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Dr. Héctor Manuel Becerra Ferḿın
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Chapter 1

Introduction

1.1 Research field and motivation

Robotics is a wide research field that has many ramifications. One of the most important

areas is robot motion planning, which consists in providing a motion policy and a planner

to an autonomous robot. A planner allows the robot to perform a specific task, being

the exploration of unknown environments one of the most typical ones. The main

objective is to provide the autonomous robots the ability to explore their environment

and the ability to build a representations of that environment. Those environments’

representations can be used for navigating effectively within the environment. There

are many works belonging to this area. In each work the robot is defined with specific

sensing and specific motion capabilities. The sensing capabilities allow the robot to

obtain information of the work space through sensors’ readings, and the robot must

use that information for building an internal representation of the environment. This

representation could be used in some cases for localizing the robot in a global (or local)

frame, estimate its state, and then decide which control must be applied for achieving

a goal (i.e. avoiding an obstacle or selecting an optimal movement direction). In each

work, the sensing capabilities, the technique used to represent the environment, the

features of interest of the environment that must be found by the sensors, and the

motion planning policy vary. This variety is the reason why the same problem has been

addressed in many different ways. Some related works that have addressed the problem

of automatic model building are [1, 3–8]. These works are detailed in Chapter 2 where

a summary of the state of the art is presented.

This thesis work addresses the problem of exploring unknown environments. It brings

a novel exploration strategy for a differential drive mobile robot with limited sensing

capabilities. This strategy is different to the previous works in the literature. There are

1
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related works which model the robot as a point. From a theoretical point of view, this

approach has allowed to solve some problems of robot navigation; however, for more

realistic tasks, this approach is not sufficient. Modeling the robot as a point ignores the

robot’s physical dimensions and that assumption may impact the true performance. A

natural step forward, and more realistic, is to consider the robot as a nonzero size entity.

A disc shape is one of the most simple ones. In this work, the robot is modeled as a disc

and the exploration strategy is based on that assumption. The robot’s size represents

additional constraints in the configuration space, specifically, a growth of the obstacle’s

size in a measure related to the robot’s radius. This raises the main conceptual difference

between a point robot and a disc robot, which makes necessary the design of navigation

strategies specific for a disc robot. For a point robot, the concept of visibility is equal to

the concept of reachability. It means that if the robot can see certain environment place,

that place is also reachable for the robot. However, this property is not necessarily true

for a disc robot due to the configuration space constraints. Indeed, if the configuration

space is not observable, the robot cannot measure it. To solve an exploration problem,

the disc robot must be able to infer information of the configuration space from the

workspace.

In [9], the authors have presented an optimal navigation technique in terms of distance

traveled for a disc robot. In this work, a main motivation is to provide a compatible

exploration strategy with respect to the work presented in [9], for developing a complete

planner (with exploration and navigation strategies) for a disc robot.

The main contribution of this thesis work is a complete exploration strategy that reports

whether all the environment has been seen or the largest possible region of it has been

seen. A strategy is proposed to deal with cases where inaccessible places are found.

These cases represent a challenge given that a portion of the environment might not

be visible to the robot and the strategy must ensure to see as much as possible. The

environment is represented in an efficient data structure, the GNT. Additionally, the

proposed strategy is relatively easy to implement and compact, in such a way that it is

represented as a Moore machine.

1.2 Problem Statement

The robot has the shape of a disc with radius r moving in an unknown, planar, polygonal,

and simply connected environment which could be any compact set E ⊂ R2 for which
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the interior of E is simply connected1 and the boundary ∂E of E is the image of a

piecewise-analytic closed curve.

However, it is assumed that the collision-free subset of the robot’s configuration space

C is simply connected or it might have several connected components. C-space obstacle

corresponds to that of a translating disc, that is, the extended boundary of E which is

due to the robot’s radius2.

A salient object (i.e. a landmark) is located in the environment. The robot is unable

to localize itself in any reference frame, and has limited sensing capabilities, namely it

is incapable of measuring any distance or angle. The detailed description of the robot

sensing capabilities is presented in Chapter 3.

There are two kinds of unreachable regions. The first one is presented in Figure 1.1. It

shows an unreachable region Eunreach ⊂ E colored in light gray (yellow) which might

exist in an environment with the collision-free subset of the configuration space C simply

connected. It might also exist in an environment where C has more than one connected

component. Eunreach is small enough in such a way that the robot cannot lie in the

interior of Eunreach, therefore it does not represent an additional connected component

of C. The robot is represented as a medium gray (green) disc with its gap sensor as a

light gray (yellow) disc over the robot’s boundary. A landmark Λ of the same radius as

the robot lies inside the unreachable region, it is represented a medium gray disc.

Eunreach

Λ

Figure 1.1: An unreachable region which belongs to the same connected space of C.
A landmark Λ cannot lie inside the unreachable region because it would represent an

additional connected component of C.

1Every path between two points contained in E can be continuously transformed, staying within E,
into any other path while preserving the two endpoints in question. It has a single homotopy manifold.

2Note that this is the configuration space for a translating disc rather than for a rigid body because
of rotational symmetry.
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Figure 1.2 shows the second type of unreachable region. In this case Eunreach is one of

the connected components of C where the robot does not lie. This means that Eunreach

is large enough in such a way that Λ might lie in the interior of Eunreach.

Eunreach

Λ

Figure 1.2: The robot lies inside a C-space component and there is an unreachable
region which belongs to other connected C-space component. Then, a landmark Λ of

the same radius than the robot can lie inside Eunreach.

1.3 Main Objective

The main goal of this strategy is to explore an environment through wall following. That

is, while the robot moves, the visibility region of the robot’s sensor must cover the

environment E at least once, or in the worst case, the largest possible region of E.

Consequently, the robot will find the landmark or declare that an exploration strategy

to find it does not exist.

1.4 Outline of chapters

The remainder of this work is organized as follows: Chapter 2 presents a summary of

the state of the art about exploration and map building of unknown environments.

Chapter 3 and 4 formally present the robot’s model including sensing and motion capa-

bilities. Chapter 5 presents an automaton or (Moore) finite-state machine that models

the complete exploration strategy of an unknown environment. It also presents a feed-

back motion policy that maps observations to robot commands.

Chapter 6 presents an implementation in simulation considering different scenarios. Fi-

nally, Chapter 7 concludes this work and presents future research directions.



Chapter 2

State of the art

Autonomous robots must possess the ability to explore their environments, build rep-

resentations of those environments, and then use those representations to navigate ef-

fectively in those environments. Automatic model building is then a very important

research subject. Some works developed in this area are [1, 4, 10, 11]. The main problem

is building an environment representation using sensor information and computational

techniques. The models are built incrementally while the robot is exploring, both tasks

are made simultaneously.

The models of the environment have been used for dealing with other tasks, for example,

navigation (moving from one place to another without colliding with obstacles), finding

objects, tracking targets, and many additional tasks. The model of the environment

could be built using strong sensors. The standard SLAM approach [12, 13] is a repre-

sentative example of this paradigm. Other approaches are more minimalistic and use

limited sensor capabilities. Due to this limitation, these works must deal with the ex-

ploration task without self localization or pose estimation. The work developed in this

thesis belongs to this second group.

In general, a system for automatic environment model building must consider three

problems related: i) the incremental building of the environment’s model, ii) obtaining

the robot’s configuration with respect to the environment’s model, and iii) a robot’s

motion strategy.

2.1 Environment models

First of all, the model used for representing the environment must be chosen. In [4]

three kinds of model are proposed, they are: i) topological maps, ii) geometrical maps,

5



Chapter 2. State of the art 6

and iii) semantic maps.

Another classification is mentioned in [14]. It includes the topological maps [15], occu-

pancy grids [5] and feature based maps [4, 16, 17].

2.1.1 Occupancy grid model

Occupancy grids use a 2-D array to represent the environment. There, each cell takes

one of three values: i) free space, ii) occupied space, or iii) unknown space. Grid-based

algorithms have proved to be very simple and quite useful for obstacle avoidance and

planning purposes [5]. However, when the size of the environment is large, these models

become difficult to handle.

2.1.2 Topological model

Topological maps can be expressed as a graph, where the nodes represent places and the

edges represent adjacency, or direct connectivity [4]. The topological model is a hierarchy

of various levels. The concept of place is defined as an area which is a topological unit.

For example, a room or a corridor are topological units. The concept of place is also

defined at various levels: a room, a floor, or a complete building are places, but each of

them belongs to a different hierarchy level. In an outdoor environment the concept of

place can be defined as well.

Connectors link places, indoor connectors may be doors, corridors, stairs, elevators or

even some places are connectors themselves. In a detailed level, the space topology is

tipically inferred from a geometric model. The structuration of free space is obtained

through building convex polygons called cells, they are based on the vertices and edges

of the obstacles. A cell represents a place, and this place is the most basic unit of

space partitioning, therefore a cell has minimum spatial hierarchy. A set of adjacent

cells might be a place too, and this place yielding more than one cell belongs then to a

higher spatial hierarchy. The edges between cells are connectors. The cell’s connectivity

graph gives the first topological representation of the space structure. While the robot

is moving and discovering new areas, the space structuration is made, and the graph is

updated.
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Figure 2.1: A topological model representation, obtained from [1].

In [1] a topological structure of navigation (GNT) which is not based on any metric is

presented. This structure is based on gap chasing (discontinuities in space) for building

the shortest path representation.

2.1.3 Geometric model

The geometric model is deduced directly from perception data. It gives feature based

maps such as [16] and it may portray a 2-D [4] or 3-D model [17]. One of the most

popular used primitives is the line segment, which can be extracted from ultrasonic data

[18], laser range-finder data [19], or vision data [20, 21].

Figure 2.2: A real environmental 2-D projection and its reconstructed geometric
model.

In [4] the objects have polyhedral shapes and they are projected in the plane for obtaining

a 2-D model. This model basically includes the position of the robot and the obstacles



Chapter 2. State of the art 8

defined with respect to a global reference frame. This representation can be manipulated

for deducing the topological and semantical models. Some results from related works

are shown in Figure 2.2.

2.1.4 Semantic model

The semantic model contains information about objects, for example, their class or cate-

gory and properties about the space and its relations. This model is partially distributed

between the geometric model and the topological model. In [22], semantic labels of places

(corridors and rooms) are obtained through the information given by a laser telemeter.

Figure 2.3 shows a semantic model example of an outdoor environment.

Figure 2.3: A semantic model obtained from [2].

2.2 Incremental construction of geometric and topological

maps

Building maps is an incremental process, due to the limited sensors’ range. Occlusions

may occur during exploration, and consequently the building process could be inaccu-

rate. Therefore, the map must be built using many sensor readings at different positions

and then these measures must be integrated into a global map.

Ideally, a 2-D indoor environment’s model is the projection over a horizontal plane

of the objects in the environment which represent obstacles for the robot, and that

occlude the robot’s sensors view. However, due to the sensors’ limitations, the models



Chapter 2. State of the art 9

are often an approximation of a transversal section of the environment at a fixed height.

A frequently used approach is to integrate information provided by a laser telemeter.

Figure 2.4 shows the information collected by a laser telemeter. In [23], the robot builds

a polygonal model while moving to different locations, which are selected by a planner (a

human user could select these locations too). Figure 2.5 shows four partial models of an

indoor environment. The robot is located in a place where it rotates at four consecutive

orientations, each one separated by 90 degrees.

Figure 2.4: Laser telemeter readings. (a) Scene, (b) Captured points.

The model in (a) was built at the first orientation. The model in (b) was obtained by

integrating the model in (a) with the local model generated at the second orientation,

and so on. For the global geometric map building, an alignment process or registration

between the global model and the local models might be required. As it was said before,

the global model is built in an incremental way (see Figure 2.4). Additionally, raw data

obtained by the sensors could be clustered in other entities. For example, the points

obtained by a laser may be grouped in line segments through clustering techniques and

line fitting. The resulting line segments might be also grouped in segments lists which

yield polygons.
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Figure 2.5: Four partial models fused at a single given position.

2.3 Motion strategies for exploration

During the incremental map building process, the motion strategies for exploration must

handle the problem of selecting sensing configurations based on the global map built until

that time. This problem makes this task different to the problem of finding a collision

free path between an initial and a final configuration because the subgoals (sensing

configurations) must be determined automatically. Some exploration strategies in the

literature, in which the robot is not handled manually will be mentioned further in this

Chapter.

There are systems which use a fixed path for exploring an environment. For example, the

exploration strategy proposed in [24] includes a strategy where a robot traces concentric

circles successively starting at its initial position. This approach is extended in [25]

using parameterized spiral trajectories for managing the exploration of an environment.

Other strategies move the robot to random sensing configurations without an explicit

evaluation of the utility of the next sensing configuration.
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2.3.1 SLAM problem

There are some models of environment exploration which are able to locate the robot

with respect to a global reference frame and which can also estimate the robot’s pose.

These works define the problem of Simultaneous Localization and Mapping (SLAM)

[26–29]. SLAM has become a very active topic of research in last decades.

Up to now, work on SLAM has focused primarily on issues related to uncertainty in

sensing. Early research on SLAM [29] used a Kalman filtering approach to manage

uncertainties that accumulate during the robot’s motion, simultaneously providing an

estimate of the robot’s position and landmarks’ locations. More recently, generalized

Bayesian approaches have been proposed. For example, in the work of Montemerlo

[28] the authors propose to relax the restrictive conditions imposed by Kalman filtering

methods using a Monte Carlo approach for the SLAM problem. The mentioned works

have focused on developing techniques to extract relevant information from raw data

and to integrate the collected data into a single model. Standard SLAM approach does

not give a motion strategy but it could be applied to obtain a map that can be used as

input to motion strategies for exploration.

2.3.2 Approach without localization

Some exploration strategies are unable of self localization and have limited sensing ca-

pabilities. In [11] for example, a method is proposed for building a global geometric map

by registering scans collected by a laser range sensor without pose estimation. In [8] is

presented a work which addresses the problem of exploring an unknown environment for

searching one or more recognizable targets. This method assumes that the robot has lim-

ited sensing capabilities, and the environment is represented in the so-called boundary

place graph, which records a set of landmarks.

A method for robot navigation without the ability of sensing orientation but with the

ability of sensing range discontinuities (gaps) is presented in [1]. In that work, a combi-

natorial structure called Gap Navigation Tree (GNT) which encodes a representation of

the environment and records the shortest path to a set of landmarks is proposed. The

GNT is dynamically built based on critical events detected with the robot’s sensors, the

GNT encodes trajectories from the current robot’s position to any environment’s region

and these trajectories are optimal in terms of Euclidean distance. While the robot is

moving, the GNT is updated for mantaining the information of the shortest distances

from the current position regardless the lack of geometrical information. This work was

designed for exploration and optimal navigation and the robot is modeled as a point.
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The work in [1] has been a basis for several related works such as, [30] where a prob-

abilistic model for the gaps in the GNT is presented. The global goals and gaps are

chased probabilistically, which improves robustness given that the model deals with the

presence of noise at sensor’s measurements. The algorithm is adapted in such a way

that it is suitable for selecting the next target in a SLAM system. The GNT was also

extended to point cloud models in [31].

In [7], a wall following approach has been proposed for exploring a simply connected

environment with a point robot. A data structure called cut ordering is proposed in

that work. The point robot is able to identify whether the robot at its current location

is touching an environment wall, a convex vertex 1, a reflex vertex 2 or whether it lies

on the interior of the environment. Once the cut ordering representation is built, it is

used to address a pursuit/evasion problem. In that work, there are different strategies

depending on the robot’s sensor capabilities, one of them is a pursuit strategy using the

gap sensor defined in [1].

In contrast with the approach explained in this section, there are complex exploration

strategies which try to determine the best sensing location (often called the next best

view) to improve the exploration task efficiency. Often, motion planning is used for

deciding the next best view. Many of the strategies that determine a sensing location

for environment’s exploration send the robot to the boundary between the area that

has been perceived by the robot’s sensors and the unknown region of the environment.

Figure 2.6 shows an example of this. In the works developed in [32] and [14] some

exploration strategies are described and compared in detail. In Section 2.4 we present

some exploration strategies which actually use motion planning for determining the best

sensing locations for future observations in a partially known environment.

1A convex vertex is a polygon vertex of an internal angle smaller than π.
2A reflex vertex is a polygon vertex of an internal angle greater than π.
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Figure 2.6: (a) and (b) represent the robot’s visibility polygon and the boundaries
between the current visibility region and the environment’s non visible regions. They
are represented as local maps, (c) is the already exposed environment obtained from
two sensing locations and the boundaries betweent the already exposed environment

and the regions which have not been seen yet, represented in a global map.

2.4 Motion planning for exploration

Most of the described previous works are focused in developing techniques for extracting

relevant information from raw data and integrating them in a single model. However,

typically, a motion planning for exploration is not developed. In order to improve the

map building and exploration tasks, it is possible to use motion planning for determining

the most convenient robot sensing location for future observations in a partially known

environment. The objectives of motion planning in this problem might be reducing the

exploration time, minimizing the observation steps or minimizing the traveled distance

while an accurate environment’s representation is built.

2.4.1 Greedy approach

The greedy approach evaluates a candidate observation position based on its gain. This

gain is commonly defined as the amount of new environment’s information expected by

the robot at position p. Moreover, the planning horizon is just one step in the future,

that is the reason why it is called greedy.
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2.4.2 Gonzalez Banos approach

In [23, 33] a map building motion planning strategy is presented. This research work

has shown that it is possible to find a function that reflects intuitively how the robot

should explore the space.

In a simple scheme, the evaluation function should assign a greater value to the position

that best fits the compromise between possible elimination of unexplored space and

traveled distance. It is based on the computation of the next best view (NBV) and the

use of randomized motion planning. In [33], the concept of the next best view is based

mainly on two factors: Estimated cost to the next sensing location related with the

distance between the current robot position and the sensing location, and the associated

gain in terms of the new sensed area. Visibility type methods [34, 35] are used to

estimate information gain. The evaluation strategy for a given candidate observation

position p is given by:

g(p) = A(p) · e−λL(p) (2.1)

where A(p) is an estimation of the visible area from p, L(p) is the trajectory length

connecting the robot and p, and λ is a weight associated with the traveling cost towards

the robot’s next position.

Overlapping between a local perception (local map) and the current global map is suf-

ficient to merge a local map with the global one. The amount of overlapping between

the maps is measured by using the size of the common perimeter between them.

2.4.3 Makarenko approach

The approach presented in [36] proposes an exploration strategy for map building and

localization, with a grid-based modeling. The boundary method [37] is used for propos-

ing future sensing locations which normally lie on the boundary between the known and

unknown environment’s regions. The exploration strategy uses an utility function that

evaluates the next robot sensing location. This utility takes into account three elements:

i) the information gain, ii) the distance to the sensing location (cost), and iii) the ability

to locate the robot based on a covariance matrix.

Information gain utility. This utility is designed for boosting locations which offer

large information gain. Information utility is obtained from an occupancy grid, and a

cell may take two possible values, occupied space and empty space, s(C) = OCC|EMP .
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In order to measure the amount of available information for each cell, the entropy H of

the binary distribution s(C) is computed as:

H(s(C)) = −
∑
s(C)

P (s(C)) logP (s(C)) (2.2)

The utility of performing an observation from the goal location pi is defined as the

average entropy of the sensed region Wi around the goal location.

U Ii = −
∑
C∈Wi

H(s(C)) (2.3)

where the entropy H is calculated for each cell C within region Wi. The larger the

entropy is, the less information about the region is actually available, and in consequence,

it is more attractive for exploration.

Navigation utility. Long travels between locations reduce exploration efficiency. Nav-

igation utility is used for making the shorter paths more attractive.

An instance of the navigation function family of algorithms [38] is used to calculate

the cost of driving from the current position to the proposed destinations based on the

information in the occupancy-grid map. The navigation function encapsulates the cost

of reaching any location on the map from the current position. The navigation utility

at a destination point pi is simply the negative of the navigation function V at that

location.

UNi = −V (pi) (2.4)

Utility of the ability to localize the robot. This utility is used to distinguish

locations with different localization quality. Localization quality at a given place pi is

determined by the generated uncertainty on the configuration until that place is reached.

Uncertainty is described as a covariance matrix of the state Pvv(pi, t) at time t at location

pi. Entropy H for a Gaussian distribution from the robot’s location to the goal location

pi is:

ULi = −H(P kvv) = −1

2
log
(

(2πe)n|P kvv|
)

(2.5)

where n is the dimension of the robot’s state and P kvv is the covariance of the robot’s

state after k observations.
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The total utility of the target location is the weighted sum of the individual utilities.

UTOT = ωIU
I + ωNU

N + ωLU
L (2.6)

where relative weights ωI , ωL and ωL depend of the main objective. They can be

abruptly changed or continuously modified. The location with the maximum utility is

selected as the next best sensing location.

x∗ = arg maxx(UTOT ) (2.7)

2.4.4 Amigoni approach

In [39], an exploration strategy based on information derived from the concept of relative

entropy is presented. The function used for comparing sensing locations is:

f(p) =
1

N +A

∑
i∈A∪N

ln
(σunc,i

σ

)
+N ln

( σ
P

)
+
∑
i∈A

ln

(
σ

σp,i

)
+N ln

(
2πc

σ

)
(2.8)

where N = |N | is the number of new sensed points (obtained with a laser telemeter)

from p, A = |A| is the number of already sensed points which are sensed again from

p. σunc,i is the standard deviation of the contribution of the error’s measurements

due to uncertainty at the robot’s location. σ is the standard deviation of the sensor’s

correctness. P is the expected perimeter of the area to be added to the map. σp,i is the

previous standard deviation of the sensed point i. And c is the distance between the

robot’s position and p. In this case, the smallest value of f(·) corresponds to the best

selected sensing location. The first term of equation 2.8 is the entropy’s contribution of

all the points sensed from p, the second term is the entropy’s contribution of the new

points sensed from p, the third term is the entropy’s contribution of the already sensed

points which are sensed again from p, and the last term is the entropy’s contribution of

the cost for reaching position p. In general, the first term increases the entropy, while

the second and third terms reduce it.

In order to determine the best next sensing location, the exploration strategy merges the

expected information adquired by the sensors and the robot’s traveled distance towards

the new position. The information gain is derived from the points that become visible

from the sensing location and it is also derived from the reduction of uncertainty of the
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localization of the previously observed points. This exploration strategy is theoretically

founded on information theory.

2.4.5 Simmons approach

The work presented in [40] deals with the problem of exploration and mapping of an

unknown environment by multiple robots. A probabilistic grid is used to represent

the environment. Each cell of the grid corresponds to one of three types: i) obstacle

(probability of occupancy above a given threshold value po), ii) clear (probability below

a threshold pc), and iii) unknown (it has never been sensed or its probability lies between

po and pc). The distance between the robot and the frontier between the known and

unknown environment’s regions is used as an exploration cost. The number of unknown

cells that fall within the robot’s sensor range (for a possible next sensing location) is used

as the information gain for sending the robot to that location. In [40], an utility value

over candidate sensing locations is defined. The utility of a candidate sensing location

is equal to its information gain minus its exploration cost, where the information gain

is based on a probabilistic estimation of the frontier’s size. A central computer tries to

maximize the total utility by minimizing the overlapping between the areas that will

be explored. To coordinate the robots (robots are related with sensing locations), the

information gain is used.

2.4.6 Tovar approach

In [14, 41, 42], a function for evaluating future candidate sensing locations is presented.

Some attributes that should have the sensing locations, and their evaluation process

using an utility function are described.

For example, the evaluation function must prefer: future configurations with visual land-

marks with high recognition probability, future configurations with the largest number of

distinctive geometric primitives (e.g. corners of the environment), future configurations

close to the boundaries between the known and unknown environment’s regions (free

borders), trajectories that can minimize the uncertainty at each location, trajectories

which require the minimum number of sensing locations, and trajectories that minimize

the total robot’s traveling distance.

The work presented in [14], also addresses issues related to uncertainty in sensing and

control, but with primary focus on the problem of planning optimal exploration strate-

gies. A formalism for planning exploration strategies that optimize criteria such as

information gain and uncertainty reduction is developed, where methods for extracting
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entities from sensor data (predefined landmarks or geometric features such as corners),

and fusing these features into a common, global map are presented. The result is a

method that autonomously explores its environment, optimizing the exploration at each

stage and merging newly acquired sensor data with the existing map. The proposed

utility function in [14] is constructed in such a way that it balances the desire to see as

much of the as-yet-unseen environment’s regions. At the same time, the utility func-

tion uses the landmark information and the current overlapping with the already sensed

environment’s region to guarantee good map registration and robot localization. This

utility function, has a multiplicative form, which is helpul for discarding locations with

small values in some parameters. Similar forms have been proposed in [41, 42]. This

utility function has an important advantage, since it can be used for a single robot’s

sensing location or can be used for a path associated with a sequence of various sensing

locations. The utility of a sequence is just the sum of the sub-goal sensing locations

within the trajectory path. The function is:

Ti =
m∑
i=1

e(lvi−svi) qi∏
j=1

(
e|θj |
√
sj + 1

)
×

(
1

ni

ni∑
k=1

pk +Nei

)
fmini(dl)

 (2.9)

where i is the location of a sensing operation, m is the total number of sensing operations,

qi is the total number of robot stops to reach location i, lvi is the length of the closest

free edge at location i, si is the distance from the robot to the next possible location i,

svi is the distance from the next possible location i to the closest free edge, j is the index

for a robot configuration, θj is the orientation change to reach the next configuration j,

pk is the identification probability of landmark k at location i, k is the index for a given

landmark, ni is the number of landmarks inside a visibility region at location i, Nei is

the number of corners inside robot visibility region at location i, fmini is a function

that penalizes location i, and dl is the minimum distance from a full edge. The function

fmini is used to map the distance from an obstacle edge to a utility value, since for

minimizing the effects of occlusion, it is desirable to maximize the distance to obstacles.

Computer vision is used to recognize landmarks using a Bayesian approach. A laser

range finder is used to find straight lines in the environment (using least squares fitting),

and lines obtained in consecutive sensing operations are fused by minimizing a partial

Hausdorff distance. The final result of the exploration is a multi-representational map

consisting of polygons and landmarks, and it includes a roadmap (backtracking graph)

constructed from the trajectory followed by the robot.
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2.4.7 Newman approach

In [43], an algorithm for feature-based exploration of an unknown environment is pro-

posed. In that approach the candidate next robot’s sensing locations (goals) are associ-

ated with all the geometrical features of the environment, then visibility computation is

used to estimate the pertinence of a next robot’s sensing location using a feature-based

map. One major objective in [43] is to locally explore free regions. To achieve that

objective, the following procedure is proposed. First, for each goal generated, sample

points are regularly scattered around it at a constant radius β. Then, a circle of radius

α centered on each sample is drawn. The final size of the sampling set is the available

number of sample points for the goal that satisfy these conditions: i) each point has a

clear line of sight to the goal, and ii) it has no line of sight to any other circle of radius

α. The score η ∈ [0, 1] for evaluating a goal location is set to be the ratio of the final

and initial sizes of the sampling set. It is important to point out that the location of a

feature is uncertain, and it is represented by a set of probability distribution functions.

This is an approach that captures real world scenarios in a better way.

2.4.8 Feder approach

Another robot motion exploration strategy is presented in [44]. In that work, a metric

for adaptive sensing that is defined in terms of the Fisher information is proposed. This

metric is used to choose among discrete robot actions that given the current state,

might locally maximize the information gained in the next sensor reading. As a result

of applying that algorithm, the robot tends to explore selectively different objects in

the environment, but this approach does not consider either path planning or obstacle

avoidance.

2.4.9 Calisi approach

In [45], the problem of simultaneous exploration and searching is addressed. The action

of chasing a target can be interrupted if a better target is detected during navigation.

For example, in rescue missions it is desired to obtain information about possible victims

as fast as possible before continuing with the exploration. This approach gives flexibility

between deciding: (1) When decisions must be considered, and (2) How to choose among

the current different targets. The basis of the structure of the exploration and searching

strategies is inspired in the structure of the next best view (NBV) algorithm, and it is

divided in two steps: i) detection, evaluation, and selection of targets, and ii) navigation

towards the selected target.
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2.5 Multi-robot exploration strategies

The use of multiple robots has many advantages in comparison of using a single robot.

Robot teamwork allows achieving tasks faster. There are some works proposing multi-

robot teamwork for exploration and map building [40, 46, 47]. In some works, the

information gain and exploration cost are simultaneously considered for choosing the

next sensing location for each robot of the team, [40] and [46] are some examples.

In [47], an occupancy grid is used for map representation, and the possible locations for

the next sensing stage are selected among the cells found in the boundary between the

known and unknown environment’s regions. This approach is expanded in [22] by taking

into account semantic information of the sensing locations. In [47] the authors propose

strategies for multiple robots using segmentation of the environment for determining a

goal for each robot. This segmentation improves the robots’ distribution over the envi-

ronment. In [14], a technique which allows one or multiple robots to explore efficiently

and to build a model of the environment is presented. An utility function for measuring

the quality of the proposed sensing locations is used together with an algorithm that

generates and selects goal regions for the next sensing location. That work considers

a team of robots with the same sensing and motion capabilities. However, some works

have proposed multiple robot exploration with different sensing and motion capabilities

for each robot. The work presented in [48] considers a team of robots of different size.

If during exploration a robot is too large for navigating between obstacles and reaching

a sensing location, then it asks smaller robots if they can do the task. Finally, in [49],

the robots have one of two roles: navigator or cartographer. Navigators move randomly

on the environment until they find a target sensing location for the cartographer, then,

the cartographer moves to the target location. In the previously mentioned works, each

robot has a specific role and it is predefined according to its type.

2.6 The Lopez optimal navigation strategy

The work presented in [9] proposes an approach for optimal navigation with respect to

Euclidean distance. The GNT approach presented in [1] has been extended to a disc-

shaped differential-drive robot placed into an unknown, simply connected polygonal

region. The main result is a motion strategy that drives the robot to optimally navigate

towards a landmark in the region. However, in [9], an exploration strategy to learn the

GNT and encoding a landmark within it has not been developed. The robot’s sensing

capabilities and robot’s motion controls are similar to the ones presented in this work.
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This thesis is planned as the complementary exploration strategy that could be applied

before the optimal navigation in terms of Euclidean distance developed in [9].



Chapter 3

Sensing Model

3.1 Robot’s sensor and landmark

The robot considered in this work is a differential drive system shaped as a disc. The

robot has a defined forward heading. The extremal left and right side robot’s points are

respectively called lp and rp. The robot has an omnidirectional sensor, which is used

to discover the environment. The direction of the line tangent to the robot’s boundary

at rp is called rt. The direction of the line tangent to the robot’s boundary at lp is

called lt (See Figure 3.1). The omnidirectional sensor could be located at rp or lp at

the beginning of the exploration task and it will remain at that position through the

whole task. The omnidirectional sensor is able to track the preferential direction lt or

rt depending whether the sensor is placed over lp or rp. The omnidirectional sensor

reading in the particular forward robot heading direction corresponds to the preferential

direction.

The omnidirectional sensor is also able to detect and track discontinuities in depth

information (gaps). Hence, over the omnidirectional sensor, it is possible to build a gap

detector, further refereed as the gap sensor. Additionally, the gap sensor can identify

a landmark with specific characteristics detailed in Section 3.4. A large family of gap

sensors is described in [50].

The gap sensor’s behavior and the GNT evolution are fully described in [1], but is impor-

tant to point out the most relevant details. The GNT that represents the environment

encodes a different gap in each node, and it is built through the gap sensor’s readings.

While the robot is executing a motion primitive, the GNT is constructed incrementally.

The omnidirectional gap sensor is able to identify any of four possible critical events

related to the gaps. Those events represent a change in the structure of the GNT. In

Subsection 3.1.1, a brief description of the GNT is presented.

22
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Figure 3.1: Representation of the robot’s sensors.

The angles of the gaps are unknown due to the limited sensor’s capabilities, but the

sensor is able to maintain a cyclic angular order of them. Let G(x) = [g1, ..., gk] denote

the sequence of gaps as they appear in the gap sensor, when it is placed at x ∈ E. If

x lies in the interior of E there is a cyclic order and statements such as [g1, ..., gk] =

[g2, ..., gk, g1] can be made. If x lies in ∂E, then part of the sensor’s view is obstructed

by the boundary, and a linear ordering of gaps is obtained (see Figure 3.2). In summary,

the gap sensor is able to detect and order the gap directions, the direction rt or lt and a

visibility obstruction if the sensor is in contact with ∂E. This behavior allows the sensor

to detect events such as alignments between the preferential directions rt or lt and any

gap, or between one of the two preferential directions lt or rt and the wall (∂E) that is

in contact with the omnidirectional sensor.

3.1.1 Gap Navigation Tree

We consider that the robot moves along any path τ : [0, 1]→ E. Consider the informa-

tion obtained from the gap sensor. For every S ∈ [0, 1], a cyclic secuence G(τ(s)) of gaps

is observed. The GNT is a rooted tree defined as follows. Every nonroot vertex of the

GNT is a gap that appears in G(τ(s)) for some s ∈ [0, 1]. Every child vertex of the root

is a gap in G(τ(1)), and they are cyclically ordered around the root in the same way

that they appear in G(τ(1)). All remaining vertices (i.e., not the root and its children)

in the GNT are gaps that appeared in G(τ(s)) for some s < 1. The children of any

nonroot vertex v are precisely the gaps that were merged to form v and are assumed to

be ordered in the same way that they once appeared in the gap sensor. The GNT gaps

are normally labeled consecutively using integers. For each new gap it is assigned the

next unused integer in N to ensure uniqueness.

Initially, the GNT consists of a root vertex connected to one leaf vertex for every gap

in G(τ(0)). Each time t at which a change in G(τ(t)) occurs corresponds to a critical
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(a)

g1
g2

g3

lp

lt

g1
g2

g3

(b)

g1g2

g3

lplt

g1
g2

g3

Figure 3.2: (a) The robot has its omnidirectional sensor over lp, it lies within E and
gaps g1, g2 and g3 are detected. On the left, the visibility region is shown with the
angular position of the gaps, it is clear that statements such as [g1, g2, g3] = [g2, g3, g1] =
[g3, g1, g2] can be made, (b) The omnidirectional sensor is in contact with ∂E, the same
gaps are detected. On the left, the visibility region is partially obstructed by ∂E, it
is shown as a gray colored region. The visibility obstruction can be used to establish
a linear order of the gaps following a counterclockwise sense [g1, g2, g3], or a clockwise

sense [g3, g2, g1].

event. This requires updating the GNT. There are for different kinds of critical events.

In Figure 3.3 the critical events and the and the consequential changes in the GNT

are illustrated. The dotted lines in the Figure are inflection rays (in the case of gap

appear and gap disappear), and bitangent complements (in the case of gap merge and

gap split). Inflection rays and bitangent complements represent a fundamental part of

the geometric interpretation of the critical events, and they are detailed in [1].
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(a) Gap appear (b) Gap disappear

(c) Gap split (d) Gap merge

Figure 3.3: (a) The robot moves from position a to b, when the robot crosses the
inflection ray, a region of the environment is occluded, therefore a new gap appears. A
new node is added to the root, (b) The opposite case, the robot moves from a to b,
when the robot crosses the inflection ray the gap disappears. Its corresponding node
is removed, (c) In position a the sensor detected a gap, then the robot moves to b,
when the robot crosses the bitangent complement the gap is divided into two gaps.
The original node is removed and replaced by two gaps, (d) In position a the sensor
detected two gaps, then the robot moves to b, when the robot crosses the bitangent
complement the gaps merge into a new gap. The original gaps become children of a

new node that is connected to the root.

- A new gap g appears: A node g is added as a child of the root, while preserving

the cyclic ordering from the gap sensor.

- Gaps g1 and g2 merge into g: Nodes g1 and g2 become children of a new node, g,

which is added as a child of the root and preserving the cyclic ordering.
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- A gap g disappears: The node g, which must be a leaf, is removed.

- Gap g splits into g1 and g2: If g is a leaf node, then g1 and g2 become new nodes;

otherwise, they already exist as children of g. Both g1 and g2 are connected to the

root, preserving the cyclic ordering and removing g.

If any leaf vertex has the potential to split, then the GNT is incomplete because it could

expand, some gaps split and others simply disappear. The gaps that disappear are called

primitive (their corresponding nodes in the GNT are also called primitive and they are

removed when reached). If all the leaf nodes of the GNT are primitive, then the GNT

is said to be complete. The GNT completeness has a geometric interpretation detailed

in [1].

3.2 A Tactile Bumper

The robot’s frontal periphery is contact sensitive (See Figure 3.1). In a real robot it could

be implemented, for instance with a piezoelectric sensor. The sensitive surface model is

able to distinguish whether there exists contact on a single point or more than one, and

it also distinguishes whether the point rp or lp is in contact with a wall. The particular

case of both points rp and lp being simultaneously in contact is not considered, as it

only would happen in a narrow corridor, of exactly the same width as the robot, and

that scenario is considered a degenerated case.

3.3 The observation vector

With the sensor capabilities previously defined it is possible to define an observation

vector which includes all the possible observations that are able to trigger a specific

control.

Six binary sensor observations constitute the observation vector: (1: lp) the robot is

touching ∂E with point lp. (2: rp) the robot is touching ∂E with point rp. (3: sc) the

robot is touching ∂E with a single point within the sensitive surface (this point might be

either lp, rp or any other point within the sensitive surface). (4: bc) the robot is touching

∂E with two or more points within the sensitive surface (one of them can be either lp

or rp). (5: aligned) direction rt is aligned with the edge of the polygonal region that

point rp is touching, or point rp is touching a reflex vertex and the preferential direction

rt is aligned with the first polygonal edge, measured in clockwise sense starting from

direction rt (see Figure 3.4); or direction lt is aligned with the edge of the polygonal
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region that point lp is touching, or point lp is touching a reflex vertex and the preferential

direction lt is aligned with the first polygonal edge, measured in counterclockwise sense

starting from direction lt; (6: o) the omnidirectional sensor is located at point lp (0) or

the omnidirectional sensor is located at point rp (1) at the beginning of the exploration

task (the gap sensor will remain located over that point through the whole task). Thus,

the observation vector is: yei = {lp, rp, sc, bc, aligned, o}

rtrp

(a)

rt

rp

(b)

rt

rp

(c)

Figure 3.4: (a) The direction rt is aligned with it the edge of ∂E that point rp is
touching. Therefore, aligned = 1, (b) Point rp is touching a reflex vertex, and the
preferential direction rt is not aligned with the first polygonal edge in clockwise sense
starting from direction rt that is in contact with rp. Therefore, aligned = 0, (c) Point
rp is touching a reflex vertex, and the preferential direction rt is aligned with the first
polygonal edge in clockwise sense starting from direction rt that is in contact with rp.
Therefore, aligned = 1. If the omnidirectional sensor is located at lp, an alignement is

just the left symmetric case.

The set of all 64 observation vectors can be partitioned by letting x denote any value to

obtain:
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ye1 = (0, 0, 0, 0, x, x)

ye2 = (0, 1, 1, 0, 1, 1)

ye3 = (1, 0, 1, 0, 1, 0)

ye4 = (x, x, 0, 1, x, 1)

ye5 = (x, x, 0, 1, x, 0)

ye6 = (0, 1, 1, 0, 0, 1)

ye7 = (1, 0, 1, 0, 0, 0)

ye8 = (0, 0, 1, 0, x, 0)

ye9 = (0, 0, 1, 0, x, 1)

The meaning of each observation vector is the following:

- ye1 No contact: This observation might only happen at the beginning of the ex-

ploration if the robot lies completely in the interior of E, such that there is no

contact sensed.

- ye2 Single contact with rp: The omnidirectional sensor is positioned at rp, there

is single contact detected at that point, and the preferential direction rt is aligned

with the polygonal edge that point rp is touching.

- ye3 Single contact with lp: This observation is analogous to Single contact rp, it

is the left symmetric case.

- ye4 Multicontact, sensor at rp: The omnidirectional sensor is located at point

rp and there is a multicontact detected (rp might be a contact point), while the

omnidirectional sensor is placed at rp. The robot’s sensitive surface is touching

more than one point of ∂E, the contact might be with any combination of edges

or reflex vertices of E.

- ye5 Multicontact, sensor at lp: This observation is analogous to Multicontact rp,

it is the left symmetric case.

- ye6 Reflex vertex rp: The omnidirectional sensor is located at point rp, there is sin-

gle contact between point rp and a reflex vertex of the polygonal environment, and

the preferential direction rt is not aligned with the first polygonal edge, measured

in clockwise sense starting from direction rt.

- ye7 Reflex vertex lp: The omnidirectional sensor is located at point lp, there is sin-

gle contact between point lp and a reflex vertex of the polygonal environment, and

the preferential direction lt is not aligned with the first polygonal edge, measured

in counterclockwise sense starting from the reflex vertex.
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- ye8 No-single contact at lp: The omnidirectional sensor is positioned over lp and

the robot is touching an edge or a reflex vertex of ∂E with a single point different

to lp.

- ye9 No-single contact at rp: This observation is analogous to No-single contact at

lp, it is the right symmetric case with the omnidirectional sensor positioned at rp.

3.4 Landmark Encoding

The gap sensor described in this chapter is able to identify a static disc-shaped landmark

Λ of the same radius r as the robot lying on the interior of E, Λ ⊂ E.

The landmark is said to be detected if Λ is visible at least partially from the location of

the gap sensor, Λ∩ Vpol 6= ∅, where Vpol is the current omnidirectional sensor’s visibility

polygon. Once the landmark is detected, it is encoded as a special GNT node connected

to the corresponding node associated with the gap generated by the reflex vertex that is

occluding it1, or if the whole landmark is visible from the current sensor’s location then

it is directly connected to the root. The landmark is encoded as a special node because

it is not encoding a gap, therefore it cannot experience the GNT critical events.

rt

a

Λ

Figure 3.5: Λ is partially visible, it is occluded by the reflex vertex that generates
gap a.

A simple example of the landmark encoding process is presented. The robot is repre-

sented as a dark gray (brown) disc with its corresponding omnidirectional gap sensor as

a small light gray (light green) disc positioned over the robot’s boundary. The prefer-

ential direction rt is presented as a small arrow over the robot. The visibility polygon

1A regular GNT node is considered a leaf node when it does not have children with the exception of
a landmark node, which is a special kind of node. Therefore, a leaf node might have a landmark node
as a child without losing its leaf status.
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Vpol is colored in light gray (yellow). The obstacles are shown in medium gray (blue).

The non-visible region at the current sensor’s location (the region outside the visibility

polygon) is shown in white. The landmark is a dark gray (dark green) disc labeled as

Λ.

rt

Λ

Figure 3.6: Λ is completely visible.

Figure 3.5 shows the case when Λ is partially visible from the gap sensor for the first

time, it is encoded as a child of the corresponding GNT node. While the robot continues

its movement following the environment’s boundary, the whole landmark becomes visible

(Figure 3.6), in this case Λ is encoded as a root’s child.

rt

b

Λ

Figure 3.7: Λ is partially occluded by the refelex vertex that generates a new gap b.

Figure 3.7 shows a reflex vertex which is partially occluding the landmark. In that

case, Λ is encoded as a child of the node associated with the new gap b generated by

the occluding reflex vertex. In summary, every time Λ becomes completely visible, it is

encoded as a root’s child, and every time there is a partial occlusion, it becomes a child

of the node associated with the gap generated by the reflex vertex that is occluding Λ.
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If Λ is encoded as a child of a non-root node, its parent node might experience changes

due to the GNT critical events. A merge event that includes the landmark’s parent

will not affect the landmark codification, Λ will remain connected to its parent. A gap

disappearance related with the landmark’s parent cannot happen, because the whole

landmark will become visible, and the landmark node will be connected to the root

before the gap disappears. Finally, if the landmark’s parent is related with a gap split

event, the landmark node will simply change its connection to one of the resulting split

gaps (just one of the reflex vertices that generate the gaps will be occluding it). In

conclusion, the GNT critical events that may affect landmark’s parent node does not

represent an issue for the landmark encoding process.



Chapter 4

Motion Model

4.1 Motion Model

The differential drive robot has two independent wheels, which are placed at the extremal

left and right robot’s points, under lp and rp respectively. Each wheel has its own motor.

The robot is arbitrarily allowed to execute five motion primitives as shown in Figure

4.1.

(a) (b) (c)

(d)
(e)

Figure 4.1: The motion primitives: (a) Clockwise rotation in place, (b) Counterclock-
wise rotation in place, (c) Straight line motion, (d) Clockwise rotation w.r.t. rp, (e)

Counterclockwise rotation w.r.t. lp.

Let the angular velocity of the right and left wheels be ωl and ωr respectively, with

saturated values ωl, ωr ∈ {−1, 0, 1}. The robot’s controls are defined by the vector

u = {ωl, ωr}.

Five motion primitives are generated by the following controls:

32
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u1 = (1, 1) forward straight line motion

u2 = (1,−1) clockwise rotation in place

u3 = (−1, 1) counterclockwise rotation in place

u4 = (1, 0) clockwise rotation w.r.t. point rp

u5 = (0, 1) counterclockwise rotation w.r.t. point lp

Executing the controls defined above, the robot explores the environment through wall

following. If the omnidirectional sensor is placed at rp then the robot follows the envi-

ronment’s boundary ∂E in counterclockwise sense, and if the sensor is placed at lp then

the robot follows ∂E in clockwise sense.
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The Exploration Automaton

A finite-state machine (FSM) is defined as a mathematical model of computation. It is

conceived as an abstract machine that can be in one of a finite number of states. The

machine is in only one state at a time, it can change from one state to another by a

triggering event or condition called transition. A FSM is defined by a list of its states,

and the triggering condition for each transition. A special kind of FSM is the Moore

machine which includes outputs associated with every state, where these outputs depend

exclusively of the current state and they do not take into account the input. According

to the presented definition, it is possible to represent the whole exploration strategy as a

Moore machine.

The FSM M represents the robot’s planner which is a complete exploration strategy

that allows the robot to discover the largest region of the environment E. Consequently

the robot will find the landmark if possible, or it will declare that an exploration strategy

to find it does not exist.

M includes a motion policy and manages GNT queries and updates (including the

landmark encoding process as a part of the GNT evolution). The motion policy is a

mapping from observations to controls (see Section 5.1). Note that the motion policy is

only a part of the whole exploration strategy.

The task is not finished until a stop condition for exploration is met. This condition

is not included in the motion policy because it requires topological information of the

environment that is not given by the current sensor readings. This information is given

by the GNT built during the robot’s motion. As it is detailed in [1], the exploration task

for a point robot ends when all the environment has been seen (regardless of whether

the landmark Λ has been found or not), it happens when all the leaf nodes of the GNT

are labeled as primitive ones.

34



Chapter 5. The Exploration Automaton 35

The stop exploration condition for a disc robot is similar to the one for a point robot, but

includes the additional issue of gaps that never disappear. Note that due to the robot’s

dimensions, there may be some unreachable environment’s regions yielding those gaps.

Consequently, an algorithm called local exploration has been developed for dealing with

this issue. See Algorithm 1, this algorithm is part of the exploration strategy.

M is formally defined as a sextuple (Σ,S,s0,δ,Γ,ω), where:

• Σ is the input alphabet (a finite, non-empty set of symbols). In M , Σ is defined

by both the quantized observation vector yei and an additional query input given

by the GNT, needed for determining whether the stop condition is met.

• S is a finite, non-empty set of states, where every state represents the selection

and execution of a robot’s motion primitive with the exception of two states: the

initial state when the robot is not executing a primitive yet and the end state, in

which the robot has finished the exploration task.

• s0 is the initial state, in which the exploration task begins.

• δ is the state-transition function: δ : S × Σ→ S. In M , given an observation and

the current state, δ defines which will be the new state. It is important to note

that δ is a partial function. For example, δ(q, x) does not have to be defined for

every combination of q ∈ S and x ∈ Σ. Actually the set of allowed combinations

is well established in the motion policy of Section 5.1.

• Γ is the output alphabet (a finite set of symbols), it is defined as the signals given

to the motors for executing a given control u.

• ω is the output function: ω : S → Γ, each state provides a specific output signal

defined on Γ.

A graphical representation of M is shown in Figure 5.1. There are seven states, one

of them is the initial state when no motion primitive has been executed. There is an

end state which establishes the GNT completeness. The task has been achieved, so no

motion primitive is applied and the robot stops its movement. The other states represent

the execution of the motion primitives defined in Chapter 4. All the links in Figure 5.1

are labeled with the corresponding observations defined in Chapter 3, with the exception

of the GNT link, which represents a query to the GNT asking whether all the leaf nodes

are marked as primitive ones.

GNT queries are done in states CCW Rotation in Place, CW Rotation in Place, and

Straight Line Motion (see Figure 5.1). Given that, the GNT might change because the
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Straight Line Motion

CW Rotation In Place

CCW Rotation In Place

Rotation w.r.t. lp

Rotation w.r.t. rp

Initial State End State
ye1

ye2

ye3

ye4

ye6

ye8

ye9

ye7 ye5

ye2

ye3

ye4

ye4

ye5

ye5

ye6
ye6

ye7

ye7

ye8

ye9

GNT

GNT

GNT

Figure 5.1: The finite-state machine that represents the exploration strategy.

occurrence of critical events, while the robot is execution one of these motions. The

queries are required to decide whether or not the exploration is terminated (i.e. the stop

condition is met). The Local exploration algorithm might be triggered in states CCW

Rotation in Place or CW Rotation in Place. The Local exploration algorithm updates

the labels of the gaps in the GNT.

5.1 Motion Policy

The motion policy is based on the paradigm of avoiding the state estimation to carry

out two consecutive mappings: y → x → u, that is from observation y to state x and

then to control u, but instead of that, there is a direct mapping y → u.

Let γ be a mapping function, the motion policy can be established by γ : {0, 1}6 →
{−1, 0, 1}2, then the function is expressed as γ (yei) = (ωl, ωr) = uj . The motion policy

is:

• γ(ye1 ∨ ye2 ∨ ye3) = u1

• γ(ye5 ∨ ye8) = u2

• γ(ye4 ∨ ye9) = u3

• γ(ye6) = u4

• γ(ye7) = u5
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In which ∨ means “or”.

The previous list summarizes the complete relationship between the controls and the

observations given by the sensors.

5.2 The Local Exploration Algorithm

The configuration space restrictions for a disc robot might cause the presence of un-

reachable environment places. Those places might yield gaps that cannot disappear

regardless of the robot motion. Once the point lp or rp lies on ∂E it is possible to iden-

tify the observations that represents the presence of gaps that do not disappear. Those

observations are: yeR4 = (0, 1, 0, 1, x, 1) or yeL5 = (1, 0, 0, 1, x, 0). They are special cases

of ye4 and ye5 observations respectively, when the corresponding observation happens

(depending if the contact point is rp or lp) the algorithm is triggered. The algorithm

uses information from the GNT, and the algorithm ends after the nodes encoding gaps

generated by vertices within an unreachable region are labeled as primitives. The algo-

rithm uses the property that states the change from cyclic to linear gap ordering when

the gap sensor is touching the wall according to the model detailed in [1].

When Local exploration begins after yeR4 happens, a linear list called init-list is cre-

ated, it contains the current gaps read by the sensor and the preferential direction rt

starting from the sensor’s obstructed visibility region following a counterclockwise or-

der. According to the motion policy, motion control u3 is executed at the same time.

In consequence, the gap sensor will be changing its position and critical GNT events

might happen. The changes done to the GNT due to critical events are also applied

to init-list, with the exception of the gap appearance event which does not represent

an issue (the new GNT node has already the primitive label). The position of the rt

direction might change while the gap sensor is moving, therefore the position of rt in

init-list is also updated. While u3 is executed, the gap sensor’s reading gives a cyclic

order of the gaps. The importance of init-list is that it gives a linear order of the current

gaps and rt although there is not a sensor’s visibility obstruction. When motion control

u3 ends (after observation ye2 or ye6 happens), init-list is a linear list of the current gaps

and the current rt direction, starting from the sensor’s obstructed visibility region at the

beginning of the algorithm following a counterclockwise order. At this time, point rp is

in contact with ∂E and a new linear list called end-list is created. end-list contains the

current gaps read by the sensor and the rt direction ordered in counterclockwise sense,

but it starts at the current sensor’s obstructed visibility region. Linear lists end-list and

init-list are different because they were created at different positions.
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When Local exploration begins after yeL5 happens, an analogous symmetric procedure

begins. init-list is created in the same way that the other case, the difference is that it

contains lt direction instead of rt and the list is created following a clockwise order of

the gaps instead of a counterclockwise order. The motion control executed at the same

time that the algorithm is u2 and it ends after observation ye3 or ye7 happens. end-list

contains the current gaps read by the sensor and lt direction following a clockwise order.

Once end-list is created, auxiliary lists G1 and G2 are also created and they contain

specific subsets of init-list and end-list respectively. Another list called G∩ is created

and it contains only those gaps which are contained on both lists, these are the gaps

generated by reflex vertices within the unreachable region, and they must propagate the

primitive label to their offspring on the GNT. This process is explained with more detail

in proof 5.2. In the algorithm, initf is the first element of init-list, initrt is the element

containing the rt direction (if the gap sensor is placed over rp), or initlt is the element

containing the lt direction (if the gap sensor is placed over lp). In end-list, endl is the

last element of end-list, endrt is the element containing the rt direction and endlt is the

element containing the lt direction. As seen in the algorithm, these elements are used

to establish the subsets of init-list and end-list needed to create auxiliary lists G1 and

G2.

Lemma 5.1. The exploration strategy modeled by the Moore machine M guarantees that

all leaf gaps (i.e. gaps encoded as leaf nodes in the GNT) are labeled as primitive gaps,

by executing Algorithm 1 (local exploration algorithm) at each time that observation yR4

or yL5 occurs. Algorithm 1 labels as primitive gaps, the gaps that do not disappear, given

that those gaps are generated by reflex vertices located within an unreachable region.

Proof. The gaps that do not disappear are handled by Algorithm 1. If the robot is

touching ∂E with point rp then the G1 list includes all the gaps belonging to the open

interval between the rp point starting position at the beginning of Algorithm 1 and the

rt direction at the end of Algorithm 1. In this interval the order of the gaps is established

in counterclockwise sense. Moreover, the G2 list includes all gaps belonging to the open

interval between rt direction at the end of the algorithm and the rp position at the end

of the algorithm. In this other interval the order of the gaps is also established in coun-

terclockwise sense. The intersection between G1 and G2 includes only the gaps that lie

between the original rp position and the current one in counterclockwise sense. Those

gaps are generated by reflex vertices located within the unreachable region. Observation

yR4 or yL5 detects an unreachable region. The region is unreachable because the robot’s

bumper has touched ∂E at two points. During the robot rotation in place, the omnidi-

rectional sensor moves from a point touching ∂E to the other, hence all gaps within the

unreachable region are considered. Due to the possible split and merge critical events
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Algorithm 1 Local Exploration Algorithm

Input: GNT, current observation: yei.
Output: updated GNT.
if yei = yeR4 (u3 is executed) then

1. init-list ← Current gaps and rt direction starting from the sensor’s obstructed
visibility region following a counterclockwise order;
while (yei 6= ye2) or (yei 6= ye6) do

if GNT-event = true then
if critical-event 6= gap-appear then

2. Apply the update suffered by the root’s children nodes of the GNT to the
corresponding gaps in init-list;

end if
end if
3. Update the position of the rt direction in init-list according to the current
angular counterclockwise order in the sensor reading;

end while
4. end-list ← Current gaps and rt direction starting from the sensor’s obstructed
visibility region following a counterclockwise order;
5. G1 ← {x ∈ init-list | initf ≤ x < initrt};
6. G2 ← {x ∈ end-list | endrt < x ≤ endl};

else if yei = yeL5 (u2 is executed) then
7. init-list ← Current gaps and lt direction starting from the sensor’s obstructed
visibility region following a clockwise order;
while (yei 6= ye3) or (yei 6= ye7) do

if GNT-event = true then
if critical-event 6= gap-appear then

8. Apply the update experienced by the root’s children nodes of the GNT
to the corresponding gaps in init-list;

end if
end if
9. Update the position of the lt direction in init-list according to the current
angular clockwise order in the sensor reading;

end while
10. end-list ← Current gaps and lt direction starting from the sensor’s obstructed
visibility region following a clockwise order;
11. G1 ← {x ∈ init-list | initf ≤ x < initlt};
12. G2 ← {x ∈ end-list | endlt < x ≤ endl};

end if
13. G∩ ← G1 ∧G2;
for every gap gi ∈ G∩ do

14. Label node gi in the GNT as a primitive node;
15. Propagate the primitive label to the offspring of gi;

end for
16. return updated GNT;
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between these gaps, the primitive label of such gaps is propagated to all the offspring of

them in G∩. Each time that observation yR4 or yL5 occurs, the local exploration algorithm

is executed. Hence, all gaps encoded as leaf nodes (called leaf gaps) in the GNT are

labeled as primitive gaps.

When the robot is touching ∂E with point lp and the omnidirectional sensor is placed

at lp the proof is analogous, it is just the symmetric case.

s

Figure 5.2: This figure shows region Rna in white and region Ra in dark grey. The
regions are divided by the arc of circle trajectory followed by the omnidirection sensor
during a robot’s rotation in place. The figure also shows a light source s with a ray of

light which goes from Ra to Rna.

Lemma 5.2. The robot is capable of covering (observing) the largest possible portion of

the environment, by executing local exploration algorithm at each time that observation

yR4 or yL5 occurs.

Proof. The omnidirectional sensor trajectory during the rotation in place motion is an

arc of circle, which divides the environment’s interior in two regions, named accessible

region Ra and unaccessible region Rna, such that Ra ∩Rna = ∅. The boundary between

those regions is the arc of circle described by the rotation, which depends of the robot’s

radius. The omnidirectional sensor is unable of penetrating deeper in the unreachable

region due to the space configuration restrictions, therefore, the arc of circle is clearly

the boundary between both regions. Refer to Figure 5.2. It is clear that every ray

of light emerging from any source s ∈ Ra which is able to intersect Rna must cross

the regions’ boundary as seen in Figure 5.2. If the visibility polygon of s includes a

portion of Rna then every ray of light emerging from Ra to Rna must cross the regions’

boundary. Therefore every single ray of light traveling from any point x ∈ Ra to Rna

must cross the regions’ boundary. Hence, an omnidirectional sensor following the arc

of circle trajectory guarantees observing the largest possible region of Rna. Each time

that observation yR4 or yL5 occurs the local exploration algorithm is executed. The result

follows.
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Theorem 5.3. The exploration strategy modeled as a Moore machine M guarantees

exploring all the environment or the largest possible region of it, and it also guarantees

that the exploration task terminates. Additionally, the robot is able to find the landmark

or to declare that an exploration strategy to find the landmark does not exist, for the

connected component of the collision-free subset of the configuration space C where the

robot lies.

Proof. Since the environment is simply connected, a wall following strategy is enough for

exploring all the environment for a point robot due to the absence of internal obstacles

(generating more than one class of homotopic paths). For a disc robot, the gaps that are

generated by reflex vertices located in reachable regions are labeled as primitive gaps,

since the robot is able to reach the reflex vertices generating those gaps, then these

gaps disappear. If there are unreachable regions, where some gaps do not disappear

regardless the sensor’s motions, then local exploration algorithm is executed. Lemma

5.1 guarantees that all leaf gaps are labeled as primitive ones, that is the stop condition

for the exploration task. Hence, the exploration task terminates. Lemma 5.2 guarantees

that the robot discovers the largest possible region of the environment. Hence, if the

collision free sub-set of the configuration space C is simply connected then the landmark

is found. If the collision free sub-set of the configuration space C has several connected

components then the landmark might or might not be found. Again, by Lemma 5.2 the

robot observes (discovers) the largest possible part of the environment, therefore when

the landmark is not found, there does not exist a robot exploration strategy to find

the landmark, for the connected component of the configuration space where the robot

lies.



Chapter 6

Implementation

6.1 Environment 1

The whole method has been implemented and simulations’ results are included. Simu-

lations were programed using the C++ programming language. The most important

libraries used are the Standard C++ Library and the 5.2 version of LEDA library

http://www.algorithmic-solutions.com/leda/, which is used due to its internal

computational geometry algorithms, data structures and its friendly graphical func-

tions for animations and simulations. The GNT was performed using linked lists and

our own GNT node class called node.

In all the following figures, the already explored environment is shown in white. The

current visibility robot’s region is shown in light gray (yellow), the environment regions

which have not been discovered yet are shown in dark gray. The obstacles are shown

in medium gray (blue). The robot is represented with a black disc, the omnidirectional

sensor is a point over the robot’s boundary. A small arrow over the robot is used to

show the preferential sensor direction rt. The landmark is represented by a medium

gray disc (green). In the GNT, the primitive leaf nodes are shown as squares (yellow),

the landmark node is a triangle (blue), and the non-primitive nodes are shown as circles

(green). The gap id for every GNT node is also shown (as consecutive integers), the id

for the root node is 0.

Figure 6.1 shows the robot executing control u1 that yields a straight line motion prim-

itive, the robot initial position lies in the interior of E, it moves forward until a contact

with ∂E is detected, it is the only case where the robot does not follow the environment’s

boundary.

42
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GNT

Figure 6.1: The robot is executing the straight line motion primitive. The correspond-
ing GNT is shown, the circles represent non primitive nodes (for illustrative purposes,
they the same orientation that the gaps they represent) and the triangle is the encoded

landmark.

Figure 6.2 shows a partial landmark occlusion. It occurs when the robot is following

an environment’s edge, then the landmark is encoded to the corresponding gap in the

GNT. Before that, the landmark was connected directly to the GNT root because it was

completely visible as described in Section 3.4.

GNT

Figure 6.2: The landmark is partially occluded, the current GNT is presented and it
shows that the landmark is encoded in the GNT (the primitive leaf nodes are shown

like squares).

Figure 6.3 shows the execution of control u4 that yields a clockwise rotation w.r.t. point

rp motion primitive, the robot is touching a reflex vertex of ∂E. In order to mantain

contact with the vertex, the robot must rotate w.r.t rp until rt is aligned with the

environment’s edge.

GNT

Figure 6.3: The robot is performing rotation w.r.t.rp because it is touching an envi-
ronment’s reflex vertex.
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Figure 6.4 shows one case where local exploration algorithm is applied while the control

u3 that yields a counterclockwise rotation in place is executed. The robot is facing

a narrow gate impossible to cross. There are gaps that do not disappear and their

corresponding nodes must be properly labeled as primitive nodes at the end of local

exploration. In Appendix A, a case in which local exploration algorithm is applied with

the omnidirectional sensor positioned over rp is presented in detail.

GNT

Figure 6.4: The robot has found a narrow gate, the control applied is u3, while local
exploration algorithm is executed. The GNT is shown and the nodes corresponding to
the gaps within the unreachable region are not labeled as primitive nodes yet, because

local exploration has not ended.

6.2 Environment 2

This example presents a more complex environment, where the landmark encoding pro-

cess is presented. The GNT at the start of the exploration task is shown and also the

GNT after the task has ended.

Figure 6.5 shows the beginning of the simulation in a more difficult environment, the

meaning of the gray scale colors and the geometric shapes is the same used in Section

6.1. The starting GNT is also shown, there are four gaps detected, and none of them is

primitive because neither of them comes from a gap appearance event.

GNT

Figure 6.5: The robot and the environment at the beginning of the exploration task.
The starting GNT is also shown.
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Figure 6.6 shows the instant when Λ is (partially) visible for the first time. It is encoded

in the GNT as a child of the node associated with the gap generated by the reflex vertex

that is occluding Λ. Figure 6.7 illustrates an instant where Λ is fully visible. Therefore Λ

is encoded as a root’s child. The respective GNT with the new position of the landmark

node is also shown.

GNT

Figure 6.6: Λ is partially visible for the first time.

GNT

Figure 6.7: The whole area of Λ is visible, the corresponding GNT is shown with the
landmark node connected to the root.

Figure 6.8 shows a new landmark occlusion. While the robot was executing control u1,

a gap partially occluded Λ after the whole landmark was visible. The landmark node

becomes a child of the corresponding GNT node associated with the gap generated by

the reflex vertex that is occluding Λ. The robot moves following ∂E using the defined

Moore’s machine structure and the whole landmark becomes visible again as shown in

Figure 6.9. According to the landmark encoding process detailed in Section 3.4, the

landmark node becomes a root’s child.

GNT

Figure 6.8: Λ becomes partially occluded and the landmark node is now a child of
the corresponding GNT node.
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GNT

Figure 6.9: The whole landmark is visible again, and it becomes a root’s child node
as shown in the GNT.

Finally, Figure 6.10 shows the environment and the robot when the exploration task is

over. The exploration task ends when the largest possible region of the environment

has been discovered. The complete environment’s representation is encoded in the GNT

including the nodes corresponding to the unreachable gaps that did not disappeared,

and the landmark node. The remaining gray spots correspond to those unreachable

places which could not been discovered by the omnidirectional sensor regardless of the

robot motion. Local exploration algorithm labeled those unreachable gaps as primitive

nodes.

GNT

Figure 6.10: The exploration task ends and the largest possible region of the envi-
ronment has been discovered.

6.3 Environment 3

This example presents an environment where the collision-free subset of the robot’s

configuration space C has two connected components.

Figure 6.11 shows the beginning of the simulation. The starting GNT is also shown,

there are four gaps detected.
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GNT

Figure 6.11: The robot and the environment at the beginning of the exploration task
in an environment where C has two connected components. The starting GNT is also

shown.

Figure 6.12 shows a case where local exploration algorithm is applied while the control

u3 that yields a counterclockwise rotation in place is executed after observation yeR4 is

detected. Λ lies inside the unreachable region which is a connected component of C
different that the connected component where the robot lies. The landmark encoding

process is the same and it is encoded as a child of the corresponding gap.

GNT

Figure 6.12: The robot faces the gate between two components of connected compo-
nent of C. Local exploration algorithm is applied while the control u3 is executed. The

GNT is also shown.

Figure 6.13 shows the robot and the GNT after local exploration labeled all the gaps

within the unreachable region as primitive nodes.
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GNT

Figure 6.13: Local exploration ends and the gaps within the unreachable region (the
other connected component of C) are labeled as primitive nodes.

Finally, Figure 6.14 shows the environment, the robot and the complete GNT when the

exploration task ends. The largest possible region of the environment has been discovered

including the unreachable region that represents another connected component of C. The

landmark was encoded the same way that in the case of an environment where C is simply

connected. The remaining gray spots correspond to those unreachable places which could

not been discovered by the omnidirectional sensor from the connected component of C
where the robot lies.

GNT

Figure 6.14: The exploration task ends and the largest possible region of the envi-
ronment has been discovered.



Chapter 7

Conclusion

7.1 Conclusion

This thesis work addressed the problem of exploring an unknown environment, using

a differential drive robot with the shape of a disc. The robot is equipped with simple

sensors and it is unable to build precise geometric maps or localize itself in any Euclidean

frame. The exploration problem addressed in this thesis is more challenging than the

case of a point robot because visibility information does not provide collision free paths

in the configuration space.

In this work, an exploration strategy is proposed. This exploration strategy is modeled

as a Moore machine, and it guarantees exploring all the environment or the largest

possible region of it while the GNT that represents the environment is built.

The robot is able to find a landmark or declare than an exploration strategy for this

objective does not exist. A motion policy based on sensor feedback is also proposed. All

the proposed algorithms have been implemented and simulation results were presented.

We wrote a conference paper based on this work, and it is currently under review for

2014 IEEE International conference on Robotics and Automation (ICRA 2014).

7.2 Future work

The work presented in this thesis can be expanded, there are two important improve-

ments that can be done in future research works.

The complete GNT resulting after the exploration task might be used for optimal navi-

gation strategies (in terms of Euclidean distance) to reach the landmark Λ. Therefore,

49



Chapter 7. Conclusion 50

the main future work is to integrate this exploration strategy with the navigation strat-

egy proposed by Rigoberto López [9]. That strategy has a similar robot’s model, and

uses the information provided by the GNT for optimal navigation for a differential drive

robot with the shape of a disc.

This work can be also expanded by considering uncertainty in the motion model. Future

work is to establish a probability measure of reaching a landmark even though the robot

motion is not perfect.



Appendix A

Local Exploration Example

To clarify the local exploration algorithm, the method is ilustrated with an example.

Figure A.1 shows the time when the local exploration algorithm begins after observation

yeR4 is met. The gap sensor is placed over the rp point.

For illustration purposes the gaps are labeled using consecutive characters in alphabetic

order. First, the initial linear list is created, init-list= {a, b, c, d, ↑, e, f, g, h, i, j, k}, where

the characters represent the current gaps and ↑ represents the preferential direction rt.

(a)
a

b
cd

e

f

g

h i j

k

(b)

e
f

g

hi j k

(c)

a bc
d

e

Figure A.1: (a) Current GNT at the beginning of local exploration, (b) Gaps out of
the unreachable region, (c) Gaps within the unreachable region, those gaps must be

labeled as primitive ones, after executing local exploration algorithm.
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Figure A.2 shows the first critical event during the motion primitive execution, it is

a merge between gaps c and d yielding the new gap l1. The linear list is then, init-

list= {a, b, l, ↑, e, f, g, h, i, j, k}.

(a)

b
l

c
d

ef

g
h
i

j k

a

(b)

a bl

e

Figure A.2: (a) GNT with c and d as the children nodes of l due to the merge event,
(b) The new gap l.

Figure A.3 shows the next critical event, a merge between gaps b and l yielding the

new gap m, the current linear list is now init-list= {a,m, ↑, e, f, g, h, i, j, k}. Figure A.4

shows the next critical event, it is a merge between the gaps e and f generated by reflex

vertices within the current non reachable region yields the new gap n. The linear list is

now init-list= {a,m, ↑, n, g, h, i, j, k}.

(a)

e
f

c

d

g
h

i

j
k

l
a

m

b

(b)

am

e

Figure A.3: (a) Current GNT with b and l as the children nodes of m due to the
merge event, (b) The new gap m.

1According to the GNT evolution, nodes c and d become children nodes of the new node l which is
connected to the root, all merge events have the same behavior.
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(a)

e

f

n

c

d

gh

i

j

k
l

a
m

b

(b)

e

f

(c)

n

Figure A.4: (a) Current GNT with e and f as the children nodes of n due to the
merge event, (b) Gaps e and f right before the merge event, (c) The new gap n.

Figure A.5 shows a merge event between gaps a andm yielding the new gap o, the current

linear list is then init-list= {o, ↑, n, g, h, i, j, k}. Figure A.6 shows the next critical event,

it is a split of gap n 2, the current linear list is init-list= {o, e, f, g, ↑, h, i, j, k}. It is

important to notice that the linear order between the preferential direction and the gaps

also changed.

(a)

e

f

n

o

c

d

g
h

i

j
k

l

a

m

b

(b)

o

n

Figure A.5: (a) Current GNT with a and m as the children nodes of o due to the
merge event, (b) The new gap o.

Figure A.7 shows when gap e disappears, the current linear list is init-list= {o, f, g, ↑
, h, i, j, k}. Figure A.8 shows when a new gap p appears, init-list remains unchanged

2When a split event happens to a no leaf GNT node, the resulting gaps are its children nodes,
therefore the gaps obtained are e and f .
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(a)

e
f

o

c

d

g

h

i

j k
l

a

m

b

(b)

n

(c)

e

f

Figure A.6: (a) GNT with resulting gaps e and f after gap n splits (they were its
children nodes), (b) The instant before n splits, (c) The resulting gaps e and f after

the split event.

during gap appearance events (recall that appearances of gaps are not considered because

they already have the primitive label, therefore they do not represent an issue).

(a)

f

o c

d

g
h

i

j
k

l
a

m

b

(b)

o

e

(c)

o

Figure A.7: (a) The GNT after gap e has disappeared, (b) The gaps within the
unreachable region and gap e before disappearing, (c) The gaps after the disappearance

event.
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(a)

p
f

o

c

d

g

h

i

j k
l

a

m

b

(b)

o

(c)

o

p

Figure A.8: (a) Current GNT with the new gap p, (b) The instant before the gap
appear event, (c) The new gap p due to the gap appear event.

Finally, Figure A.9 shows the gaps when the algorithm 1 ends and the GNT leaves

are correctly labeled, the final list is end-list= {f, g, ↑, h, i, j, k, o, p}. According to local

exploration algorithm the auxiliar lists are: G1 = {o, f, g} and G2 = {h, i, j, k, o, p}, the

intersection list is then G∩ = {o}, so gap o receives the primitive label and propagates

it to its offspring (leaf nodes a,b,c and d).

(a)

p
f

o

c

d

g

h

i

j k
l

a

m

b

(b)

f

g

h
i j k

(c)

o

p

Figure A.9: (a) The GNT at the end of local exploration when the primitive label has
been propagated to the leaf nodes representing unreachable gaps, (b) The gaps outside
of the unreachable region, (c) The gaps within the unreachable region that have been

correctly labeled as primitive ones.
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