletion of one partiularonept (in mahine learning) onstitute the bias of a learning algorithm. Bias in-ludes suh fators as the language in whih the learner expresses its onepts, the



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 47algorithm used to searh the spae, and the riterion for deiding whether a oneptis ompatible with the training data.As we saw at the beginning of Setion 3.2, the bias onsists of two fators: diretionand strength. A orret bias is one that allows the onept learner to selet the targetonept. The orretness of the diretion is thus measured by the performane of thelearned onept on a test data. A strong bias is one that fouses the onept learneron a relatively small number of onepts.3.2.2.2 Shift of biasA growing body of researh in mahine learning is onerned with algorithms thatshift bias as they aquire more experiene. Shift of bias performs two levels of searh,one through onept spae and one through bias spae.We have seen that a strong bias is somewhat analogous to an instintive behavior,while a weak bias is to a learned behavior. The ost of having a strong bias is thatthe bias an be inorret, and the disadvantage of having a weak bias is a poorperformane or e�ieny on the long term. Unless we have high on�dene that thebias is orret, it is in general risky to have a strong bias. All of this is in aordaneto the Baldwin E�et, so it seems reasonable to inorporate it as a bias shifter.3.2.2.3 The Baldwinian modelTurney generalized the experiment of Hinton and Nowlan and adapted it to themahine learning problem as a shift of bias problem. It may not be lear that a shiftof bias was used in Hinton and Nowlan's experiment, but we might see the amountof question marks as the strength of the bias. Having many undeided alleles wouldresult in a weak bias, while having just a few would result in a stronger bias. The plotof question marks' frequenies in the population an be regarded as the population'strajetory of searh in bias spae. For this new experiment, this distintion is madeexpliitly, and might be lari�ed better with the experiment itself.Let us onsider the example of onept learning. Suppose the examples to lassifyare all �ve-dimensional Boolean vetors ~x ∈ {0, 1}5, and that they may belong to oneof two lasses {0, 1}. By simpliity, let us all this spae T = {0, 1}5. In this sense, thesearh spae of onepts is the spae of funtions F = {f |f : T → {0, 1}}, mappingvetors to lasses. To simplify the notation, we see that it is possible to identify eahonept (i.e. eah funtion in F ) with its truth table. The truth table lists all of the
25 = 32 possible vetors in lexiographial order, and the value of the funtion foreah vetor. As the vetors are in lexiographial order13, we an impliitly assumethe vetors in the truth table, and ompatly write the assoiations of the funtionas a 32-bit string, with the i-th position in the string orresponding to the lass ofthe i-th 5 -bit vetor.13Atually, any order may work.



48 CHAPTER 3. THE BALDWIN EFFECTFor example, the funtion that maps every vetor ~x ∈ T to 1, would be odedas the bit string onsisting of 32 ones, and onversely; the binary string given by
11101111111101111111110111111111 represents the funtion that maps the vetors
00011, 01100 and 10110 14 to the lass 0, and the rest to the lass 1. In this way, wehave a total of 232 = 4294967296 possible funtions, and thus, the amount of possiblesolutions to the lassi�er problem are also 232.Suppose that one partiular target onept is what we want to �nd, as was the asewith Hinton and Nowlan's neural network. To failitate omparison with Harvey [9℄,we will suppose that the target funtion is the funtion that lassi�es every vetor tothe lass 1 (i.e., f(~x) = 1 for eah ~x ∈ T ). We assume, also, the standard supervisedlearning paradigm, with a training phase followed by a testing phase.During training, the learner is taught the lass of eah of the 32 possible inputvetors. To make the problem interesting, we will assume there is a ertain probability
p that the learner is taught the wrong lass. During test, the learner must guess thelass of the supplied input vetor. Again, there is a probability that the test ismistaken about the orret lass for an input vetor. That is, the probability p is thelevel of noise in the lassi�er.We will use the next notation,target = (t1, t2, . . . , t32) = ~ttrain = (α1, α2, . . . , α32) = ~αtest = (β1, β2, . . . , β32) = ~βwhere ti, αi, βi ∈ {0, 1}. We generate ~α and ~β from ~t by randomly �ipping bits in ~twith probability p. The probability that the lass of a training example or a testingexample mathes the target is 1−p, but the probability that the lass of the trainingexample mathes the lass of the testing example is 1 − 2p+ 2p2. Namely,

P (αi = ti) = 1 − p

P (βi = ti) = 1 − p

P (αi = βi) = 1 − 2p+ 2p2and we observe that either αi = βi = ti, with probability (1−p)2, or αi = βi 6= ti, withprobability p2, whih yields (1− p)2 + p2 = 1− 2p+ 2p2. This model is very ommonin statistis, and an be thought as the observed lass (~α or ~β) being omposed of asignal (~t) plus some random noise (p).3.2.2.4 The algorithmWe will use a geneti algorithm to solve this example problem. Eah genotype onsistsof 64 genes, 32 of whih determine the bias diretion, and 32 that determine the bias14i.e. the 3rd, 12th and 22nd in the string.



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 49strength. The bias diretion genes are either 0 or 1, and represent the lass to beproposed for that entry. The bias strength genes are real values in the interval [0, 1],eah one oded with 8 bits, as illustrated nextgenotype G = (D;S)bias diretion D = (d1, d2, . . . , d32)bias strength S = (s1, s2, . . . , s32)where di ∈ {0, 1}, and 0 ≤ si ≤ 1, and the use of the strength is as follows: if the i-thbias strength gene has a value si, then there is a probability si that the individualwill guess di, similarly, there is a probability 1 − si that the individual will guess αi.The guess vetor is expressed as guess ~g = (g1, g2, . . . , g32)

P (gi = di|di 6= αi) = si

P (gi = αi|di 6= αi) = 1 − si

P (gi = di = αi|di = αi) = 1whih an be interpreted as, if the bias is weak (si lose to zero), then the individualwill guess based on what it observed in the training data (i.e. it guesses αi); if the biasis strong (si lose to one), the individual ignores the training and relies on instint(i.e. it guesses di).Turney [21℄ points out that his simpli�ed model does not desribe the learningmehanism. He also states that the level of abstration used in this experimentis one in whih the mehanism is not important, and in a more omplex problem,the genotype ould enode for example the arhiteture of a neural network, and alearning algorithm as bak propagation ould be used as a learn method.In this experiment we ould see a number of features of the Baldwin E�et, forinstane, if an individual relies entirely on instint (for eah i ∈ {1, 2, . . . , 32}, si = 1),and its instint is orret, (for eah i ∈ {1, 2, . . . , 32}, di = ti), then the probabilitythat it will orretly lassify all the 32 input vetors in the testing phase is (1− p)32;while if an individual relies entirely on learning (for eah i ∈ {1, 2, . . . , 32}, si = 0),then the probability that it will orretly lassify all testing vetors is (1−2p+2p2)32.Observe that with inreasing noise level (p), the orret instint has an advantage overpure learning. This is due to a small ath in the phrasing, as we require the instintto be orret in advane.For onveniene, the �tness of the individuals will range from 0 to 1. As withHinton and Nowlan, we will require the individuals to orretly guess the lass of all
32 testing examples. We assign a �tness sore of 0 when the guess does not perfetlymath the testing data, and a sore of 1 when the math is perfet15.15In ontrast to Turney, who assign (1 − p)−32 by an unknown reason.



50 CHAPTER 3. THE BALDWIN EFFECTIn order to better understand what is going on in a run of the algorithm, we willmeasure the bias orretness and the bias strength as followsbias orretness =
1

32

3
∑

2i=1 [di = ti]bias strength =
1

32

3
∑

2i=1siwhere the bias orretness is represented by the frequeny with whih the bias dire-tion mathes the target, and bias strength is the average of the strengths si.We an view the genotype in Hinton and Nowlan as a speial ase of Turney'sgenotype:
0 ⇔ di = 0, si = 1

1 ⇔ di = 1, si = 1

? ⇔ s1 = 0, di ∈ {0, 1}In Hinton and Nowlan's genotype, the only way to inrease bias strength is tohange one or more question marks to a �xed number (either 0 or 1), and onverselyto derease it. In Turney's genotype, we an alter the bias strength without hangingbias diretion.The Baldwin E�et predits that, initially, when the bias orretness is low, sele-tion pressure will favor weak bias. Later, when bias orretness is improving, seletionpressure will favor a stronger bias.3.2.2.5 ExperimentsThe algorithm was set to a geneti algorithm, with population of 1000, with arossover probability of 0.6 and a mutation rate of 0.001. The algorithm was leftto run for 10000 generations. Various parameters of p were used in the experiments,and in general, the behavior an be observed in Figure 3.4.In eah experiment, Turney plotted the average bias orretness in the popula-tion, bias strength, and �tness as a funtion of the generation number. He used alogarithmi sale in the generations to allow an improved visibility of the features ofthe Baldwin E�et, sine the �rst aspet of the e�et (seletion for learning) tends totake plae quite rapidly in the early generations, while the seond aspet (seletionfor instint) tends to take plae muh more slowly.We an see this behavior in Figure 3.3, were, on the long run, we should expetthe question marks to approah zero. The logarithmi sale was used to be able tosee both behaviors in the same �gure.Turney performed a number of experiments modifying the bias strength in anexternal way, and allowing the evolution to adapt with those strength paths by itself(i.e. no Baldwin E�et was allowed). He onluded that, ompared against a onstantand a linear inrement bias strength, the Baldwin E�et performed better. This points
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Figure 3.4: The average �tness, bias strength, and bias orretness of a populationof 1000 individuals, plotted for generations 1 to 10000, with three noise levels.



52 CHAPTER 3. THE BALDWIN EFFECTto the quality of the path traversed in bias spae by the Baldwin E�et. It is notdemonstrated though, that the Baldwinian path is optimal, but at least it is a goodone.We present here a number of reprodutions of the graphs obtained by Turney.The original plots were made for three p parameter values, however, for the sake oflarity, we will only present here the plots for p = 0.5%. The rest of the �gures arevery similar.Skewed strength Turney tested the robustness of the phenomena observed in theexperiment. He deliberately skewed the �rst generation by assigning a random in-dividual generator whih favors a strong bias. The bias genes were generated sothat there was a probability of 75% that 0.9 ≤ si ≤ 1, a probability of 25% that
0.5 ≤ si < 0.9, and a probability of 5% that 0 ≤ si < 0.5.

Figure 3.5: Experiment result for p = 0.5. The population is skewed towards strongerbias.In Figure 3.5 we an see the results for the experiment. There are a number ofremarks that an be done:1. The population eventually settled into (approximately) the same equilibriumstate that was observed in the �rst experiment.2. The skewed bias strength slowed down the reation of the �rst individual withnon zero �tness.3. One this individual is reated, there is little di�erene among the experiments.4. During the time for whih all individuals have zero �tness, geneti drift pushesbias strength towards 0.5.5. After the �rst non-zero individual is reated, the strength still dereased for asmall number of generations.



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 53This observations are expeted from the Baldwin E�et, as a result of the observationsmade on Table 3.1.Fored bias strength Another experiment made, was the one onerning foredbias strength trajetories. The idea was to reate a �xed trajetory on bias spae bya priori setting the bias strength of the individuals as a funtion of the generationnumber.The Baldwin E�et explained fairly well the behavior of the model reated byTurney. However, it seems fair to ompare it to some other trajetories fored uponthe bias strength. In general, a non-Baldwinian algorithm will have a strength ofzero. Turney onsiders some other possible trajetories to ompare to.

Figure 3.6: Bias strength �xed at 0.75.

Figure 3.7: Bias strength �xed at 0.5.By diretly manipulating the bias strength, Turney ompared the Baldwin E�etto 4 other trajetories:Fixed 0.75 This experiment is plotted in Figure 3.6, and as expeted from BaldwinE�et's aspets, this is the experiment with the longer wait until the �rstindividual with non-zero �tness is found.
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Figure 3.8: Bias strength �xed at 0.25.

Figure 3.9: Bias strength inreases linearly from 0 in the �rst generation to 1 in thegeneration 5000. Afterwards, the bias is held onstant at 1.



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 55Fixed 0.5 Plotted in Figure 3.7, it is just a middle ase between the �rst and thirdtrajetories.Fixed 0.25 From the last three trajetories, this trajetory, Figure 3.8, �nds the �rstnon-zero individual faster. Its �nal �tness value will be the worst of allfour trajetories.Linear16 As this experiment resembles more to the Baldwin E�et than the others,it is expeted to outperform all others, but will be outperformed by thetrue Baldwinian. It is plotted in Figure 3.9.
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Chapter 4Baldwinian OptimizationIn the previous Chapter we reviewed a number of experiments onduted in evolu-tionary omputation reated to improve our understanding of the Baldwin E�et.In this Chapter, we provide hints on where and how an algorithm ould be turnedBaldwinian, and give an adaptation for onstrained optimization for two well-knownalgorithms.The idea behind a Baldwinian algorithm is very similar to the memeti algorithmreviewed in Setion 2.4, in the sense that learning is a loal searh. A Baldwinianalgorithm is an evolutionary algorithmwith an extra operator1, whose main purpose isto perform a learning stage, in many ways similar to the loal searh stage performedby memeti algorithms.There are two main di�erenes between memeti algorithms and Baldwinian algo-rithms: �rst of all, the loal searh in memeti algorithms is performed on genotypispae, while in the Baldwinian ase, it is performed in phenotypi spae; seond,the genotype of the individual is not hanged by the loal searh in the Baldwinianalgorithm in ontrast to the memeti algorithms. This last point is mainly due tothe intratability of the reverse mapping from phenotype to genotype we disussed inSetion 3.1.3.In this sense, we an think of memeti algorithms to be Lamarkian in nature.It has been stated, however, that the memes ould behave more like a Baldwinianfator than a Lamarkian one [20℄. In this thesis, however, we are not interested indisussing whereas this is atually true or not, and is left to the reader to ome upwith his own onlusions.At every stage in the evolutionary algorithm where a loal searh an be per-formed, we an make a Baldwinian searh (i.e. lifetime learning in ontrast to genetimodi�ation). Figure 4.1 gives a shemati representation of the learning proess.In many omplex evolutionary algorithms there is a lear di�erene among thephenotype and the genotype. It is ruial to take into aount that learning takes plaein phenotypi spae. Although some simpler algorithms don't make the di�erene1It has been proposed that the learning should substitute the mutation in evolutionary strategies,but we onsider it to be an additional operator. 57
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Figure 4.1: Shemati representation of the Baldwinian implementation for learning.The upper left individual is the original individual before learning. Then, at the upperright orner, the individual after learning with modi�ed �tness and/or genotype.Finally, at the bottom, the individual as is to be ompared with other individuals.Observe that it retains its original genome, and only the �tness is hanged.between phenotype and genotype, or the oding is straightforward, we must try ourbest to state the di�erene as learly as possible in order to better introdue theBaldwinian onept in the algorithms.If any representation is being made to reate the phenotype, this representationis to be used as the basis for learning. This might be straightforward in genetialgorithms, but ould be less than lear in evolutionary strategies. In the followingsetion we will try to introdue the learning operator to two of the most well-knownalgorithms; and give general ideas on where an any other algorithm be transformedinto a Baldwinian algorithm.4.1 The Learning OperatorEvery evolutionary algorithm has a number of evolutionary operators assoiated withit. The exat type of these operators and the order in whih they are applied to thepopulation is what de�nes the algorithm itself. The reader should be familiar withthe onepts developed in Setion 2 before he attempts to read this hapter.Virtually every evolutionary algorithm has a mutation operator assoiated2. Thisoperator will serve as the basis for the learning operator in the Baldwinian versionof the algorithm. The basi idea is to reate a loop of mutation-like loal variations,eah time the individual is allowed to learn.The sheme of the algorithm is as follows:Baldwinian Algorithminitialize-population P0;2Or, at least, a mutation step inside an operator.



4.1. THE LEARNING OPERATOR 59Let i = 0;while( termination-riteria-is-not-met ){
Pf = O( Pi, rand() );
FBi

= L( Pi, rand() );
FBf

= L( Pf, rand() );
Pi+1 = σ( Pi, Pf, FBi

, FBf
, rand() );

i = i+ 1;}In the algorithm, we note the funtion L whih represents the learning step of thealgorithm. It is important to note that the seletion (Pk+1 = σ(Pi, Pf , FBi
, FBf

)) isperformed over the same individuals with the adjusted �tness values.We will use the algorithm developed by Turney in Setion 3.2.2.4 as a model toreate our own algorithm. Mainly, the idea of inluding the bias strength in thegenotype, but an independent part of it will be used. This bias strength will behanged in onept to best �t the learning onept of searh instead of mahinelearning.We will use the term instint strength as an analogous to Turney's bias strengthin the sense that it measures the probability that the individual may follow instintinstead of learning. This strengths are going to be introdued in the genotype ina way that resembles the introdution of the ontrol values σi in the evolutionarystrategy (Setion 2.3).The general form of the learning operator is skethed in the next algorithm:Learning Operatorfuntion L( population P, real r ){
F =vetor[ sizeof(P) ℄;
x =getRandomValue( r );for( i = 0 to sizeof(P) ){ if( strength(pi) < x )

Fi =Baldwinian(pi);else
Fi = f ◦ τ(pi);

x = getRandomValue( r );}return F;}Observe that the main part of this operator is in the funtion alled Baldwinian. Thisfuntion returns the Baldwinian �tness assoiated to the individual, whih is problem



60 CHAPTER 4. BALDWINIAN OPTIMIZATIONdependant. It will usually be the result of a loal searh. Note that the originalindividual is not hanged as only a number (the Baldwinian �tness) is assoiated toits position. The seletion method will only be interested in this number to eitherselet the individual or not.4.2 Baldwinian AlgorithmsIn this setion we will provide the examples of Baldwinian algorithms developed asthe main ontribution of this thesis. We will de�ne the learning operators3 used, andwill ompare the results with the non-Baldwinian version of the same algorithm toplae them into an equal-rights state. The parameters of the algorithms will be setto the same values and we will report a number of statistial values over 30 runsfor every problem to be solved. In eah ase, the algorithm was left to run until
350000 evaluations of the �tness funtion were performed. This is aordane to theexperiments made by Runarsson [17℄ in the same benhmark. This was done to allowa omparison between this results and those obtained by him. The best known oroptimal solutions to the benhmark funtions are in Table 4.1.Funtion Optimum known max/min

g01 −15 Minimize
g02 0.803619 Maximize
g03 1 Maximize
g04 −30665.539 Minimize
g05 5126.4981 Minimize
g06 −6961.81388 Minimize
g07 24.3062091 Minimize
g08 0.095825 Minimize
g09 680.6300573 Minimize
g10 7049.3307 Minimize
g11 0.75 Minimize
g12 1 Maximize
g13 0.0539498 Minimize
i1 1.724852309 Minimize
i2 6059.71434795 Minimize
i3 0.012665 MinimizeTable 4.1: The known or reported optimum values for the test funtions. The olumnmax/min tells whether the problem is a maximization or a minimization to betterinterpret the results.3In partiular, the implementation of the Baldwinian funtion to alulate the Baldwinian �tnessof individuals.



4.2. BALDWINIAN ALGORITHMS 61The test funtions are of onstrained optimization, and they an be found inthe appendix. For a detailed explanation on the funtions, the reader should hek[17, 13℄.4.2.1 Baldwinian evolutionary strategyThe lassial evolutionary strategy ES(µ, λ) with self-adaptation parameters (σi),reviewed in Setion 2.3, with a tehnique of rules with total sum of violations seen inSetion 1.3.2.2 will be used.The genotype will be augmented with the values of strength, so that it will be
p = (x1, x2, . . . , xl; σ1, σ2, . . . , σl; s1, s2, . . . , sl)where 0 ≤ si ≤ 1 for every 1 ≤ i ≤ l, and they represent the strength of instint inthe objetive i. We will use ~x = (x1, x2, . . . , xl) to denote the objetive portion of thegenotype, ~σ = (σ1, σ2, . . . , σl) to denote the ontrol portion, and ~s = (s1, s2, . . . , sl)to denote the strength portion.This new evolution strategy will be ompared with the strategy disussed in Se-tion 2.3.4, and it will have the same parameter setting, exept for the added strengthportion.The idea behind the learning operator is to use the same loal searh introduedby the σ's in the learning step. This is to avoid the appearane of unneessaryparameters in the algorithm.The rossover operator used in the objetive values will be intermediate-generalized,while in the ontrol values and strengths will be disrete (see Setion 2.3.3). The mu-tation will be as usual for the self-adaptive evolutionary strategy for objetive andontrol values, and the strength will be mutated as follows
sm

i = max{0,min{si + Normal(0, 1), 1}}i.e. the strength will be added a standard normal value, ropped to [0, 1]. Thefuntion
ρ(x) =

n
∑

i=1

g+
i (x) +

m
∑

i=1

h+
j (x)represents the total sum of violations of x ∈ S, with all the weights equal to 1.In order to alulate the Baldwinian �tness value of an individual, we will use thefollowing algorithmBaldwinian �tness

~xB = ~x;for( i = 1 to l )if( si <rand() ){
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~x− = ~xB − (0, 0, . . . , σi, . . . , 0); //at the i-th position.
~x+ = ~xB +(0, 0, . . . , σi, . . . , 0); //at the i-th position.
~xB = arg min{ρ ◦ τ(~xB), ρ ◦ τ(~x−), ρ ◦ τ(~x+)};}setFitness( ~x, f ◦ τ(~xB) );As we an observe, the learning an take plae in every objetive value, or in none.It all depends on the values of the learning strength. Here, in ontrast to Turney, weare not interested in the evolutionary proess a�eting the strengths, or whether thestrengths follow the path predited by the Baldwin E�et; that is left for a future work.Instead we are interested in whether this Baldwinian learning aids the optimizationproess or not.Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 14.999983 15.643469worst 12.884572 13.029993mean 14.524280 15.0092431median 14.999897 15.296720variane 0.564467 0.404876standard deviation 0.751310 0.636299# feasibles 30 21*# ǫ-feasibles 30 30Table 4.2: Results for funtion g01Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.403915 0.416605worst 0.295487 0.284842mean 0.360394 0.358947median 0.366991 0.3610752variane 6.5839E-4 0.001052standard deviation 0.025659 0.032445# feasibles 30 13*# ǫ-feasibles 30 30Table 4.3: Results for funtion g02The results for the benhmark funtions are summarized in Tables 4.2�4.14. Theresults for the engineering problems are in Tables 4.15�4.17.It is important to explain the apparently lower number of true feasible solutionfound by the algorithms. First of all, when the problem has equality onstraints, itis impossible, due to a disretization error, to ahieve the atual equality. Instead,every solution is ǫ-feasible, with an ǫ ∼ 10−5. For the rest of the problems, the status



4.2. BALDWINIAN ALGORITHMS 63Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.999759 1.002580worst 0.963843 0.99873mean 0.996605 1.000645median 0.998753 1.000156variane 4.14449E-5 1.34930E-6standard deviation 0.006438 0.0011659# feasibles 0 0# ǫ-feasibles 30 30Table 4.4: Results for funtion g03

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best -30573.688537 -30684.810456worst -30298.460286 -30364.822278mean -30414.804487 -30593.128911median -30413.755796 -30663.190301variane -3372.159939 8785.872779standard deviation 58.070301 93.732986# feasibles 30 1*# ǫ-feasibles 30 30Table 4.5: Results for funtion g04

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 5126.50995 5126.51885worst 5285.52789 5263.58777mean 5191.10762 5177.33432median 5186.64882 5168.70377variane 1706.38217 1241.9597standard deviation 41.30838 35.24145# feasibles 0 0# ǫ-feasibles 30 30Table 4.6: Results for funtion g05



64 CHAPTER 4. BALDWINIAN OPTIMIZATIONStatisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best -6961.81382 -6961.816175worst -1206.19807 -6961.813383mean -6576.84885 -6961.813834median -6961.21074 -6961.813767variane 2046571.365351 2.36233E-7standard deviation 1430.58427 4.86038E-4# feasibles 30 13*# ǫ-feasibles 30 30Table 4.7: Results for funtion g06

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 24.876975 24.584865worst 28.592849 29.549636mean 26.196125 25.654459median 25.924144 25.163657variane 0.866379 1.233E-7standard deviation 0.930795 1.110668# feasibles 30 14*# ǫ-feasibles 30 30Table 4.8: Results for funtion g07

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.095825 0.095825worst 0.004505 0.013637mean 0.068281 0.059710median 0.095825 0.065143variane 0.001185 0.001188standard deviation 0.034431 0.034478# feasibles 30 30# ǫ-feasibles 30 30Table 4.9: Results for funtion g08



4.2. BALDWINIAN ALGORITHMS 65Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 680.656456 677.608343worst 685.906514 680.676598mean 681.738274 680.465658median 681.149711 680.636904variane 1.4761804 0.3083865standard deviation 1.2149816 0.555325# feasibles 30 4*# ǫ-feasibles 30 30Table 4.10: Results for funtion g09

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 14743.296345 12903.07097worst 20334.78599 19457.0973mean 16775.12296 16503.5519median 16668.745345 16354.4338variane 1094703.55833 2162402.151standard deviation 1046.280821 1470.5108# feasibles 1 2*# ǫ-feasibles 30 30Table 4.11: Results for funtion g10

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.749955 0.731125worst 0.751152 0.750204mean 0.750309 0.743945median 0.750214 0.747179variane 8.3655E-8 4.5196E-5standard deviation 2.8923E-4 0.006723# feasibles 0 0# ǫ-feasibles 30 30Table 4.12: Results for funtion g11



66 CHAPTER 4. BALDWINIAN OPTIMIZATIONStatisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 1.0 1.0worst 0.939999 0.9699999mean 0.986333 0.9903333median 0.99000 0.990000variane 1.2322E-4 6.9888E-5standard deviation 0.011100 0.008359# feasibles 30 30# ǫ-feasibles 30 30Table 4.13: Results for funtion g12

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.624860 0.4664885worst 0.99990 0.9999465mean 0.91796 0.8497140median 0.989343 0.899186variane 0.013152 0.017600standard deviation 0.114683 0.132667# feasibles 0 0# ǫ-feasibles 30 30Table 4.14: Results for funtion g13

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 1.836054 1.724852worst 2.384537 2.574196mean 2.050582 1.974465median 2.006084 1.924799variane 0.016603 0.03675standard deviation 0.128856 0.19172# feasibles 30 15*# ǫ-feasibles 30 30Table 4.15: Results for funtion i1



4.2. BALDWINIAN ALGORITHMS 67
Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 6488.3890 6890.85390worst 16783.24940 13053.0751mean 10811.4691 10113.5241median 10796.35730 9850.33251variane 4984724.191 3011815.7516standard deviation 2232.6495 1735.4583# feasibles 30 13*# ǫ-feasibles 30 30Table 4.16: Results for funtion i2

Statisti value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.012704 0.0124919worst 0.013231 0.0130756mean 0.012875 0.0128605median 0.012838 0.0128425variane 1.5581E-8 1.3777E-8standard deviation 1.2482E-4 1.1737E-4# feasibles 30 20*# ǫ-feasibles 30 30Table 4.17: Results for funtion i3



68 CHAPTER 4. BALDWINIAN OPTIMIZATIONof ǫ-feasible is hanging; it is about 10−6 times the maximum ahieved absolute valueof the �tness funtion.In the ending, it might seem that the Baldwinian algorithm fails to reah feasiblesolution in almost every problem, but this is just a misinterpretation of the results.As the best individual is often one who has learned (i.e. has an inreased �tness valuedue to learning), but the genotype remains unhanged, it is fairly di�ult to knowfor sure what is its Baldwinian violation by just looking at the genes. The numberspresented in the tables are only the individual's genetial violations, not the atualbest violations. In order to obtain that value of �tness, the individual had a violationof e�etively 0 after learning, making him feasible in its Baldwinian value4.Under the light shed by the last observation, we are safe to assure that the Bald-winian version of the algorithm outperforms, in general, the non-Baldwinian version.And atually, it performed fairly well for suh a simple algorithm used on well-knowndi�ult optimization problems.In the next setion we will introdue a Baldwinian version of a more powerfulevolutionary algorithm.4.2.2 Baldwinian Di�erential EvolutionThe di�erential evolution algorithm DE_1(CR,F ) reviewed in Setion 2.5 , with atehnique of rules with total sum of violations seen in Setion 1.3.2.2 will be used.The genotype will be augmented with the value of strength, so that it will be
p = (x1, x2, . . . , xl; s)where 0 ≤ s ≤ 1, and it represents the strength of instint. If the individual isto learn, it will have MAX attempts to improve its onstraint vetor from a loalvariation on the F parameter. Usually, the value of MAX is set to 2, but varioustries pointed to the good robustness of this parameter.This new di�erential evolution will be ompared with the di�erential evolutiondisussed in Setion 2.5.4, and it will have the same parameter setting, exept for theadded strength portion.The idea behind the learning operator is to use the loal searh with the parameter

F in the learning step, as a solution with values near the produed individual is likelyto have similar values in the di�erene part of the proess.As in the last setion, we will use ~x = (x1, x2, . . . , xl) to denote the objetiveportion of the genotype.The rossover operator used is the same than in the normal algorithm. Thestrength of the reated vetor will be set to the parent's value, plus a normal randomnumber with standard deviation 0.1, with a probability of C, otherwise it is set to
0.9s. The value of C an be used to ontrol the inreasing ratio of the strength.The reation of a new individual hanges a bit in this algorithm, but it is essentiallythe same as the original di�erential evolution. Assume we are reating the o�spring4That is the reason for the asterisk at the tables' # feasibles row.



4.2. BALDWINIAN ALGORITHMS 69of individual i in the population P , i.e. ~x is the objetive part of the individual pi,and s is the strength part.Baldwinian omparison
~xoff =reateOffspring(F);
~xB = ~xoff;if( s <rand() )for( i = 1 to MAX ){

~xtemp =reateOffspring(F+Normal(0,0.1);if( ρ ◦ τ(~xB) > ρ ◦ τ(~xtemp) )
~xB = ~xtemp;}if(better( ~xB, ~x ))if( 0.9 <rand() )

pnext,i =( ~xoff, 0.9s );else
pnext,i =( ~xoff, rand() );else

pnext,i = pi;As we an observe, the learning an take plae MAX times or 0 times. As with thease of the evolutionary strategy, it depends on the values of the learning strength.Again, the individual is not modi�ed; observe that the o�spring ~xoff is assigned tothe next generation if the Baldwinian individual is better than the parent individual'spart ~x. Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best -15 -15worst -15 -15mean -15 -15median -15 -15variane 0 0standard deviation 0 0# feasibles 30 30# ǫ-feasibles 30 30Table 4.18: Results for funtion g01The results for the benhmark funtions are summarized in Tables 4.18�4.30, andthe results for the engineering problems are in Tables 4.31�4.33.



70 CHAPTER 4. BALDWINIAN OPTIMIZATIONStatisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.8036189 0.8036189worst 0.8029367 0.8014754mean 0.8035043 0.8032154median 0.8036163 0.8036028variane 3.45886E-8 3.67254E-7standard deviation 1.8598E-4 6.06014E-4# feasibles 30 30# ǫ-feasibles 30 30Table 4.19: Results for funtion g02

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 1 1worst 0.9999873 0.9998754mean 0.9999990 0.9999846median 0.9999999 0.9999998variane 5.47056E-12 1.0087E-9standard deviation 2.33892E-6 3.17606E-5# feasibles 0 0# ǫ-feasibles 30 30Table 4.20: Results for funtion g03

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 30665.538671 30665.538671worst 30665.538671 30665.538671mean 30665.538671 30665.538671median 30665.538671 30665.538671variane 1.2837E-22 1.4999E-22standard deviation 1.1330E-11 1.2247E-11# feasibles 30 30# ǫ-feasibles 30 30Table 4.21: Results for funtion g04



4.2. BALDWINIAN ALGORITHMS 71Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 5126.49686 5126.498109worst 5126.49839 5126.522733mean 5126.49784 5126.501413median 5126.498106 5126.498126variane 1.9935E-7 3.4270E-5standard deviation 4.4649E-4 0.005854# feasibles 30 30# ǫ-feasibles 30 30Table 4.22: Results for funtion g05

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best -6961.813875 -6961.813875worst -6961.813875 -6961.813875mean -6961.813875 -6961.813875median -6961.813875 -6961.813875variane 3.3087E-24 3.3087E-24standard deviation 1.8189E-12 1.8189E-12# feasibles 30 30# ǫ-feasibles 30 30Table 4.23: Results for funtion g06

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 24.306209 24.306209worst 24.306643 24.313465mean 24.306327 24.307553median 24.306209 24.30620variane 2.8891E-8 4.8469E-6standard deviation 1.6997E-4 0.0022015# feasibles 30 30# ǫ-feasibles 30 30Table 4.24: Results for funtion g07



72 CHAPTER 4. BALDWINIAN OPTIMIZATIONStatisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.09582 0.095825worst 0.09582 0.095825mean 0.09582 0.095825median 0.09582 0.095825variane 5.6493E-34 4.0445E-34standard deviation 2.3768E-17 2.0110E-17# feasibles 30 30# ǫ-feasibles 30 30Table 4.25: Results for funtion g08

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 680.630057 680.630057worst 680.630057 680.630057mean 680.630057 680.630057median 680.630057 680.630057variane 1.7879E-25 2.4987E-25standard deviation 4.2283E-13 4.9987E-13# feasibles 30 30# ǫ-feasibles 30 30Table 4.26: Results for funtion g09

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 7049.248020 7049.248020worst 7049.260829 7049.359981mean 7049.250584 7049.270574median 7049.248020 7049.24802variane 1.6376E-5 2.29355E-4standard deviation 0.004046 0.01514# feasibles 30 30# ǫ-feasibles 30 30Table 4.27: Results for funtion g10



4.2. BALDWINIAN ALGORITHMS 73Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.749904 0.750000worst 0.750028 0.750813mean 0.749982 0.750163median 0.749999 0.750001variane 1.1238E-9 6.0038E-8standard deviation 3.3524E-5 2.4502E-4# feasibles 0 0# ǫ-feasibles 30 30Table 4.28: Results for funtion g11

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.98 1.0worst 0.59 0.520018mean 0.852052 0.775251median 0.865 0.784590variane 0.007546 0.012312standard deviation 0.086868 0.110963# feasibles 30 30# ǫ-feasibles 30 30Table 4.29: Results for funtion g12

Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.053943 0.053949worst 0.438851 0.73930mean 0.272058 0.35564median 0.438829 0.43885variane 0.036378 0.034533standard deviation 0.190731 0.18583# feasibles 30 30# ǫ-feasibles 30 30Table 4.30: Results for funtion g13



74 CHAPTER 4. BALDWINIAN OPTIMIZATIONStatisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 1.724852 1.724852worst 1.724852 1.724852mean 1.724852 1.724852median 1.724852 1.724852variane 1.2325E-30 1.2325E-30standard deviation 1.1102E-15 1.1102E-15# feasibles 30 30# ǫ-feasibles 30 30Table 4.31: Results for funtion i1
Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 6059.774753 6059.774753worst 6059.774753 6059.775651mean 6059.774753 6059.77481median 6059.774753 6059.77475variane 3.3087E-24 2.9341E-8standard deviation 1.8189E-12 1.7129E-4# feasibles 30 30# ǫ-feasibles 30 30Table 4.32: Results for funtion i2
Statisti value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.012665 0.012665worst 0.012665 0.012665mean 0.012665 0.012665median 0.012665 0.012665variane 3.5910E-35 3.3202E-35standard deviation 5.9925E-18 5.7621E-18# feasibles 30 30# ǫ-feasibles 30 30Table 4.33: Results for funtion i3



4.3. CONCLUSIONS ON THE EXPERIMENTS 754.3 Conlusions on the ExperimentsAs we might see in the tables, the performane of the Baldwinian version of well-known optimization algorithms is fairly better or equal than the non-Baldwinianounterpart. As expeted, the variane is greater, but the best value is usually betteror equal to the one obtained by the normal version.Our main observation in the tables is that, when the problem is a di�ult one,the Baldwinian version outperforms, on average, the normal version of the algorithm;whereas this means that the Baldwinian algorithm is better5 than the normal one ornot remains unknown as the variane is usually greater in the Baldwinian ase. Atleast this behavior proves what we expeted from the observations on the BaldwinE�et in Chapter 3.The learning operator for both ases is very simple as it was only used to illustratethe e�ets that learning an have on evolution. Better learning operators will lead tobetter results, but, as the Baldwin E�et teahes us, we must exerise aution whenusing learning beause the omputation time expend in learning is time lost fromevolution.All the experiments performed until now studied the Baldwinian algorithms to seewhether the Baldwin E�et was present or not in the evolution�learning interations.What we wanted to measure was the strengths of Baldwinian Algorithms, and if theyare worth the try.In order to see a full Baldwinian behavior on evolutionary algorithms, a hugeamount of omputational power was spent in order to better understand its e�ets.As we an see in the experiments performed by Hinton, Nowlan, Belew and Turney,the longer we let the algorithm run, the better the results we obtain are.In ontrast, we wanted to see if Baldwinian optimization an be applied to aproblem with limited omputational resoures (as are 350000 evaluations of the �t-ness funtion) and still sueed in the optimization proess by obtaining respetablesolutions.

5In the sense of statistial robustness and behavior.
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ConlusionsIt is undeniable that more and more researhers are being attrated by the o�eringsof new hybridization tehniques. Nature has always been a soure of inspiration toman-kind, and we an learly see this in the development of biologially inspiredalgorithms.The Baldwin E�et might be a not-well-understood fore in evolution, or an bejust a biologial uriosity. Either ase, we an exploit it to be of use to evolutionaryomputation. Early experiments pointed to the strength of learning by solving prob-lems of the type needle in a hay stak whih are well known di�ult optimizationproblems. The ath seems to be in learning and the way it was implemented. Learn-ing is ostly, and the experiments were more onerned with idealized algorithms withvirtually unlimited omputation resoures.In this thesis we wanted to issue the performane problem derived from learning.We ompared the algorithm Baldwinian algorithm with the non-Baldwinian versionof it, and the results are presented. Whether the Baldwinian version is better ornot is something that we are not diretly interested in. Instead we wanted to verifyif it was possible to reate a ompetitive algorithm based on the onepts from theBaldwin E�et.Fortunately, most results were expeted, and the issue of better is not easy toaddress with high variane results as obtained. However, learning was expeted to in-rease the variane of results, and in general, the Baldwinian algorithm demonstratedan exellent better result, fairly good mean and median, and slightly large standarddeviation.We see the Baldwinian algorithms as a promising area of researh, and expet theideas to spread in the omputing ommunity. A good example of this an be seenin the birth of memeti algorithms, whih resemble Baldwinian ones to the point inwhih many people even think they are the same.In addition, if the onepts of Lamarkism have been used as valid omputer mod-els (although not biologially aurate) for optimization, using Baldwinian models isertainly as valid as Lamarkian. In the end, we an exploit more the Baldwinian on-epts as are suseptible to be further studied in biology and, in onsequene, betterunderstood by omputer sientists.
77
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Appendix ABenhmark funtionsHere we present the test bed used to ompare the algorithms in this thesis. Thebenhmark funtions g01 to g12 were put together by Mihalewiz and Koziel, andare desribed in [13℄. The funtion g13 was proposed by Runarsson and Yao in [17℄.The engineering problems i1, i2 and i3 are desribed in [???℄. Another proposedengineering (thought to be very hard) problems, here referred as c01 to c08, wereproposed by Mezura and Coello in [5℄. Only for the sake of ompleteness, all thefuntions are reprodued here.1. g01Minimize:
f(~x) = 5

4
∑

i=1

xi − 5
4
∑

i=1

x2
i −

13
∑

i=5

xisubjet to:
g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0where the bounds are 0 ≤ xi ≤ 1 (i = 1, 2, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12)and 0 ≤ x13 ≤ 1. The global minimum is at ~x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)where six onstraints are ative (g1, g2, g3, g7, g8 and g9), and f(~x∗) = −15.81



82 APPENDIX A. BENCHMARK FUNCTIONS2. g02Maximize:
f(~x) =

∣

∣

∣

∣

∣

∑n
i=1 cos4(xi) − 2

∏n
i=1 cos2(xi)

√

∑n
i=1 ix

2
i

∣

∣

∣

∣

∣subjet to:
g1(~x) = 0.75 −

n
∏

i=1

xi ≤ 0

g2(~x) =
n
∑

i=1

xi − 7.5n ≤ 0where n = 20, the bounds are 0 ≤ xi ≤ 10 (i = 1, 2, . . . , n). The global mini-mum is unknown, the best found reported previously is f(~x) = 0.803619, with
~x∗ =(3.171456, 3.175499, 3.121430, 3.065424, 3.024695, 2.985945, 2.956863,
2.880306, 0.506161, 0.509743, 0.486445, 0.481882, 0.487077, 0.459685, 0.467321,
0.445682, 0.439956, 0.444745, 0.431957, 0.424569) with the onstraint g02 beinglose to ative.3. g03Maximize:

f(~x) = (
√
n)n

n
∏

i=1

xisubjet to:
h1(~x) =

n
∑

i=1

x2
i − 1 = 0where n = 10 and the bounds are 0 ≤ xi ≤ 1 (i = 1, 2, . . . , n). The globalmaximum is at x∗i = 1/

√
n (i = 1, 2, . . . , n) where f(~x∗) = 1.4. g04Minimize:

f(~x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141subjet to:

g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

−0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4

+0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2
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+0.0021813x2

3 − 110 ≤ 0

g4(~x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2

−0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3

−0.0019085x3x4 + 20 ≤ 0where the bounds are 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, and 27 ≤ xi ≤ 45(i = 3, 4, 5). The best solution is ~x∗ = (78, 33, 29.995256, 45, 36.775813) where
f(~x∗) = −30665.539. Two onstraints are ative (g1 and g6).5. g05Minimize:

f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2subjet to:
g1(~x) = −x4 + x3 − 0.55 ≤ 0

g2(~x) = −x3 + x4 − 0.55 ≤ 0

h3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0where the bounds are 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55,and −0.55 ≤ x4 ≤ 0.55. The best known solution is ~x∗ = (679.9453, 1026.067,
0.118876, −0.396234) where two onstraints are ative (g1 and g6), and f(~x∗) =
5126.4981.6. g06Minimize:

f(~x) = (x1 − 10)3 + (x2 − 20)3subjet to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(~x) = −(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0where the bounds are 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimumsolution is ~x∗ = (14.095, 0.84296)where both onstraints are ative, and f(~x∗) =
−6961.81388.7. g07Minimize:
f(~x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
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g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0where the bounds are −10 ≤ xi ≤ 10 (i = 1, 2, . . . , 10). The optimum solutionis ~x∗ =(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) where six onstraints are ative (g1, g2, g3, g4, g5and g6), and f(~x∗) = 24.3062091.8. g08Minimize:

f(~x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)subjet to:

g1(~x) = x2
1 − x2 + 1 ≤ 0

g2(~x) = 1 − x1 + (x2 − 4)2 ≤ 0where the bounds are 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum is at
~x∗ = (1.2279713, 4.2453733) where f(~x∗) = 0.095825.9. g09Minimize:

f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7subjet to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0where the bounds are −10 ≤ xi ≤ 10 (i = 1, 2, . . . , 7). The optimum solutionis at ~x∗ =(2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131,

1.594227) where two onstraints are ative (g1 and g4), and f(~x∗) = 680.6300573.



8510. g10Minimize:
f(~x) = x1 + x2 + x3subjet to:
g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0

g4(~x) = −x1x6 + 8.33252x4 + 100x1 − 83333.333 ≤ 0

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0where the bounds are 100 ≤ xi ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3), and
10 ≤ xi ≤ 1000 (i = 4, 5, . . . , 8). The optimum solution is ~x∗ =(579.3167,
1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979) wherethree onstraints are ative (g1, g2 and g3), and f(~x∗) = −15.11. g11Minimize:

f(~x) = x2
1 + (x2 − 1)2subjet to:

h1(~x) = x2 − x2
1 = 0where the bounds are −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is at

~x∗ = (±1/
√

2, 1/2) where f(~x∗) = 0.75.12. g12Maximize:
f(~x) = (100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100subjet to:

g1(~x) = min
p,q,r

{(x1 − p)2 − (x2 − q)2 − (x3 − r)2 − 0.0625|p, q, r ∈ {1, 2, . . . , 9}} ≤ 0where the bounds are 0 ≤ xi ≤ 1 (i = 1, 2, 3). This problem has been restatedto �t the standard de�nition. The global maximum is at ~x∗ = (5, 5, 5) where
f(~x∗) = 1.13. g13Minimize:

f(~x) = expx1x2x3x4x5
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h1(~x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0

h3(~x) = x3
1 + x3

2 + 1 = 0where the bounds are −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2(i = 3, 4, 5). The optimum solution is ~x∗ =(−1.717143, 1.595709, 1.827247,
−0.7636413, −0.763645) where f(~x∗) = 0.0539498.14. i1Minimize:

f(~x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)subjet to:

g1(~x) = τ(~x) − τmax ≤ 0

g2(~x) = σ(~x) − σmax ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5 ≤ 0

g5(~x) = 0.125 − x1 ≤ 0

g6(~x) = δ(~x) − δmax ≤ 0

g7(~x) = P − Pc(~x) ≤ 0where:
τ(~x) =

√

(τ ′)2 + 2τ ′τ ′′
x2

2R
+ (τ ′′)2

τ ′ =
P√

2x1x2

τ ′′ =
MR

J

M = P (L+
x2

2
)

R =

√

x2
2

4
+

(

x1 + x3

2

)2

J = 2

(

√
2x1x2

(

x2
2

12
+

(

x1 + x3

2

)2
))

σ(~x) =
6PL

x4x2
3

δ(~x) =
4PL3

Ex3
3x4
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Pc(~x) =

4.013E

√

x2

3
x6

4

36

L2

(

1 − x3

2L

√

E

4G

)and P = 6000lp, L = 14in, E = 30 × 106psi, g = 12 × 106psi, τmax = 13600psi,
σmax = 30000psi, δmax = 0.25in. The bounds are 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10 and 0.1 ≤ x4 ≤ 2. The best known solution is ~x∗ =(0.2057296,
3.4704887, 9.0366239, 0.205729) where f(~x∗) = 1.724852309.15. i2Minimize:

f(~x) = (0.6224)0.0625 ⌊x1⌋ x3x4 + (1.7781)0.0625 ⌊x2⌋ x2
3

+3.1661(0.0625 ⌊x1⌋)2x4 + 19.84(0.0625 ⌊x1⌋)2x3subjet to:
g1(~x) = −0.0625 ⌊x1⌋ + 0.0193x3 ≤ 0

g2(~x) = −0.0625 ⌊x2⌋ + 0.00954x3 ≤ 0

g3(~x) = −πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0

g4(~x) = x4 − 240 ≤ 0where the bounds are 1 ≤ xi ≤ 99 (i = 1, 2) and 10 ≤ xi ≤ 200 (i = 3, 4).The best known solution is ~x∗ =(0.8125, 0.4375, 42.098445, 176.636597) where
f(~x∗) = 6059.71434795.16. i3Minimize:

f(~x) = (x3 + 2)x2x
2
1subjet to:

g1(~x) = 1 − x3
2x3

71785x4
1

≤ 0

g2(~x) =
4x2

2 − x1x2

12566(x2x
3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0

g3(~x) = 1 − 140.45x1

x2
2x3

≤ 0

g4(~x) =
x2 + x1

1.5
− 1 ≤ 0where the bounds are 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15. Thebest known solution is ~x∗ =(0.051683, 0.0356577, 11.297236) where f(~x∗) =

0.012665.
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f(~x) =

10
∑

i=1

xi

(

ci + ln
xi

∑10
j=1 xj

)subjet to:
h1(~x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(~x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0where the bounds are 0 ≤ xi ≤ 1, (i = 1, 2, . . . , 10), and c1 = −6.089, c2 =
−17.164, c3 = −34.0054, c4 = − − 5.914, c5 = −24.721, c6 = −14.986, c7 =
−24.1, c8 = −10.708, c9 = −26.662, c10 = −22.179. The best known solutionis ~x∗ =(0.0407, 0.1477, 0.7832, 0.0014, 0.4853, 0.0007, 0.0274, 0.018, 0.0373,
0.0969) where f(~x∗) = −47.761.18. c02Minimize:

f(~x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3subjet to:

h1(~x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0where the bounds are 0 ≤ xi ≤ 10, (i = 1, 2, 3). The global optimum is at
~x∗ =(3.512, 0.217, 3.552) where f(~x∗) = 961.715.19. c03Minimize:

f(~x) = f1(x1) + f2(x2) and
f1(x) =

{

30x if 0 ≤ x < 300
31x if 300 ≤ x ≤ 400

f2(x) =







28x if 0 ≤ x < 100
29x if 100 ≤ x < 200
30x if 200 ≤ x ≤ 1000subjet to:

h1(~x) = x1 − 300 +
x3x4

131.078
cos(1.48577− x6)

−0.90798

131.078
x2

3 cos(1.47588) = 0

h2(~x) = x2 +
x3x4

131.078
cos(1.48577 + x6)
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−0.90798

131.078
x2

4 cos(1.47588) = 0

h3(~x) = x5 +
x3x4

131.078
sin(1.48577 + x6)

−0.90798

131.078
x2

4 sin(1.47588) = 0

h4(~x) = 200 − x3x4

131.078
sin(1.48577− x6)

−0.90798

131.078
x2

3 sin(1.47588) = 0where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤
x4 ≤ 420, −1000 ≤ x5 ≤ 1000, 0 ≤ x3 ≤ 0.5236. The best known solution is
~x∗ =(107.81, 196.32, 373.83, 420, 21.31, 0.153) where f(~x∗) = 8927.5888.20. c04Maximize:

f(~x) = 0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)subjet to:
g1(~x) = x2

3 + x2
4 − 1 ≤ 0

g2(~x) = x2
9 − 1 ≤ 0

g3(~x) = x2
5 + x2

6 − 1 ≤ 0

g4(~x) = x2
1 + (x2 − x9)

2 − 1 ≤ 0

g5(~x) = (x1 − x5)
2 + (x2 − x6)

2 − 1 ≤ 0

g6(~x) = (x1 − x7)
2 + (x2 − x8)

2 − 1 ≤ 0

g7(~x) = (x3 − x5)
2 + (x4 − x6)

2 − 1 ≤ 0

g8(~x) = (x3 − x7)
2 + (x4 − x8)

2 − 1 ≤ 0

g9(~x) = x2
7 + (x8 − x9)

2 − 1 ≤ 0

g10(~x) = x2x3 − x1x4 ≤ 0

g11(~x) = −x3x9 ≤ 0

g12(~x) = x5x9 ≤ 0

g13(~x) = x6x7 − x5x8 ≤ 0where the bounds are −1 ≤ xi ≤ 1 (i = 1, 2, . . . , 8). The best known solu-tion is ~x∗ =(0.9971, −0.0758, 0.553, 0.8331, 0.9981, −0.0623, 0.5642, 0.8256,
0.0000024) where f(~x∗) = 0.866.21. c05Maximize:

f(~x) =

10
∑

i=1

bixi −
5
∑

i=1

5
∑

j=1

ci,jx10+ix10+j − 2

5
∑

j=1

djx
3
10+j
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gj(~x) =

10
∑

i=1

ai,jxi − 2

5
∑

i=1

ci,jx10+i − 3djx
2
10+j − ej ≤ 0and

e = (−15,−27,−36,−18,−12)

c1 = (30,−20,−10, 32,−10)

c2 = (−20, 39,−6, 39,−20)

c3 = (−10,−6, 10,−6,−10)

c4 = (32,−31,−6, 39,−20)

c5 = (−10, 32,−10,−20, 30)

d = (4, 8, 10, 6, 2)

a1 = (−16, 2, 0, 1, 0)

a2 = (0,−2, 0, 4, 2)

a3 = (−35, 0, 2, 0, 0)

a4 = (0,−2, 0,−4,−1)

a5 = (0,−9,−2, 1,−2.8)

a6 = (2, 0,−4, 0, 0)

a7 = (−1,−1,−1,−1,−1)

a8 = (−1,−2,−3,−2,−1)

a9 = (1, 2, 3, 4, 5)

a10 = (1, 1, 1, 1, 1)where the bounds are 0 ≤ xi ≤ 100 (i = 1, 2, . . . , 15). The best known solutionis ~x∗ =(0, 0, 5.147, 0, 3.0611, 11.8395, 0, 0, 0.1039, 0, 0.3, 0.3335, 0.4, 0.4283,
0.224) where f(~x∗) = −32.386.22. c06Minimize:

f(~x) = x1subjet to:
g1(~x) = −x1 + 35x0.6

2 + 35x0.6
3 ≤ 0

h2(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h3(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h4(~x) = −x5 + ln(−x4 + 900) = 0

h5(~x) = −x6 + ln(x4 + 300) = 0

h6(~x) = −x7 + ln(−2x4 + 700) = 0



91where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2 ≤ 40, 0 ≤ x3 ≤ 40, 100 ≤ x4 ≤
300, 6.3 ≤ x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4, and 4.5 ≤ x7 ≤ 6.25. The best knownsolution is ~x∗ =(193.77835, 0, 17.3272, 100.01566, 6.6846, 5.9915, 6.2145) where
f(~x∗) = 193.7783.23. c07Minimize:

f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)subjet to:
h1(~x) = x1 + x2 − x3 − x4 = 0

h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(~x) = x3 + x6 − x5 = 0

h4(~x) = x4 + x7 − x8 = 0

g5(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g6(~x) = x9x4 + 0.02x7 − 0.025x8 ≤ 0where the bounds are 0 ≤ xi ≤ 300 (i = 1, 2, 6), 0 ≤ xi ≤ 100 (i = 3, 5, 7),
0 ≤ xi ≤ 200 (i = 4, 8), and 0.01 ≤ x9 ≤ 0.03. The optimum solution is at
~x∗ =(0, 100, 0, 100, 0, 0, 100, 200, 0.1) where f(~x∗) = −400.24. c08Minimize:

f(~x) = −x1 − x2subjet to:
g1(~x) = −2x4

1 + 8x3
1 − 8x2

1 + x2 − 2 ≤ 0

g2(~x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0where the bounds are 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4. The optimum solution is at

~x∗ =(2.3295, 3.17846) where f(~x∗) = −5.5079.
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Appendix BResults for the Mezura-CoelloBenhmarkThe results for the engineering problems proposed as benhmark by Mezura andCoello [5℄ are in Tables B.2�B.9. The optimal values for these problems are summa-rized in Table B.1. Funtion Optimal value max/min
c01 −47.761 Minimize
c02 961.715 Minimize
c03 8927.5888 Minimize
c04 0.866 Maximize
c05 −32.386 Maximize
c06 193.7783493 Minimize
c07 −400 Minimize
c08 5.5079 MinimizeTable B.1: The known or reported optimum values for the rest of the test funtions.The olumn max/min tells whether the problem is a maximization or a minimizationto better interpret the results.
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94 APPENDIX B. RESULTS FOR THE MEZURA-COELLO BENCHMARKStatisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best -45.14793 -47.761 47.761 47.761worst -40.4601 -42.47365 47.759 47.6708mean -43.4492 -46.81045 47.7609 47.757median -43.449 -46.81045 47.761 47.761variane 0.947 1.6654 1.021E-7 2.602E-4standard dev. 0.973 1.2654 3.196E-4 0.016# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.2: Results for funtion c01. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 961.7181 961.7244 961.7151 961.7151worst 969.401 966.21389 961.7151 961.7151mean 964.003 963.11675 961.7151 961.7151median 963.3009 962.8708 961.7151 961.7151variane 4.689 1.74 3.761E-14 2.457E-12standard dev. 2.1654 1.319 1.939E-7 1.567E-6# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.3: Results for funtion c02. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1bestworstmeanmedianvarianestandard dev.# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.4: Results for funtion c03. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.



95Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 0.866 0.866 0.866 0.866worst 0.512 0.571 0.866 0.866mean 0.7657 0.828 0.866 0.866median 0.8623 0.864 0.866 0.866variane 0.0167 0.0081 5.05E-13 5.739E-11standard dev. 0.1294 0.0904 7.106E-7 7.575E-6# feasibles 30 30 30 30# ǫ-feasibles 30 30 30 30Table B.5: Results for funtion c04. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1bestworstmeanmedianvarianestandard dev.# feasibles 30 30 30 30# ǫ-feasibles 30 30 30 30Table B.6: Results for funtion c05. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 452.557 440.694 193.786 193.785worst 691.273 657.992 325.149 325.157mean 550.058 544.574 220.059 206.923median 539.914 536.7099 193.786 193.786variane 3482.56 3481.63 2760.89 1553.06standard dev. 59.013 59.005 52.544 39.408# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.7: Results for funtion c06. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.



96 APPENDIX B. RESULTS FOR THE MEZURA-COELLO BENCHMARK
Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best -401.92 -402.426 400 400worst -397.906 -397.756 399.943 399.789mean -400.21 -399.955 399.995 399.962median -400.335 -400.28 399.999 399.999variane 1.0639 1.1892 1.17E-4 0.0036standard dev. 1.0314 1.0905 0.0108 0.0602# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.8: Results for funtion c07. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.

Statisti value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 5.50801 5.50801 5.50801 5.50801worst 5.50801 5.50801 5.50801 5.50801mean 5.50801 5.50801 5.50801 5.50801median 5.50801 5.50801 5.50801 5.50801variane 1.908E-16 7.045E-13 3.155E-30 3.155E-30standard dev. 1.381E-8 8.393E-7 1.776E-15 1.776E-15# feasibles 30 30 30 30# ǫ-feasibles 30 30 30 30Table B.9: Results for funtion c08. The seond and third olumn represent the om-parison between the normal ES and the Baldwinian one, respetively. The fourth and�fth is the omparison between the normal DE and the Baldwinian one respetively.


