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Introducción

Esta tesis comprende dos caṕıtulos. El Caṕıtulo 1 es el art́ıculo aceptado el mes de junio 2012
para publicación en la revista Bernoulli “The Lamperti representation of real-valued self-similar
Markov processes”. El Caṕıtulo 2 corresponde al art́ıculo en preparación “On Lévy processes
conditioned to avoid zero”. El punto en común de ambos caṕıtulos son los procesos de Lévy
a valores reales. A continuación daremos una breve descripción sobre los procesos de Lévy y
la relación que éstos guardan con cada caṕıtulo. También daremos una descripción general del
contenido de los Caṕıtulos 1 y 2.

Procesos de Lévy

Los procesos de Lévy a valores reales son procesos estocásticos con incrementos independientes
y estacionarios. En el Caṕıtulo 1, tenemos que todos los procesos de Markov autosimilares
positivos se pueden expresar como la exponencial de un proceso de Lévy cambiado de tiempo
por la inversa de su funcional exponencial. Generalizaremos esta propiedad al caso en el cual
el proceso de Markov autosimilar toma valores en los reales. En el Caṕıtulo 2, la regularidad
por si misma del punto cero para los procesos de Lévy implica la existencia de una densidad
continua del q-resolvente (ver [5]). Bajo el supuesto adicional de que el proceso de Lévy no
es un proceso de Poisson compuesto, se puede hallar una función invariante para el semigrupo
del proceso matado en su primer tiempo de llegada a cero. La función invariante se obtiene
como un ĺımite de una sucesión de funciones determinada por la densidad del q-resolvente. Con
ayuda de la h transformada de Doob, construimos la ley de una nueva clase de procesos de
Markov.

En los dos caṕıtulos, la tripleta (a, σ, π), que caracteriza a los procesos de Lévy, es fun-
damental en las pruebas, fórmulas y ejemplos. Recordamos la definición de la tripleta de un
proceso de Lévy. Si ξ es un proceso de Lévy con ley P, entonces para cualquier t > 0, ξt es
una variable aleatoria infinitamente divisible y su transformada de Fourier admite la fórmula
de Lévy-Khintchine, i.e., existe una función ψ : R→ C tal que

E(eiλξt) = e−tψ(λ), λ ∈ R,

con ψ dada por

ψ(λ) = iaλ+
σ2

2
λ2 +

∫
R
(1− eiλx + iλx1{|x|<1})π(dx), λ ∈ R, (1)

donde a ∈ R, σ ≥ 0 y π es una medida definida en R\{0} que cumple
∫
R(1∧x2)π(dx) <∞. La

constante a es conocida como deriva, σ es el coeficiente Gaussiano y π es llamada una medida
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de Lévy. Para nuestra comodidad al momento de hacer cálculos, escogemos el exponente
caracteŕıstico de manera diferente en cada caṕıtulo. Por ejemplo, en el Caṕıtulo 2, tomaremos
ψ como en (1), mientras que en el Caṕıtulo 1, ψ sastisface E(eiλξt) = etψ(λ), t > 0, λ ∈ R, con

ψ(λ) = iaλ− σ2

2
λ2 +

∫
R
(eiλx − 1− iλx1{|x|<1})π(dx), λ ∈ R.

Un ejemplo importante de un proceso de Lévy, que estará presente en toda esta tesis, es
el proceso α-estable. Para α = 2, el proceso ξ es el bien conocido y estudiado movimiento
Browniano. En el caso α ∈ (0, 2), el proceso α no tiene coeficiente Gaussiano y la medida de
Lévy tiene densidad ν con respecto a la medida de Lebesgue, la cual está dada por

ν(y) = c+y−α−11{y>0} + c−|y|−α−11{y<0},

con c+ and c− dos constantes no negativas tales que c+ + c− > 0. Además, se puede mostrar
que ψ se escribe de la siguiente manera,

ψ(λ) = c|λ|α(1− iβsgn(λ) tan(απ/2)), λ ∈ R,

donde

c = −(c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
.

Para mayor detalle sobre la teoŕıa de los procesos de Lévy, sugerimos los libros [5, 35, 45].

Caṕıtulo 1. La representación de Lamperti de procesos

de Markov autosimilares a valores reales

En este caṕıtulo hacemos contribuciones a la teoŕıa de los procesos de Markov autosimilares a
valores reales. Espećıficamente, obtenemos una representación tipo Lamperti para los procesos
de Markov autosimilares a valores reales matados en su primer tiempo de llegada a cero, esto
es, representamos procesos de Markov autosimilares a valores reales como procesos invariantes
multiplicativos cambiados de tiempo.

Representación de Lamperti

Sea E el conjunto [0,∞) o Rn. Una familia càdlàg de procesos de Markov fuerte con espacio de
estados E, {X(x) = (X,Px), x ∈ E}, es llamada autosimilar de ı́ndice α > 0 si para toda c > 0,
la ley de (cXc−αt, t ≥ 0) bajo Px, es la misma que la ley de (Xt, t ≥ 0) bajo Pcx, para toda x.
En el caso cuando el proceso toma valores positivos fue estudiado por Lamperti in 1972. En
su art́ıculo, él probó varias propiedades sobre esta clase de procesos. El resultado el cual es de
nuestro interés es conocido como la representación de Lamperti. La representación de Lamperti,
algunas veces llamado transformación de Lamperti, establece que cualquier proceso de Markov
autosimilar positivo matado en su primer tiempo de llegada a cero, se puede representar como
la exponencial de un proceso de Lévy cambiado de tiempo por la inversa de su funcional
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exponencial. Formalmente, si X es un proceso de Markov autosimilar positivo de ı́ndice α > 0,
entonces el proceso (ξt, t ≥ 0) definido por

exp{ξt} = x−1Xν(t), t ≥ 0,

donde

ν(t) = inf

{
s > 0 :

∫ s

0

(Xu)
−αdu > t

}
,

con la convención usual inf{∅} = +∞, es un P-proceso de Lévy. Aqúı, P = P1.

Nuestro objetivo en esta parte de la tesis es generalizar el resultado anterior al caso en el
cual el proceso tiene como espacio de estados la ĺınea real. Para este fin, seguimos algunas ideas
en [22] para poder caracterizar a los procesos subyacentes en tal representación. Los procesos
resultantes son los llamados procesos invariantes multiplicativos que satisfacen la propiedad
de Feller, los cuales aparecen en [34] como procesos de Markov autosimilares con valores en
Rn cambiados de tiempo. En el caso n = 1, a este tipo de procesos los llamaremos procesos
de Lamperti-Kiu. Formalmente, un proceso de Lamperti-Kiu, Y = (Yt, t ≥ 0), es un proceso
càdlàg tomando valores en R∗ := R \ {0}, satisfaciendo la propiedad de Feller y que además
cumple lo siguiente

{(aYt, t ≥ 0),Px}
L
=
{

(sgn(a)Yt, t ≥ 0),P|a|x
}
, (2)

para toda x, a 6= 0. En esta tesis también damos una representación de los procesos de Lamperti-
Kiu como la exponencial de una cierta clase de procesos. Al hacer esto, se completa el trabajo
de Kiu [34].

Dos resultados principales son establecidos en este caṕıtulo. Teorema 1 (abajo) establece
que, dependiendo del signo del proceso, el comportamiento de los procesos de Markov autosi-
milares entre cambios de signo es como un proceso de Markov autosimilar positivo (o negativo).
Escribimos esto formalmente, sea Hn el n-ésimo cambio de signo del proceso X:

H0 = 0, Hn = inf {t > Hn−1 : XtXt− < 0} , n ≥ 1.

Suponga que Px(H1 <∞) = 1, para toda x ∈ R∗. Defina,

X (n)
t =

XHn+|XHn |αt

|XHn|
, 0 ≤ t < |XHn|−α(Hn+1 −Hn), (3)

y

Jn =
XHn+1

XHn+1−
, n ≥ 0. (4)

Entonces, (X (n), n ≥ 0) y (Jn, n ≥ 0) satisfacen lo siguiente.

Teorema 1. Sea X(x) = (X,Px)x∈R∗ una familia de procesos de Markov autosimilares a valores
reales de ı́ndice α > 0, tal que Px(H1 <∞) = 1, para toda x ∈ R∗. Entonces

(i) Las trayectorias entre cambios de signo, (X (n), n ≥ 0), definidos en (3), son independien-
tes bajo Px, para x ∈ R∗. Además, para toda n ≥ 0,{(

X (n)
t , 0 ≤ t < |XHn|−α(Hn+1 −Hn)

)
,Px
}
L
=
{

(Xt, 0 ≤ t < H1) ,Psgn(x)(−1)n
}
.

De aqúı, son procesos de Lévy matados en un tiempo exponential cambiados de tiempo.
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(ii) Las variables aleatorias Jn, n ≥ 0, definidas en (4), son independientes bajo Px, para
x ∈ R∗ y para n ≥ 0, se satisface la identidad

{Jn,Px}
L
=
{
J0,Psgn(x)(−1)n

}
.

(iii) Para cada n ≥ 0, el proceso X (n) y la variable aleatoria Jn son independientes, bajo Px,
para x ∈ R∗.

El Teorema 1 implica que seis son los objetos aleatorios que definen al proceso subyacente
en la representación de Lamperti, esto es, tenemos (ξ+, ξ−, ζ+, ζ−, U+, U−), donde ξ+, ξ− son
dos procesos de Lévy, ζ+, ζ− son dos variables aleatorias exponenciales y U+, U− son dos va-
riables aleatorias que toman valores en los reales, todos independientes. Con esto en mente,
construimos el proceso estocástico siguiente.

Sean ξ+, ξ− procesos de Lévy a valores reales; ζ+, ζ− variables aleatorias exponenciales con
parámetros q+, q−, respectivamente, y U+, U− variables aleatorias con valores en los reales.
Sean (ξ+,k, k ≥ 0), (ξ−,k, k ≥ 0), (ζ+,k, k ≥ 0), (ζ−,k, k ≥ 0), (U+,k, k ≥ 0), (U−,k, k ≥ 0)
sucesiones independientes de variables aleatorias i.i.d. tales que

ξ+,0 Law
= ξ+, ξ−,0

Law
= ξ−, ζ+,0 Law

= ζ+, ζ−,0
Law
= ζ−, U+,0 Law

= U+, U−,0
Law
= U−.

Para cada x ∈ R∗ fijo, consideramos la sucesión ((ξ(x,k), ζ(x,k), U (x,k)), k ≥ 0), donde para k ≥ 0,

(ξ(x,k), ζ(x,k), U (x,k)) =


(ξ+,k, ζ+,k, U+,k), if sgn(x)(−1)k = 1,

(ξ−,k, ζ−,k, U−,k), if sgn(x)(−1)k = −1.

Sea (T
(x)
n ,≥ 0) la sucesión definida por

T
(x)
0 = 0, T (x)

n =
n−1∑
k=0

ζ(x,k), n ≥ 1,

y (N
(x)
t , t ≥ 0) un proceso de renovación alternante:

N
(x)
t = max{n ≥ 0 : T (x)

n ≤ t}, t ≥ 0.

Escribimos

σ
(x)
t = t− T (x)

N
(x)
t

, ξ(x)
σt = ξ

(x,N
(x)
t )

σ
(x)
t

, ξ
(x,k)
ζ = ξ

(x,k)

ζ(x,k)
.

Sea (Y
(x)
t , t ≥ 0) el proceso definido por

Y
(x)
t = x exp{E (x)

t }, t ≥ 0, (5)

donde

E (x)
t = ξ(x)

σt +

N
(x)
t −1∑
k=0

(
ξ

(x,k)
ζ + U (x,k)

)
+ iπN

(x)
t , t ≥ 0.

El Teorema 2 establece que cualquier proceso de Lamperti-Kiu se puede obtener como en (5).
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Teorema 2. Sea Y (x) el proceso definido en (5). Entonces,

(i) el proceso Y (x) es Felleriano en R∗ y satisface (2). Además, para cualquier tiempo de
paro finito T:

((Y
(x)
T )−1Y

(x)
T+s, s ≥ 0)

L
= (exp{Ẽ (sgn(Y

(x)
T ))

s }, s ≥ 0),

donde Ẽ (·) es una copia de E (·), independiente de (E (·)
u , 0 ≤ u ≤ T).

(ii) Sea (X(x))x∈R∗ = (X,Px)x∈R∗ una familia de procesos de Markov autosimilares a valores
reales de ı́ndice α > 0, tal que Px(H1 < ∞) = 1, para toda x ∈ R∗. Para cada x ∈ R∗
defina el proceso Y(x) por

Y(x)
t = X

(x)

ν(x)(t)
, t ≥ 0,

donde

ν(x)(t) = inf

{
s > 0 :

∫ s

0

|X(x)
u |−αdu > t

}
.

Entonces Y(x) se puede descomponer como en (5). Más aun, cada proceso de Lamperti-Kiu
se puede construir como en (5).

(iii) Rećıprocamente, sea (Y (x))x∈R∗ una familia de procesos definidos como en (5) y considere
los procesos (X(x))x∈R∗ dados por

X
(x)
t = Y

(x)

τ(t|x|−α), t ≥ 0,

donde

τ(t) = inf

{
s > 0 :

∫ s

0

| exp{αE (x)
u }|du > t

}
, t < T,

para algún α > 0. Entones (X(x))x∈R∗ es una familia de procesos de Markov autosimilares
a valores reales de ı́ndice α > 0.

El Teorema 2 también nos permite calcular el generador infinitesimal de los procesos de
Lamperti-Kiu, esto se consigue en la sección 1.2.2 de esta tesis. Con ayuda del generador
infinitesimal de los procesos de Lamperti-Kiu y del teorema de Volkonski, podemos dar dos
ejemplos en donde las caracteŕısticas de los procesos subyacentes se pueden calcular en forma
expĺıcita. El primero de ellos es el bien conocido proceso α-estable y el segundo es el proceso
α-estable condicionado a evitar cero, el cual es un ejemplo particular de los procesos de Lévy
condicionados a evitar cero, construidos en la segunda parte de esta tesis.

Caṕıtulo 2. Procesos de Lévy condicionados a evitar cero

Una de las aportaciones de este caṕıtulo consiste en construir la ley de los procesos de Lévy
condicionados a evitar cero. Para esta construcción, seguimos algunas ideas de los art́ıculos [17],
[48], siendo que en éste último el caso simétrico ha sido estudiado. La herramienta matemática
usada para esta construcción es la técnica de la h-transformada. El procedimiento es como
sigue, consideramos un proceso de Lévy cumpliendo dos hipótesis: el punto cero es regular
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por si mismo y el proceso de Lévy no es un proceso de Poisson compuesto, encontramos una
función invariante para el semigrupo del proceso de Lévy matado en su primer tiempo de
llegada a cero. Con ayuda de esta función, la h-transformada y la medida de excursiones fuera
del cero, generamos una nueva familia de medidas de probabilidad. A continuación damos
algunos detalles matemáticos y una breve discusión sobre el procedimiento empleado.

Para enunciar los resultados principales, introducimos algo de notación. Sea D[0,∞) el
espacio de trayectorias càdlàg ω : [0,∞)→ R∪{∆} con tiempo de vida ζ(ω) = inf{s : ωs = ∆},
donde ∆ es un punto cementerio. Sean X el proceso coordenadas y Ft = (Xs, s ≤ t), la filtración
natural de X. Sea (Px, x ≥ 0) una familia de medidas tal que (X,Px) es un proceso de Lévy
iniciando en x, escribimos P = P0. Denotemos por n la medida de excursiones fuera del cero.
Sea T0 el primer tiempo de llegada a cero para X, esto es, T0 = inf{s > 0 : Xs = 0}, con
inf{∅} =∞. La familia (P 0

t , t ≥ 0) es llamada semigrupo del proceso de Lévy matado en T0.

Es bien conocido que bajo la hipótesis de que el punto cero sea regular en si mismo y
suponiendo que (X,P) no es un proceso Poisson compuesto, es posible asegurar la existencia
de una densidad continua para el q-resolvente. Denotemos por uq la densidad del q-resolvente
y sea (hq, q > 0) la sucesión de funciones dada por

hq(x) = uq(0)− uq(−x) = [n(ζ > eq)]
−1Px(T0 > eq), q > 0, x ∈ R. (6)

Tenemos que para cualquier q > 0, la función hq es una función excesiva para el semigrupo P 0
t .

Definimos la función h por
h(x) = lim

q→0
hq(x), x ∈ R.

La función h está bien definida y es una función P 0
t -invariante tal como lo establece el teorema

siguiente.

Teorema 3. La función h(x) está bien definida y es invariante con respecto al semigrupo del
proceso de Lévy matado en T0, i.e.,

P 0
t h(x) = h(x), t > 0, x ∈ R.

Además,
n(h(Xt), t < ζ) = 1, ∀ t > 0.

El Teorema 3 nos permite definir una nueva familia de medidas sobre el conjunto H0 =
H ∪ {0}, donde H = {x ∈ R : h(x) > 0}. Sea (Plx, x ∈ H0) la única familia de medidas tales
que para x ∈ H0,

Plx(Λ) =


1

h(x)
E0
x(1Λh(Xt)), x ∈ H,

n(1Λh(Xt)1{t<ζ}), x = 0,

para toda Λ ∈ Ft, para toda t ≥ 0. De esta manera, tenemos:

Teorema 4. Las medidas (Plx)x∈H0 es una familia de medidas Markoviana tales que

(i) Plx(X0 = x) = 1, ∀x ∈ H0.
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(ii) Plx(T0 =∞) = 1, ∀x ∈ H0.

con semigrupo:

P
l
t (x, dy) :=

h(y)

h(x)
P 0
t (x, dy), x ∈ H, t ≥ 0,

y ley de entrada bajo Pl0 dada por

Pl0(Xt ∈ dy) = n(h(y)1{Xt∈dy}1{t<ζ}).

Ya que Plx(T0 = ∞) = 1, para toda x ∈ H0, entonces llamamos a (X,Plx)x∈H0 procesos de
Lévy condicionados a evitar cero. Además, como se mencionó anteriormente, hq es una función
P 0
t -excesiva, entonces por (6), para x ∈ H, es posible construir un proceso Lévy condicionado

a evitar cero hasta un tiempo exponencial con parámetro q > 0. Si tomamos ĺımite cuando
q → 0, como el teorema siguiente muestra, podemos obtener la ley Plx. Esta es otra razón por
la cual usamos el nombre procesos de Lévy condicionados a evitar cero.

Teorema 5. Sea eq una variable aleatoria exponencial con parámetro q > 0, independiente de
(X,P). Entonces, para cualquier x ∈ H y cualquier (Ft)t≥0-tiempo de paro T ,

lim
q→0

Px(Λ, T < eq | T0 > eq) = Plx(Λ), ∀Λ ∈ FT .

En el caso α-estable, la función h se puede calcular expĺıcitamente, esto es,

h(x) =


|x|, α = 2,

K(α)(1− βsgn(x))|x|α−1, α ∈ (1, 2),

donde

K(α) =
Γ(2− α) sin(απ/2)

cπ(α− 1)(1 + β2 tan2(απ/2))

y

c = −(c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
.

El proceso resultante es el proceso α-estable condicionado a evitar cero, el cual aparece en el
Caṕıtulo 1 como ejemplo de un proceso de Markov autosimilar a valores reales.

Finalmente, si X es un proceso de Lévy espectralmente negativo satisfaciendo las condiciones
mencionadas al principio, entonces

h(x) =


1

Ψ′(Φ(0)+)
(1− eΦ(0)x) +W (x), si lim

t→∞
Xt = −∞,

−x
Ψ′′(0+)

+W (x), si lim sup
t→∞

Xt = − lim inf
t→∞

Xt =∞,

W (x), si lim
t→∞

Xt =∞,

donde Ψ es el exponente de Laplace del proceso (X,P), Φ(q) es la raiz más grande de la ecuación
Ψ(λ) = q y W es la función 0-escala del proceso (X,P).
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Organización de la tesis

La tesis está organizado como sigue. El Caṕıtulo 1 está divido en cuatro secciones. La Sección
1.1 es sobre algunos hechos de los procesos de Markov autosimilares y la representación de Lam-
perti. La Sección 1.2.1 está dedicada a algunos resultados preliminares acerca de los procesos de
Markov autosimilares a valores reales. En la Sección 1.2.2 construimos el proceso subyacente en
la representación de Lamperti y establecemos el resultado de que todo proceso de Lamperti-Kiu
se puede escribir de esta forma. También se muestra la representación de Lamperti y se calcula
el generador infinitesimal de los procesos de Lamperti-Kiu en esta sección. La Sección 1.3 está
dedicada a probar los resultados principales. En la Sección 1.4 proporcionamos dos ejemplos
en donde es posible calcular expĺıcitamente las caracteŕısticas de los procesos de Lamperti-Kiu:
el proceso α-estable y el proceso α-estable condicionado a evitar cero. El Caṕıtulo 2 se en-
cuentra dividido en cinco secciones. La Sección 2.1 es una breve introducción sobre algunos la
construcción de los procesos de Lévy condidicionados a evitar cero en el caso simétrico y los
procesos de Lévy condicionados a permanecer positivos. Se introduce notación en la Sección
2.2.1. Los resultados principales son enunciados en la Sección 2.2.2 y sus pruebas se encuentran
en la Sección 2.3. Algunas propiedades de la sucesión de funciones que define a h y de h misma,
se encuentran en la Secciones 2.3.2 y 2.3.3. En la Sección 2.3.4 se introduce una función auxiliar
y se demuestran algunas propiedades de ésta. La Sección 2.4 está dedicada exclusivamente a
probar los resultados principales. Finalmente, en la Sección 2.5 estudiamos los casos α-estable
y espectralmente negativo.
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Introduction

This thesis is divided into two chapters. Chapter 1 is the paper accepted for publication in the
Bernoulli journal, “The Lamperti representation of real-valued self-similar Markov processes”.
Chapter 2 corresponds to a paper still in process, “On Lévy processes conditioned to avoid
zero”. The common point of these two chapters is real-valued Lévy processes. We will give a
brief summary on real-valued Lévy processes and their relation to these in each chapter. Also,
we will give a general description of the content of Chapters 1 and 2.

Lévy processes

The real-valued Lévy processes are càdlàg stochastic processes having independent and station-
ary increments. In Chapter 1, we have that all positive self-similar Markov processes can be
expressed as the exponential of Lévy processes time changed by the inverse of their exponential
functional. We generalize this property to the real-valued case, that is, we obtain a similar
representation in the case when the self-similar Markov process is taking values in the real line.
In Chapter 2, the regularity of the point zero for a Lévy process implies the existence of a
continuous density for the q-resolvent kernel (see p.g. [5]). Under the additional assumption
that the Lévy process is not a compound Poisson process, we find an invariant function for
the semigroup of the killed process at its first hitting time. The invariant function is obtained
as a limit of a sequence of functions determined by the continuous density of the q-resolvent
kernel. With help of the h-Doob transformation, we construct the law of a new kind of Markov
processes.

In both chapters, the triple (a, σ, π), which characterize the Lévy processes, is fundamental
in proofs, formulas and examples. We recall the definition of the triple of a Lévy process. If ξ
is a Lévy process with law P, then for any t > 0, ξt is an infinite divisible random variable and
its Fourier transform admits the Lévy-Khintchine decomposition, i.e., there exists a function
ψ : R→ C such that

E(eiλξt) = e−tψ(λ), λ ∈ R,

with ψ given by

ψ(λ) = iaλ+
σ2

2
λ2 +

∫
R
(1− eiλx + iλx1{|x|<1})π(dx), λ ∈ R, (1)

where a ∈ R, σ ≥ 0 and π is a measure defined on R \ {0} satisfying
∫
R(1 ∧ x2)π(dx) < ∞.

The constant a is known as drift, σ is the Gaussian coefficient and π is called a Lévy measure.
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For computational convenience, the characteristic exponent is chosen in different ways in each
chapter. For instance, in Chapter 2 we will take ψ as in (1), while in Chapter 1, ψ satisfies
E(eiλξt) = etψ(λ), t > 0, λ ∈ R with

ψ(λ) = iaλ− σ2

2
λ2 +

∫
R
(eiλx − 1− iλx1{|x|<1})π(dx), λ ∈ R.

An important example of a Lévy process, which will be presented in this thesis, is the so
called α-stable process. For α = 2, the process ξ is the well known and studied Brownian
motion. In the case α ∈ (0, 2), the α-stable process has no Gaussian coefficient and the Lévy
measure has a density ν with respect to Lebesgue measure given by

ν(y) = c+y−α−11{y>0} + c−|y|−α−11{y<0},

with c+ and c− being two nonnegative constants such that c+ + c− > 0. Furthermore, it is
verified that ψ can be expressed as

ψ(λ) = c|λ|α(1− iβsgn(λ) tan(απ/2)), λ ∈ R,

where

c = −(c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
.

For a detailed account on the theory of Lévy processes, see [5, 35, 45].

Chapter 1. The Lamperti representation of real-valued

self-similar Markov processes

In this chapter we make contributions to the theory of real-valued self-similar Markov processes.
To be specific, we obtain a Lamperti type representation for real-valued self-similar Markov
processes killed at their first hitting time of zero, that is, we represent real-valued self-similar
Markov processes as time changed multiplicative invariant processes.

Lamperti representation

Let E be [0,∞) or Rn. A càdlàg strong Markov family {X(x) = (X,Px), x ∈ E} is called a
E-valued self-similar Markov process of index α > 0 if for all c > 0, the law of (cXc−αt, t ≥ 0)
under Px, is the same as (Xt, t ≥ 0) under Pcx, for all x. The case when the self-similar
Markov process is taking values in the positive half-line was first studied by Lamperti in 1972.
In his paper, he proved several interesting properties for this particular class of self-similar
Markov processes, but the result that interests us is the well known Lamperti representation.
The Lamperti representation, sometimes called Lamperti transformation, establishes that any
positive self-similar Markov process killed the first time that it reaches the point zero, can be
represented as the exponential of Lévy processes time changed by the inverse of their exponential
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functional. Formally, if X is a positive self-similar Markov process of index α > 0, then the
process (ξt, t ≥ 0) defined by

exp{ξt} = x−1Xν(t), t ≥ 0,

where

ν(t) = inf

{
s > 0 :

∫ s

0

(Xu)
−αdu > t

}
,

with the usual convention inf{∅} = +∞, is a P-Lévy process. Here, P = P1.

Our aim in this part of the thesis is to generalize the latter result to the case when the
process has the real line as state space. To get our aim, we follow some ideas in [22] in
order to characterize the underlying processes in this representation. The resulting underlying
processes are the so called Feller multiplicative invariant processes, which appearing in [34] as
time changed Rn-valued self-similar Markov processes. In the case n = 1, we will call them
Lamperti-Kiu processes. Formally, a Lamperti-Kiu process Y = (Yt, t ≥ 0), is a càdlàg process
taking values in R∗ := R \ {0}, having the Feller property and satisfying

{(aYt, t ≥ 0),Px}
L
=
{

(sgn(a)Yt, t ≥ 0),P|a|x
}
, (2)

for all x, a 6= 0. We also give a representation of the Lamperti-Kiu process as the exponential
of certain processes. Doing this, we also complete Kiu’s work ([34]).

Two main results are established in this chapter. Theorem 1 (below) establishes that, de-
pending on the sign of the process, the behaviour of real-valued self-similar Markov processes
between time sign changes is as a positive (or negative) self-similar Markov process. We state
this formally, let Hn be the n-th change of sign of the process X:

H0 = 0, Hn = inf {t > Hn−1 : XtXt− < 0} , n ≥ 1.

Assume that Px(H1 <∞) = 1, for all x ∈ R∗. Define,

X (n)
t =

XHn+|XHn |αt

|XHn|
, 0 ≤ t < |XHn|−α(Hn+1 −Hn), (3)

and

Jn =
XHn+1

XHn+1−
, n ≥ 0. (4)

Then, (X (n), n ≥ 0) and (Jn, n ≥ 0) satisfy the following.

Theorem 1. Let X(x) = (X,Px)x∈R∗ be a family of real-valued self-similar Markov processes of
index α > 0, such that Px(H1 <∞) = 1, for all x ∈ R∗. Then

(i) The paths between sign changes, (X (n), n ≥ 0), as defined in (3), are independent under
Px, for x ∈ R∗. Furthermore, for all n ≥ 0,{(

X (n)
t , 0 ≤ t < |XHn|−α(Hn+1 −Hn)

)
,Px
}
L
=
{

(Xt, 0 ≤ t < H1) ,Psgn(x)(−1)n
}
.

Hence, they are time changed Lévy processes killed at an exponential time.
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(ii) The random variables Jn, n ≥ 0, as defined in (4), are independent under Px, for x ∈ R∗
and for n ≥ 0, the identity

{Jn,Px}
L
=
{
J0,Psgn(x)(−1)n

}
,

holds.

(iii) For every n ≥ 0, the process X (n) and the random variable Jn are independent, under Px,
for x ∈ R∗.

Theorem 1 implies that six random objects define the underlying processes in the Lamperti
representation, that is, we have (ξ+, ξ−, ζ+, ζ−, U+, U−), where ξ+, ξ− are two Lévy processes,
ζ+, ζ− are two exponential random variables and U+, U− are two real random variables, all
independent. With this in mind, the following process is constructed.

Let ξ+, ξ− be real valued Lévy processes; ζ+, ζ− be exponential random variables with
parameters q+, q−, respectively, and U+, U− be real valued random variables. Let (ξ+,k, k ≥ 0),
(ξ−,k, k ≥ 0), (ζ+,k, k ≥ 0), (ζ−,k, k ≥ 0), (U+,k, k ≥ 0), (U−,k, k ≥ 0) be independent sequences
of i.i.d. random variables such that

ξ+,0 Law
= ξ+, ξ−,0

Law
= ξ−, ζ+,0 Law

= ζ+, ζ−,0
Law
= ζ−, U+,0 Law

= U+, U−,0
Law
= U−.

For every x ∈ R∗ fixed, we consider the sequence ((ξ(x,k), ζ(x,k), U (x,k)), k ≥ 0), where for k ≥ 0,

(ξ(x,k), ζ(x,k), U (x,k)) =


(ξ+,k, ζ+,k, U+,k), if sgn(x)(−1)k = 1,

(ξ−,k, ζ−,k, U−,k), if sgn(x)(−1)k = −1.

Let (T
(x)
n , n ≥ 0) be the sequence defined by

T
(x)
0 = 0, T (x)

n =
n−1∑
k=0

ζ(x,k), n ≥ 1,

and (N
(x)
t , t ≥ 0) be the alternating renewal type process:

N
(x)
t = max{n ≥ 0 : T (x)

n ≤ t}, t ≥ 0.

Write

σ
(x)
t = t− T (x)

N
(x)
t

, ξ(x)
σt = ξ

(x,N
(x)
t )

σ
(x)
t

, ξ
(x,k)
ζ = ξ

(x,k)

ζ(x,k)
.

Let (Y
(x)
t , t ≥ 0) be given by

Y
(x)
t = x exp{E (x)

t }, t ≥ 0, (5)

where

E (x)
t = ξ(x)

σt +

N
(x)
t −1∑
k=0

(
ξ

(x,k)
ζ + U (x,k)

)
+ iπN

(x)
t , t ≥ 0.

Theorem 2 establishes that any Lamperti-Kiu process can be written as (5).

xviii



Theorem 2. Let Y (x) be the process defined in (5). Then,

(i) the process Y (x) is Fellerian in R∗ and satisfies (2). Furthermore, for any finite stopping
time T:

((Y
(x)
T )−1Y

(x)
T+s, s ≥ 0)

L
= (exp{Ẽ (sgn(Y

(x)
T ))

s }, s ≥ 0),

where Ẽ (·) is a copy of E (·) which is independent of (E (·)
u , 0 ≤ u ≤ T).

(ii) Let (X(x))x∈R∗ = (X,Px)x∈R∗ be a family of real-valued self-similar Markov processes of
index α > 0 such that Px(H1 < ∞) = 1, for all x ∈ R∗. For every x ∈ R∗ define the
process Y(x) by

Y(x)
t = X

(x)

ν(x)(t)
, t ≥ 0,

where

ν(x)(t) = inf

{
s > 0 :

∫ s

0

|X(x)
u |−αdu > t

}
.

Then Y(x) may be decomposed as in (5). Moreover, every Lamperti-Kiu process can be
constructed as explained in (5).

(iii) Conversely, let (Y (x))x∈R∗ be a family of processes as constructed in (5) and consider the
processes (X(x))x∈R∗ given by

X
(x)
t = Y

(x)

τ(t|x|−α), t ≥ 0,

where

τ(t) = inf

{
s > 0 :

∫ s

0

| exp{αE (x)
u }|du > t

}
, t < T,

for some α > 0. Then (X(x))x∈R∗ is a family of real-valued self-similar Markov processes
of index α > 0.

Theorem 2 also allows us to compute the infinitesimal generator of the Lamperti-Kiu pro-
cesses, this is accomplished in Section 1.2.2. With help of the infinitesimal generator of
Lamperti-Kiu processes and Volkonski’s theorem we provide two examples where the characte-
ristics of the underlying processes can be computed explicitly. The first one is the well known
α-stable process and the second is the α-stable process conditioned to avoid zero, which is a
particular example of a Lévy process conditioned to avoid zero constructed in the second part
of this thesis.

Chapter 2. The Lévy processes conditioned to avoid zero

One of contributions in this chapter consists of constructing the law of Lévy processes condi-
tioned to avoid zero. For this construction, we follow some ideas from the papers [17] and [48],
in the latter, the symmetric case has been studied. The mathematical tool to perform this
construction is the h-path transformation technique. The procedure is as follows, we consider a
Lévy process satisfying two hypotheses: the point zero is regular for itself and the Lévy process
is not a compound Poisson process. We find an invariant function for the semigroup of the Lévy
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process killed at its first hitting time of zero. With help of this function, the h-path transfor-
mation and the excursion measure away from zero, we generate a new family of probability
measures. Here are some mathematical details and a brief discussion on the procedure.

In order to state the main results, we introduce some notation. Let D[0,∞) be the space of
càdlàg paths ω : [0,∞)→ R∪{∆} with lifetime ζ(ω) = inf{s : ωs = ∆}, where ∆ is a cemetery
point. Let X be the coordinate process and Ft = (Xs, s ≤ t). Let (Px, x ≥ 0) be a family of
measures such that (X,Px) is a Lévy process with starting point x, we set P = P0. Denote by
n the excursion measure away from zero. Let T0 be the first hitting time of zero for X, that is,
T0 = inf{s > 0 : Xs = 0}, with inf{∅} =∞. The family (P 0

t , t ≥ 0) is called semigroup of the
Lévy process killed at T0.

It is well known that under the hypothesis of regularity for itself for the point zero and
assuming that (X,P) is not a compound Poisson process, we always can ensure the existence of
continuous density for the q-resolvent. Denote by uq the continuous density of the q-resolvent
and let (hq, q > 0) be the sequence of functions given by

hq(x) = uq(0)− uq(−x) = [n(ζ > eq)]
−1Px(T0 > eq), q > 0, x ∈ R. (6)

We have that for any q > 0, the function hq is an excessive function for the semigroup P 0
t . We

define the function h by
h(x) = lim

q→0
hq(x), x ∈ R.

The function h is a well defined function and is P 0
t -invariant as the following theorem establishes.

Theorem 3. The function h(x) is well defined and is invariant with respect to the semigroup
of the killed process, i.e.,

P 0
t h(x) = h(x), t > 0, x ∈ R.

Furthermore,
n(h(Xt), t < ζ) = 1, ∀ t > 0.

Theorem 3 allows us to define a new family of measures on the set H0 = H ∪ {0}, where

H = {x ∈ R : h(x) > 0}. Let (Plx, x ∈ H0) be the unique family of measures such that for
x ∈ H0,

Plx(Λ) =


1

h(x)
E0
x(1Λh(Xt)), x ∈ H,

n(1Λh(Xt)1{t<ζ}), x = 0.

for all Λ ∈ Ft, for all t ≥ 0. We have the following Theorem.

Theorem 4. The measures (Plx)x∈H0 is a Markovian family of measures such that

(i) Plx(X0 = x) = 1, ∀x ∈ H0.

(ii) Plx(T0 =∞) = 1, ∀x ∈ H0.
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with semigroup:

P
l
t (x, dy) :=

h(y)

h(x)
P 0
t (x, dy), x ∈ H, t ≥ 0,

and entrance law under Pl0 given by

Pl0(Xt ∈ dy) = n(h(y)1{Xt∈dy}1{t<ζ}).

Since Plx(T0 = ∞) = 1, for all x ∈ H0, we call (X,Plx)x∈H0 Lévy processes conditioned to
avoid zero. Furthermore, as mentioned above, hq is a P 0

t -excessive function, then by (6), for
x ∈ H, it is possible to construct a Lévy process conditioned to avoid zero up to an exponential
random time with parameter q > 0. If we take the limit as q → 0, as the following theorem
shows, we can obtain the law Plx. This is another reason whereby we use the name Lévy
processes conditioned to avoid zero.

Theorem 5. Let eq be an exponential time with parameter q > 0 independent of (X,P). Then
for any x ∈ H, and any (Ft)t≥0- stopping time T ,

lim
q→0

Px(Λ, T < eq | T0 > eq) = Plx(Λ), ∀Λ ∈ FT .

In the α-stable case, the function h can be computed explicitly, namely,

h(x) =


|x|, α = 2,

K(α)(1− βsgn(x))|x|α−1, α ∈ (1, 2),

where

K(α) =
Γ(2− α) sin(απ/2)

cπ(α− 1)(1 + β2 tan2(απ/2))

and

c = −(c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
.

The resulting process is the α-stable process conditioned to avoid zero, which appears in Chapter
1 as an example of a real-valued self-similar Markov process.

Finally, if X is a spectrally negative Lévy process satisfying the conditions aforementioned,
then

h(x) =


1

Ψ′(Φ(0)+)
(1− eΦ(0)x) +W (x), if lim

t→∞
Xt = −∞,

−x
Ψ′′(0+)

+W (x), if lim sup
t→∞

Xt = − lim inf
t→∞

Xt =∞,

W (x), if lim
t→∞

Xt =∞,

where Ψ is the Laplace exponent of the process (X,P), Φ(q) is the largest root of the equation
Ψ(λ) = q, and W is the 0-scale function of the process (X,P).
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Organization of the thesis

The thesis is organized as follows. Chapter 1 is divided into four sections. Section 1.1 is on
some facts of the self-similar Markov processes and Lamperti’s representation. Section 1.2.1 is
devoted to some preliminary results about real-valued self-similar Markov processes. In Section
1.2.2, we construct the underlying process in Lamperti’s representation and establish the result
that all Lamperti-Kiu processes can be written this way. Lamperti’s representation is given and
the infinitesimal generator of Lamperti-Kiu processes is computed in this section. Section 1.3 is
devoted to prove the main results. In Section 1.4, we provide two examples where it is possible
to compute explicitly the characteristics of the Lamperti-Kiu process: the α-stable process and
the α-stable process conditioned to avoid zero. Chapter 2 is also divided into four sections.
Section 2.1 is on some facts of the construction of Lévy processes conditioned to avoid zero in
the symmetric case and Lévy processes conditioned to stay positive. Notation is introduced
in Section 2.2.1. The main results are stated in Section 2.2.2 and their proofs are found in
Section 2.3. Some properties of the sequence of functions which defines h, and h itself, are
given in Section 2.3.2 and 2.3.3. In Section 2.3.4, an auxiliary function is introduced and some
of its properties are shown. The Section 2.4 is exclusively dedicated to prove the main results.
Finally, in Section 2.5 we study the cases: α-stable and spectrally negative Lévy processes.
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Chapter 1

The Lamperti representation of
real-valued self-similar Markov
processes

1.1 Introduction

Semi-stable processes were introduced by Lamperti in [36] as those processes satisfying a scaling
property. Nowadays this kind of processes are known as self-similar processes. Formally, a
càdlàg stochastic process X = (Xt, t ≥ 0), with X0 = 0, and Euclidean state space E, is self-
similar of order α > 0, if for every a > 0, the processes (Xat, t ≥ 0) and (aαXt, t ≥ 0), have the
same law. Lamperti proved that the class of self-similar processes is formed by those stochastic
processes that can be obtained as the weak limit of sequences of stochastic processes that have
been subject to an infinite sequence of dilations of scale of time and space. More formally,
the main result of Lamperti in [36] can be stated as follows: let (X̃t, t ≥ 0) be a stochastic
process defined in some probability space (Ω,F ,P) with values in E. Assume that there exists

a positive real function f(η)↗∞ such that the process (X̃η
t , t ≥ 0) defined by

X̃η
t =

X̃ηt

f(η)
, t ≥ 0,

converges to a non-degenerated process X in the sense of finite-dimensional distributions. Then,
X is a self-similar process of order α and f(η) = ηαL(η), for some α > 0, where L is a slowly
varying function. The converse is also true, every self-similar process can be obtained in such
a way.

If X is a Markov process with stationary transition function Pt(x,A), then the self-similarity
property written in terms of its transition function takes the form

Pat(x,A) = Pt(a
−1/αx, a−1/αA), (1.1)

for all a > 0, t ≥ 0, x ∈ E, and all measurable sets A. We will assume that X is a strong
Markov process and refer to it as a self-similar Markov process of index α > 0.
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From now on, Ω denotes the space of càdlàg paths, X the coordinates process and (Ft, t ≥ 0)
its natural filtration, i.e, Ft = σ(Xs, s ≤ t).

There are many other ways than (1.1) to define self-similar Markov processes. The definition
used in this thesis is the following.

Definition 1.1. Let E be [0,∞) or Rn. We will say that {X(x) = (X,Px), x ∈ E} is a family of
E-valued self-similar Markov processes with index α > 0 if it is a càdlàg strong Markov family
with state space E, and that satisfies that for every c > 0,

{(cXc−αt, t ≥ 0),Px}
L
= {(Xt, t ≥ 0),Pcx} , ∀x ∈ E.

The case E = [0,∞) was first investigated by Lamperti in [37] and has further been the
object of many studies, see for instance [6]-[14] and the reference therein. Here we summarize
some of his main results. Let T be the first hitting time of zero for X, i.e.,

T = inf{t > 0 : Xt = 0},

with inf{∅} =∞. Then, for any starting point x > 0, one and only one of the following cases
holds:

C.1 T =∞, a.s.

C.2 T <∞, XT− = 0, a.s.

C.3 T <∞, XT− > 0, a.s.

We refer to C.1 as the class of processes that never reach zero, processes in the class C.2
hit zero continuously, and those in the class C.3 reach zero by a jump. In particular, if T is
finite, then the process reaches zero continuously or by a jump. Another important result in
[37] is the representation of positive self-similar Markov processes as the exponential of Lévy
processes time changed by the inverse of their exponential functional. This representation is
known as the Lamperti representation and its extension to real-valued processes is one of the
main motivations of this thesis. Formally, the Lamperti representation can be stated as follows.
Assume that the process X is absorbed at 0. Let (ξt, t ≥ 0) be the process defined by

exp{ξt} = x−1Xν(t), t ≥ 0,

where

ν(t) = inf

{
s > 0 :

∫ s

0

(Xu)
−αdu > t

}
,

with the usual convention inf{∅} = +∞. Then, under Px, ξ is a Lévy process. Furthermore, ξ
satisfies either (i) lim supt→∞ ξt =∞ a.s., (ii) limt→∞ ξt = −∞ a.s. or (iii) ξ is a Lévy process
killed at an independent exponential time ζ <∞ a.s., depending on whether X is in the class
C.1, C.2 or C.3, respectively. Note that since an exponential random variable with parameter
q is infinite if only if q = 0, then we can always consider the process ξ as a Lévy process
killed at an independent exponential time ζ with parameter q ≥ 0. Conversely, let (ξ,P) be a
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Lévy process killed at an exponential random time ζ with parameter q ≥ 0 and cemetery point
{−∞}. Let α > 0 and for x > 0, define the process X(x) by

X
(x)
t = x exp{ξτ(tx−α)}, t ≥ 0,

where

τ(t) = inf

{
u > 0 :

∫ u

0

exp{αξs}ds > t

}
.

Then, (X(x))x>0 is a positive self-similar Markov process of index α > 0 which is absorbed at
0. Furthermore, the latter classification depending on the asymptotic behaviour of ξ holds.
An important relation between T and the exponential functional of the Lévy process ξ is

(T,Px)
L
= (xα

∫ ζ
0

exp{αξs}ds,P). Further details on this topic can be found in [37, 6].

In [34] the case of Rn-valued self-similar Markov processes was studied. The main result in
[34] asserts that, if X killed at T is a Feller self-similar Markov process, then the process Y
defined by

Yt = Xν(t), t ≥ 0,

where

ν(t) = inf

{
s > 0 :

∫ s

0

|Xu|−αdu > t

}
,

is a Feller multiplicative invariant process, i.e., Y is a Feller process with semigroup Qt satisfying

Qt(x,A) = Qt(ax, aA), (1.2)

for all x 6= 0, a, t positive and A ∈ B(Rn \ {0}). Another way to write (1.2) is

Qt(x, a
−1A) = Qt(|a|x, sgn(a)A),

for all t positive, x, a 6= 0 and A ∈ B(Rn \ {0}). This property may also be written in terms of
the process Y as follows:

{(aYt, t ≥ 0),Px}
L
=
{

(sgn(a)Yt, t ≥ 0),P|a|x
}
, (1.3)

for all x, a 6= 0. In [34], the converse of this result has not been proved but using (1.3), it is
easy to verify that it actually holds. Indeed, let Y be a strong Markov process taking values in
Rn \ {0} and satisfying (1.3). Let α > 0 and define the process X by

Xt = Yϕ(t), t ≥ 0,

where

ϕ(t) = inf

{
s > 0 :

∫ s

0

|Yu|αdu > t

}
,

with inf{∅} =∞. Since the strong Markov process is preserved under time changes by additive
functionals, then X is a strong Markov process. Note that

ϕ(c−αt)(Y ) = inf

{
s > 0 :

∫ s

0

|cYu|α > t

}
= ϕ(t)(cY ).
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Then, using the latter identity and (1.3) with a = c, we have

{(cXc−αt, t ≥ 0),Px} = {(cYϕ(c−αt), t ≥ 0),Px}
L
= {(Yϕ(t), t ≥ 0),Pcx} = {(Xt, t ≥ 0),Pcx}.

This proves the self-similarity property of X. Then X is a Rn-valued self-similar Markov process
of index α > 0 which is killed at T . It is important to mention that no explicit form of Y has
been given in [34]. Giving a construction of Feller multiplicative invariant processes taking
values in R∗ := R \ {0}, that we will call Lamperti-Kiu processes, is another main motivation
of this thesis.

Definition 1.2. Let Y = (Yt, t ≥ 0) be a càdlàg process. We say that Y is a Lamperti-Kiu
process if it takes values in R∗, has the Feller property and (1.3) is satisfied.

A subclass of Lamperti-Kiu processes has been studied by Chybiryakov in [22] who gave the
following definition. Let Y be a R∗-valued càdlàg process defined on some probability space
(Ω,F ,P) such that Y0 = 1. It is said that Y is a multiplicative Lévy process if for any s, t > 0,
Y −1
t Yt+s is independent of Gt = σ(Yu, u ≤ t) and the law of Y −1

t Yt+s does not depend on t. It
can be shown that if Y is a multiplicative Lévy process, then Y is Markovian and its semigroup
satisfies (1.2). Furthermore, there exist a Lévy process ξ, a Poisson process N and a sequence
U = (Uk, k ≥ 0) of i.i.d. random variables, all independent, such that

Yt = exp

{
ξt +

Nt∑
k=1

Uk + iπNt

}
, t ≥ 0. (1.4)

The converse is also true, i.e., if ξ is a Lévy process, N a Poisson process and U = (Uk, k ≥ 0) a
sequence of i.i.d. random variables, ξ, N and U being independent, then Y defined by (1.4) is a
multiplicative Lévy process. It is easy to see that a multiplicative Lévy process is a symmetric
Lamperti-Kiu process.

The reason in [22] to study the class of multiplicative Lévy processes was to establish a
Lamperti type representation for real valued processes that fulfill the scaling property given in
the following definition. A strong Markov family {X(x) = (X,Px), x ∈ R∗} with state space R∗,
is self-similar of index α > 0 in the sense of [22], if for all c 6= 0,{

(cX|c|−αt, t ≥ 0),Px
} L

= {(Xt, t ≥ 0),Pcx} , (1.5)

for all x ∈ R∗. The Lamperti type representation given in [22] establishes that for such a
self-similar process X(x), the process Y , defined by

Yt = x−1X
(x)

ν(x)(t)
, t ≥ 0,

where

ν(x)(t) = inf

{
s > 0 :

∫ s

0

|X(x)
u |−αdu > t

}
, t ≥ 0,

with inf{∅} =∞, is a multiplicative Lévy process. Conversely, let Y be a multiplicative Lévy
process, and

Et = ξt +
Nt∑
k=1

Uk + iπNt, t ≥ 0,
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where ξ, N and (Uk, k ≥ 0) are as in (1.4), so that Yt = exp{Et}, t ≥ 0. For x ∈ R∗, define
X(x) by

X
(x)
t = xYτ(tx−α), t ≥ 0,

where

τ(t) = inf

{
u > 0 :

∫ u

0

| exp{αEu}|du > t

}
, t ≥ 0,

with inf{∅} = ∞. Then X(x) is a R∗-valued self-similar Markov process in the sense of [22],
which is recalled in (1.5).

It is important to observe that if we take c = −1 in (1.5), it is seen that the process X(x)

is necessarily a symmetric process and as a consequence Y is also symmetric. In this work we
establish the analogous description for non-symmetric real valued self-similar Markov processes.

1.2 Preliminaries and main results

1.2.1 Real-valued self-similar Markov processes and description of
Lamperti-Kiu processes

In this section, we will prove some additional properties of real-valued self-similar Markov
processes, in order to characterize them as time changed Lamperti-Kiu processes.

Let X be a real-valued self-similar Markov process. Let Hn be the n-th change of sign of
the process X, i.e.,

H0 = 0, Hn = inf {t > Hn−1 : XtXt− < 0} , n ≥ 1.

Note that

H1 (X) = inf {t > 0 : XtXt− < 0}
= |x|α inf

{
|x|−αt > 0 :

(
|x|−1X|x|α|x|−αt

) (
|x|−1X|x|α(|x|−αt)−

)
< 0
}

= |x|αH1

(
|x|−1X|x|α·

)
. (1.6)

Hence, by the self-similarity property, for x ∈ R∗, it holds that Px(H1 <∞) = Psgn(x)(H1 <∞).
Furthermore, proceeding as in the proof of Lemma 2.5 in [37], it is verified that for each x ∈ R∗,
either Px(H1 <∞) = 1 or Px(H1 <∞) = 0. The latter and former facts allow us to conclude
that there are four mutually exclusive cases, namely,

C.1 Px(H1 <∞) = 1, ∀x > 0 and Px(H1 =∞) = 1, ∀x < 0;

C.2 Px(H1 <∞) = 1, ∀x < 0 and Px(H1 =∞) = 1, ∀x > 0;

C.3 Px(H1 =∞) = 1, ∀x ∈ R∗;

C.4 Px(H1 <∞) = 1, ∀x ∈ R∗.
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In the case C.1, if the process X starts at a negative point, then {(−Xt1{t<T}, t ≥ 0),Px}x<0

behaves as a positive self-similar Markov process, which have already been characterized by
Lamperti. Now, if the process starts at a positive point, it can be deduced from Lamperti’s
representation (further details are given in the forthcoming Theorem 1.5 (i)) that the process
X behaves as a time changed Lévy process until it changes of sign, and when this occurs, by
the strong Markov property, its behaviour is that of X issued from a negative point. The
case C.2 is similar to the first one. For the case C.3, depending on the starting point, X or
−X is a positive self-similar Markov process, again we fall in a known case. In summary, the
Lamperti representation for the cases C.1-C.3 can be obtained from the Theorem 1.5 (i) and
the Lamperti representation for the positive self-similar Markov processes. Thus, we are only
interested in the case C.4, where the process X a.s. has at least two changes of sign (and by
the strong Markov property infinitely many changes of sign). For this case, we have:

Proposition 1.3. If Px(H1 < ∞) = 1, for all x ∈ R∗, then the sequence of stopping times
(Hn, n ≥ 0) converges to the first hitting time of zero T , Px-a.s., for all x ∈ R∗.

The proof of this result will be given in Section 1.3. We can see that under the condition of
Proposition 1.3, if X is killed at T , then X has an infinite number of changes of sign before it
dies. Moreover, if T is finite, then X reaches zero at time T continuously from the left.

The result in Proposition 1.3 is well known in the case where X is an α-stable process and X
is not a subordinator. In that case, if α ∈ (0, 1], T =∞ a.s., while if α ∈ (1, 2], with probability
one, T < ∞ and X makes infinitely many jumps before reaching zero. This process and its
Lamperti representation will be studied in section 1.4.1.

In the cases C.1-C.3, we can not ensure the veracity of Proposition 1.3. The following
example illustrates the latter.

Example 1.4. Let (X,Px)x∈R be a real-valued self-similar Markov process with index α > 0.
Assume that condition C.4 is satisfied. Consider the stopping time

S = inf{t > 0 : Xt− < 0, Xt > 0}

and the process X̃ defined by
X̃t = Xt1{t<S}, t ≥ 0.

Then the process (X̃,Px)x∈R is a real-valued self-similar Markov process with the same index

as X. The behaviour of the first change of sign H̃1 is as in the case C.1, the other changes of
sign satisfy H̃n =∞, for n ≥ 2 and the lifetime of X̃, T̃ = S, is finite. Hence the conclusion of
the Proposition 1.3 does not hold.

Hereafter we assume that Px(H1 < ∞) = 1, for all x ∈ R∗. Then, for every n ≥ 0, the

process (X (n)
t , t ≥ 0) given by

X (n)
t =

XHn+|XHn |αt

|XHn|
, 0 ≤ t < |XHn|−α(Hn+1 −Hn), (1.7)

is well defined. We call the random variable XHn an overshoot or undershoot when XHn− < 0
and XHn > 0 or XHn− > 0 and XHn < 0, respectively. The random variable XHn− is called
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the jump height before crossing of the x-axis. The case XHn− < 0 means that the change of
sign at time Hn is from a negative to a positive value. Now, we define the sequence of random
variables (Jn, n ≥ 0) given by the quotient

Jn =
XHn+1

XHn+1−
, n ≥ 0. (1.8)

These random objects satisfy the following properties.

Theorem 1.5. Let {X(x) = (X,Px), x ∈ R∗} be a family of real-valued self-similar Markov
processes of index α > 0, such that Px(H1 <∞) = 1, for all x ∈ R∗. Then

(i) The paths between sign changes, (X (n), n ≥ 0), as defined in (1.7), are independent under
Px, for x ∈ R∗. Furthermore, for all n ≥ 0,{(

X (n)
t , 0 ≤ t < |XHn|−α(Hn+1 −Hn)

)
,Px
}
L
=
{

(Xt, 0 ≤ t < H1) ,Psgn(x)(−1)n
}
. (1.9)

Hence, they are time changed Lévy processes killed at an exponential time.

(ii) The random variables Jn, n ≥ 0, as defined in (1.8), are independent under Px, for x ∈ R∗
and for n ≥ 0, the identity

{Jn,Px}
L
=
{
J0,Psgn(x)(−1)n

}
, (1.10)

holds.

(iii) For every n ≥ 0, the process X (n) and the random variable Jn are independent, under Px,
for x ∈ R∗.

From (1.9) we can see that only two independent Lévy processes killed at an exponential time
are involved in the Lamperti representation. In the same way, from (1.10), only two independent
real random variables represent the quotient between overshoots (undershoots) and jump height
before crossing of the x-axis. Furthermore, by (iii) all these random objects are independent.
The latter theorem is at the heart of our motivation to construct the Lamperti-Kiu processes
in the next section.

1.2.2 Construction of Lamperti-Kiu processes

In this section we give a generalization of time changed exponentials of Lévy processes as well
as of the processes which are defined in (1.4). We will see that all Lamperti-Kiu processes can
be constructed as this generalization of (1.4).

Let ξ+, ξ− be real valued Lévy processes; ζ+, ζ− exponential random variables with pa-
rameters q+, q−, respectively, and U+, U− real valued random variables. Let (ξ+,k, k ≥ 0),
(ξ−,k, k ≥ 0), (ζ+,k, k ≥ 0), (ζ−,k, k ≥ 0), (U+,k, k ≥ 0), (U−,k, k ≥ 0) be independent sequences
of i.i.d. random variables such that

ξ+,0 Law
= ξ+, ξ−,0

Law
= ξ−, ζ+,0 Law

= ζ+, ζ−,0
Law
= ζ−, U+,0 Law

= U+, U−,0
Law
= U−.
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For every x ∈ R∗ fixed, we consider the sequence ((ξ(x,k), ζ(x,k), U (x,k)), k ≥ 0), where for k ≥ 0,

(ξ(x,k), ζ(x,k), U (x,k)) =


(ξ+,k, ζ+,k, U+,k), if sgn(x)(−1)k = 1,

(ξ−,k, ζ−,k, U−,k), if sgn(x)(−1)k = −1.

Let (T
(x)
n , n ≥ 0) be the sequence defined by

T
(x)
0 = 0, T (x)

n =
n−1∑
k=0

ζ(x,k), n ≥ 1,

and (N
(x)
t , t ≥ 0) be the alternating renewal type process:

N
(x)
t = max{n ≥ 0 : T (x)

n ≤ t}, t ≥ 0.

For notational convenience we write

σ
(x)
t = t− T (x)

N
(x)
t

, ξ(x)
σt = ξ

(x,N
(x)
t )

σ
(x)
t

, ξ
(x,k)
ζ = ξ

(x,k)

ζ(x,k)
.

Finally, we define the process Y (x) = (Y
(x)
t , t ≥ 0) by

Y
(x)
t = x exp{E (x)

t }, t ≥ 0, (1.11)

where

E (x)
t = ξ(x)

σt +

N
(x)
t −1∑
k=0

(
ξ

(x,k)
ζ + U (x,k)

)
+ iπN

(x)
t , t ≥ 0.

Remark 1.6. Observe that the process Y (x) is a generalization of multiplicative Lévy processes.

For, take (ξ+, U+, ζ+)
L
= (ξ−, U−, ζ−) it is seen that Y (x) is a multiplicative Lévy process, as it

has been defined in [22]. Moreover, if q+ = 0 and q− > 0, then for x > 0, Y (x) does not jump to
the negative axis and Y (x) is the exponential of a Lévy process, which appears in the Lamperti
representation for positive self-similar Markov processes.

The following theorem is the main result of this chapter. The first part states that Y (x)

is a Lamperti-Kiu process, the second and third parts are the generalization of the Lamperti
representation.

Theorem 1.7. Let Y (x) be the process defined in (1.11). Then,

(i) the process Y (x) is Fellerian in R∗ and satisfies (1.3). Furthermore, for any finite stopping
time T:

((Y
(x)
T )−1Y

(x)
T+s, s ≥ 0)

L
= (exp{Ẽ (sgn(Y

(x)
T ))

s }, s ≥ 0),

where Ẽ (·) is a copy of E (·) which is independent of (E (·)
u , 0 ≤ u ≤ T).
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(ii) Let {X(x) = (X,Px), x ∈ R∗} be a family of real-valued self-similar Markov processes of
index α > 0 such that Px(H1 < ∞) = 1, for all x ∈ R∗. For every x ∈ R∗ define the
process Y(x) by

Y(x)
t = X

(x)

ν(x)(t)
, t ≥ 0,

where

ν(x)(t) = inf

{
s > 0 :

∫ s

0

|X(x)
u |−αdu > t

}
.

Then Y(x) may be decomposed as in (1.11). Moreover, every Lamperti-Kiu process can be
constructed as explained in (1.11).

(iii) Conversely, let (Y (x))x∈R∗ be a family of processes as constructed in (1.11) and consider
the processes (X(x))x∈R∗ given by

X
(x)
t = Y

(x)

τ(t|x|−α), t ≥ 0,

where

τ(t) = inf

{
s > 0 :

∫ s

0

| exp{αE (x)
u }|du > t

}
, t < T,

for some α > 0. Then (X(x))x∈R∗ is a family of real-valued self-similar Markov processes
of index α > 0.

From now on, we denote a Lamperti-Kiu process by Y . Now, we obtain an expression for
the infinitesimal generator of Y , that will be used in the examples.

Proposition 1.8. Let K be the infinitesimal generator of Y . Let A+, A− be the infinitesimal
generators of ξ+, ξ−, respectively. Let f be a bounded continuous function such that f(0) = 0
and (f ◦ exp) ∈ DA+ and (f ◦ − exp) ∈ DA−. Then, for every x ∈ R∗,

Kf(x) = Asgn(x)(f ◦ sgn(x) exp)(log |x|) + qsgn(x)
(
E[f(−x exp{U sgn(x)})− f(x)]

)
. (1.12)

With the help of the latter proposition we can give the infinitesimal generator of Y in terms
of the parameters of the Lévy processes ξ+ and ξ− as follows. Recall that the characteristic
exponent of the Lévy process ξ± can be written as

ψ±(λ) = a±iλ− [σ±]2

2
λ2 +

∫
R
[eiλy − 1− iλl(y)]π±(dy), λ ∈ R,

where a± ∈ R, σ > 0, l(·) is a fixed continuous bounded function such that l(y) ∼ y as y → 0 and
π± is the Lévy measure of the process ξ±, which satisfies π±({0}) = 0 and

∫
R(1∧x2)π±(dx) <∞.

Furthermore, the choice of the function l is arbitrary and the coefficient a± is the only one
which depends on this choice (see remark 8.4 in [45]). Later in the examples we will choose
conveniently this function. Hence, the infinitesimal generator of the Lévy process ξ± can be
expressed as

A±f(x) = a±f ′(x) +
[σ±]2

2
f ′′(x) +

∫
R
[f(x+ y)− f(x)− f ′(x)l(y)]π±(dy), f ∈ DA± .
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Then using the expression of A± and (1.12), we find for x ∈ R∗,

Kf(x) = bsgn(x)xf ′(x) +
[σsgn(x)]2

2
x2f ′′(x) +

∫
R+

[f(xu)− f(x)− xf ′(x)l(log u)]Θsgn(x)(du)

+qsgn(x){E[f(−x exp{U sgn(x)})− f(x)]}, (1.13)

where bsgn(x) = asgn(x) + [σsgn(x)]2/2, Θsgn(x)(du) = πsgn(x)(du) ◦ log u. Hence, by Volkonskii’s

theorem, the generator K̃ of the time changed process Yτ is given by K̃f(x) = |x|−αKf(x), for
x ∈ R∗. Hence, knowing that the infinitesimal generator of Y is given by (1.13) it is possible
to identify the infinitesimal generator of the self-similar Markov process X and conversely.

1.3 Proofs

Proof of Proposition 1.3. The strong Markov property implies Px(Hn < ∞,∀n ≥ 0) = 1.
Thus, (Hn, n ≥ 0) is a strictly increasing sequence of stopping times satisfying Hn ≤ T , for all
n ≥ 0. Let H be the limit of this sequence, then H ≤ T . If H = ∞, then clearly T = ∞ and
H = T . On the other hand, if H < ∞, then on the set {H < T}, it is possible to define the
process XH = (XH+t1{t<T−H}, t ≥ 0). This process has no change of sign, and by the strong
Markov property, for all y ∈ R∗, conditionally on XH = y, XH has the same distribution as X
under Py. This contradicts the fact that X has at least one change of sign. Therefore, H = T ,
a.s.

Proof of Theorem 1.5. For t ≥ 0, we denote by θt : Ω → Ω the shift operator, i.e., for ω ∈ Ω,
θtω(s) = ω(t+ s), s ≥ 0.

(i) Let F be a bounded and measurable functional. From (1.6) and the self-similarity
property, it follows

Ex
[
F

(
X|X0|αt

|X0|
, 0 ≤ t < |X0|−αH1

)]
= Esgn(x) [F (Xt, 0 ≤ t < H1)] ,

for x ∈ R∗. Moreover, sgn(XHn) = sgn(x)(−1)n, Px-a.s. These two facts and the strong Markov
property are sufficient to complete the proof. Indeed, for X (0), . . . ,X (n) as defined in (1.7) and
for all F0, . . . , Fn bounded and measurable functionals, we have

Ex

[
n∏
k=0

Fk
(
X (k)

)]
= Ex

[
n−1∏
k=0

Fk
(
X (k)

)
EXHn

[
Fn

(
X|X0|αt

|X0|
, 0 ≤ t < |X0|−αH1

)]]

= Ex

[
n−1∏
k=0

Fk
(
X (k)

)
Esgn(x)(−1)n [Fn (Xt, 0 ≤ t < H1)]

]

= Ex

[
n−1∏
k=0

Fk
(
X (k)

)]
Esgn(x)(−1)n [Fn (Xt, 0 ≤ t < H1)] ,

where the strong Markov and self-similarity properties were used to obtain the first and second
equality, respectively. Now, taking F0 = . . . = Fn−1 ≡ 1, we have

Ex
[
Fn

(
X (n)
t , 0 ≤ t < |XHn|−α(Hn+1 −Hn)

)]
= Esgn(x)(−1)n [Fn (Xt, 0 ≤ t < H1)] .
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This proves (1.9). In addition

Ex

[
n∏
k=0

Fk
(
X (k)

)]
= Ex

[
n−1∏
k=0

Fk
(
X (k)

)]
Ex
[
Fn
(
X (n)

)]
.

This proves the independence in the sequence {(X (n)
t , 0 ≤ t < |XHn|−α(Hn+1 − Hn)), n ≥ 0}

under Px.
(ii) From (1.6) and the self-similarity property, we derive that

Ex
[
f

(
XH1

XH1−

)]
= Esgn(x)

[
f

(
XH1

XH1−

)]
, (1.14)

for all x ∈ R∗, and f bounded Borel function. Now, let f0, . . . , fn bounded Borel functions.
Proceeding as in (i), using (1.14) and the strong Markov property, we obtain

Ex

[
n∏
k=0

fk

(
XHk+1

XHk+1−

)]
= Ex

[
n−1∏
k=0

fk

(
XHk+1

XHk+1−

)]
Esgn(x)(−1)n

[
fn

(
XH1

XH1−

)]
.

The conclusion follows as in (i).

(iii) By the strong Markov property, (i) and (ii), it is sufficient to prove the case n = 0. For
k ≥ 1, let f : R∗k → R, g : R∗ → R be two Borel functions, and 0 < s1 < . . . < sk. We note

the following identity
XH1

XH1−
◦ θsk =

XH1

XH1−
, on {sk < H1}. Hence, by the Markov property and

(1.14), we have

Ex
[
f(Xs1 , . . . , Xsk)g

(
XH1

XH1−

)
; sk < H1

]
= Ex

[
f(Xs1 , . . . , Xsk)EXsk

[
g

(
XH1

XH1−

)]
; sk < H1

]
= Ex [f(Xs1 , . . . , Xsk); sk < H1]Esgn(x)

[
g

(
XH1

XH1−

)]
= Ex [f(Xs1 , . . . , Xsk); sk < H1]Ex

[
g

(
XH1

XH1−

)]
.

This ends the proof.

In order to prove Theorem 1.7, we first prove the following lemma. This lemma is a con-
sequence of the lack-of-memory property of the exponential distribution and the properties of
the random objects which define Y (x). Before we state it, we define the following process. For
x ∈ R∗, let Z(x) be the sign process of Y (x), i.e., Z

(x)
t = sgn(Y

(x)
t ), t ≥ 0. Note that Z(x) is a

continuous time Markov chain with state space {−1, 1}, starting point sgn(x) and transition
semigroup etQ, where

Q =

(
-q− q−

q+ -q+

)
.

Furthermore, since the law of Z(x) is determined by Q (hence by ζ+, ζ−), then the process Z(x)

is independent of ((ξ(x,k), U (x,k)), k ≥ 0).

Lemma 1.9. Let n,m be positive integers and s, t be positive real numbers. We have the
following properties

11



(a) Conditionally on T
(x)
n ≤ t < T

(x)
n+1, the random variable T

(x)
n+1− t has an exponential distri-

bution with parameter q(x,n), where q(x,n) equals q+ if sgn(x)(−1)n = 1 and q− otherwise.
Furthermore,

ξ
(x,n)
ζ − ξ(x,n)

t−T (x)
n

L
= ξ̃

(Z
(x)
t ,0)

ζ̃
,

where (ξ̃(·,0), ζ̃(·,0)) are independent of (ξ(·,k), ζ(·,k), 0 ≤ k < n) and with the same distribu-
tion as (ξ(·,0), ζ(·,0)).

(b) Conditionally on T
(x)
n ≤ t < T

(x)
n+1, T

(x)
n+m ≤ t + s < T

(x)
n+m+1 the distribution of ξ

(x,n+m)

t+s−T (x)
n+m

is the same as the distribution of ξ̃
(Z

(x)
t ,m)

s−T̃
(Z

(x)
t )

m

conditionally on T̃
(Z

(x)
t )

m ≤ s < T̃
(Z

(x)
t )

m+1 , i.e.,

P(ξ
(x,n+m)

t+s−T (x)
n+m

∈ dz | T (x)
n+m ≤ t+ s < T

(x)
n+m+1, T

(x)
n ≤ t < T

(x)
n+1)

= P(ξ̃
(Z

(x)
t ,m)

s−T̃
(Z

(x)
t )

m

∈ dz | T̃ (Z
(x)
t )

m ≤ s < T̃
(Z

(x)
t )

m+1 ),

where (ξ̃(·,m), T̃
(·)
m ) are independent of (ξ(·,k), T

(·)
k , 0 ≤ k ≤ n) with the same distribution as

(ξ(·,m), T
(·)
m ).

Proof of Lemma 1.9. The first part of (a) follows from the lack-of-memory property of the ex-
ponential distribution. Now, by construction, (ξ(x,n), ζ(x,n), n ≥ 0) is a sequence of independent

random objects which depends on x only through its sign and T
(x)
n+m = T

(x)
n +

∑m−1
k=0 ζ

(x,n+k).

Hence, it is always possible to take (ξ̃(·,0), ζ̃(·,0)) and (ξ̃(·,m), T̃
(·)
m ) with the properties described

in (a) and (b), respectively. Thus, it only remains to prove the equality in distribution in (a)
and (b).

Denote by f
T

(x)
n

the density of the random variable T
(x)
n . Simple computations lead to

P(ξ
(x,n)
ζ − ξ(x,n)

t−T (x)
n

∈ dz, T (x)
n ≤ t < T

(x)
n+1) =

∫ t

0

∫ ∞
t−u

P(ξ
(x,n)
r−(t−u) ∈ dz)q(x,n)e−q

(x,n)rdrf
T

(x)
n

(u)du

= P(ξ
(x,n)
ζ ∈ dz)P(T (x)

n ≤ t < T
(x)
n+1),

where the independence and stationarity of the increments of the Lévy process ξ(x,n) have been
used in the first equality and we made the change of variables v = r − (t − u) to obtain the
second. Hence, the equality in law of (a) is obtained.

By (a) we have that for all m ≥ 0, conditionally on T
(x)
n ≤ t < T

(x)
n+1, the random variable

T
(x)
n+m− t has the same distribution as T

(Z
(x)
t )

m and it is independent of (T
(x)
k , 0 ≤ k ≤ n). Hence

P(ξ
(x,n+m)

t+s−T (x)
n+m

∈ dz, T (x)
n+m ≤ t+ s < T

(x)
n+m+1 | T (x)

n ≤ t < T
(x)
n+1)

= P(ξ
(Z

(x)
t ,m)

s−T̃
(Z

(x)
t )

m

∈ dz, T̃ (Z
(x)
t )

m ≤ s < T̃
(Z

(x)
t )

m+1 )

and

P(T
(x)
n+m ≤ t+ s < T

(x)
n+m+1 | T (x)

n ≤ t < T
(x)
n+1) = P(T̃ (Z

(x)
t )

m ≤ s < T̃
(Z

(x)
t )

m+1 ).

12



Therefore

P(ξ
(x,n+m)

t+s−T (x)
n+m

∈ dz | T (x)
n+m ≤ t+ s < T

(x)
n+m+1, T

(x)
n ≤ t < T

(x)
n+1)

= P(ξ
(Z

(x)
t ,m)

s−T̃
(Z

(x)
t )

m

∈ dz | T̃ (Z
(x)
t )

m ≤ s < T̃
(Z

(x)
t )

m+1 ).

This finishes the proof.

Proof of Theorem 1.7. (i) First we prove that Y (x) satisfies the property (1.3). We note that

the process E (·) depends on x only through its sign, then clearly for all a ∈ R∗, E (|a|x) L= E (x).
Hence, we have

(sgn(a)Y
(|a|x)
t , t ≥ 0) = (sgn(a)|a|x exp{E (|a|x)

t }, t ≥ 0)
L
= (ax exp{E (x)

t }, t ≥ 0)

= (aY
(x)
t , t ≥ 0).

Therefore, the process Y (x) satisfies the property (1.3).

Let s, t ≥ 0, then by Lemma 1.9, conditionally on T
(x)
n ≤ t < T

(x)
n+1, T

(x)
n+m ≤ t+ s < T

(x)
n+m+1,

we have

Y
(x)
t+s

Y
(x)
t

= exp

{
ξ

(x,n+m)

t+s−T (x)
n+m

+
m−1∑
k=1

(
ξ

(x,n+k)
ζ + U (x,n+k)

)
+ ξ

(x,n)
ζ − ξ(x,n)

t−T (x)
n

+ U (x,n) + iπm

}
L
= exp

{
ξ̃

(Z
(x)
t ,m)

s−T̃
(Z

(x)
t )

m

+
m−1∑
k=0

(
ξ̃

(Z
(x)
t ,k)

ζ̃
+ Ũ (Z

(x)
t ,k)

)
+ iπm

}
.

Hence, for s, t ≥ 0,

Y
(x)
t+s

Y
(x)
t

L
= exp{Ẽ (Z

(x)
t )

s }, (1.15)

where Ẽ (·) is a copy of E (·) which is independent of (E (·)
u , 0 ≤ u ≤ t). Thus, Y (x) has the Markov

property. Furthermore

(Y
(x)
t+s, s ≥ 0)

L
= (Ỹ (Y

(x)
t )

s , s ≥ 0),

where Ỹ (·) is a copy of Y (·) which is independent of (Y
(·)
u , 0 ≤ u ≤ t). This also ensures that all

processes Y (x) have the same semigroup.

Now, we prove that Y (x) is a Feller process on R∗. Let Qt be the semigroup associated to
Y (x). We verify that Qt is a Feller semigroup, that is,

(i) Qtf ∈ C0(R∗), for all f ∈ C0(R∗),

(ii) limt↓0Qtf(x) = f(x), for all x ∈ R∗.

Let x ∈ R∗ be fixed. For all y ∈ R∗ such that sgn(y) = sgn(x), by property (1.3), we have

Qtf(y) = E
[
f
(
Y

(y)
t

)]
= E

[
f
(y
x
Y

(x)
t

)]
.

13



The latter expression and the dominated convergence theorem ensure the continuity of Qtf in

x. By (1.3), (Y
(x)
t , t ≥ 0)

L
= (|x|Y (sgn(x))

t , t ≥ 0) for all x ∈ R∗. Hence,

Qtf(x) = E
[
f
(
Y

(x)
t

)]
= E

[
f
(
|x|Y (sgn(x))

t

)]
, x ∈ R∗.

Using again the dominated convergence theorem, we obtain lim|x|→∞Qtf(x) = 0. For the last
part,

E
[
f
(
Y

(x)
t

)]
= E

[
f
(
Y

(x)
t

)∣∣∣T (x)
1 > t

]
P
(
T

(x)
1 > t

)
+ E

[
f
(
Y

(x)
t

)∣∣∣T (x)
1 ≤ t

]
P
(
T

(x)
1 ≤ t

)
.

For the first term we have

E
[
f
(
Y

(x)
t

)∣∣∣T (x)
1 > t

]
P
(
T

(x)
1 > t

)
= E

[
f
(
x exp{ξsgn(x)

t }
)∣∣∣ ζsgn(x) > t

]
e−q

sgn(x)t.

Letting t → 0, the last expression converges to f(x) by the right continuity of ξsgn(x). Thus,
it only remains to prove that the second term converges to zero as t tends to zero. Since f is
bounded, ∣∣∣E [f (Y (x)

t

)∣∣∣T (x)
1 ≤ t

]
P
(
T

(x)
1 ≤ t

)∣∣∣ ≤ C
(

1− e−qsgn(x)t
)
,

for some positive constant C. Again, letting t→ 0 we obtain the desired result.

The strong Markov property of Y (x) follows from the standard fact that any Feller process
is a strong Markov process.

(ii) First note that ν(x)(t) satisfies

ν(x)(t) =

∫ t

0

|Y(x)
s |αds, t ≥ 0. (1.16)

Indeed, if

τ (x)(t) =

∫ t|x|α

0

|X(x)
s |−αds,

then, since τ (x)(ν(x)(t)|x|−α) = t, it follows dν(x)(t)/dt = 1/|X(x)

ν(x)(t)
|−α = |Y(x)

t |α.

Now, we claim the following: for every x ∈ R∗ and n ≥ 0, there exists a Lévy process ξ(x,n)

independent of (X
(x)
s , 0 ≤ s ≤ H

(x)
n ) such that,

X
(x)
Hn+t = X

(x)
Hn

exp{ξ(x,n)

τ (x,n)(t|X(x)
Hn
|−α)
}, 0 ≤ t < H

(x)
n+1 −H(x)

n , (1.17)

where

τ (x,n)(t) = inf

{
s > 0 :

∫ s

0

exp{αξ(x,n)
u }du > t

}
. (1.18)

To verify this, we take x > 0 and n even, the other cases can be proved similarly. In this case,
X

(x)
Hn

> 0. By the strong Markov property, conditionally on XHn = y, we have

(XHn+t, 0 ≤ t < Hn+1 −Hn)
L
= {(Xt, 0 ≤ t < H1) ,Py} .
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And since the process on the right hand side of the latter expression is a positive self-similar
Markov process, then by Lamperti’s representation there exists a Levy process (ξ+,P) such
that

{(Xt, 0 ≤ t < H1) ,Py}
L
=
{(
y exp{ξ+

τ+(ty−α)}, 0 ≤ t < A+(∞)
)
,P
}
,

where

A+(∞) =

∫ ∞
0

exp{αξ+
s }ds.

Furthermore, since H1 < ∞, Py-a.s., then ξ+ is a killed Lévy process with lifetime ζ+, expo-
nentially distributed with parameter q+ > 0 and hence

A+(∞) =

∫ ζ+

0

exp{αξ+
s }ds.

Note that we chose the superscript + because sgn(XHn) > 0.

Thus, we have obtained that for all x > 0, n even,

{(XHn+t, 0 ≤ t < Hn+1 −Hn) ,Px}
L
=

{(
X

(x)
Hn

exp{ξ+

τ+(t(X
(x)
Hn

)−α)
}, 0 ≤ t < A+(∞)

)
,P

}
.

This shows (1.17). Also, the Lamperti representation ensures that for all x ∈ R∗, n ≥ 0,

|X(x)
Hn
|−α(Hn+1 −Hn) =

∫ ζ(x,n)

0

exp{αξ(x,n)
u }du, (1.19)

which implies that for all n ≥ 1

H(x)
n =

n−1∑
k=0

|X(x)
Hk
|α
∫ ζ(x,k)

0

exp{αξ(x,k)
u }du. (1.20)

Now, for x ∈ R∗ we define the sequence (U (x,n), n ≥ 0) by

exp{U (x,n)} = −
X

(x)
Hn+1

X
(x)
Hn+1−

, n ≥ 0.

Then, by (1.17) and (1.19) it follows that

X
(x)
Hn+1− = X

(x)
Hn

exp{ξ(x,n)
ζ },

and also

X
(x)
Hn+1

= X
(x)
Hn+1−

X
(x)
Hn+1

X
(x)
Hn+1−

= −X(x)
Hn

exp{ξ(x,n)
ζ + U (x,n)}.

Hence, for all n ≥ 0,

X
(x)
Hn+1

= x exp

{
n∑
k=0

(
ξ

(x,k)
ζ + U (x,k)

)
+ iπ(n+ 1)

}
. (1.21)
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Note that because of Theorem 1.5, for every x ∈ R∗, the sequence (ξ(x,n), ζ(x,n), U (x,n), n ≥ 0)
satisfies the condition which defines the process Y (x) in (1.11). It only remains to prove that
X(x) time changed is of the form (1.11). For that aim, write

A(x,n)(t) =

∫ t

0

exp{αξ(x,n)
u }du, 0 ≤ t ≤ ζ(x,n).

Thanks to (1.17), (1.18) and (1.21), we have

X
(x)

Hn+|X(x)
Hn
|αA(x,n)(t)

= X
(x)
Hn

exp{ξ(x,n)
t }

= x exp{E (x)
t+Tn
}.

On the other hand, by (1.20), for 0 ≤ t < ζ(x,n) it follows

H(x)
n + |X(x)

Hn
|αA(x,n)(t) =

n−1∑
k=0

|X(x)
Hk
|α
∫ ζ(x,k)

0

exp{αξ(x,k)
u }du+ |X(x)

Hn
|α
∫ t

0

exp{αξ(x,n)
u }du

=
n−1∑
k=0

∫ ζ(x,k)

0

|x|α| exp{αE (x)
u+Tk
}|du+

∫ t

0

|x|α| exp{αE (x)
u+Tn
|}du

=
n−1∑
k=0

∫ Tk+1

Tk

|x|α| exp{αE (x)
u }|du+

∫ t+Tn

Tn

|x|α| exp{αE (x)
u }|du

=

∫ t+Tn

0

|x exp{E (x)
u }|αdu.

Hence
X

(x)∫ t+Tn
0 |x exp{E(x)s }|αds

= x exp{E (x)
t+Tn
}, 0 ≤ t < ζ(x,n).

The latter and (1.16) imply that Y(x) can be decomposed as in (1.11). Furthermore, as a
consequence of this decomposition and the converse of the main result in [34], we can conclude
that every Lamperti-Kiu process can be constructed as explained in (1.11).

(iii) Let (Gt) be the natural filtration of Y (x), i.e., Gt = σ(Y
(x)
s , s ≤ t), t ≥ 0. Let Ft =

Gτ(t|x|−α), t ≥ 0. Clearly, X(x) is (Ft)-adapted, and since the strong Markov property is preserved

under time changes by additive functionals, X(x) is a strong Markov process. We recall E (cx) L=
E (x) for all c > 0. Thus, if c > 0, then(

cX
(x)

c−αt, t ≥ 0
)

=
(
cx exp{E (x)

τ(t|cx|−α)}, t ≥ 0
)

L
=

(
cx exp{E (cx)

τ(t|cx|−α)}, t ≥ 0
)

=
(
X

(cx)
t , t ≥ 0

)
.

This proves the self-similar property of X(x). It only remains to prove that all X(x) have the
same semigroup. We have

X
(x)
t+s = X

(x)
t (Y

(x)

τ(t|x|−α))
−1Y

(x)

τ((t+s)|x|−α).
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On the other hand, for all s, t ≥ 0,

τ((t+ s)|x|−α) = τ(t|x|−α) + inf

{
r > 0 :

∫ r

0

| exp{αE (x)

τ(t|x|−α)+u}|du > s|x|−α
}

= τ(t|x|−α) + inf

{
r > 0 :

∫ r

0

∣∣∣(Y (x)

τ(t|x|−α))
−1Y

(x)

τ(t|x|−α)+u

∣∣∣α du > s|X(x)
t |−α

}
.

Write Ŷ
(x)
s = (Y

(x)

τ(t|x|−α))
−1Y

(x)

τ(t|x|−α)+s, s ≥ 0. Then

X
(x)
t+s = X

(x)
t Ŷ

(x)

τ̂(s|X(x)
t |−α)

.

Hence by the strong Markov property of Y (x), Theorem 1.7 (ii), we obtain

P(X
(x)
t+s ∈ dz | Ft) = P(X

(x)
t Ŷ

(x)

τ̂(s|X(x)
t |−α)

∈ dz | Ft)

= P(y exp{E (sgn(y))

τ(s|y|−α)} ∈ dz)|
y=X

(x)
t

= P(X
(y)
t ∈ dz)|

y=X
(x)
t

.

This concludes the proof.

Remark 1.10. Let A(x) = (A
(x)
t , 0 ≤ t ≤ ∞) be the process defined by

A
(x)
t =

∫ t

0

| exp{αE (x)
s }|ds, 0 ≤ t ≤ ∞.

Note that A(x) only depends on x through its sign. From (1.20), (1.21) and Proposition 1.3,
under Px,

T = lim
n→∞

Hn = |x|αA(sgn(x))
∞ ,

i.e., there is a relation between the hitting time of zero for X and the exponential functional of
E , similar to the one known for positive self-similar Markov processes. Furthermore, Lamperti’s
representation can be written as

X
(x)
t 1{t<T} = x exp{E (x)

τ (x)(t|x|−α)
}1{t<|x|αA(sgn(x))

∞ }, t ≥ 0,

where τ (x)(t) = inf{s > 0 :
∫ s

0
| exp{αE (x)

u }|du > t}, t < A
(x)
∞ .

Proof of Proposition 1.8. We prove the case x > 0, the case x < 0 can be proved similarly. Let
T1 and T2 the first and the second times of sign change for Y , respectively. In the case x > 0,

T1 = inf{t > 0 : Yt < 0}, T2 = inf{t > T1 : Yt > 0}.

Since f is bounded, we have

Ex[f(Yt)]− f(x) = Ex[f(Yt)1{T1>t} − f(x)] + Ex[f(Yt)1{T1≤t<T2}] + Ex[f(Yt)1{T2≤t}],
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Recall that by construction of Y , (T1, T2) are such that under Px, for x > 0, they have the
same distribution as (ζ+, ζ+ + ζ−), with ζ+, ζ− independent exponential random variables with
parameters q+, q−, respectively. It is easy to verify that

Px(T2 ≤ t) =


q−(1− e−q+t)− q+(1− e−q−t)

q− − q+
, q+ 6= q−,

1− e−q+t − q+te−q
+t, q+ = q−.

It follows that Px(T2 ≤ t) = o (q+q−t2/2) as t→ 0. Hence, using again that f is bounded, we
obtain

1

t
Ex[f(Yt)1{T2≤t}] ≤

1

t
CPx(T2 ≤ t)→ 0, t→ 0.

Now we write

1

t
(Ex[f(Yt)1{T1>t}]− f(x)) =

1

t
(Ex[f(exp{ξ+

t })]− f(x))e−q
+t +

1

t
f(x)(e−q

+t − 1),

where ξ+ is a Lévy process such that ξ+
0 = log(x), Px-a.s. The last expression implies

lim
t→0

1

t
(Ex[f(Yt)1{T1>t}]− f(x)) = A+(f ◦ exp)(log(x))− q+f(x).

To conclude, observe the identity

Ex[f(Yt)1{T1≤t<T2}] = Ex[f(− exp{ξ−t−ζ+ + ξ+
ζ+ + U+

1 }) | 0 ≤ t− ζ+ < ζ−]Px(T1 ≤ t < T2),

where ξ+ is as before and ξ− is a Lévy process with lifetime ζ− independent of (ξ+, ζ+, U+
1 )

and satisfying ξ−0 = 0, Px-a.s. This together with

lim
t→0

1

t
Px(T1 ≤ t < T2) = lim

t→0

1

t
Px(T1 ≤ t)− lim

t→0

1

t
Px(T2 ≤ t) = q+,

and the convergence

lim
t→0

1

t
Ex[f(− exp{ξ−t−ζ+ + ξ+

ζ+ + U+
1 }) | 0 ≤ t− ζ+ < ζ−] = E[f(−x exp{U+})],

which holds by the right continuity of ξ+ and ξ−, imply that

lim
t→0

1

t
Ex[f(Yt)1{T1≤t<T2}] = q+E[f(−x exp{U+})].

This ends the proof.

1.4 Examples

The aim of this section is to characterize the law of (ξ±, ζ±, U±) which defines the Lamperti-Kiu
processes through two examples. The first example is the α-stable process killed at the first
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hitting time of zero, and the second is the α-stable process conditioned to avoid zero in the
case α ∈ (1, 2).

We start by reviewing some results in the literature about self-similar Markov processes.
Through this section X will denote an α-stable process and T its first hitting time of zero
(T = inf{t > 0 : Xt = 0}, with inf{∅} = ∞); and we will denote by X0 and Xl the α-stable
process killed at T and conditioned to avoid zero, respectively.

In the case α = 2, the process X has no jumps and X0 corresponds to a standard real
Brownian motion absorbed at level 0. On the other hand, the Brownian motion conditioned to
avoid zero is a three dimensional Bessel process, see e.g. [43]. Thus, depending on the starting
point, Xl is such that Xl or −Xl is a Bessel process of dimension 3. Since all Bessel processes
are obtained as the images by the Lamperti representation of the exponential of Brownian
motion with drift, see e.g. [14] or [51], we obtain the following for x ∈ R∗,

X0
t = x exp{ξ0

τ(t|x|−α)}, X
l
t = x exp{ξlτ(t|x|−α)}, t ≥ 0,

where ξ0 and ξl are real Brownian motions with drift, viz., ξ0 = (Bt − t/2, t ≥ 0) and ξl =

(B̃t + t/2, t ≥ 0), with B, B̃ real Brownian motions. Therefore, the Lamperti representation is
known in the case α = 2, so we exclude this case in our examples.

For 0 < α < 2, let ψ be the characteristic exponent of X: E[exp (iλXt)] = exp (tψ(λ)), t ≥ 0,
λ ∈ R. It is well known that ψ is given by

ψ(λ) = iaλ+

∫
R
(eiλy − 1− iλy1{|y|<1})ν(y)dy, λ ∈ R, (1.22)

where ν is the density of the Lévy measure:

ν(y) = c+y−α−11{y>0} + c−|y|−α−11{y<0}, (1.23)

with c+ and c− being two nonnegative constants such that c+ + c− > 0. The constant a is
(c+ − c−)/(1− α) if α 6= 1. For the case α = 1 we will assume that X is a symmetric Cauchy
process, thus c+ = c− and a = 0.

Another quite well studied positive self-similar Markov process killed at its first hitting time
of 0 is the process obtained by killing an α-stable process when it leaves the positive half-line.
Formally, if R is the stopping time R = inf{t > 0 : Xt ≤ 0}, then the process killed at the
first time it leaves the positive half-line is X† = (Xt1{t<R}, t ≥ 0) where 0 is assumed to be a
cemetery state. Caballero and Chaumont in [10] proved that the Lévy process ξ related to X
via Lamperti’s representation has the characteristic exponent:

Φ(λ) = iaλ+

∫
R
[eiλy − 1− iλ(ey − 1)1{|ey−1|<1}]π(dy)− c−α−1, λ ∈ R, (1.24)

where the Lévy measure π(dy) is

π(dy) =

(
c+ey

(ey − 1)α+1
1{y>0} +

c−ey

(1− ey)α+1
1{y<0}

)
dy. (1.25)

Note from (1.24) that the killing rate of the Lévy process ξ is c−α−1.
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A further example in the literature appears in [13]. They studied the radial part of the
symmetric α-stable process taking values in Rd. In the case d = 1, 0 < α < 1, they proved that
the Lévy process in the Lamperti representation for the radial part of the symmetric α-stable
process is the sum of two independent Lévy processes ξ1, ξ2 with triples (0, 0, π1) and (0, 0, π2)
where

π1(dy) =

(
k(α)ey

(ey − 1)α+1
1{y>0} +

k(α)ey

(1− ey)α+1
1{y<0}

)
dy, π2(dy) =

k(α)ey

(ey + 1)α+1
dy (1.26)

and
k(α) =

α

2Γ(1− α) cos πα
2

.

In other words, the Lévy process in the Lamperti representation is the sum of a Lévy process
with Lévy measure similar to (1.25) and a compound Poisson process. Since the process Y is
symmetric in this case, the results in [13] confirm Chybiryakov’s results.

The Lévy processes with Lévy measure having the form (1.25) or π1 in (1.26) are examples
of Lamperti-stable processes. For the definition and properties of Lamperti-stable processes,
see [12].

1.4.1 The α-stable process killed at zero

The following theorem provides the expression of the infinitesimal generator of the process X0.

Theorem 1.11. Let α ∈ (0, 2) and let A, A0 the infinitesimal generators of the α-stable
process and the α-stable process killed in T , respectively. Then DA0 = {f ∈ DA : f(0) = 0} and
A0f(x) = Af(x), for x ∈ R∗. Furthermore, A0f(x) can be written as:

A0f(x) =
1

|x|α

[
sgn(x)axf ′(x) +

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]ν
0,sgn(x)(u)du

]
+

1

|x|α
c−sgn(x)α−1

∫
R−

[f(xu)− f(x)]g0(u)du, x ∈ R∗, (1.27)

where
ν0,sgn(x)(u) = ν(sgn(x)(u− 1)), u > 0, g0(u) = α(1− u)−α−1, u < 0,

and ν is given by (1.23).

The proof of the latter theorem will be given at the end of this subsection. The following
corollary characterizes the Lamperti-Kiu process associated to the α-stable process killed at its
first hitting time of zero and its proof is an immediate consequence of Volkonskii’s theorem and
the formulas (1.13) and (1.27).

Corollary 1.12. Let ξ0,±, ζ0,±, U0,± the random objects in the Lamperti representation of X0.
Then, the characteristic exponent of ξ0,± is given by

ψ0,±(λ) = ia±λ+

∫
R
[eiλy − 1− iλ(ey − 1)1{|ey−1|<1}]π

0,±(dy), λ ∈ R,
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where a± = ±a, with a as in (1.22), and π0,±(dy) = eyν(±(ey − 1))dy. The parameters of the
exponential random variables ζ0,± are c∓α−1 and the real random variables U0,± have density

g(u) =
αeu

(1 + eu)α+1
, u ∈ R.

Note that as expected, the Lévy process ξ0,+ is the one obtained in [10]. Furthermore, the
downwards change of sign rate, which is the death rate in [10], is c−α−1. From the triples of
ξ0,+ and ξ0,− we can observe that both belong to the Lamperti-stable family. In the particular
case where X is a symmetric α-stable process with α ∈ (0, 1), the description in Corollary 1.12
coincides with the one in [13], see (1.26). Note that U0,+, U0,− are identically distributed and

they are such that U0,± L= log V , where V follows a Pareto distribution with parameter α, viz.,

f(x) =
α

(1 + x)α+1
, x > 0.

In order to prove the main theorem of this subsection we need the following two lemmas.

Lemma 1.13. Let X be an α-stable process, α ∈ (0, 2). Then, for any x ∈ R∗,

lim
t↓0

1

t
Px(T ≤ t,Xt ∈ R∗) = 0. (1.28)

Proof. Since for α ∈ (0, 1] the point zero is polar, then (1.28) is clearly satisfied. Suppose
α ∈ (1, 2). For δ > 0, write

Px(T ≤ t,Xt ∈ R∗) = Px(T ≤ t, |Xt| ∈ (0, δ]) + Px(T ≤ t, |Xt| > δ).

First, we verify the following: for 0 < δ < |x| it holds

lim
t↓0

1

t
Px(|Xt| ∈ (0, δ]) =

c−sgn(x)

α
sgn(x)(|δ − x|−α − |δ + x|−α). (1.29)

For this aim, we will use the fact that for every K > 0, (1/t)P0(Xt ∈ dz) converges vaguely to
ν(z)dz on {z : |z| > K}, as t ↓ 0; see e.g. exercise I.1 in [5]. We only show (1.29) in the case
x < 0, the case x > 0 can be proved similarly. For x < 0, we have δ + x < 0 and

lim
t↓0

1

t
Px(|Xt| ∈ (0, δ]) = lim

t↓0

1

t
P0(Xt ∈ [−δ − x, δ − x])

=

∫ δ−x

−δ−x
ν(z)dz

=
c+

α
((−δ − x)−α − (δ − x)−α),

which proves the claim. Now, from (1.29) we obtain

lim sup
t↓0

1

t
Px(T ≤ t, |Xt| ∈ (0, δ]) ≤ c−sgn(x)

α
sgn(x)(|δ − x|−α − |δ + x|−α). (1.30)
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On the other hand, by the strong Markov property

Px(T ≤ t, |Xt| > δ) =

∫ t

0

P0(|Xt−s| > δ)Px(T ∈ ds).

Since (1/t)P0(Xt ∈ dz) converges vaguely to ν(z)dz on {z : |z| > K} for every K > 0, there
exists a constant C such that, for sufficiently small t:

P0(|Xt−s| > δ) ≤ Ct

δα
, for all s ∈ (0, t).

Then

Px(T ≤ t, |Xt| > δ) ≤ Px(T ≤ t)
Ct

δα
.

The latter inequality and (1.30) imply the result.

Lemma 1.14. Let x ∈ R∗, and α ∈ (0, 2). We will denote by I
(x)
1 and I

(x)
2 the following

integrals

I
(x)
1 =

∫
R+

(u− 1)(1{|u−1|<1} − 1{|x(u−1)|<1})ν(sgn(x)(u− 1))du,

I
(x)
2 =

∫
R−

(u− 1)1{|x(u−1)|<1}ν(sgn(x)(u− 1))du.

The identity
I

(x)
1 − I

(x)
2 = sgn(x)a(1− |x|α−1), holds.

Proof. We will show the case x < 0, and α 6= 1, the other cases can be proved similarly. First,
observe that |u − 1| < 1 if only if 0 < u < 2. Thus, if x = −1, then I

(x)
1 = I

(x)
2 = 0 and the

lemma is satisfied. Now, suppose that −1 < x < 0, then 1 + x−1 < 0 < 2 < 1− x−1,

I
(x)
1 = −

∫ 1−x−1

2

c−(u− 1)−αdu =
c−

1− α
[1− (−x)α−1],

and

I
(x)
2 = −

∫ 0

1+x−1

c+(1− u)−αdu =
c+

1− α
[1− (−x)α−1].

Hence, I
(x)
1 − I

(x)
2 = −a[1 − (−x)α−1]. Finally, suppose that x < −1. In this case, we have

0 < 1 + x−1 < 1 < 1− x−1 < 2, I
(x)
2 = 0 and

I
(x)
1 = −

∫ 1+x−1

0

c+(1− u)−αdu+

∫ 2

1−x−1

c−(u− 1)−αdu = −a[1− (−x)α−1].

This ends the proof.

Proof of Theorem 1.11. For any f bounded function such that f(0) = 0, we have for x ∈ R∗

Ex[f(X0
t )− f(x)] = Ex[f(Xt)− f(x)]− Ex[f(Xt)1{T≤t}].
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On the other hand, by the Lemma 1.13,

lim
t→0

1

t
Ex[f(Xt)1{T≤t}] = 0.

Then

lim
t→0

1

t
Ex[f(X0

t )− f(x)] = lim
t→0

1

t
Ex[f(Xt)− f(x)].

Hence, DA0 = {f ∈ DA : f(0) = 0} and A0f(x) = Af(x).

Now we will obtain (1.27). By the first part of the theorem we have that for x ∈ R∗, A0f(x)
is given by

A0f(x) = af ′(x) +

∫
R
[f(x+ y)− f(x)− yf ′(x)1{|y|<1}]ν(y)dy. (1.31)

Let I be the integral in (1.31). Then, with the change of variables y = x(u− 1) we obtain

I =
1

|x|α

∫
R
[f(xu)− f(x)− xf ′(x)(u− 1)1{|x(u−1)|<1}]ν(sgn(x)(u− 1))du

=
1

|x|α

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]ν(sgn(x)(u− 1))du

+
1

|x|α

∫
R+

[xf ′(x)(u− 1)(1{|u−1|<1} − 1{|x(u−1)|<1})]ν(sgn(x)(u− 1))du

+
1

|x|α

∫
R−

[f(xu)− f(x)− xf ′(x)(u− 1)1{|x(u−1)|<1}]ν(sgn(x)(u− 1))du.

With the help of Lemma 1.14, we can write I as follows

I =
1

|x|α

[
sgn(x)axf ′(x) +

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]ν
0,sgn(x)(u)du

]
+

1

|x|α

∫
R−

[f(xu)− f(x)]ν0,sgn(x)(u)du− af ′(x).

Hence, we have

A0f(x) =
1

|x|α

[
sgn(x)axf ′(x) +

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]ν
0,sgn(x)(u)du

]
+

1

|x|α

[∫
R−

[f(xu)− f(x)]ν0,sgn(x)(u)du

]
.

Finally, note that
ν0,sgn(x)(u)

c−sgn(x)α−1
= g0(u), u < 0.

This ends the proof.
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1.4.2 The α-stable process conditioned to avoid zero

In [48] symmetric Lévy processes conditioned to avoid zero were studied. One of the main
results in [48] can be stated as follows. Let X be a Lévy process with characteristic exponent
ψ. Consider the following assumptions

H.1 The origin is regular for itself and X is not a compound Poisson process.

H.2 X is symmetric.

Then, under H.1 and H.2 the function h, given by

h(x) =
1

π

∫ ∞
0

1− cosλx

θ(λ)
dλ, x ∈ R,

where θ(λ) = −Re(ψ(λ)), is an invariant function with respect to the semigroup, P 0
t , of the

process X killed at T , the first hitting time of 0. Note that if X is an α-stable process with
α ∈ (0, 2), H.1 and H.2 are satisfied if and only if X is symmetric and α ∈ (1, 2). In this case,
the characteristic exponent is given by ψ(λ) = −|λ|α, h has an explicit form, namely

h(x) = C(α)|x|α−1, x ∈ R,

where

C(α) =
Γ(2− α)

π(α− 1)
sin

απ

2
.

In chapter 2 a generalization of the latter fact is considered. There it is proved that for X
α-stable process with 1 < α < 2, the function h given by

h(x) = K(α)(1− βsgn(x))|x|α−1, x ∈ R, (1.32)

where

K(α) =
Γ(2− α) sin(απ/2)

cπ(α− 1)(1 + β2 tan2(απ/2))
,

and

c = −(c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
, (1.33)

is an invariant function for the semigroup of X0. In fact this result is a consequence of a more
general result that has been proved in chapter 2 under the sole assumption H.1. Since h is
invariant for the semigroup P 0

t and h(x) 6= 0, for x ∈ R∗, then we define the semigroup P h
t on

R∗ by

P h
t (x, dy) :=

h(y)

h(x)
P 0
t (x, dy), x, y ∈ R∗, t ≥ 0.

We denote by Phx the law of the strong Markov process with starting point x and semigroup
P h
t . Ph· is Doob’s h-transformation of P0 via the invariant function h as defined in (1.32). Since

under the measure Phx it holds Phx(T = ∞) = 1, then the process Xh can be considered as the
process X conditioned to avoid (or never to hit) zero, this has been proved in chapter 2. We use
the notation Xl instead of Xh to emphasize this fact. Thus, as was mentioned at the beginning
of the section, Xl is the α-stable process conditioned to avoid zero, when α ∈ (1, 2). In the
following lemma we summarize properties of the function h, which follow straightforwardly
from its definition and so we omit their proof.
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Lemma 1.15. The function h defined in (1.32) satisfies the following properties

(i) h(x) > 0, for all x ∈ R∗, h(0) = 0;

(ii) h(ux) = |u|α−1h(sgn(u)x), for all u ∈ R;

(iii) (hf)′(x) = h(x)[(α− 1)x−1f(x) + f ′(x)], f ∈ C1, x ∈ R∗;

(iv) h(−x) = h(x) + 2K(α)βsgn(x)|x|α−1, for all x ∈ R.

Using (ii) of Lemma 1.15 and (1.1) it is possible to verify that the semigroup of the process
Xl satisfies the self-similarity property. Hence Xl is real-valued self-similar Markov process.
The following theorem provides an expression for the infinitesimal generator of Xl.

Theorem 1.16. Let Al be the infinitesimal generator of Xl. For x ∈ R∗, Alf(x) can be
written as

Alf(x) =
1

|x|α

[
al,sgn(x)xf ′(x) +

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]ν
l,sgn(x)(u)du

]
+

1

|x|α
csgn(x)α−1

∫
R−

[f(xu)− f(x)]gl(u)du, (1.34)

where

al,sgn(x) = sgn(x)a+ csgn(x)

∫ 1

0

(1 + u)α−1 − 1

uα
du− c−sgn(x)

∫ 1

0

(1− u)α−1 − 1

uα
du (1.35)

and

νl,sgn(x)(u) = uα−1ν(sgn(x)(u− 1)), u > 0; gl(u) = α(−u)α−1(1− u)−α−1, u < 0.

The following corollary is also a consequence of Volkonskii’s theorem and the comparison of
(1.13) and (1.34).

Corollary 1.17. Let ξl,±, Ul,±, ζl,± the random objects in the Lamperti representation of Xl.
Then the characteristic exponent of ξ± is

ψl,±(λ) = ial,±λ+

∫
R
[eiλy − 1− iλ(ey − 1)1{|ey−1|<1}]π

l,±(dy), λ ∈ R,

where al,± is given by (1.35) and πl,±(dy) = eαyν(±(ey − 1))dy. The parameters of the expo-
nential random variables ζl,± are c±α−1 and the real random variables Ul,± have density

g(u) =
αeαu

(1 + eu)α+1
, u ∈ R.

As in the first example, the Lévy processes ξl,+, ξl,− belong to the Lamperti-stable family.
Furthermore, their Lévy measure, satisfy the relation: πl,±(dy) = e(α−1)yπ0,±(dy). Note that
g(u) can be written as

g(u) =
αe−u

(1 + e−u)α+1
, u ∈ R.

Hence, Ul,±
L
= −U0,± L

= − log V , with U0,± as in Corollary 1.12 and V is a Pareto random
variable.
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Proof of Theorem 1.16. Recall that Alf(x) = [h(x)]−1A0(hf)(x), x ∈ R∗. Thus, by (1.27) we
can write for x ∈ R∗

[h(x)]−1|x|αA0(hf)(x) = [h(x)]−1(sgn(x)ax(hf)′(x) + I(x)
1 + I(x)

2 ),

where

I(x)
1 =

∫
R+

[(hf)(xu)− (hf)(x)− x(hf)′(x)(u− 1)1{|u−1|<1}]ν(sgn(x)(u− 1))du,

I(x)
2 =

∫
R−

[(hf)(xu)− (hf)(x)]ν(sgn(x)(u− 1))du.

Now, by (iii) of Lemma 1.15,

[h(x)]−1sgn(x)ax(hf)′(x) = sgn(x)axf ′(x) + sgn(x)a(α− 1)f(x). (1.36)

Also, using (ii) and (iii) of Lemma 1.15, we have

[h(x)]−1I(x)
1 =

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]u
α−1ν(sgn(x)(u− 1))du

+

∫
R+

(uα−1 − 1)(u− 1)1{|u−1|<1}ν(sgn(x)(u− 1))du× xf ′(x)

+

∫
R+

[uα−1 − 1− (α− 1)(u− 1)1{|u−1|<1}]ν(sgn(x)(u− 1))du× f(x)

= I
(x)
1 + I

(x)
2 xf ′(x) + I

(x)
3 f(x) (1.37)

where

I
(x)
1 =

∫
R+

[f(xu)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}]u
α−1ν(sgn(x)(u− 1))du,

I
(x)
2 =

∫
R+

(uα−1 − 1)(u− 1)1{|u−1|<1}ν(sgn(x)(u− 1))du

= csgn(x)

∫ 1

0

(1 + u)α−1 − 1

uα
du− c−sgn(x)

∫ 1

0

(1− u)α−1 − 1

uα
du,

I
(x)
3 =

∫
R+

[uα−1 − 1− (α− 1)(u− 1)1{|u−1|<1}]ν(sgn(x)(u− 1))du.

And by (ii), (iv) of Lemma 1.15 and since
∫
R−(−u)α−1ν(sgn(x)(u − 1))du = c−sgn(x)α−1, we

obtain

[h(x)]−1I(x)
2 =

(
1 + βsgn(x)

1− βsgn(x)

)∫
R−

[f(xu)− f(x)](−u)α−1ν(sgn(x)(u− 1))du

+
2βsgn(x)

1− βsgn(x)
c−sgn(x)α−1f(x).

Substituting the values of a and β given by (1.22) and (1.33) in the latter equality, it follows

[h(x)]−1I(x)
2 = csgn(x)α−1I

(x)
4 − α−1(α− 1)sgn(x)af(x), (1.38)
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where I
(x)
4 is the integral ∫

R−
[f(xu)− f(x)]gl(u)du.

Thus, the expressions (1.36), (1.37) and (1.38) imply

Alf(x) =|x|−α
[
(sgn(x)a+ I

(x)
2 )xf ′(x) + I

(x)
1 + csgn(x)α−1I

(x)
4

]
+ |x|−α[α−1(α− 1)2sgn(x)a+ I

(x)
3 ]f(x).

Finally, since h is an invariant function for the semigroup of X0, then f ≡ 1 belongs to DAl
and it follows that α−1(α− 1)2sgn(x)a+ I

(x)
3 = 0. This ends the proof.
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Chapter 2

The Lévy processes conditioned to
avoid zero

2.1 Introduction

The main purpose of this work is to construct Lévy processes conditioned to avoid zero. This
question is relevant only when 0 is non-polar. Then the event “not hitting zero” has zero proba-
bility and hence a standard analytical approach consists on finding an adequate excessive func-
tion for the process killed at the first hitting time of zero and then use Doob’s h-transformation
technique. A good understanding of the associated excessive function allows us to establish an-
alytical and pathwise properties of the constructed process. This is the approach that has been
used by Yano [48], under the assumption that the Lévy process is symmetric. So, our results
can be seen as a generalization of the results obtained by Yano. A probabilistic approach for
constructing Lévy processes conditioned to avoid zero bears on the idea that the construction
can be performed by conditioning the process not to hit zero up to an independent exponential
time with parameter q, and then make q → 0, so that the conditioning affect the process all
over the time interval [0,∞). This is a generic approach that has been used in several contexts.
See for instance Chaumont and Doney [17] and the reference therein, where the case of Lévy
processes conditioned to stay positive is investigated. We will prove that in our setting this
procedure gives a non-degenerate limit and that both constructions coincide.

2.2 Preliminaries and main results

2.2.1 Notation

Let D[0,∞) be the space of càdlàg paths ω : [0,∞)→ R∪{∆} with lifetime ζ(ω) = inf{s : ωs =
∆}, where ∆ is a cemetery point. The space D[0,∞) is endowed with Skorohod’s topology and
its Borel σ-field, F . Moreover, let P be a reference probability measure on D[0,∞), under which
the coordinate process X = (Xt, t ≥ 0) is a Lévy process. We will denote by (Ft, t ≥ 0) the
completed, right continuous filtration generated by X. As usual Px denotes the law of X + x,
under P, for x ∈ R. For notational convenience, we set P = P0. We will denote by θ the shift
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operator and by k the killing operator, i.e., for ω ∈ D[0,∞), θtω(s) = w(s+ t), s ≥ 0, and

ktω(s) =


w(s), s < t,

∆, s ≥ t.

For t ≥ 0, we use X ◦ θt, X ◦ kt to denote the functions in D[0,∞) given by θtω(·) and ktω(·),
ω ∈ D[0,∞), respectively. Throughout the paper ψ : R → C will denote the characteristic
exponent of (X,P), which is defined by

ψ(λ) = −1

t
log(E[eiλXt ]) = iaλ+

σ2

2
λ2 +

∫
R
(1− eiλx + iλx1{|x|<1})π(dx), λ ∈ R,

where a ∈ R, σ ≥ 0 and π denotes the Lévy measure, i.e., π is a measure satisfying π({0}) = 0
and

∫
R(1 ∧ x2)π(dx) < ∞. We denote by Pt and Uq the transition kernel at time t and the

q-resolvent of the process (X,P).

We assume throughout the paper that

H.1 The origin is regular for itself.

H.2 (X,P) is not a compound Poisson process.

We quote the following classical result that provide an equivalent way to verify conditions
H.1 and H.2 in terms of the characteristic exponent ψ.

Theorem 2.1 (See, e.g., [9] and [32]). The conditions H.1 and H.2 are satisfied if and only if∫
R
Re

(
1

q + ψ(λ)

)
dλ <∞, q > 0

and

either σ > 0 or

∫
|x|<1

|x|π(dx) =∞.

It is known that under these hypotheses, for any q > 0, there exists a density of the resolvent
kernel that we will denote by uq(x, y):

Uqf(x) =

∫
R
uq(x, y)f(y)dy, x ∈ R,

for all bounded Borel functions f . The density uq(x, y) equals uq(y−x), where uq is a continuous
function. We refer to chapter II in [5] for a proof of these results. Furthermore, from the
resolvent equation

Uq − Ur + (q − r)UqUr = 0, q, r > 0,

it can be deduced that the family of functions (uq, q > 0) satisfies, for all q, r > 0 with q 6= r,∫
R
uq(y − x)ur(z − y)dy =

1

q − r
[ur(z − x)− uq(z − x)], for all z, x ∈ R. (2.1)
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Let T0 be the first hitting time of zero for X:

T0 = inf{t > 0 : Xt = 0},

with inf{∅} =∞. The process killed at T0, X0 = X ◦ kT0 , is given by

X0
t =


Xt, t < T0,

∆, t ≥ T0.

For every x ∈ R, we will denote by P0
x the law of the killed process X0 under Px. We use the

notation P 0
t , U0

q for its transition kernel and q-resolvent, respectively. From [5, Corollary 18,
p. 64], it is known that,

Ex[e−qT0 ] =
uq(−x)

uq(0)
, q > 0, x ∈ R. (2.2)

Hence, with help of the following well known identity:

Uqf(x) = U0
q f(x) + Ex[e−qT0 ]Uqf(0),

for all bounded Borel functions f and q > 0, we obtain the resolvent density for X0, namely,

u0
q(x, y) = uq(y − x)− uq(−x)uq(y)

uq(0)
, x, y ∈ R. (2.3)

By P̂x we will denote the law of the dual process X̂ := −X under P−x, x ∈ R. We will use the
notation ̂ to specify the mathematical quantities related to the dual process X̂. For instance,
(P̂t, t ≥ 0), (Ûq, q > 0) are the semigroup and the resolvent of the process X̂, respectively. It is
known that the name “dual” comes from the following duality identity. Let f , g be nonnegative
and measurable functions. Then, for every t ≥ 0∫

R
Ptf(x)g(x)dx =

∫
R
f(x)P̂tg(x)dx

and for every q > 0 ∫
R
Uqf(x)g(x)dx =

∫
R
f(x)Ûqg(x)dx.

For the semigroup and q-resolvent of the killed process we have as a consequence of Hunt’s
switching identity (see e.g. [5, p. 47, Theorem 5]):∫

R
g(x)P 0

t f(x)dx =

∫
R
f(x)P̂ 0

t g(x)dx

and for every q > 0 ∫
R
g(x)U0

q f(x)dx =

∫
R
f(x)Û0

q g(x)dx.

We observe that (X̂, P̂) satisfies also the hypotheses H.1 and H.2. Thus, for any q > 0,

there exists a continuous density ûq of the resolvent Ûq. Furthermore, uq and ûq are related by
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the equation: ûq(x) = uq(−x), x ∈ R. Thereby, for any q > 0, Êx[e−qT0 ] and the density of Û0
q

can be written in terms of uq as follows

Êx[e−qT0 ] =
uq(x)

uq(0)
, q > 0, x ∈ R (2.4)

and

û0
q(x, y) = uq(x− y)− uq(x)uq(−y)

uq(0)
, x, y ∈ R. (2.5)

Since the point zero is regular for itself, there exists a continuous local time at 0 (in fact, at
any point x ∈ R). We denote by L = (Lt, t ≥ 0) the local time at zero, which is normalized by
E(
∫∞

0
e−tdLt) = 1, and by n the excursion measure away from zero for X. The measure n has

its support on the set of excursions away from zero:

D0 = {ε ∈ D[0,∞) : ε(t) 6= 0, 0 < t < ζ(ε), 0 < ζ(ε) ≤ ∞} .

A nice relation between the excursion measure n and the Laplace transform of the law of T0

under P̂x can be found in [50, Theorem 3.3] for Lévy processes and in [27, eq. (3.22)], [19, eq.
(2.8)] for general Markov processes. This is stated as follows, let f be a nonnegative measurable
function, then ∫ ∞

0

e−qtn(f(Xt), t < ζ)dt =

∫
R
f(x)Êx[e−qT0 ]dx. (2.6)

In particular, if f ≡ 1, ∫ ∞
0

e−qtn(ζ > t)dt =
1

quq(0)
, q > 0. (2.7)

2.2.2 Main results

Under the assumptions H.1, H.2 and

H.3 (X,P) is symmetric,

Yano [48] showed that the function h defined by

h(x) = lim
q→0

[uq(0)− uq(x)], x ∈ R (2.8)

is a well defined invariant function for the semigroup of the Lévy process killed at its first
hitting time of zero. Furthermore, Yano proved that the function h can be expressed in terms
of the characteristic exponent of X as

h(x) =
1

2π

∫
R

1− cosλx

θ(λ)
dλ, x ∈ R, (2.9)

where θ(λ) = Reψ(λ). Our first main result generalizes (2.8) and (2.9).

Throughout the rest of this paper we assume that H.1 and H.2 are satisfied.
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Theorem 2.2. For q > 0, let hq denote the function defined by

hq(x) = uq(0)− uq(−x), q > 0, x ∈ R. (2.10)

Then, the function h : R→ R defined by

h(x) = lim
q→0

hq(x), x ∈ R (2.11)

is such that

(i) for every x ∈ R, 0 ≤ h(x) <∞. Furthermore, under the condition∫
R

1

q +Re(ψ(λ))
dλ <∞, q > 0, (2.12)

it holds

h(x) =
1

2π

∫ ∞
−∞

Re

(
1− eiλx

ψ(λ)

)
dλ, x ∈ R, (2.13)

(ii) h is subadditive, continuous function, which vanishes at the point x = 0.

(iii) h is invariant with respect to the semigroup of the Lévy process killed at T0, i.e.,

P 0
t h(x) = h(x), t > 0, x ∈ R; (2.14)

furthermore
n(h(Xt), t < ζ) = 1, ∀ t > 0.

The proof of (i) and (ii) in Theorem 2.2 will be given in section 2.3.2, as a consequence of
analogous results for the sequence of functions (hq)q>0. In order to establish (iii) and other
results, and due to technical issues, we will introduce an auxiliary function h∗. The function h∗

dominates h and satisfies some integrability conditions. This function, as its name indicates, will
help us to prove the main results acting as a dominating function in the dominated convergence
theorem. The function h∗ is closely related to the local time of the Lévy process (X,P), namely,
we have the expression

h∗(x) = E(LTx) = lim
q→0

E
(∫ Tx

0

e−qtdLt

)
, x ∈ R.

The function h∗ arises as a particular case of a general function h(·, ·) defined by

h(x, y) = Ex(LxTy) = E0(L0
Ty−x) = h(0, y − x) = h∗(y − x),

where Lxt denotes the local time at the point x for the process (X,Px). The function h(·, ·) is
used to establish continuity criteria for local times of Lévy processes, see [2, 3] for this case and
[24] for a general Borel right Markov processes.

Besides, in the present context, both Yano’s and our results extend the theory of invariant
functions for killed Lévy processes that can be found in Section 23 of the treatise by Port and
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Stone [42] on the potential theory for Lévy processes in locally compact, non-compact, second
countable Abelian groups. The relations with this work will be described in Section 2.3.3 below.

Having constructed the invariant function h, in the following definition, we introduce the
associated h-process. We will show that the resulting probability measures are such that the
canonical process X never hits the point zero, and thus that we refer to them as the law of
the Lévy process conditioned to avoid zero. Theorem 2.5 below summarises these properties.
Before to state it, we introduce some notation. Let H and H0 be the sets given by positive

H = {x ∈ R : h(x) > 0}, H0 = H ∪ {0}.

On the set H0 will be constructed the law of the Lévy process conditioned to avoid zero.

Definition 2.3. We denote by (Plx, x ∈ H0) the unique family of measures such that for x ∈ H0,

Plx(Λ) =


1

h(x)
E0
x(1Λh(Xt)), x ∈ H,

n(1Λh(Xt)1{t<ζ}), x = 0,

for all Λ ∈ Ft, for all t ≥ 0. We will refer to it as the law of X conditioned to avoid 0.

Remark 2.4. Note that from this definition, Plx(T0 > t) = 1, for all t > 0, x ∈ H0. Hence,

Plx(T0 =∞) = 1, for all x ∈ H0.

Theorem 2.5. The family of measures (Plx)x∈R is Markovian and satisfies

(i) Plx(X0 = x) = 1, ∀x ∈ H0.

(ii) Plx(T0 =∞) = 1, ∀x ∈ H0.

The semigroup associated to (Plx)x∈R is given by

P
l
t (x, dy) :=

h(y)

h(x)
P 0
t (x, dy), x ∈ H, t ≥ 0.

The entrance law under Pl0 is given by

Pl0(Xt ∈ dy) = n(h(y)1{Xt∈dy}1{t<ζ}).

We propose an alternative construction of the law of the Lévy process conditioned to avoid
zero. Our construction is inspired from [4, 16, 17, 18], where Lévy processes conditioned to
stay positive are constructed. Lévy processes conditioned to stay positive are constructed in
the following way. Let Lt be the local time of the process X reflected at its past infimum,
that is, X − X, where X t := inf{Xs : 0 ≤ s ≤ t}. Let n be the measure of its excursions
away from zero and let τ(−∞,0) be the first hitting time of the negative half-line. Denote by
(Qt(x, dy), t ≥ 0, x ≥ 0, y ≥ 0) the semigroup of the process killed at τ(−∞,0). In [17, 18] is
proven that the function l defined by

l(x) := E
(∫

[0,∞)

1{Xt≥−x}dLt

)
, x ≥ 0, (2.15)
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is an excessive or invariant function for the semigroup (Qt, t ≥ 0). The function l is actually
an invariant function whenever X does not drift towards infinity. Furthermore, they obtained
l as a limit of certain sequence of functions. To be precise, if eq is an exponential random time
with parameter q > 0 and independent of (X,P), then for x ≥ 0,

l(x) = lim
q→0

Px(τ(−∞,0) > eq)

ηq + n(ζ > eq)
, (2.16)

where η is such that
∫ t

0
1{Xs=Xs}ds = ηLt and n(ζ > eq) =

∫∞
0
qe−qtn(ζ > t)dt. They also

showed that the law of Lévy processes conditioned to stay positive can be obtained as a limit,
as q → 0, of the law of the process conditioned to stay positive up to an independent exponential
time with parameter q (see Proposition 1 in [17]).

The following theorem states that for x ∈ H, Plx is the limit, as q → 0, of the law of
the process X under Px conditioned to avoid zero, up to an independent exponential time
with parameter q > 0. Since an exponential random variable with parameter q converges
in distribution to infinity as its parameter converges to zero, then this result confirms that,
starting at x ∈ H, we can think of X under Plx, as the process conditioned to avoid zero on the
whole positive real line.

Theorem 2.6. Let eq be an exponential time with parameter q > 0, independent of (X,P).
Then for any x ∈ H, and any (Ft)t≥0-stopping time T ,

lim
q→0

Px(Λ, T < eq | T0 > eq) = Plx(Λ), ∀Λ ∈ FT .

In the case x = 0, the law Pl0 can also be obtained as a limit involving an independent
exponential time. Before stating the result, we point out that for s > 0, we will denote by
gs = sup{t ≤ s : Xt = 0}, the last zero of X before time s.

Proposition 2.7. Let eq be an exponential time with parameter q > 0, independent of (X,P).
Let Peq be the law of X ◦ keq−geq ◦ θgeq under P. Then, for t > 0,

lim
q→0

Peq(Λ, t < ζ) = Pl0(Λ) = n(1Λh(Xt)1{t<ζ}), ∀Λ ∈ Ft.

Another important property of the h-process is its transiency. This is given in the following
proposition.

Proposition 2.8 (Transiency property). The process (X,Plx)x∈H0 is transient.

In Lemma 2.25 we will prove that for any x ∈ H, the point x is regular for itself under Plx.
Therefore, there exists a local time at any point x ∈ H, and we will denote by n

l
x the excursion

measure away from x for the process (X,Plx). In the following proposition we establish a
relationship between the excursion measure away from zero for (X,P) and the excursion measure

away from x for (X,Plx), x ∈ H.

Proposition 2.9. For x ∈ H, let n
l
x be the excursion measure out from x for (X,Plx) and n the

excursion measure out from zero for (X,P). Then, for any measurable and bounded functional
H : D0 → R,

nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
=

1

h(x)
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T{−x}>t}qe
−qtdt

)
.
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2.3 Proofs

2.3.1 A preliminary result

In order to prove the finiteness of h, we need the following lemma.

Lemma 2.10. Let (X,P) be a Lévy process with characteristic exponent ψ. Assume that (X,P)
satisfies the hypotheses H.1 and H.2, then, ψ(λ) 6= 0, for all λ 6= 0 and

lim
|λ|→∞

ψ(λ) =∞.

Furthermore, ∫
R
(1 ∧ λ2)Re

(
1

ψ(λ)

)
dλ <∞. (2.17)

Proof. The first part follows from the fact that (X,P) is not arithmetic (see e.g. [20, Theorem
6.4.7]). Now, since 1/(1 + ψ) is the Fourier transform of the integrable function u1, then from
the Riemann-Lebesgue theorem it follows lim|λ|→∞ ψ(λ) =∞.

Using that lim|λ|→∞ ψ(λ) =∞, we deduce

Re

(
1

ψ(λ)

)
∼ Re

(
1

1 + ψ(λ)

)
, |λ| → ∞.

The latter and Theorem 2.1 imply that for all λ0 > 0,∫
|λ|>λ0

Re

(
1

ψ(λ)

)
dλ <∞. (2.18)

On the other hand,[
Re

(
λ2

ψ(λ)

)]−1

≥ Reψ(λ)

λ2

≥ σ2 +

∫
|y|<1

(1− cosλy)

λ2
π(dy)

−→ σ2 +

∫
|y|<1

y2π(dy) > 0, as λ→ 0.

The latter limit implies that there exists a λ0 such that,

Re

(
λ2

ψ(λ)

)
≤ C, for all |λ| < λ0, (2.19)

for some constant positive C. Then, from (2.18) and (2.19), we obtain (2.17).
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2.3.2 Some properties of hq and h

In order to establish some properties of h, we write hq in an alternative form, namely in terms
of T0 and the excursion measure n, as follows. Let eq be an exponential random variable with
parameter q > 0 and independent of (X,P). Using (2.2) and (2.7), we can write

hq(x) = uq(0)(1− Ex(e−qT0))

=
Px(T0 > eq)

n(ζ > eq)
,

(2.20)

where

n(ζ > eq) =

∫ ∞
0

qe−qtn(ζ > t)dt =
1

uq(0)
.

The expression (2.20) helps us to prove the following lemma, which summarizes some im-
portant properties of the sequence (hq)q>0.

Lemma 2.11. For every q > 0, the function hq is subadditive on R and it is excessive for the
semigroup (P 0

t , t ≥ 0).

Proof. By Proposition 43.4 in [45], we have that for any q > 0 and x, y ∈ R,

Ex+y(e
−qT0) ≥ Ex(e−qT0)Ey(e−qT0). (2.21)

Now, since
(1− Ex(e−qT0))(1− Ey(e−qT0)) ≥ 0,

then using (2.21), it follows

1− Ex(e−qT0) + 1− Ey(e−qT0) ≥ 1− Ex+y(e
−qT0).

Hence, by (2.20)
hq(x+ y) ≤ hq(x) + hq(y), x, y ∈ R.

This shows that hq is subadditive on R.

In order to show that hq is excessive for P 0
t , we claim that

Px(T0 > t+ eq) = Ex
(
1{T0>t+eq}

)
= Ex

(
PXt(T0 > eq)1{t<T0}

)
. (2.22)

Indeed, we note that for t > 0 fixed, T0 ◦ θt + t = T0, on {T0 > t}. From this remark and the
Markov property, we obtain the following identities

Px(T0 > t+ eq) =

∫ ∞
0

Ex(1{T0>t+s})qe−qsds

=

∫ ∞
0

Ex(1{T0>t+s}1{T0>t})qe−qsds

=

∫ ∞
0

Ex(1{T0>s} ◦ θt1{T0>t})qe−qsds

= Ex
(
1{T0>eq} ◦ θt1{T0>t}

)
= Ex

(
PXt(T0 > eq)1{T0>t}

)
.
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The identities (2.22) and (2.20) imply

Ex(hq(Xt), t < T0) = Ex
(

1{T0>t+eq}

n(ζ > eq)

)
≤ Ex

(
1{T0>eq}

n(ζ > eq)

)
= hq(x).

The above expression also implies that limt→0 Ex(hq(Xt), t < T0) = hq(x), for x ∈ R. This
shows that hq is excessive for the semigroup (P 0

t , t ≥ 0).

Before we proceed to the proof of (i) and (ii) in Theorem 2.2 we make a technical remark.

Remark 2.12. Proceeding as in the proof of Theorem 19 p. 65 in [5], it can be shown that

uq(x) =
1

2π

∫
R
Re

(
e−iλx

q + ψ(λ)

)
dλ, x ∈ R. (2.23)

Then,

2uq(0)− [uq(x) + uq(−x)] =
1

π

∫
R
(1− cosλx)Re

(
1

q + ψ(λ)

)
dλ.

On the other hand, making use of the inequality |1− cos b| ≤ 2(1 ∧ b2) and (2.17), we obtain∫
R
(1− cosλx)Re

(
1

ψ(λ)

)
dλ <∞, x ∈ R.

Therefore, for all x ∈ R,

lim
q→0

(2uq(0)− [uq(x) + uq(−x)]) =
1

π

∫
R
(1− cosλx)Re

(
1

ψ(λ)

)
dλ (2.24)

is finite.

Proof of (i) and (ii) in Theorem 2.2. That h is subadditive and excessive follow from Lemma
2.11 (since these properties are preserved under limits of sequences of functions).

To obtain the finiteness of h, we note that for all q > 0, x ∈ R,

hq(x) ≤ 2uq(0)− [uq(x) + uq(−x)] =
1

π

∫ ∞
−∞

(1− cosλx)Re

(
1

q + ψ(λ)

)
dλ.

Then, by (2.24),

h(x) ≤ 1

π

∫ ∞
−∞

(1− cosλx)Re

(
1

ψ(λ)

)
dλ <∞, ∀x ∈ R. (2.25)

This proves the finiteness of h.

Now, using (2.23), we obtain

hq(x) =
1

2π

∫ ∞
−∞

Re

(
1− eiλx

q + ψ(λ)

)
dλ
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and ∣∣∣∣Re( 1− eiλx

q + ψ(λ)

)∣∣∣∣ ≤ 2

q +Re(ψ(λ))
, q > 0, λ, x ∈ R.

Then, letting q → 0 and using the dominated convergence theorem, (2.13) is obtained.

Note that

(1− cosλx)Re

(
1

ψ(λ)

)
≤ 2(1 ∧ λ2)Re

(
1

ψ(λ)

)
, |x| ≤ 1, λ ∈ R.

Then, by (2.17) and dominated convergence theorem, it follows

lim
x→0

1

π

∫ ∞
−∞

(1− cosλx)Re

(
1

ψ(λ)

)
dλ = 0.

Hence, by (2.25), limx→0 h(x) = 0. This proves that h is continuous at zero. Furthermore, since
h is subadditive on R, the continuity of h at the point zero implies the continuity on the whole
real line (see e.g. [29, Theorem 6.8.2]).

2.3.3 Another representation for hq and the behaviour of h at infinity

In this section we make the connection with the results from Section 23 in [42], but before we
introduce further notation. For a Borel set B, let TB be the first hitting time of B, that is,
TB = inf{t > 0 : Xt ∈ B} (with inf{∅} = ∞). Let (PB

t , t ≥ 0) be the semigroup of the Lévy
process killed at TB and UB(x,A) =

∫∞
0

Px(Xt ∈ A, t < TB)dt. For f : R → R an integrable
Borel function, we denote

J(f) =

∫
R
f(x)dx, f̂(λ) =

∫
R
f(x)eiλxdx, λ ∈ R.

Let F+ be the class of non-negative, continuous, integrable functions f , whose Fourier transform
has compact support and satisfies the following property: there exists a compact set K, a
positive and finite constant c, and an open neighbourhood of zero V such that

J(f)−Ref̂(λ) ≤ cmax
x∈K

(1− (2π)−1 cosλx), λ ∈ V.

Let F∗ be the collection of differences of elements of F+. Now, for q > 0, let Aq and H0
q be

given by
Aqf(x) = cqJ(f)− Uqf(x), H0

q f(x) = f(0)Ex(e−qT0), x ∈ R, (2.26)

where cq is a positive constant. As in [42], the constant cq is taken to be equal to Uqg(0), with
g a symmetric function in F+ satisfying J(g) = 1.

It is said that a function f is essentially invariant if for each t > 0, f = PB
t f a.e. Port

and Stone proved that the only bounded essentially PB
t -invariant functions are of the form

CPx(TB =∞) a.e., with C a positive constant (see Theorem 23.1). Furthermore, in the case X
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recurrent, if B is such that UB(x,A) is bounded in x for any compact sets A, then the function
LB(x) given by

LB(x) = lim
q→0

qcq

∫ ∞
0

Px(TB > t)e−qtdt, x ∈ R, (2.27)

is a PB
t -invariant function. Port and Stone proved furthermore that the constant cq above

introduced is such that for all x ∈ R, the limit limq→0Aqf(x) exists, for f ∈ F∗.

The following lemma establishes an identity for hq in terms of certain classes of functions.
This identity is inspired from [42].

Lemma 2.13. Let f ∈ F∗. Then,

Aqf(x)−H0
qAqf(x) = −U0

q f(x) + cq(1−H0
q1(x))J(f), (2.28)

where 1 denotes the constant function equal to 1. If J(f) = 1, the following holds for x ∈ R,

Aqf(x)− Aqf(0)Ex(e−qT0) = −U0
q f(x) +

cq
uq(0)

hq(x). (2.29)

Proof. By the strong Markov property, we have

Ex
(∫ ∞

T0

e−qtf(Xt)dt, T0 <∞
)

= Ex
(
e−qT0

∫ ∞
0

e−quf(Xu+T0)du, T0 <∞
)

= Ex
(
e−qT0 , T0 <∞

)
E
(∫ ∞

0

e−quf(Xu)du

)
= H0

q1(x)Uqf(0).

Thus,

Uqf(x) = Ex
(∫ T0

0

e−qtf(Xt)dt

)
+ Ex

(∫ ∞
T0

e−qtf(Xt)dt, T0 <∞
)

= U0
q f(x) + Uqf(0)H0

q1(x).

(2.30)

On the other hand, since H0
qAqf(x) = Aqf(0)H0

q1(x), we have

H0
qAqf(x) + Uqf(0)H0

q1(x) = J(f)cqH
0
q1(x). (2.31)

Using (2.30), (2.31) and the definition of Aqf we obtain

Aqf(x)−H0
qAqf(x) = cqJ(f)− U0

q f(x)− Uqf(0)H0
q1(x)−H0

qAqf(x)

= −U0
q f(x) + cq(1−H0

q1(x))J(f),

which is (2.28).

Now, suppose that J(f) = 1. To obtain (2.29), we use the expression (2.26) and (2.28).

Remarks 2.14. (i) Let κ = limq→0
1

uq(0)
. From the identity,

Ex[e−qT0 ] = 1− 1

uq(0)
hq(x), q > 0, x ∈ R,

making q → 0, it follows Px(T0 =∞) = κh(x), x ∈ R.

40



(ii) In general by (2.20), we have that hq(x) can be written as

hq(x) = uq(0)Px(T0 > eq) = uq(0)

∫ ∞
0

Px(T0 > t)qe−qtdt, q > 0, x ∈ R.

Letting q → 0 and taking B = {0} in (2.27), we obtain

h(x) = kL{0}(x), x ∈ R,

where k = limq→0
uq(0)

cq
. Since 0 < h(x0) < ∞ and 0 < L{0}(x0) < ∞, for some x0 ∈ R

(Theorem 2.2 and Theorem 18.3 in [42]), it follows that 0 < k < ∞. Now, taking limit
as q → 0 in (2.29), we obtain

1

k
h(x) = Af(x)− Af(0)Px(T0 <∞) + U0f(x), x ∈ R, f ∈ F∗, (2.32)

where Af(x) = limq→0Aqf(x) and U0f(x) = limq→0 U
0
q f(x), x ∈ R.

To end this section, we establish the behaviour of h at infinity.

Lemma 2.15. Let κ := limq→0
1

uq(0)
. We have the following

(i) Suppose that X is transient. If 0 < µ := E(X1) ≤ ∞, then

lim
x→∞

h(x) =
1

κ
, lim

x→−∞
h(x) =

1

κ
− 1

µ
;

while if −∞ ≤ µ < 0, then

lim
x→∞

h(x) =
1

κ
+

1

µ
, lim

x→−∞
h(x) =

1

κ
.

(ii) Suppose that X is recurrent, then either

lim
x→∞

h(x) =
1

k
or lim

x→−∞
h(x) =

1

κ
.

Remark 2.16. The case where X is transient and E(X+
1 ) = E(X−1 ) =∞ is not covered in the

latter lemma.

Proof of Lemma 2.15. We start by proving (i) in the case 0 < µ ≤ ∞, the other case can be
proved similarly. Set f(x) = u1(x), x ∈ R. Note that u0(x) =

∑∞
n=1 f

∗n(x). Indeed,

∞∑
n=1

f ∗n(x)dx =
∞∑
n=1

∫ ∞
0

sn−1

(n− 1)!
e−sP(Xs ∈ dx)ds

=

∫ ∞
0

e−s
∞∑
n=1

sn−1

(n− 1)!
P(Xs ∈ dx)ds

=

∫ ∞
0

P(Xs ∈ dx)ds

= u0(x)dx.

Furthermore, the Fourier transform of f is given by f̂(λ) = 1/(1 + ψ(λ)), λ ∈ R. Since
h(x) = u0(0) − u0(−x), it is suffices to compute the limit at infinity of

∑∞
n=1 f

∗n(x). To that
aim, we use the main result in [46], which states that if
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(a) lim|x|→∞ f(x) = 0,

(b) f is in L1+ε, for some ε > 0,

then
∞∑
n=1

f ∗n(x)→ 1

µ
, as x→∞,

∞∑
n=1

f ∗n(x)→ 0, as x→ −∞.

The condition (a) is obtained from the Riemann-Lebesgue theorem. To show that (b) is satisfied

we use the Plancherel’s theorem (see [44, p. 186], [47, p. 202]). Thus, we will show that f̂ is in
L2. Thereby,∫

R
|f̂(λ)|2dλ =

∫
R

1

|1 + ψ(λ)|2
dλ ≤

∫
R

Re(1 + ψ(λ))

|1 + ψ(λ)|2
dλ =

∫
R
Re

(
1

1 + ψ(λ)

)
dλ <∞.

This concludes the first part of the lemma.

To prove the second part of lemma, we consider the function h∗ which is defined in Section
2.3.4. There, it is shown that h∗(x) = h(x)+h(−x) = E(LTx) (see (2.38) and (2.39) for details).
We will prove that h∗(x) tends to infinity as x→∞ when X is recurrent and thus obtain (ii).
The proof is as follows. Let eq be an independent exponential time. Observe the elementary
inequality

h∗(x) = E(LTx) ≥ E(LTx1{Tx≥eq}) ≥ E(Leq1{Tx≥eq}),

take limit inferior
lim inf
x→∞

h∗(x) ≥ E(Leq lim inf
x→∞

1{Tx≥eq}).

Now, observe that Tx converges towards ∞ in distribution and hence in probability as x→∞,
because by the Riemann-Lebesgue Theorem we have

lim
x→∞

E(e−qTx) = lim
x→∞

uq(x)

uq(0)
= 0, ∀ q > 0.

We have so proved that

lim inf
x→∞

h∗(x) ≥ E(Leq) = uq(0), ∀ q > 0.

We now make q tends to 0 to get

lim inf
x→∞

h∗(x) ≥ u0(0).

The claim follows because u0(0) =∞ in the recurrent case.

2.3.4 An auxiliary function

Let (h∗q)q>0 be the increasing sequence of functions defined by

h∗q(x) = E
(∫ Tx

0

e−qtdLt

)
, q > 0, x ∈ R,

where Tx = inf{t > 0 : Xt = x}, the first hitting time of x for X. The sequence (h∗q)q>0 has the
properties listed in the following proposition.
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Proposition 2.17. For any q > 0, the function h∗q is a symmetric, nonnegative, subadditive
continuous function, which can be expressed in terms of the q-resolvent density as

h∗q(x) = uq(0)− uq(x)uq(−x)

uq(0)
, x ∈ R. (2.33)

Proof. By definition, h∗q is a non negative function. The continuity and symmetry of h∗q is
obtained from (2.33). Thus, it only remains to prove (2.33) and that h∗q is subadditive.

First, we recall an expression that establishes a relation between resolvent densities and local
times, (see Lemma 3 and commentary before Proposition 4 in [5, Chapter V]):

uq(−x) = Ex
(∫ ∞

0

e−qtdLt

)
= E

(∫ ∞
0

e−qtdL(x, t)

)
, q > 0, x ∈ R, (2.34)

where (L(x, t), t ≥ 0) is the local time at point x for (X,P). Thus, using the latter expression,
we have

uq(0) = E
(∫ ∞

0

e−qtdLt

)
= h∗q(x) + E

(∫ ∞
Tx

e−qtdLt, Tx <∞
)
. (2.35)

On the other hand, by Markov and additivity properties of local time, it follows

E
(∫ ∞

Tx

e−qtdLt, Tx <∞
)

= E
(
e−qTx

∫ ∞
0

e−qudLu+Tx , Tx <∞
)

= E(e−qTx , Tx <∞)Ex
(∫ ∞

0

e−qudLu

)
= Êx(e−qT0 , T0 <∞)Ex

(∫ ∞
0

e−qudLu

)
.

Then, using (2.4) and (2.34), the equation (2.35) becomes

uq(0) = h∗q(x) +
uq(x)

uq(0)
uq(−x), x ∈ R.

Hence, (2.33) is obtained.

Now, we prove the subadditivity of h∗q. The procedure is similar to the one used to prove
the subadditivity of hq in Lemma 2.11. We repeat the arguments for clarity. First, by (2.2)
and (2.4) we can write (2.33) as

h∗q(x) = uq(0)(1− Ex(e−qT0)Êx(e−qT0)). (2.36)

Since, for any x ∈ R, Ex(e−qT0), Êx(e−qT0) ≤ 1, it follows

(1− Ex(e−qT0)Êx(e−qT0))(1− Ey(e−qT0)Êy(e−qT0)) ≥ 0, x, y ∈ R.

The latter relation and (2.21) imply

1− Ex(e−qT0)Êx(e−qT0) + 1− Ey(e−qT0)Êy(e−qT0) ≥ 1− Ex(e−qT0)Ey(e−qT0)Êx(e−qT0)Êy(e−qT0)

≥ 1− Ex+y(e
−qT0)Êx+y(e

−qT0),
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for all x, y ∈ R. Hence, by (2.36)

h∗q(x) + h∗q(y) ≥ h∗q(x+ y), x, y ∈ R.

This ends the proof.

Remark 2.18. With help of the expression (2.33), h∗q can be written in terms of the function
hq as:

h∗q(x) = hq(x) + hq(−x)− 1

uq(0)
hq(x)hq(−x), x ∈ R. (2.37)

Now, define h∗ by
h∗(x) = lim

q→0
h∗q(x), x ∈ R.

Since h is finite, then (2.37) implies that h∗(x) is finite for all x ∈ R. Furthermore, since

h∗q(x) = E
(∫ Tx

0

e−qtdLt

)
= E

(∫ ∞
0

e−qs1{Xu 6=−x,0≤u≤s}dLs

)
,

then

h∗(x) = E(LTx) = E
(∫ ∞

0

1{Xu 6=−x,0≤u≤s}dLs

)
, x ∈ R. (2.38)

It is known that LTx is an exponential random variable. Thus, h∗(x) is the expected value of
an exponential random variable. We also note that by (2.37), in the recurrent symmetric case,
h∗ correspond to 2hY , where hY is the invariant function given in [48].

Before we give some properties of the function h∗, we have the following technical lemma.

Lemma 2.19. (i) For any x ∈ R, limq→0 quq(x) = 0.

(ii) For any q, r > 0, x ∈ R, ∫
R
uq(y − x)ur(y)dy =

ur(x) + uq(−x)

r + q
.

Proof. Recall the identity
uq(x)

uq(0)
= Êx(e−qT0), x ∈ R.

Hence, quq(x) ∼ P̂x(T0 < ∞)quq(0) as q ↓ 0. Thus, it is suffices to prove the case x = 0.
Thanks to (2.23), we have

quq(0) =
1

2π

∫
R
Re

(
q

q + ψ(λ)

)
dλ.

For every q > 0, let jq be the function being integrated in the latter display. Now, we observe
the following

jq = Re

(
q

q + ψ(λ)

)
=

q(q +Re(ψ(λ)))

[q +Re(ψ(λ))]2 + [Im(ψ(λ))]2

=

[
1 +

Reψ(λ)

q
+

(Imψ(λ))2

q(q +Reψ(λ))

]−1

, q > 0, λ ∈ R.
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Hence, jq ↓ 0, as q ↓ 0. Thus, 0 ≤ jq(λ) ≤ j1(λ), 0 < q < 1, λ ∈ R and since j1 is integrable by
Theorem 2.1, the dominated convergence theorem implies limq→0 quq(0) = 0. This shows (i).

Now, let f be a positive, bounded, measurable function. We have∫
R

∫
R
uq(y − x)ur(y)dyf(x)dx =

∫
R

∫
R
f(y − z)uq(z)dzur(y)dy

=
1

rq
E
(
f(Xer −Xeq)

)
=

1

rq
E
(
f(Xer −Xeq)1{er>eq}

)
+

1

rq
E
(
f(−(Xeq −Xer))1{eq>er}

)
,

where eq, er are independent exponential random variables with parameters q > 0 and r > 0,
respectively, which are independent of (X,P). The first term in the latter equation becomes

1

rq
E
(
f(Xer −Xeq)1{er>eq}

)
=

∫ ∞
0

∫ ∞
s

e−rtE(f(Xt −Xs))dte
−qsds

=

∫ ∞
0

∫ ∞
s

e−r(t−s)E(f(Xt−s))dte
−(r+q)sds

=

∫ ∞
0

e−(r+q)sUrf(0)ds

=
1

r + q
Urf(0).

In the same way, it can be verified that

1

rq
E
(
f(−(Xeq −Xer))1{eq>er}

)
=

1

r + q
Ûqf(0).

Thus, we have ∫
R

∫
R
uq(y − x)ur(y)dyf(x)dx =

∫
R

(
ur(x) + uq(−x)

r + q

)
f(x)dx,

for all positive, bounded, measurable function f . By the continuity of ur and uq, we conclude∫
R
uq(y − x)ur(y)dy =

ur(x) + uq(−x)

r + q
,

for any q, r > 0, x ∈ R.

Some properties of the function h∗ are summarized in the following lemma.

Lemma 2.20. The function h∗ is a symmetric, nonnegative, subadditive, continuous function
which vanishes only at the point x = 0 and lim|x|→∞ h

∗(x) = κ−1. Furthermore, h∗ is integrable
with respect to semigroup of the process killed at T0, i.e., P 0

t h
∗(x) <∞, for all t > 0, x ∈ R.
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Proof. From the definition of h∗q and (2.33) the non negativity and symmetry of h∗ follows. The
subadditivity of h∗ is obtained from subadditivity of the sequence (h∗q)q>0. We observe that
from (2.37), we can write h∗ in terms of h as

h∗(x) = h(x) + h(−x)− κh(x)h(−x), (2.39)

where κ = limq→0
1

uq(0)
. Hence, h∗ is continuous.

Now, we prove that lim|x|→∞ h
∗(x) = κ−1. In Lemma 2.15 has been proven that if X is

recurrent then limx→∞ h
∗(x) =∞. Since h∗ is a symmetric function, the same limit is obtained

as x → −∞. Then, lim|x|→∞ h
∗(x) = κ−1 when X is recurrent. Suppose that X is transient.

In Lemma 2.15 also is obtained that

lim inf
x→∞

h∗(x) ≥ uq(0), ∀ q > 0,

without further assumption. Hence, letting q tends to 0, we obtain, lim infx→∞ h
∗(x) ≥ κ−1.

On the other hand, for an exponential independent time with parameter q, eq, we have

E(LTx) = E(LTx1{Tx≥eq}) + E(LTx1{Tx<eq})

≤ E
(
LTx

(
1− e−qTx

))
+ E(Leq)

= E
(
LTx

(
1− e−qTx

))
+ uq(0), ∀x ∈ R.

Then, since X is transient, E(LTx) <∞. Thus, by the dominate convergence theorem

h∗(x) = E(LTx) ≤ κ−1.

Hence, lim supx→∞ h
∗(x) ≤ κ−1. Therefore, limx→∞ h

∗(x) = κ−1 if X is transient. Since h∗(x) is
a symmetric function the same limit is obtained as x→ −∞. Therefore, lim|x|→∞ h

∗(x) = κ−1.

From defintion, h∗(0) = 0. To prove that x = 0 is the only point where h∗ vanishes, we
proceed by contradiction. Suppose that h∗(x0) = 0, for some x0 6= 0. Using the subadditivity of
h∗ and making induction we get that h∗(kx0) = 0 for all k ∈ Z. Since lim|x|→∞ h

∗(x) = κ−1 > 0,
the claim h∗(kx0) = 0, for all k ∈ Z is a contradiction. Therefore, h(x) > 0, for all x 6= 0.

Finally, we prove that h∗ is P 0
t -integrable. For x ∈ R, we write ĥq(x) = hq(−x), q > 0,

and ĥ(x) = limq→0 ĥq(x). Let S be the function defined by S(x) = h(x) + ĥ(x). By (2.39),
h∗(x) ≤ s(x), x ∈ R. Thus, it is suffices to show that s is P 0

t -integrable.

Now, by (2.1), the following identities hold for 0 < r < q ,

Uqhr(x) =

∫
R
uq(y − x)hr(y)dy

=

∫
R
uq(y − x){ur(0)− ur(−y)}dy

=
ur(0)

q
−
∫
R
uq(y − x)ur(−y)dy

=
ur(0)

q
− 1

q − r
{ur(−x)− uq(−x)}

=
hr(x)

q
− rur(−x)

q(q − r)
+
uq(−x)

q − r
. (2.40)
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Thanks to Lemma 2.19 (i), hr(x)→ h(x) as r → 0 and Fatou’s lemma, we obtain

Uqh(x) ≤ h(x) + uq(−x)

q
, q > 0, x ∈ R. (2.41)

On the other hand, by Lemma 2.19 (ii), we have

Uqĥr(x) =

∫
R
uq(y − x)(ur(0)− ur(y))dy

=
ur(0)

q
− ur(x) + uq(−x)

r + q

=
ĥr(x)

r + q
+

rur(0)

q(r + q)
− uq(−x)

r + q
. (2.42)

Using again Lemma 2.19 (i), ĥr(x)→ ĥ(x) as r → 0, and Fatou’s lemma, it follows

Uqĥ(x) ≤ ĥ(x)− uq(−x)

q
, q > 0, x ∈ R. (2.43)

Adding (2.41) and (2.43), we obtain that for any q > 0, x ∈ R,

qUqS(x) ≤ S(x). (2.44)

Hence, the function s is Pt-integrable and therefore P 0
t -integrable.

Remarks 2.21. (i) From (2.44) it is deduced that the function S is excessive for the semi-
group (Pt, t ≥ 0). Since S is a nonnegative function, then S is an excessive function for
the semigroup (P 0

t , t ≥ 0).

(ii) By (2.20) and (2.36), we have hq(x) ≤ h∗q(x) ≤ h∗(x) ≤ S(x), for all q > 0, x ∈ R. On
the other hand, the Lemma 2.20 and its proof ensure that h∗ satisfies

P 0
t h
∗(x) ≤ S(x), qUqh

∗(x) ≤ S(x), q > 0, x ∈ R. (2.45)

These inequalities will be useful in the proofs of Lemma 2.22, assertion (iii) in Theorem
2.2 and Proposition 2.7 .

Lemma 2.22 ensure that the inequality obtained in (2.41) in fact is an equality. This result
was established in [48] in the symmetric case.

Lemma 2.22. For any q > 0, x ∈ R,

Uqh(x) =
h(x) + uq(−x)

q
.

Proof. Remark 2.21 (ii) states that the function h∗ satisfies hq(x) ≤ h∗(x), Uqh
∗(x) < ∞, for

all q > 0, x ∈ R. Then, by the dominated convergence theorem and (2.40), it follows

Uqh(x) = lim
r→0

Uqhr(x) =
h(x) + uq(−x)

q
.
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2.4 Proofs of the main results

Proof of (iii) in Theorem 2.2. The first part of the proof is inspired in the proof of Lemma 1
in [17]. Let eq be an exponential random variable with parameter q > 0 and independent of
(X,P). We claim that for q > 0, x ∈ R, it holds,

Ex(PXt(T0 > eq)1{T0>t}) = eqt
(
Px(T0 > eq)−

∫ t

0

Px(T0 > s)qe−qsds

)
. (2.46)

Indeed, by (2.22), we have

Ex
(
PXt(T0 > eq)1{t<T0}

)
= Px(T0 > t+ eq).

Now, making the change of variable u = t+ s, we obtain

Px(T0 > t+ eq) =

∫ ∞
0

Px(T0 > t+ s)q−qsds

= eqt
∫ ∞
t

Px(T0 > u)qe−qudu

= eqt
(∫ ∞

0

Px(T0 > u)qe−qudu−
∫ t

0

Px(T0 > u)qe−qudu

)
= eqt

(
Px(T0 > eq)−

∫ t

0

Px(T0 > u)qe−qudu

)
.

Hence, (2.46) follows.

By Remark 2.21 (ii) and Lemma 2.20, we have that the sequence (hq)q>0 is dominated by
h∗ and h∗ is integrable with respect to P 0

t for any t > 0. Then, using dominated convergence
theorem, (2.20) and (2.46), it follows

Ex (h(Xt), t < T0) = Ex
(

lim
q→0

hq(Xt), t < T0

)
= lim

q→0
Ex
(
PXt(T0 > eq)

n(ζ > eq)
1{t<T0}

)
= lim

q→0
eqt
(
Px(T0 > eq)

n(ζ > eq)
−
∫ t

0

Px(T0 > u)

n(ζ > eq)
qe−qudu

)
= h(x)− 1

n(ζ)

∫ t

0

Px(T0 > u)du,

where n(ζ) = limq→0

∫∞
0
e−qtn(ζ > t)dt. On the other hand, Lemma 2.19 and (2.7) imply

n(ζ) = limq→0[quq(0)]−1 =∞. Therefore, we conclude

Ex (h(Xt), t < T0) = h(x), t > 0, x ∈ R.

Now, we prove the second part of (iii) in Theorem 2.2. From (2.6) and Lemma 2.22, we
obtain that the Laplace transform of n(h(Xt), t < ζ) is given by∫ ∞

0

e−qtn(h(Xt), t < ζ)dt =

∫
R
h(x)Êx[e−qT0 ]dx =

∫
R
h(x)

uq(x)

uq(0)
dx =

1

uq(0)
Uqh(0) =

1

q
.

Hence, the claim follows.
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Proof of Theorem 2.5. The only thing which has to be proved is the fact that Pl0 is a Markovian

probability measure with the same semigroup as under Plx, x ∈ H and that Pl0(X0 = 0) = 1.
Since n is a Markovian measure (σ-finite) with semigroup (P 0

t , t ≥ 0). Let g be bounded Borel
function and Λ ∈ Ft and t, s > 0:

El0(1Λg(Xt+s)) = n(1Λh(Xt+s)g(Xt+s)1{t+s<ζ})

= n(1ΛE0
Xt(h(Xs)g(Xs))1{t<ζ})

= n(1Λh(Xt)ElXt(h(Xs)g(Xs))1{t<ζ})

= El0(1ΛElXt(g(Xs))).

This shows the first part. Now, we prove that Pl0(X0 = 0) = 1. Since X is right continuous at
0, it is suffices to prove that for any z > 0,

Pl0(|Xε| < z)→ 1,

as ε→ 0. The latter is equivalent to prove

lim
ε→0

n(1{|Xε|>z}h(Xε)1{ε<ζ}) = 0.

Since n(h(Xs), s < ζ) = 1, Qs(·) := n(·, h(Xs), s < ζ) defines a probability measure. Then,

from the Markov property, for all ε < s, Pl0(|Xε| < z) = Qs(1{|Xε|<z}). Since the excursions of
the Lévy process (X,P) leave 0 continuously, we have 1{|Xε|<z} → 1, Qs-a.s. as ε → 0. The
result follows from the dominated converge theorem.

Proof of Theorem 2.6. We proceed as in [17]. Let x ∈ H, T a (Ft)t≥0 stopping time and
Λ ∈ FT . With the help of the strong Markov property and since eq is independent of (X,P),
we can deduce the following

Ex
(
1Λ1{T<eq}1{T0>eq}

)
=

∫ ∞
0

Ex
(
1Λ1{T<T0}1{T<s}1{T0>s}

)
qe−qsds

=

∫ ∞
0

Ex
(
1Λ1{T<T0}1{T<s}Ex

(
1{T0>s} ◦ θT | FT

))
qe−qsds

=

∫ ∞
0

Ex
(
1Λ1{T<T0∧s}PXT (T0 > s)

)
qe−qsds

= Ex
(
1Λ1{T<T0∧eq}PXT (T0 > eq)

)
= n(ζ > eq)Ex

(
1Λ1{T<T0∧eq}hq(XT )

)
=

1

hq(x)
Ex
(
1Λ1{T<T0∧eq}hq(XT )

)
Px(T0 > eq).

The latter shows that for Λ ∈ FT , T stopping time finite a.s.

Px(Λ, T < eq | T0 > eq) =
1

hq(x)
Ex
(
1Λhq(XT )1{T<T0∧eq}

)
. (2.47)

Now, recall that hq(x) ≤ h∗q(x) ≤ h∗(x), q > 0, x ∈ R. Thus,

1{T<T0∧eq}hq(XT ) ≤ 1{T<T0}h
∗(XT ) a.s.
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On the other hand, the first inequality in (2.45) also it is satisfied for stopping times, i.e.,
Ex(h∗(XT ), T < T0) ≤ S(x). Then, letting q → 0, with the help of the dominated convergence
theorem in (2.47), we obtain the desired result.

Proof of Proposition 2.7. For every s > 0, we consider ds = inf{u > s : Xu = 0}, gs = sup{u ≤
s : Xu = 0} and G = {gu : gu 6= du, u > 0}. By definition, for every q > 0, Λ ∈ Ft, we have

Peq(Λ, t < ζ) = E(1Λ ◦ keq−geq ◦ θgeq1{t<eq−geq})

= E
(∫ ∞

0

1Λ ◦ ku−gu ◦ θgu1{t<u−gu}qe−qudu
)

= E

(∑
s∈G

e−qs
∫ ds

s

qe−q(u−s)1Λ ◦ ku−s ◦ θs1{t<u−s}du

)
.

Now, using the compensation formula in excursion theory (see e.g. [5], [38]) and the strong
Markov property of n, we obtain

E

(∑
s∈G

e−qs
∫ ds

s

qe−q(u−s)1Λ ◦ ku−s ◦ θs1{t<u−s}du

)
= E

(∫ ∞
0

e−qsdLs

)
n(1Λ1{t<eq<ζ})

= E
(∫ ∞

0

e−qsdLs

)
n(1ΛPXt(T0 > eq)1{t<ζ}).

Using (2.7) and (2.35) we deduce

E
(∫ ∞

0

e−qsdLs

)
= uq(0) =

1

n(ζ > eq)
.

Thus, we see that
Peq(Λ, t < ζ) = n(1Λhq(Xt)1{t<ζ}). (2.48)

Now, we prove that n(S(Xt), t < ζ) < ∞, for all t > 0, where S(x) = h(x) + h(−x). First,
note that since S is excessive for the semigroup (P 0

t , t ≥ 0) and n fulfils the Markov property,
then t 7→ n(S(Xt), t < ζ) is decreasing. This is verified from the following equalities: for
u, t > 0,

n(S(Xt+u), t+ u < ζ) = n((S(Xu)1{u<ζ}) ◦ θt, t < ζ)

= n(EXt(S(Xu), u < ζ), t < ζ)

= n(P 0
uS(Xt), t < ζ)

≤ n(S(Xt), t < ζ).

On the other hand, by (2.6) and remark 2.21 (i), we have∫ ∞
0

e−tn(S(Xt), t < ζ)dt =

∫
R
S(x)

u1(x)

u1(0)
dx =

1

u1(0)
U1S(0) ≤ 1

u1(0)
S(0).

Therefore, n(S(Xt), t < ζ) is finite for every t > 0.
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Finally, since 1Λhq(Xt) ≤ S(Xt) and n(S(Xt), t < ζ) < ∞, we can apply the dominated
convergence theorem in (2.48) to conclude that for t > 0 fixed

lim
q→0

Peq(Λ, t < ζ) = n(1Λh(Xt)1{t<ζ}).

Let U
l
q be the q-resolvent for the process Xl = (X,Plx)x∈H0 , with Ul = U

l
0 . To prove that

Xl is transient, we compute the density of Ul. For x, y ∈ H and q > 0, we have

ulq(x, y) =
h(y)

h(x)
u0
q(x, y). (2.49)

From (2.6) it can be deduced that for y ∈ H, q > 0,

ulq(0, y)dy =

∫ ∞
0

e−qtn(h(Xt)1{Xt∈dy}, t < ζ)dt

= h(y)Êy[e−qT0 ]dy

= h(y)
uq(y)

uq(0)
dy. (2.50)

Finally, by Theorem 2.5 (ii), u
l
q(x, 0) = 0, for all x ∈ H0. Thus, from the above equations, the

density of Ul can be obtained . This is stated in the following lemma.

Lemma 2.23. Let u
l
0(x, y) = limq→0 u

l
q(x, y), x, y ∈ H0. Then u

l
0(x, 0) = 0, for all x ∈ H,

0 ≤ u
l
0(x, y) =

h(y)

h(x)
[h(x) + h(−y)− h(x− y)− κh(x)h(−y)], x ∈ H, y ∈ H, (2.51)

and for y ∈ H,
u
l
0(0, y) = h(y)(1− κh(−y)) = h∗(y)− h(−y). (2.52)

Proof. An easy computation gives

uq(−x)uq(y)

uq(0)
=
hq(x)hq(−y)

uq(0)
− hq(x)− hq(−y) + uq(0), x ∈ H, y ∈ H.

Using this and (2.3) it follows

u0
q(x, y) = hq(x) + hq(−y)− hq(x− y)− hq(x)hq(−y)

uq(0)
, x ∈ H, y ∈ H. (2.53)

Letting q → 0 in (2.49) and with help of (2.53), we obtain (2.51). The first equality in (2.52) is
obtained from (2.50) recalling that for all y, limq→0[uq(y)/uq(0)] = limq→0[1−(uq(0))−1hq(−y)] =
1− κh(−y). The second one follows from (2.39).

Remark 2.24. Note that from (2.37) and (2.53) we have u
l
q(x, x) = u0

q(x, x) = h∗q(x), x ∈ H,

which implies u
l
0(x, x) = h∗(x), x ∈ H.
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Proof of Proposition 2.8. To obtain the transiency property of Xl, we use Theorem 3.7.2 in
[21], which states the following. If the conditions:

(i) Ulg is lower semi-continuous, for any non negative function g with compact support;

(ii) there exists a non negative function f such that 0 < Ulf <∞ on R;

are satisfied, then the process Xl is transient.

Since h is continuous, from Lemma 2.23 it follows limx→x′ u
l
0(x, y) = u

l
0(x′, y), for all y ∈ H0.

Let g be a non negative function with compact support K. By Fatou’s lemma, we have

lim inf
x→x′

∫
K

g(y)u
l
0(x, y)dy ≥

∫
R
g(y) lim inf

x→x′
[u
l
0(x, y)1K ]dy =

∫
K

g(y)u
l
0(x′, y)dy.

This shows that for any g non negative with compact support, the function

x 7−→
∫
R
g(y)u

l
0(x, y)dy

is lower semi-continuous. Thus, condition (i) is satisfied.

Now, we will find a non negative function f : R→ R+ such that 0 < Ulf(x) <∞. Let f be
given by

f(y) =


1

[h∗(1)]2
, |y| ≤ 1,

1

y2[h∗(y)]2
, |y| > 1.

Since f is continuous and lim|x|→∞ h
∗(x) = κ−1, then f , fh∗ and f(h∗)2 are integrable with

respect to Lebesgue measure. On the other hand, h is dominated by the symmetric function
h∗, then the integrability of fh∗ and f(h∗)2 imply∫

R
f(y)h(y)dy <∞,

∫
R
f(y)h(y)h(−y)dy <∞.

Furthermore, since h is subadditive and f is symmetric, it follows,∫
R
f(y)h(x− y)dy ≤

∫
R
f(y)h(x)dy +

∫
R
f(y)h(y)dy <∞.

Thus, for x ∈ H,

Ulf(x) =

∫
R
f(y)u

l
0(x, y)dy <∞.

Finally,

Ulf(0) =

∫
R
f(y)ul(0, y)dy =

∫
R
f(y)(h∗(y)− h(y))dy <∞.

This concludes the proof.
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The Lemma 2.25 below states that any x ∈ H is regular for itself under Plx. The latter implies
the existence of a continuous local time at point x ∈ H for the process (X,Plx), see [8, Theorem
3,12, p. 216]. We will denote by (Ll(x, t), t ≥ 0) the local time at point x aforementioned and
by τl(x, t) the right continuous inverse of Ll(x, t), i.e.,

τl(x, t) = inf{s > 0 : Ll(x, s) > t}, t ≥ 0.

It is well known that (τl(x, t), t ≥ 0) is a subordinator killed at an exponential random time
independent of τl(x, ·) with Laplace exponent Φx,l satisfying

Ex(e−qτ
l(x,t)) = e−tΦ

x,l(q) = e−t/u
l
q(x,x), t ≥ 0, (2.54)

see e.g. [8, Theorem 3.17, p. 218]. Furthermore, using the compensation formula in excursion
theory we can be establish that for any q > 0,

Φx,l(q) =
1

u
l
q(x, x)

= nlx(ζ > eq) + axq

= nlx(ζ =∞) + axq +

∫ ∞
0

(1− e−qt)nlx(ζ ∈ dt),
(2.55)

where ax satisfies ∫ t

0

1{Xs=x}ds = axLl(x, t). (2.56)

By Remark 2.24, limq→0 u
l
q(x, x) = h∗(x) > 0, for x ∈ H, then (τl(x, t), t ≥ 0) is a subordinator

killed at an exponential time with parameter 1/h∗(x) > 0. This also confirms the transiency of

(X,Plx), since by (2.55), there exists an excursion of infinite length.

To state the following lemma, we introduce additional notation. For every x ∈ R, define
dxs = inf{u > s : Xt = x}, gxs = sup{u ≤ s : Xt = x} and Gx = {gxu : gxu 6= dxu, u > 0}.

Lemma 2.25. (i) For x ∈ H, x is regular for itself for (X,Plx).

(ii) Let eq be an exponential random variable with parameter q > 0, independent of (X, (Plx)x 6=0).

Then, for every x ∈ H, the processes (Xu, u < gxeq) and X ◦ keq−gxeq ◦ θgxeq are Plx indepen-
dent. Furthermore, their laws are characterized as follows: let F and H be measurable
and bounded functionals, then

Elx
(
F (Xu, u < gxeq)

)
= Elx

(∫ ∞
0

F (Xu, u < s)e−qsdLl(x, s)

)[
nlx(ζ > eq) + axq

]
(2.57)

and

Elx
(
H(X ◦ keq−gxeq ◦ θgxeq )

)
= ulq(x, x)

[
nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
+ axqH(x̄)

]
,

(2.58)
where ax is the constant in (2.56).
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Proof. Let x ∈ H. By Fatou’s lemma and the definition of Plx, we have

Plx(Tx = 0) = lim inf
t→0

Plx(Tx ≤ t)

≥ 1

h(x)
Ex
(

lim inf
t→0

1{Tx≤t<T0}h(Xt)
)

=
1

h(x)
Ex
(
1{Tx=0}1{T0>0}h(X0)

)
= 1,

where the latter equality was obtained using the facts that {x} is regular for itself under Px
and Px(T0 > 0) = 1. This proves (i).

Before to prove (ii), we recall the following. Since τl(x, ·) is the inverse of the local time
(Ll(x, t), t ≥ 0) with Laplace exponent given by (2.54), then

Elx
(∫ ∞

0

e−qtdLl(x, t)

)
= Elx

(∫ ∞
0

e−qτ
l(x,t)dt

)
=

∫ ∞
0

Elx(e−qτ
l(x,t))dt = ulq(x, x). (2.59)

We will denote x̄ the path which is identically equal to x and with lifetime zero. Thus, for
F and H measurable and bounded functionals, using the compensation formula in excursion
theory (see e.g. [5], [38]), it follows

Elx
(
F (Xu, u < gxeq)H(X ◦ keq−gxeq ◦ θgxeq )

)
= Elx

(∑
s∈Gx

F (Xu, u < s)e−qs
∫ ds

s

H(X ◦ kt−s ◦ θs)qe−q(t−s)dt

)

+ Elx
(∫ ∞

0

F (Xu, u < t)H(x̄)qe−qt1{Xt=x}dt

)
= Elx

(∫ ∞
0

F (Xu, u < s)e−qsdLl(x, s)

)[
nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
+ axqH(x̄)

]
, (2.60)

where ax is the constant in (2.56). Taking H ≡ 1 in (2.60), it follows

Elx
(
F (Xu, u < gxeq)

)
= Elx

(∫ ∞
0

F (Xu, u < s)e−qsdLl(x, s)

)[
nlx(ζ > eq) + axq

]
.

In the same way, if we take F ≡ 1 in (2.60) and we use (2.59), we can obtain

Elx
(
H(X ◦ keq−gxeq ◦ θgxeq )

)
= ulq(x, x)

[
nlx

(∫ ζ

0

H(εu, u < t)qe−qtdt

)
+ axqH(x̄)

]
.

The latter two displays are (2.57) and (2.58), respectively.

Finally, by (2.55), u
l
q(x, x) = [n

l
x(ζ > eq) + axq]−1. Using this fact, (2.57) and (2.58), we

conclude

Elx
(
F (Xu, u < gxeq)H(X ◦ keq−gxeq ◦ θgxeq )

)
= Elx

(
F (Xu, u < gxeq)

)
Elx
(
H(X ◦ keq−gxeq ◦ θgxeq )

)
.

This shows the independence property in (ii).
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Now, we will prove that the drift coefficient in (2.55) does not depend on x, and is equal to
δ.

Lemma 2.26. Let δ be the drift coefficient of the inverse local time at the point zero for the
Lévy process (X,P). Then for all x ∈ H, Plx-a.s.,

∫ t
0

1{Xs=0}ds = δLl(x, t). That is, ax = δ,
for all x ∈ H.

Proof. If both δ, ax are zero, the claim holds. Suppose that ax 6= 0. Using (2.59), the definition

of ax and Plx, we obtain

axulq(x, x) = Elx
(∫ ∞

0

e−qtd[axLl(x, t)]

)
=

∫ ∞
0

Elx
(
1{Xt=x}

)
e−qtdt

=

∫ ∞
0

1

h(x)
Ex
(
1{Xt=x}h(Xt)1{T0>t}

)
e−qtdt

= Ex
(∫ ∞

0

1{T0>t}e
−qt1{Xt=x}dt

)
. (2.61)

Using that (X,Px) is equal in distribution to (X + x,P), the definition of δ and the symmetry
of h∗q(x), it follows that the right-hand side in (2.61) is

E
(∫ ∞

0

1{T{−x}>t}e
−qt1{Xt=0}dt

)
= δE

(∫ ∞
0

1{T{−x}>t}e
−qtdLt

)
= δh∗q(x).

To conclude the proof recall that h∗q(x) = u
l
q(x, x).

Proof of Proposition 2.9. Let H : D0 → R a bounded and measurable functional. To simplify
we write Xq for the path X ◦ keq−gxeq ◦ θgxeq . Using the definition of Plx, we obtain

h(x)Elx (H(Xq)) = E
(∫ ∞

0

H((X + x) ◦ kt−gt ◦ θgt)h(Xt + x)1{T{−x}>t}qe
−qtdt

)
. (2.62)

We note that 1{T{−x}>t} = 1{T{−x}◦θgt>t−gt}1{T{−x}>gt} and h(Xt+x) = h((Xt−gt +x)◦θgt). Then,
with the help of the compensation formula in excursion theory ([5], [38]), the right-hand side
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in (2.62) can be written as

E
(∫ ∞

0

1{T{−x}>gt}H((X + x) ◦ kt−gt ◦ θgt)h((Xt−gt + x) ◦ θgt)1{T{−x}◦θgt>t−gt}qe
−qtdt

)
= E

(∑
s∈G

1{T{−x}>s}

∫ ds

s

H((X + x) ◦ kt−s ◦ θs)h((Xt−s + x) ◦ θs)1{T{−x}◦θs>t−s}qe
−qtdt

)

+ E
(∫ ∞

0

1{T{−x}>t}H(x̄)h(x)qe−qt1{Xt=0}dt

)
= E

(∫ ∞
0

1{T{−x}>t}e
−qtdLt

)
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T{−x}>t}qe
−qtdt

)
+ qδH(x̄)h(x)E

(∫ ∞
0

1{T{−x}>t}e
−qtdLt

)
= h∗q(x)

[
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T{−x}>t}qe
−qtdt

)
+ qδH(x̄)h(x)

]
, (2.63)

where δ is such that
∫ t

0
1{Xs=0} = δLt under P. Using Lemma 2.26 and h∗(x) = u

l
q(x, x) in

(2.63), we verify

Elx (H(Xq)) = ulq(x, x)

[
1

h(x)
n

(∫ ζ

0

H(εu + x, u < t)h(Xt + x)1{T{−x}>t}qe
−qtdt

)
+ axqH(x̄)

]
.

(2.64)
Comparing (2.64) with (2.58), the result follows.

2.5 Two examples

The expression (2.13) in Theorem 2.2 (i) allows us to compute explicitly the function h in the
particular case when (X,P) is an α-stable process.

Example 2.27. Suppose that (X,P) is an α-stable process. Then, (X,P) satisfies H.1 and
H.2 if and only if α ∈ (1, 2]. It is well known that the resolvent density of Brownian motion
is uq(x) = (

√
2q)−1e−

√
2q|x|, hence h(x) = limq→0[uq(0)− uq(−x)] = |x|. Now, let α ∈ (1, 2). In

this case the function h takes the following form

h(x) = K(α)(1− βsgn(x))|x|α−1, (2.65)

where

K(α) =
Γ(2− α) sin(απ/2)

cπ(α− 1)(1 + β2 tan2(απ/2))

and

c = −(c+ + c−)Γ(2− α)

α(α− 1)
cos(απ/2), β =

c+ − c−

c+ + c−
. (2.66)

Indeed, recall that the characteristic exponent of (X,P) can be written as

ψ(λ) = c|λ|α(1− iβsgn(λ) tan(απ/2)),
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where c and β are as in (2.66). Now, we have

Re

(
1− eiλx

ψ(λ)

)
=

1− cos(λx) + β tan(απ/2)sgn(λ) sin(λx)

c|λ|α(1 + β2 tan2(απ/2))
.

Since the function sgn(λ) sin(λx) as function of λ is even, we have

h(x) =
1

c(1 + β2 tan2(απ/2))

(
hs(x) + β tan(απ/2)

1

π

∫ ∞
0

sin(λx)

λα
dλ

)
,

where hs(x) is the function h obtained in the symmetric case (see example 1.1 in [48]), namely

hs(x) =
Γ(2− α)

π(α− 1)
sin(απ/2)|x|α−1.

On the other hand, with the help of formulae (14.18) of Lemma 14.11 in [45], we obtain∫ ∞
0

sin(λx)

λα
dλ = sgn(x)|x|α−1

∫ ∞
0

sinu

uα
du = −Γ(2− α)

α− 1
cos(απ/2)sgn(x)|x|α−1.

The latter two equalities imply the claim.

Recall that LTx is an exponential random variable with parameter [h∗(x)]−1, then by (2.39),
in the case when (X,P) is an α-stable process with α ∈ (1, 2], LTx is an exponential random
variable with parameter 1/[2K(α)|x|α−1].

When |β| = 1, the function h in (2.65) is equal zero for some values of x. This correspond
to a spectrally negative (or positive) alpha-stable process.

The example of a spectrally negative Lévy process will be studied in the following example.

Example 2.28. Suppose that (X,P) is a spectrally negative Lévy process. Let Ψ be the
Laplace exponent of the process (X,P), i.e.,

Ψ(λ) = −ψ(−iλ) = −aλ+
σ2

2
λ+

∫
(−∞,0)

(eλx − 1− λx1{|x|<1})π(dx)

It is well known that Ψ′(0+) = E(X1) ∈ [−∞,∞) determines the long run behaviour of X. To
be precise, if Ψ′(0+) > 0 then limt→∞Xt = ∞, if Ψ′(0+) < 0 then limt→∞Xt = −∞, while
Ψ′(0+) = 0 the process X oscillates.

Now, for q ≥ 0, let Φ(q) be the largest root of the equation Ψ(λ) = q, i.e.,

Φ(q) = sup{λ ≥ 0 : Ψ(λ) = q}.

For the spectrally negative Lévy processes (X,P) with Laplace exponent Ψ, we consider the
q-scale functions {W (q), q ≥ 0}, the family of functions satisfying the following: for every q ≥ 0,
W (q) = 0, for x < 0 and W (q) ≥ 0, for x ≥ 0. Furthermore, W (q) is determined by its Laplace
transform in the following way∫ ∞

0

e−θxW (q)(x)dx =
1

Ψ(θ)− q
, θ > Φ(q).
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For notational convenience, we set W = W (0). For a complete account on q-scale functions for
spectrally negative Lévy processes see [23].

An important fact on spectrally Lévy processes is that the resolvent density, uq, can be
written in terms of the q-scale function W (q) as follows

uq(x) = Φ′(q)e−Φ(q)x −W (q)(−x), q > 0, x ∈ R.

Furthermore, if (X,P) has unbounded variation, W (q)(0) = 0, see Corollary 8.9 and Lemma 8.6
in [35] for details. The latter facts imply that

hq(x) = uq(0)− uq(−x) = Φ′(q)(1− eΦ(q)x) +W (q)(x), q > 0, x ∈ R.

Thus, letting q → 0, we obtain

h(x) =


1

Ψ′(Φ(0)+)
(1− eΦ(0)x) +W (x), if lim

t→∞
Xt = −∞,

−x
Ψ′′(0+)

+W (x), if lim sup
t→∞

Xt = − lim inf
t→∞

Xt =∞,

W (x), if lim
t→∞

Xt =∞.

58



Bibliography

[1] M. T. Barlow. Zero-one laws for the excursions and range of a Lévy process. Z. Wahrsch.
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69(1):23–35, 1985.

[3] M. T. Barlow. Necessary and sufficient conditions for the continuity of local time of Lévy
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processes, pages 41–55. Birkhäuser Boston, Boston, MA, 2001.
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Lévy processes. J. Math-for-Ind., 5A:17–24, 2013.

[50] K. Yano, Y. Yano, and M. Yor. Penalising symmetric stable Lévy paths. J. Math. Soc.
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