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Introdu
tionBiologi
ally inspired models in 
omputer s
ien
e used for problem solving have re-sulted invaluable to the 
ommunity. It has been almost half a 
entury sin
e the�rst attempt were made towards su

essful appli
ations of these models to real worldproblems.A model is by de�nition a simpli�
ation of reality, and it is usually the 
ase that it
an end in over-simpli�
ation of observed phenomenon. In evolutionary 
omputationthis might be the 
ase sin
e, from the point of view of biology, neo-Darwinism is amore 
omplex model than any 
urrent evolutionary algorithm. This is also the 
asein many biologi
ally inspired models as arti�
ial neural networks, ma
hine learning,automata theory, and more.Making more and more 
omplex models seems to be a trend of 
hanging strength.While some resear
hers like more sophisti
ated methods for problem solving, otherssuggest that we should be trying to dis
over the inners of the 
urrent algorithms inorder to set them on more formal foundations.The main aim of this thesis is to present a biologi
ally inspired, and to someextent, biologi
ally a

urate new trend in evolutionary 
omputation by expresselytrying to emulate the observed behavior known as the Baldwin E�e
t.A number of resear
hers have observed (in both, evolutionary 
omputation andevolutionary biology) a synergy between learning and evolution to a 
ertain extent.This synergy is 
ommonly (and mistakenly) known as the Baldwin E�e
t. While itis true that the Baldwin E�e
t explains this observed synergy, it is equally interestedwith the 
osts of learning over instin
t. Con
erning learning and instin
t as a pe
u-liar duality, the Baldwin E�e
t 
an be thought as the synergy, 
osts and trade-o�so

urring between them.Some experiments have been made by a handful of resear
hers, a
quainted tosome degree with both biology and 
omputation, to study the Baldwin E�e
t inits 
omplete form. The results were promising and inspired the author in furtherstudying this phenomenon.This thesis is organized as follows:In the �rst Chapter we give a brief introdu
tion to Optimization without wantingto make it the 
entral point. The key terms are explored and an introdu
tion tolo
al sear
h and 
onstrained optimization will be given. These 
on
epts will be usedthroughout the thesis, and it is re
ommended that the reader at least �ips thoughthem to be sure to understand the notation adopted and get used with names of1



2 LIST OF TABLESalready known terms.The se
ond Chapter is devoted to evolutionary algorithms. There, we develop thebasi
 de�nitions and algorithms. There is no attention given to results 
on
erningproofs of 
onvergen
e rate or underlying me
hanisms for the algorithms, instead wetry to develop the reader's intuition on the required steps to 
reate and understandan evolutionary algorithm. Some of the main bran
hes of this �eld are inspe
ted,and a number of variants are dis
ussed. The notions of evolutionary strategies anddi�erential evolution will be the key for the presented experiments, and should begiven spe
ial 
onsideration.In the next Chapter, we dis
uss about the Baldwin E�e
t. We are 
on
entrated ona detailed explanation of the 
on
epts and trends in this matter. We present the workof several other resear
hers in order to support our remarks, and give spe
ial attentionto the Baldwin E�e
t as a whole. After developing the Baldwinian and Lamar
kism
on
epts, we 
ontinue with a Se
tion devoted to Baldwin E�e
t in 
omputer s
ien
e.There we present the more traditional works in this �eld, and give explanations ofthe observed behaviors.The last Chapter is then �lled with the 
entral portion of this thesis. We presentthe term Baldwinian Optimization, whi
h to the extent of our knowledge has neverbeen used before. There we express the viability of using Baldwinian me
hanisms tosolve di�
ult 
onstrained optimization problems, and also give the key ideas on howto adapt a Baldwinian version of virtually any population based algorithm. We alsopresent a 
omparison between Baldwinian and non-Baldwinian versions of the samealgorithm, and 
lose with a small 
on
lusion on the results obtained.The 
on
lusions on the work presented follow these Chapters. There we argueabout the possibilities of the Baldwinian optimization as a resear
h resour
e. Webrie�y argue that biologi
ally inspired algorithms are more easily understood andadapted on the long run than other, more obs
ure, ones.



Chapter 1OptimizationThe body of mathemati
al results and numeri
al methods for �nding and identify-ing the best 
andidate from a 
olle
tion of alternatives without having to expli
itlyenumerate all possible alternatives is 
alled Optimization. With the advent of theinformation era, the 
omputational power have made the optimization task easier,but at the same time have brought a new range of questions 
on
erning the e�
ien
yand 
orre
tness of the algorithms used in optimization.In this Chapter we provide the basis for global and 
onstrained optimization. Theaims of this Chapter are to develop the required de�nitions and to present a range ofgeneral-purpose te
hniques to atta
k an optimization problem.1.1 Basi
 Con
eptsThe general optimization problem 
an be stated as follows. Given the pair (S; f),where S is an arbitrary sear
h spa
e, and f : S → R is a real-valued fun
tion tooptimize. With the optimum of the problem, we mean either the maximum of thefun
tion or the minimum.For purposes of this thesis, the optimization problem will always be regarded as amaximization problem. Observe that every minimization problem 
an be transformedinto a maximization one by simply taking the problem as (S;−f).The value x∗ is 
alled the optimum (maximum) of the optimization problem (S; f)if and only if it satis�es f(x∗) ≥ f(x) for every x ∈ S. When if along with the sear
hspa
e we have a neighboring stru
ture N : S → 2S de�ned on it, we 
an de�nethe notion of lo
al optimum as every value x∗local satisfying f(x∗local) ≥ f(x) for every
x ∈ N(x∗local). By notation we will de�ne X∗ = {x|x is an optimal solution of (S; f)},and X∗

local = {x|x is a lo
al optimal solution of (S,N ; f)}.Observe that the de�nition of a lo
al optimum is dependent on the neighboringstru
ture asso
iated to the sear
h spa
e. With the appropriate neighboring stru
ture,we 
an avoid lo
al optimum solutions that are not global ones. We 
an also note that
X∗ ⊂ X∗

local regardless of the neighboring stru
ture N .In general, we will have that S ⊂ Rm, for 
ontinuous optimization, and S ⊂ Nm,3



4 CHAPTER 1. OPTIMIZATIONfor dis
rete optimization. We will 
all the elements x ∈ S solutions of the optimizationproblem, as they represent the possible solution values of an optimization problem.Similarly, we will 
all f(x), for x ∈ S, the values of a solution. By notation, f(x∗)will be 
alled the optimum value of the optimization problem.In general, we 
an only tell if we are at a lo
al optimum or not, sin
e the notionof lo
al optimum is based on a neighboring stru
ture that is potentially very small
ompared to the size of the sear
h spa
e S. In order to be sure that we are in theglobal optimum, we have to enumerate all possible solutions and 
he
k if all of themare not greater than our proposed solution.We also require a little more from the neighboring stru
ture, as not every stru
tureis useful. Given an optimization problem (S,N ; f), the neighboring stru
ture is saidto be 
onsistent if for every pair of solutions x, y ∈ S, there exists a sequen
e (notne
essarily �nite) {zi}i∈Z, su
h that x = limi→−∞ zi and y = limi→∞ zi, and zi+1 ∈
N(zi) for every i ∈ Z. If the sequen
e is �nite, N is said to be �nitely 
onsistent.This de�nition de�nes whether a neighboring stru
ture 
an lead from one point inthe sear
h spa
e to every other passing only through the neighbors (and the neighborsof the neighbors) of the points to be united. Observe that if S is �nite, then every Nis �nitely 
onsistent.Let us now de�ne a relation for neighboring. Given the relation ∼⊂ S × S, su
hthat x ∼ y if and only if x ∈ N(y), we 
an de�ne 
ertain desirable properties of theneighboring stru
ture N . We will say that N is 
oherent, if and only if ∼ is re�exive(i.e. x ∼ x) and symmetri
 (i.e. x ∼ y ⇔ y ∼ x).The notion of 
onsisten
y is used by many sto
hasti
 lo
al sear
h algorithms toassert global optimality, while the notion of 
oheren
y is mainly used for 
onvenien
e.There is also another de�nition that will prove useful in our study. We will saythat the fun
tion f is unimodal in T ⊂ S if and only if X∗

local of the redu
ed problem
(T,N |T , f) has 
ardinality 1 (in other words, if there is only one lo
al optimum in T )If the fun
tion f is not unimodal in T , then it is said to be multi-modal.1.2 Lo
al sear
hThe �rst type of algorithms we might �nd in optimization history are the lo
al sear
halgorithms. This early attempt to solve optimization problems 
an be regarded as afun
tion

a : S → 2S where a(x) ∈ N(x) for ea
h x ∈ S (1.1)The algorithm 
an be either deterministi
 (i.e. a fun
tion as proposed above) orsto
hasti
 in whi
h 
ase we 
an generalize the above de�nition to be
a : S × [0, 1] → 2S where a(x, r) ∈ N(x) for ea
h x ∈ S, r ∈ [0, 1] (1.2)where the number r is 
onsidered to be the random portion of the algorithm.The pseudo-
ode for the lo
al sear
h algorithm is given below to express the wayin whi
h the lo
al sear
h algorithm work.



1.2. LOCAL SEARCH 5Lo
al sear
h (sto
hasti
)
i =initialSolution();
best =i;
iterations = 0;while( depth-not-satisfied ){

count = 0;// Here starts the algorithm a.while( pivot-rule-not-satisfied ){
j =next( N(i) );
count+ +;if( f(j) > f(best) )

best = j;}// We think of best as the produ
tion//of the algorithm best = a(i)
i = best;
iterations + +;}In this pseudo-
ode we 
an observe a 
ouple of 
onditions, the depth 
ondition andthe pivot rule. This pair of 
onditions determine the lo
al sear
h algorithm.The pivot rule is the algorithm itself, and 
an be for instan
e steepest as
ent,meaning that the whole neighborhood of the solution i is to be sear
hed for the bestsolution available (count = |N(i)|). In the 
ase of greedy as
ent, we might use thepivot rule of stopping when the �rst better solution in the neighborhood is found(count = |N(i)| or best = i). In pra
ti
e, as the 
ardinality of the neighborhood N(i)
an be in�nite, it is natural to 
onsider only a random sample of size n ≪ |N(i)|.This type of algorithms are deterministi
 in nature, but sto
hasti
 in behavior.The depth 
ondition is the termination 
riteria of the lo
al sear
h. It 
an rangefrom the one-time lo
al sear
h (when iterations = 1), to the lo
al optimality 
ondition(count = |N(i)| and best = i).Another important remark is that sto
hasti
 lo
al sear
h algorithms will have anon-deterministi
 pivot rule. This means that they might a

ept a solution generatedwithin the neighborhood based on a probabilisti
 
ondition. Algorithms like simulatedannealing fall into this 
ategory, where a worst solution might be a

epted with lowprobability.



6 CHAPTER 1. OPTIMIZATION1.3 Constrained OptimizationMost real world optimization problems are more 
omplex than the problems presentedin the last se
tion. In parti
ular, the solutions o�ered by the optimization pro
essmight not be appli
able to real world after the over-simpli�
ation pro
ess of themodel.In order to over
ome this problem, the notion of 
onstrained optimization wasborn. It adds to the de�nition of an optimization problems the notion of feasibleregion and 
onstraints that must be satis�ed in order for the solution to be a

eptable,but that are not obje
tives themselves.1.3.1 Constrained optimization problem de�nitionA 
onstrained optimization problem is a tuple (S,N ; f ; g1, g2, . . . , gn; h1, h2, . . . , hm),where S is the arbitrary sear
h spa
e, N : S → 2S is the neighboring stru
ture, f :
S → R is the �tness fun
tion, gi : S → R whi
h represent the inequality 
onstraints,and hi : S → R whi
h represent the equality 
onstraints.We 
all feasible region to the set

F = {x ∈ S|gi(x) ≤ 0∀1 ≤ i ≤ n and hj(x) = 0∀1 ≤ j ≤ m} (1.3)and a solution x to the problem is a

eptable if and only if x ∈ F . When there is asolution x su
h that gi(x) = 0, the 
onstraint gi is said to be a
tive for x.The 
onstrained optimization problem is typi
ally stated asoptimize f(x)subje
t to
gi(x) ≤ 0, i = 1, 2, . . . , n

hj(x) = 0, j = 1, 2, . . . , mand in both 
ases, equality and inequality 
onstraints, 
an be linear or non-linear.The 
onstrained optimum is the value x∗ su
h that is a

eptable and the globaloptimum of the transformed problem (F , N |F ; f |F).1.3.2 Te
hniques to handle 
onstraintsIn order to solve this type of optimization problems, resear
hers have developed anumber of te
hniques. Most of them are variation of an already existing te
hnique,or the transformation of the problem to a standard optimization problem that has itsglobal optimum at the 
onstrained optimum of the original problem.In the following se
tion we will examine many of this te
hniques.



1.3. CONSTRAINED OPTIMIZATION 71.3.2.1 Penalty fun
tionsThe �rst idea used to solve 
onstrained optimization problems was to transform theproblem to global optimization one over S, and applying a penalty in �tness to thosesolutions that lay outside the feasible region. Here we will examine two di�erentte
hniques that use this idea as inspiration.Total violation of 
onstraints The �rst te
hnique used to solve 
onstrained op-timization problems was the total violation of 
onstraints. This te
hnique 
onsistsof 
hanging the �tness fun
tion to add a penalty based on 
onstraint violation. Itsgeneral form allows a set of parameters to be adjusted for ea
h 
onstraint.The problem is then transformed to (S,N ; f ′) where
f ′(x) = f(x) −

n
∑

i=1

wig
+
i (x) −

m
∑

j=1

wn+jhj(x) (1.4)with g+
i (x) = max{0, gi(x)}where the numbers wk ∈ R+ for ea
h 1 ≤ k ≤ n+m represent the weights asso
iatedto that 
onstraint fun
tion. These weights are not ne
essarily �xed during the wholeoptimization pro
ess. One my start with small weights in the �rst stages of thealgorithms to then in
rease them to enfor
e the 
onstraints later on.Observe that depending upon the values of {wi}, the global optimum of f ′ 
anbe the 
onstrained optimization. In general, when the weights approa
h in�nity, theglobal optimum of the fun
tion f ′ approa
hes the 
onstrained optimum of the fun
tion

f . There has been a number of attempts to set this parameters in a self-adapting way,but, be
ause of the simpli
ity of this te
hnique, they have not worked as expe
ted.Maximum violation of 
onstraints As with the last te
hnique, this is an earlyattempt to solve 
onstrained problems. The basi
 idea behind maximum violation of
onstraints is to take the maximum value of violation of the individual as the penaltyto the �tness fun
tion, instead of taking the sum of violations.The problem is then transformed to (S,N ; f ′)

f ′(x) = f(x) − max
0≤i≤n

{wig
+
i (x)} − max

1≤j≤m
{wn+jhj(x)} (1.5)with g+

i (x) = max{0, gi(x)}and h+
j (x) = |hj(x)| (1.6)where the numbers wk ∈ R+ for ea
h 1 ≤ k ≤ n + m represent, as in the previous
ase, the weights asso
iated to that 
onstraint fun
tion. As before, the weights arenot ne
essarily �xed during the whole optimization pro
ess. And yet again, whenthe weights are 
lose to in�nity, the global optimum of f ′ approa
hes the 
onstrainedoptimum of f .



8 CHAPTER 1. OPTIMIZATIONMore penalty te
hniques We 
an see the last two te
hniques to handle 
on-straints as a spe
ial 
ase of a more general approa
h. The idea is to 
reate a fun
tionto transform the violation value of ea
h 
onstraint to mat
h the desired behavior.Hen
e, we will de�ne two penalty fun
tions φ and ψ taking values of the 
onstraints
gi and hj respe
tively to assign a penalty to the original fun
tion.The problem is then transformed to (S,N ; f ′, {Gi}, {Hj}) with

f ′(x) = f(x) + φ(g1(x), g2(x), . . . , gn(x)) + ψ(h1(x), h2(x), . . . , hm(x)) (1.7)with the only 
onstraint that the fun
tions φ and ψ should be non-negative, and beevaluated as 0 when x ∈ F .There is a wide range of sele
tion for the fun
tions φ and ψ, but they shall not bedis
ussed here, as they are of se
ondary interest to the aims of this thesis.1.3.2.2 Rules of feasibilityA more sophisti
ated approa
h to solving the 
onstrained problem is the use of rulesto de
ide when a solution is better than another one. The main advantage of thesete
hniques is that they do not need to set parameters to balan
e the strength of thepenalty. Instead, they use a set of rules to establish a natural order of �tness andviolation of 
onstraints.These te
hniques are well-suited for evolutionary algorithms and other populationbased problem-solvers, as the 
omparison of two solutions is made based upon theestablished rules. The �tness fun
tion is then repla
ed by a binary fun
tion
b(x, y) =







−1 if x is worst than y
1 if x is better than y
0 if they are in
omparables or the sameTotal violation rule The �rst approa
h on this group of te
hniques is very similarto the �rst approa
h on penalty fun
tions. The binary 
omparison fun
tion usesthe total sum of 
onstraints in a similar way than in Equation (1.4). Let φ(x) =

∑n
i=1wig

+
i (x), ψ(x) =

∑m
j=1wn+jh

+
i (x), and R(x) = φ(x) + ψ(x), then the binaryfun
tion 
an be regarded as

b(x, y) =







−1 if R(x) > R(y) or, R(x) = 0 = R(y) and f(x) < f(y)
1 if R(x) < R(y) or, R(x) = 0 = R(y) and f(x) > f(y)
0 if either R(x) = R(y) 6= 0 or, R(x) = R(y) = 0 and f(x) = f(y)This fun
tion 
an be interpreted as follows: x is better than y if and only if xviolates less the 
onstraints than y or, they are both feasibles but x has better �tnessthan y.This te
hnique 
an be generalized mu
h like the penalty fun
tion te
hniques, butagain, that generalization is out of the s
ope of this thesis and the exa
t generalizationpro
ess is left to the reader.



1.3. CONSTRAINED OPTIMIZATION 9Multi-obje
tive rules Other, more re
ent type of rules, are 
on
erned with thenotion of multi-obje
tive optimization. This is mainly due to the natural way in whi
hwe might transform the 
onstrained optimization problem into a multi obje
tive one,in whi
h every 
onstraint fun
tion is also an obje
tive. For this to work, the 
onstraintfun
tions must be transformed to g+
i and h+

j as before.On
e this is done, the solution to the multi-obje
tive optimization problem de�nedby the tuple (S,N ; f, {g+
i }, {h+

j }), 
ontains the solution to the 
onstrained optimiza-tion problem (S,N ; f ; {gi}; {hj}).Before we 
an de�ne the binary fun
tion we need to develop several 
on
epts fromthe theory of multi-obje
tive optimization.Given two ve
tors ~x, ~y ∈ Rk ~x is said to Pareto-dominate ~y if and only if, xi ≤ yifor every i = 1, 2, . . . , k, and xj < yj for at least one j = 1, 2, . . . , k. The notation fordominan
e is ~x � ~y whi
h is read ~x dominates ~y. This de�nition gives us a possibilityto 
ompare two multi-obje
tive solutions, in the sense that if ~x � ~y, then solution ~xis 
onsidered better than solution ~y.When we have a set of solutions (ve
tors) X = {~xi}, we 
an de�ne the Paretolevels in a re
ursive manner
PL(0) = {~x|∀~y ∈ X, ~y � ~x} (1.8)

PL(i+ 1) = {~x|∀~y ∈ X \
k
⋃

i=1

PL(i), ~y � ~x}The zero-Pareto level has a spe
ial name, it is 
alled the Pareto front. For 
onve-nien
e, we will de�ne the fun
tion level(~x,X) as the Pareto level of the ve
tor ~x inthe set of solutions X.Before we 
an de�ne the multi-obje
tive rules, the following notation will be usedin the de�nitions of the binary 
omparison fun
tions. Let us de�ne the set
R = {r(x)|x ∈ X}where r(x) = (g+

1 (x), g+
n (x), . . . , g+

n (x), h+
1 (x), h+

2 (x), . . . , h+
m(x))representing all the 
onstraint values of a set of solutions X ⊂ S. Observe that

r(x) = ~0 means that x ∈ F .Pareto-rank We are, now, ready to de�ne one of the binaries fun
tions, des
rib-ing what is known as Pareto-rank rules. We de�ne the binary 
omparison fun
tionas
b(x, y) =























−1

{ if level(r(x), R) > level(r(y), R)or level(r(x), R) = 0 = level(r(y), R) and f(x) < f(y)

1

{ if level(r(x), R) < level(r(y), R)or level(r(x), R) = 0 = level(r(y), R) and f(x) > f(y)
0 if level(r(x), R) = level(r(y), R) 6= 0



10 CHAPTER 1. OPTIMIZATIONfor any two values x, y ∈ X. The 
ondition level(x,R(X)) = level(y, R(X)) and
r(y) � r(x), is not required as one solution 
annot dominate any other one of thesame Pareto level. Observe that, although R depends on X, this dependen
e is notmade 
lear for 
larity in the formulas.Feasibility and dominan
e Another, widely used multi-obje
tive rules is theknown as feasibility and dominan
e. The binary 
omparison fun
tion 
an be des
ribedas

b(x, y) =







































−1







if r(y) � r(x)or r(x) 6= ~0 and r(y) = ~0or r(x) = ~0 = r(y) and f(x) < f(y)

1







if r(x) � r(y)or r(y) 6= ~0 and r(x) = ~0or r(x) = ~0 = r(y) and f(y) < f(x)
0 otherwisefor any two values x, y ∈ X. This fun
tion 
an be interpreted as, from two feasiblesolutions the best is the one with best �tness fun
tion, from two non-feasible solutionstake the one that Pareto-dominates, if one is feasible and the other is not take thefeasible.The biggest draw-ba
ks of this rules are that it might be very di�
ult to �ndthe feasible region in the �rst pla
e, and that the Pareto dominan
e de
reases inintensity1 with in
reasing dimensionality.1.3.3 Sto
hasti
 RankingThe rules as a strategy for 
onstrained optimization are good way to solve a problem,however, due to the problems just mentioned, many resear
hers in 
onstrained op-timization are sear
hing for new te
hniques that 
an solve problems more e�
ientlyand in a better way than with the previous te
hniques.One of the better attempts to solve these intrinsi
 problems was made by Runars-son [17℄ when he proposed the sto
hasti
 ranking. The main idea behind sto
hasti
ranking is based on a parameter used by the traditional penalty fun
tion approa
h.His notation, however, is a little di�erent from our own, but for 
larity, his notationwill be used for the rest of this se
tion.The penalty fun
tion approa
h is

f ′(x) = f(x) + rgφ(g1(x), g2(x), . . . , gn(x)) (1.9)where
φ(g1(x), g2(x), . . . , gn(x)) =

n
∑

i=1

(max{0, gi(x)})21The probability than one random ve
tor dominates another random one de
reases exponentially�as 2−d� with the dimension.



1.3. CONSTRAINED OPTIMIZATION 11or any other penalty fun
tion. The value rg may be variable over the generationnumber g.Runarsson notes that, while this approa
h works quite well with some problems,it is in general very sensitive to the value of rg as said in Se
tion 1.3.2.1. If rg is toosmall, a non-feasible solution may not be penalized enough, and if it is too big, therewill be no room in the optimization pro
ess to improve the solution on
e they are inthe feasible region. This is spe
ially true if the feasible region is not 
onne
ted, andthe exploration brought the sear
h in one portion of the feasible region that does not
ontain the 
onstrained optimum of the problem.The optimal setting for the values rg is problem dependent and an optimizationproblem in it own. As an alternative to this issue, the sto
hasti
 ranking de�nes away to simulate a dynami
 adaptation of the parameters rg.1.3.3.1 Constraint handlingFor any given penalty 
oe�
ient rg > 0 let the ranking of λ individuals be
f ′(x1) ≤ f ′(x2) ≤ . . . ≤ f ′(xλ)where f ′ is the transformation of the �tness fun
tion given by Equation (1.9). Wewill use an abbreviation of Equation (1.9) to simplify notation, and let f ′(xi) = f ′

i =
fi + rgφi = f(xi) + rgφ(xi).If we examine two adja
ent individuals in the order indu
ed by rg in fun
tion f ′,we 
an observe that

fi + rgφi ≤ fi+1 + rgφi+1for every i = 1, 2, . . . , λ− 1.We de�ne the 
riti
al penalty 
oe�
ient r̆i for the adja
ent pair i and i+ 1, as
r̆i = (fi+1 − fi)/(φi − φi+1)where it is assumed that φi 6= φi+1. Note that if we have rg �xed, then there are three
ases for the inequality to hold.1. fi < fi+1 and φi ≥ φi+1: The 
omparison is said to be dominated by �tnessfun
tion and 0 < rg ≤ r̆i, meaning that the ordering in �tness fun
tion is whatis de
iding the ordering in f ′.2. fi ≥ fi+1 and φi ≤ φi+1: The 
omparison is said to be dominated by penaltyfun
tion and 0 < r̆i < rg, meaning that the ordering in penalty fun
tion is whatis de
iding the ordering in f ′.3. fi < fi+1 and φi < φi+1: The 
omparison is said to be non-dominated and

r̆i < 0, meaning that the ordering in f ′ is not de
ided neither by f nor by φ.



12 CHAPTER 1. OPTIMIZATIONObserve that the last possible 
ase fi ≥ fi+1 and φi ≥ φi+1 is not ne
essary, be
auseit 
ontradi
ts the assumption that f ′
i ≤ f ′

i+1. The non-dominated 
ase is also one inwhi
h the value of rg has no relevan
e. Its value is 
riti
al, however, when 
omparingin the �rst two 
ases, as the value of r̆i a
ts as a threshold to de
ide whether a solution
xi is better or not than a solution xi+1. For example, if we in
rease the value of rg inthe �rst 
ase to be higher than r̆i, then the solution xi will pass from being better, tobeing worse than xi+1. For the entire population, the 
hosen value of rgwill determinethe fra
tion of individuals ranked only a

ording to the penalty fun
tion, and the oneranked by �tness fun
tion.Observe that not every possible value for rg 
an in�uen
e this sele
tion. Thereare upper rg and lower rg bounds su
h that, if rg < rg, then every 
omparison amongsolutions will be based upon �tness fun
tion2, and if rg > rg, then every 
omparisonamong solutions will be based upon penalty fun
tion3. Observe that the values of rgand rg are dependant on the 
urrent solutions xi, i = 1, 2, . . . , λ.It has been dis
ussed previously that neither of those 
ases will lead to the optimal
onstrained solution. In this sense, the optimal value for rg must lay in the range from
rg to rg , so that the 
omparison among solutions will be balan
ed between penaltyand �tness fun
tion.1.3.3.2 The Sto
hasti
 ranking algorithmThe sto
hasti
 ranking is 
on
erned with the simulation of maintaining the value rgin the range rg ∈ [rg, rg]. Sto
hasti
 ranking uses a probability pf of using only the�tness fun
tion for 
omparisons in ranking individuals in the infeasible region of thesear
h spa
e.The ranking is a
hieved by a bubble-sort-like pro
edure with an sto
hasti
 
om-paring operator. Th pro
edure is halted when no 
hange in the rank ordering o

urswithin a 
omplete sweep. This sto
hasti
 ranking pro
edure 
an be used as the se-le
tion operator of any evolutionary algorithm in whi
h the sele
tion is a sorting ofthe individuals a

ording to a 
ertain order, and then keeping the best individualsfor the next generation. This will be explained in detail in Chapter 2.Sto
hasti
 ranking pro
edurefor( j = 1 to λ )

Ij = j;for( i = 1 to N ){ for( j = 1 to λ− 1 ){ if( φ(Ij) = φ(Ij+1) = 0 or rand()< pf )2Called under-penalization3Called over-penalization



1.3. CONSTRAINED OPTIMIZATION 13{ if( f(Ij) > f(Ij+1) )swap( Ij, Ij+1 );}elseif( φ(Ij) > φ(Ij+1) )swap( Ij, Ij+1 );}if( no-swap-performed )
i = N; //break the for}Observe from this pro
edure, that the algorithm is performing at most N sweepsthrough the whole population. When pf = 0, the ranking is over-penalized, andwhen pf = 1, the ranking is under-penalized, so it is a good idea to take values for pfthat are neither 
lose to 0 nor to 1.Runarsson [17℄ notes that if the number N of sweeps the algorithm performs tendsto in�nity, then the ranking will be determined as follows, if pf > 1/2 then the rankingwill be under-penalized, and if pf < 1/2 then the ranking will be over-penalized. This
an be regarded as in
reasing N is e�e
tively the same as varying pf . By this reason,he de
ided to set N = λ, and modify pf to 
ontrol the performan
e of the algorithm.The result of sto
hasti
 ranking in the well known ben
hmark are given in theappendix, with ex
eption of the fun
tion g02 sin
e the values obtained in this thesisare mu
h better than the reported by Runarsson.
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Chapter 2Evolutionary AlgorithmsThe origins of evolutionary 
omputation 
an be tra
ed ba
k to the late 1950's, how-ever, the new-born �eld remained relatively unknown to the s
ienti�
 
ommunity foralmost three de
ades, mainly due to the la
k of 
omputational power in the earlystages of evolutionary 
omputation. With the works of Holland [11℄, Re
henberg [16℄,S
hwefel [18℄ and Fogel [8℄, the evolutionary 
omputation started to grow, and we
urrently observe a steady in
rease in the number of publi
ations and 
onferen
es inthe �eld.The most signi�
ant advantage of using evolutionary algorithms over other opti-mization te
hniques lies in the great adaptability and �exibility of the evolutionarysear
h, along with the robust performan
e and global sear
h 
hara
teristi
s [1℄. Infa
t, evolutionary 
omputation should be regarded as a general adaptable 
on
ept forproblem solving, spe
ially well suited for di�
ult optimization problems, rather thana 
olle
tion of related and ready-to-use algorithms.2.1 De�nition of an Evolutionary AlgorithmGiven an optimization problem (S; f), de�ned as in Se
tion 1.1, with a sear
h spa
e
S, and a fun
tion f : S → R, an evolutionary algorithm is a tuple

EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O) (2.1)where, Ω is the sear
h spa
e of the algorithm, Πk = Ωk is the set of all possiblepopulations of size k and τ : Ω → S is a fun
tion mapping the sear
h spa
e ofthe optimization problem to the sear
h spa
e of the evolutionary algorithm; Ψ =
(ψ1, ψ2, . . . , ψn), where ψi : Πk × [0, 1] → Πk for every 1 ≤ i ≤ n, and representthe mutation operators; Φ = (φ1, φ2, . . . , φm), where φi : Πk × [0, 1] → Πk for every
1 ≤ i ≤ m, and represent the 
rossover operators; σ : Πk×Πk×Rk×Rk× [0, 1] → Πk,and represent the sele
tion operator ; and O : Πk × [0, 1] → Πk represents the orderof the operators.By notation, let K = {1, 2, . . . , k}. We will 
all ψi mutation fun
tions, and φi
rossover fun
tions. Also, we 
all populations to the elements of Πk; they will usually15



16 CHAPTER 2. EVOLUTIONARY ALGORITHMSbe represented by Pi = (Pi,1, Pi,2, . . . , Pi,k). For the sake of 
larity, we will de�ne
Ψ(Pi, r) = ψn ◦ . . .◦ψ2 ◦ψ1(Pi, r), and Φ(Pi, r) = φm ◦ . . .◦φ2 ◦φ1(Pi, r) to assume thesame r will be used in every internal fun
tion. This r represents the random numbergenerated to make the operators non-deterministi
. It is not hard to see that onerandom number is enough to 
reate an arbitrary amount of random data.Some times it will be useful to apply the operators dire
tly to individuals (i.e.elements of populations) instead of populations.In the 
ase of mutation, we will overload1 the ψj fun
tions to the fun
tions ψj :
Ω × [0, 1] → Ω, and assume that, if Pi = (pi,1, pi,2, . . . , pi,k), then

ψj(Pi, r) = (ψj(pi,1, r), ψj(pi,2, r), . . . , ψj(pi,k, r)) (2.2)As for the 
rossover operators, we will usually require a more 
omplex me
hanismto overload the fun
tions. Lets assume that the set of integers R = {r1, r2, . . . , rn} issu
h that we 
an rede�ne the 
rossover operators as φj : Ωrj × [0, 1] → Ω, and assumewe have a fun
tion sj : [0, 1] → Krj . This fun
tion will obtain a ve
tor 
ontainingthe indexes of rj individuals from the population Pi to be 
rossed by the new φjfun
tion. In this sense, obtaining k uniform random numbers vi from r�one for ea
hnew individual in the population�, the 
rossover fun
tion will be given by
−→xj,u = sj(vu) for 1 ≤ u ≤ kLet qj,u,t = p(xj,u)t

∀1 ≤ t ≤ rj

φj(Pi, r) = (φj(qj,1,1, qj,1,2, . . . , qj,1,rj
; r), . . . , φj(qj,k,1, qj,k,2, . . . , qj,k,rj

; r)) (2.3)Observe that −→xj,u is a ve
tor with rj elements, and that ea
h element (xj,u)t of theve
tor is a number between 1 and k, so they 
an serve as indexes for individuals inthe population.The fun
tion O is usually de�ned as
O(Pi, r) = Ψ ◦ Φ(Pi, r) (2.4)where Pi = (pi,1, pi,2, . . . , pi,k), and pi,j ∈ Ω for every j ∈ K.In a more general setting, the operators may be applied to populations with a sizeother than k, but the generalization of the de�nition of an evolutionary algorithm asstated before is simple and is left to the reader.The general sket
h for the evolutionary algorithm isEvolutionary Algorithminitialize-population P0;Let i = 0;while( termination-
riteria-is-not-met )1As in programming, two fun
tions with the same name, but with di�erent kind (number of type)of arguments. In general, it is 
lear from 
ontext whether we are referring to one or another.
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Pf = O( Pi, rand() );
Fi = computeF itness(Pi);
Ff = computeF itness(Pf);
Pi+1 = σ( Pf, Pi, Ff, Fi, rand() );
i = i+ 1;}Ea
h of the loop's 
y
les are 
alled generations, and the termination 
riteria 
ouldbe that a 
ertain number of generations have passed, or that a 
ertain amount of�tness fun
tion evaluations have been rea
hed, or a more sophisti
ated test su
h as apopulation 
onvergen
e rate or a generational di�eren
e threshold has been met, et
.Given a population P = (p1, p2, . . . , pk), the �tness is usually 
omputed as F =

(f ◦ τ(p1), f ◦ τ(p2), . . . , f ◦ τ(pk)), where f ◦ τ(pi) is 
alled the �tness of individual
pi. The majority of 
urrent implementation of evolutionary algorithms des
end fromthree related but independently developed approa
hes: Geneti
 Algorithms, Evolu-tionary Programming and Evolutionary Strategies.Evolutionary programming was originally o�ered as an attempt to 
reate arti�
ialintelligen
e. The approa
h was to 
reate �nite state ma
hines (FSM) to predi
t eventsbased upon former observations. A FSM is an abstra
t ma
hine whi
h transforms asequen
e of input symbols into a sequen
e of output symbols. The transformationdepends on a �nite set of states and a �nite set of transition rules.The other two main evolutionary algorithms are more popularly used to optimiza-tion and will be given greater attention.2.2 Geneti
 AlgorithmsGeneti
 algorithms (GA) were invented by Holland [11℄ in the 1960's, and were de-veloped by Holland, his students and his 
olleagues at the university of Mi
higan forover a de
ade. Holland's goal, in 
ontrast to that of evolutionary strategies and evo-lutionary programming, was not to design algorithms to solve spe
i�
 problems, butrather to formally study the phenomenon of adaptation as it o

urs in nature and todevelop a theory that 
ould aid to import those me
hanisms to 
omputer systems.What Holland developed was a method to move a population of 
hromosomes2 toa new population by using an arti�
ial implementation of natural sele
tion togetherwith the geneti
-inspired operators of 
rossover, mutation and inversion. In thisme
hanism, we have another sele
tion operator to de
ide whi
h individuals are goingto be sele
ted for reprodu
tion. This and the other operators will be analyzed laterin greater detail.2In its simplest form this 
hromosomes are strings of bits.



18 CHAPTER 2. EVOLUTIONARY ALGORITHMSIn the last several years there has been widespread intera
tion among resear
hersstudying various evolutionary 
omputation methods, and the boundaries between GA,evolutionary strategies, evolutionary 
omputation, and other evolutionary approa
heshave broken down to some extent.Nowadays, resear
hers often use the term geneti
 algorithm to refer to somethingquite di�erent from Holland's original 
on
eption. In general terms, GAs are the more�exible evolutionary 
omputation algorithms in terms of the available operators andrepresentations.2.2.1 The Simple Geneti
 AlgorithmThe traditional GA, also known as Simple Geneti
 Algorithm (SGA) is detailed asfollows. Using the notation for evolutionary algorithms, we de�ne the simple ge-neti
 algorithm as SGA(pc, pm) = EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O), where Ω = Zl
2, and thefun
tion τ is problem dependent.It only 
ontains one mutation (m = 1) fun
tion whi
h, given an individual p ∈ Ω,and getting random numbers s ∈ {0, 1} and t ∈ {1, 2, . . . , l} from r,

ψ(p, r) =

{

p if s = 0
(p1, p2, . . . , pt−1, 1 − pt, pt+1, . . . , pl) if s = 1

(2.5)where the probability of s = 1 being known as the mutation probability pm, whi
his usually set to 1/l. On the other hand, t is expe
ted to be uniform. We 
an see as
hemati
 representation in Figure 2.1, where we 
an observe the mutation spot, andthat position is �ipped in the individual as a result of the mutation.
Figure 2.1: The s
hemati
 view of the simple mutation operator.It 
ontains also only one 
rossover fun
tion (n = 1) in its 
rossover operator whi
h�rst sele
ts the parents with what is 
alled �tness proportion or roulette wheel. Theamount of parents is always 2, whi
h means r1 = 2. The �tness proportional is thefun
tion whi
h, given the population P = (p1, p2, . . . , pk)

s1(r) = (x1, x2) (2.6)su
h that P (x1 = i) =
f(τ(pi))

∑k
j=1 f(τ(pj))and P (x2 = i) =
f(τ(pi))

∑k
j=1 f(τ(pj))
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Figure 2.2: The s
hemati
 view of the one-point 
rossover operator.whi
h 
an be interpreted as one individual having a probability proportional to thatindividual's �tness of being sele
ted in the 
urrent population. The 
rossing fun
tionis then de�ned as follows
φ(px1

, px2
, r) =

{

(px1,1, px1,2, . . . , px1,t−1, px2,t, . . . , px2,l) if s = 1
px1

if s = 0
(2.7)with t ∈ {2, 3, . . . , l} being a random number obtained (from r) with uniform prob-ability, and s ∈ {0, 1} is a random number whi
h probability of being 1 is equalto a 
onstant known as the 
rossover probability pc whi
h is usually set to 0.7, and

(x1, x2) = s1(r). The s
hemati
 representation of this operator is in Figure 2.2, wherewe 
an observe the 
rossover point, and the resulting individual.This 
rossover fun
tion is known as one-point 
rossover, be
ause it is equivalentto taking one 
rossover spot (i.e. the number t) and taking the �rst t genes from the�rst parent and the rest from the se
ond to 
reate a new individual.2.2.2 More operators and 
odingsThere are a number of operators for 
rossing and mutation other than the reviewedin the last se
tion. There are also some 
oding possibilities for the genotype, insteadof the usual Zl
2. We 
an even use di�erent 
ardinalities for every gene, i.e. Ω =

Zi1 × Zi2 × . . .× Zil , where ij ∈ N and 1 ≤ j ≤ l.There is also a possibility of using data stru
tures in the pla
e of genes. Whena GA has data stru
tures as genes, and operators to a
t on them are provided, theevolutionary algorithm resulting from it is known as Geneti
 Programming [12℄.Inversion operator There is a biologi
ally inspired mutation operator that we willreview. It is 
alled inversion mutator, and, given the random numbers s ∈ {0, 1}, asin the simple mutation, 1 ≤ t ≤ l − 1, and t+ 1 ≤ u ≤ l uniform numbers obtained
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an be viewed as the fun
tion
ψ(p, r) =

{

(p1, p2, . . . , pt−1, pu−1, . . . , pt+1, pt, pu, . . . , pl) if s = 1
p if s = 0It 
ould be used to preserve some qualities of the genotype that other mutationoperators would destroy, as the sum of the 1's in the genome, or the genes itself, butto 
hange the order3.Shu�e operator Another useful mutation operator that preserves the genes in theindividual is the shu�e operator. It 
onsists of 
hoosing a permutation of size l. Thisoperator assumes an uniform type of genes in ea
h position, i.e. Ω = Al, where A isthe set of possible genes. This operator 
an be mathemati
ally expressed by
ψ(p, r) =

{

(pα(1), pα(2), . . . , pα(l)) if s = 1
p if s = 0where s ∈ {0, 1} as usual representing the mutation probability, and the fun
tion

α : {1, 2, . . . , l} → {1, 2, . . . , l} a permutation (i.e. 1�1 and onto) obtained from r.Two-point 
rossover There is another widely used 
rossover operator for GAs,and is known as two-point 
rossover, be
ause it resembles the one-point 
rossover,but with two 
rossover spots. Formally, given the random numbers s ∈ {0, 1} as inthe one-point 
rossover, 1 ≤ t ≤ l − 1, and t+ 1 ≤ u ≤ l uniform numbers obtainedfrom r, it 
an be viewed as

Figure 2.3: The s
hemati
 view of the two-point 
rossover operator. Observe thatthe genotype is viewed as if it were a ring.
φ(px1

, px2
, r) =

{

(px1,1, . . . , px1,t−1, px2,t, . . . , px2,u−1, px1,u, . . . , px1,l) if s = 1
px1

if s = 03Useful for solving problems as the traveling salesman problem (TSP).



2.2. GENETIC ALGORITHMS 21This operator has a fame of being better than the 
lassi
al one-point 
rosser, andalso, it is easy to see that it generalizes it. But there is an even more renown 
rossoveroperator.Uniform 
rossover The uniform 
rossover is the 
rossover operator that betterpreserves diversity in the population. It is a generalization of the one and two-point
rossover operators. As its prede
essors, it requires a set of random numbers, the�rst of whi
h is exa
tly the same as before, s ∈ {0, 1}, while the others vary a little;obtain t1, t2, . . . , tl, where ti ∈ {0, 1} for every 1 ≤ i ≤ l, with uniform probability.The fun
tion of this operator 
an then be viewed as

Figure 2.4: The s
hemati
 representation of the uniform 
rossover operator. Notethat at every 
rossover spot, the o�spring has the genes of the se
ond parent, whileit has the genes of the �rst elsewhere.
φ(px1

, px2
, r) = (q1, q2, . . . , ql) (2.8)where qi =

{

px1,i if ti = 1
px2,i if ti = 0This operator is s
hemati
ally presented in Figure 2.4.Tournament Aside from 
rossover and mutation operators, there are many sele
-tion operators. Maybe the best known is the tournament sele
tion, and its variations.In simple words, it takes a set of individuals at random (usually with uniform prob-ability), and sele
ts the �ttest one of them to be part of the next generation. Themost used type of tournament is the binary tournament, where we are to sele
t a pairof individuals in ea
h step, and then sele
t the best one. Formally, we 
an de�nethe n-tournament as, getting, as usual from the random number r, uniform randomintegers i1,1, i1,2, . . . , i1,n; i2,1, . . . , i2,n; ik,1, . . . , ik,n, the sele
tion operator would be

σ(P,Q, FP , FQ, r) = (b1, b2, . . . , bk)and ba = arg max
0≤j≤n

{f ◦ τ(qia,j
)}



22 CHAPTER 2. EVOLUTIONARY ALGORITHMSObserve that this sele
tion me
hanism ignores the previous generation P and isonly 
on
erned with the �tness of the newly generated population Q. This is theusual form of the sele
tion operators in newer geneti
 algorithms.One of the main advantages of this sele
tion me
hanism is that we don't need toevaluate the �tness of the individuals dire
tly if we have a less-expensive me
hanismto de
ide whether one individual is better than the other.For example, if we want to solve the problem of 
ontrolling a system withoutmaking it 
rash, and the individuals represent the a
tions to take, we only require toknow if one individual is able to maintain the system working for more time than theother, instead of knowing exa
tly how mu
h time they 
an both keep it working.The main disadvantage of them is that the best solution found so far 
ould be lost(i.e. not sele
ted). In order to avoid the lost of the best individual during sele
tion, theoperator 
an be 
hanged to in
lude a number of the best individuals of the previousgeneration automati
ally into the next one. This type of sele
tion me
hanisms areknown as elitist sele
tion. The elitism 
an be of one or two individuals or even thewhole population.Challenge (Probabilisti
 Tournament) There is a variation of the tournament,less used in the literature, whi
h instead of always sele
ting the best out of the set ofsele
ted individuals, sele
ts the best only with a 
ertain probability. This me
hanismis sometimes referred to as 
hallenge sele
tion or probabilisti
 tournament.The sele
tion pressure is a measure of the probability of sele
ting individuals withlow �tness. A high sele
tion pressure gives small or zero probability of sele
ting theworst individual. The tournament is a good example of a high pressure sele
tionme
hanism, while the roulette wheel is the 
lassi
 example of a middle pressure se-le
tion. In the 
hallenge the sele
tion pressure is relaxed 
ompared to the normaltournament, but preserves the good qualities of the tournament over the roulettewheel.2.3 Evolutionary StrategiesThe evolutionary strategies (ES) were developed in Germany in the 1960s [16, 18℄ tosolve di�
ult hydrodynami
al problems. It simulates the evolution at an individuallevel, and as a result, the 
rossover operator is 
onsidered se
ondary.The main ideas behind evolutionary strategies are a self-adapting mutation onthe individuals, along with a deterministi
 and extin
tive sele
tion4. ESs are alsounder the in�uen
e of the neo-Darwinism used in many evolutionary algorithms, andin parti
ular in GAs. The uses and roles are, though, substantially di�erent in ESsthan in GAs [4℄, and we will dis
uss a little about this di�eren
es.4The best individuals are to form the next generation, in 
onsequen
e, the worst individuals willnever be sele
ted.



2.3. EVOLUTIONARY STRATEGIES 23To begin with, evolutionary strategies are more 
on
erned with phenotype asthere is no 
oding from genotype to phenotype. Also, the 
rossover is as importantto GAs as the mutation is important to ESs. The GA's sear
h progresses throughre
ombination of genes in good individuals, while the sear
h progresses in ES's viathe mutation of promising individuals.The order of the operators is also 
hanged, and the next generation's populationis sele
ted after evaluating the o�springs of the last generation, in 
ontrast to theGA's way, in whi
h the sele
tion pro
ess is 
arried away to 
reate the o�springs.This obeys to a philosophi
al remark. As mutation is viewed as the main operator,mutation is 
onstru
ting the a
tual solutions, and its e�e
t should not be disrupted
rossing over. The good solutions are thought to 
ome from prior good solutions viamutation. After this, the 
rossover 
an try to improve the exploration, but withoutloosing any mutated individual.2.3.1 The ES(1 + 1)The �rst evolutionary strategy ever made was the ES(1 + 1), in whi
h only oneo�spring was generated from one single parent. Needless to say there was no 
rossoveroperator in this early version of the ESs. Traditionally, Ω = Rl, and although we 
anthink of other type of 
odings, apparently it is part of the de�nition of a ES to be real
oded. This simpli�es the fun
tion τ in the sense it is simply the identity fun
tion.We will use the notation p = (x1, x2, . . . , xl) for the individual.The �rst mutation operator used was simply to add a normal value to every xi.Formally, this operator 
an be thought of as obtaining normal values si ∼ N(0, 1) for
1 ≤ i ≤ l, and then the mutation fun
tion is

ψ(p, r) = p+ (s1, s2, . . . , sl) (2.9)This operator o�ers the advantage of no extra parameters to adapt, but unfor-tunately has proven insu�
ient to solve many problems. This si mainly due to theinability of the mutation operator to adapt to a res
aling of the fun
tion. It is obvi-ously not the same task to optimize the fun
tion f(~x) =
∏k

i=1 xi as it is to optimize
f(~x) =

∏k
i=1 109xi, although 
on
eptually the problems are of the same di�
ulty.For this reason, a more 
omplex operator was developed.The 1/5-rule The �rst attempt to 
reate a self-adapting mutation was the so-
alled

1/5-rule. The idea behind this is to have a 
ontrol value representing the intensity ofmutation to apply. The value of l2 = 1, and by simpli
ity, we use l instead of l2. Theindividual is then de�ned as
p = (x1, x2, . . . , xl; σ)where σ is the intensity of mutation. Then, a new individual is 
onstru
ted by addinga normal value with the parameter σ as standard deviation. The operator 
an be



24 CHAPTER 2. EVOLUTIONARY ALGORITHMSviewed as, obtaining normal values si ∼ N(0, σ) with 1 ≤ i ≤ l, and the fun
tion is
ψ(p, r) = p+ (s1, s2, . . . , sl)This operator would not be very di�erent from the one in (2.9) if the value of σwere �xed. This value, however, is not �xed, but it is updated every 
ertain numberof generation (usually 20) as follows
σ =







0.82σ if e < 1/5
1.22σ if e > 1/5
σ otherwisewhere e is the number of su

essful o�springs in the last (20) generations. By thenumber of su

essful o�spring individuals we mean the number of individuals thatimproved their parent.As we 
an see, if the individual is trapped in a parti
ularly di�
ult lo
al optimum,the number of su

essful o�springs will very likely be less than 1/5 thus de
reasingeven more the value of σ and 
onsequently making more and more di�
ult to es
apethis lo
al optimum.This is the main reason why the generalization of the ES(1 + 1) was developed.2.3.2 ES(µ, λ) and ES(µ+ λ)The basi
 s
heme of the generi
 ES is, following the formal notation, de�ned by

ES(µ + λ) = EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O) or ES(µ, λ) = EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O).The di�eren
e between them is in the sele
tion operator, µ represents the numberof parents in the population, while λ is the number of o�springs that the parentswill have. In ES(µ+ λ), the parents are to be 
ompared with their o�spring duringsele
tion to de
ide what is going to be the next generation, while in ES(µ, λ), thebest µ o�spring will 
ompletely repla
e the parents population as the next generation(µ ≤ λ).
ES(µ, λ) 
an be seen as the non-elitist version of ES(µ+λ), whi
h has full elitism5.The most important idea behind the new operators of the more sophisti
ated ESsis to add a number of new values to the individuals, and use those values to dire
t themutation and the sear
h itself. In this sense, the individuals 
onsist of an obje
tiveportion (namely, the values of xi) and a 
ontrol portion. This is e�e
tively the sameas 
hanging Ω = Rl1 × Rl2 instead of the usual Ω = Rl. We will use the notation

p = (x1, x2, . . . , xl1 ; c1, c2, . . . , cl2) (2.10)and we will use ~x = (x1, x2, . . . , xl1) to refer to the obje
tive part, and ~c = (c1c2, . . . , cl2)to refer to the 
ontrol portion of the individual. For 
larity, we will still use the num-ber l, but we will set it to l = l1 + l2.5We mean by full elitism the behavior of a sele
tion operator in whi
h the only way for anindividual to be part of the next generation is by being better (in �tness) and repla
ing one of thelast generation.



2.3. EVOLUTIONARY STRATEGIES 25Observe that we 
an de�ne the fun
tion τ(p) = ~x, as the 
ontrol values are notpart of the optimization pro
ess.In these methods a deterministi
 rule�as the 1/5-rule�, is no longer used. In-stead, we let the 
ontrol parameters to self-adapt, and add those parameters for ea
hobje
tive value.The 
ontrol parameters are also subje
t to mutation and re
ombination, whi
h willallow evolution to sele
t the best values of the parameters by itself. It is expe
ted thatthose individuals with good 
ontrol values will end up having a good �tness value,and in the long run, will give birth to better individuals.2.3.3 More operatorsThe obvious introdu
tion of 
rossover operators surges from the availability of manyindividuals in the population. In ESs there are two types of 
rossover: sexual andpanmiti
. In the sexual 
rossover, the o�spring is generated by exa
tly two parents,and in the panmiti
 
rossover, we sele
t one individual to play the role of one parent,and for every obje
tive and 
ontrol value we 
hoose another random (with repla
e-ment) parent. In the formal notation, the sexual 
rossover has values ri = 2, while inthe panmiti
 version, ri = l + 1.The panmiti
 version of the 
rossover operators 
reates more diversity in thepopulation, but slows down 
onvergen
e. It is normally used in very di�
ult problems.Dis
rete 
rossover The �rst 
rossover operator used in ESs was the dis
rete
rossover. It 
onsists of inter
hanging values from the parents to 
reate the o�spring.This is very similar to the uniform 
rossover of the GAs. The formal fun
tion is asfollows
φ(p, p′, r) = (q1, q2, . . . , ql) (2.11)where qi =

{

pi if si = 1
p′i if si = 0where si ∈ {0, 1} is an uniform random number for 1 ≤ i ≤ l. The panmiti
 versionof this operator 
an be de�ned as

φ(p′, p1, p2, . . . pl, r) = (q1, q2, . . . , ql)where qi =

{

p′i if si = 1
pi,i if si = 0

(2.12)This 
rossover is the easiest to 
ompute from all, but it is also the one withthe worst diversity. Observe that no new value is generated as we only generate anew individual with values already in the population. For this reason, even moresophisti
ated operators were 
reated.
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rossover The next used 
rossover operator is 
alled intermediate
rossover, and was proposed, as its name implies, to make an o�spring at the averageof two parents. The formal fun
tion of this operator requires no random numbers(ex
ept for the sele
ted parents), and is
φ(p, p′, r) = (

p1 + p′1
2

,
p2 + p′2

2
, . . . ,

pl + p′l
2

) (2.13)and its panmiti
 version is
φ(p′, p1, p2, . . . pl, r) = (

p′1 + p1,1

2
,
p′2 + p2,2

2
, . . . ,

p′l + pl,l

2
) (2.14)Observe that this 
rossover does 
reate new values for the individual. By alwaysaveraging two parents (in its sexual form), it tends to make the population 
onvergeeasily. By generalizing this idea of the average, new operators were proposed.Generalized intermediate 
rossover There also exists a generalized version ofthe intermediate 
rossover, to allow a weighted average of the two parents. Thisis known as the generalized intermediate 
rossover. The formal version requires anuniform random number η ∈ [0, 1], and the fun
tion is

φ(p, p′, r) = (ηp1 + (1 − η)p′1, ηp2 + (1 − η)p′2, . . . , ηpl + (1 − η)p′l) (2.15)and the panmiti
 version is
φ(p′, p1, p2, . . . , pl, r) = (ηp′1 +(1−η)p1,1, ηp

′
2+(1−η)p2,2, . . . , ηp

′
l +(1−η)pl,l) (2.16)Observe that this 
rossover has the possibility of generating new individuals alongthe line segment joining the two parents (in the sexual version). This notion 
an beeven more general, as we are still 
on�ning the sear
h for o�springs to a relativelysmall spa
e.Generalized 
rossover The last 
rossover to dis
uss here is 
alled generalized
rossover, and 
reates o�springs on the hyper-
uboid with 
orners on the parents.That is, instead of using the same value as the weighted average of the parents, arandom value ηi ∈ [0, 1] is 
reated for ea
h value 1 ≤ i ≤ k, and the weighted averageis 
reated for ea
h value. The formal fun
tion is

φ(p, p′, r) = (η1p1 + (1 − η1)p
′
1, η2p2 + (1 − η2)p

′
2, . . . , ηlpl + (1 − ηl)p

′
l) (2.17)and its panmiti
 version is

φ(p′, p1, p2, . . . , pl, r) = (η1p
′
1 + (1 − η1)p1,1, η2p

′
2 + (1 − η2)p2,2, . . . , ηlp

′
l + (1 − ηl)pl,l)(2.18)An important remark is that, unlike the GA's 
rossover operators, these operators
an be applied to either only the obje
tive values (~x) or to the 
ontrol values (~c), thusin
reasing the mat
hing possibilities to 
reate a 
omplete 
rossover operator.In general, it is used the generalized intermediate, or the generalized 
rossover onthe obje
tive values, and dis
rete on the 
ontrol values, but other 
ombinations areequally possible.



2.3. EVOLUTIONARY STRATEGIES 27Control mutation The natural way to extend the individuals is to add a 
ontrolparameter for ea
h obje
tive parameter to optimize. In this sense, the mutation willbe 
ontrolled by these parameters. In this 
ase, l1 = l2, and Ω = Rl1 × Rl1
+, and thus

p = (~x;~σ) = (x1, x2, . . . , xl1 ; σ1, σ2, . . . , σl1) (2.19)Observe the di�eren
e against (2.10), in whi
h only one 
ontrol value was used.As stated before, the 
ontrol values are not to be 
hanged by a deterministi
 rule,but by another me
hanism.The 
ontrol mutator fun
tion 
an be de�ned with l1 + 1 standard normal values
t′, ti ∼ N(0, 1), and l1 normal values si ∼ N(0, σi exp(τ ′′t′+τ ′ti)), for every 1 ≤ i ≤ l1.The fun
tion is then de�ned as
ψ(p, r) = (~x+(s1, s2, . . . , sl1); σ1 exp(τ ′′t′+τ ′t1), σ2 exp(τ ′′t′+τ ′t2), . . . , σl1 exp(τ ′′t′+τ ′tl1))(2.20)where τ ′ = 1

4 4
√

k1

and τ ′′ 1√
2k1

. These values are parameters to 
ompensate the highdimensionality of some problems, and are fun
tionally equivalent to the learning fa
torused in arti�
ial neural networks. These 
onstants are usually referred to as τ and τ ′instead of τ ′ and τ ′′, however, due to the existen
e of the mapping τ in the de�nitionof the EA, we opted to avoid the ambiguity by using an extra prime in the 
onstants.Observe that the values of the σ's are updated before the obje
tive values, andalso, observe that only one random value is generated to be multiplied by τ ′′, whilenew random numbers are generated for every value to be multiplied by τ ′.Correlated mutation Another type of mutation proposed by S
hwefel was the
orrelated mutation, whi
h main obje
tive was to perform mutations in dire
tionsnot aligned with the 
oordinate axis. By performing a rotation in spa
e, we allow themutations to align with more general sear
h dire
tions, and make the optimizationpro
ess faster.S
hwefel observed that, in general, the path of one individual and its o�springis roughly perpendi
ular to the optimal step (i.e. the ve
tor joining the presentindividual to the optimal one). By this reason, a better dire
tion 
an be used toallow a faster 
onvergen
e ratio. A natural way to do this was to use the 
orrelationmatrix of the su

essful o�springs to 
hoose a dire
tion. It has been proved, however,that the same e�e
t 
an be a
hieved by using a series of 
anoni
al rotation angles.A 
orrelated mutation is a
hieved by rotating a non-
orrelated mutation by anangle θ over one hyper-plane. The total number of angles required to de�ne everypossible rotation in an l1-dimensional spa
e is ( l1
2

)

= l1(l1 − 1)/2. We 
an, then,de�ne Ω = Rl1 × Rl1
+ × (−π, π]l1(l1−1)/2, whi
h sets the individuals as

p = (~x, ~σ, ~θ) = (x1, . . . , xl1 ; σ1, . . . , σl1 , θ1, . . . , θl1(l1−1)/2) (2.21)where ~c = (~σ, ~θ), and l2 = l1 + l1(l1 − 1)/2.



28 CHAPTER 2. EVOLUTIONARY ALGORITHMSThis mutation operator is very similar to the 
ontrol mutation, ex
ept that the
θ's are updated before the obje
tive values. That is, getting l1(l1 − 1)/2 standardnormal values αi ∼ N(0, 1), and l1 more normal values γi ∼ N(0, C(σ, θ̂)), the formaloperator 
an be regarded as

ψ(p, r) = (~x+ (γ1, . . . , γl1); σ1 exp(τ ′′t′ + τ ′t1), . . . , σl1 exp(τ ′′t′ + τ ′tl1); θ̂) (2.22)where β ≈ 0.0873, θ̂ = ~θ + β(α1, α2, . . . , αl1(l1−1)/2), and C(σ, θ̂) is the 
ovarian
ematrix. And one way to obtain this 
ovarian
e dire
tions is given in the next algorithmCovarian
e dire
tionsfor( i = 1 to l1 )
∆xi = σi exp(τ ′′t′ + τ ′ti)si;for( m = l1(l1 − 1)/2 to 1 ){
(i, j) =indexOf(m); //Get the indexes that θm affe
ts.
∆xi = ∆xi cos θ̂m − ∆xj sin θ̂m;
∆xj = ∆xi sin θ̂m + ∆xj cos θ̂m;}for( i = 1 to l1 )
xi = xi + ∆xi;As we 
an see, the dire
tions are given in inverse order. This is due to the 
anoni
altransformation in Euler's rotations in a k1-dimensional spa
e, as the rotations end uprepresenting the produ
t of the rotation matri
es with rotation angle θ̂m.2.3.4 A simple evolutionary strategy for 
onstrained optimiza-tionIn this se
tion we will give an example of a simple evolutionary strategy to solve
onstrained optimization problems using rules to rank individuals.The ES used is a ES(70 + 130), with 
ontrol individuals as in Equation 2.10,using intermediate generalized 
rossover�Equation(2.15)� on obje
tive values anddis
rete 
rossover �Equation (2.11)� on 
ontrol values. The mutation used is thestandard for 
ontrol individuals as in Equation (2.20).The binary 
omparison fun
tion used to sort the individuals for sele
tion is thetotal violation rule explained in Se
tion 1.3.2.2.This ES is used for 
omparison with the Baldwinian algorithms explained in Chap-ter 4.
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 AlgorithmsAnother type of evolutionary algorithms are known as memeti
 algorithms (MA).They 
an be thought of as hybrid algorithms as they in
orporate a lo
al sear
h intheir sear
h pro
ess [7℄.2.4.1 De�nition of a MemeThe 
on
ept of a meme was �rst introdu
ed by Dawkins [6℄, where he proposes aso
ial equivalent to the gene as a basi
 unit for inheritan
e. A

ording to Dawkins,ideas evolve in 
ulture mu
h like organisms evolve in biologi
al evolution. The basi
unit of 
ultural transmission is then 
alled a meme.Examples of memes are spoken senten
es, written senten
es, live musi
, re
ordedmusi
, theater, 
inema and many more. They are the means by whi
h we express ourideas, while the ideas themselves 
an be regarded as the phenotype of the meme.2.4.1.1 Memes and Lamar
kismDawkins suggested that memes evolve by Lamar
kian me
hanisms. However, it ispossible that memes are a type of Darwinian evolution [20℄. When a human brainre
eives a meme, the meme slowly matures into an idea. Eventually the host person
an de
ide to 
ommuni
ate his idea to another person.This pro
ess seem to be less Lamar
kian than originally thought, as the 
hangedmeme itself (genotype) is not transmitted, but the idea (phenotype) instead. If thememe were 
hanged by an individual, it is not tra
table to re
ognize the meme, butperhaps the similarities that the idea (phenotype) has with the original meme; also,if the meme itself 
hanged, instead of just its representation, it would mean that areverse engineering pro
ess a
tually o

urred in the host brain. Besides, the new hostre
eives the idea, but the meme that 
olonizes this new host is di�erent from thea
tual idea he re
eived, as the idea was transformed by the previous person.This might point to an internal evolution where the re
eived meme intera
ts withmany other memes in the host brain giving birth to new memes with 
rossover andmutation. The transmitted memes are also sele
ted from a pool of memes inside thehost brain. These me
hanisms tend to point to a Darwinian model of memes.Memes, though, are generally regarded a Lamar
kian, and the de�nition of amemeti
 algorithm states this 
learly. This dis
ussion will be useful, nevertheless,in Chapter 3, when we will try to 
reate a new algorithm based on the idea of non-Lamar
kian lo
al sear
hes.2.4.2 De�nition of a memeti
 algorithmFrom the point of view of the study of adaptive systems, it is the idea of memes asagents that 
an transform an individual what is of major interest. We 
an 
onsiderthe addition of a learning phase to the evolutionary 
y
le as a form of meme�gene
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tion. This intera
tion 
an aid evolution 
onsidering the genes to be plasti
 andallowing them to be guided by the learning me
hanism.The basi
 idea behind MAs is to have at least one lo
al sear
h mutation operatoramong its operators (an in the evolutionary algorithm). This lo
al sear
h operator isusually applied after the 
rossover and mutation operators have been applied.The result of the lo
al sear
h repla
es (Lamar
kian) the individual if the foundsolution is better than the initial one. In this sense, if we have a lo
al sear
h algorithm
a : Ω → Ω that takes initial points and returns the result of the lo
al sear
h, thememeti
 learning 
an be viewed as

ψmemetic(p, r) =

{

p if f ◦ τ(a(p)) > f ◦ τ(p)
a(p) if f ◦ τ(a(p)) ≤ f ◦ τ(p)A more rigorous de�nition of a lo
al sear
h algorithm 
an be found in Se
tion 1.2.In general, the only thing that makes a MA di�erent from other EAs is the in
lusionof this other algorithm. The lo
al sear
h is used to smooth the �tness lands
ape aswe are now sear
hing with evolution not on the normal sear
h spa
e, but on the setof lo
al optimum solutions.Within a memeti
 algorithm, we 
an 
onsider the lo
al sear
h stage to o

ur asan improvement within the evolutionary 
y
le, and we should 
onsider if whether the
hanges made to the individual should be kept or whether the improvement is onlyto a�e
t the �tness asso
iated with it.This idea is pre
isely the motivation of this thesis, and will be dedi
ated a Chapteron its own. In short, the de
ision of whether the 
hange is made to the individual(a Lamar
kian behavior) or to the �tness (a Darwinian behavior) is what makes thedi�eren
e between the memeti
 algorithms and the Baldwinian algorithms.All this might make more sense if we think of meme evolution as a Darwinianme
hanism instead of a Lamar
kian one. Turney [20℄ gives reasons why memes arenot ne
essarily Lamar
kian, as well as reasons why memes 
ould be Baldwinian. Thisdis
ussion might be relevant to de
ide whether the name memeti
 algorithm is amisnomer or not, but is not of dire
t interest to this thesis.2.5 Di�erential EvolutionOne of the most re
ent and famous evolutionary algorithms in the literature is thedi�erential evolution (DE). Created by Pri
e and Storn [15℄, the DE is a little di�erentfrom traditional evolutionary algorithms in the sense that it has only one operatorto perform all the sear
hing pro
ess. It is, in 
ontrast to geneti
 algorithms andevolutionary strategies, not based on re
ombination and mutation to perform thesear
h, but on a more mathemati
al than biologi
al operator that gives his name tothe algorithm.The basi
 idea behind DE is to take the di�eren
e of two randomly 
hosen ve
torsin the population and make a weighted sum of this di�eren
e with another randomly
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hosen ve
tor and 
ompare it with the original one to pla
e a new individual for thenext generation. If this new individual turns out to be better than the individual inthe 
urrent position, then the old individual is repla
ed by the new one.Be
ause no 
rossover is performed, DE is highly sus
eptible to parallelization. Itis also fast and e�
ient for global optimization, and it also has a small number ofparameters, whi
h have, in great measure, won for itself most of its fame.2.5.1 The DE_1 algorithmThe formal spe
i�
ation of the di�erential evolution 
an be regarded as DE_1(F ) =
EA(Ω, k,Πk, τ ; Ψ,Φ, σ;O), where Ω = Rl, the fun
tion τ is the identity, and Φ is alsothe identity (i.e. no 
rossover), thus O = Ψ, and the sele
tion me
hanism is as follows

σ(P,Q, r) = (b1, b2, . . . , bl)where bi = arg max{f ◦ τ(pi), f ◦ τ(qi)}i.e. it 
ompares only the individuals at 
orresponding positions in the 
urrent popu-lation P and the newly generated one Q.The individuals are ve
tors de�ned by
p = (x1, x2, . . . , xl)The only mutation operator is, as des
ribed above, what gives its name to thedi�erential evolution, and the 
lassi
al one is de�ned next. Getting random integernumbers s1, s2, s3 ∈ {1, 2, . . . , k} without repla
ement from r, the di�eren
e operator
an be de�ned as

ψ(p, r) = ps1
+ F (ps2

− ps3
) (2.23)Observe that the only thing that matters about the parameter p is its position inthe 
urrent population P , as it is not used to de
ide the new ve
tor generated by ψ.On
e we have generated the population Pf from the population Pi, we 
an pro
eedto sele
tion, and then to the iterative step in the evolutionary algorithm.The parameter F 
ontrols the strength of the di�eren
e operator. It is usually
lose to 1, but depend on the size k of the population. If the population size is small,a F = 1 should be used, if the population size is large, a F ≤ 0.9 should work �ne.This is due to the spe
ial behavior of the di�eren
e operator. Mathemati
ally,if the population is near 
onvergen
e, it is expe
ted that the operator will 
reatesmall 
hanges6, on the other hand, if we take one good solution with a bad one forthe di�eren
e, the rough dire
tion of the di�eren
e will be towards the optimum (or
ompletely away from it if it has the opposite sign), this is why it manages to �ndoptimal solution while sear
hing.This method has the risk, however, of premature 
onvergen
e, and as it does nothave a me
hanism to avoid it, several runs might be ne
essary to a
hieve the a
tualoptimum.6The di�eren
e among two ve
tors will be small if the individuals are 
lose enough.
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tion pressure of this EA is also interesting to analyze. As one individualis only 
ompared to a newly generated one in the sele
tion pro
ess, it is fairly easythat the worst individual will survive. In fa
t, when in the middle of the pro
ess, theworst individual so far might very well survive for several generations if is has a bit oflu
k. This might suggest that the sele
tion pressure of the sele
tion operator is weak.On the other hand, however, on
e a 
luster of the population starts to 
onverge,the probability of having new individuals generated near that 
luster in
reases veryqui
kly, thus 
reating a 
y
le in whi
h more and more individuals are dragged tothis zone. In 
onsequen
e, the sele
tion pressure for individuals far from this 
lusterin
reases almost exponentially.In 
on
lusion, di�erential evolution seems to have, impli
itly, a self-adaptive se-le
tion pressure, starting weak and maintaining so for several generations, and thenabruptly starting to grow to the point in whi
h no new solutions out of the (sub)optimal
luster are tolerated by the sele
tion operator.2.5.2 The DE_2 algorithmThe se
ond variation known as DE_2(λ, F ) is somehow based on parti
le swarmoptimization as it uses the 
urrent best found solution to dire
t the sear
h. Formally,this di�eren
e operator 
an be regarded as
ψ(p, r) = ps1

+ λ(pb − ps1
) + F (ps2

− ps3
) (2.24)where pb = arg max

1≤i≤k
{f ◦ τ(pi)}and the variable λ is a 
ontrol value used to 
ontrol the greediness towards the bestsolution so far. It should be small normally, unless the global optimum is relativelyeasy to �nd.2.5.3 More operatorsAs is usually the 
ase with evolutionary algorithms, there is a number of other oper-ators used to improve the performan
e of the DE algorithm.Here we will only dis
uss the pseudo-
rossover performed to in
rease the diversityin the population. When this operator is working, it is used over one of the di�eren
eoperators explained in Equation (2.23) and in (2.24). This operator requires anothervariable, CR, representing the 
rossover rate. It is usually set to a high value (near

1), ex
ept for easy optimization problems.Suppose the fun
tion ψ′ is de�ned as either (2.23) or (2.24), and obtain two randomintegers d ∈ {1, 2, . . . , l} and L su
h that P (L ≥ v) = (CR)v−1, v > 0. The newmutation (pseudo-
rossover) operator is de�ned as
ψ(p, r) = (v1, v2, . . . , vl)where vj =

{

ψ′(p, r)j if d ≡ d, d+ 1, . . . , d+ L− 1(mod l)
pj otherwise
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tor ψ′(p, r).

Figure 2.5: The s
hemati
 view of the pseudo-
rossover operator for di�erential evo-lution. We 
an observe that the 
rossed ve
tor has 3 values of the original ve
tor,and 3 from the new one.The sket
h of this operator 
an be observed in Figure 2.5. The individual depi
tedthere has length l = 6, the values used for the pseudo-
rossover are d = 5 and L = 3,and then the new individual shares three values with the original one, and three withthe new one, beginning at d and 
ir
ling around in a modular fashion. This operatorresembles the two-point 
rossover of GAs.2.5.4 Di�erential evolution for 
onstrained optimizationIn this se
tion we will give an example of a simple evolutionary strategy to solve
onstrained optimization problems using rules to rank individuals. As in Se
tion2.3.4, we will adapt the DE_1 to solve a ben
hmark of 
onstrained optimizationproblems.The DE pi
ked uses the pseudo-
rossover operator mentioned above, and it isthen stated as a DE_1(0.9, 0.9), with normal parameters. The binary 
omparisonfun
tion used to a

ept individuals in sele
tion is the total violation rule explained inSe
tion 1.3.2.2.This DE is used for 
omparison with the Baldwinian algorithms in Chapter 4.
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Chapter 3The Baldwin E�e
tMany resear
her have drawn analogies between learning and evolution as two intel-ligent pro
esses, one taking pla
e during the lifetime of an organism, and the othertaking pla
e over the evolutionary history of life on Earth. We tend to regard theevolutionary pro
ess as adaptive and intelligent in the sense that individuals are(sub)optimal solutions to the problem of staying alive. In this sense, there is an opti-mization pro
ess undergoing evolution. The question remains, though, as if learning
an have an impa
t at all in the evolutionary me
hanisms in nature, and if so, towhat extent.Sin
e the moment in 1987 that Hinton and Nowlan [10℄ published their 
lassi
 pa-per, a large number of resear
her have worked in experiments 
on
erning the BaldwinE�e
t in evolutionary 
omputation[14, 2℄. Many of them have also observed the syn-ergi
 e�e
t that learning1 
an have in the evolutionary me
hanisms when there is anevolving population of individuals. This synergy is what is usually 
alled the BaldwinE�e
t. In general, there seems to exist a misunderstanding of the real aspe
ts behindthis e�e
t, and, apparently, the resear
hers have left aside another equally importantaspe
t of it.At a �rst approa
h, we 
an think of the whole Baldwin E�e
t as a two-sided 
oin.In one fa
e, one has the observed behavior that lifetime learning 
an, under 
ertain
ir
umstan
es, a

elerate the evolutionary pro
ess in a population. In the other one,we must take into a

ount that it is 
ostly for an individual to learn.In this line, there is indeed a synergy e�e
t that 
an o

ur during evolution withindividuals that are able to learn, but there is also a 
ost asso
iated with that learningability. The Baldwin E�e
t is 
on
erned with both aspe
ts.This 
hapter is mainly 
on
erned with the understanding of the Baldwin E�e
t asa biologi
al me
hanism that may or may not be present in nature, but that 
an be ofuse for the evolutionary 
omputation 
ommunity as a new sear
h strategy. It is alsothe aim to demystify the relation between Lamar
kism and Baldwinism in a system,and the possible uses that both may have in optimization problems.1A
tually, phenotypi
 plasti
ity, but we will talk about it later in this 
hapter.35



36 CHAPTER 3. THE BALDWIN EFFECT3.1 Basi
 Con
eptsIn order to fully understand the Baldwin E�e
t, a number of 
on
epts must be de-veloped in advan
e. The Baldwin E�e
t is a misnomer be
ause it was dis
overedindependently by Baldwin, Morgan and Osborn (1896), and also be
ause it is not asingle e�e
t, but rather a 
luster of e�e
ts or observations.It is relatively well know the di�eren
e between the genotype and the phenotype.The genotype stands for the internal heritable material of an individual, it 
odes the�nal utter aspe
ts of the individual in a persistent and un
hangeable2 way. It is typ-i
ally represented by the organism's DNA. It obtains its name from the genes, whi
hare 
onsidered the atoms of inheritan
e. On the other hand, the phenotype is thephysi
al realization of an organism's genotype. It refers to every represented aspe
tthat was impli
it in the geneti
 
ode, and was developed as part of the individual.It in
ludes from the body 
omposition to the behavioral traits, and the abilities toadapt any of these based on an inherited 
hara
teristi
. They 
an be viewed as theobservable aspe
ts of the organism's genotype. It obtains its name from the Greekword phainein, whi
h means to show.The key term in the Baldwin E�e
t is known as phenotypi
 plasti
ity, whi
h 
an beregarded as the ability of an organism to adapt to its environment due to the featuresof the phenotype. There are many examples of phenotypi
 plasti
ity in nature, mostof whi
h have a dire
t relation with the organism's body in its environment; forinstan
e the ability of the skin to tan when exposed to the Sun, or to form 
alluswhen 
onstantly abraded, or many 
onditioned behaviors a
quired by asso
iation3.Another 
on
ept is the notion of lifetime learning, whi
h is the set of learning thathappens during the lifetime of an individual. It is only 
on
erned with the learningmade by a single individual and not with the ma
ros
opi
 population level of learningin whi
h the evolution may fall into. The impa
t of lifetime learning on evolution isonly one example of the Baldwin E�e
t; in its most general sense, it deals with theimpa
t of phenotypi
 plasti
ity as a whole, on the evolution of a spe
ies.In 
ontrast to the phenotypi
 plasti
ity, we 
all phenotypi
 rigidity the inabilityof an individual to adapt to a new problem. This inability, 
ontrary to what theintuition di
tates us, may be an advantage over more plasti
 individuals. We willexplore this in more detail.3.1.1 Bene�ts of phenotypi
 rigidityPhenotypi
 rigidity 
an be advantageous to an organism in many situations. A hard-
oded behavior is potentially less hazardous to an individual than a plasti
 one. Forexample, learning requires experimentation, and in the 
ase of a potentially fatal2Not quite un
hangeable sin
e the individual 
an mutate, but in general terms it is not sus
eptibleto 
hanges.3Like the famous Ivan Pavlov's experiments on 
onditioned response on dogs.
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t will 
ertainly have an advantage over learning, be
ause an indi-vidual will be born with a natural avoidan
e behavior instead of with trial-and-errorlearning ability. Another example 
ould be the time required to form a 
allus whi
h
ould be used in some other a
tivities if the organism were born with a thi
k skin5.In general, an individual with an instin
tive behavior, will require mu
h less energyand will save time. The behaviors are ready for him to use at birth-time. In 
on-trast, plasti
ity o�ers the possibility to adapt, but the 
ost of developing the requiredbehavior, has potentially fatal 
onsequen
es.3.1.2 Bene�ts of phenotypi
 plasti
ityIn 
ontrast, phenotypi
 plasti
ity enables an organism to explore new possibilities ofpotentially better behaviors. This may be a great advantage in 
hanging environmentsor in environments that abruptly 
hanged and are to remain so. The spe
ializationis an observed 
hara
teristi
 of phenotypi
 rigidity, but 
an lead to a disaster whentaken to the limit6. If the rigidity will not allow an individual to adapt to an already
hanged environment, then, 
learly the plasti
ity will bestow the individual that hasit with an evolutionary advantage over those who does not have it.In general terms, the phenotypi
 plasti
ity smooths the �tness lands
ape enablingthe organism to explore neighboring areas of the phenotype spa
e, and thus allowingthe individual to have an e�e
tive �tness of a lo
al maximum in this spa
e. If a 
ertain
ontinuity in the mapping from genotype to phenotype is assumed, a (potentially)worst genotype would have a better �tness through plasti
ity than a better genotype.Behaviors tend to be more plasti
 than physi
al stru
tures. The pro
ess of learninga behavior represents appropriate 
hanges in the nervous system, and it is in generaltrue that the nervous system of an organism is more �exible than many other physi
alstru
tures.3.1.3 Lamar
kism and Baldwin E�e
tThe Lamar
kian hypothesis states that the traits a
quired during an organism lifetime
an be transmitted via inheritan
e to the organism's o�springs. This hypothesis isgenerally interpreted as referring to a
quired physi
al traits7, but something learnedduring lifetime 
an also be 
onsidered an a
quired trait.To put it in simple terms, Lamar
k says that the son of an athlete is more likelyto be a good athlete, and the son of a s
ientist tends to be more intelligent. Thus, aLamar
kian view would hold that learned knowledge 
an (and will) guide evolution bydire
tly passing the knowledge to the next generation. However, due to overwhelmingeviden
e against it, the Lamar
kian hypothesis has been reje
ted by virtually all4Like learning not to eat a poisonous fruit.5For example the elephant.6As is the 
ase with the Koala, whose diet is 
on�ned to a single dish: the eu
alyptus' leaves7Su
h as physi
al defe
ts due to environmental toxins
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kism requires an inverse mapping from phenotype and environmentto genotype, and this mapping is biologi
ally implausible [14, 20℄.It would seem that the reje
tion of the Lamar
kian hypothesis leaves out thequestion of if learning has any impa
t on evolution, but the answer seems to be thatlearning 
an indeed have a signi�
ant e�e
t, though in a less dire
t way than Lamar
ksuggested. The Baldwin E�e
t is purely Darwinian (in 
ontrast to Lamar
kism) andit does not involve any reverse mapping.Suppose the typi
al example of Lamar
kism, with a short-ne
ked animal thatlearns to stret
h its ne
k to rea
h leaves on a tall tree. Lamar
k believed that theanimal's o�springs would inherit slightly longer ne
ks than they would otherwise havehad. It requires a me
hanism for modifying the parent's genes based on the habit ofstret
hing its ne
k.The Baldwin E�e
t has observable 
onsequen
es that are similar to Lamar
kianevolution. Baldwin would have pointed that if stret
hing their ne
ks helps towardstheir survival, then the organisms that are more able to learn to stret
h their ne
kswill have the most o�spring, thus e�e
tively in
reasing the frequen
y of the genesresponsible for learning. In this sense, if the environment remains relatively �xed,so that the best thing to learn remain 
onstant, this 
an lead, via sele
tion, to apopulation of animals very good at stret
hing their ne
ks.There 
an be advantages, however, in being born with a longer ne
k. And it isbelieved that if given enough time, the evolution pro
ess will be able to evolve longerne
ks in the population, whi
h will lead in its turn, to a geneti
al en
oding of longerne
ks.One may view this pro
ess as if the Baldwin E�e
t were Lamar
kian in its results,but not Lamar
kian in its me
hanism. Given a desirable trait, the Baldwin E�e
tonly provides the required time (via a
quiring the trait due to phenotypi
 plasti
ity)for the trait to appear in the population's genes (via the evolutionary pro
ess).3.1.4 The Darwinian me
hanismThe evolutionary biologist G. G. Simpson, studied the 
onje
tures made by Baldwin[19℄ and pointed out that it is not 
lear how the ne
essary 
orrelation between phe-notypi
 plasti
ity and geneti
 variation 
an take pla
e. We mean by 
orrelation therequirement that geneti
 variations happen to o

ur and produ
e the same adapta-tion that was previously learned. This kind of 
orrelation would be easy understoodif geneti
 variations were dire
ted towards some parti
ular out
ome rather than atrandom. But randomness is 
entral in modern evolution theory, espe
ially 
on
erninggeneti
 variation, and a spe
i�
 
orrelation would mean a Lamar
kian me
hanism forevolution.It seems that Baldwin was assuming that, given the laws of probability, 
orrelationbetween phenotypi
 adaptations and random geneti
 variation will happen, espe
iallyif the phenotypi
 adaptations keep the lineage alive long enough for these variationto o

ur. It does not point, however, to a spe
i�
 
orrelation among them. Simpson
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iple, but remains unknown if it is an importantfor
e in evolution.While it appears that we are at a dead end, it may not be the 
ase, as the answerto that question may be found in the work of Waddington [22℄, who proposed a me
h-anism 
alled geneti
 assimilation. This me
hanism is 
on
erned with the inheritan
eof a
quired traits, but tries to explain the underlying pro
ess from a slightly di�er-ent point of view. It states that some sudden and potentially deadly 
hanges in anenvironment would require phenotypi
 adaptation that are not ne
essary in normalenvironments. If organisms are subje
t to su
h 
hanges, they 
an sometimes adaptduring its lifetime be
ause of their inherent plasti
ity, thereby a
quiring new physi
alor behavioral traits. If the genes of these traits are already in the population, butare dormant8, they 
an fairly qui
kly be expressed in the 
hanged environments, andas in the Baldwin E�e
t 
ase, espe
ially if the a
quired traits prevent the individualsfrom dying.Waddington even demonstrated that it has happened in several experiments onfruit �ies. It su�ers, however, of the same skepti
al point of view o�ered by Simpson:there is no �nal proof that this e�e
t is indeed an important for
e in evolution.However, although the geneti
 assimilation is better known in the evolutionary biology
ommunity than the Baldwin E�e
t is, the later has been re
ently pi
ked up byevolutionary 
omputing resear
hers mainly be
ause of the experiment made by Hintonand Nowlan, and be
ause it has proven useful in several resear
h areas.3.2 Baldwin E�e
t and Computer S
ien
eThere is a 
ommon feeling to think that learning is always good, at least that iswhat our nature tends to tell us. As we have observed before, this may not alwaysbe the 
ase, and this might be parti
ularly true when 
onfronted to the world of
omputers, when CPU time and memory requirements are 
ru
ial in the analysis ofa new algorithm. Evolution is 
onstantly sele
ting the best balan
e between learningand instin
t, and this balan
e is usually not �xed during all the optimization pro
ess.It varies dramati
ally when spe
ies are 
onfronted with an abrupt 
hange in theirenvironment and also when the environment has a
hieved an epistati
 state9.There is a number of interesting experiments applying the Baldwin E�e
t to evo-lutionary 
omputing on various settings, mainly dedi
ated to observe the intera
tionsbetween learning and instin
t. Peter Turney [20℄ presented a list of observations,based on the fundamental insight that there are trade-o�s between learning and in-stin
t10, and are reprodu
ed in Table 3.1.8Here we say that a gene is dormant if it is not usually expressed in the population's phenotype,in 
ontrast to expressed if the trait it 
odes a
tually appears in the population.9Roughly speaking, an state in whi
h there are no more sudden 
hanges.10We have been using learning as a form of phenotypi
 plasti
ity and instin
t as phenotypi
 rigidity,the generalization to other kinds of phenotypi
 behaviors is fairly straightforward and is left to thereader.
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dimension of trade-o� phenotypi
 rigidity (in-stin
t) phenotypi
 plasti
ity(learning)1 time s
ale of environmen-tal 
hange relatively stati
 relatively dynami
2 varian
e, reliability low varian
e, high relia-bility high varian
e, low relia-bility3 energy, CPU 
onsump-tion low energy, low CPU high energy, high CPU4 length of learning period short learning period long learning period5 global versus lo
al sear
h more global sear
h more lo
al sear
h6 adaptability brittle adaptive7 �tness lands
ape rugged smooth8 reinfor
ement learn-ing versus supervisedlearning reinfor
ement learning supervised learning9 bias dire
tion string bias; dire
tion ofbias 
ru
ial to su

ess weak bias; dire
tion ofbias not as important10 global goals versus lo
algoals emphasis on global goals emphasis on lo
al goalsTable 3.1: Reprodu
tion of tradeo�s in evolution between phenotypi
 rigidity andphenotypi
 plasti
ity [20℄
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ording to Turney [20℄, the 
ourse of the balan
e is not the main 
on
ern ofthe Baldwin E�e
t, but the fa
t that there are trade-o�s. In this sense, we try toexamine the trade-o�s o�ered by Turney in order to 
larify the possible appli
ationsof the Baldwin E�e
t.Time s
ale of environmental 
hange. Evolution and learning operate at di�erent times
ales. In a dynami
 environment, evolution 
annot adapt fast enough,so learning is better. In a stati
 environment, evolution 
an adapt, solearning is a waste of time.Varian
e and reliability. Learning is heavily based on experien
e and requires that theright kind of experien
e is present in order to a
quire the desired learnedbehavior. This makes learning more sto
hasti
 than instin
t. Learning in-
rements the variation in the population (di�erent stimuli lead to di�erentbehaviors) whi
h 
an aid evolution.Energy and CPU 
onsumption. Any individual must expend energy in order to learn.The lo
al sear
h asso
iated with learning 
onsumes evaluation of the �t-ness fun
tion (CPU time), and less resour
es are left for evolution.Length of learning period On
e an individual is born, it must dedi
ate some timeto learn a trait, if it is instin
tive, it is available at birth-time. Shorterlearning times are usually preferred by evolution.Global versus lo
al sear
h. Evolution performs a global sear
h, while individuals per-form a lo
al sear
h (in phenotypi
 spa
e). This trade-o� varies greatlydepending on the stage of the evolution and the 
urrent population.Adaptability. Learning is more able to adapt to a variation in the environment whileinstin
t tends to be brittle.Fitness lands
ape. Learning, as dis
ussed before, smooths the �tness lands
ape ef-fe
tively removing rugged areas in the phenotypi
 sear
h spa
e. It is onlyadvantageous if the lands
ape was not already smooth in whi
h 
ase it isless useful.Reinfor
ement versus supervised learning. An evolutionary algorithm is a type of re-infor
ement learning for high �tness areas of the sear
h spa
e. In termsof feedba
k from the environment, it is situated somewhere between un-supervised and supervised learning. Supervised learning obtains morefeedba
k from the environment and is more alike to the lo
al sear
h per-formed by learning as phenotypi
 plasti
ity.Bias dire
tion. The bias is a term widely used in ma
hine learning, but has re
entlyattra
ted the attention of the 
onstrained optimization 
ommunity. Thebias dire
tion has two 
omponents, the dire
tion and the strength. If the
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tion is wrong to a 
ertain problem, the strength will either allow orrestri
t the exploration pro
ess of the algorithm, and learning is bettersuited. If the dire
tion is 
orre
t, an strong bias (instin
t) will be bettersuited for the problem.Global versus lo
al goals. Evolution and learning have di�erent goals. Evolutionseeks to maximize �tness while individuals have more immediate goals.Learning is used by individuals to help them a
hieve their immediate goalsin a better way. It is usually said in Game Theory that every individualmust pursue its own (simple) goals for the global (more 
omplex) goals tobe ful�lled, and in this sense, yet again we get a synergy from learning toevolution.As explained before, the trade-o�s shown here are not exhaustive and, as Turneyhimself says, there may be some overlap in the terms. The list will tend to grow asnew aspe
ts of the Baldwin E�e
t are known, and new appli
ations are found for it.3.2.1 Hinton and Nowlan's experimentSome re
ent work in Geneti
 Algorithms has been dire
ted towards the analysis ofthe bene�ts of phenotypi
 plasti
ity, phenotypi
 rigidity and the plasti
ity of learning.Perhaps the �rst attempt made in this dire
tion was performed by Hinton and Nowlan[10℄ as stated at the beginning of this 
hapter.Their observations seem to imply that learning 
an fa
ilitate evolution but theselearned behaviors will eventually be repla
ed by instin
tive behaviors if the environ-ment remains 
onstant during a relatively long time. An extremely simple neural-network11 learning algorithm was 
reated to model learning in a population. Everyindividual in the population 
odi�es a 
andidate for solution to the neural network,thus a geneti
 algorithm played the role of evolution on the population of evolvingindividuals with learning 
apabilities.In this simpli�ed model, every individual 
onsists of 20 potential 
onne
tionsamong neurons. A 
onne
tion 
an have one of three values: present, absent, andlearnable; whi
h are 
oded as 1, 0 and ? respe
tively, where ea
h question mark
an be set during learning to either 0 or 1. Then, the representation is a stringof 20 values, so an individual is represented by a1a2 . . . a20 where ai ∈ {0, 1, ?} forea
h i ∈ {1, 2, . . . , 20}. There is only one 
orre
t setting of the neural network's
onne
tions (whi
h, by simpli
ity is all present12), and no other setting 
onfers any�tness to the individual. We will say that a 
onne
tion is �xed if it is either 0 or 1,and that it is not �xed if it has a question mark.The problem to be solved is to �nd this single 
orre
t set of 
onne
tions. Is willnot be possible for those networks that have in
orre
t �xed 
onne
tions to �nd the11Whi
h is a
tually transparent to the pro
ess, so no prior knowledge about arti�
ial neuralnetworks is required to understand it.12This means all the 
onne
tions present, or, as an individual, a 
hromosome 
onsisting of 20 ones.



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 43solution, but those networks that have 
orre
t values in all �xed pla
es, have theopportunity to learn the 
orre
t setting. In this experiment, the simplest learningmethod was used: random guessing. On ea
h trial, an individual guesses 0 or 1 atrandom (uniform) on ea
h question mark it possesses.This problem is, by design, a needle in a haysta
k sear
h problem, sin
e there isonly one 
orre
t setting out of the 220 possibilities. The �tness lands
ape for thisproblem is s
hemati
ally represented in Figure 3.1�the single spike represents thesingle 
orre
t 
onne
tion setting. Introdu
ing the ability to learn, as expe
ted by the

Figure 3.1: S
hemati
 view of the �tness lands
ape for Hinton and Nowlan's sear
hproblem. All genotypes have �tness 0 ex
ept for the 
orre
t one with �tness 1.Baldwin E�e
t, the lands
ape it smoother, and now we observe in Figure 3.2 a zoneof in
reased �tness, meaning that there are individuals that 
an learn the 
orre
tsetting and have a reward of �tness (inversely proportional to the number of trials).This zone in
ludes individuals with only 
orre
t �xed positions and question marks.On
e the individual is inside this zone, evolution makes it possible to 
limb to thepeak.The initial population 
onsisted of 1000 individuals, ea
h 
onsisting of 20 genes,generated at random, with ea
h gene having probability 0.25 of being 0, probability
0.25 of being 1, and probability 0.5 of question mark. At ea
h generation, ea
hindividual was given 1000 learning trials. On ea
h learning trial, the individual trieda random 
ombination of settings for the question marks.The �tness was 
al
ulated by the following formula,

Fitness = 1 +
19(1000− i)

1000
(3.1)where i stands for the number of trial in whi
h the individual guessed the 
orre
tsetting of 
onne
tions. The �tness is an inverse fun
tion of the number of trials needed
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Figure 3.2: S
hemati
 �tness lands
ape after learning.The sear
h problem is smoother with a zone of in
reased �tness 
ontaining individualable to learn the 
orre
t 
onne
tion settings.by an individual to �nd the 
orre
t solution. With this fun
tion, an individual withall its positions �xed and equal to 1, would get the maximum �tness value of 20, whilean individual that was never able to 
orre
tly guess the solution or that has at leastone wrong �xed position would get the minimum �tness value of 1.In this experiment we 
an observe the trade-o� of the Baldwin E�e
t as manyquestion marks mean that, on average, many guesses are needed to arrive to thesolution, but the more �xed positions, the more likely it is that at least one value iswrong thus e�e
tively killing the individual. This trade-o� depi
ts the one existingbetween e�
ien
y and plasti
ity in a very straightforward way.In expe
tation, an individual has half of its positions �xed in the initial population.The expe
ted number of individuals in the initial population that have no wrong �xedposition is about one (the 210 possible values for half �xed positions are about 1000).In the ending, it is expe
ted that at least one individual will be able to learn the
orre
t settings, but this is no surprise be
ause 1000 ∗ 1000 = 106 ∼ 220, so thisexperiment 
ould be 
onsidered invalid be
ause of this analysis, however, it is anexample of a simple experiment and the ability of the Baldwin E�e
t to smooth the�tness lands
ape, as it was stated by Mit
hell [14℄ that the mean �tness was notobserved to improve over generations in the 
ase of pure evolution.Hinton and Nowlan's geneti
 algorithm used to solve this problem was very similarto the simple geneti
 algorithm dis
ussed in Se
tion 2.2. The sele
tion me
hanismwas by roulette wheel, with repla
ement. They used one-point 
rossover and simplemutation; also, the 
hromosome of the individual was obviously not a�e
ted by learn-ing that took pla
e during its lifetime. Originally, they let the algorithm run for 50generations. They observed that 0 genes were rapidly eliminated from the population
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Figure 3.3: Relative frequen
ies of 1's (dotted), 0's (dashed) and unde
ided (solid)alleles in the population plotted over 50 generations.



46 CHAPTER 3. THE BALDWIN EFFECTand that the frequen
y of 1's in
reased a

ordingly. In Figure 3.3 we show the relativefrequen
ies of 
orre
t (ones), in
orre
t (zeros) and unde
ided (question marks) allelesin the population plotted over 50 generations.3.2.1.1 Harvey's experimentThe main 
on
ern resulting from the plot is why did the frequen
y of unde
ided allelesstays so high. With the frequen
y of question marks stable at 45%, and the frequen
yof 1's stable at 55%, an average individual with 20 genes would have eleven 1's andnine ?'s. A more detailed study of this experiment was performed by Harvey [9℄,and Belew [3℄, and a

ording to them, the expe
ted �tness of su
h an individual isroughly 11.6. Also, they performed an statisti
al analysis of the expe
ted �tness ofthe algorithm if only evolution was allowed to sear
h (i.e. not learning), and resultedat 1.009.This points 
learly to the �rst aspe
t of the Baldwin E�e
t, in whi
h learning aidedevolution to improve the expe
ted �tness from 1.009 to 11.6, but this experiment, as itwas made, did not say mu
h about the evolution's preferen
e of instin
t over learningon the long term. To answer this question, Harvey [9℄ reprodu
ed and augmented theoriginal experiment in order to address the so-
alled Puzzle of the persistent questionmarks. In his work, he ran the model for 500 generations, and he observed that thefrequen
y of question marks indeed de
reased in time towards 0%. However, it didnot matter how many generation he ran the model, that per
entage never rea
hedzero.The reason seems to be the geneti
 drift, due to random mutation in the pop-ulation. Mutation exerts a 
onstant pressure that maintains a 
ertain frequen
y ofunde
ided alleles in the population, and eventually, the population will a
hieve anequilibrium state where the pressure of geneti
 drift balan
es with the sele
tion pres-sure that favors instin
t.3.2.2 Turney's experimentsWe will analyze now a model that is a bit 
loser to a more 
omplete Baldwinians
enario. In his paper, Turney [21℄ used the Baldwin E�e
t as a method to shiftthe bias in a ma
hine learning problem. His experiment is also simple as he arguesthat a more 
omplex experiment would only obs
ure the role of Baldwinism in theoptimization pro
ess. His work is of interest to us sin
e he introdu
es a new type of
oding for learning in the genotype. In order to understand his work, we will have todevelop a few 
on
epts.3.2.2.1 De�nition and types of biasEx
luding the input data, every fa
tor that in�uen
es the sele
tion of one parti
ular
on
ept (in ma
hine learning) 
onstitute the bias of a learning algorithm. Bias in-
ludes su
h fa
tors as the language in whi
h the learner expresses its 
on
epts, the
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h the spa
e, and the 
riterion for de
iding whether a 
on
eptis 
ompatible with the training data.As we saw at the beginning of Se
tion 3.2, the bias 
onsists of two fa
tors: dire
tionand strength. A 
orre
t bias is one that allows the 
on
ept learner to sele
t the target
on
ept. The 
orre
tness of the dire
tion is thus measured by the performan
e of thelearned 
on
ept on a test data. A strong bias is one that fo
uses the 
on
ept learneron a relatively small number of 
on
epts.3.2.2.2 Shift of biasA growing body of resear
h in ma
hine learning is 
on
erned with algorithms thatshift bias as they a
quire more experien
e. Shift of bias performs two levels of sear
h,one through 
on
ept spa
e and one through bias spa
e.We have seen that a strong bias is somewhat analogous to an instin
tive behavior,while a weak bias is to a learned behavior. The 
ost of having a strong bias is thatthe bias 
an be in
orre
t, and the disadvantage of having a weak bias is a poorperforman
e or e�
ien
y on the long term. Unless we have high 
on�den
e that thebias is 
orre
t, it is in general risky to have a strong bias. All of this is in a

ordan
eto the Baldwin E�e
t, so it seems reasonable to in
orporate it as a bias shifter.3.2.2.3 The Baldwinian modelTurney generalized the experiment of Hinton and Nowlan and adapted it to thema
hine learning problem as a shift of bias problem. It may not be 
lear that a shiftof bias was used in Hinton and Nowlan's experiment, but we might see the amountof question marks as the strength of the bias. Having many unde
ided alleles wouldresult in a weak bias, while having just a few would result in a stronger bias. The plotof question marks' frequen
ies in the population 
an be regarded as the population'straje
tory of sear
h in bias spa
e. For this new experiment, this distin
tion is madeexpli
itly, and might be 
lari�ed better with the experiment itself.Let us 
onsider the example of 
on
ept learning. Suppose the examples to 
lassifyare all �ve-dimensional Boolean ve
tors ~x ∈ {0, 1}5, and that they may belong to oneof two 
lasses {0, 1}. By simpli
ity, let us 
all this spa
e T = {0, 1}5. In this sense, thesear
h spa
e of 
on
epts is the spa
e of fun
tions F = {f |f : T → {0, 1}}, mappingve
tors to 
lasses. To simplify the notation, we see that it is possible to identify ea
h
on
ept (i.e. ea
h fun
tion in F ) with its truth table. The truth table lists all of the
25 = 32 possible ve
tors in lexi
ographi
al order, and the value of the fun
tion forea
h ve
tor. As the ve
tors are in lexi
ographi
al order13, we 
an impli
itly assumethe ve
tors in the truth table, and 
ompa
tly write the asso
iations of the fun
tionas a 32-bit string, with the i-th position in the string 
orresponding to the 
lass ofthe i-th 5 -bit ve
tor.13A
tually, any order may work.
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tion that maps every ve
tor ~x ∈ T to 1, would be 
odedas the bit string 
onsisting of 32 ones, and 
onversely; the binary string given by
11101111111101111111110111111111 represents the fun
tion that maps the ve
tors
00011, 01100 and 10110 14 to the 
lass 0, and the rest to the 
lass 1. In this way, wehave a total of 232 = 4294967296 possible fun
tions, and thus, the amount of possiblesolutions to the 
lassi�er problem are also 232.Suppose that one parti
ular target 
on
ept is what we want to �nd, as was the 
asewith Hinton and Nowlan's neural network. To fa
ilitate 
omparison with Harvey [9℄,we will suppose that the target fun
tion is the fun
tion that 
lassi�es every ve
tor tothe 
lass 1 (i.e., f(~x) = 1 for ea
h ~x ∈ T ). We assume, also, the standard supervisedlearning paradigm, with a training phase followed by a testing phase.During training, the learner is taught the 
lass of ea
h of the 32 possible inputve
tors. To make the problem interesting, we will assume there is a 
ertain probability
p that the learner is taught the wrong 
lass. During test, the learner must guess the
lass of the supplied input ve
tor. Again, there is a probability that the test ismistaken about the 
orre
t 
lass for an input ve
tor. That is, the probability p is thelevel of noise in the 
lassi�er.We will use the next notation,target = (t1, t2, . . . , t32) = ~ttrain = (α1, α2, . . . , α32) = ~αtest = (β1, β2, . . . , β32) = ~βwhere ti, αi, βi ∈ {0, 1}. We generate ~α and ~β from ~t by randomly �ipping bits in ~twith probability p. The probability that the 
lass of a training example or a testingexample mat
hes the target is 1−p, but the probability that the 
lass of the trainingexample mat
hes the 
lass of the testing example is 1 − 2p+ 2p2. Namely,

P (αi = ti) = 1 − p

P (βi = ti) = 1 − p

P (αi = βi) = 1 − 2p+ 2p2and we observe that either αi = βi = ti, with probability (1−p)2, or αi = βi 6= ti, withprobability p2, whi
h yields (1− p)2 + p2 = 1− 2p+ 2p2. This model is very 
ommonin statisti
s, and 
an be thought as the observed 
lass (~α or ~β) being 
omposed of asignal (~t) plus some random noise (p).3.2.2.4 The algorithmWe will use a geneti
 algorithm to solve this example problem. Ea
h genotype 
onsistsof 64 genes, 32 of whi
h determine the bias dire
tion, and 32 that determine the bias14i.e. the 3rd, 12th and 22nd in the string.
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tion genes are either 0 or 1, and represent the 
lass to beproposed for that entry. The bias strength genes are real values in the interval [0, 1],ea
h one 
oded with 8 bits, as illustrated nextgenotype G = (D;S)bias dire
tion D = (d1, d2, . . . , d32)bias strength S = (s1, s2, . . . , s32)where di ∈ {0, 1}, and 0 ≤ si ≤ 1, and the use of the strength is as follows: if the i-thbias strength gene has a value si, then there is a probability si that the individualwill guess di, similarly, there is a probability 1 − si that the individual will guess αi.The guess ve
tor is expressed as guess ~g = (g1, g2, . . . , g32)

P (gi = di|di 6= αi) = si

P (gi = αi|di 6= αi) = 1 − si

P (gi = di = αi|di = αi) = 1whi
h 
an be interpreted as, if the bias is weak (si 
lose to zero), then the individualwill guess based on what it observed in the training data (i.e. it guesses αi); if the biasis strong (si 
lose to one), the individual ignores the training and relies on instin
t(i.e. it guesses di).Turney [21℄ points out that his simpli�ed model does not des
ribe the learningme
hanism. He also states that the level of abstra
tion used in this experimentis one in whi
h the me
hanism is not important, and in a more 
omplex problem,the genotype 
ould en
ode for example the ar
hite
ture of a neural network, and alearning algorithm as ba
k propagation 
ould be used as a learn method.In this experiment we 
ould see a number of features of the Baldwin E�e
t, forinstan
e, if an individual relies entirely on instin
t (for ea
h i ∈ {1, 2, . . . , 32}, si = 1),and its instin
t is 
orre
t, (for ea
h i ∈ {1, 2, . . . , 32}, di = ti), then the probabilitythat it will 
orre
tly 
lassify all the 32 input ve
tors in the testing phase is (1− p)32;while if an individual relies entirely on learning (for ea
h i ∈ {1, 2, . . . , 32}, si = 0),then the probability that it will 
orre
tly 
lassify all testing ve
tors is (1−2p+2p2)32.Observe that with in
reasing noise level (p), the 
orre
t instin
t has an advantage overpure learning. This is due to a small 
at
h in the phrasing, as we require the instin
tto be 
orre
t in advan
e.For 
onvenien
e, the �tness of the individuals will range from 0 to 1. As withHinton and Nowlan, we will require the individuals to 
orre
tly guess the 
lass of all
32 testing examples. We assign a �tness s
ore of 0 when the guess does not perfe
tlymat
h the testing data, and a s
ore of 1 when the mat
h is perfe
t15.15In 
ontrast to Turney, who assign (1 − p)−32 by an unknown reason.



50 CHAPTER 3. THE BALDWIN EFFECTIn order to better understand what is going on in a run of the algorithm, we willmeasure the bias 
orre
tness and the bias strength as followsbias 
orre
tness =
1

32

3
∑

2i=1 [di = ti]bias strength =
1

32

3
∑

2i=1siwhere the bias 
orre
tness is represented by the frequen
y with whi
h the bias dire
-tion mat
hes the target, and bias strength is the average of the strengths si.We 
an view the genotype in Hinton and Nowlan as a spe
ial 
ase of Turney'sgenotype:
0 ⇔ di = 0, si = 1

1 ⇔ di = 1, si = 1

? ⇔ s1 = 0, di ∈ {0, 1}In Hinton and Nowlan's genotype, the only way to in
rease bias strength is to
hange one or more question marks to a �xed number (either 0 or 1), and 
onverselyto de
rease it. In Turney's genotype, we 
an alter the bias strength without 
hangingbias dire
tion.The Baldwin E�e
t predi
ts that, initially, when the bias 
orre
tness is low, sele
-tion pressure will favor weak bias. Later, when bias 
orre
tness is improving, sele
tionpressure will favor a stronger bias.3.2.2.5 ExperimentsThe algorithm was set to a geneti
 algorithm, with population of 1000, with a
rossover probability of 0.6 and a mutation rate of 0.001. The algorithm was leftto run for 10000 generations. Various parameters of p were used in the experiments,and in general, the behavior 
an be observed in Figure 3.4.In ea
h experiment, Turney plotted the average bias 
orre
tness in the popula-tion, bias strength, and �tness as a fun
tion of the generation number. He used alogarithmi
 s
ale in the generations to allow an improved visibility of the features ofthe Baldwin E�e
t, sin
e the �rst aspe
t of the e�e
t (sele
tion for learning) tends totake pla
e quite rapidly in the early generations, while the se
ond aspe
t (sele
tionfor instin
t) tends to take pla
e mu
h more slowly.We 
an see this behavior in Figure 3.3, were, on the long run, we should expe
tthe question marks to approa
h zero. The logarithmi
 s
ale was used to be able tosee both behaviors in the same �gure.Turney performed a number of experiments modifying the bias strength in anexternal way, and allowing the evolution to adapt with those strength paths by itself(i.e. no Baldwin E�e
t was allowed). He 
on
luded that, 
ompared against a 
onstantand a linear in
rement bias strength, the Baldwin E�e
t performed better. This points
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Figure 3.4: The average �tness, bias strength, and bias 
orre
tness of a populationof 1000 individuals, plotted for generations 1 to 10000, with three noise levels.



52 CHAPTER 3. THE BALDWIN EFFECTto the quality of the path traversed in bias spa
e by the Baldwin E�e
t. It is notdemonstrated though, that the Baldwinian path is optimal, but at least it is a goodone.We present here a number of reprodu
tions of the graphs obtained by Turney.The original plots were made for three p parameter values, however, for the sake of
larity, we will only present here the plots for p = 0.5%. The rest of the �gures arevery similar.Skewed strength Turney tested the robustness of the phenomena observed in theexperiment. He deliberately skewed the �rst generation by assigning a random in-dividual generator whi
h favors a strong bias. The bias genes were generated sothat there was a probability of 75% that 0.9 ≤ si ≤ 1, a probability of 25% that
0.5 ≤ si < 0.9, and a probability of 5% that 0 ≤ si < 0.5.

Figure 3.5: Experiment result for p = 0.5. The population is skewed towards strongerbias.In Figure 3.5 we 
an see the results for the experiment. There are a number ofremarks that 
an be done:1. The population eventually settled into (approximately) the same equilibriumstate that was observed in the �rst experiment.2. The skewed bias strength slowed down the 
reation of the �rst individual withnon zero �tness.3. On
e this individual is 
reated, there is little di�eren
e among the experiments.4. During the time for whi
h all individuals have zero �tness, geneti
 drift pushesbias strength towards 0.5.5. After the �rst non-zero individual is 
reated, the strength still de
reased for asmall number of generations.
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ted from the Baldwin E�e
t, as a result of the observationsmade on Table 3.1.For
ed bias strength Another experiment made, was the one 
on
erning for
edbias strength traje
tories. The idea was to 
reate a �xed traje
tory on bias spa
e bya priori setting the bias strength of the individuals as a fun
tion of the generationnumber.The Baldwin E�e
t explained fairly well the behavior of the model 
reated byTurney. However, it seems fair to 
ompare it to some other traje
tories for
ed uponthe bias strength. In general, a non-Baldwinian algorithm will have a strength ofzero. Turney 
onsiders some other possible traje
tories to 
ompare to.

Figure 3.6: Bias strength �xed at 0.75.

Figure 3.7: Bias strength �xed at 0.5.By dire
tly manipulating the bias strength, Turney 
ompared the Baldwin E�e
tto 4 other traje
tories:Fixed 0.75 This experiment is plotted in Figure 3.6, and as expe
ted from BaldwinE�e
t's aspe
ts, this is the experiment with the longer wait until the �rstindividual with non-zero �tness is found.
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Figure 3.8: Bias strength �xed at 0.25.

Figure 3.9: Bias strength in
reases linearly from 0 in the �rst generation to 1 in thegeneration 5000. Afterwards, the bias is held 
onstant at 1.



3.2. BALDWIN EFFECT AND COMPUTER SCIENCE 55Fixed 0.5 Plotted in Figure 3.7, it is just a middle 
ase between the �rst and thirdtraje
tories.Fixed 0.25 From the last three traje
tories, this traje
tory, Figure 3.8, �nds the �rstnon-zero individual faster. Its �nal �tness value will be the worst of allfour traje
tories.Linear16 As this experiment resembles more to the Baldwin E�e
t than the others,it is expe
ted to outperform all others, but will be outperformed by thetrue Baldwinian. It is plotted in Figure 3.9.
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Chapter 4Baldwinian OptimizationIn the previous Chapter we reviewed a number of experiments 
ondu
ted in evolu-tionary 
omputation 
reated to improve our understanding of the Baldwin E�e
t.In this Chapter, we provide hints on where and how an algorithm 
ould be turnedBaldwinian, and give an adaptation for 
onstrained optimization for two well-knownalgorithms.The idea behind a Baldwinian algorithm is very similar to the memeti
 algorithmreviewed in Se
tion 2.4, in the sense that learning is a lo
al sear
h. A Baldwinianalgorithm is an evolutionary algorithmwith an extra operator1, whose main purpose isto perform a learning stage, in many ways similar to the lo
al sear
h stage performedby memeti
 algorithms.There are two main di�eren
es between memeti
 algorithms and Baldwinian algo-rithms: �rst of all, the lo
al sear
h in memeti
 algorithms is performed on genotypi
spa
e, while in the Baldwinian 
ase, it is performed in phenotypi
 spa
e; se
ond,the genotype of the individual is not 
hanged by the lo
al sear
h in the Baldwinianalgorithm in 
ontrast to the memeti
 algorithms. This last point is mainly due tothe intra
tability of the reverse mapping from phenotype to genotype we dis
ussed inSe
tion 3.1.3.In this sense, we 
an think of memeti
 algorithms to be Lamar
kian in nature.It has been stated, however, that the memes 
ould behave more like a Baldwinianfa
tor than a Lamar
kian one [20℄. In this thesis, however, we are not interested indis
ussing whereas this is a
tually true or not, and is left to the reader to 
ome upwith his own 
on
lusions.At every stage in the evolutionary algorithm where a lo
al sear
h 
an be per-formed, we 
an make a Baldwinian sear
h (i.e. lifetime learning in 
ontrast to geneti
modi�
ation). Figure 4.1 gives a s
hemati
 representation of the learning pro
ess.In many 
omplex evolutionary algorithms there is a 
lear di�eren
e among thephenotype and the genotype. It is 
ru
ial to take into a

ount that learning takes pla
ein phenotypi
 spa
e. Although some simpler algorithms don't make the di�eren
e1It has been proposed that the learning should substitute the mutation in evolutionary strategies,but we 
onsider it to be an additional operator. 57
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Figure 4.1: S
hemati
 representation of the Baldwinian implementation for learning.The upper left individual is the original individual before learning. Then, at the upperright 
orner, the individual after learning with modi�ed �tness and/or genotype.Finally, at the bottom, the individual as is to be 
ompared with other individuals.Observe that it retains its original genome, and only the �tness is 
hanged.between phenotype and genotype, or the 
oding is straightforward, we must try ourbest to state the di�eren
e as 
learly as possible in order to better introdu
e theBaldwinian 
on
ept in the algorithms.If any representation is being made to 
reate the phenotype, this representationis to be used as the basis for learning. This might be straightforward in geneti
algorithms, but 
ould be less than 
lear in evolutionary strategies. In the followingse
tion we will try to introdu
e the learning operator to two of the most well-knownalgorithms; and give general ideas on where 
an any other algorithm be transformedinto a Baldwinian algorithm.4.1 The Learning OperatorEvery evolutionary algorithm has a number of evolutionary operators asso
iated withit. The exa
t type of these operators and the order in whi
h they are applied to thepopulation is what de�nes the algorithm itself. The reader should be familiar withthe 
on
epts developed in Se
tion 2 before he attempts to read this 
hapter.Virtually every evolutionary algorithm has a mutation operator asso
iated2. Thisoperator will serve as the basis for the learning operator in the Baldwinian versionof the algorithm. The basi
 idea is to 
reate a loop of mutation-like lo
al variations,ea
h time the individual is allowed to learn.The s
heme of the algorithm is as follows:Baldwinian Algorithminitialize-population P0;2Or, at least, a mutation step inside an operator.



4.1. THE LEARNING OPERATOR 59Let i = 0;while( termination-
riteria-is-not-met ){
Pf = O( Pi, rand() );
FBi

= L( Pi, rand() );
FBf

= L( Pf, rand() );
Pi+1 = σ( Pi, Pf, FBi

, FBf
, rand() );

i = i+ 1;}In the algorithm, we note the fun
tion L whi
h represents the learning step of thealgorithm. It is important to note that the sele
tion (Pk+1 = σ(Pi, Pf , FBi
, FBf

)) isperformed over the same individuals with the adjusted �tness values.We will use the algorithm developed by Turney in Se
tion 3.2.2.4 as a model to
reate our own algorithm. Mainly, the idea of in
luding the bias strength in thegenotype, but an independent part of it will be used. This bias strength will be
hanged in 
on
ept to best �t the learning 
on
ept of sear
h instead of ma
hinelearning.We will use the term instin
t strength as an analogous to Turney's bias strengthin the sense that it measures the probability that the individual may follow instin
tinstead of learning. This strengths are going to be introdu
ed in the genotype ina way that resembles the introdu
tion of the 
ontrol values σi in the evolutionarystrategy (Se
tion 2.3).The general form of the learning operator is sket
hed in the next algorithm:Learning Operatorfun
tion L( population P, real r ){
F =ve
tor[ sizeof(P) ℄;
x =getRandomValue( r );for( i = 0 to sizeof(P) ){ if( strength(pi) < x )

Fi =Baldwinian(pi);else
Fi = f ◦ τ(pi);

x = getRandomValue( r );}return F;}Observe that the main part of this operator is in the fun
tion 
alled Baldwinian. Thisfun
tion returns the Baldwinian �tness asso
iated to the individual, whi
h is problem



60 CHAPTER 4. BALDWINIAN OPTIMIZATIONdependant. It will usually be the result of a lo
al sear
h. Note that the originalindividual is not 
hanged as only a number (the Baldwinian �tness) is asso
iated toits position. The sele
tion method will only be interested in this number to eithersele
t the individual or not.4.2 Baldwinian AlgorithmsIn this se
tion we will provide the examples of Baldwinian algorithms developed asthe main 
ontribution of this thesis. We will de�ne the learning operators3 used, andwill 
ompare the results with the non-Baldwinian version of the same algorithm topla
e them into an equal-rights state. The parameters of the algorithms will be setto the same values and we will report a number of statisti
al values over 30 runsfor every problem to be solved. In ea
h 
ase, the algorithm was left to run until
350000 evaluations of the �tness fun
tion were performed. This is a

ordan
e to theexperiments made by Runarsson [17℄ in the same ben
hmark. This was done to allowa 
omparison between this results and those obtained by him. The best known oroptimal solutions to the ben
hmark fun
tions are in Table 4.1.Fun
tion Optimum known max/min

g01 −15 Minimize
g02 0.803619 Maximize
g03 1 Maximize
g04 −30665.539 Minimize
g05 5126.4981 Minimize
g06 −6961.81388 Minimize
g07 24.3062091 Minimize
g08 0.095825 Minimize
g09 680.6300573 Minimize
g10 7049.3307 Minimize
g11 0.75 Minimize
g12 1 Maximize
g13 0.0539498 Minimize
i1 1.724852309 Minimize
i2 6059.71434795 Minimize
i3 0.012665 MinimizeTable 4.1: The known or reported optimum values for the test fun
tions. The 
olumnmax/min tells whether the problem is a maximization or a minimization to betterinterpret the results.3In parti
ular, the implementation of the Baldwinian fun
tion to 
al
ulate the Baldwinian �tnessof individuals.



4.2. BALDWINIAN ALGORITHMS 61The test fun
tions are of 
onstrained optimization, and they 
an be found inthe appendix. For a detailed explanation on the fun
tions, the reader should 
he
k[17, 13℄.4.2.1 Baldwinian evolutionary strategyThe 
lassi
al evolutionary strategy ES(µ, λ) with self-adaptation parameters (σi),reviewed in Se
tion 2.3, with a te
hnique of rules with total sum of violations seen inSe
tion 1.3.2.2 will be used.The genotype will be augmented with the values of strength, so that it will be
p = (x1, x2, . . . , xl; σ1, σ2, . . . , σl; s1, s2, . . . , sl)where 0 ≤ si ≤ 1 for every 1 ≤ i ≤ l, and they represent the strength of instin
t inthe obje
tive i. We will use ~x = (x1, x2, . . . , xl) to denote the obje
tive portion of thegenotype, ~σ = (σ1, σ2, . . . , σl) to denote the 
ontrol portion, and ~s = (s1, s2, . . . , sl)to denote the strength portion.This new evolution strategy will be 
ompared with the strategy dis
ussed in Se
-tion 2.3.4, and it will have the same parameter setting, ex
ept for the added strengthportion.The idea behind the learning operator is to use the same lo
al sear
h introdu
edby the σ's in the learning step. This is to avoid the appearan
e of unne
essaryparameters in the algorithm.The 
rossover operator used in the obje
tive values will be intermediate-generalized,while in the 
ontrol values and strengths will be dis
rete (see Se
tion 2.3.3). The mu-tation will be as usual for the self-adaptive evolutionary strategy for obje
tive and
ontrol values, and the strength will be mutated as follows
sm

i = max{0,min{si + Normal(0, 1), 1}}i.e. the strength will be added a standard normal value, 
ropped to [0, 1]. Thefun
tion
ρ(x) =

n
∑

i=1

g+
i (x) +

m
∑

i=1

h+
j (x)represents the total sum of violations of x ∈ S, with all the weights equal to 1.In order to 
al
ulate the Baldwinian �tness value of an individual, we will use thefollowing algorithmBaldwinian �tness

~xB = ~x;for( i = 1 to l )if( si <rand() ){
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~x− = ~xB − (0, 0, . . . , σi, . . . , 0); //at the i-th position.
~x+ = ~xB +(0, 0, . . . , σi, . . . , 0); //at the i-th position.
~xB = arg min{ρ ◦ τ(~xB), ρ ◦ τ(~x−), ρ ◦ τ(~x+)};}setFitness( ~x, f ◦ τ(~xB) );As we 
an observe, the learning 
an take pla
e in every obje
tive value, or in none.It all depends on the values of the learning strength. Here, in 
ontrast to Turney, weare not interested in the evolutionary pro
ess a�e
ting the strengths, or whether thestrengths follow the path predi
ted by the Baldwin E�e
t; that is left for a future work.Instead we are interested in whether this Baldwinian learning aids the optimizationpro
ess or not.Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 14.999983 15.643469worst 12.884572 13.029993mean 14.524280 15.0092431median 14.999897 15.296720varian
e 0.564467 0.404876standard deviation 0.751310 0.636299# feasibles 30 21*# ǫ-feasibles 30 30Table 4.2: Results for fun
tion g01Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.403915 0.416605worst 0.295487 0.284842mean 0.360394 0.358947median 0.366991 0.3610752varian
e 6.5839E-4 0.001052standard deviation 0.025659 0.032445# feasibles 30 13*# ǫ-feasibles 30 30Table 4.3: Results for fun
tion g02The results for the ben
hmark fun
tions are summarized in Tables 4.2�4.14. Theresults for the engineering problems are in Tables 4.15�4.17.It is important to explain the apparently lower number of true feasible solutionfound by the algorithms. First of all, when the problem has equality 
onstraints, itis impossible, due to a dis
retization error, to a
hieve the a
tual equality. Instead,every solution is ǫ-feasible, with an ǫ ∼ 10−5. For the rest of the problems, the status
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 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.999759 1.002580worst 0.963843 0.99873mean 0.996605 1.000645median 0.998753 1.000156varian
e 4.14449E-5 1.34930E-6standard deviation 0.006438 0.0011659# feasibles 0 0# ǫ-feasibles 30 30Table 4.4: Results for fun
tion g03

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best -30573.688537 -30684.810456worst -30298.460286 -30364.822278mean -30414.804487 -30593.128911median -30413.755796 -30663.190301varian
e -3372.159939 8785.872779standard deviation 58.070301 93.732986# feasibles 30 1*# ǫ-feasibles 30 30Table 4.5: Results for fun
tion g04

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 5126.50995 5126.51885worst 5285.52789 5263.58777mean 5191.10762 5177.33432median 5186.64882 5168.70377varian
e 1706.38217 1241.9597standard deviation 41.30838 35.24145# feasibles 0 0# ǫ-feasibles 30 30Table 4.6: Results for fun
tion g05
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 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best -6961.81382 -6961.816175worst -1206.19807 -6961.813383mean -6576.84885 -6961.813834median -6961.21074 -6961.813767varian
e 2046571.365351 2.36233E-7standard deviation 1430.58427 4.86038E-4# feasibles 30 13*# ǫ-feasibles 30 30Table 4.7: Results for fun
tion g06

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 24.876975 24.584865worst 28.592849 29.549636mean 26.196125 25.654459median 25.924144 25.163657varian
e 0.866379 1.233E-7standard deviation 0.930795 1.110668# feasibles 30 14*# ǫ-feasibles 30 30Table 4.8: Results for fun
tion g07

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.095825 0.095825worst 0.004505 0.013637mean 0.068281 0.059710median 0.095825 0.065143varian
e 0.001185 0.001188standard deviation 0.034431 0.034478# feasibles 30 30# ǫ-feasibles 30 30Table 4.9: Results for fun
tion g08
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 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 680.656456 677.608343worst 685.906514 680.676598mean 681.738274 680.465658median 681.149711 680.636904varian
e 1.4761804 0.3083865standard deviation 1.2149816 0.555325# feasibles 30 4*# ǫ-feasibles 30 30Table 4.10: Results for fun
tion g09

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 14743.296345 12903.07097worst 20334.78599 19457.0973mean 16775.12296 16503.5519median 16668.745345 16354.4338varian
e 1094703.55833 2162402.151standard deviation 1046.280821 1470.5108# feasibles 1 2*# ǫ-feasibles 30 30Table 4.11: Results for fun
tion g10

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.749955 0.731125worst 0.751152 0.750204mean 0.750309 0.743945median 0.750214 0.747179varian
e 8.3655E-8 4.5196E-5standard deviation 2.8923E-4 0.006723# feasibles 0 0# ǫ-feasibles 30 30Table 4.12: Results for fun
tion g11
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 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 1.0 1.0worst 0.939999 0.9699999mean 0.986333 0.9903333median 0.99000 0.990000varian
e 1.2322E-4 6.9888E-5standard deviation 0.011100 0.008359# feasibles 30 30# ǫ-feasibles 30 30Table 4.13: Results for fun
tion g12

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.624860 0.4664885worst 0.99990 0.9999465mean 0.91796 0.8497140median 0.989343 0.899186varian
e 0.013152 0.017600standard deviation 0.114683 0.132667# feasibles 0 0# ǫ-feasibles 30 30Table 4.14: Results for fun
tion g13

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 1.836054 1.724852worst 2.384537 2.574196mean 2.050582 1.974465median 2.006084 1.924799varian
e 0.016603 0.03675standard deviation 0.128856 0.19172# feasibles 30 15*# ǫ-feasibles 30 30Table 4.15: Results for fun
tion i1
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Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 6488.3890 6890.85390worst 16783.24940 13053.0751mean 10811.4691 10113.5241median 10796.35730 9850.33251varian
e 4984724.191 3011815.7516standard deviation 2232.6495 1735.4583# feasibles 30 13*# ǫ-feasibles 30 30Table 4.16: Results for fun
tion i2

Statisti
 value Normal ES(µ+ λ) Baldwinian ES(µ+ λ)best 0.012704 0.0124919worst 0.013231 0.0130756mean 0.012875 0.0128605median 0.012838 0.0128425varian
e 1.5581E-8 1.3777E-8standard deviation 1.2482E-4 1.1737E-4# feasibles 30 20*# ǫ-feasibles 30 30Table 4.17: Results for fun
tion i3
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hanging; it is about 10−6 times the maximum a
hieved absolute valueof the �tness fun
tion.In the ending, it might seem that the Baldwinian algorithm fails to rea
h feasiblesolution in almost every problem, but this is just a misinterpretation of the results.As the best individual is often one who has learned (i.e. has an in
reased �tness valuedue to learning), but the genotype remains un
hanged, it is fairly di�
ult to knowfor sure what is its Baldwinian violation by just looking at the genes. The numberspresented in the tables are only the individual's geneti
al violations, not the a
tualbest violations. In order to obtain that value of �tness, the individual had a violationof e�e
tively 0 after learning, making him feasible in its Baldwinian value4.Under the light shed by the last observation, we are safe to assure that the Bald-winian version of the algorithm outperforms, in general, the non-Baldwinian version.And a
tually, it performed fairly well for su
h a simple algorithm used on well-knowndi�
ult optimization problems.In the next se
tion we will introdu
e a Baldwinian version of a more powerfulevolutionary algorithm.4.2.2 Baldwinian Di�erential EvolutionThe di�erential evolution algorithm DE_1(CR,F ) reviewed in Se
tion 2.5 , with ate
hnique of rules with total sum of violations seen in Se
tion 1.3.2.2 will be used.The genotype will be augmented with the value of strength, so that it will be
p = (x1, x2, . . . , xl; s)where 0 ≤ s ≤ 1, and it represents the strength of instin
t. If the individual isto learn, it will have MAX attempts to improve its 
onstraint ve
tor from a lo
alvariation on the F parameter. Usually, the value of MAX is set to 2, but varioustries pointed to the good robustness of this parameter.This new di�erential evolution will be 
ompared with the di�erential evolutiondis
ussed in Se
tion 2.5.4, and it will have the same parameter setting, ex
ept for theadded strength portion.The idea behind the learning operator is to use the lo
al sear
h with the parameter

F in the learning step, as a solution with values near the produ
ed individual is likelyto have similar values in the di�eren
e part of the pro
ess.As in the last se
tion, we will use ~x = (x1, x2, . . . , xl) to denote the obje
tiveportion of the genotype.The 
rossover operator used is the same than in the normal algorithm. Thestrength of the 
reated ve
tor will be set to the parent's value, plus a normal randomnumber with standard deviation 0.1, with a probability of C, otherwise it is set to
0.9s. The value of C 
an be used to 
ontrol the in
reasing ratio of the strength.The 
reation of a new individual 
hanges a bit in this algorithm, but it is essentiallythe same as the original di�erential evolution. Assume we are 
reating the o�spring4That is the reason for the asterisk at the tables' # feasibles row.



4.2. BALDWINIAN ALGORITHMS 69of individual i in the population P , i.e. ~x is the obje
tive part of the individual pi,and s is the strength part.Baldwinian 
omparison
~xoff =
reateOffspring(F);
~xB = ~xoff;if( s <rand() )for( i = 1 to MAX ){

~xtemp =
reateOffspring(F+Normal(0,0.1);if( ρ ◦ τ(~xB) > ρ ◦ τ(~xtemp) )
~xB = ~xtemp;}if(better( ~xB, ~x ))if( 0.9 <rand() )

pnext,i =( ~xoff, 0.9s );else
pnext,i =( ~xoff, rand() );else

pnext,i = pi;As we 
an observe, the learning 
an take pla
e MAX times or 0 times. As with the
ase of the evolutionary strategy, it depends on the values of the learning strength.Again, the individual is not modi�ed; observe that the o�spring ~xoff is assigned tothe next generation if the Baldwinian individual is better than the parent individual'spart ~x. Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best -15 -15worst -15 -15mean -15 -15median -15 -15varian
e 0 0standard deviation 0 0# feasibles 30 30# ǫ-feasibles 30 30Table 4.18: Results for fun
tion g01The results for the ben
hmark fun
tions are summarized in Tables 4.18�4.30, andthe results for the engineering problems are in Tables 4.31�4.33.
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 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.8036189 0.8036189worst 0.8029367 0.8014754mean 0.8035043 0.8032154median 0.8036163 0.8036028varian
e 3.45886E-8 3.67254E-7standard deviation 1.8598E-4 6.06014E-4# feasibles 30 30# ǫ-feasibles 30 30Table 4.19: Results for fun
tion g02

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 1 1worst 0.9999873 0.9998754mean 0.9999990 0.9999846median 0.9999999 0.9999998varian
e 5.47056E-12 1.0087E-9standard deviation 2.33892E-6 3.17606E-5# feasibles 0 0# ǫ-feasibles 30 30Table 4.20: Results for fun
tion g03

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 30665.538671 30665.538671worst 30665.538671 30665.538671mean 30665.538671 30665.538671median 30665.538671 30665.538671varian
e 1.2837E-22 1.4999E-22standard deviation 1.1330E-11 1.2247E-11# feasibles 30 30# ǫ-feasibles 30 30Table 4.21: Results for fun
tion g04
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 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 5126.49686 5126.498109worst 5126.49839 5126.522733mean 5126.49784 5126.501413median 5126.498106 5126.498126varian
e 1.9935E-7 3.4270E-5standard deviation 4.4649E-4 0.005854# feasibles 30 30# ǫ-feasibles 30 30Table 4.22: Results for fun
tion g05

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best -6961.813875 -6961.813875worst -6961.813875 -6961.813875mean -6961.813875 -6961.813875median -6961.813875 -6961.813875varian
e 3.3087E-24 3.3087E-24standard deviation 1.8189E-12 1.8189E-12# feasibles 30 30# ǫ-feasibles 30 30Table 4.23: Results for fun
tion g06

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 24.306209 24.306209worst 24.306643 24.313465mean 24.306327 24.307553median 24.306209 24.30620varian
e 2.8891E-8 4.8469E-6standard deviation 1.6997E-4 0.0022015# feasibles 30 30# ǫ-feasibles 30 30Table 4.24: Results for fun
tion g07
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 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.09582 0.095825worst 0.09582 0.095825mean 0.09582 0.095825median 0.09582 0.095825varian
e 5.6493E-34 4.0445E-34standard deviation 2.3768E-17 2.0110E-17# feasibles 30 30# ǫ-feasibles 30 30Table 4.25: Results for fun
tion g08

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 680.630057 680.630057worst 680.630057 680.630057mean 680.630057 680.630057median 680.630057 680.630057varian
e 1.7879E-25 2.4987E-25standard deviation 4.2283E-13 4.9987E-13# feasibles 30 30# ǫ-feasibles 30 30Table 4.26: Results for fun
tion g09

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 7049.248020 7049.248020worst 7049.260829 7049.359981mean 7049.250584 7049.270574median 7049.248020 7049.24802varian
e 1.6376E-5 2.29355E-4standard deviation 0.004046 0.01514# feasibles 30 30# ǫ-feasibles 30 30Table 4.27: Results for fun
tion g10
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 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.749904 0.750000worst 0.750028 0.750813mean 0.749982 0.750163median 0.749999 0.750001varian
e 1.1238E-9 6.0038E-8standard deviation 3.3524E-5 2.4502E-4# feasibles 0 0# ǫ-feasibles 30 30Table 4.28: Results for fun
tion g11

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.98 1.0worst 0.59 0.520018mean 0.852052 0.775251median 0.865 0.784590varian
e 0.007546 0.012312standard deviation 0.086868 0.110963# feasibles 30 30# ǫ-feasibles 30 30Table 4.29: Results for fun
tion g12

Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.053943 0.053949worst 0.438851 0.73930mean 0.272058 0.35564median 0.438829 0.43885varian
e 0.036378 0.034533standard deviation 0.190731 0.18583# feasibles 30 30# ǫ-feasibles 30 30Table 4.30: Results for fun
tion g13
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 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 1.724852 1.724852worst 1.724852 1.724852mean 1.724852 1.724852median 1.724852 1.724852varian
e 1.2325E-30 1.2325E-30standard deviation 1.1102E-15 1.1102E-15# feasibles 30 30# ǫ-feasibles 30 30Table 4.31: Results for fun
tion i1
Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 6059.774753 6059.774753worst 6059.774753 6059.775651mean 6059.774753 6059.77481median 6059.774753 6059.77475varian
e 3.3087E-24 2.9341E-8standard deviation 1.8189E-12 1.7129E-4# feasibles 30 30# ǫ-feasibles 30 30Table 4.32: Results for fun
tion i2
Statisti
 value Normal DE(0.9, 0.9) Baldwinian DE(0.9, 0.9)best 0.012665 0.012665worst 0.012665 0.012665mean 0.012665 0.012665median 0.012665 0.012665varian
e 3.5910E-35 3.3202E-35standard deviation 5.9925E-18 5.7621E-18# feasibles 30 30# ǫ-feasibles 30 30Table 4.33: Results for fun
tion i3



4.3. CONCLUSIONS ON THE EXPERIMENTS 754.3 Con
lusions on the ExperimentsAs we might see in the tables, the performan
e of the Baldwinian version of well-known optimization algorithms is fairly better or equal than the non-Baldwinian
ounterpart. As expe
ted, the varian
e is greater, but the best value is usually betteror equal to the one obtained by the normal version.Our main observation in the tables is that, when the problem is a di�
ult one,the Baldwinian version outperforms, on average, the normal version of the algorithm;whereas this means that the Baldwinian algorithm is better5 than the normal one ornot remains unknown as the varian
e is usually greater in the Baldwinian 
ase. Atleast this behavior proves what we expe
ted from the observations on the BaldwinE�e
t in Chapter 3.The learning operator for both 
ases is very simple as it was only used to illustratethe e�e
ts that learning 
an have on evolution. Better learning operators will lead tobetter results, but, as the Baldwin E�e
t tea
hes us, we must exer
ise 
aution whenusing learning be
ause the 
omputation time expend in learning is time lost fromevolution.All the experiments performed until now studied the Baldwinian algorithms to seewhether the Baldwin E�e
t was present or not in the evolution�learning intera
tions.What we wanted to measure was the strengths of Baldwinian Algorithms, and if theyare worth the try.In order to see a full Baldwinian behavior on evolutionary algorithms, a hugeamount of 
omputational power was spent in order to better understand its e�e
ts.As we 
an see in the experiments performed by Hinton, Nowlan, Belew and Turney,the longer we let the algorithm run, the better the results we obtain are.In 
ontrast, we wanted to see if Baldwinian optimization 
an be applied to aproblem with limited 
omputational resour
es (as are 350000 evaluations of the �t-ness fun
tion) and still su

eed in the optimization pro
ess by obtaining respe
tablesolutions.

5In the sense of statisti
al robustness and behavior.
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Con
lusionsIt is undeniable that more and more resear
hers are being attra
ted by the o�eringsof new hybridization te
hniques. Nature has always been a sour
e of inspiration toman-kind, and we 
an 
learly see this in the development of biologi
ally inspiredalgorithms.The Baldwin E�e
t might be a not-well-understood for
e in evolution, or 
an bejust a biologi
al 
uriosity. Either 
ase, we 
an exploit it to be of use to evolutionary
omputation. Early experiments pointed to the strength of learning by solving prob-lems of the type needle in a hay sta
k whi
h are well known di�
ult optimizationproblems. The 
at
h seems to be in learning and the way it was implemented. Learn-ing is 
ostly, and the experiments were more 
on
erned with idealized algorithms withvirtually unlimited 
omputation resour
es.In this thesis we wanted to issue the performan
e problem derived from learning.We 
ompared the algorithm Baldwinian algorithm with the non-Baldwinian versionof it, and the results are presented. Whether the Baldwinian version is better ornot is something that we are not dire
tly interested in. Instead we wanted to verifyif it was possible to 
reate a 
ompetitive algorithm based on the 
on
epts from theBaldwin E�e
t.Fortunately, most results were expe
ted, and the issue of better is not easy toaddress with high varian
e results as obtained. However, learning was expe
ted to in-
rease the varian
e of results, and in general, the Baldwinian algorithm demonstratedan ex
ellent better result, fairly good mean and median, and slightly large standarddeviation.We see the Baldwinian algorithms as a promising area of resear
h, and expe
t theideas to spread in the 
omputing 
ommunity. A good example of this 
an be seenin the birth of memeti
 algorithms, whi
h resemble Baldwinian ones to the point inwhi
h many people even think they are the same.In addition, if the 
on
epts of Lamar
kism have been used as valid 
omputer mod-els (although not biologi
ally a

urate) for optimization, using Baldwinian models is
ertainly as valid as Lamar
kian. In the end, we 
an exploit more the Baldwinian 
on-
epts as are sus
eptible to be further studied in biology and, in 
onsequen
e, betterunderstood by 
omputer s
ientists.
77
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Appendix ABen
hmark fun
tionsHere we present the test bed used to 
ompare the algorithms in this thesis. Theben
hmark fun
tions g01 to g12 were put together by Mi
halewi
z and Koziel, andare des
ribed in [13℄. The fun
tion g13 was proposed by Runarsson and Yao in [17℄.The engineering problems i1, i2 and i3 are des
ribed in [???℄. Another proposedengineering (thought to be very hard) problems, here referred as c01 to c08, wereproposed by Mezura and Coello in [5℄. Only for the sake of 
ompleteness, all thefun
tions are reprodu
ed here.1. g01Minimize:
f(~x) = 5

4
∑

i=1

xi − 5
4
∑

i=1

x2
i −

13
∑

i=5

xisubje
t to:
g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0where the bounds are 0 ≤ xi ≤ 1 (i = 1, 2, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12)and 0 ≤ x13 ≤ 1. The global minimum is at ~x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)where six 
onstraints are a
tive (g1, g2, g3, g7, g8 and g9), and f(~x∗) = −15.81
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f(~x) =

∣

∣

∣

∣

∣

∑n
i=1 cos4(xi) − 2

∏n
i=1 cos2(xi)

√

∑n
i=1 ix

2
i

∣

∣

∣

∣

∣subje
t to:
g1(~x) = 0.75 −

n
∏

i=1

xi ≤ 0

g2(~x) =
n
∑

i=1

xi − 7.5n ≤ 0where n = 20, the bounds are 0 ≤ xi ≤ 10 (i = 1, 2, . . . , n). The global mini-mum is unknown, the best found reported previously is f(~x) = 0.803619, with
~x∗ =(3.171456, 3.175499, 3.121430, 3.065424, 3.024695, 2.985945, 2.956863,
2.880306, 0.506161, 0.509743, 0.486445, 0.481882, 0.487077, 0.459685, 0.467321,
0.445682, 0.439956, 0.444745, 0.431957, 0.424569) with the 
onstraint g02 being
lose to a
tive.3. g03Maximize:

f(~x) = (
√
n)n

n
∏

i=1

xisubje
t to:
h1(~x) =

n
∑

i=1

x2
i − 1 = 0where n = 10 and the bounds are 0 ≤ xi ≤ 1 (i = 1, 2, . . . , n). The globalmaximum is at x∗i = 1/

√
n (i = 1, 2, . . . , n) where f(~x∗) = 1.4. g04Minimize:

f(~x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141subje
t to:

g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

−0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4

+0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2
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+0.0021813x2

3 − 110 ≤ 0

g4(~x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2

−0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3

−0.0019085x3x4 + 20 ≤ 0where the bounds are 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, and 27 ≤ xi ≤ 45(i = 3, 4, 5). The best solution is ~x∗ = (78, 33, 29.995256, 45, 36.775813) where
f(~x∗) = −30665.539. Two 
onstraints are a
tive (g1 and g6).5. g05Minimize:

f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2subje
t to:
g1(~x) = −x4 + x3 − 0.55 ≤ 0

g2(~x) = −x3 + x4 − 0.55 ≤ 0

h3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0where the bounds are 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55,and −0.55 ≤ x4 ≤ 0.55. The best known solution is ~x∗ = (679.9453, 1026.067,
0.118876, −0.396234) where two 
onstraints are a
tive (g1 and g6), and f(~x∗) =
5126.4981.6. g06Minimize:

f(~x) = (x1 − 10)3 + (x2 − 20)3subje
t to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(~x) = −(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0where the bounds are 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimumsolution is ~x∗ = (14.095, 0.84296)where both 
onstraints are a
tive, and f(~x∗) =
−6961.81388.7. g07Minimize:
f(~x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
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t to:
g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(~x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(~x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0where the bounds are −10 ≤ xi ≤ 10 (i = 1, 2, . . . , 10). The optimum solutionis ~x∗ =(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) where six 
onstraints are a
tive (g1, g2, g3, g4, g5and g6), and f(~x∗) = 24.3062091.8. g08Minimize:

f(~x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)subje
t to:

g1(~x) = x2
1 − x2 + 1 ≤ 0

g2(~x) = 1 − x1 + (x2 − 4)2 ≤ 0where the bounds are 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum is at
~x∗ = (1.2279713, 4.2453733) where f(~x∗) = 0.095825.9. g09Minimize:

f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7subje
t to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0where the bounds are −10 ≤ xi ≤ 10 (i = 1, 2, . . . , 7). The optimum solutionis at ~x∗ =(2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131,

1.594227) where two 
onstraints are a
tive (g1 and g4), and f(~x∗) = 680.6300573.



8510. g10Minimize:
f(~x) = x1 + x2 + x3subje
t to:
g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0

g4(~x) = −x1x6 + 8.33252x4 + 100x1 − 83333.333 ≤ 0

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0where the bounds are 100 ≤ xi ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3), and
10 ≤ xi ≤ 1000 (i = 4, 5, . . . , 8). The optimum solution is ~x∗ =(579.3167,
1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979) wherethree 
onstraints are a
tive (g1, g2 and g3), and f(~x∗) = −15.11. g11Minimize:

f(~x) = x2
1 + (x2 − 1)2subje
t to:

h1(~x) = x2 − x2
1 = 0where the bounds are −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is at

~x∗ = (±1/
√

2, 1/2) where f(~x∗) = 0.75.12. g12Maximize:
f(~x) = (100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100subje
t to:

g1(~x) = min
p,q,r

{(x1 − p)2 − (x2 − q)2 − (x3 − r)2 − 0.0625|p, q, r ∈ {1, 2, . . . , 9}} ≤ 0where the bounds are 0 ≤ xi ≤ 1 (i = 1, 2, 3). This problem has been restatedto �t the standard de�nition. The global maximum is at ~x∗ = (5, 5, 5) where
f(~x∗) = 1.13. g13Minimize:

f(~x) = expx1x2x3x4x5
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t to:
h1(~x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0

h3(~x) = x3
1 + x3

2 + 1 = 0where the bounds are −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2(i = 3, 4, 5). The optimum solution is ~x∗ =(−1.717143, 1.595709, 1.827247,
−0.7636413, −0.763645) where f(~x∗) = 0.0539498.14. i1Minimize:

f(~x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)subje
t to:

g1(~x) = τ(~x) − τmax ≤ 0

g2(~x) = σ(~x) − σmax ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5 ≤ 0

g5(~x) = 0.125 − x1 ≤ 0

g6(~x) = δ(~x) − δmax ≤ 0

g7(~x) = P − Pc(~x) ≤ 0where:
τ(~x) =

√

(τ ′)2 + 2τ ′τ ′′
x2

2R
+ (τ ′′)2

τ ′ =
P√

2x1x2

τ ′′ =
MR

J

M = P (L+
x2

2
)

R =

√

x2
2

4
+

(

x1 + x3

2

)2

J = 2

(

√
2x1x2

(

x2
2

12
+

(

x1 + x3

2

)2
))

σ(~x) =
6PL

x4x2
3

δ(~x) =
4PL3

Ex3
3x4
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Pc(~x) =

4.013E

√

x2

3
x6

4

36

L2

(

1 − x3

2L

√

E

4G

)and P = 6000lp, L = 14in, E = 30 × 106psi, g = 12 × 106psi, τmax = 13600psi,
σmax = 30000psi, δmax = 0.25in. The bounds are 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10 and 0.1 ≤ x4 ≤ 2. The best known solution is ~x∗ =(0.2057296,
3.4704887, 9.0366239, 0.205729) where f(~x∗) = 1.724852309.15. i2Minimize:

f(~x) = (0.6224)0.0625 ⌊x1⌋ x3x4 + (1.7781)0.0625 ⌊x2⌋ x2
3

+3.1661(0.0625 ⌊x1⌋)2x4 + 19.84(0.0625 ⌊x1⌋)2x3subje
t to:
g1(~x) = −0.0625 ⌊x1⌋ + 0.0193x3 ≤ 0

g2(~x) = −0.0625 ⌊x2⌋ + 0.00954x3 ≤ 0

g3(~x) = −πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0

g4(~x) = x4 − 240 ≤ 0where the bounds are 1 ≤ xi ≤ 99 (i = 1, 2) and 10 ≤ xi ≤ 200 (i = 3, 4).The best known solution is ~x∗ =(0.8125, 0.4375, 42.098445, 176.636597) where
f(~x∗) = 6059.71434795.16. i3Minimize:

f(~x) = (x3 + 2)x2x
2
1subje
t to:

g1(~x) = 1 − x3
2x3

71785x4
1

≤ 0

g2(~x) =
4x2

2 − x1x2

12566(x2x
3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0

g3(~x) = 1 − 140.45x1

x2
2x3

≤ 0

g4(~x) =
x2 + x1

1.5
− 1 ≤ 0where the bounds are 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15. Thebest known solution is ~x∗ =(0.051683, 0.0356577, 11.297236) where f(~x∗) =

0.012665.
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f(~x) =

10
∑

i=1

xi

(

ci + ln
xi

∑10
j=1 xj

)subje
t to:
h1(~x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(~x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0where the bounds are 0 ≤ xi ≤ 1, (i = 1, 2, . . . , 10), and c1 = −6.089, c2 =
−17.164, c3 = −34.0054, c4 = − − 5.914, c5 = −24.721, c6 = −14.986, c7 =
−24.1, c8 = −10.708, c9 = −26.662, c10 = −22.179. The best known solutionis ~x∗ =(0.0407, 0.1477, 0.7832, 0.0014, 0.4853, 0.0007, 0.0274, 0.018, 0.0373,
0.0969) where f(~x∗) = −47.761.18. c02Minimize:

f(~x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3subje
t to:

h1(~x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0where the bounds are 0 ≤ xi ≤ 10, (i = 1, 2, 3). The global optimum is at
~x∗ =(3.512, 0.217, 3.552) where f(~x∗) = 961.715.19. c03Minimize:

f(~x) = f1(x1) + f2(x2) and
f1(x) =

{

30x if 0 ≤ x < 300
31x if 300 ≤ x ≤ 400

f2(x) =







28x if 0 ≤ x < 100
29x if 100 ≤ x < 200
30x if 200 ≤ x ≤ 1000subje
t to:

h1(~x) = x1 − 300 +
x3x4

131.078
cos(1.48577− x6)

−0.90798

131.078
x2

3 cos(1.47588) = 0

h2(~x) = x2 +
x3x4

131.078
cos(1.48577 + x6)
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−0.90798

131.078
x2

4 cos(1.47588) = 0

h3(~x) = x5 +
x3x4

131.078
sin(1.48577 + x6)

−0.90798

131.078
x2

4 sin(1.47588) = 0

h4(~x) = 200 − x3x4

131.078
sin(1.48577− x6)

−0.90798

131.078
x2

3 sin(1.47588) = 0where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤
x4 ≤ 420, −1000 ≤ x5 ≤ 1000, 0 ≤ x3 ≤ 0.5236. The best known solution is
~x∗ =(107.81, 196.32, 373.83, 420, 21.31, 0.153) where f(~x∗) = 8927.5888.20. c04Maximize:

f(~x) = 0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7)subje
t to:
g1(~x) = x2

3 + x2
4 − 1 ≤ 0

g2(~x) = x2
9 − 1 ≤ 0

g3(~x) = x2
5 + x2

6 − 1 ≤ 0

g4(~x) = x2
1 + (x2 − x9)

2 − 1 ≤ 0

g5(~x) = (x1 − x5)
2 + (x2 − x6)

2 − 1 ≤ 0

g6(~x) = (x1 − x7)
2 + (x2 − x8)

2 − 1 ≤ 0

g7(~x) = (x3 − x5)
2 + (x4 − x6)

2 − 1 ≤ 0

g8(~x) = (x3 − x7)
2 + (x4 − x8)

2 − 1 ≤ 0

g9(~x) = x2
7 + (x8 − x9)

2 − 1 ≤ 0

g10(~x) = x2x3 − x1x4 ≤ 0

g11(~x) = −x3x9 ≤ 0

g12(~x) = x5x9 ≤ 0

g13(~x) = x6x7 − x5x8 ≤ 0where the bounds are −1 ≤ xi ≤ 1 (i = 1, 2, . . . , 8). The best known solu-tion is ~x∗ =(0.9971, −0.0758, 0.553, 0.8331, 0.9981, −0.0623, 0.5642, 0.8256,
0.0000024) where f(~x∗) = 0.866.21. c05Maximize:

f(~x) =

10
∑

i=1

bixi −
5
∑

i=1

5
∑

j=1

ci,jx10+ix10+j − 2

5
∑

j=1

djx
3
10+j
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t to:
gj(~x) =

10
∑

i=1

ai,jxi − 2

5
∑

i=1

ci,jx10+i − 3djx
2
10+j − ej ≤ 0and

e = (−15,−27,−36,−18,−12)

c1 = (30,−20,−10, 32,−10)

c2 = (−20, 39,−6, 39,−20)

c3 = (−10,−6, 10,−6,−10)

c4 = (32,−31,−6, 39,−20)

c5 = (−10, 32,−10,−20, 30)

d = (4, 8, 10, 6, 2)

a1 = (−16, 2, 0, 1, 0)

a2 = (0,−2, 0, 4, 2)

a3 = (−35, 0, 2, 0, 0)

a4 = (0,−2, 0,−4,−1)

a5 = (0,−9,−2, 1,−2.8)

a6 = (2, 0,−4, 0, 0)

a7 = (−1,−1,−1,−1,−1)

a8 = (−1,−2,−3,−2,−1)

a9 = (1, 2, 3, 4, 5)

a10 = (1, 1, 1, 1, 1)where the bounds are 0 ≤ xi ≤ 100 (i = 1, 2, . . . , 15). The best known solutionis ~x∗ =(0, 0, 5.147, 0, 3.0611, 11.8395, 0, 0, 0.1039, 0, 0.3, 0.3335, 0.4, 0.4283,
0.224) where f(~x∗) = −32.386.22. c06Minimize:

f(~x) = x1subje
t to:
g1(~x) = −x1 + 35x0.6

2 + 35x0.6
3 ≤ 0

h2(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h3(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h4(~x) = −x5 + ln(−x4 + 900) = 0

h5(~x) = −x6 + ln(x4 + 300) = 0

h6(~x) = −x7 + ln(−2x4 + 700) = 0



91where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2 ≤ 40, 0 ≤ x3 ≤ 40, 100 ≤ x4 ≤
300, 6.3 ≤ x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4, and 4.5 ≤ x7 ≤ 6.25. The best knownsolution is ~x∗ =(193.77835, 0, 17.3272, 100.01566, 6.6846, 5.9915, 6.2145) where
f(~x∗) = 193.7783.23. c07Minimize:

f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)subje
t to:
h1(~x) = x1 + x2 − x3 − x4 = 0

h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(~x) = x3 + x6 − x5 = 0

h4(~x) = x4 + x7 − x8 = 0

g5(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g6(~x) = x9x4 + 0.02x7 − 0.025x8 ≤ 0where the bounds are 0 ≤ xi ≤ 300 (i = 1, 2, 6), 0 ≤ xi ≤ 100 (i = 3, 5, 7),
0 ≤ xi ≤ 200 (i = 4, 8), and 0.01 ≤ x9 ≤ 0.03. The optimum solution is at
~x∗ =(0, 100, 0, 100, 0, 0, 100, 200, 0.1) where f(~x∗) = −400.24. c08Minimize:

f(~x) = −x1 − x2subje
t to:
g1(~x) = −2x4

1 + 8x3
1 − 8x2

1 + x2 − 2 ≤ 0

g2(~x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0where the bounds are 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4. The optimum solution is at

~x∗ =(2.3295, 3.17846) where f(~x∗) = −5.5079.
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Appendix BResults for the Mezura-CoelloBen
hmarkThe results for the engineering problems proposed as ben
hmark by Mezura andCoello [5℄ are in Tables B.2�B.9. The optimal values for these problems are summa-rized in Table B.1. Fun
tion Optimal value max/min
c01 −47.761 Minimize
c02 961.715 Minimize
c03 8927.5888 Minimize
c04 0.866 Maximize
c05 −32.386 Maximize
c06 193.7783493 Minimize
c07 −400 Minimize
c08 5.5079 MinimizeTable B.1: The known or reported optimum values for the rest of the test fun
tions.The 
olumn max/min tells whether the problem is a maximization or a minimizationto better interpret the results.
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94 APPENDIX B. RESULTS FOR THE MEZURA-COELLO BENCHMARKStatisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best -45.14793 -47.761 47.761 47.761worst -40.4601 -42.47365 47.759 47.6708mean -43.4492 -46.81045 47.7609 47.757median -43.449 -46.81045 47.761 47.761varian
e 0.947 1.6654 1.021E-7 2.602E-4standard dev. 0.973 1.2654 3.196E-4 0.016# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.2: Results for fun
tion c01. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.Statisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 961.7181 961.7244 961.7151 961.7151worst 969.401 966.21389 961.7151 961.7151mean 964.003 963.11675 961.7151 961.7151median 963.3009 962.8708 961.7151 961.7151varian
e 4.689 1.74 3.761E-14 2.457E-12standard dev. 2.1654 1.319 1.939E-7 1.567E-6# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.3: Results for fun
tion c02. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.Statisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1bestworstmeanmedianvarian
estandard dev.# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.4: Results for fun
tion c03. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.
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 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 0.866 0.866 0.866 0.866worst 0.512 0.571 0.866 0.866mean 0.7657 0.828 0.866 0.866median 0.8623 0.864 0.866 0.866varian
e 0.0167 0.0081 5.05E-13 5.739E-11standard dev. 0.1294 0.0904 7.106E-7 7.575E-6# feasibles 30 30 30 30# ǫ-feasibles 30 30 30 30Table B.5: Results for fun
tion c04. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.Statisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1bestworstmeanmedianvarian
estandard dev.# feasibles 30 30 30 30# ǫ-feasibles 30 30 30 30Table B.6: Results for fun
tion c05. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.Statisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 452.557 440.694 193.786 193.785worst 691.273 657.992 325.149 325.157mean 550.058 544.574 220.059 206.923median 539.914 536.7099 193.786 193.786varian
e 3482.56 3481.63 2760.89 1553.06standard dev. 59.013 59.005 52.544 39.408# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.7: Results for fun
tion c06. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.
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Statisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best -401.92 -402.426 400 400worst -397.906 -397.756 399.943 399.789mean -400.21 -399.955 399.995 399.962median -400.335 -400.28 399.999 399.999varian
e 1.0639 1.1892 1.17E-4 0.0036standard dev. 1.0314 1.0905 0.0108 0.0602# feasibles 0 0 0 0# ǫ-feasibles 30 30 30 30Table B.8: Results for fun
tion c07. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.

Statisti
 value ES(µ+ λ) B-ES(µ+ λ) DE_1 B-DE_1best 5.50801 5.50801 5.50801 5.50801worst 5.50801 5.50801 5.50801 5.50801mean 5.50801 5.50801 5.50801 5.50801median 5.50801 5.50801 5.50801 5.50801varian
e 1.908E-16 7.045E-13 3.155E-30 3.155E-30standard dev. 1.381E-8 8.393E-7 1.776E-15 1.776E-15# feasibles 30 30 30 30# ǫ-feasibles 30 30 30 30Table B.9: Results for fun
tion c08. The se
ond and third 
olumn represent the 
om-parison between the normal ES and the Baldwinian one, respe
tively. The fourth and�fth is the 
omparison between the normal DE and the Baldwinian one respe
tively.


