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Thesis

Active Localization for Bearing-Only Sensor Using Stochastic

Control Techniques

by

Oscar A Mar Rangel

Submitted to the Department of Computer Science in partial fulfillment of the requirements for the

degree of

Maestro en Ciencias con Especialidad en Computación y Matemáticas
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Abstract

In this work we present an useful framework to address the problem of the bearing-only

localization given noisy measurements of a mobile sensor (i.e robot). The difficulty of this

problem recides on (1) the fact that the system is non-linear and (2) the estimation quality is

highly dependent on the trajectory followed by the sensor. This framework is based on the use

of approximated stochastic optimal control techniques (e.g. Assumed Certainty Equivalence

Control, Open-Loop Feedback Control) to obtain the best control policies for the robot.

Formulation and simulation results for different state estimation filters (e.g extended kalman

filter, particle filter) and different optimization schemes are presented and discussed. The

selected optimization schemes are such that can be solved using standard numerical optimization

methods. The optimization is focused on the minimization of the estimation uncertainty, which

can be measured with the covariance matrix determinant for instance, making it a good choice

for the cost function. Additional terms were included in the cost function to improve the

method performance and to somehow restrict the resulting behavior of the robot. Also an

example application of the method to visual 3D recontruction, including experimental results, is

presented. This application makes use of the space carving method [Kutulakos and Seitz 2000]

to perform the reconstruction of a 3D object. The experiments were performed using a Nao

humanoid robot, using its camera as the bearing-only sensor and employing a simplified motion

model (i.e. differential drive) with a fixed linear speed.



6 · Active Localization for Bearing-Only Sensor Using Stochastic Control Techniques

6



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Bearing-Only Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Partially Observable Markov Decision Processes . . . . . . . . . . . . . . 3

1.3.3 Enumeration and Brute Force Methods . . . . . . . . . . . . . . . . . . . 4

1.3.4 Stochastic Optimal Control Methods . . . . . . . . . . . . . . . . . . . . . 5

2 Kalman Filter Based Methods 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Kalman Filter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 The Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Cost Function Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Numerical Optimization Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 The Nelder-Mead Simplex Method . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Software Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.3 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Particle Filter Based Methods 20

3.1 Gaussianity Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Non-Gaussian Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Truncated Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Particle Filter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



ii · Active Localization for Bearing-Only Sensor Using Stochastic Control Techniques

3.3.1 Sequential Importance Sampling/Resampling . . . . . . . . . . . . . . . . 22

3.4 Control Scheme with PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 First Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Comparison of PF vs KF . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Number of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Application to Simultaneous Localization and Reconstruction of 3D Objects 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Reconstruction Oriented Control Scheme . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Extended Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Added Cost Function Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Robot Localization and Object Reconstruction . . . . . . . . . . . . . . . . . . . 32

4.4.1 Visual Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.2 Space Carving Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.3 Extraction of Observation Vector Data . . . . . . . . . . . . . . . . . . . . 35

4.5 Implementation and Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions and Future Work 39

A EKF Analytic Solution Derivation 43

ii



1
Introduction

1.1 Motivation

There are many applications that require an observer, or a group of them, to determine the

position of a specific target in the fastest and most accurate way possible, while, at the begining,

the position of this target is unknown. For example in disaster situations, there might be injured

people that need to be rescued and, for that, need to be localized first. Also, for military strategy

and tactics, it is required to gather as much information about the enemy as possible, such as

the location of enemy camps or approaching units. In fact, almost in any robotics application,

it is required for the robot to determine the position of certain objects or “targets” in order to

carry out the task or tasks that have been assigned to it.

Figure 1.1: Mobile observer with a bearing-only sensor (e.g., a camera), detecting a target.

1
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1.2 Problem Statement

Let us consider a mobile observer (e.g. a robot), with a bearing-only sensor, which is a sensor

that can only give information of the relative orientation of the detected object (e.g. a camera,

a rf-receiver). Suppose that this observer needs to detect and keep track of one or more targets

in order to improve its knowledge of the environment or to estimate the location of a target.

A trajectory and its associated controls have to be computed to get the most information from

the environment.

The observation gives partial information of the state, so, in order to obtain an estimation

of the position of certain object with respect to itself, the observer (robot) has to take several

measurements of the object relative angle from different positions, so that it can compute the

position by triangulation. Also, the measurement is a non-linear function of the current system

state. For a given noise model on the bearing angle, the resulting uncertainty on the estimate

is larger from farther positions. Figure 1.2 shows an example of the evolution of the estimation

along time. The green ellipse indicates the uncertainty volume, which reduces as the robot

moves, but this is highly dependent on the actual trajectory.

Figure 1.2: These are two stages in the estimation process, where the green ellipse represents the
uncertainty in the estimation of the target possition. Is there some optimal way to move the robot so
that the estimation goes for the best (e.g., such that the area of the ellipse decreases in the fastest way
possible)?

1.2.1 Considerations

Measurements and movements are noisy, and we want to determine the sensor (robot) controls

by taking into account these disturbances. We will define an objective function, at some horizon,

that depends on the quality of estimation at this horizon. By definition, this estimation is not

known in advance since observations have not taken place yet, thus this is a stochastic optimal

control problem.

2
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1.3 State of the Art

1.3.1 Bearing-Only Tracking

The bearing-only tracking (BOT), is now a classical, non trivial problem in the literature

[Stansfield 1947; Aidala 1979; Fawcett 1988] of non-linear state estimation, and there have been

several approaches that seek solving it in an optimal way. The problem is present in different

contexts, fields and environments, like in militar or naval strategy and defense applications.

Also in aeronautics applications, like Unmanned Aerial Systems (UAS), which are used for

Intelligence, Surveillance and Reconnaissance (ISR) procedures, where targets in the ground have

to be localized and tracked, fusing all sensor and self-localization data [Ponda 2008]. Another

instance is in biology and wildlife research, for instance the study of fish tagged with radio

transmitters [Tokekar et al. 2011]. There are several modalities as, for instance, the target

might be moving, or might be assumed to be static. There might be several static sensors or

only a mobile one. But all of them attempt to estimate the current position of a target or set

of targets, by using a control policy that will improve as much as possible this estimation.

1.3.2 Partially Observable Markov Decision Processes

X1 X2

Y1 Y2

p12

p21

r11
r12 r21

r22

X3

p12

p21

Y3

r32 r33
r23

Figure 1.3: An example of a simple POMDP.

Partially Observable Markov Decision Processes (POMDP) [Smallwood and Sondik 1973], is

a general approach that helps us solve planning problems in uncertain environments. On these

approaches, the dynamics of the underlying system are modeled as a Hidden Markov Model

(HMM), as depicted in Figure 1.3. In this model, the state itself is not observable, and it has

to be estimated by indirect observations of it, in this case the noisy bearing measures. The

sets of possible controls and states are discretised, and a number N of future states (horizon)

is defined. If there are N future states remaining, the problem is to select a control sequence

(policy) UNk , {uk, uk+1, ..., uk+N} that will optimize the performance of the system during the

3
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remaining states. The problem is stated using a reward or cost functional, which depends on a

belief distribution. The reward itself has to be estimated, because it depends on a probability

distribution, and it is also not observable. The resulting problem is usually solved using dynamic

programming. To this end, an expected maximum reward VN (π) is defined, this in terms of a

recursive equation, where N is the remaining number of states, π is a belief space representation,

expressed as a M dimensional vector {π0, π1, ..., πM}, where πi is the probability of being on

a specific state i and M is the number of possible states. The first exact solution method

proposed, according to [Lovejoy 1991], makes use of a property of the reward function, which

states that for any finite horizon, VN (π) is piecewise linear and convex. However these methods

have the major disadvantage of being computationally expensive, and in fact, intractable for

most realistic problems [Lovejoy 1991].

There have been some research in the application of these methods to the BOT problem. For

example, in [Trémois and Le Cadre 1999], the authors present a framework based on POMDP,

in which they define the belief and the cost functional in terms of the Fisher Information

Matrix (FIM), and express the problem in a dynamic programming form. They even propose an

alternative exact algorithm to solve the POMDP problem, finally presenting results for a very

coarse state-space discretisation. There have been several attempts to reduce the numerical

burden related to these methods to make them more feasible for real applications. Some of

these methods involve different types of approximations [Lovejoy 1991] and heuristics.

1.3.3 Enumeration and Brute Force Methods

Methods based on enumeration basically compute all the possible values (in a discrete space)

of a cost function L, which is a function of the state that measures the performance of the

method. This, to find the lowest (or highest) value of this cost function, and thus the best

choice for a set of input parameters. For this particular problem, the search is performed in the

space of controls, so the optimal control sequence UNk is to be found. These kind of methods

are normally combinatorial, because in order to find the solution, the cost function has to be

evaluated for all the possible combinations of controls and resulting states. In [Logothetis et al.

1997], the authors present an enumeration method for BOT using information theory measures

as the cost function, such as the trace of Fisher Information Matrix or mutual information.

They also propose an optimal prunning technique to avoid checking every possibility, and thus

reducing the computational complexity. In [Tokekar et al. 2011], several enumeration methods

are proposed and analysed, including a greedy method, which only takes in consideration one

step ahead to decide the next configuration for the robot. They also propose another method

using a min-max enumeration tree to find the optimal control sequence, taking in consideration

worst-case observations. Because of their complexity, these methods also use only very coarse

discretizations.

4
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1.3.4 Stochastic Optimal Control Methods

Stochastic Control is a subfield of control theory, which makes use of methods and techniques

to determine the best actions to carry out on a system for which only uncertain information is

available and/or there is uncertainty on the result of the application of a specific action. The

goal is to make the system reach a specific state in an efficient manner. On these methods, the

uncertainty is expressed in the form of probabilities and an objective function (cost function)

is defined in terms of random variables. Therefore L is now a function of the state X and the

process noises W.

A stochastic optimal control (closed-loop) for non-linear systems is, in general, complex in

formulation and in computational requirements, normally because it requires, as in POMDP,

the use of dynamic programming to solve recursive equations, which causes complexity to grow

exponentially with the number of variables. However there are several possible approximated

or simplified (sub-optimal) methods that help making these problems more tractable [Martinez

and Soares 2002; Kappen 2007]. Among them, the Certainty Equivalence Control (CEC) and

Open-Loop Feedback Control (OLFC) are the most common.

There are some important concepts in the control theory that help understand the differences

between the kinds of stochastic control methods. Those concepts are: open/closed-loop and

feedback [Bar-Shalom and Tse 1974]. An open-loop control policy states that the resulting

control sequence will be obtained in terms of the initial state probability distribution only. This

means that the error at the final state might be large, depending on the process noise. A closed-

loop control policy implies that each element uk of the resulting control sequence UN1 will be

computed in terms of all the measurements Y N
1 [Bar-Shalom and Sivan 1969], including the ones

that have not been adquired yet, the latters in the form of an expected value (maybe the worst

case ones). So, this way, all the available information is used. A feedback control policy makes

use of the past measures Y k
0 , being k the current step, to obtain each control uk. Therefore the

possible errors in a state transition will be compensated with this next control, but assuming

no additional information will be obtained. This last approach is sub-optimal, in the sense that

certain future observations could have improved the overall performance of the controller, but

those are not considered. An example of this kind of policy is the so called Open-Loop Feedback

Control (OLFC) [Bar-Shalom and Sivan 1969].

This difference between closed-loop and feedback control, is very important to understand

the concept of the dual effect, which states that the control currently applied to the system can

affect the future state uncertainty. If the control can not affect the uncertainty, the system is

called neutral [Feldbaum 1965; Bar-Shalom and Tse 1974]. If the controller takes advantage

of this dual effect, it is considered as actively adaptive control. If the opposite is true, it is

considered passively adaptive control. Some advantages of the actively adaptive control are that

the controller has to exercise less of what is called caution, which is the ability reduce the negative

effects of uncertainty on the system performance. However, as the closed-loop controller takes

in consideration the fact that future measures will be taken, and actions will be realized with

this information, it will exercise less caution. Another advantage is the active learning itself,

5
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which is the improvement in the estimation with the “help” of the control.

Another important concept is the certainty equivalence principle, which states that under

specific conditions, the stochastic optimal closed-loop control is equivalent to its deterministic

counterpart. It is, assuming perfect state transitions, using the current state estimate X̂k =

E{Xk|Yk, Uk−1} for the initial state [Bar-Shalom and Tse 1974]. This principle does not

always hold. Specifically, it holds if and only if the system is neutral, which means considering

future measures does not help improve the estimation. This is very related to the separation

principle, which holds when the closed-loop control can be expressed in terms of the current

state estimation, not necessarily in the same form of the deterministic case, so this principle is

weaker than the certainty equivalence. This principle is applied in the Certainty Equivalence

Control to simplify the control problem. It is sometimes used even if the principle does not hold,

as a sub-optimal approach (Assumed Certainty Equivalence).

There is a subfield of stochastic control called Adaptive Dual Control, which takes explicitly

into account the existing uncertainty into the control strategy [Unbehauen 2000], ensuring the

dual effect will be present. There exist several strategies and methods related to this particular

approach, which normally are similar to those of stochastic optimal control (CEC, OLFC), but

with an uncertainty measure added to the cost function, in an explicit or implicit way.

Finally, another family of stochastic control methods are the ones based on Stochastic

Approximation (SA), first proposed in [Robbins and Monro 1951], as a sub-optimal Stochastic

Optimization method. This method seeks to find the minimum of the cost function using the

stochastic gradient ∂
∂XL(X,W) of the cost funtion, which is a random function of the state X and

the noise random variable W . A gradient descent method can be proposed in the following way:

Xk+1 = Xk + αk
∂
∂XL(Xk, Ŵk). If no analytic expression is available, a numeric approximation,

such as the Simultaneous Perturbation Stochastic Approximation (SPSA) can be used [Spall

1992].

There has been some research focused in the application of stochastic control to the bearing-

only tracking problem. For instance, in [Oshman and Davidson 1999], an optimization framework

for the bearing-only target localization problem using the FIM is presented. They propose several

solution methods, reformulating the cost function, for continuous and discrete time controls.

The scheme they present does not take into account the uncertainty for the future steps so

they handle the problem in a deterministic optimization fashion. Another example is [Skoglar

et al. 2009]. In this work, the authors present several methods to solve the BOT problem are

presented, applying both CEC and OLFC and making use of different information measures. In

particular, an approximation of the differential entropy measure using Particle Filter and a SA

gradient descent based algorithm are proposed. Also in [Singh et al. 2007], a method based in

Particle Filter and SA, focusing on the convergence properties of this approach is proposed and

analysed.

This current research work falls into the stochastic control category, which was chosen

because it seems very promsing in terms of performance and flexibility, also, it is an active

research area.

6



2
Kalman Filter Based Methods

2.1 Introduction

In this chapter, a first strategy to solve the tracking problem is studied. The following methods

are based in an ACE approach, in the sense that deterministic (noiseless) observations are

assumed. Even though the conventional CE control has no dual effect in the cases where it

is optimal [Bar-Shalom and Tse 1974], in this approach we specifically set a measure of the

system uncertainty as the cost function for the optimization scheme. And, actually, there is

no intention of directly controlling the final robot state. The estimation part is done with a

version of the Kalman filter adapted for the non-linear system. Results with two versions of the

filter are presented, with an Extended Kalman Filter (EKF), and with an Unscented Kalman

Filter (UKF). Also, the optimization scheme used to solve the problem and obtain the control

sequence is explained.

2.2 Modeling

The following is the basic system modeling that will be used in most of the approaches,

throughout this work. The system consists of a target slowly moving, in a stationary random

walk in the xy-plane. The observer will be a mobile differential drive robot, also moving in the

plane with constant linear speed, being the angular speed Uk = ωk the controlled parameter.

And, of course, the robot will have a bearing-only sensor, which will provide a measurement of

the direction (angle) Yk = φk in which the target is found, with respect to the robot orientation.

First of all, the total state will be represented with the variable Xk. It will be a vector

containing all the required state information, in the current k time interval or step. For now, it

7
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x

y Yk=[φk]

Xr
k=[x

r
k,y

r
k,θ

r
k]

Xk-1

θr

φk
Xt

k=[x
t
k,y

t
k]

Figure 2.1: System model diagram. The darker triangle represents the robot in the k time interval.
The green circle indicates the target position. The dashed black line represents the trajectory since the
begining. The red line and the purple circle section represent the target detection from the robot (in
the form of an angle relative to the robot orientation). The blue circle section depicts the current robot
orientation θr.

will contain the robot pose and the target position in the plane, respectively, Xr
k = [xrk, y

r
k, θ

r
k]
′

and Xt
k = [xtk, y

t
k]
′. Therefore, the total state vector Xk will be of the form:

Xk =

[
Xt
k

Xr
k

]
. (2.1)

The sub-index k might be dropped where not required, for notation simplicity.

The target and the robots motions are independent processes, therefore they can be modeled

as independent systems.

For the target it will be:

Xt
k+1 = f t(Xt

k,Wt
k) = Xt

k +Wt
k∆T (2.2)

where Wk is a random vector of the same dimension as Xt, and distributed according to

N (0,Σt). ∆T is the sampling time.

In this case the robot will be assumed as noiseless in motion (i.e. its motion is deterministic),

so we have:

Xr
k+1 = f r(Xr

k , ωk) = Xr
k +

v cos(θrk + ωk∆T )∆T

v sin(θrk + ωk∆T )∆T

ωk∆T

 (2.3)

where v is the linear speed, which in this model it is taken as constant.

8
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It is worth noting that, in this model, the control ωk, is applied first to the orientation then

to the position components, this is to observe an immediate effect to the robot position caused

by this control.

The observation model states what should be the observation from the current state. The

robot bearing observations are dependent of both the robot and the target states, i.e. the total

state. This dependence is described by the expression in equation 2.4. It can also be observed

in figure 2.1, where the observation is referred to as ϕk.

Yk = g(Xk,Wy
k ) = arctan2(yt − yr, xt − xr)− θr +Wy

k (2.4)

where arctan2(y, x) is a function that returns the arc tangent of the quotient y
x , also using

the signs of x and y to determine the quadrant of the result. And Wy
k ∼ N (0,Σy) is a normal

additive random noise.

As can be deduced by the inspection of equations 2.3 - 2.4, the system is highly non-linear.

Additionally, equation 2.4 shows the equal contribution of both states to the observation. This

gives us a hint of why the robot motion is important to improve the target estimation. Also, it

is clear that the process is partially observable, because there is a relative angle measure only

and all the state variables have to be inferred from it.

2.3 Kalman Filter Review

As stated by [Thrun et al. 2005], state estimation addresses the problem of estimating quantities

from sensor data that are not directly observable, but that can be inferred. A recursive filter is

a type of signal filter that uses current noisy data to recursively improve a previous estimation

of the internal state of a dynamic system. The Kalman Filter [Kalman 1960], which is based on

the (probabilistic) Bayes Filter, is the most well known of this kind of filters, mainly because

it has an exact closed form solution. But it is limited to linear systems with additive Gaussian

noises.

2.3.1 The Bayes Filter

Bayes filtering is based on the application of Bayes rule to recursively calculate what is called

a belief distribution, which is a distribution of the probability for the system of being in each

state in a particular moment [Thrun et al. 2005].

p(Xk|Y k
1 , U

k
1 ) = ηp(Yk|Xk)

∫
p(Xk|Xk−1, Uk)p(Xk−1|Y k−1

1 , Uk−1
1 )dXk−1 (2.5)

where the notation p(..|..) indicates conditional probability. The notation Y k
1 indicates the

set of all Y j random variables from Y 1, up to Y k. The η is a normalization term, which is an

integral (total probability law) of all the possible values of p(Xk|Y k
1 , U

k
1 ), so that the result is

actually a probability distribution. This is actually a recursive equation, because the resulting

probability p(Xk|Y k
1 , U

k
1 ) depends on its value in the previous step k − 1.

9
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The Bayes filter relies on the Markov assumption or the complete state assumtion. It

postulates that past and future data are (conditionally) independent if the current state Xk

is known. This is actually a very restrictive assumption and hardly accomplished. But, in fact,

very accurate models are not always desired because of the computational complexity. Anyhow,

this approach has proven to be surprisingly robust to this simplified modeling. On the other

hand, the direct application of the Bayes filter approach, is rather unfeasible for general cases,

mostly because of the integration steps that have to be carried out. This is where the Kalman

Filter goes into action.

2.3.2 Kalman Filter

As already stated, the Kalman Filter (KF), is a closed-form solution of the Bayes Filter

expression (check equation 2.5), for the linear additive gaussian case. The underlying linear

system is expressed with the following equations:

• linear dynamic model

Xk = AXk−1 +BUk +WA (2.6)

where Uk is the vector of controls applied to the system in the current time. A is a square

matrix that represents the correspondences of the previous state with the current state.

B is a matrix that states the contribution of the control vector to the new state. And WA

is a random noise vector (motion noise) distributed as N (0,ΣA).

• linear measurement model

Yk = MXk +WM (2.7)

whereM is a matrix that indicates the relation of the system stateXk and the measurement

Yk. WM is a random noise vector (observation noise) distributed as N (0,ΣM ).

The KF algorithm is classically divided in two steps: prediction and correction. In the

first one, the integration operation in equation 2.5, is applied in the form of an addition and

a linear transformation. The correction step is a bit more complicated, it is the result of the

previous resulting distribution conditioned to the measurement Yk, which can be computed due

the gaussian distributions properties. A summary of the equations is now presented.

• Prediction

X̄−k = AX̄k−1 +BUk (2.8)

Σ−k = AΣk−1A
T + ΣA (2.9)

• Correction

K = Σ−kM
T (MΣ−kM

T + ΣM )−1 (2.10)

10
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X̄k = X̄−k +K(Yk −MX̄−k ) (2.11)

Σk = (I −KM)Σ−k (2.12)

In literature the expression (Yk−MX̄−k ) is usually called the innovation, because it indicates

the information added by the observation. And the K is called the Kalman gain, because it

indicates how much the innovation term is trusted. But, again, the standard KF, is limited to

linear Gaussian systems, this is why some approximated versions for non-linear systems have

been proposed.

2.3.3 Extended Kalman Filter

The first attempt to overcome the limitations of the KF is the Extended Kalman Filter, or, EKF,

from now on. What this approach does is to approximate the non-linear model functions to linear

functions using the first term of their Taylor expansions around the current estimation mean.

This linearization of the model functions causes the approximated posterior beliefs distributions

to remain Gaussian when the KF equations are applied. In order to perform this linearization by

Taylor expansion, the Jacobian of the function has to be computed. This Jacobian is evaluated

on the current estimation mean, which is the point that should give us minor linearization error.

For the case of the state transition function, as it satisfies f : Rn → Rn (with n being the state

dimension), its Jacobian Jf is a n×n matrix. In the case of the observation model, its Jacobian

Jg is a m× n matrix, where m is the observation vector size (e.g. m = 1 in the current model).

The Kalman Filter equations have to be adjusted to include the linearization procedure. The

equations for the EKF are as follows:

• Prediction. The prediction step for the mean is performed applying directly the transition

function without noise. It is on the covariance matrix where the Jacobian is used, replacing

the matrix A of the linear KF.

X̄−k = f(X̄k−1, Uk) (2.13)

Σ−k = JfkΣk−1(Jfk )T + ΣA (2.14)

• Correction. Similarly, in the correction step, the Jacobian of the observation function Jgk
replaces the matrix M . Also, the innovation term is replaced by [Yk − g(X̄−k )].

K = Σ−k (Jgk )T (JgkΣ−k (Jgk )T + ΣM )−1 (2.15)

X̄k = X̄−k +K[Yk − g(X̄−k )] (2.16)

Σk = (I −KJgk )Σ−k (2.17)

This method works fairly well for moderately non-linear functions or for small levels of noise,

and it is vastly used in several fields. But, its performance obviously degrades as the non-linearity

or noise increase. This may lead, in the worst case, to divergence of the method.

11
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2.3.4 Unscented Kalman Filter

Another variant of the KF, not as popular as the EKF, is the Unscented Kalman Filter (UKF)

[Julier and Uhlmann 1997]. The idea of this method is to approximate the first two moments

of the posterior distribution (i.e mean and variance) directly, instead of approximating the non-

linear function. The idea is to define a set of points to sample around the current distribution

mean. These points, termed Sigma Points, are used to compute the Unscented Transformation,

which is a method for calculating the statistics of a random variable which undergoes a non-

linear transformation [Julier and Uhlmann 1997]. This method slightly resembles the Monte

Carlo sampling techniques, but, in this case, the samples are deterministic. The distribution

moments are computed by means of some weighted sum equations using the sigma points.

2n + 1 sigma points X (i) and their weights W (i) have to be computed. In the simplest form of

this method, these values are selected as follows:

• Sigma Points

– for i = 0

X (0) = X̄ (2.18)

– for i = [1 : n]

X (i) = X̄ + [
√

(n+ κ)ΣX ]i (2.19)

– for i = [n+ 1 : 2n]

X (i) = X̄ − [
√

(n+ κ)ΣX ]i−n (2.20)

where [A]k is an operator that returns the k-th column of the matrix A. κ ∈ R is a scale

factor, and ΣX is the covariance matrix. And
√
. is a matrix square root operator (e.g. a

Cholesky decomposition [Press et al. 1992]).

• Weights

– for i = 0

W (0) =
κ

n+ κ
(2.21)

– for i = [1 : 2n]

W (i) =
1

2(n+ κ)
(2.22)

the weights are normalized, thus their sum is 1.

Now, in order to compute the desired distribution moments, the following equations are used:

• Mean

X̄ =

2n∑
j=0

W (j)X (j). (2.23)

12
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• Covariance matrix

ΣX =

2n∑
j=0

W (j)(X (j) − X̄)(X (j) − X̄)T . (2.24)

By integrating the aforementioned equations (Unscented Transform) in the KF method, it is

possible to develop a whole new approach for the estimation problem. In general, this method

performs very well even for highly non-linear systems, having a performance comparable to a

second order Gaussian Filter [Julier and Uhlmann 1997]. Also, it overcomes most of the EKF

problems and limitations (e.g. the bias and divergence). But, of course, it is still an aproximated

approach with inherent degradation of the information. More details of this variant of the KF

can be consulted in [Julier and Uhlmann 1997].

2.4 Control Scheme

The control scheme selected for this first approach is similar to the CEC presented in [Skoglar

et al. 2009], except that it directly uses the determinant of the estimation covariance matrix,

instead of the information matrix. It consists in solving the following optimization problem:

min
UN−1

L(XN ) = det ΣN (2.25)

s.t. uk ∈ U
X0 = X̂0

Xt
k+1 = f t(Xt

k, 0)

Xr
k+1 = f r(Xr

k , uk)

yk = g(Xk, 0)

Σk+1 = h(Σk)

where ΣN is the estimation covariance matrix at the final step k = N . U is the admissible

control space. And h(Σk) corresponds to the correction step equations for the covariance matrix

of either version of the non-linear Kalman filter (e.g., equation 2.17 for the EKF).

The previous formulation is equivalent to performing a simulation of N steps of a Kalman

Filter with the same initial parameters, for each candidate control sequence UN .

2.4.1 Cost Function Terms

The original cost function of [Skoglar et al. 2009] was modified to directly include some control

restrictions and to add some other terms to regularize the result and to improve other properties.

Figure 2.2 depicts the kind of modifications performed on the original cost function. The control

limits were included this way to avoid the use of Constrained Optimization (for further reading

in optimization types and techniques, refer to [Nocedal 2006]), which normally is heavier and

increases complexity in formulation. First of all, instead of using the (det ΣN ) value directly, a

ratio between the first prediction step covariance matrix determinant (det Σ−1 ) and this (det ΣN ),

was chosen, in order to have a “normalized” result.

13
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Figure 2.2: Cost function modifications to include restrictions and make it convex. Left, original cost
function and control limits restrictions. Center, discontinuity added to avoid other local minima. Right,
control vector squared norm added to make function convex.

Control Restrictions

Because of the problem definition, the control (angular speed) causes the cost function to be

periodic. Therefore there is theoretically more than one possible solution for the problem. But

usually the least effort solution is preferred, that is why we add a cost penalization to the control

vector norm, which also serves as a Regularization term.

View Range Restrictions

Another important issue to take in consideration is the visual range of the robot, which is limited

by the sensor physical properties. It is fundamental for the method to have the target always

on sight. This is why a term penalizing the magnitude of the (expected) bearing measure ϕ2
k

is also added. The term is quadratic, for smoothness. Also, as there will not be any correction

in the real filter if the target is not detected, the [det Σk] value is conditioned to the successful

detection of the target. This way, if the target is not in range, the cost function will not decrease.

Additional terms

So, in a similar way, it is possible to add multiple terms to this cost function in order to make

the solution more robust and applicable to real life problems. Equation 2.26 shows the general

idea for the cost function. For instance, it is possible to add a term penalizing the robot for

being too close to the target, or to try make the robot keep the target centered on sight.

L(XN ) = λ1
det(ΣN )

det Σ−1
+ λ2‖UN‖22 + λ3ϕ

2
k + λ4[(xr − xt)2 + (yr − yt)2]−

1
2 + ... (2.26)

where the λi are weights to ponderate the influence of each term in the resulting control.
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2.5 Numerical Optimization Discussion

The optimization method used for the implementation of the following simulations and most

of the experimental results, is a derivative-free method based on the Nelder-Mead simplex-

reflexion [Nelder and Mead 1965]. Also known as the amoeba algorithm, it is not related to

the simplex method used in linear programming. The advantage of these kind of methods is

that they usually require fewer objective function evaluations than other derivative free methods

like finite difference gradient-based methods. Also the latter are more susceptible of failing in

the presence of noise [Nocedal 2006]. This is specially useful for objective functions with time-

consuming evaluations. A disadvantage of this method is that its convergence properties have

not been very well studied or proven.

2.5.1 The Nelder-Mead Simplex Method

x2

x1

x3x(1/2)x(-1) x(2)

Figure 2.3: Nelder-Mead Simplex operations for a function in R3. Assuming the current simplex is
composed of the points [X1, X2, X3] and the point with higher function evaluation is X3, the possible
operations are: Contraction x(1/2). Expansion x(2). Reflection x(−1). And shrinkage (dashed line).
Where the number in parenthesis indicate the scale of the applied operation.

This algorithm is very simple and consists in keeping in every step, n+ 1 points of interest

in Rn (i.e. a simplex), and in every iteration it is required to replace the point with the worst

function evaluation with a better one, using the following actions: reflecting, expanding, or

contracting the simplex along the line joining the worst vertex with the centroid of the remaining

vertices. If this fails, the simplex is shrinked, keeping only the best value vertex [Nocedal 2006].

This is repeated until a stop criteria, like a minimum size for the simplex, is fulfilled. In figure

2.3, an explanation of the method operations in R3 is depicted.

15
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2.6 Simulation Results

2.6.1 Software Framework

Because of the simplifying assumptions in the model and the process, all the results in this

chapter are in simulation only. The simulations were carried out with a simple graphic

application (see figure 2.4) implemented in the JavaTM programming language, using an open

source graphics library and API called Processing [Reas and Fry 2010]. Also the mathematics

library commons-math, of Apache, is used for the numerical optimization routines.

Figure 2.4: Developed Java Application preview. Center: visualization window. Top-Left: simulation
control interface. Bottom-Left: Cost function contours graph. Bottom-Right: obtained control.

2.6.2 Extended Kalman Filter

In This section, the first set of simulation results are presented. These simulations were carried

out using the EKF, and testing different modifications to the cost function parameters. For

instance, in figures 2.5 - 2.6, the results of the control scheme using the det(ΣN ) term only,

with the horizon N = 1 (i.e. a very “greedy” approach) are presented. As it can be observed,

the overall error and uncertainty decrease as time goes on. Also, as this is an active, stochastic

method, every resulting trajectory is different, depending on the actual noise realizations. But,

as seen in figure 2.7, all of these trajectories have the same tendency, which is to get closer to

the target, and to triangulate its position.

16
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Figure 2.5: Robot trajectory, target position estimation and uncertainty ellipse using an EKF estimator,
in different stages of the simulation (k = {30, 90, 150}). The robot combines two tendencies, to get closer
to the target, and to move around the target to keep triangulating the position.
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Figure 2.6: Simulation results for a single run. Left: Target position estimation error. Right: Uncertainty
level (covariance matrix determinant). The x-axis in both plots is the iteration number k.

Figure 2.7: Two stages of several experiment realizations showing common resulting trajectories.

2.6.2.1 Analytic Solution

For comparison purposes, an analytic solution for this first approach (using EKF with N = 1)

was obtained and tested. See appendix A, for a derivation of the analytic expression. As
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depicted in figure 2.8, the resulting trajectory has similar tendencies as the previous numerical

simulations. The use of this analytic solution is limited to the unconstrained, simplest form of

the problem.

Figure 2.8: Simulation results using an analytic solution for the optimization scheme for horizon 1 (see
Appendix A), using the covariance matrix determinant as the objective function only.

2.6.2.2 Horizon effects

Carried out simulations, shown in figure 2.9, indicate that for larger horizon sizes, the planner

tendency is to get closer to the target in a faster way. This is congruent with theory and common

sense, because with a faster approaching, the uncertainty due the angular error in observation

will reduce faster.

Figure 2.9: Simulation results for different horizon sizes. In increasing order the colors are: green, cyan,
orange and yellow, for 1, 6, 11, 16 horizon sizes respectively.

2.6.3 Unscented Kalman Filter

The implementation of the UKF version of the planner was straight forward using the developed

framework. Actually, the framework was coded using a generic java interface for the recursive
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filter object, which allows us to exchange the target filter, and even simulate different types of

filters at the same time, for comparison purposes.

Figure 2.10: Robot trajectory and target position estimation and uncertainty ellipse using an UKF
estimator, in different stages of the simulation (k = {5, 45, 85}).
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Figure 2.11: First simulation results for the UKF planner. Left: Target position estimation error. Right:
Uncertainty level (covariance matrix determinant). The x-axis in both plots is the iteration number k.

In figure 2.10, the resulting trajectory and estimations for a first simulation are presented.

Also in figure 2.11, the estimation errors and the uncertainty level are shown. The resulting

trajectories are interesting, as most of them are S shaped. This behavior is attributed to the more

accurate approximation of the filtered distributions and their moments far from the estimation

mean, which might lead to different (and “better”) optimal trajectories and controls. Actually,

as seen in figure 2.11, the UKF planner obtains very low estimation errors and uncertainty levels.

The disadvantage of this planner, is that it is slightly more complex in computational terms,

because it implies 2n+ 1 evaluations of the non-linear functions, where n is the state dimension

(5 in this case), this for the distribution estimations.

In comparison with the trajectory generated by the EKF planner, the ones of the UKF

planner are more sinuous. Also, the estimation error and the uncertainty are lower at the end.
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3
Particle Filter Based Methods

3.1 Gaussianity Limitations

The use of Gaussian models has the major disadvantage of being unable to handle multi-modal

distributions. But also, there are other aspects that make the Gaussian models not well suited for

several real-life applications. For instance, Gaussian distributions have support in all x ∈ Rn,

which is not true for some noise sources (i.e. real sensors have usually a bounded operation

range). Also, Normal distributions are symmetric, and again, this does not always hold for

real sensor noise distributions. So in order to overcome these limitations, it is necessary to use

different kind of filters. One of the most common of these filters is the Particle Filter, which

does not make any assumption about the shape or any other aspects regarding the involved

distributions. Also, this filter handles very well the non-linearity of the underlying systems. So

in this chapter, a Particle Filter version of the control scheme is studied.

3.2 Non-Gaussian Noise Models

As stated above, real systems are not always Gaussian, some of them might be approximately

Gaussian, others not quite. In fact, most sensors have characteristic noise distributions. These

distributions do not have to be symmetrical, or unimodal, not even smooth. They might be

characterized by an empirical distribution obtained by experimentation.
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μa b

Figure 3.1: Truncated gaussian distribution density function. The parameters a and b are the minimum
and maximum limits, respectively. µ is the mean value of the corresponding normal distribution.

3.2.1 Truncated Gaussian Distribution

A simple step to improve the modeling of a sensor is to take in consideration its operation range.

It might be possible to model it as a truncated normal distribution, which basically behaves as a

normal distribution with parameters µ and σ inside an interval [a, b], and is zero valued outside

this interval, being normalized to preserve the total area of 1. This distribution might have very

different lookings, depending on its parameters (including the limits a and b), being possibly

very asymmetrical. Figure 3.1 shows the form of this distribution and equation 3.1 expresses

its density function. In [Robert 1995] some properties of this distribution and some sampling

methods are explained.

f(z) =

{
c−1(2πσ2)−

1
2 exp(−(z − µ)2/2σ2), a < z < b

0, otherwise
(3.1)

where

c =

∫ b

a
(2πσ2)−

1
2 exp(−(x− µ)2/2σ2)dx. (3.2)

3.3 Particle Filter Review

Particle Filter (PF) is a non-parametric version of the Bayes Filter. It makes use of a set

of weighted point masses (i.e. particles) to represent a probability distribution (depicted in

Figure 3.2 as brown circles). It applies Monte Carlo sampling techniques, like the ones exposed

in [Hastings 1970], to recursively approximate the filter posterior distribution using a set of

particles drawn from the posterior of the previous iteration. For a comprehensive review of

particle filter techniques, [Arulampalam et al. 2002] can be consulted.
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Figure 3.2: Particle Filter Simulation. A mobile robot (orange), estimating the position of a target
(green). The filter particles (brown) and the uncertainty ellipse (red) are also shown. The size of the
particles represent their weight.

3.3.1 Sequential Importance Sampling/Resampling

The Sequential Importance Resampling (SIR) Particle Filter is one of the most common variants

of the PF [Arulampalam et al. 2002]. The SIR is an extension of the Sequential Importance

Sampling method (SIS), which, basically, defines a method to handle the particle sampling and

the weight computing. This method consists in generating a random sample to replace each

particle, by using the transition model (defined in equations 2.1 to 2.3 in section 2.2) of the

system, as follows:

Xi
k ∼ P (Xk|Xk−1 = Xi

k−1), (3.3)

where the index i ∈ [1 : M ] indicates the particle number. M is the total quantity of

particles. This is called the propagation or exploration step. Normally, it is easier to sample

from this distribution, as the transition noise model is assumed to be known. After that, this

new particle set does not reflect the actual belief distribution, so the weights of the particles

have to be adjusted. This is accomplished by the following recursive equation:

wik = ηP (Yk|Xi
k)w

i
k−1, (3.4)

where wik is the current weight of the i-th particle and η is a normalization factor given by:

η =

 M∑
j=1

P (Yk|Xj
k)wjk−1

−1

. (3.5)

These previous equations constitute the application of the Importance Sampling technique,

very common in Monte Carlo methods [Hastings 1970]. Figure 3.3 gives a hint of how this
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principle works. Also, in [Doucet et al. 2000], the author presents some alternative particle

propagation distributions to reduce particle degeneration (i.e. wi = 0), which is a problem

inherent on this approach.
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Figure 3.3: Importance Sampling principle. Top: Actual distribution f to be aproximated. Center:
Distribution g to sample from, and obtained samples. Bottom: Final weighted samples representing the
distribution f . In the case of the PF methods f corresponds to the belief distribution. [From Probabilistic
Robotics, MIT Press].

After the weighting step, a state estimation can finally be obtained, and it is simply a

weighted average of the particles, as follows:

X̂k =
1

M

M∑
j=1

wjkX
j
k (3.6)
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Now, in order to avoid this particle degeneration problem (i.e. the tendency of weights to

jointly tend to zero), an extension of the SIS approach is used, this makes use of an additional

step, called resampling. This new approach is the SIR variant of the Particle Filter.

The resampling step consists on applying one more time the Monte Carlo principle to replace

the current particle set. The sampling will be out of the original particle set (a discrete sampling)

weighted by the weights of the particles. The advantage of this approach is that the new particles

will have all the same weight (so degeneration is avoided), and only the particles with higher

weights will survive. However, this also increase complexity, and restrict possible paralellizing

schemes. On the other hand, resampling does not have to be done in every iteration. Some

criteria can be defined to perform the resampling.

3.4 Control Scheme with PF

The following is a version of the control scheme used in the previous chapter, adapted for the

use with the particle filter and non-additive noise distributions. A straight forward adaptation

could have been used, by directly computing an estimation of the covariance matrix and use it

as the cost function. But the problem with this is that because of the nature of the filter and

the underlying approximated distribution in the form of particles, this covariance estimation

might not be a very accurate indicator of the actual uncertainty. So, an approach similar to the

one proposed in [Skoglar et al. 2009] is used. This approach consists in simulating M Kalman

Filters, one for each particle in a subset of the current particle set, using a covariance matrix

Σ
(i)
k given by the filter covariance estimator and scaled by the particle weight w(i). Then the

weighted sum of the covariance matrix determinants is used as a cost function. The author in

[Skoglar et al. 2009] proposes a random simulation of the motion and observation noises, and a

random selection of the particle subset.

min
UN−1

L(XN ) =
M∑
i=1

det Σ
(i)
N (3.7)

s.t. uk ∈ U
X

(i)
0 ∼ P (X0|I0)

Xt(i)
k+1 = f t(Xt(i)

k ,W
t(i))

Wt(i) ∼ Dt(X(i)
k )

Xr
k+1 = f r(Xr

k , uk)

Σk+1
(i) = h(Σk

(i), Yk
(i))

Yk
(i) = g(Xk

(i),Wy(i))

Wy(i) ∼ Dy(X(i)
k )

Σ0
(i) = w(i)Σ0

where Dt(.) and Dy(.) are non-additive generic noise probability distributions for the target

motion and the sensor observation respectively. h(.) includes the EKF correction equation (i.e.,
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equation 2.17) that depends on the current observation Yk. All the terms in this optimization

scheme are explained with more detail in table 3.1.

Term Description

X
(i)
0 ∼ P (X0|I0) The initial state for every simulated KF is obtained from

the current estimation distribution (I0 represents the initial
information), it means that a particle can be used as sample.

Xt(i)
k+1 = f t(Xt(i)

k ,W
t(i)) The following target states are going to be simulated using

the transition equations including the transition noise.

Wt(i) ∼ Dt(X(i)
k ) How the transition noise is generated from an arbitrary

distribution.

Xr
k+1 = f r(Xr

k , uk) The following robot states are going to be computed with
the transition equation using the specific control uk, which
is the variable to be minimized.

Σk+1
(i) = h(Σk

(i), Yk
(i)) The covariance matrix has to be computed from the EKF

equations.

Yk
(i) = g(Xk

(i),Wy(i)) The observation Yk
(i) simulated from the observation model

including a random noise Wy(i).

Wy(i) ∼ Dy(X(i)
k ) The observation random noise generated from an arbitrary

noise distribution.

Σ0
(i) = w(i)Σ0 Initial covariance matrix for each simulated EKF is

initialized as the initial estimated covariance Σ0 scaled by
the particle weight.

Table 3.1: Optimization Scheme Terms.

3.5 Simulations and Results

The simulations were performed with the same software application as in the previous chapters.

We simply adapted the cost function, and added an implementation of the Particle Filter, to

carry out the new scheme. Also the visualization of the particles was added. Additionally,

a simple parallelization scheme was implemented, taking advantage of the structure of the

problem expressed in equation 3.7. It can be deduced that for every step, the particle motion is

independent, so, the simulation of all the particles can be performed in parallel.

3.5.1 First Simulations

The first set of simulations consisted on the same type of setup as in the previous chapters.

Similar conditions were used, such as the restriction and regularization terms, and similar noise

parameters. It turned out that several types of resulting trajectories were observed (some

examples are depicted in figure 3.5), some of them similar to the EKF patterns, other more

resemblant to the paths obtained from the UKF planner. Figure 3.4 shows some indicators of

the planner performance for one of the experiments. The performance levels are similar to the

ones in the EKF version, but with more variation from one iteration to another.
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Figure 3.4: Results of a representative sample run of simulation. Left: Target position estimation error.
Right: Uncertainty level (estimated covariance matrix determinant). The x-axis in both plots is the
iteration number k.

Figure 3.5: Different resulting trajectories, depending on the actual noise realizations. In all the
experiments 400 particles and a horizon length of 2 were used. This approach presented a wider range of
trajectory types. Some of these trajectories are similar to the ones of the EKF planner, others are more
resemblant to the ones of the UKF planner.

3.5.2 Comparison of PF vs KF

In this section, some tests were performed to compare the performance of both methods

presented so far. Both planners were executed simultaneously in the simulator, using the same

noise parameters. The resulting trajectories for one of these experiments are shown in figure 3.6.

Results basically show that the PF approach is more reactive to the actual observations, and

due the randomness of the particles, the form of the obtained paths are more variable. Also, at

the beginning it seems to be more conservative, but it actually seems to have a better estimation

on the long run. This behavior is attributed to the fact that as the estimation improves, more of

the particles agree on the actual system state, which causes a stronger response of the controller

to certain policy.
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Figure 3.6: Simulation results for both PF (orange) and EKF (light green) planners. In this experiment
the PF used 400 particles and the horizon length was 2. This simulation showed that the PF planner
approached faster to the target and had a better estimation.

3.5.3 Number of Particles

An important parameter that affects directly in the overall planner and filter performance is

the number of particles used in the filter. For instance, a higher number of particles, generates

a smoother output trajectory. In figures 3.7 and 3.8, two simulations with different number of

particles are shown. In these figures, it is observed how the trajectory is affected.
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Figure 3.7: Particle Filter simulation results with 500 particles.

Figure 3.8: Particle Filter simulation results with 1500 particles.

Theoretically more particles should generate better results, but, it was observed that too

many particles cause the filter to bias the estimated target position. This is caused by the

triangular form of the observation noise distribution in the plane, which causes that more

particles are drawn in the far side of the observation beam. These particles then cause a

dragging of the estimation to this far side. This should be fixed by modifying the observation

model to consider a maximum and minimum detection distance of the sensor. This is left as

future work.
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4
Application to Simultaneous Localization and

Reconstruction of 3D Objects

4.1 Introduction

In this chapter, an original real-life application inspired in this present work is exposed. The

application consists in the visual reconstruction (with monocular vision) and localization of an

object, whose position and dimensions are unknown at the beginning. This is a more realistic

setup than e.g., just assuming that the object position is initially known.

In order to complete the reconstruction task, it is required to have an estimation of the

object position first, and then, to acquire images of the object from different angles. Also, an

estimation of the object dimensions is necessary to make sure the contour of the object fits into

the image. The realization of this real application implied developments in several technical

aspects, including an adaptation of the current control scheme, the implementation of several

image processing algorithms and the design and integration of a simple software architecture,

for the interaction of all the system components. The reconstruction is performed by a NAO

humanoid robotic platform, using a differential drive simplified locomotion controller.

4.2 Problem Description

In order to carry out this task, several practical issues have to be considered. For instance,

besides the target bearing measurement, an additional object feature has to be obtained as an

observation from the acquired images. This additional observation is the aperture angle (see

figure 4.1) of the object projection in the camera. This supplementary observation is used to
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ϕt

δt

(xr , yr , θr)  t t t

(xo, yo)   t t

Figure 4.1: Bird-view of the reconstruction system. The location of the object to reconstruct is unknown
at (x0, y0). Our aim is to control the robot so that the reconstruction of the object (which is initially not
well localized) can be done with precision.

estimate the dimension of the object, which is approximated to a disk, and its radius (initially

not known!) gives us a scale indicator. Also, as the approach assumes that the robot position

is always known (deterministic), an additional visual localization system has to be used to

accurately estimate the current robot position, which has to be updated in the state vector.

There are several points that need to be considered in order to perform an acceptable

reconstruction. Among them, there are the following:

• The object has to be always on sight. If not, it has to be found.

• The whole object silhouette has to be always contained inside the image.

• The object must be seen from most of the possible angles.

• The images should be taken as still as possible, to avoid distorsion.

4.3 Reconstruction Oriented Control Scheme

To accomplish the previous points, several changes were made to the original modeling and to

the control scheme. First, the additional angle aperture measurement δt was included in the

previous observation model, extending the original observation Yk to a two-dimensional vector.

Also, the object (target) state Xt
k is augmented to include the radius, therefore passing from

a punctual modelation to a disk-like model for the object. Now, on the control scheme side,

the selected scheme was the one presented in chapter 2, using an EKF for the estimation and

a couple of additional cost function terms, one to ensure the complete coverage of the object

perimeter for its reconstruction, and the other to mantain a “safe” distance from the object, to

avoid collisions and to make sure the whole object is going to be visible in the images.
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4.3.1 Extended Model

Now, for convenience and clarity purposes, all the model equations are restated in this section.

• State Vector

– robot state:

Xr
k = [xr, yr, θr]′ (4.1)

– target state:

Xt
k = [xt, yt, rt]′ (4.2)

– joint state:

Xk =

[
Xt
k

Xr
k

]
(4.3)

where rt is the target radius.

• Transition Model

– target:

Xt
k+1 = f t(Xt

k,Wt
k) = Xt

k +Wt
k∆T (4.4)

whereWk is a random vector of the same dimension as Xt, and distributed according

to N (0,Σt). And ∆T is the sampling time.

– robot:

Xr
k+1 = f r(Xr

k , ωk) = Xr
k +

v cos(θr + ωk∆T )∆T

v sin(θr + ωk∆T )∆T

ωk∆T

 (4.5)

where v is the linear speed (constant). Again, this means that the robot motion is

supposed deterministic.

• Observation Model

Yk = g(Xk,Wy
k ) =

[
arctan2(yt − yr, xt − xr)− θr +Wθ

k

arctan2(rt,
√

(yt − yr)2 + (xt − xr)2) +Wr
k

]
(4.6)

where arctan2(y, x) is a function that returns the arc tangent of the quotient y
x , also using

the signs of x and y to determine the quadrant of the result. And Wy
k ∼ N (0,Σy) is a

normal additive random noise vector composed of two elements Wy
k = [Wθ

k ,Wr
k ]′.

4.3.2 Added Cost Function Terms

In order to make the robot turn around the object to get a complete reconstruction, a new term

was added. This new term τc is the number of angular sectors (bins) Nc of a discretised circle
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around the object seen by the robot during the whole trajectory (as depicted in figure 4.2),

divided by the total number of sectors N0:

τc = λc
Nc

N0
(4.7)

where λc is a constant scale parameter.

Figure 4.2: Coverage proportion cost function term. An imaginary circle is drawn arround the target,
and it is divided into Nc angular sectors. The green area represents the angular sectors already seen by
the robot during its trajectory. This is implemented by computing the angle of the rays drawn from the
circle center to each trajectory point and checking in which angular sector it falls.

The other term τd added to the cost function was a repulsive potential inversely proportional

to the squared distance from the robot to the object (see equation 4.8). Actually, this term is

only activated when the distance goes below some threshold. In figure 4.3 simulations with two

different min distance thresholds are shown. The observed effect is that the robot never goes

closer than this distance to the target. This safe distance could be adapted in accordance to the

estimated object radius, so it is ensured that the object will always fit into the image.

τd = λd[(x
r − xt)2 + (yr − yt)2]−1 (4.8)

where λd is an adjustable scale parameter.

4.4 Robot Localization and Object Reconstruction

The Visual Localization and the object reconstruction methods used here, are complementary

and independent of this work, and could be replaced by any other similar or more sophisticated

techniques. Anyhow, assuming an accurate camera localization is crucial for the task of 3D

modeling from multiple views. In this sense, our specific setup is aimed at estimating correct

camera poses while simplifying the correspondence problem, which is a common issue while

trying to determine which landmarks from the map correspond to the detected ones.
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1000

100

1000

100

Figure 4.3: Simulations showing the trajectories generated for two different parameters for the safe
distance cost function term. In these simulations the object is located in the coordinated system origin.

Figure 4.4: Visual localization. The visual localization system is based on the extraction of colored
landmarks in the camera images. Crosses represent the centroid of the segmented colored blobs. Both
the pixel positions of the centroids and their known 3D positions in the world feed the localization system.

4.4.1 Visual Localization

The localization method used in this application is based on the use of colored landmarks,

detected in the robot images by simple color thresholding methods, where each landmark is

identified by its color (see figure 4.4). Assuming the intrinsic parameters matrix K is available (it

can be obtained with existing calibration tools), a standard method can be applied to minimize

the landmarks reprojection error and estimate the camera localization pretty precisely. This is

solved as a 2D-to-3D estimation problem using the openCV function solvePnP, which calculates
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the camera pose (i.e. the camera extrinsic parameters) for each view of the object.

4.4.2 Space Carving Reconstruction

Regarding the 3D reconstruction of the object, a method based on shape from occluding

boundaries known as space carving [Kutulakos and Seitz 2000] was used. Roughly, this method

uses the camera projection matrix in order to reproject, towards the world, the area bounded by

the silhouette of the observed object in the image. The camera projection matrix can be easily

built as:

P = K[Rc|tc], (4.9)

where K is the matrix of intrinsic parameters of the camera. Rc is the rotation matrix and

tc is a translation vector that describe the camera configuration in the world.

From a set of multiple silhouettes with known camera matrices, a 3D model is finally

recovered from the intersection of all reprojected silhouettes. This process, which resembles

sculpting (carving), requires several views of the object usually acquired while the object is

surrounded with the camera along a circular path. An initial bounding box is setted as

parameter, but with the radius estimation, an adaptive bounding box could be computed,

perhaps reducing the computing time of the reconstruction. This is not implemented yet, so it

is left as future work.

Figure 4.5: Space Carving first silhouette reprojection step. On the left the position from where the
image was taken. On the right the generated solid shape. This first reconstruction is not accurate at all,
and will be improved as more images are acquided and processed.
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4.4.3 Extraction of Observation Vector Data

The actual extraction of the required observations is also an important task. To perform this

process in a simple way, we suppose that the object can be segmented in the image from its

background. As illustrated in Figure 4.6, by using standard color thresholding and morphological

operations, we extract a blob corresponding to the object of interest. Then, along an horizontal

axis, we project the blob centroid and the blob extremities, to get three points pc (center) , pl

(left) and pr (right). Then we generate the observations as:

Yk = (± arccos eTzK
−TK−1pr, arccos pTl K

−TK−1pr)
T (4.10)

where ez = (0, 0, 1)T , and the actual sign of the first element is determined by the horizontal

position of the centroid. The (.)−T notation represents an inversion and transposition operations.

pl pc pr

Figure 4.6: From image blobs to observations vector Yt. Once a binary blob corresponding to the object
has been segmented by applying color thresholding and morphological operations, the three points pl, pc
and pr are extracted to define the observation vector angles.

4.5 Implementation and Experiments Setup

The experiments were carried out onboard a Nao humanoid robotic platform. This robot is

almost 0.6 meters tall, weights around 4.5 kilograms and has an intel atom @ 1.6 GHz processor,

with a built-in linux OS, and a versatile multi language API (C++, Python, Java, MATLAB,

Urbi, C, .Net). The Software Architecture uses a distributed server-host based scheme, and new

custom functionalities can be added as modules (shared libraries). For this implementation, an

image processing module to extract the required features was designed. We also implemented a

simple position-based visual servoing approach to keep the target at the center of the image, in

the same module. This module is accessed by an off-board modified version of the java framework

(see section 2.6.1), which afterwards computes the optimal control sequence and sends it back

to the robot.

The performed experiments consisted in the complete 3D reconstruction of three test
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Remote Host Robot Server

wireless
communication

Environment

Figure 4.7: Experiment setup diagram. The robot platform (center) receives commands from the
remote host (left) through a wireless link. Then the robot returns processed perception data from the
environment. After that, the remote host computes the next control and sends it again to the robot.

objects by the robot, with the control computed on-line, off-board the robot using the actual

measurements obtained by the segmentation module on-board the robot (see figure 4.7). The

results were the generated trajectories, the obtained 3D models of the objects, and the estimation

error plots.

4.6 Results

The experimental results are now presented. They are divided in three groups. The first set

is obtained reconstructions, depicted in figure 4.8. The figure presents, for each object, five

different views of the different objects as recorded by the camera of the robot, the extracted

silhouette and a rendered view of the final 3D object reconstruction for the purposes of visual

comparison. The next group is given by the estimated camera poses, and therefore, robot poses.

They are displayed in figure 4.9. The parallelepiped represents the object base position ground

truth (and which has to be estimated by the robot), and the taken snapshots appear as blue

cones.

The last set of results is formed by the estimation errors (for the position and for the radius)

for several trials of the experiment for one of the objects, with the purpose of showing the

success and repeatability for different trials. First, the positions of the center of the object

on the (x, y)-plane, as estimated by the active robot control, were recorded along the circular

acquisition paths performed by the robot on each trial. This measure was compared against the

final position of the center of the object obtained from the 3D reconstruction. The Euclidean

distance between these two measures is shown as a function of the robot position on the left

part of the figure 4.10. Note how initial instabilities present at the beginning of the walk tend to

diminish as the path is completed. The plot on the right depicts a similar experiment considering

the width of the object.
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Figure 4.8: 3D reconstruction results. The figure contains reconstruction results for three objects: an
action figure (a), a remote control (b) and a can (c). For each object, example views are provided row-
wise. The different views correspond to input images (as seen by the camera of the robot), extracted
silhouettes (shown in black) and rendered views of the reconstructed 3D model. In the figure, only the
silhouettes remain proportional in size with the input images, while the rendered views have been scaled
for the purposes of visualization.

Figure 4.9: Generated trajectory and estimated camera positions for each reconstruction case. The
viewpoints associated to the snapshots taken along these trajectories are depicted in blue. The five
camera positions corresponding to the five views shown in Figure 4.8 have been highlighted in order to
examplify the proximity of the camera to the object.

As it can be observed, the reconstructions are obtained with good quality, in particular in
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Figure 4.10: Error plots for object localization and object width. The two plots depict the error behavior
for three reconstruction trials of the Wii remote control. The x-axis of the plots corresponds to the position
of the robot (around the generated circular path). The plots reveal how both errors in object localization
and object width diminish as the robot seems to finish surrounding the object.

the case of the action man figure (part (a) of the figure 4.8), where filiform parts (arms, legs)

are well reconstructed, suggesting a successful coupling of the proposed robot control with the

space carving methodology. Also, the obtained trajectories are quite similar to the simulation

case, as the robot first makes position uncertainties lower by first getting closer to the target

(for constant errors on the bearing angle, getting closer makes errors on positioning smaller)

and by searching for positions favoring triangulation (hence, beginning to round up the object).

Then, the aforementioned terms (section 4.3.2) make the robot complete the reconstruction

objectives. Regarding the estimation error results, the position error ends up fluctuating around

two centimeters, at the final of the experiment, this indicates an increasingly accurate estimation

of the position of the object as the robot turns around it. The error converging towards four

millimeters in the radius estimation reveals that not only the position of the object, but its scale,

can also be estimated precisely as the camera of the robot acquires the relevant images for the

3D reconstruction method.

In general terms, the results for this application were very interesting and promising,

primarily because of the level of success and the simplicity and flexibility of its implementation.
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5
Conclusions and Future Work

In this work a sucessful implementation of an active tracking scheme for a bearing-only sensor

system was developed. Several variants, using different types of state estimation filters (e.g.

EKF, UKF), were studied. A couple of optimization schemes were tested and analysed. Also

some simple non-gaussian system noise distributions were studied.

Several promising simulation and experimental results, including a real world application, are

presented. The obtained simulation and experimental results include some plots of the overall

system performance in terms of estimation error and uncertainty levels.

A flexible, quite generic, and useful software framework was developed, allowing extensive

experimentation and testing of different system parameters and modalities. Additionally, actual

interfacing with real experimental setups was also possible.

As it was shown, the approach is efficient in computer time terms, it was determined it is

suitable for a variety of on-line applications. Even though the approach is suboptimal, as does

not consider an infinite horizon, it can handle very well different scenarios with varying levels

of uncertainty.

There is a lot of pending work for this interesting research field. Further experiments are

required to determine the approach limitations and ultimate capabilities. Different types of

system modelations (more complex) should be tested. In the final application, for instance, a

more complex control model could be added. But it is definitely a very promising and vast

research area.
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A
EKF Analytic Solution Derivation

Sensor motion model, controlled by ω:
xst = xst−1 + vδt cos(θst−1 + 1

2ωδt)

yst = yst−1 + vδt sin(θst−1 + 1
2ωδt)

θst = θst−1 + ωδt

Target filtering on Xt through Kalman filtering:

X̄−t = X̄+
t−1

Σ−t = Σ+
t−1

Yt = h(X̄−t )

X̄+
t = X̄−t

Kt = Σ−t HT
t (HtΣ

−
t HT

t + σM )−1

Σ+
t = (I−KtHt)Σ

−
t

Observation model:

h(X) = arctan(
yt−yst−1−vδt sin(θst−1+ 1

2
ωδt)

xt−xst−1−vδt cos(θst−1+ 1
2
ωδt)

)− θst−1 − ωδt

= arctan(∆y
∆x)− θst−1 − ωδt

where ∆y = yt − yst−1 − vδt sin(θst−1 + 1
2ωδt) and ∆x defined in a similar way. The

corresponding Jacobian is given by:
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Ht = 1

1+( ∆y
∆x

)2
[− ∆y

(∆x)2 ,
1

∆x ]

= 1
(∆x)2+(∆y)2 [−∆y,∆x]

= 1
ρ2 [−∆y,∆x]

= 1
ρ [− sinµ, cosµ]

where we define {
ρ2 = (∆x)2 + (∆y)2,

µ = arctan( ∆y
∆x).

By using the SVD of the covariance matrix

Σ−t =

(
vxx vxy

vxy vyy

)
=

(
cos ν − sin ν

sin ν cos ν

)(
λ+ 0

0 λ−

)(
cos ν sin ν

− sin ν cos ν

)

Σ−t =

(
λ+ cos ν −λ− sin ν

λ+ sin ν λ− cos ν

)(
cos ν sin ν

− sin ν cos ν

)
=

(
λ+ cos2 ν + λ− sin2 ν (λ+ − λ−) sin ν cos ν

(λ+ − λ−) sin ν cos ν λ+ sin2 ν + λ− cos2 ν

)

which can be developed in a more compact way as

Σ−t = λ−I + (λ+ − λ−)

(
cos2 ν sin ν cos ν

sin ν cos ν sin2 ν

)
.

Let us examine the Kalman gain denominator (a scalar):

den = HtΣ
−
t HT

t + σM

= 1
ρ2 [− sinµ, cosµ]

(
vxx vxy

vxy vyy

)
[− sinµ, cosµ]T + σM

and since

[− sinµ, cosµ]

(
cos ν − sin ν

sin ν cos ν

)
= [sin(ν − µ), cos(ν − µ)],

then

den =
1

ρ2
(λ+ sin2(ν − µ) + λ− cos2(ν − µ)) + σM .

Note that since

Σ+
t = (I−KtHt)Σ

−
t

the determinant evolves as:
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det Σ+
t = det(I−KtHt) det Σ−t .

Let us note the decreasing factor of the covariance matrix as

η(ω) = det(I−KtHt),

It is a function of the control through the gain and Jacobian matrices. Let us also note

Q = I−KtHt.

Then it is clear that

Q = I− 1

den
Σ−t HT

t Ht.

By using the previous expressions

Q = I− 1
den

1
ρ2

(
vxx vxy

vxy vyy

)(
sin2 µ − sinµ cosµ

− sinµ cosµ cos2 µ

)
.

Q = I− 1
den

1
ρ2 (λ−I + (λ+ − λ−)

(
cos2 ν sin ν cos ν

sin ν cos ν sin2 ν

)
)

(
sin2 µ − sinµ cosµ

− sinµ cosµ cos2 µ

)

By defining

D = (λ+ sin2(ν − µ) + λ− cos2(ν − µ)) + σMρ
2,

then

Q = I− 1
Dλ−

(
sin2 µ − sinµ cosµ

− sinµ cosµ cos2 µ

)

− 1
D (λ+ − λ−)

(
cos2 ν sin ν cos ν

sin ν cos ν sin2 ν

)(
sin2 µ − sinµ cosµ

− sinµ cosµ cos2 µ

)

Q = I− 1
Dλ−

(
sin2 µ − sinµ cosµ

− sinµ cosµ cos2 µ

)

− 1
D (λ+ − λ−)

(
cos ν sinµ sin(µ− ν) − cosµ cos ν sin(µ− ν)

sinµ sin ν sin(µ− ν) − sin ν cosµ sin(µ− ν)

)

Q = 1
D (DI− λ−

(
sin2 µ − sinµ cosµ

− sinµ cosµ cos2 µ

)
− (λ+ − λ−) sin(µ− ν)

(
cos ν sinµ − cosµ cos ν

sinµ sin ν − sin ν cosµ

)
) .

Then:
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DQ12 = +λ− cosµ sinµ+ (λ+ − λ−) sin(µ− ν) cosµ cos ν

DQ21 = +λ− cosµ sinµ− (λ+ − λ−) sin(µ− ν) sinµ sin ν

DQ11 = D − λ− sin2 µ− (λ+ − λ−) sin(µ− ν) cos ν sinµ

= λ+ sin2(ν − µ) + λ− cos2(ν − µ) + σMρ
2 − λ− sin2 µ− (λ+ − λ−) sin(µ− ν) cos ν sinµ

= λ+ sin(µ− ν)(sin(µ− ν)− cos ν sinµ) + λ−(1− sin2(ν − µ)− sin2 µ+ sin(µ− ν) cos ν sinµ) + σMρ
2

= −λ+ sin(µ− ν) sin(ν) cosµ+ λ−(1− sin2(ν − µ)− sin2 µ+ sin(µ− ν) cos ν sinµ) + σMρ
2

= −λ+ sin(µ− ν) sin(ν) cosµ+ λ−(1− sin(µ− ν)(sin(µ− ν)− cos ν sinµ)− sin2 µ) + σMρ
2

= −λ+ sin(µ− ν) sin(ν) cosµ+ λ−(1 + sin(µ− ν) sin(ν) cosµ− sin2 µ) + σMρ
2

= −λ+ sin(µ− ν) sin(ν) cosµ+ λ− cosµ(cosµ+ sin ν sin(µ− ν)) + σMρ
2

= λ− cos2 µ− (λ+ − λ−) sin ν cosµ sin(µ− ν) + σMρ
2

= cosµ(λ− cosµ− (λ+ − λ−) sin ν sin(µ− ν)) + σMρ
2

= cosµ
sinµDQ21 + σMρ

2.

Similarly,

DQ22 = D − λ− cos2 µ+ (λ+ − λ−) sin(µ− ν) cosµ sin ν + σMρ
2

= λ+ sin2(ν − µ) + λ− cos2(ν − µ)− λ− cos2 µ+ (λ+ − λ−) sin(µ− ν) cosµ sin ν + σMρ
2

= λ+ sin(µ− ν) sinµ cos ν + λ−(1− sin2(µ− ν)− cos2 µ− sin(µ− ν) cosµ sin ν) + σMρ
2

= λ+ sin(µ− ν) sinµ cos ν + λ− sinµ(sinµ− cos ν sin(µ− ν)) + σMρ
2

= sinµ((λ+ − λ−) sin(µ− ν) cos ν + λ− sinµ) + σMρ
2

= sinµ
cosµDQ12 + σMρ

2

Then

D2(Q22Q11 −Q12Q21) = ( cosµ
sinµDQ21 + σMρ

2)( sinµ
cosµDQ12 + σMρ

2)−D2Q12Q21

= σMρ
2( cosµ

sinµDQ21 + sinµ
cosµDQ12 + σMρ

2)

= σMρ
2(λ− cos2 µ− (λ+ − λ−) sin(µ− ν) cosµ sin ν+

λ− sin2 µ+ (λ+ − λ−) sin(µ− ν) sinµ cos ν) + σMρ
2)

= σMρ
2(λ− + (λ+ − λ−) sin2(µ− ν) + σMρ

2)

= σMρ
2D

We deduce

η(ω) = det Q = σMρ
2

D

= σMρ
2

(λ+ sin2(ν−µ)+λ− cos2(ν−µ))+σMρ2

= 1

1+
(λ+ sin2(ν−µ)+λ− cos2(ν−µ))

σMρ2

.

Hence to minimize det Q, we want to maximize
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(λ+ sin2(ν−µ)+λ− cos2(ν−µ))
σMρ2 = λ+−(λ+−λ−) cos2(µ−ν)

σMρ2

= f(ω).

Here we find what one can observe and guess intuitively: to decrease the error on the position

of the target, one can either makes ν−µ to π
2 and/or makes ρ tends to zero. We recall that ν is

the angle of the direction of largest variance on the estimation, µ is the slope of the line joining

the sensor to the target. Making the difference of these two directions tending to π
2 means that

we look for a position with the most orthogonal direction to ν.

Both ρ and µ are controlled through ω. Let us denote Λ = λ+ − λ−, then

f(ω) =
λ+ − Λ cos2(µ(ω)− ν)

σMρ2(ω)
, (A.1)

with

µ(ω) = arctan(
yt − yst−1 − vδt sin(θst−1 + 1

2ωδt)

xt − xst−1 − vδt cos(θst−1 + 1
2ωδt)

).

The remarkable expression from Eq. A.1 can be transformed to make the control appear

more clearly :

f(ω) =

λ+ − Λ 1
1+( tanµ−tan ν

1+tanµ tan ν
)2

σMρ2(ω)
,

f(ω) =
λ+−Λ 1

1+(
∆y cos ν−∆x sin ν
∆x cos ν+∆y sin ν

)2

σMρ2(ω)
,

= 1
σMρ2(ω)

(λ+ − Λ (∆x cos ν+∆y sin ν)2

(∆x cos ν+∆y sin ν)2+(∆y cos ν−∆x sin ν)2 )

= 1
σMρ2(ω)

(λ+ − Λ (∆x cos ν+∆y sin ν)2

ρ2(ω)

= 1
σMρ4(ω)

(λ+(∆x sin ν −∆y cos ν)2 + λ−(∆x cos ν + ∆y sin ν)2)

= 1
σMρ4(ω)

(λ+((∆x0 − vδt cos(θst−1 + 1
2ωδt)) sin ν − (∆y0 − vδt sin(θst−1 + 1

2ωδt)) cos ν)2

+λ−((∆x0 − vδt cos(θst−1 + 1
2ωδt)) cos ν + (∆y0 − vδt sin(θst−1 + 1

2ωδt)) sin ν)2)

= 1
σMρ4(ω)

(λ+(ρ0 sin(ν − µ0) + vδt sin(θst−1 + 1
2ωδt− ν))2

+λ−(ρ0 cos(ν − µ0)− vδt cos(θst−1 + 1
2ωδt− ν))2)

where: 
∆x0 = xt − xst−1

∆y0 = yt − yst−1

µ0 = arctan ∆y0

∆x0

ρ2
0 = (∆y0)2 + (∆x0)2.

Note that
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ρ2 = (∆x0 − vδt cos(θst−1 + 1
2ωδt))

2 + (∆y0 − vδt sin(θst−1 + 1
2ωδt))

2

= ρ2
0 + v2δt2 − 2ρ0vδt cos(θst−1 + 1

2ωδt− µ0)

Finally

f(ω) = 1
σM [ρ2

0+v2δt2−2ρ0vδt cos(θst−1+ 1
2
ωδt−µ0)]2

(λ+(ρ0 sin(ν − µ0) + vδt sin(θst−1 + 1
2ωδt− ν))2

+λ−(ρ0 cos(ν − µ0)− vδt cos(θst−1 + 1
2ωδt− ν))2).

Now, if δt << 1, we can forget terms in δt2

1
[ρ2

0+v2δt2−2ρ0vδt cos(θst−1+ 1
2
ωδt−µ0)]2

≈ 1
ρ4

0
(1 + 4vδtρ0

cos(θst−1 + 1
2ωδt− µ0)).

Let us call N the numerator, it can be written

N = ρ2
0(λ+ sin2(ν − µ0) + λ− cos2(ν − µ0)) + 2vδtρ0(λ+ sin(ν − µ0) sin(θst−1 + 1

2ωδt− ν)−
λ− cos(ν − µ0) cos(θst−1 + 1

2ωδt− ν)),

= a+ 2vδtρ0d(sinα sin(θst−1 + 1
2ωδt− ν)− cosα cos(θst−1 + 1

2ωδt− ν))

= a− 2vδtρ0d cos(θst−1 + 1
2ωδt− ν + α)

where α = arctan( λ+ sin(ν−µ0)
λ− cos(ν−µ0)) = arctan(λ+

λ−
tan(ν−µ0)), d =

√
λ2

+ sin2(ν − µ0) + λ2
− cos2(ν − µ0),

and a = ρ2
0(λ+ sin2(ν − µ0) + λ− cos2(ν − µ0)).

Then,

f(ω) ≈ a
σMρ

4
0
(1− 2vδtρ0

a d cos(θst−1 + 1
2ωδt− ν + α))(1 + 4vδtρ0

cos(θst−1 + 1
2ωδt− µ0))

≈ a
σMρ

4
0
(1− 2vδtρ0

a d cos(θst−1 + 1
2ωδt− ν + α) + 4vδtρ0

cos(θst−1 + 1
2ωδt− µ0))

≈ a
σMρ

4
0
(1− 2vδt(ρ0

a d cos(θst−1 + 1
2ωδt− ν + α)− 2 1

ρ0
cos(θst−1 + 1

2ωδt− µ0)))

≈ a
σMρ

4
0
(1− 2vδt(ρ0

a d cos(θst−1 + 1
2ωδt) cos(ν − α) + ρ0

a d sin(θst−1 + 1
2ωδt) sin(ν − α)−

2 1
ρ0

cos(θst−1 + 1
2ωδt) cos(µ0)− 2 1

ρ0
sin(θst−1 + 1

2ωδt) sin(µ0))).

Define

e =
ρ0

a
d cos(ν − α)− 2

1

ρ0
cos(µ0),

and

f =
ρ0

a
d sin(ν − α)− 2

1

ρ0
sin(µ0),

and φ = arctan f
e , r =

√
e2 + f2

f(ω) ≈ a
σMρ

4
0
(1− 2vrδt cos(θst−1 + 1

2ωδt− φ))
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With this expression, the optimal control problem to maximize f(ω) is resolved by minimizing

the cosine.
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