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Resumen

En altas latitudes se encuentran depositos de turba con estratos claramente visibles.
Estos estratos contienen materia organica, la cual se puede fechar por *C, también
conocido como carbono 14.

Es de interés construir una cronologia que asocie a cada profundidad su edad corre-
spondiente. Un programa para hacer esto se desarrolldé en 2011 por Cristen y Blaauw.

El objetivo de esta tesis es continuar desarrollando el trabajo de Christen y Blaauw,
reescribiendo el algoritmo en Python y extendiendo su funcionalidad al permitir la in-
clusion de informacién adicional (no obtenida por 4C).

Abstract

In high lattitudes thee are peat deposits with clearly visible starta. These strata contain
organic material which can be dated by “C, also known as carbon 14.

It is of interest to construct a chronology that associates each depth to its corresponding
age. A program to do this was developed in 2011 by Christen and Blaauw.

The objective of this thesis is to further develop the work of Christen and Blaauw,
rewriting the algorithm in Python and extending its functionality to permit the inclusion
of additional information (not obtained by 14C).
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Chapter 1

Introduction

1.1 Chronology building

In paleoecology and archaeology, radiocarbon dating has become the stan-
dard dating technique used for organic samples. While extremely useful,
Carbon 14 dating is also very expensive. In order to build a complete time-
line for a process, an enormous number of measurements may be required,
thus significantly complicating any effort to study it.

To provide an alternative to simply taking a very large number of mea-
surements, statistical considerations can be used for chronology building:
Carbon 14 measurements are not independent, and using certain assump-
tions about their dependence structure, the data from some measurements
may be used to draw inference about others, thus reducing the number of
samples which must be dated directly.

One such form of dependence structure is found in vertically tiered layers
of earth. Layers of sediment build atop each other over time, creating de-
posits of earth in which the depth increases with age. These structures occur
frequently in peat bogs and are known as peat cores. Strata are often plainly
visible, and hence if any disruption in the process exists, it is usually easy to
detect. With this in mind, we may embark on chronology building by using
a regression model which associates the depth of a sample to its age.
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1.2 Radiocarbon dating

All organic matter has molecules which contain atoms of carbon. Most of
this carbon is 2C', which is a stable isotope. Of the remaining carbon, the
great majority is *C, which is also stable. There is a very small remaining
portion of 4C, or carbon 14. While *C' is present in very small quantities,
it is radioactive, and decays over time at a predictable rate, having a half-life
of slightly less than 6000 years.

When an organism dies, it ceases to interact with the environment, and
it no longer acquires *C. As *C decays it becomes N (nitrogen), and by
measuring the proportion of *C in a sample, this information can be used
along with the initial proportion of *C to get a very good estimate of the time
of death of the organism. The difficulty in this technique lies in obtaining
the proportion of *C' in the organism at the time of death. While it was
once thought to be constant, it is now known that this proportion varies over
time somewhat unpredictably.

Various techniques have been employed which have generated an accu-
rate calibration curve which adjusts for the variation of *C in the biosphere.
We now have a good understanding of the relationship between *C measure-
ments and age, but because of the variations in environmental *C', the func-
tion is not injective. The issue is further complicated because measurements
are not 100% accurate, and even small uncertainties in the measurements of
4 can propagate into very large uncertainties in dating.

Christen and Pérez (2009) developed a bayesian statistical model in which
the posterior distribution of the actual date of death of a sample, given its
14 measurement, is found to be a t distribution.

1.3 BACON

The problem of chronology building in vertical cores of data was partially
solved by Christen and Blaauw (2011) using the model of Christen and Pérez
(2009) and using an autoregressive gamma process which models the function
which relates depth and time as piecewise linear between a sequence of equally
spaced nodes.

A prior distribution is fixed on the set of slopes of the function, on the
intercept, and also on a memory parameter, and then a computer program
uses MCMC techniques to generate a large sample of the posterior distri-
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bution of these parameters. The computer program, called BACON, uses a
self-adjusting Metropolis-Hastings MCMC algorithm called t-walk (Christen
and Fox, 2010) to keep the amount of calibration required to a minimum,
thus enabling its use by non-experts.

BACON has had a positive reception by paleoecologists and is now widely
used to build chronologies in peat cores.

1.4 The BACON model

In the BACON program, the function G which links age to depth is modeled
as piecewise linear. Although the function is stochastic, the a priori distribu-
tions for each slope x; are always such that P(z; <0) =0, Vj. Let = (z;)
be the (random) vector of slopes and 6 be the (random) intercept. Also, de-
note with Ac the length of each linear piece and with ¢ = (¢;) the vector of
endpoints of the pieces. Then for each depth d the corresponding age a is
given by

(2
a=G(d,0,x) =0+ ijAc + 21 (d — ),
j=1
with ¢ such that ¢; < d < ¢;4;.

The a priori distributions of the slopes are generated by an autoregres-
sive gamma process, in which z; = wz;11 + (1 — w)a; where w is a memory
parameter in [0,1] and the «; are iid ~ Gamma(aa,b,) (these parameters
being set a priori, and representing prior information about the rate of sedi-
ment accumulation in the core.)

1.5 Beyond BACON

The present work intends to build on BACON by extending its portability,
its usefulness, and its scope.

e BACON is written in the C++ programming language using the GNU
Scientific Library (GSL), and has an interface written in the R script-
ing language. While R is a very portable language, the same cannot
be said about the GSL library, which is easy to install on GNU oper-
ating systems like Linux, but which is more problematic for several
popular systems such as Microsoft Windows. The BACON program
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has been re-written using the cross-platform Python programming lan-
guage, which enables simultaneous maintenance on all operating sys-
tems (at the cost of some speed: Python is a scripting language and
programs written in it are not as fast as programs written in C++).

e Chronology building is used to understand the change over time of
arbitrary environmental indicators. BACON only associates age and
depth, while the age of these indicators is tied only loosely to age by
measuring them at various depths. While this does produce useful
data to understand environmental change, a technique called ghost
mapping is proposed to extend BACON so that it can be used to study
environmental change more directly.

e The scope of BACON has been extended, allowing it to improve esti-
mations by using information from sources other than the *C measure-
ments within the core. Most of this information comes from other cores,
and it is desireable to allow BACON to work with numerous cores
at once, using parallel computing. Rather than simply running BA-
CON separately on each core, any of four different kinds of information
can be specified (three of which are dependence structures between the
cores), using this information to improve our estimation of G in each
core. This new, extended form of BACON has been dubbed BLT (BA-
CON Linking Timescales).

1.6 Contents

e Chapter 2 discusses the BACON model in detail and the results of
implementing this model using a t-walk algorithm in Python.

e Chapter 3 discusses the meaning and value of environmental indicators,
or “proxies” and goes on to explain the development and implementa-
tion of a technique to use BACON to build a chronology of proxies.

e Chapter 4 revises the BACON model to allow for a certain form of
external information to improve estimations. The new model, called
BLTO, is detailed along with the algorithm, implementation, and re-
sults.
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e Chapter 5 covers all other forms of BLT, detailing three different forms
of correlation structure between cores. These models are implemented
and their results are assessed and compared to the results which come
from the initial form of BACON.



Chapter 2
BACON in Python

2.1 Details of the model

2.1.1 Assumptions about the chronology

The first assumption that is made is that the function relating depth and
age is strictly increasing. This is sensible because strata accumulate over
time by layering over previous strata. Of course, it is not possible to always
expect natural phenomena to behave so regularly, but shifts or swaps in the
progression can often be identified by experts.

Another assumption is the continuity of the function. This is also rea-
sonable to expect, so long as strata accumulate over time without stopping.
While certainly there may be periods of time when there is no accumulation
of strata because of variability of wheather conditions (dry seasons, etc.), we
can suppose that these periods are very short in relation to the time periods
we are considering, and hence do not affect any estimations based on this
assumption. It is always possible, of course, for dramatic geological events
to break the continuity in more important ways, but as in the previous case,
these discontinuities can often be identified by experts.

2.1.2 Building the model
2.1.2.1 The age function

Any absolutely continuous and increasing function can be approximated to
an arbitrary degree by a sequence of straight line segments: If ever an ap-
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proximation is insufficiently precise, more segments can be added.

Given the assumptions, one way to approximate the chronology is to
model it as piecewise linear, with an intercept 6 representing the age of the
top stratum and a series of slopes © = {x;} representing the accumulation
rates over k total segments, which will be taken by dividing the range of
interest into segments of equal length

Let ¢ = {c¢;} be the vector of endpoints of our segments. For any depth
d, our model will propose a corresponding age a by a function G as follows:

a=G(d,0,x) =0+ Z:chc+ Tip1(d — ¢),

J=1

with ¢ such that ¢; < d < ¢;4;.

2.1.2.2 Distribution of the *C measurements

A single "C' measurement provides a carbon age (m) and a standard error
(s). The carbon age is not directly understood to be a measurement of the
age, but a measurement of carbon activity which can be associated with an
age. This association is found in the INTCAL tables, which are regularly
updated with the most current estimations. All results shown in this docu-
ment were obtained using the 2013 estimations (Reimer et al. 2013). The
INTCAL tables are produced by measuring the carbon activity in samples
of known historical age and performing a statistical analysis on these mea-
surements.

The standard error reported by the “C' measurements is also not exactly
a measurement of the standard error, since this error is also dependent on
the age of the sample. The updated estimations of the effects of ages on
samples are also found in the INTCAL tables, and these are added to the
reported measurement error when calculating the likelihood.

Traditionally, the measurements were expected to behave as if distributed
normally with mean and standard deviation as described above, but this
model has been shown to predict far fewer outliers than have been observed.
Christen and Pérez (2009) proposed that the reported standard deviation
was itself a measurement that was subject to error. Assigning a gamma
distribution to this error, a t distribution was derived, which has heavier
tails than the normal distribution and is more robust to the presence of
outliers. This is the model that has been used throughout this document.
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2.1.2.3 Additional details about the model

Some further assumptions have been made regarding the structure of the ac-
cumulation rates x, involving an additional “memory” parameter w, however
a Bayesian model is used, and these assumptions need not be explicitly in-
cluded in either the function G or in the likelihood, but rather encoded
implicitly in the prior distributions for x. This structure is discussed in the
corresponding section.

2.2 The log-likelihood function

To compute the log-likelihood function of a set of parameters (0, x,w) we can
separate the contributions of the measurements at each depth d;. Computing
d; = G(d;,0,r) and the ""C measurement (m;, s;), the INTCAL tables are
used to obtain p and A as functions of m;, s; and a,;. The contribution to the
log-likelihodd is then calculated using the t model as

w — ;log(l +X/2)(m — p)?

logL(a;) =

In order to calculate the full log-likelihood function, this calculation is

repeated for each depth d; at which there is a '*C’ measurement available
and we obtain logL(a) = ), logL(d;)

2.3 Bayesian statistics and priors

2.3.1 The concept of prior distributions

Bayesian techniques were used to complete the modeling process and perform
calculations. In classical statistics, parameters are assumed to be fixed, un-
known points, but in the Bayesian approach these parameters are modeled
as random variables themselves. Whatever information is known about the
parameters before data collection is encoded in a “prior distribution”, which is
simply a probability distribution over the parameter space. Any restrictions
on the values of parameters which we wish to include in the model can be
encoded directly into the prior distribution simply by truncating the support
of the parameters to a certain subset of the space. The parameters are not
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necessarily assumed to be independent, and may have any sort of joint dis-
tribution. Very complex restrictions are possible by restricting certain joint
behaviors of the parameters.

2.3.2 The prior distribution of (0, z,w)

The first necessary restriction will be to bound the entire function G. For
each core, prior knowledge will be used to determine the maximum age (@)
and minimum age (a) possible for any sediment in the core. The prior will
then be truncated so that 7 (0, z,w) is 0 if (0, z,w) would put any sediment
outside of the interval [a, d]

It is unusual for accumulation rates of sediment to change drastically with
time. They depend on climate, and climate change is, in general, a gradual
process. We will model this change by describing = with an autoregressive
gamma, process:

r; = wrjp + (1 —w)a;

where thea; are iid ~ Gamma(a,,b,). w is a memory parameter, which
represents how much the process depends on the past, and it will have its
own prior distribution. To calculate the contribution to the log-prior of x
we will evaluate the prior of the a since the prior of x is defined implicitly.
Note that x;, the last segment, remains free so the prior distribution will be
xp ~ Gamma(aa, by). To choose a, and b, we will use any prior knowledge
available about the accumulation rate in the core in question.

It is worth noting that given w and x;,;, the support of z; is bounded
below by wz;4; and that so long as w is positive (it is: see below) then the
positive support of x assures us that x is a vector of positive slopes only,
and hence G will always be increasing.

At first it may seem strange to have x; depend on x;; rather than x;_;
but we must remember that x;;; is deeper than z; and hence older: The
future depends on the past.

For 6, prior knowledge can be used if it is available, but for the examples
in this document, we used the uninformative prior § ~ U(a,a).

Finally, the memory parameter w is in the interval [0,1]. As is cus-
tomary for parameters restricted to this interval, the prior used will be a

w ~ Beta(ay, by,) with a,, and b,chosen to reflect any prior knowledge avail-
able.
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2.4 The posterior distribution and the energy
function

2.4.1 Bayesian inference

In Bayesian statistics, the objective is to improve the prior distribution by
using the data. The prior distribution is, in general, quite uninformative,
containing only what is known about the parameters beforehand.

The prior distribution is then combined with the data using Bayes’s the-

orem: Tpja(bla)mq(a)
fﬂ'a|b alz)ma(z)dz

We interpret this theorem using a as the parameters, and b as the data.
Hence, 7, is the prior information available about the parameters and ), is
the likelihood function. Hence, what we want to find is m,,: The distribution
of the parameters once the data is known. This distribution is called the
posterior distribution, and its calculation is one of the primary objectives of

Tap(alb) =

Bayesian inference.

2.4.2 The difficulties involving the posterior distribu-
tion
Using Bayes’s theorem, once we have the likelihood function and the prior
distribution, the posterior distribution can simply be written as
LV]0, 7, w)m (0, 2, w)
Js LY |u, v, b)m(u, v, b)d(u,v,b)

T (6,2)|y (0, 7, w]Y) =

with £ the likelihood function written above and 7(6,z,w) the prior dis-
tribution. Unfortunately this is not useful because we do not know any of
the properties of this function: In particular, we are not even able to eval-
uate it at a single point because we do not know how to solve the integral
Jo LY [u, v, b)m(u, v, b)d(u,v,b).

What we can do is observe that the value of the troublesome integral does
not depend on the value of (6, z,w), so we can instead write

To,zw)y (0, 2, w|Y) oc L(Y0, 2z, w)m(0, z,w)
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= Loupp(0, 2, w)L(Y|0, 2, w)m(0), m(w)7(x|w)

which can be calculated at any point. If we restrict ourselves to the support
we will note that the function

U0, z,w) = —logL(Y|0,x,w) — logn(8) — logn(w) — logm(x|w)

differs from the negative of the log posterior by a constant. This function U
is called the energy function.

2.5 Sampling from the posterior distribution

2.5.1 The basic idea

While it is unreasonable to attempt to analyse the properties of the posterior
distribution directly, there is an indirect approach which can give us quite a
lot of information. Rather than thinking of the posterior distribution as a
function, we can take advantage of the fact that it is, after all, a probability
distribution, and can hence be analyzed using statistical techniques so long
as there is some way to obtain a sample.

If there is a large sample from the posterior distribution, the Glivenko-
Cantelli theorem will allow us to study the distribution by studying the em-
pirical distribution as derived from the sample. If the distribution has finite
moments, for instance, these moments can be estimated by using the empir-
ical moments from the sample. The objective, therefore, is to obtain a large
sample of the posterior distribution: The bigger the better.

The posterior distribution is a very abstract entity, and there is nothing
in the data already collected that in any way resembles a sample from the
posterior distribution. It is impossible to collect a sample from a phenomenon
that is distributed in this way (such a phenomenon does not exist). Instead,
the sample is created using a computer.

2.5.2 MCMC

To generate a sample of the posterior distribution MCMC techniques will be
used. In MCMC a Markov chain is designed over the parameter space which
has the posterior as an asymptotic distribution. From an arbitrary starting
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point, the Markov chain is simulated using a computer for a large number
of iterations. Eventually the Markov chain will converge to the posterior
distribution, and its state can be considered an element of the sample.

The power of MCMC lies in the fact that there are known algorithms,
such Metropolis-Hastings algorithms (described in detail in the chapter about
BLT) which are able to produce the required Markov chain even with the
ability to calculate nothing more than the indicator function of the support
and the energy function.

2.5.3 The t-walk

In general, MCMC techniques are very complex, requiring careful calibration
by an expert, both to optimize (insofar as this is possible) the convergence
speed and also to identify how long the chain must be simulated before the
sample is drawn.

BACON, as a piece of software, is not intended to be used only by pro-
fessional Bayesian statisticians, but also by non-experts such as paleoecolo-
gists who are not versed in Bayesian statistics at all, let alone calibration of
MCMC.

A solution to this problem is the use of a Python library written by Cristen
in 2010, called the t-walk (http://www.cimat.mx/ jac/twalk/). The t-walk
uses a special kind of general purpose Metropolis-Hastings algorithm which
is self-adjusting to sample from any distribution when given the support and
energy functions.

2.6 Using Python

2.6.1 Why use Python?

One of the disadvantages of the current implementation of BACON is porta-
bility. The program is written in the C++ programming language, using the
GSL library. For an operating system with the necessary tools, the process
of installing the necessary libraries and compiling the program is trivial, how-
ever not all targeted operating systems have the necessary tools in place.
In particular, the most popular system in the world, Microsoft Windows,
does not have the required development tools off the shelf. Hence, in order
to make any changes or updates to the software, the entire GSL library must
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be compiled manually under Windows, which is a lengthy (and occasionally
difficult) process. Another issue is that many users lack the technical exper-
tise to compile software themselves (and in Windows it is too complex of a
process to describe completely in the manual) so users need to be notified of
the existence of new executables, which must be distributed to them directly.

The solution which was undertaken here was to rewrite BACON from
scratch in the Python 2 (hereafter simply “Python”) programming language,
which is frequently used for scientific and mathematical computing. Python
is a cross-platform scripting language, meaning the program does not have
to be compiled in order to run. While tools to run Python programs are
not included by default in Windows either, they can be quickly and easily
installed.

Numerous Python libraries were used, most of which are considered stan-
dard libraries that are easily installed using any platform and included by
default in many python development packages. The only exception is the
pytwalk library, which can be found at http://www.cimat.mx/~jac/twalk/

Python is easily installed and maintained accross platforms, and allows
maintenance and updates on BACON to be done on all platforms simulta-
neously.

2.6.2 Disadvantages

The biggest disadvantage to using Python (or any other scripting language)
is speed: Unlike C++, programs written in Python must be read, parsed,
and executed by a Python interpreter rather than directly by the operating
system. This extra step slows down the operation significantly. While the
difference in speed is hardly noticeable for simple tasks, computer-intensive
processes, like MCMC, require the computer to run algorithms through mil-
lions of iterations, and the difference in speed is a real issue.

For BACON, the difference in computer time between C+-+ and Python
is so large that it is not recommended to use the Python implementation
directly. An alternative approach (using a C++ /Python hybrid) has been
proposed - but not yet implemented - which may solve this issue (see next
section).
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Figure 2.1: The output of the original BACON program

2.7 Results and Discussion

BACON in Python is about 50 times slower than the original version of BA-
CON written in C++. BACON usually performs around 8 million iterations
in about 3 minutes, while in the Python version, this is an operation that
takes several hours. Depending on what kind of information is required,
however, a much smaller run may be used to get reasonable estimations.

A comparison of results between the C++ and Python versions of BA-
CON confirms that both programs are in fact estimating the same posterior
distribution. Figure 2.1 is the graph generated by the R interface of the
output of the posterior distribution of the MSB2K peat core using the C+-+
version of BACON at the program’s default settings. This is the same core
and settings as were used and published in the original Blaauw ande Chris-
ten (2011) paper.

For figures 2.2 and 2.3, the Python version of BACON was used for a run
of 50,000 iterations over 20 sections, using the same prior distribution for
the parameters. Figure 2.2 shows the history of the log-posterior function
evaluated at the state of the Markov chain, and it is clear that the number of
iterations is not sufficient to get a large iid sample. While the burn-in time
(time until convergence) of the Markov chain is possibly within the 50,000
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Figure 2.2: The energy of the Python version over50,000 iterations. In order
to get a good posterior sample, 50,000 iterations is not enough.

iterations used, it is fairly clear is that there is not enough time given for
many of the elements of the sample to be considered uncorrelated.

Figure 2.3 shows the resulting estimation of the log-posterior: The first
20000 iterations are unused (since we consider this prior to convergence)
and then every 100 iterations thereafter the state of the chain is taken, and
the parameters (6, x,w) are used to plot the function G with 2% opacity.
The result is that at each vertical cross-section, the graph is equivalent to a
greyscale kernel estimate of the posterior density of the depth at a given age
(using a uniform kernel of bandwidth corresponding to one pixel’s worth of
time). Although the estimate is cruder than the estimate obtained with the
much larger sample generated by the C++ version, the graphs are already
representing the same posterior distribution, as can be seen by observing that
both graphs place the entire chronology in approximately the same range,
and roughly correspond in those regions of little uncertainty.

Figure 2.4 shows the same graph when the Python version runs for 1
million iterations, with a sample point taken every 1000 of them after the
first 50,000. While this is still not ideal, it gives a much closer match to
the C++ version, but the time taken by the algorithm is already nearly
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Figure 2.3: A sample from the 50,000 iterations of the python version taking
one iteration ever 100. At this many iterations, the posterior estimation is
very crude.

20 minutes, in contrast to the C++ version of BACON which takes about 3
minutes to do a full run (about 8 million iterations) on the same hardware.

There is a way in which the inefficiency of the Python programming lan-
guage might be improved, yielding times which could potentially be compa-
rable to those produced by the original BACON program. A time analysis of
the program using the cProfile python library found that the great majority
of the time used by the program is spent on a small number of functions.
These functions could be programmed in C++ (without having to use the
GSL library) and incorporated into a Python library, which would take ad-
vantage of the speed from the C-++ version.

This proposed solution (which is explained in slightly greater detail in
section 6.2.1) would only slightly increase the difficulty of maintaining the
program, while potentially increasing its usefulness - hopefully to the point
of being on par with the original program.
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Figure 2.4: At 1,000,000 iterations, taking one every 1000, the graph is now
very similar to figure 2.1.



Chapter 3

Ghost Maps

3.1 Properties of the BACON model

Recall from the previous chapter, that the BACON model for the age of a
sediment depth is

a=G(d0,x) =0+ z;Ac+z(d - c))

=1

Note that 6 and z are the only random elements in G. In other words,G(d, 8, x)|0, x
is deterministic for each depth d. Also note that since Ps(z; < 0) =0, Vj,
then P,,s(Gis strictly increasing) = 1 also.

Note now that with probability 1, G|(6, x) is injective, and hence invert-
ible. Moreover, for fixed § and z, (G|(6, z))~'is deterministic, and (G|(,x)) " (a)
can be explicitly computed for any age a in the counterdomain of G|(6,x)
with relative ease (further still, (G|(,x)) tis also strictly increasing and
piecewise linear).

3.2 Proxies

For paleoecologists, a mapping of age to depth in a vertical core is not a
completed product. The main reason to use BACON is not to assign a date
to a depth, but rather to assign a date to the various things found at the
corresponding depth.

18
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While it is, for example, of little interest to paleoecology to know that at
a certain location, a depth of 3.2 meters corresponds to an age of 7300 years,
it is of much greater interest that this is the time of the extinction of a certain
species of plant. While carbon dating usually provides information about
the age of specific samples directly, BACON does so indirectly by reporting
information about the depth at which these samples were found.

The use of depth as a covariable is a very useful technique to improve both
the cost-efficiency and accuracy of carbon dating. That said, it does make
the information BACON provides more difficult to interpret in the context
of paleoecology.

It is frequently the case, therefore, that depth is usually associated with
other covariables, known as proxies. Proxies are usually environmental in-
dicators, such as the pollen of a specific kind of flower, the water level of a
lake, or the average temperature.

Several proxies of interest may be difficult or imposible to measure di-
rectly. That being said, for the purpose of our mathematical model, it is
convenient to consider only those proxies for which it may be expected that
an expert could obtain a good (point) estimate at any given depth in a core.

The focus of BACON may hence be shifted from merely attempting to
reduce the uncertainty of GG to one which addresses the needs of paleoecolo-
gists more directly. While it is not desireable to completely omit the use of
detph to improve our estimation, it is important to realize that the use of
depth to ascertain age is merely a secondary concern, and that what really
interests us is the age of the proxies found at this depth.

3.3 Ghost maps

To directly address the dating of proxies, the function G' which associates age
and depth may be used along with the measurement of proxies at different
depths to produce a new kind of function which relates age and a proxy. This
kind of function was first described by Blaauw et al. (2007) and is called a
ghost map.

These new functions inherit the uncertainty of G and are therefore, also
stochastic. It is also worth noting that these functions may behave very dif-
ferently depending on what proxy is being dated. Some proxies are multidi-
mensional, some are categorical, and some are nonzero only in a very narrow
range of depths.
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We will assume that all proxies of interest may be measured at any depth.
Let p = (p1...p) be the vector of proxies of interest, and let Y denote
the information used by BACON (the carbon 14 measurements as well as
the depths at which the measurements take place). We intend to move from
a function G : D — A from depth to age into a set of functions F; : A — P,
from age to proxy i. It is of interest to estimate the distribution of F;(a)|Y .
for arbitrary a and 1.

It is worth noting that G is assumed to be parametrized by 6,z and
piecewise linear, while F; is not parametric.

For ease of notation, we will now consider a single proxy at a time, so
F; = F. Also we will consider all proxies as one-dimensional. If a proxy is
multidimensional, each dimension will be treated as a separate proxy.

3.4 The algorithm

BACON generates samples which are distributed approximately iid~ 7 (6, z|Y").
We will assume that this distribution is exact.

Let ¢(d) denote the measurement of a proxy at depth d. Let A =
(Ay...A,) be a vector of finitely many ages of interest at which we wish to
estimate p. The technique will be to generate a large sample ~ 7(F(A)|Y)
using BACON.

The algorithm to generate py, the kth element of a sample from the target
distribution, is the following:

1. Generate (0% 20 « 7(6, 2|Y) using BACON
2. Compute the depthy®) = G=1(A)|9*) z*)

3. Set pr = q(v*))

3.5 Why the algorithm works

We intend to prove that for a given proxy p, we have pp ~ 7(p|Y, Z, A). An
important assumption is needed, and that is that (6, x) and proxies are inde-
pendent when we condition on Y, or equivalently that G(d)|Y, Z < Gd)|Y
where 7 is all the information relevant to the depth distribution of proxies.
While this assumption is often not true, it is in keeping with the methodology
of BACON since proxy information is ignored when estimating m,os:(6, ).
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Consider the i**entry of py:

B
P(py, < B16W, 2™ v :/ Tolo.2 (0%, ®) V) dt
—00
(In this case this integral is of a degenerate distribution: Conditioning on
(0™), 2 is equivalent to conditioning on *))
Then:

P(Pk < 6) = / / 7Tp|9,x(t|u7 v, Y)ﬂ-e,x(ua v, Y) d(“? U) dt

by the law of total probability. This quantity is equal to

Pyy.za,(p < B)

because of our assumption that the proxy does not affect mp,s:(6, x).

3.6 Implementation

A program was written in in R to execute the algorithm using the standard
output from BACON (either version). There are three points worth noting
about the way the program works:

1. Although the stated assumption to develop the algorithm is that prox-
ies may be measured at any depth, what is actually available to the
program is only a finite set of depths and their respective proxy mea-
surements. The algorithm requires ¢(v*) which is the value of proxies
measured at an unpredictable depth. Since this measurement is (almost
surely) unavailable, the value that is used is calculated as if proxies
vary linearly between the depths at which they are observed. This
will yield a reasonable approximation in most cases, but it is unre-
liable when the differences between the depths of measurements are
large. On some occasions, problems with discrete proxies are amelio-
rated by the histograms separating into bins assigned by integer values
(which is the default), but sometimes it is best if a different estimation
algorithm is used for the value of proxies.

2. Although the program generates the full sample, the graphical pre-
sentation of the data only uses a small amount of the information
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available. It calculates a histogram for each age of interest, but since
each py is a vector which corresponds to the vector of ages of interest,
and comes from a single simulation of (#,x) it is actually possible to
use the information from the sample to estimate probabilities such as
P((F(A,,), F(A,)) € B]Y, Z) for any measureable B C R?. This can
often be very useful since it allows us to understand the evolution of
proxies over time, for instance estimating the probability of a proxy in-
creasing between two time periods.

3. The original BACON program has a ghost mapping function, which
produces graphs which relate proxies to time. These graphs are not
the product of any mathematically sound reasoning, and are unable to
produce any estimations relating to the probability of proxy values at
any time. Nonetheless, the graphs are intuitively very easy to intepret,
and roughly match the results of this algorithm. The graphs produced
by the ghost mapping function developed here, while mathematically
correct, are less clear. For this reason, the implementation developed
here is not a complete replacement for the original function.

3.7 Results and observations about graphical
parameters

BACON was used to estimate the age-depth function of the MSB2K peat
core. Ages of interest were designated every 100 years from 4800 years ago
to 6600 years BP. The function computes a histogram at each age of interest
and renders the histograms vertically in greyscale above the year which cor-
responds to each. Slightly less than 1 minute of computation (on a relatively
low powered netbook using the Rstudio software package) yields figure 3.1.

We can see that each year, the probability of the proxy being zero is
reasonable. We may also observe that the likely nonzero region for the proxy
is concentrated between the years 5800 and 6500 BP. We can now easily
refine our range of interest to pay particular interest to where the proxy is
likely to be nonzero, making a histogram every 5 years in the range 6000 to
6400 BP. The result can be seen in figure 3.2.

This image alone actually gives us quite a lot of information regarding
the distribution of the proxy over time.

Of course, for actual estimation of probabilities, the sample itself must be
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Figure 3.1: A ghostmap for proxy 1 on the MSB2K peat core: Each vertical
cross section is a greyscale histogram for an age of interest.
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Figure 3.2: Proxy 1 examined with more ages of interest, spread over a
smaller range
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Figure 3.3: A ghostmap from proxy 4 over the same core. In this case proxy
dispersion makes the greyscale nearly invisible.

used. One simple example is the calculation of the probability that 6100 years
before present the proxy had value zero, which is estimated at 1103/3376 or
about 0.327.

Ghost maps have proven to be very useful for estimating the behaviour of
proxies over time. Nonetheless, the usefulness of the graph might be sensitive
to the exact values of the graphical parameters used:

A test of this program on proxy number 4 with the same settings that it
was originally run on for proxy 1 generates figure 3.3

As we can see, this proxy behaves very differently. The graph automat-
ically adjusts its height and the number of bins to compensate for a proxy
which has much greater dispersion than the previous. The program will
only have problems creating the graph if all observed values of the proxy
are within a unit of each other, in which case either the number of bins in
the histograms or the scale in which the proxy is measured can be adjusted.
This may also be desireable for proxies where the dispersion is too great and
the graph becomes difficult to see. An adjustment was made to the scale of
figure 3.3. This produces figure 3.4, which is much easier to intepret.
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Figure 3.4: The same graph as figure 3.3, but the proxy has been re-scaled.
Now the graph easier to understand



Chapter 4

BLTO: A restricted form of
BACON

4.1 The objective of BLT

4.1.1 Limitations of BACON

While BACON is very useful for dating cores which meet certain conditions,
these conditions are not trivial. For starters, peat cores with sufficient datable
material are only found in high lattitudes, and the quality of the informa-
tion produced by BACON suffers greatly if there are not sufficiently many
measurements.

The cost of 14C' measurements can itself be prohibitive: Even in situations
where peat cores are plentiful and material from which to draw *C samples
is readily available, not all cores will have the necessary information about
each proxy of interest. In this situation, it may be necessary to perform
BACON on several different cores in order to obtain all of the information of
interest. The resulting multiplication of the required'*C' measurements can
dramatically increase the cost of paleoecological studies, making the entire
process prohibitively expensive.

Occasionally, it may also happen that BACON has the opposite problem:
There is plentiful information available about the chronology of a certain core,
but much of this information is not encoded into the BACON model. While
BACON still performs well in these situations, it is clearly not the optimum
solution.

26
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4.1.2 Tephras and proxy information

One way to improve BACON is to incorporate additional information into
the model. When such information is directly available, this is an obvious
way to improve inference (see section 4.4), but often the information that
can be used is not so direct.

The main source of external information for BACON comes from tephras.
Tephras are layers of ash created by volcanic eruptions, and which experts
are able to identify in the strata of peat cores. The reason tephras are useful
is because they can be identified. The ash from each volcanic eruption is dif-
ferent, and studying the ash from each tephra will in certain situations allow
paleoecologists to identify which eruption generated it. In this situation, any
information known about the time of the eruption can be used for that layer
of sediment.

The second source of external information can be found in the proxies
themselves. While BACON is used to obtain information about the evo-
lution of proxies over time, this information does not exist within a void.
Sometimes outside information exists about the evolution of proxies. The use
of proxies for dating is very prevalent in paleoecology and has been named
“tuning”. The direct use of tuning to build chronologies has yet to receive
adequate statistical treatment and is not recommended, but the information
obtained from proxies is nonetheless useful, and some proxy information can

be encoded into BACON.

4.1.3 Information from correlation

The information available from tephras and proxies is seldom direct. Iden-
tifying the volcanic eruption which produced a tephra is only immediately
informative if a historical date for the eruption is already known. A more
common situation is that tephras from different cores can be identified as be-
ing produced by the same eruption. What can be inferred from this situatio-
nis is that the strata in these cores are the same age. Thus, any information
which BACON can give us about the age of the strata in one core is also
useful for the others.

A similar situation is found in proxies. In geographically proximal cores,
certain cataclysmic events can occur which drastically alter the evolution of
proxies. While gradual trends in proxies may not be reliable as a source of
information for chronology building, sudden cataclysmic change can often
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be attributed to ecologically significant events. It is sometimes possible for
experts to identify these events by direct study of the proxies at different
depths.

Both of these forms of information are indirect, in the sense that they do
not in and of themselves produce any information about the age of strata, but
they are useful in that they indicate correlations between the ages of depths in
different cores. The main improvement which is possible to the BACON
model is to use the correlation between the chronologies of different cores
to improve our estimations of all of them. This extension of the BACON
model to link the timescales of different cores, is called BLT (Bacon Linking
Timescales).

4.2 Changes to the BACON model

4.2.1 The simplest idea

The primary characteristic of the information used by BLT is that BACON is
improved by using other instances of BACON. One naive way to attempt to
incorporate this information is to use the posterior estimation from BACON
at a given depth in one core as a prior for the corresponding depth in others.
The issue with this approach is that it treats the information as if it only
improved estimations in one direction. When we identify strata in different
cores, the information is useful to improve estimation in all of the cores
involved.

4.2.2 Revising the model

A better approach is to revise the BACON model so that it does not treat
different cores as independent. This way, rather than estimating the posterior
one core at a time, the posterior distribution can be estimated for all cores of
interest simultaneously. Now instead of having only (6, z, w) we have instead
{(0,z,w);}, P: one set of parameters for each core, and P : a vector of
parameters which contains all information relating to the correlation between
cores, supposing that (6, x,w);|P and (0, z,w);|P are independent.

The exact nature of P will be different depending on the type of cor-
relation we wish to consider, but in general all forms of BLT will have a
parameter space defined in this way.
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4.2.3 Handling the larger parameter space

When we change our parameter space from (6, x,w) to {(0,z,w);}, P the
number of parameters increases dramatically, but for the ¢th core it is still
possible to work with (6, z,w);|P,Y using a very similar structure to the
original BACON.

This is the key characteristic of BLT models which allows us to simulate
from the posterior, and may also permit the use of parallel computing. Mod-
ern computers often use more than one processor, and this allows different
processors to work on separate tasks. While the primary purpose of this sort
of structure is to allow the computer to function normally even when a pro-
cess requires a very heavy load, we can take advantage of this structure to
divide BLT among separate processors.

Essentially, when working with & cores we will require k& simulations of
(0, z,w);|P,Y. Since the various cores are independent, we can then con-
sider the resulting simulation to come from {(0, z,w);}| P, Y for any given P.
This is not exactly the posterior distribution we are looking for, since P is
unknown, but when coupled with a procedure which changes the value of P,
it is possible to simulate from the full posterior distribution.

4.3 BLTO0: How to restrict BACON

4.3.1 BLTO

The objective of this chapter is to use MCMC techniques to simulate a large
sample from the conditional posterior distribution (6, x,w);|P,Y". This is not
actually a proper form of BLT since it does not link any timescales and still
works one core at a time. It is, however, an essential ingredient for any form
of full scale BLT.

The process of chronology building when conditioning on outside infor-
mation P is actually just a specialized form of BACON, but its relationship
to BLT is very strong. The process will be called BLTO.

4.3.2 The condition P

In the context of BLTO, conditioning on P is not based on correlation, since
there is no other core. While in some circumstances P can contain distribu-
tional information relating to (6, z,w), for the forms of BLT treated in this
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work, P will take the form of a restriction. We will fix 7(0, z,w)|P,Y = 0 if
the restriction P is not met. There are two kinds of restrictions that we will
use for BLT:

1. Exact restrictions: G(d,0,z) = a for a specific value of d and a.

2. “Fuzzy” restrictions: G(di,60,x) < a < G(ds, 0, x) for specific values of
dy,d>, and a.

Fuzzy restrictions are only used for BLLT3, and are actually much easier to
handle, so they will be treated in the corresponding section. This chapter
focuses on exact restrictions.

4.4 Why BLTO is useful on its own

There are occasions when information is known about a chronology which is
completely separate from BACON. Certain tephras are known to correspond
with volcanic eruptions with precisely known dates. While most dates for
eruptions are estimated using '*C and other radiometric techniques, some
eruptions (particularly more recent ones) are historically documented, and
the corresponding tephra has a precise known age.

This sort of information does not require the linking of timescales to be
incorporated into the BACON model. If a tephra is found at a depth d
with a known age ag, then the extra information can be encoded as simply
G(do, 0, x) = ap, which is nothing other than an exact restriction on BACON
of the form studied by BLTO.

BLTO is useful not only as a stepping stone to develop other forms of
BLT, but is actually on its own a useful technique for chronology building in
some special circumstances.

4.5 Sampling from the posterior distribution

4.5.1 The model

The model for BLT0 will be exactly the same as the model for BACON, with
the added restriction from P. The posterior distribution will be normalized
over a (significantly) smaller support, but the likelihood and priors are all
proportional to the likelihood and priors used in BACON.



CHAPTER 4. BLTO: A RESTRICTED FORM OF BACON 31

4.5.2 Why using t-walk directly does not work

Given that the model is mostly unchanged, one might think that all that is
required is to adjust the support function given to the t-walk algorithm used
to sample from the posterior distribution. For the case of fuzzy restrictions,
this is indeed the solution, but for exact restrictions the technique is ineffec-
tive.

Note that the set of parameters (0, z, w) such that G(dy, 0, z, w) = ay has
Lebesgue measure 0. The ¢t —walk algorithm simulates from the posterior by
using a Markov chain, which means that the next element of the simulation
is proposed at random and then accepted or rejected using the posterior (See
next chapter for a full description of the Metropolis-Hastings algorithm), but
the probability of randomly choosing an element from the restricted support
is 0, and hence every proposed change will be rejected.

4.5.3 Changing the parameter space

Let [ be the number of piecewise linear segments and let 7 < [ be such that
¢i < do < c¢iy1, the index of the segment that includes dy. We note that,
conditioning on P and on 0, (zg...x;_1) there is a unique value for z; which
satisfies G(dy, 0, z,w) = ag, and this unique value can actually be calculated
as

. ag — G(Cz>

n do — G

while ;1 ... x; remain free.

We observe that x; is no longer a free parameter of the model, and hence
should not be considered in the parameter space. While its prior distribution
still exists, it can now be implicitly viewed as part of the prior distribution
of (0,x¢...2i—1,Tiy1,...75,w).

We can now view the parameter space as reduced by one dimension for
each exact restriction we wish to add (It is also worth noting that it is not
possible to add more than one exact restriction in the same piecewise linear
segment).

4.5.4 The algorithm

As mentioned before, it is not possible to use the t-walk to directly sample
from the posterior distribution, the primary issue being that the parameter
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space is now (0, x¢...x;_1,Tiy1,... 2T, w), with z; determined by the other
parameters. In this case, we will call f; the density of the posterior distribu-
tion of (0, xg ... 21, %is1, ... 2, w) from which we intend to sample. Rather
than using the t-walk to sample from f;, we will instead sample from a sec-
ond distribution with density f>, which has parameter space (0, x,w) and for
which f; is the correct marginal distribution.

In order to do this, the support and energy functions are modified by
taking (6, x,w) and ignoring the value of z;. Instead a new set of parameters

is created:
) ap — G(Cz)
>$o---$i—1>d—,$z’+1---$l7w
0— G

and the usual BACON support and energy functions are calculated for this
vector of parameters.

The standard accept and reject technique is applied with the proposed z;
being accepted or rejected as well.

After BLTO terminates and a sample is produced, some post-processing
is requried since each z; in the sample must be changed for the correct x;
before any analysis is done.

4.6 Why the algorithm works

We intend to prove that when following this algorithm, the marginal density
of the sample does is in fact converge to fi.
Let fQ(J 'be the density of the jth sample accepted by BLT. Note that this

sample was accepted using a marginal distribution fl(j ), so in other words

/féj)(e,m,w)fm(g)(xi)dxi: fj)(ﬁ,xo...xi_l,xiﬂ,...xl,w)

Now observe that fihas a compact support and is continuous over this
support. Then f; is bounded, and so is each fQ(i) and each fl(i). Now all of
these functions can be bounded above by a constant function g over their
support. Since the support has finite measure (it is bounded in every direc-
tion) then g is Lebesgue-integrable.

Now note that f2(j)(0,x7w) 120 10,z w).

By the dominated convergence theorem, we can now see that

/fQ(j)<9>-Taw>fa(:f)($i)dwi jim/ﬁ(@»waw)fm@i)dxi
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and
/ 10,2, w) [ (@) des = 170,00 2, wisa, -, w)

(as stated above) and hence

fl(j)(Q,xo oo L1, it 1y - - - xl,w) J_—>>OO /f2(9,$,w>f$l($z>d$1 = f1<9, oo - Li—1yLit1y---LYy w)

which is what we intended to prove.

4.7 Results and discussion

A program called BLT0.py was written in Python using the above technique.
The results are as expected, and the efficiency is similar to what we obtained
from BACON.py.

For purposes of comparison, BLT0.py was run on the MSB2K peat core
using dy = 20cm and ay = 4850 years BP. This is not known to be the case,
but seems like a perfectly plausible age for this depth, as suggested by our
previous runs with BACON.

As one might expect, estimations using only 50,000 iterations are some-
what crude and untrustworthy, as can be seen in figure 4.1

With 1000,000 iterations, the posterior distribution becomes clear, as seen
in figure 4.2. It is now possible to compare the distribution using BLTO0 to the
distribution using BACON (figure 2.4 initially, presented again as figure 4.3).

The good news is that knowing the age at a single depth is actually
very informative. While it might be expected that only depths very close
to 20cm would be affected, the uncertainty becomes visibly reduced from
depths of 0 through 50 cm. And estimations of the standard deviation are
lower throughout the entire depth of the core.

Overall, the effects of outside information on the chronology are very
beneficial. Including a single tephra of known age is enough to dramatically
reduce uncertainty and improve the accuracy of estimations.
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Figure 4.1: BLTO tracing one iteration every 100 from 20,000 to 50,000 it-
erations on the MSB2K peat core. At a depth of 20 cm. we have placed a
4850 year old tephra. This tephra does not actually exist, and is used only
to test the program.
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Figure 4.2: BLTO tracing one iteration every 1000 from 50,000 to 1,000,000.
This is the equivalent of the Python version of BACON (see next figure).
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Figure 4.3: The same plot using BACON, same as figure 2.4. From the
comparison, we can see that BLTO provides less dispersion not only at the
tephra, but throughout the graph.
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BLT

5.1 Outline

5.1.1 Overview

One of our primary interests is to extend the scope of BACON by incorpo-
rating information not included in the original model. For any phenomenon,
there is no model which will adequately incorporate all of the information
that is available, nor is it necessarily desirable to incorporate all such infor-
mation, even if it were possible.

BACON is a reasonably popular program that has seen use by paleoecol-
ogists for a number of different purposes. It is therefore worth investigating
whether incorporating further information into the model would improve the
results of the program. The types of information which it is possible to in-
clude in BACON are varied, and the choice of what information to try is by
no means trivial.

The main source of what information to add to the BACON model is
to directly consult expert opinion. Specifically, that of paleoecologist Dr.
Maarten Blaauw, who participated in the initial development of BACON and
who has spoken to numerous paleoecologists on the subject. Dr. Blaauw’s
suggestions primarily centered around information from tephras and proxies,
as discussed in section 4.1.

Of the two classes of information, the information available from proxies
is much more difficult to manage. While tuning (using proxies directly to
build chronologies) is a common practice in paleoecology, it is not — at present
— supported by sound mathematical theory, and it is difficult to quantify

36
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the uncertainty in estimations which rely on it. Because this information
is mathematically intractable, only a very specific case of proxy information
has been attempted (see BLT3, section 5.6).

The information gathered from tephras is far more reliable, and incorpo-
rating data from tephras has been explored in three different ways. The first
of these ways is BLTO0, or restricted BACON, which is discussed in chapter
4, and which can be seen to significantly improve on the results from BA-
CON in a situation in which a specific kind of information is available. In this
chapter we will explore the use of information from tephras in the much more
common situation in which the information required for BLTO is unavailable.

While in practice it may well be the case that various forms of infor-
mation are available at different depths of the same core, for the -primarily
exploratory- purposes of the present work, we will consider each form of in-
formation separately. This will allow us to appraise the usefulness of adding
each type of information into the model.

5.1.2 The general BLT model

The information that will be incorporated into BLT is obtained from corre-
lations between different cores. We will suppose that there are [ cores for
which we intent to construct a piecewise linear chronology using k segments.
For the jth core, the ith segment will have a slope xgj ), the age of the upper-
most stratum will be %) and the core will have a memory parameter w'?).
The entire set of parameters corresponding to the jth core will be written as
©U), and the set of [ such sets of parameters will be written simply as ©.

Along with ©, there is a second form of paramter which contains all of the
information pertaining to the correlation between cores. This information
will vary between the forms of BLT, but for general purposes, it will be
written as P. Our model will suppose that ©W)|P = p and O |P = p are
independent for any j # m. The full parameter space is (0, P).

The model for F@U”P(@U”P) (prior and posterior) is exactly BLTO for
the case of BLT1 and BLT2, but for BLT3 a different model will be used.
The model for Fp(P) will be different for each form of BLT. The four forms
of BLT are summarized in table 5.1.
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’ Name \ Type of correlation \ P \ Restriction
BLTO0 None dy, apfixed G(do) = ag
BLT1 Exact d{"fixed, fpunknown GO = 6,
BLT2 Candidate dgé)’j)ﬁxed 10, Bpunknown G (dgé)’io)) =0,
BLT3 Fuzzy ", dfixed, agunknown | GO(dY) < ag < GO (d")

Table 5.1: The forms of BLT

5.2 The Metropolis-Hastings algorithm

5.2.1 Limitations of the t-walk

The t-walk algorithm, which was used for BACON and BLTO, is a general
purpose algorithm which can be used to sample from any form of probability
distribution for which the support and energy functions can be calculated.
The efficiency of this algorithm for sampling from a posterior distribution has
been found to be very high for certain types of distributions (see Christen
and Fox, 2010), but its very generality is its primary limitation: The t-walk
does not take advantage of any structural information which may be avail-
able about the target distribution. In the case of BACON, very little was
known about the posterior distribution of the parameters, and hence it was
appropriate to use the t-walk directly. The same cannot be said about BLT,
wherein a form of conditional independence has been incorporated into the
posterior distribution by design. If possible, in this situation much can be
gained by using an ad-hoc MCMC algorithm, specifically designed to take
advantage of the structure of the posterior distribution.

5.2.2 MCMUC in general

The general objective of MCMC is to produce a sample from a target dis-
tribution with density p(z). It is possible that p is known explicitly, but it
is often the case (especially in Bayesian statistics) that what is known is a
function f which is proportional to p but which is not normalized (does not
integrate 1). In this case

f(z)
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but this can only be calculated if it is possible to calculate [ f(x)dz, which
is frequently impossible.

The technique used to generate a sample of the target distribution is
to propose a Markov chain over the support which has p as its asymptotic
distribution. In other words, if S(7) is the state of the Markov chain after
iterations, we have

P(S(i) € A)"=° / p(x)dx
A
and hence, if L is chosen to be sufficiently large, then S(L)~p.

It is particularly desirable that if k is also sufficiently large then S(L) and
S(L + k) are approximately iid ~p. If this is the case, then an MCMC
algorithm will produce an arbitrarily large sample from p in the following
way:

1. Begin the algorithm at any point S(0) within supp(p).

2. Simulate the Markov Chain for a sufficiently long time L and take
Xo=S(L).

3. Continue to simulate the Markov chain for as long as is required, taking
X; = S(L +ik) for k sufficiently large, and i = 1,2, 3, ... as large as is
desired.

4. Take the sample {X;} as an approximately iid sample ~p

This algorithm only makes sense if k < L (otherwise just repeat steps 1 and
2), and it is reasonable to expect that this will be the case so long as a — b
in the Markov chain for any a and b in supp(p).

It is worth noting that in most cases, the entire path of the Markov chain
S(a) for a = {L,L +1,...} is useful for most estimations, even if it cannot
be treated as an iid sample from p.

The various forms that MCMC algorithms take are variations on the
Markov chain with the desired asymptotic distribution.

5.2.3 The M-H algorithm

The Metropolis-Hastings algorithm is one variation on MCMC which has
been found to yield good results in situations where f is known and p is not.

For each point a in the support, a distribution (known as the instrumental
distribution at the point a) is required with density ¢, from which an efficient
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simulation algorithm is known. Some further requirements are placed on
q = {qala € supp(p)} which will be discussed in the next section. Despite
being a set of distributions, ¢ is called the instrumental distribution.

Now let a = S(i) be the state of the Markov chain at time i. The
Metropolis-Hastings algorithm will produce S(i 4+ 1) in the following way:

1. Simulate b + q, "propose a move to b”

b with probability p; = max(1, (MM> 7bis accepted”
2. Let S(i+1) = b yp (L (G v p

a otherwise "bisrejected”

Now observe that p; = maz(1, A;) where

A, = a(a) p(b)  q(a) % _ q(a) f(b)

4 () pla) (b)) HA qa(b) f(a)

is known as the Metropolis-Hastings quotient and can be calculated without
knowing the value of [ f(z)dz. Hence log(p;) can be obtained from the ability
to calculate q,(b) for arbitrary a and b in supp(p) as well as the support and
energy functions.

5.2.4 Requirements for the instrumental distribution

In order for the M-H algorithm to produce a Markov chain which converges
to the target distribution, the instrumental distribution ¢ must satisfy the
following requirements:

1. For a and b in supp(p) there must be a finite sequence {¢y, ca,¢3. .., ¢k}
with g.(c1), g, (cit1) (for all i) and ¢, (b), as well as p(¢;), all greater
than 0.

2. For a and b in supp(p) if ¢,(b) > 0 then g,(a) > 0.

3. The resulting Markov chain must be aperiodic. For our purposes we
will instead ask for a stronger condition, which is that the Markov chain
be strongly aperiodic, which means that Va € supp(p), P(S(i + 1) =
a|S(i) = a) > 0, or in other words, that rejection is possible.

For all of the M-H algorithms used, these three properties will be self-evident.
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5.2.5 Hybrid kernels

The transition kernels of the resulting Markov Chain are referred to as those
induced by the instrumental distribution used. Let ¢, i € {1,2,...k}
be a finite set of instrumental distributions. The kernel induced by ¢, =
¢ with probability 79 is called the hybrid kernel induced by {¢"}and
{r®}s0 long as 7Ware all greater than zero and >, 7 = 1.

Note that one way to execute the M-H algorithm from a hybrid kernel
is to simulate a discrete random variable with probabilities {7} and then
perform an M-H step using the appropriate instrumental distribution.

Also note that not all of the ¢ need to satisfy properties 1 and 2 from the
previous section. It is enough for one of the kernels to satisfy each property,
or enough for one kernel to satisfy property 2 and a set of them together to
satisfy property 1 (That all states in the support can communicate).

5.2.6 The Gibbs kernel

One particular kind of kernel which is frequently useful to construct a hybrid
kernel is called a Gibbs kernel. Let 6 = («a, 3) be a point in sup(p) with «
and (8 some partition of the dimensions of #. The gibbs kernel is the one
induced by the instrumental distribution:

(a.8) (@, y) < pap(x|B = B)1y=p

This can be interpreted as proposal to keep some parameters fixed and
then condition on these and change the rest of them using the conditional
distribution.

The practice of fixing some parameters and moving others is very common
in Metropolis-Hastings algorithms using hybrid kernels, but the Gibbs kernel
is particularly interesting because of the value of the Metropolis-Hastings
quotient. The probability of accepting a proposal to change state from («, /3)
to (v, ) is the maximum of one and

=

p(a,

_ 408 B) (v, 8) _ pap(alB =B)I(B =B)p(v,8) _ ) P(v.8) _
qmﬁ)(’%ﬁ) p(Oé,ﬁ) pA|B(7‘B = ﬂ)[(ﬁ = ﬁ) p@“?ﬁ) p(v,8) p(@,ﬁ)

A

so the proposal is always accepted. The difficulty in using this algorithm
is that simulating directly from this instrumental distributionis not always
possible.
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5.3 The data

5.3.1 The datasets that were used

For all of the examples in this chapter, the datasets used were the Deadisland
and Slieveanorra2 peat cores. These are two highly correlated cores, which
have several tephras which are known to correspond. There are no instances
of correlations of the type used in BLT?2 (see section 5.5) or BLT3 (see section
5.6), but it is not difficult to find reasonable settings to test these programs
with. It is extremely useful to use the same datasets in each version in order
to adequately compare the performance of different versions.

5.3.2 Building chronologies for these cores using simple
BACON

In order to get a proper notion of the effect of the correlations between these
cores on the inference about their chronologies, it is important to observe
what chronologies are obtained without considering the correlations. Figure
5.1 is the result of running the Python version of BACON using the Dead-
island dataset for one million iterations. Figure 5.2 is the result using the
Slieveanorra2 dataset.

While these graphs on their own are of little significant interest for our
purposes, there is a salient feature worth mentioning, which is the area around
230 c¢m deep in the Deadisland core, and around 150 cm deep in the Slie-
veanorra2 core. The uncertainty in these points is significantly less than in
the rest of the core, and the strata at these depths are around 3000 years
old. These correspond to a tephra present in both datasets and which will
be used for several of the examples below. Since this tephra has been dated
previously and elsewhere, the data relating to its age is more precise.

5.4 BLT1

5.4.1 The model

The first form of BLT that will be approached is known as BLT1. The
correlation that we are interested in is the case in which a single tephra of
unknown age has been identified accross numerous cores. This situation is
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Figure 5.2: The chronology of the Slieveanorra2 core, built independently.

Along with figure 5.1, these will serve to compare the results of BLT.
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BLT 1

Cora i Corg i+1

Figure 5.3: The situation modeled in BLT1: Strata in two cores share a
corresponding tephra of unknown age.

depicted by figure 5.3: The strata at the corresponding heights for this tephra
can be considered to be the same age as one another. The strength of this
model relative to BLTO is that we do not need an exact historical date for
the tephra.

In this case, we build on the general BLT model (section 5.1.2) by repre-
senting P = 6y as simply the age of the tephra. In this case the conditional
posterior distribution 7(©W|f, = p) is precisely the BLT0 model with ag = p
and dj the height of the tephra in the jth core.

The distribution of fy has an arbitrary prior my(6y) which may contain
prior information relating to the age of the tephra, or may simply be over
the support (as is the case in the examples presented). The value of 6y also
has an effect on the priors for all of the other parameters ((6, z,w)"Y for each
4) and on the likelihood, as it is the value of G ((dy, z,w)¥)) but this effect
is only on the values, and has no effect on how they are computed.

5.4.2 The algorithm

In order to draw a sample from a posterior distribution of a BLT1 model,
a Metropolis-Hastings algorithm was constructed, using a two part hybrid
kernel. The weights of these kernels cannot be chosen universally, as the
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effectiveness depends on the number of cores, and the number of segments
in each core: Since this is not a t-walk algorithm, some calibration must be
done manually.

The first kernel is simply BLTO performed on each of the cores with the
ith iteration of the algorithm setting a(()j 10— 9(()0 for 100 iterations (which
may be changed if the structure of the cores demands it, but 100 has proven
to be reasonable in most situations when testing). 100 iterations is not nearly
enough for the result to be considered a sample from the posterior conditional
distribution, so this is not a Gibbs kernel, but BLTO is an instance of t-
walk, and the t-walk is precisely a Markov chain with a Metropolis-Hastings
transition kernel.

The second kernel takes (0,6p); and proposes (©,6p);+1 as (0;,6¢,+1)
with 6,11 distributed uniformly in the range of dates which would con-
tinue to be in the support of V) (9, z, w)Y) for all cores j, where 7 =
(#1,...%q,-1,%d;41, ... 7)) and d; is the index of the segment wherein the
tephra is located in the jth core (note that w4, is uniquely determined by
the other parameters, see section 4.5.3). The Metropolis-Hastings quotient
is calculated using the same energy function which is given to the t-walk for
the first kernel. Since this second kernel is not a gibbs kernel either, rejec-
tions can — and do — occur.

5.4.3 Test run

Calibration of the algorithm was done by testing it establishing a correlation
between the MSB2K peat core and itself, treating a depth of d=50 cm. as if it
was a tephra. Since adding the information that a depth is equal to itself does
not add any information at all regarding the MSB2K chronology, a properly
callibrated run of BLT1 will produce the same posterior distribution as the
distribution produced by BACON (see chapter 2, section 2.7). Figure 5.4
shows the results from BACON, and figure 5.5 shows the results of BLT1
run with a weight of 0.5 for each core, for 10,000 iterations, sampling one
of every 10. These graphs are very similar, and we can conclude that these
settings should be reasonable for two cores with one matching tephra and 20
sections each.
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Figure 5.4: The original plot using ordinary BACON with the msb2k core.
If BLT1 is properly calibrated then this should be similar to figure 5.5
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Figure 5.5: The same chronology using BLT1. The graph is very similar and
we can conclude that this calibration is reasonable.
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Figure 5.6: Deadisland chronology using BLT1. A tephra at a depth of 221
cm. is equated to one at a depth of 150 cm. in Slieveanorra2. BLT1 reduces
uncertainty almost to the point of providing an exact date for the tephra.

5.4.4 Results

One teprha that is strongly associated between Deadisland and Slieveanorra2
is the microlite teprha, found at a depth of 219.5 c¢cm in the Deadisland
core and at a depth of 148.5 cm in Slieveanorra2. At these two points there
are also '*C' measurements, which coincide. Rather than set the program at
exactly this depth, it is slightly more interesting from a testing perspective
to have the tephra be set where there is no measurement, so instead the
program was set to associate a depth of 221 c¢m in Deadisland with 150 cm
in Slieveanorra2.

Using the settings discovered from the callibration, BLT1 produced figures
5.6 and 5.7 for the chronologies of the Deadisland and Slieveanorra2 cores.

The most surprising aspect of these graphs is that the algorithm provides
nearly an exact date for the tephra. while the reduction in uncertainty
throughout the core is not quite as dramatic as what was obtained from
BLTO in chapter 4, the posterior distribution tightens up dramatically when
near the tephra, and shows some improvement throughout. Even though the
4 measurements at the tephra are identical, the information from the sur-



CHAPTER 5. BLT 48

7000 Sllevegnorraz

6000 +

5000 +

4000 -

3000 +

cal year BP

2000 +

1000+

—~1000 . . . . .
0 50 100 150 200 250 300

Depth

Figure 5.7: Slieveanorra2 chronology using BLT1. The sample at 150 cm. of
Slieveanorra2 is identical to the sample at 221 cm. for Deadisland.

rounding cores provides much greater precision.

A second run was done changing the depth of the tephra from the the
Slieveanorra2 core to 140 cm. The results are shown in figures 5.8 and 5.9

Although it may look like there is greater dispersion, this is caused by
the change of scale; the dispersion is actually less: No elements of the sample
predict an age older than 6000 years at any depth. Along with this reduction
of the posterior’s disepersion, it is also interesting to note that the shape of
the Slieveanorra 2 chronology has been slightly altered, creating a very flat
section around the depths of 140-150cm.

5.5 BLT2

5.5.1 The model

The situation modeled in BLT1 is significantly more common than the situ-
ation of BLTO, but it is still somewhat optimistic. It is not always the case
that tephras can be so precisely identified. While it is true that the chemical
compositions of tephras resulting from each volcano tend to differ enough to
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Figure 5.8: Deadisland chronology altering the depth of the Slieveanorra2
tephra to be 140 instead of 150 cm. This time there is slightly more disper-
sion.
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Figure 5.9: Slieveanorra?2 chronology changing the depth of the core. In this
case the shape of the chronology is slightly altered, favoring low accumulation
rates near the tephra.

be distinguished from one another, this will only serve to distinguish tephras
created by different volcanos. If a single volcano erupts more than once, it
may not be possible to clearly distinguish a tephra created by one eruption
from a tephra created by a different one.

It is easy to think that this problem is completely trivial: A volcano
erupts twice, and all of the cores we are interested in show one lower and
one higher tephra. In this case, assuming the monotonic BACON model is
applicable, all of the lower tephras are the same, as are all of the higher ones.

Unfortunately, the picture is not always so clear: Some cores may not ex-
press all of the tephras. In this case, rather than associating a tephra in one
core to a tephra in another, we instead associate it to one of a set of candi-
date tephras from the second core. If we allow any number of cores having
any combination of different numbers of candidate tephras, the resulting
combinations can result in extremely many possibilities and very complex
dependence structures. It is not particularly clear that modeling this situa-
tion is even particularly useful, since truly complex structures of this kind are
rarely found in practice. Rather than solving the general case, the approach
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Figure 5.10: The situation modeled by BLT2: It may be unclear which of
the tephras in core i corresponds to the teprha in core ¢ 4+ 1

has been to choose one particular case which is fairly common: A single core
expresses multiple tephras, of which only one is found in the other cores, as
illustrated in figure 5.10

In this situation, we will build off of the general BLT model, having
P = (0o, 1i0) wherefy represents the age of the shared teprha, and iy takes on
a discrete set of values and indicates which tephra in the multi-tephra core
actually corresponds to the tephra in the other cores.

We are free to reorder the cores, so let core 0 be the core in which there are
multiple candidate tephras. Let d(o 1) . .. d( ) be the depths of the candidates.
Since there is only one age among the candidates that is actually correlated,
we will let 6y be the age. Then (©|fy,iy) will follow the BLT0 model with

ap = 0y , d(()o) = d(0,i) and with d(()z) being the height of the tephra in question
for the ith core.

0y has a prior of the same sort that is found in BLT1, and iy has prior
probabilities 7 ...ms of being 0...6 respectively. Each 7; is positive and
Z?:o m; = 1. The log-likelihood is calculated as it was in BACON, and the
corresponding log-priors are added to obtain the energy function.
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5.5.2 The algorithm

The algorithm used to sample from the posterior distribution is a Metropolis-
Hastings algorithm with a three part hybrid kernel, with weights which are
chosen ad-hoc, as in BLT1:

The first kernel used is exactly the same BLTO kernel as was used for
BLT1. The number of iterations remains 100, as it has given reasonable
results.

The second kernel is the kernel generated by the instrumental distribu-
tion which takes (0, 6y, 7y); and proposes (0, 6y, 0)i+1 as (©;,6p 41, t0,;) With
6o,i+1 distributed uniformly in the range of dates which would continue to be
in the support of 70)(, z,w)" for all cores j. This is essentially the same as
the second kernel for BLT1, and we note that since the value of ig does not
change, its contribution to the energy is the same before and after the transi-
tion; hence this prior does not need to be recomputed in order to determine
acceptance or rejection.

The third kernel is a kernel generated by the instrumental distribution
which takes (0, 6y,179); and proposes (0, 00,140)i+1 as (0;,00,+1,7%0.+1) With
io,i+1 simulated from the prior distribution for g ;4.1 and 6 ;41 is Go(dy, ., ©:)-
We note that this instrumental distribution does not depend on the param-
eters at all. Since changing 7y, changes the entire function Gy, then the con-
tribution to the energy of this core must be recalculated in order to compute
the Metropolis-Hastings quotient.

5.5.3 Calibration

Setting the kernel weights all at 1/3, we can observe that if dg 1y = d(o,2) then
the algorithm will be equivalent to the BLT1 algorithm except with a 1/3
chance of doing nothing for one step. Hence, a number of iterations equal
to 3/2 of the iterations used for BLT1 would produce the same results, and
hence gives a lower bound for the number of iterations that will be required.
This is only a lower bound, since if d(g,1) # d(o2) then the exploration of the
posterior given each value for i is desireable, unless one of the values for i
is found to be significantly less likely than the other (In which case the more
likely value of iy will be explored faster anyways). One option is to perform
a shorter run and obtain an approximate posterior distribution for ig. The
closer it is to being balanced, the longer the chain should run. This is what
has been done for the “results” section.
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5.5.4 Results

There are two estimations of interest in BLT2. While it is certainly an
interesting tool for chronology building in general, often we may be interested
in a much simpler question: Which candidate tephra corresponds to the other
tephras?

Using Slieveanorra2 as core 0, d(g,1) = 120 and d g 2) = 150 the algorithm
was initialized at ig = 1, deliberately setting it to begin in the wrong place,
and with a balanced prior (meaning P(iy = 2) = 0.5). A short run of 1000
iterations was used to estimate the posterior distribution of iy, arriving at
an estimate of P(ip = 2) ~ 0.996. BLT2 makes a very clear choice, and
designates the correct depth. With such a decisive estimation, the most
prudent choice for constructing this chronology would not be to use BLT2,
but simply to choose ig = 2 and use BLT1.

To test chronology building, we need a more balanced posterior. In-
stead we set d;) = 140. The same procedure gives us an estimate of
P(iy = 2) ~ 0.825. A conservative iteration count was chosen to be 30,000
iterations: Three times what was used for BLT1. Samples were taken once
every 30 iterations, discarding the first 150. This produces a sample size
which is equivalent to what has been used before. The new estimation of
the distribution of iy is P(iy = 2) ~ 0.961 which is still quite high (BLT2 is
almost too powerful to test properly with these data!) The resuting graphs
can be seen in figures 5.11 and 5.12.

Once again the reduction in the uncertainty of the Deadisland core is quite
significant. For the Slieveanorra2 core the effect is less dramatic. The biggest
change comes in the shape of the core, which favors lower accumulation
rates around the depth of the tephra. These rates have a better chance of
satisfying the matching of either of the two depths to the Deadisland tephra.

5.6 BLT3

5.6.1 The model

Thus far all forms of BLT have been chosen to incorporate information from
tephras only, with no attention given to information which is available from
proxies. It is true that information from proxies is often extremely unreliable
for dating purposes, but this is not always the case. While gradual trends
and changes in proxies may vary greatly even in areas of close geographical
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Figure 5.11: Deadisland chronology using BLT2. The tephra in Deadisland
is associated to a depth of either 140 or 150 cm in Slieveanorra2. In this

situation, the Deadisland chronology is almost identical to the chronology
using BLT'1.
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Figure 5.12: Slieveanorra2 chronology using BLT2: The possibility of choos-
ing between a depth of 140 and 150 cm. has made the chronology slightly
flatter in this area, favoring slopes which make the age at these depths simi-
lar to one another.
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Figure 5.13: The situation modeled in BLT3: There are upper and lower
bounds for the depth of an event in two different cores.

proximity, sometimes proxies can be indicators for significant cataclysmic
events, which indicate dramatic change and which can be used to establish
correlations between chronologies.

An example of an event which can be inferred from proxies is the extinc-
tion of a species. It may occur that in more than one core, the pollen of a
certain type of flower is found throughout the core up until a certain depth,
above which it disappears altogether.

The situation in BLT3 is somewhat similar to BLT1, with one significant
difference: The depth of a tephra is known exactly, whereas the depth corre-
sponding to the extinction of the species is not. The highest point at which
the pollen is found does not necessarily correspond exactly to the moment
of the species’s disappearance. It may be that the species was present, but
no pollen landed in that particular area, or similarly that the species had al-
ready died out, but that some older pollen was still found adrift. What can
be done is that an interval can be chosen: The bottom of the interval is a
depth at which the species certainly continued to flourish, and the top is a
depth at which it was definitely extinct. This situation is illustrated in figure
5.13.

A similar situation can happen sometimes with some tephras, where ashes
are occasionally scattered over a range of depths, rather than found at a
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single depth.

The first approach to model this situation would be simply to put a re-
striction on the support of © such that 7(©) = 0 if the corresponding inter-
vals in different cores are disjoint. While this approach is entirely functional,
it has a problem: It does not correspond with the structure of the general
BLT model as outlined previously. While this is not a serious issue in itself it
does lose any form of conditional independence, and to test the support for
any core, there is no simple piece of information that can be checked without
having to perform significant computation on all other cores.

A second modeling approach has been chosen instead which corresponds
to the general BLT model and which also represents the phenomenon slightly
more explicitly: We will use P = ag as the age of the cataclysmic event which
is being modeled. The prior for ag is simply uniform over the entire timespan
which is being considered (this may seem very broad, but as we will see below,
the conditional prior is much more reasonable). For each core j we will have
d(()j ) and dgj ) representing the endpoints of the interval corresponding to the
times in which the event is known to have occurred. Then the conditional
distribution ©“|ag is the BACON model with the support restricted to

GOV, 00 < qp < GV (Y, 0).

We can now consider the prior conditional distribution of a|©. Note
that the prior for ag is uniform, and also that it does not have any bearing
on the relative value of the prior of © at different points in its support.
Now if we consider the sets A = {GO(dS),©@)0 < j < I} and B =
(GO (AP, 0|0 < j < 1} then ao|®© is uniform in [maz(A), min(B)], which
is actually quite reasonable.

Even more interesting, we note that ag does not have any relationship to
the value of the likelihood either, since the likelihood is simply the likelihood
of the BACON model. So long as ag changes within [maxz(A), min(B)], the
calculation of the likelyhood does not depend on ag. This is particularly
useful for purposes of calculation.

5.6.2 The algorithm

Simulating from the posterior distribution of (0, ag) was accomplished using
an MCMC algorithm with a two part hybrid kernel.
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The first kernel is created using a t-walk algorithm which is very similar
to BACON. We add the restriction G@(d),00) < ao < GU(dY,00))
to the support function, creating an algorithm that - if allowed to run for
long enough - would converge to the conditional distribution of (©|ag). The
algorithm is allowed to run for 100 iterations.

The second kernel is generated by using an instrumental distribution
which takes (©,ag); and proposes (0,ag)it1 = (04, api1) With ag;11 gen-
erated uniformly over [maxz(A), min(B)], as defined in the previous section.
We have already noted that this is the conditional prior distribution, but we
can also note that changing ag; to ag;+1 does not affect the value of the like-
lihood, so this is actually the conditional posterior as well. Since the target
distribution is exactly the posterior distribution, then simulating from the
conditional posterior is exactly a Gibbs kernel, so this second kernel never
rejects the proposal from the instrumental distribution.

In order to remain strongly aperiodic, it is required that a rejection be
possible, and this happens when the first kernel returns the same parameters
as it received originally. For this to happen, the t-walk algorithm must have
100 rejections in a row, which, while extremely unlikely, is not impossible,
which is all that is required.

5.6.3 Test run

It makes sense to expect correlation time in BLT3 to be slightly lower than
for BLT1. To test this, the algorithm was tested for the MSB2K peat core
with 10,000 iterations (the same as was used for BLT1) with dy = 40 and
dy; = 50 on both instances. As with BLT1, the idea is that no new information
is added, so we expect the posterior sample to match the sample we obtain
with simple BACON. The result can be seen in figure 5.14.

As with BLT1, the result is virtually identical to the result obtained by
simply using BACON; so these settings can be considered reasonable.

5.6.4 Results

BLT3 was used on the Deadisland and Slieveanorra2 datasets using dy =
215, dy = 225 for Deadisland and dy = 145, d; = 155 for Slieveanorra2. The
results are in figures 5.15 and 5.16

The improvements are far less dramatic than with any of the previous
forms of BLT, the main difference bing in the Slieveanorra2 core near the
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Figure 5.14: MSB2K chronology using BLT3. If the calibration is correct, it
should be very similar to the graph which is created by BACON, and it is.
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Figure 5.15: Deadisland chronology using BLT3. An event between 215
and 225 cm. is set to correspond to an event between 145 and 155 cm.
in Slieveanorra2. The result is not that big of an improvement over the
chronology built independently.
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Figure 5.16: Slieveanorra?2 chronology using BLT3. There is slightly less
uncertainty near the tephra, but the difference is not very big.

tephra, where the uncertainty is slightly reduced.

One possible reason why the results are not so different from the BACON
results is that the intervals where the correlation is being supposed is already
a region of fairly little uncertainty. As an experiment, BLLT3 was used again,
using dy = 300, d; = 310 for the Deadisland core, and dy = 230, d; = 240
for the Slieveanorra core. There is no particular reason to think that these
regions are correlated in reality, but a relationship is plausible given the data.
Using these settings, BLT3 produced figures 5.17 and 5.18.

Using these settings, a significant difference is found, with lower uncer-
tainties and different shapes in the chronologies. This improvement does not,
however, seem to propagate as far beyond the region of interest as they did
with previous versions of BLT. This may be because the added information
is not as strong, but it also may simply be because of the region near the
tephra, where uncertainty is already lower, and is therefore not so affected
by the change.
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Figure 5.17: Deadisland chronology using BLT3, using for correlation a false
event between 300 and 310 cm., and matching it to depths between 230 and
240 cm. in Slieveanorra. This time thre is a big difference, because there
was less information available in the specified region.
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Figure 5.18: Slieveanorra2 chronology using BLT3 and the false event. The
entire right half of the chronology has a different shape.



Chapter 6

(zeneral discussion and
conclusions

6.1 Overview

The techniques investigated in this work have produced favorable results
overall. While BACON is a useful tool for chronology building, the techniques
presented here have shown that significant improvements can be made over
its present structure.

The first change proposed to BACON was a response to the difficulty
of compiling it on all targeted operating systems. In order to address this
problem, BACON was rewritten from scratch in the Python programming
language, and this language was also used for all forms of BLT. Python
proved to be able to handle the heavy computational load, but this did come
at a significant hit to runtime. As such, it cannot be said that Python is
strictly an improvement over the original C+-+/GSL approach. This being
said, a hybrid Python/C++ approach has been suggested which may solve
both performance and portability issues.

The second problem which was posed was that of permitting BACON to
be used to directly associate proxies with age. This problem was solved
using a relatively simple algorithm which makes the results from BACON
immediately useful. The algorithm produces a sample from the posterior
distribution of proxies for each age of interest. The ages of interest have
their samples associated according to which of them came from a certain
vector of posterior parameters, thus allowing the estimation of the posterior

64
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probability of nearly any event that one might be interested in.

The final challenge was finding ways of using external sources of informa-
tion, such as the data from other cores, to improve the posterior estimation
made by BACON. The scope of this problem is perhaps too broad for there
to be any general solution. Four forms of information were chosen, and for
each of these a model was proposed which reduced the uncertainty in the pos-
terior estimation. In all cases, besides BLT3, this reduction was significant
even in regions where the uncertainty was already relatively low.

6.2 Python implementation

With the exception of the work detailed in chapter 3 (relating to ghost maps
and proxy estimation, where ther programming was done in R) the Python
programming language has been used throughout this work as an alternative
to C++. Despite significant performance hits, Python was able to perform
even the most complex of tasks presented.

6.2.1 Performance

The biggest problem with using Python instead of C++ are the performance
issues. While C++ is able to perform eight million iterations of BACON
in about three minutes, Python takes nearly 20 minutes simply to perform
one million iterations (and another three of sample postprocessing, required
to produce the graphs). This problem is even worse than it sounds since
the number of required iterations scales (nonlinearly) with the dimension
of the parameter space. Throughout this work we have consistently used 20
linear sections to create all of our graphs (yielding 22 parameters for simple
BACON).

Examining the cost of the program in terms of what functions consume
the most time, it appears to be the case that reading specific entries from
arrays created by the Python library numpy takes up a surprisingly large
amount of time. In C++ reading entries from arrays is extremely fast, and
does not require any functions from the GSL or any other nonstandard li-
brary. Because of this, it has been proposed that C++ could be used to
handle array lookups only, letting Python do the rest of the computation. It
is possible that this hybrid approach would be enough improve the perfor-
mance of the program to tolerable levels.
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6.2.2 Graphs

In the original form of BACON, C++ was used only as a number cruncher.
All forms of graphing was done separately with the R programming language.
Unlike C++, Python has a relatively standard library called matplotlib, which
is able to adequately perform all of the graphing functions required for BA-
CON.

The result of doing all of the calculation and graphing in the same lan-
guage is that each program can be kept down to a single file.

6.2.3 Libraries and maintenance

The libraries used with Python were scipy, numpy, matplotlib, cProfile, copy,
random, and pytwalk. Of these, cProfile, copy and random are included by
default with a standard Python installation. Scipy, numpy and matplotlib are
all standard libraries, which can easily be installed under nearly any operating
system, and which come by default in many Python scientific computation
packages, such as Anaconda (http://docs.continuum.io/anaconda/). Pytwalk
is a library created by A. Christen which contains functions to run the t-walk
algorithm using Python. This library, along with installation instructions is
found at http://www.cimat.mx/ " jac/twalk/.

Since Python is a scripting language, code is never compiled, so mainte-
nance of the program can be done on the code only. In general, Python is a
friendly and easy to read language, so no special understanding of the code
is needed to make changes. Updates to the libraries used are handled auto-
matically by most operating systems, and are not difficult to do manually.

The main issue with maintenance at present is that many functions in
the code are repeated between the different programs (see section 6.4).

6.3 Proxies

From a computational standpoint, the generation of ghost maps to study
proxies is a very simple task. The code was written in the R programming
language to maintain maximum compatibility with the original BACON for-
mat, primarily because this is the section of the code that is closest to being
immediately useful as it stands (see section 6.4).

From a practical standpoint, the contribution to ghost maps is probably
the most significant. The majority of research in paleoecology (or any sci-
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ence) is not so much focussed on reducing the uncertainty as in producing a
greater amount of information. In this sense, ghost maps are able to directly
produce information of the sort that is desired, and are overall very useful
for studying the trends in proxies over time.

From a statistical standpoint, the most interesting aspect of ghost maps is
the change in the regression paradigm for this sort of chronology: In general,
the depth is considered to be known and the age of said depth is treated as
random, but for ghost maps, this perspective is reversed. The imporant
property that was required to do this is the fact that the function G is
injective with probability 1 when we condition on the regression parameters.
It is hypothesized that for a bayesian regression model with a conditionally
injective regression function will allow an inversion of this sort.

6.4 BLT

BLT is a complex process. Even the very basic approach of BLTO is still a
nontrivial extension of BACON from a computational perspective, and fur-
ther forms of BLT add additional complications to the model. Overall, BLT
has proven successful at reducing the uncertainty in BACON. It also may be
of interest to study the correlation of the posterior samples for proxy infor-
mation. It is possible that BLT will reveal information on proxy correlation
that is not immediately apparent, and provide useful insights, although this
has not been modeled or implemented.

6.4.1 BLTO

BLTO produces the most dramatic improvements to BACON, and this is
unsurprising since the information which has been added is significantly
stronger. It also is the simplest of the BLT models and the only one where
the difficulty does not scale with the number of cores. The reduction in un-
certainty will, of course, be more impressive if the tephra is found in a region
where the uncertainty (in the unconstrained chronology) is large.

It is possible to perform BLTO with either the BLT1 or BLT2 programs,
simply by setting the probability of choosing any kernel other than the first
to be zero. It is unclear how big the loss of efficiency would be, since this
is primarily an issue of how much time is consumed by the initialization of
the t-walk algorithm. It is clear, however, that it is better to initialize the



CHAPTER 6. GENERAL DISCUSSION AND CONCLUSIONS 68

algorithm only once, so simply using the BLTO0 program as it stands is a
better choice.

6.4.2 BLT1

BLT1 is the second simplest of the BLT models, but in terms of implemen-
tation BLT3 is simpler. The results from BLT1 on the data that was tested
were surprisingly good. The improvement was not as dramatic as in BLTO,
but given that the information is much weaker, the difference is not so great.

Since the situation in BLT'1 is far more common than the one in BLTO, we
can conclude that BLT1 is probably the most useful of the BLT techniques.
Like BLTO0, the usefulness will relate to the uncertainty in the area, but even
when used on an area of low uncertainty, as in the examples seen here, the
improvement is very noticeable.

6.4.3 BLT2

The most impressive feature of BLT2 is how sensitive it is when selecting
which of the candidate tephras correspond to a tephra in a different core.
Even when a cursory glance may indicate that the distribution at the depths
of each candidate is not very different, BLT2 still makes a strong choice.
When testing this algorithm, most of the time the choice was so clear that
it would be reasonable to use BLT2 merely as a preliminary step and then
proceed with BLT1.

In those few cases where it makes sense to use BLT2 to infer the chronol-
ogy directly, the loss when compared to BLT1 is not so great. Overall, if
there is any uncertainty at all when identifying tephras, the use of BLT2 is
recommended either to identify the tephras clearly, or to build a chronology
if the identity of the tephras remains uncertain.

6.4.4 BLT3

BLT3 is the only case in which the improvement over BACON is not always
significant. It is strongly influenced by the width of the intervals that are
assigned, the level of uncertainty in the regions studied (and the dispairty
in these levels between cores), and other factors. Also, it is the only form of
BLT in which the correlation is frequently determined not by clear objective
evidence, but by human judgment. The judgment applies not only to the
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widths of correlated intervals, but also frequently to the identification of
catastrophic events.

The above being said, if the evidence from proxies is strong enough to
provide relatively thin intervals in regions where the number of radiometric
measurements is scant, then BLT3 can significantly improve the information
about chronology in that region.

6.5 Further work

6.5.1 Computational work

6.5.1.1 Interface

The main problem with the form of the programs as they stand is that there
is no interface of any kind. Each program performs one very specific task
and if anything even remotely different is desired, then the code itself must
be changed. Python is a reasonable language to program interfaces in, and
even a very basic interface would be enough to make the programs useful.
The one piece of software that is nearly useable as it stands is the ghost
map program, written in R. The interface used for the initial C++ version
of BACON uses an R console as a command line interface with R functions
as commands. In this sense the ghost map code can be added to the existing
R program as a function, allowing it to integrate with the existing interface.

6.5.1.2 Integration

At present, each of the different algorithms is implemented in a different
program and exists in a separate file. It would be desireable to allow for
mixed forms of correlation to be allowed between cores. Likewise, not all
pairs of cores would have all forms of correlations present in the entire set.
This would entail bringing all of the different forms of BACON and BLT
into a single program, and allowing them to work together. This problem
does not involve any new statistical modeling or theory, and is essentially a
computational excercise.
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6.5.1.3 Performance

The last computational problem with the work as it stands is performance-
related. As discussed previously, Python is a less than perfect alternative
to C++, and BACON runs fairly slowly. One possible solution, involving
a Python/C++ hybrid was detailed in 6.2.1, but it is not completely cer-
tain that this will necessarily fix the problem, or that there is no superior
alternative which has not been contemplated.

Along with the performance issues that come with the Python program-
ming language, another potential improvement comes in the form of parallel
computing. As suggested in 4.2, the structure of the BLT algorithm is a
good candidate for parallel computing, and was even designed with paral-
lel computing in mind. In the examples used for this discussion, there were
never more than 2 cores used at any time, and parallel computing is unlikely
to produce much of an improvement (it may even make the process slower),
but with a large number of cores it is reasonable to expect that running the
algorithm in parallel would result in significant performance benefits.

6.5.2 Statistical work

Most of the improvements possible arise by extending the functionality of
BLT, but ghost maps can also be improved. One suggestion which came
up ater completion of this project was to allow for uncertainties in proxy
measurements, which, depending on the proxy, may be quite frequent.

The idea of using other sources of information to improve BACON is
so broad that most likely it will never be completely covered. In this work
four sources of information were used, then models were proposed and im-
plemented for each, but these four sources of information are in no way a
complete survey of all of the possible external information which could be
used to improve the chronologies.

One area which has sparked some interest is in further restrictions on
single-core work in the form of extensions to BLTO. One such extension is
to allow for uncertainties in the depth of events of known age (unlike BLT0
which treats the depths of events as exactly known). Another is to allow
for ages with known differences (ie: with G(d;) — G(dy) known, or having a
particular prior distribution).

Paleoecologists frequently attempt to use proxy information for dating
in a much more general sense than what is used in BLT3. One direction of
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interest is a mathematical treatment of the use of proxy trends - rather than
only cataclysmic events - to improve chronology building.

Chronology building in general is still an area of great interest, and one
very active area of study in paleoecology is chronology building using corre-
lation only, without any sort of radiometric data at all. This practice, known
as “tuning” has yet to receive any form of adequate mathematical treatment
whatsoever, but is nonetheless quite prevalent. One possible further develop-
ment from the present work is to focus on what information can be modeled
based only on correlations with cores where radiometric data is available.
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The code for all of the programs mentioned in this thesis can be found at
http://www.cimat.mx/ ~jac/software/NKK Thesis Programs.zip



