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Abstract

This thesis presents the Backward Stochastic Differential Equations (BSDE), the
motivation of this theory and the first theorems of existence and uniqueness. Also,
we show the principal results for one dimensional linear BSDEs and some examples
using BSDE. We give an introduction to the quadratic case based on the article
written by Kobylanski. We implement some numerical methods using MATLAB for
solving BSDE with quadratic growth, such as the Euler-Maruyana approximation
and the truncation method. We tackle the stochastic optimal control theory. We
give the intuition of the dynamic programming principle, a formal deduction of the
Hamilton-Jacobi-Bellman equation and the relationship with the BSDE. Finally, all
these topics are combined in an example in finance with numerical results.
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Introduction

Backward Stochastic Differential Equations (BSDEs) are stochastic differential equa-
tions with terminal value. The theory of BSDEs has found wide applications in areas
such as stochastic optimal control, theoretical economics and mathematical finance
problems.

This thesis starts by presenting Backward Stochastic Differential Equations, the
motivation of this theory [2] and the first theorems of existence and uniqueness of
Pardoux and Peng [11], also we show the principal results for one dimensional linear
BSDEs and some examples using BSDE [4].

Then we give an introduction to the quadratic case based on the article written
by Kobylanski [8]. We give sufficient conditions for the existence of at least one solu-
tion of a BSDE in the quadratic case and a theorem of the stability of the solution.
This theorem gives us an idea of dimensions of the solution and then we can make
numerical approximations to solution.

To deal with BSDE with quadratic growth we consider the truncation method.
This method consists of defining a sequence of generators that satisfy the Lips-
chitz condition. This sequence has the property that the limit is the generator with
quadratic growth. Then we show Euler-Maruyana approximation. This is a numeri-
cal method that approximates numerical solution of a stochastic differential equation.
It is used because it is the simplest numerical method and does not require much
prior knowledge [9], [13].

We tackle the stochastic optimal control theory, give the intuition of the dynamic
programming principle and a formal deduction of the Hamilton-Jacobi-Bellman equa-
tion. We show the relationship between the stochastic optimal control theory and
the BSDE [5], [12],[15]. Finally, all this theory is intertwined in an example in finance
which concludes with numerical results.
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2 CONTENTS

In Section 3.4.1 we introduce the financial model [10], in Section 3.4.2 we show
the properties of the generator of the BSDE with nonlinearities of quadratic type.
In Section 3.4.3 we solve the Optimal Control via BSDE based on the results of [15]
concerning the solution of the problem of exponential expected utility maximization
in terms of stochastic control problems and BSDE. Finally, in Section 3.4.4 we solve
the stochastic control problem via BSDE using the results of Chapter 2.4.



Chapter 1

Backward Stochastic Differential
Equations

1.1 Background

In 1671 Newton worked on the theory of "Fluxions". His research was related to
"fluxional equations" what we would now call differential equations. The math-
ematician and philosopher Gottfried Wilhelm Leibniz also worked on differential
equations and found a method to solve linear differential equations of first order.
In 1690, Jakob Bernoulli showed that the problem of determining the isochrone is
equivalent to solving a nonlinear differential equation of first order by the method of
separable variables.

In the history of Differential Equations the principal character was Leonard Euler.
He introduced several methods for low-order equations, the concept of integrating
factor, the theory of linear equations of arbitrary order, the application development
method of power series among other things. The problems of existence and unique-
ness of the solution became important thanks to Niels Henrik Abel and Augustin-
Louis Cauchy.

The earliest work on stochastic differential equations was to describe brownian
motion in Einstein’s work in 1956 and simultaneously by Smoluchowski. However,
one of the first work on the brownian motion is attributed to Bachelier in the "The-
ory of Speculation" in 1900. This work was followed by Langevin. Later, Itô and
Stratonovich began to stochastic differential equations on more solid mathematical
basis.
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4 CHAPTER 1. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

Finally, BSDEs were introduced by Bismut in 1973 for the linear case and were
subsequently taken up and generalized by Padoux and Peng in 1990.

1.2 Notation and definitions
Throughout this thesis, we let (Ω,F ,P) be a complete filtered probability space on
which is defined a n-dimensional standard brownian motion Wt, such that {Ft}t∈[0,T ]

is the natural filtration of Wt, augmented by all the P−nulls sets.
We will use the following spaces of random variables or processes:

• For x ∈ Rn×m, y ∈ Rk×n,|x| :=
√

trace(xx′) denotes the euclidean norm,
while the inner product is given by (x, y) := trace(xy′), where x′ denotes the
transpose of x.

• L2
T

(
Rd
)
is the space of FT -measurable random variables X : Ω → Rd, such

that ‖X‖2 := E
(
|X|2

)
<∞.

• H2
T

(
Rd
)
is the space of all predictable processes φ : Ω× [0, T ]→ Rd such that

‖φ‖2 := E
´ T

0
|φt|2 dt <∞, i.e., the set of square integrable processes.

• H1
T

(
Rd
)
is the space of all predictable processes φ : Ω× [0, T ]→ Rd such that

E
√´ T

0
|φt|2 dt <∞.

• Sometimes the following notations will be used for simplification: L2
T

(
Rd
)

=
L2
T , H

1
T

(
Rd
)

= H1
T , and H2

T

(
Rd
)

= H2
T .

Consider the BSDE

− dYt = f (t, Yt, Zt) dt− Z ′tdWt, YT = ξ, (1.1)

or equivalently

Yt = ξ +

ˆ T

t

f (s, Ys, Zs) ds−
ˆ T

t

Z ′sdWs, (1.2)

where:

• The terminal value is a FT -measurable random variable ξ : Ω→ Rd.
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• f : Ω×R+×Rd×Rn×d → Rd is the generator and is P⊗Bd⊗Bn×d-measurable,
where P is the predectible σ−algebra over Ω× R+.

Definition 1.1. A solution of (1.1) is a pair (Y, Z), such that {Yt : t ∈ [0, T ]} is a
continuous adapted process Rd-valued and {Zt : t ∈ [0, T ]} is a predictable process
Rn×d-valued such that

´ T
0
|Zs|2 ds <∞.

Assumption 1. Suppose that f (·, 0, 0) ∈ H2
T and f is uniformly Lipschitz, i.e.,

there exists C > 0 such that

|f (ω, t, y1, z1)− f (ω, t, y2, z2)| ≤C (|y1 − y2|+ |z1 − z2|)
∀(y1, z1), (y2, z2) dP⊗ dt c.s.

Then the generator f is said to be standard. Moreover, if ξ ∈ L2
T , the data (f, ξ) is

said to be standard data of a BSDE.

1.3 Motivation

Consider the following ordinary differential equation (ODE)

dY (t) = 0 t ∈ [0, T ] , (1.3)

where the terminal time T > 0 is given. For each ξ ∈ R suppose that Y (0) = ξ or
Y (T ) = ξ, such that (1.3) has a unique solution Y (t) ≡ ξ. On the other hand, if
we consider (1.3) as a Stochastic Differential Equation SDE things are a little dif-
ferent. First consider

(
Ω,F , {Ft}t≥0 ,P

)
a filtered complete probability space, such

that it defines a brownian motion Wt with respect to {Ft}t≥0. First note that the
solution (1.3) should be adapted to the filtration {Ft}t≥0 therefore specify Y (T ) or
Y (0) makes a big difference in the solution.

Consider the ODE with the following terminal condition:{
dY (t) = 0 t ∈ [0, T ]

Y (T ) = ξ,
(1.4)

where ξ ∈ L2
T , i.e. ξ is a random variable FT -measurable and square integrable.
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Equation (1.4) is an ODE with a unique solution given by Y (t) ≡ ξ, which is not
necessarily adapted to the filtration {Ft}t≥0, unless ξ is constant. Note that in the
case that is given an initial condition, the solution is adaptable. But in general (1.4)
has no solution.

One way to deal with this problem is to reformulate (1.4) in such a way that we
can ensure the adaptability of the solution to {Ft}t≥0. One way to do this is defining

Y (t) := E [ξ| Ft] ; (1.5)

note that Y (T ) = ξ, since ξ is FT -adapted. The Martingale Representation Theorem
guarantees the existence of a stochastic process Z ∈ L2

T such that

Y (t) = Y (0) +

ˆ t

0

Z(s)dW (s), ∀t ∈ [0, T ] . (1.6)

From (1.5) and (1.6) we have{
dY (t) = Z(t)dW (t) t ∈ [0, T ]

Y (T ) = ξ.
(1.7)

It has been reformulated (1.4) in (1.7) and more importantly, instead of seeking
only one stochastic process Y which is {Ft}t≥0 -adapted as a solution to the SDE,
we are seeking two processes (Y, Z). This allows the solution to be {Ft}t≥0 -adapted.

As is classical in SDE, (1.7) can be written on integral form, which can be deduced
as follows. It is evaluated (1.6) with the terminal condition Y (T ) = ξ and solving
for Y (0).

Y (0) = ξ −
ˆ T

0

Z(s)dW (s), (1.8)

(1.8) is replaced in (1.6) and we obtain

Y (t) = ξ −
ˆ T

0

Z(s)dW (s) +

ˆ t

0

Z(s)dW (s) ∀t ∈ [0, T ] a.s., (1.9)

simplifying,

Y (t) = ξ −
ˆ T

t

Z(s)dW (s) ∀t ∈ [0, T ] a.s. (1.10)
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This thesis will not distinguish between (1.7) and (1.10), both of which will be
called backward stochastic differential equations (BSDE). It is worth mentioning
that the Stochastic Differential Equation with initial condition will be called For-
ward Stochastic Differential Equation FSDE.

1.4 Existence and uniqueness
There are several theorems that tell us under which conditions the solution exists
and is unique. The first theorem of this type was by Bismut (1979)[2], who con-
sidered the case in which the generator was linear, the following important result
in existence and uniqueness theorems was given by Pardoux and Peng (1990) [11],
where they gave a generalization of Bismut’s idea, for the case in which the generator
satisfies the Lipschitz condition. In this section we examine critically and in detail
the existence and uniqueness theorems of Pardoux and Peng, and their proofs.

In Lemma 1.1 proves the existence and uniqueness for the case where the genera-
tor does not depend on (X, Y ), and this is done using the martingale representation
Theorem A.3 so that we do not need the Lipschitz condition for the generator f .

Proposition 1.1 is considered a generator which depends on Z, so called because
of the Lipschitz condition which is necessary to prove the uniqueness using the Gron-
wall’s Lemma A.3. For the existence we use Picard’s construction that is well defined
thanks to Lemma 1.1, again using the Lipschitz condition in order to prove that this
construction converges to the solution.

Finally, Theorem 1.1, which is the most general, considers the generator f as a
function that depends on (Y, Z) and satisfies the Lipschitz condition for (Y, Z), the
idea to prove this theorem is the same as in Proposition 1.1.

Lemma 1.1. Given ξ ∈ L2
T and f ∈ H2

T , where f : R+ → Rd is the generator, there
exists a unique pair (Y, Z) ∈ H2

T

(
Rd
)
×H2

T

(
Rn×d) such that satisfies

Yt = ξ +

ˆ T

t

f (s) ds−
ˆ T

t

Z ′sdWs. (1.11)

Proof. Let

Yt := E
{
ξ +

ˆ T

t

f(s)ds

∣∣∣∣Ft} , (1.12)
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for the martingale representation Theorem (A.3) there exists a stochastic process
Z ∈ L2

F· such that

Y (0) = E
{
ξ +

ˆ T

0

f(s)ds

∣∣∣∣Ft}− ˆ t

0

Z ′sdWs, (1.13)

so we have that (Y, Z) defined in (1.12) and (1.13) is the solution of (1.11), because
ξ ∈ L2

T

E
{
ξ +

ˆ T

0

f(s)ds

∣∣∣∣FT} = ξ +

ˆ T

0

f(s)ds = Y (0) +

ˆ T

0

Z ′sdWs, (1.14)

matching (1.13) and(1.14) in Y (0) it follows that

ˆ T

t

Z ′sdWs = ξ +

ˆ T

0

f(s)ds− E
{
ξ +

ˆ T

0

f(s)ds

∣∣∣∣Ft} . (1.15)

Finally, substituting (1.12) and (1.15) in equation (1.11) verifies that (Y, Z) is
the solution.

Proposition 1.1. Let ξ ∈ L2
T and f : Ω× [0, T ]×Rn×d → Rd be the generator, that

is P ⊗ Bn×d-measurable, that satisfies that f (·, 0) ∈ H2
T and that is Lipschitz, i.e.,

exists a constant c > 0 such that

|f (t, Z1)− f (t, Z2)| ≤ c |Z1 − Z2| , (1.16)

then there exists a unique pair (Y, Z) ∈ H2
T

(
Rd
)
×H2

T

(
Rn×d) which is the solution

of

Yt = ξ +

ˆ T

t

f (s, Zs) ds−
ˆ T

t

Z ′sdWs. (1.17)

Proof. Uniqueness. Let (Y, Z) and
(
Ỹ , Z̃

)
be two solutions (1.17). Applying Itô’s

formula to
∣∣∣Ys − Ỹs∣∣∣2 for s = t and s = T it follows that

∣∣∣Yt − Ỹt∣∣∣2 − ∣∣∣Y0 − Ỹ0

∣∣∣2 =2

ˆ t

0

(
Ys − Ỹs, f (s, Zs)− f

(
s, Z̃s

))
ds+ (1.18)

+ 2

ˆ t

0

(
Ys − Ỹs, Zs − Z̃s

)
dWs +

ˆ t

0

∣∣∣Zs − Z̃s∣∣∣2 ds
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and∣∣∣YT − ỸT ∣∣∣2︸ ︷︷ ︸
|ξ−ξ|2=0

−
∣∣∣Y0 − Ỹ0

∣∣∣2 =2

ˆ T

0

(
Ys − Ỹs, f (s, Zs)− f

(
s, Z̃s

))
ds+ (1.19)

+ 2

ˆ T

0

(
Ys − Ỹs, Zs − Z̃s

)
dWs +

ˆ T

0

∣∣∣Zs − Z̃s∣∣∣2 ds.
Matching (1.18) and (1.19) in

∣∣∣Y0 − Ỹ0

∣∣∣2 we get

∣∣∣Yt − Ỹt∣∣∣2 +

ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds =− 2

ˆ T

t

(
Ys − Ỹs, f (s, Zs)− f

(
s, Z̃s

))
ds (1.20)

− 2

ˆ T

t

(
Ys − Ỹs, Zs − Z̃s

)
dWs,

also

−2
(
Ys − Ỹs, f (s, Zs)− f

(
s, Z̃s

))
= −2

√2c
(
Ys − Ỹs

)
,
f (s, Zs)− f

(
s, Z̃s

)
√

2c


= 2c2

∣∣∣Ys − Ỹs∣∣∣2 +

∣∣∣f (s, Zs)− f
(
s, Z̃s

)∣∣∣2
2c2

+

−
∣∣∣Ys − Ỹs + f (s, Zs)− f

(
s, Z̃s

)∣∣∣
≤ 2c2

∣∣∣Ys − Ỹs∣∣∣2 +

∣∣∣f (s, Zs)− f
(
s, Z̃s

)∣∣∣2
2c2

≤ 2c2
∣∣∣Ys − Ỹs∣∣∣2 +

1

2

∣∣∣Zs − Z̃s∣∣∣ ,2 because f is Lipschitz.

(1.21)

From (1.20) and (1.21) the following inequality holds∣∣∣Yt − Ỹt∣∣∣2 +

ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds ≤ˆ T

t

{
2c2
∣∣∣Ys − Ỹs∣∣∣2 +

1

2

∣∣∣Zs − Z̃s∣∣∣2} ds (1.22)

− 2

ˆ T

t

(
Ys − Ỹs, Zs − Z̃s

)
dWs.
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Taking expectation in (1.22)

E
∣∣∣Yt − Ỹt∣∣∣2 + E

ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds ≤ 2c2E
ˆ T

t

∣∣∣Ys − Ỹs∣∣∣2 ds+
1

2
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds,
(1.23)

simplifying

E
∣∣∣Yt − Ỹt∣∣∣2 ≤ −1

2
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds+ 2c2E
ˆ T

t

∣∣∣Ys − Ỹs∣∣∣2 ds. (1.24)

Applying Gronwall’s Lemma (A.3) to (1.23)

0 ≤ E
∣∣∣Yt − Ỹt∣∣∣2 ≤ −1

2
exp

(
2c2 (T − t)

)
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds ≤ 0, (1.25)

i.e.,

0 = E
∣∣∣Yt − Ỹt∣∣∣2 = −1

2
exp

(
2c2 (T − t)

)
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds, (1.26)

which prove the uniqueness of the solutions.

Existence. Let (Y0(t), Zo(t)) ≡ (0, 0), {(Yn(t), Zn(t)) : 0 ≤ t ≤ T}n≥1 be a se-
quence in H2

T

(
Rd
)
×H2

T

(
Rn×d) defined recursively by

Yn(t) = ξ +

ˆ T

t

f(s, Zn−1(s))ds−
ˆ T

t

Zn(s)dWs, (1.27)

which is well defined thanks to Lemma (1.1). Again, using Itô’s formula (A.2) to
|Yn+1(s)− Yn(s)|2 for s = t and s = T and using the hypothesis over f that is
Lipschitz as in (1.23) we obtain the inequality

E |Yn+1(t)− Yn(t)|2 + E
ˆ T

t

|Zn+1(s)− Zn(s)|2 ds ≤KE
ˆ T

t

|Yn+1(t)− Yn(t)|2 ds+

+
1

2
E
ˆ T

t

|Zn(s)− Zn−1(s)|2 ds,

(1.28)

where K = 2c2.
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Now, let un(t) := E
´ T
t
|Yn(t)− Yn−1(t)|2 ds and vn(t) := E

´ T
t
|Zn(s)− Zn−1(s)|2 ds,

from (1.28) we deduce that

− d

dt

(
un+1(t)e

Kt
)

+ eKtvn+1(t) ≤
1

2
eKtvn(t), (1.29)

integrating (1.29) from t to T , and

−
ˆ T

t

d
(
un+1(s)e

Ks
)

︸ ︷︷ ︸
−un+1(T )eKT+un+1(t)eKt

+

ˆ T

t

eKsvn+1(s)ds ≤
ˆ T

t

1

2
eKsvn(s)ds; (1.30)

note that un(T ) = 0, so that (1.30) is reduced to

un+1(t) +

ˆ T

t

eK(s−t)vn+1(s)ds ≤
ˆ T

t

1

2
eK(s−t)vn(s)ds. (1.31)

Let c̄ := TE
´ T

0
|Z1(t)|2 dt = sup0≤t≤T v1(t), thenˆ T

0

eKtv1(t)dt ≤
ˆ T

0

ekTE
ˆ T

0

|Z1(s)|2 dsdt = c̄ekT , (1.32)

iterating the inequality (1.32), we obtainˆ T

0

eKtvn+1(t)dt ≤
1

2n
c̄ekT , (1.33)

also from (1.31) we have

un+1(0) ≤ 1

2n
c̄ekT , (1.34)

using the fact that d
dt

(un+1(t)) = −E |Yn+1(t)− Yn(t)|2 ≤ 0 is deduced from (1.29)

vn+1(0) ≤ 1

2
vn(0) +Kun+1(0) ≤ 1

2n
K̄ekT +

1

2
vn(0), (1.35)

where K̄ := c̄KekT , it follows from (1.35)

vn+1(0) ≤ 1

2n
(
nK̄ + v1(0)

)
. (1.36)

From (1.34) and (1.36) we have that vn+1(0) and un+1(0) are summable, i.e.,
(Yn)n≥1 ∈ H2

T

(
Rd
)
y (Zn)n≥1 ∈ H2

T

(
Rn×d) are of Cauchy and this is a complete

space, so we can take limits when n→∞. Let

Y := lim
n→∞

Yn Z := lim
n→∞

Zn, (1.37)

by construction (Y, Z) are solution of (1.17).
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Theorem 1.1. Let ξ ∈ L2
T and f :Ω × [0, T ] × Rd × Rn×d → Rd be the generator

that is P ⊗Bd ⊗Bn×d-measurable that satisfies f (·, 0, 0) ∈ H2
T and is Lipschitz, i.e.,

exists a constant c > 0 such that

|f (t, Y1, Z1)− f (t, Y2, Z2)| ≤ c (|Y1 − Y2|+ |Z1 − Z2|) , (1.38)

then there exists a unique pair (Y, Z) ∈ H2
T

(
Rd
)
×H2

T

(
Rn×d) that is the solution of

Yt = ξ +

ˆ T

t

f (s, Ys, Zs) ds−
ˆ T

t

Z ′sdWs. (1.39)

Proof. Let (Y, Z) and
(
Ỹ , Z̃

)
be two solutions of (1.17). By a similar argument to

Proposition 1.1 the following is obtained

E
∣∣∣Yt − Ỹt∣∣∣2 +E

ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds = −2

ˆ T

t

(
Ys − Ỹs, f (s, Ys, Zs)− f

(
s, Ỹs, Z̃s

))
ds,

(1.40)
since f is Lipschitz

E
∣∣∣Yt − Ỹt∣∣∣2 + E

ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds ≤ 2c2E
ˆ T

t

∣∣∣Ys − Ỹs∣∣∣2 ds+
1

2
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds;
(1.41)

and simplifying

E
∣∣∣Yt − Ỹt∣∣∣2 ≤ −1

2
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds+ 2c2E
ˆ T

t

∣∣∣Ys − Ỹs∣∣∣2 ds. (1.42)

Applying Gronwall’s Lemma A.3 to (1.40), we deduce

0 ≤ E
∣∣∣Yt − Ỹt∣∣∣2 ≤ −1

2
E
ˆ T

t

∣∣∣Zs − Z̃s∣∣∣2 ds exp
(
2c2 (T − t)

)
≤ 0, (1.43)

from which it follows the uniqueness of the solutions.

Existence. Let (Y0(t), Zo(t)) ≡ (0, 0), {(Yn(t), Zn(t)) : 0 ≤ t ≤ T}n≥1 be a se-
quence in H2

T

(
Rd
)
×H2

T

(
Rn×d) defined recursively by

Yn(t) = ξ +

ˆ T

t

f(s, Yn−1(s), Zn(s))ds−
ˆ T

t

Zn(s)dWs, (1.44)
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which is well defined thanks to Proposition (1.1). Using the same idea as in the last
proof is obtained

E |Yn+1(t)− Yn(t)|2 +
1

2
E
ˆ T

t

|Zn+1(s)− Zn(s)|2 ds ≤cE
ˆ T

t

|Yn+1(t)− Yn(t)|2 ds+

+ cE
ˆ T

t

|Yn(s)− Yn−1(s)|2 ds.

(1.45)

Defined un(t) := E
´ T
t
|Yn(t)− Yn−1(t)|2 ds of (1.45) we deduce

− d

dt
un+1(t)− cun+1(t) ≤ cun(t). un+1(T ) = 0, (1.46)

integrating (1.46), we have

un+1(t) ≤ c

ˆ T

t

1

2
ec(s−t)un(s)ds. (1.47)

Finally, iterating (1.47) leads

un+1(0) ≤
(
cecT

)n
n!

u1(0), (1.48)

In (1.48) we have that un+1(0) converges, and joined to (1.45) we conclude that
(Yn)n≥1 ∈ H2

T

(
Rd
)
and (Zn)n≥1 ∈ H2

T

(
Rn×d) are Cauchy sequences, so we can take

limits when n→∞. Define

Y := lim
n→∞

Yn Z := lim
n→∞

Zn, (1.49)

by construction (Y, Z) is the solution of (1.38).

1.5 One dimensional linear BSDEs
This kind of equations is very useful because we can give explicitly the component
Y of the solution.

Proposition 1.2. Solution of a linear BSDE. Let (β, µ) be a bounded
(
R,Rd

)
-valued

progressively measurable process, ϕ ∈ H2
T (R) and ξ ∈ L2

T (0, T ). We consider the
following linear BSDE:

− dYt = (ϕt + Ytβt + Ztµt) dt− ZtdWt; YT = ξ. (1.50)
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1. The equation has a unique solution (Y, Z) and Y is given explicitly by

Yt = E
[
ξΓt,T +

ˆ T

t

Γt,sϕsds

∣∣∣∣Ft] , (1.51)

where (Γt,s)s≥t is the adjoint process defined by the forward linear SDE

dΓt,s = Γt,s (βsds+ µsdWs) ; Γt,t = 1, (1.52)

satisfying the flow property ∀t ≤ s ≤ u, Γt,sΓs,u = Γt,u P-a.s.

2. If ξ and ϕ are both non-negative, then the process (Yt)t≤T is non-negative.
Moreover, if in addition Yt = 0 on B ∈ Ft, then P-a.s. on B for any s ≥ t,
Ys = 0, ξ = 0 and ϕs = 0, Zs = 0 dP⊗ ds-a.e.

1.6 Comparison Theorem
Stochastic domination theorems plays an important role in the theory of stochastic
processes as well as their applications. The results of the theory of SDE, establishing
pathwise almost surely dominance, i.e., when one process with probability one is
greater than or equal to another, are referred to as the comparison theorems.

These types of theorems are used in a wide range of mathematical problems: from
existence and uniqueness of solution of SDE’s to asymptotic behavior. A compari-
son theorem for solutions of stochastic differential equations was discussed first by
A.V. Skorohod [14] and T. Yamada [16]. Later it was modified by N. Ikeda and S.
Watanabe [6] for its application to some stochastic optimal control problem.

Theorem 1.2. Comparison Theorem. Let (Y, Z) and
(
Ỹ , Z̃

)
be the solutions of two

BSDEs with associated parameters (g, ξ) and
(
g̃, ξ̃
)
. Suppose that {g (t, 0, 0)}t≤T ∈

H2
T , g is Lipschitz continuous with constant C and g̃

(
t, Ỹt, Z̃t

)
has to be an element

of H2
T . If ξ ≤ ξ̃ P-a.s. and g

(
t, Ỹt, Z̃t

)
≤ g̃

(
t, Ỹt, Z̃t

)
dt⊗ dP-a.e., then

Yt ≤ Ỹt, ∀t ∈ [0, T ] P− a.s. (1.53)

Remark 1.1. Moreover, the comparison is strict, i.e., if in addition Y0 = Ỹ0, then
ξ = ξ̃, g

(
t, Ỹt, Z̃t

)
≤ g̃

(
t, Ỹt, Z̃t

)
and Yt = Ỹt, ∀t ∈ [0, T ] P−a.s. In particular,
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whenever either P
(
ξ < ξ̃

)
> 0 or g

(
t, Ỹt, Z̃t

)
< g̃

(
t, Ỹt, Z̃t

)
on a set of positive

dt⊗ dP-measure, then Y0 < Ỹ0.

Proof. By hypothesis −g̃
(
t, Ỹt, Z̃t

)
≤ −g

(
t, Ỹt, Z̃t

)
, then using the Lipschitz prop-

erty of g we have that

g (t, Yt, Zt)− g
(
t, Ỹt, Z̃t

)
≤ C

(∣∣∣Yt − Ỹt∣∣∣+
∣∣∣Zt − Z̃t∣∣∣) . (1.54)

Applying Itô’s formula A.2 and Tanaka’s formula A.2 to eαt
[(
Yt − Ỹt

)+
]2

, for

any α > 0 we obtain

eαt
[(
Yt − Ỹt

)+
]2

=eαT
[(
ξ − ξ̃

)+
]2

−
ˆ T

t

αeαs
[(
Ys − Ỹs

)+
]2

ds+ (1.55)

− 2

ˆ T

t

eαs
(
Ys − Ỹs

)+

d
(
Ys − Ỹs

)+

+

− 1

2

ˆ T

t

eαs
[
1
(Ys−Ỹs)

+

]
d
〈
Y· − Ỹ·

〉
s
.

Simplifying and using the hypothesis ξ ≤ ξ̃ P-a.s.,

eαt
[(
Yt − Ỹt

)+
]2

= −2

ˆ T

t

eαs
(
Ys − Ỹs

)+ (
Zs − Z̃s

)
dWs +

ˆ T

t

Vsds, P− a.s.

(1.56)
where:

Vs = eαs

{
−α
[(
Ys − Ỹs

)+
]2

− 1{Ys>Ỹs}
∣∣∣Zs − Z̃s∣∣∣2}+ (1.57)

+ eαs
{

2
(
Ys − Ỹs

)+ [
g (s, Ys, Zs)− g̃

(
s, Ỹs, Z̃s

)]}
, P− a.s.

and then from (1.54)

Vs ≤eαs
{
−α
[(
Ys − Ỹs

)+
]2

− 1{Ys>Ỹs}
∣∣∣Zs − Z̃s∣∣∣2}+ (1.58)

eαs
{

2C
(
Ys − Ỹs

)+ [∣∣∣Yt − Ỹt∣∣∣+
∣∣∣Zt − Z̃t∣∣∣]} P− a.s.
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By the polarization formula −αa2 +2Cab = −α
(
a− C

a
b
)2

+ C2

α
b2 ≤ C2

α
b2, for any

a, b ∈ R we obtain:

−α
(
a+
)2 − 1{a>0}b

2 + 2Ca+ (|a|+ |b|) = −1{a>0}
[
−α |a|2 − |b|2 + 2C |a| (|a|+ |b|)

]
(1.59)

= 1{a>0}
[(
C2 + 2C − α

)
|a|2 − (|b| − C |a|)2]

(1.60)
≤ 0 ∀α ≥ C2 + 2C. (1.61)

Taking a = Ys − Ỹs and b = Zs − Z̃s in (1.58),

Vs ≤ 0, (1.62)

and then, for α ≥ C2 + 2C, from (1.56)

eαt
[(
Yt − Ỹt

)+
]2

≤ −2

ˆ T

t

eαs
(
Ys − Ỹs

)+ (
Zs − Z̃s

)
dWs ∀t ∈ [0, T ] P− a.s.

(1.63)

Applying the expected value

E

[
eαt
[(
Yt − Ỹt

)+
]2
]
≤ 0 ∀t ∈ [0, T ] P− a.s. (1.64)

Hence
Yt ≤ Ỹt, ∀t ∈ [0, T ] P− a.s. (1.65)

1.7 Applications
This section shows some of the various applications of BSDE, which consider the fil-
tered probability space

(
Ω,F , {Ft}t≥0 ,P

)
. The first application shown is a stochas-

tic optimal control problem, which its solution can be found solving a system of
stochastic differential equations. No tackle in the details for this example, because
in Chapter 3 we detail the stochastic optimal control problem. The second example
is an application to finance in the area of option pricing and contingent assets for
European options. The third example is a problem that comes from economy, and
is a generalization of the concept of recursive utility.



1.7. APPLICATIONS 17

1.7.1 A Stochastic Optimal Control Problem

The stochastic optimal control is used to solve optimization problems in random
systems that evolve over time and are likely to be influenced by external forces. It
consists mainly of a dynamic forward and a functional optimized. In this example,
to be consider the following dynamic stochastic differential equation given by the
controlled process

{
dX(t) = [aX(t) + bu(t)] dt+ dW (t), t ∈ [0, T ]

X(0) = x,
(1.66)

where W is a brownian motion, X = {X(t) : 0 ≤ t ≤ T} is called the state process
taking values in (S,B (S)), where S is a Polish space, that is, a closed and bounded
set of Rn, and u = {u(t), 0 ≤ t ≤ T} is the control process that takes values in U ,
which is the admissible control set. The state at time t is represented by X (t) while
the control at time t is given by u (t). We consider processes (X, u) to be {Ft}t≥0-
adapted and square integrable.

For simplicity, for this example, consider X, u and W one-dimensional and a, b
constants.

We will consider a cost functional given by

J(u) =
1

2
E
{ˆ T

0

[
|X(t)|2 + |u(t)|2

]
dt+ |X(T )|2

}
. (1.67)

In this case, the optimal control problem is to minimize the value of the functional
(1.67) subject to the equation of state (1.66); one can show that there is a control
u ∈ U that minimizes this functional and it is unique a.s.

Suppose that u is the optimal control and X is the corresponding process states.
Then, for any admissible controls v ∈ U (ie a process {Ft}t≥0-adapted square inte-
grable), we have
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0 ≤ J (u+ εv)− J(u)

ε
(1.68)

=

1
2
E
{´ T

0

[∣∣∣X̃t

∣∣∣2 + |ut + εvt|2
]
dt+

∣∣∣X̃T

∣∣∣2}− 1
2
E
{´ T

0

[
|Xt|2 + |ut|2

]
dt+ |XT |2

}
ε

,

(1.69)

where X̃ has the following dynamic{
dX̃t =

{
aX̃t + b [ut + εvt]

}
dt+ dWt, t ∈ [0, T ]

X̃0 = x.
(1.70)

It follows, from (1.69),

0 ≤

1
2
E
{´ T

0

[∣∣∣X̃t

∣∣∣2 − |Xt|2 + 2εutvt + ε2v2
t

]
dt+

∣∣∣X̃T

∣∣∣2 − |XT |2
}

ε
(1.71)

=
1

2
E


ˆ T

0

(X̃t +Xt

) (X̃t −Xt

)
ε

+ 2utvt + εv2
t

 dt+
(
X̃T +XT

) (X̃T −XT

)
ε

 .

(1.72)

Defining ξ = limε→0
(X̃t−Xt)

ε
, from (1.66) and (1.70) it follows that ξ satisfies the

following variational system:{
dξ(t) = [aξ(t) + bv(t)] dt, t ∈ [0, T ]

ξ(0) = 0.
(1.73)

Letting ε→ 0 in (1.72),

0 ≤ E
{ˆ T

0

[Xtξt + utvt] dt+XT ξT

}
. (1.74)

For more information about (1.68), we introduce the BSDE{
dY (t) = − [aY (t) +X(t)] dt+ Z(t)dW (t), t ∈ [0, T ]

Y (T ) = X(T ).
(1.75)
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Suppose that (1.75) admits a unique adapted solution (Y, Z). Then, applying
Itô’s formula to Y (t)ξ(t) we obtain

E [X(T )ξ(T )] =E [Y (T )ξ(T )]

=E
ˆ T

0

{[−aY (t)−X(t)] ξ(t) + Y (t) [aξ(t) + bv(t)]} dt (1.76)

=E
ˆ T

0

{−X(t)ξ(t) + Y (t)bv(t)} dt.

Because of (1.74) we reach

0 ≤ E
ˆ T

0

[bY (t) + u(t)] v(t)dt. (1.77)

As v is arbitrary, we arrive to

u(t) = −bY (t), c.d.s. t ∈ [0, T ] . (1.78)

Note that since Y is part of the solution of the BSDE of (1.75) and is {Ft}t≥0-
adapted, so that u is an admissible control. Substituting (1.78) in (1.66) we arrive
at the following optimality system:

dX(t) = [aX(t) + b2Y (t)] dt+ dW (t) t ∈ [0, T ]

dY (t) = − [aY (t) +X(t)] dt+ Z(t)dW (t), t ∈ [0, T ]

X(0) = x, Y (T ) = X(T ).

(1.79)

Finally, we have a FSDE of X (as it involves an initial condition), while for Y we
have a BSDE, which is why (1.79) is known as a Backward Forward Stochastic Differ-
ential Equation (BFSDE). If it is shown that (1.79) admits a unique solution adapted
(X, Y, Z), then (1.78) gives an optimal control that solves the original problem.

1.7.2 Option Pricing and Contingent Claims Valuation

Consider a complete market with a riskless bond and an asset. Suppose that prices
are subject to the following system of SDE:{

dP0(t) = r(t)P0(t)dt Bond
dP (t) = P (t)b(t)dt+ P (t)σ(t)dW (t) Stock,

(1.80)
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where r is the bond’s interest rate, b is the rate of appreciation and σ the volatility
of the stock.

A financial option is a derivative financial instrument that is set in a contract
that gives its buyer the right but not the obligation, to buy or sell assets or securities
(the underlying asset can be stocks, bonds, etc.,) at a predetermined price q (strike
or exercise price) to a specific date T (maturity).

This example is particularly interested in European options, in which the time
of exercise of the option is specified and is equal to T . We will take the European
call and will assume that the decision of the holder to exercise its option or not will
depend only on P (T ) , i.e. the stock price at time T . For this case, the gain of the
holder will be (P (T )− q)+, which is a random variable FT−measurable.

The problem of the valuation of options is how to determine a premium for this
contract at time t = 0. In general, it is called an option contract if payment at
time t = T can be written explicitly as a function of P (T ), e.g. (P (T )− q)+. In all
other cases where payment of the contract at time t = T is just a random variable
FT−measurable and is called a contingent claim.

Let Y (t) be the agent’s wealth at time t. Suppose that the agent sells the option
at price y at t = 0 , i.e. Y (0) = y. Then, the agent invests in the market a portion
of his wealth π(t), called a portfolio, into the stock, and the rest (Y (t)− π(t)) in the
bond. We also assume that the agent can spend his wealth, denote all that has spent
up to time t by the function C(t). This process is {Ft}t≥0-adapted and nondecreas-
ing; one can show that the dynamics of the wealth of the owner Y and portfolio and
consumption processes (π,C) can be expressed by the SDE:

{
dY (t) = {r(t)Y (t) + Z(t)θ(t)} dt+ Z(t)dW (t)− dC(t)

Y (0) = y,
(1.81)

where Z(t) = π(t)σ(t), θ := σ−1(t) [b(t)− r(t)], called risk premium process. The
objective for the agent is to choose a pair (π,C) such that for any contingent asset
H ∈ L2

FT compliance Y (T ) ≥ H. In the event that there is a pair (π,C) is called a
hedging strategy against H. The fair price of this contingent claim is the smallest
initial endowment for winch the hedging strategy exists, i.e.

y∗ = inf
{
y = Y (0); ∃ (π,C) , tal que Y π,C(T ) ≥ H

}
. (1.82)
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Now suppose that the agent is very cautious and does not spend anything, that
is, C ≡ 0 and can choose a portfolio π such that Y (T ) = H, and H can be written
explicitly in terms of price P (T ), (H = g (P (T ))). Under these assumptions we have
that (1.80) and (1.81) can be seen as:

dP (t) = P (t)b(t)dt+ P (t)σ(t)dW (t)

dY (t) = {r(t)Y (t) + Z(t)θ(t)} dt+ Z(t)dW (t)

P (0) = p, Y (T ) = g (P (T )) ,

(1.83)

which is a BSDE. An interesting result is that if (1.83) admits a solution (Y, Z). Then
the pair(π, 0), where π = Zσ−1, is an optimal strategy of hedging and y = Y (0) is
the right price.

1.7.3 Stochastic differential utility

Recursive methods have become a standard tool for the study of economic behav-
ior in stochastic dynamic environments. In this example, we characterize the class
of preferences that is the natural complement to this framework, namely recursive
utility. The main idea of this model comes from the following question, why model
preferences rather than behavior? Preferences plays two critical roles in economic
models. First, preferences provide, in principle, an unchanging feature of a model in
which agents can be confronted with a wide range of different environments, insti-
tutions, or policies. For each environment, we derive behavior (decision rules) from
the same preferences.

If we modeled behavior directly, we would also have to model how it is adjusted
to changing circumstances. The second role played by preferences is to allow us
to evaluate the welfare effects of changing policies or circumstances. Without the
ranking of opportunities that a model of preferences provides, it’s not clear how we
should distinguish good policies from bad.

As we will see, this logic applies equally well to environments in which current
actions affect the values of random events for all future periods. In this case, the
two-period tradeoff is between current utility and a certainty equivalent of random
future utility. This recursive approach not only allows complicated dynamic opti-
mization problems to be characterized as much simpler and more intuitive two-period
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problems, it also lends itself to straightforward computational methods. Since many
computational algorithms for solving stochastic dynamic models themselves rely on
recursive methods, numerical versions of recursive utility models can be solved and
simulated using standard algorithms.

This application is an extension of the notion of recursive utility in continuous
time with a stochastic approach. In the discrete case the problem is to find some
utility functions that satisfy the recursion relation. For example, assume that the
consumption plan is denoted by c = {c0, c1, . . . }, where ct represents consumption at
time t, while the utility at time t is given by Vt. It says that V = {Vt : t = 0, 1, . . . }
defines a recursive utility if the sequence V0, V1, . . . satisfies the recursive relation:

Vt = W (ct, Vt+1) , (1.84)

where the function W is called the aggregator. Note that (1.84) is a backward re-
cursion.

For the case in continuous time the scheme is denoted by c = {c(t) : t ≥ 0}, where
c(t) ≥ 0 ∀t ≥ 0, while the value at time t is given by Y (t) := U ({c(s) : s ≥ t}) and
the recursion (1.84) is replaced by the differential equation:

dY (t)

dt
= −f (c(t), Y (t)) , (1.85)

with f the aggregator. If the solution (1.85) can be determined, then U(c) = Y (0)
defines the utility function.

A variation of (1.84) and of (1.85) is the finite horizon case, i.e. that there is a
terminal time T > 0, such that the problem is restricted to 0 ≤ t ≤ T . Suppose that
the utility of terminal consumption is given by u (c (T )) for some utility function u
given. Then the differential equation with terminal condition Y (T ) = u (c (T )) is

Y (t) = u (c (T )) +

ˆ T

t

f (c(s), Y (s)) ds, t ∈ [0, T ] . (1.86)

The stochastic model assumes that Y and c are stochastic processes defined on
a filtered probability space

(
Ω,F , {Ft}t≥0 ,P

)
and that these processes are {Ft}t≥0-

adapted. Taking the conditional expectation in both sides of (1.86), we have

Y (t) = E [Y (t) |Ft ] = E
{
u (c (T )) +

ˆ T

t

f (c(s), Y (s)) ds |Ft
}
, (1.87)
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for all t ∈ [0, T ]. In the special case where the filtration is generated by a brownian
motion, we can use the martingale representation Theorem A.3 to justify that there
is a stochastic process Z such that

Y (t) = u (c (T )) +

ˆ T

t

f (c(s), Y (s)) ds−
ˆ T

t

Z(s)dW (s), t ∈ [0, T ] , (1.88)

is a BSDE.
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Chapter 2

Quadratic Case

Section 1.4 studies the theorems of existence and uniqueness of the solution of a
BSDE for the case where the generator is Lipschitz. But what happens when the
generator does not satisfy the Lipschitz condition?. Is there a solution and if it
exists, is it unique? In this chapter, we will consider the case in which the generator
increases quadratically in the variable z, i.e.

|f (ω, t, y1, z1)− f (ω, t, y2, z2)| ≤ C
(
|y1 − y2|+ |z1 − z2|2

)
∀(y1, z1), (y2, z2) dP⊗dt c.s.

(2.1)
This chapter shows classic tools to prove the existence and uniqueness of the

solution of partial differential equations, which is also useful for the SDE. With this
tool we give sufficient conditions for the existence of at least one solution of a BSDE
in the case where the generator grows quadraticly. Also we give a theorem of the
stability of the solutions that give us an idea of dimensions of the solution and then
we can make numerical approximations to solutions.

2.1 Existence and uniqueness
Consider the following BSDE

Yt = ξ +

ˆ T

t

1

2
|Zs|2 ds−

ˆ T

t

ZsdWs, ∀t ∈ [0, T ] . (2.2)

If yt = eYt , from the Itô’s formula

yt = eξ −
ˆ T

t

ytdYs −
ˆ T

t

ytd 〈Y 〉s , ∀t ∈ [0, T ] , (2.3)

25
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writting

yt = eξ −
ˆ T

t

ys

(
−1

2
|Zs|2 ds+ ZsdWs

)
− 1

2

ˆ T

t

ys |Zs|2 ds, ∀t ∈ [0, T ] , (2.4)

we get

yt = eξ −
ˆ T

t

zsdWs, ∀t ∈ [0, T ] , (2.5)

where zs = ysZs. As (2.5) is an equation that is solvable with a unique solution
because of Lemma 1.1, when eξ ∈ L2

T , this is a way to ensure that (2.2) has a unique
solution when ξ ∈ L∞T . This solution is given explicitly by

yt = E
(
eξ
∣∣Ft) ∀t ∈ [0, T ] , (2.6)

while the process z is given by the martingale representation Theorem A.3.

Thanks to the bijection of the exponential function, equation (2.3) must have a
solution that is unique, and it is given by

Yt = ln yt, Zt =
zt
yt
∀t ∈ [0, T ] ; (2.7)

note that Zt is well defined as

yt = E
(
eξ
∣∣Ft) (2.8)

≥ e−|ξ|∞ (2.9)
> 0 a.s. (2.10)

2.2 A priori estimates and existence

Another way to prove the existence of the solution is by a priori estimation. In the
theory of Partial Differential Equation (PDE) and SDE, an a priori estimate is an
estimate for the size of a solution or its derivatives of a PDE. One reason for their
importance is that if one can prove an a priori estimate for solutions of a differential
equation, then it is often possible to prove that solutions exist.

The proofs of the following theorems can be found in the article of Kobylanski
(2000)[8].
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Theorem 2.1. Existence. Let α0, β0, b ∈ R, c : R+ → R+ be a continuous increasing
function, (f, ξ) the data of a BSDE, ξ ∈ L∞T and f that satisfies

f (t, y, z) = A (t, y, z) y + f0 (t, y, z) , (2.11)

with

β0 ≤ A (t, y, z) ≤ α0 a.s. (2.12)

|f0 (t, y, z)| ≤ b+ c (|y|) |z|2 a.s., (2.13)

for all (t, y, z) ∈ R+ × R × Rd. Then the BSDE has at least one solution (Y, Z).
Moreover there exists a minimal solution (Y∗, Z∗)(resp. a maximal solution (Y ∗, Z∗))
such that for any set of data (g, ζ) of BSDE, if

f ≤ g and ξ ≤ ζ (resp. f ≥ g and ξ ≥ ζ) (2.14)

and for any solution (Yg, Zg) of the BSDE with data (g, ζ),

Y∗ ≤ Yg (resp. Y ∗ ≥ Yg) . (2.15)

The idea of the proof consists first of an exponential change Y = e2Cy in order to
control its growth in z. Then it uses a truncation argument in order to control the
growth of f in y by defining a sequence {fn}n∈N such that fn → f and fn satisfies
the Lipschitz condition over y. Therefore, applying Proposition 2.1, the process {Yn}
converges uniformly to Y and there exists Z, such that a subsequence of {Zn} con-
verges to Z, where (Yn, Zn) is the solution of the BSDE with data (fn, ξ).

Proposition 2.1. Monotone stability. Let (f, ξ) the data of a BSDE and {(fn, , ξn) , n ∈ N}
be a sequence of data such that:

1. The sequence {fn}n∈N converges to f locally uniformly on R+ × R × Rd, for
each n ∈ N, ξn ∈ L∞T and {ξn}n∈N converges to ξ in L∞T .

2. There exists k : R+ → R+ such that for all T > 0, k ∈ L1
T , and there exists

C > 0 such that

∀n ∈ N, ∀ (t, y, z) ∈ R+ × R× Rd, |fn (t, y, z)| ≤ kt + C |z|2 . (2.16)

3. For each n, the BSDE with data (fn, ξn) has a solution (Yn, Zn) such that the
sequence {Yn}n∈N is monotonic, and there existsM > 0 such that for all n ∈ N,
‖Yn‖∞ ≤M .
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Then there exists a pair of processes (Y, Z) such that for all T ∈ R+,

lim
n→∞

Yn = Y uniformly on [0, T ] (2.17)

{Zn}n∈N converges to Z in H2
T (2.18)

and (Y, Z) is the solution of the BSDE with data (f, ξ).

Remark. The limit coefficient f satisfies the assumptions of quadratic growth, but
not necessarily a comparison principle. Hence the solution we find here might not
be unique.

The idea of the demonstration is first to show that exists a constant K such that,
for all n ∈ N

E
(ˆ T

0

|Zs|2 ds
)
≤ K. (2.19)

Therefore, there exists a process Z ∈ H2
T

(
Rd
)
and a subsequence {Znj}j of {Zn}n

such that {Znj}j→{Zn}n weakly in H2
T

(
Rd
)
. The point is to show that in fact the

whole sequence converges strongly to Z in H2
T

(
Rd
)
.

2.3 Comparison theorem and uniqueness

The comparison theorems help us to prove uniqueness on BSDE. The first comparison
Theorem 1.2 was for the case the generator satisfies the Lipschitz condition. We will
give the comparison theorem in case which the generator has a quadratic growth.
This theorem was prove by the first time by Kobylanski [8].

Definition 2.1. Supersolution and subsolution of a BSDE. A supersolution (resp.
a subsolution) of a BSDE with coefficient f and terminal condition ξ is an adapted
process (Yt, Zt, Ct)t∈[0,T ] satisfying

Yt = ξ +

ˆ T

t

f (s, Ys, Zs) ds−
ˆ T

t

ZsdWs +

ˆ T

t

dCs, (2.20)

(resp.)Yt = ξ +

ˆ T

t

f (s, Ys, Zs) ds−
ˆ T

t

ZsdWs −
ˆ T

t

dCs, (2.21)
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where (Ct)t∈[0,T ] is a right continuous increasing process C ∈ RCI and where, in the
classical framework (i.e ., when f is Lipschitz continuous in Y and Z, and when ξ
is square integrable), the process (Yt, Zt)t∈[0,T ] is assumed to be square integrable.
Because of the quadratic growth , we will asume here that {Yt}t∈[0,T ] is a one dimen-
sional bounded process and {Zt}t∈[0,T ] is a square integrable process.

Assumption 2. The generator f satisfies for all t ≥ 0, u ∈ [−M,M ] and z ∈ Rd

|f (t, u, z)| ≤ I (t) + C |z|2 a.s. (2.22)∣∣∣∣∂f∂z (t, u, z)

∣∣∣∣ ≤ k (t) + C |z| a.s. (2.23)

for I ∈ L1, k ∈ L2, C ∈ R and M > 0.

Assumption 3. The generator f satisfies for all t ≥ 0, u ∈ R and z ∈ Rd

∂f

∂u
(t, u, z) ≤ Iε (t) + ε |z|2 a.s. (2.24)

for Iε ∈ L1 and ε > 0.

Theorem 2.2. Comparison principle. Let (f, ξ) and
(
f̃ , ξ̃
)

be the data of two
BSDE’s and suppose that:

1. ξ ≤ ξ̃ a.s. and f ≤ f̃ .

2. For all ε, M > 0 there exists I, Iε ∈ L1, k ∈ L2, C ∈ R such that either f or
f̃ satisfies Assumption 1 and Assumption 3.

Then if (Y, Z, C) (resp.
(
Ỹ , Z̃, C̃

)
) ∈ H∞T (R)×H2

T

(
Rd
)
×RCI (R) is a subso-

lution (resp. a supersolution) of the BSDE with parameters (f, ξ) (resp.
(
f̃ , ξ̃
)
), one

has
∀t ≥ 0, Yt ≤ Ỹt. (2.25)

Remark 2.1. It holds true if either f (Y, Z, C) ≤ f̃ (Y, Z, C) a.s. for all t and f̃ ,

satisfy Assumption 1 and Assumption 3, or if f
(
Ỹ , Z̃, C̃

)
≤ f̃

(
Ỹ , Z̃, C̃

)
a.s. for all

t and f satisfy Assumption 1 and Assumption 3.

Proposition 2.2. Stability of BSDEs. Let (f, ξ) be the data of a BSDE as in The-
orem 2.2 and {(fn, , ξn) , n ∈ N} be a sequence of data such that:
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1. The sequence {fn}n∈N converges to f locally uniformly on R+ × R × Rd, for
each n ∈ N, ξn ∈ L∞T and {ξn}n∈N converges to ξ in L∞T .

2. There exists k : R+ → R+ such that for all T > 0, k ∈ L∞1 , and there exists
C > 0 such that

∀n ∈ N, ∀ (t, u, z) ∈ R+ × R× Rd, |fn (t, u, z)| ≤ kt + C |z|2 . (2.26)

3. For each n, the BSDE with data (fn, ξn) has a solution (Yn, Zn) such that the
sequence {Yn}n∈N is monotonic, and there existsM > 0 such that for all n ∈ N,
‖Yn‖∞ ≤M .

Then if the sequence {fn}n converges to f locally uniformly on R+ × R × Rd, and
if the sequence {ξn}m converges to ξ in L∞, there exists a pair of adapted processes
(Y, Z) such that for all T ∈ R+,

lim
n→∞

Yn = Y uniformly on [0, T ] (2.27)

{Zn}n∈N converges to Z in H2
T (2.28)

and (Y, Z) is the solution of the BSDE with data (f, ξ).

For the proof we define

gn = sup
p≥n

fp, hn = inf
p≥n

fp, (2.29)

ξn∗ = sup
p≥n

ξp, ξn∗ = inf
p≥n

ξp (2.30)

and we consider the maximal solutions (Y n∗, Zn∗) of the BSDE with parameters
(gn, ξn∗) and the minimal solutions (Y n

∗ , Z
n
∗ ) of the BSDE with parameters (hn, ξn∗ ).

Then from Theorem 2.2 there exists (Y ∗, Z∗) such that Y n∗ converges uniformly to
Y ∗, and (Y ∗, Z∗) is a solution of the BSDE with data (f, ξ). Analogously, there
exists (Y∗, Z∗) such that Y n

∗ converges uniformly to Y∗, and (Y∗, Z∗) is a solution of
the BSDE with data (f, ξ). Finally, by Theorem 2.2 we have both

∀n Y n
∗ ≤ Y n ≤ Y n∗ and Y∗ = Y ∗ = Y ; (2.31)

therefore the sequence {Yn}n∈N converges uniformly to Y .
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2.4 Numeric Methods
We present some of the algorithms used in the simulations of BSDE and useful
approximations to solve BSDE with quadratic growth. First is the method of trun-
cation. The objective is to find a sequence of functions that defines a family of BSDE
and satisfies the Lipschitz condition and so we can ensure existence and uniqueness of
this family of BSDE. We want to ensure existence and uniqueness to apply numerical
methods such as Euler-Maruyama approximation.

2.4.1 Truncation Method

This method consist on defining a sequence of {fn, ξ}n∈N of data of BSDE such that
fn satisfies the Lipschitz condition ∀n ∈ N and fn → f , where f has quadratic
growth as describes Assumption 1. For this section will show the truncation method
by defining a set of functions {fn (t, y, z)}n∈N such that satisfy the Lipschitz condition
on z but converge as n → ∞ to a function that grows quadratically in z. For this
we need to define the following functions, let n ∈ N then:

ĥn(x) =



n+ 1 x > n+ 2,
−n2+2nx−x(x−4)

4
n ≤ x ≤ n+ 2,

x |x| < n,
n2+2nx+x(x+4)

4
− (n+ 2) ≤ x ≤ −n,

− (n+ 1) x < − (n+ 2) .

(2.32)

Note that ĥn(x) has the following properties:

• ĥn : R→ R is a continuous differentiable function.

•
{
ĥn

}
n∈N

converges uniformly to the identity.

• For all n ∈ N and x ∈ R it holds that
∣∣∣ĥn (x)

∣∣∣ ≤ |x| and ∣∣∣ĥn (x)
∣∣∣ ≤ n+ 1 .

• Its derivative is absolutely uniformly bounded by 1, and converges to 1 locally
uniformly.

Now we define hn : Rd → Rd by

x 7→ hn (x) :=
(
ĥn (x1) , ĥn (x2) , . . . , ĥn (xd)

)
. (2.33)
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Finally we define for each n ∈ N, fn : Ω× [0, T ]× R× Rd → R by

(t, y, z)→ fn(t, y, z) : = f (t, y, hn (z)) ,

where the pair (f, ξ) are somewhat similar to the ones stated in Assumptions 1 and
3.

Assumption 4. f : Ω × [0, T ] × R × Rd → R is an adapted measurable function
continuously differentiable in the spatial variables. There exists a positive constant
M such that for all (t, y, z) ∈ [0, T ]× R× Rd

|f (t, y, z)| ≤M
(
1 + |y|+ |z|2

)
a.s., (2.34)∣∣∣∣ ∂∂yf (t, y, z)

∣∣∣∣ ≤M a.s., (2.35)

|∇zf (t, y, z)| ≤M (1 + |z|) a.s. (2.36)

Assumption 5. The random variable ξ is absolutely bounded.

With the sequence {fn}n∈N we define a family of BSDE as follows

Y n
s = ξ +

ˆ T

t

fn (s, Y n
s , Z

n
s ) ds−

ˆ T

t

Zn
s ds. (2.37)

Lemma 2.1. The family of BSDE {fn, ξ}n∈N has a solution and it is unique.

Proof. We will prove that all the functions in the sequence {fn}n∈N are Lipschitz con-
tinuous in the spatial variables and because of Theorem 1.1, we prove that {fn, ξ}n∈N
has a solution and it is unique.

To prove this, we will combine Assumption 5 with the properties of the sequence
{fn}n∈N. For the next lines let us fix n ∈ N and take (t, y, z) ∈ [0, T ] × R × Rd.
Notice that in fn only the variable z is changed by hn (z). Using equation (2.35) this
means that

∣∣∣ ∂∂yfn (t, y, z)
∣∣∣ ≤ M a.s., for all (t, y, z) and hence that fn satisfies a

standard Lipschitz condition in the variable y with Lipschitz constant M .

To check that fn also satisfies a standard Lipschitz condition in the variable z,
notice that |hn| is uniformly bounded by (n+ 1) and at the same time |hn (z)| ≤ |z|
for all z. According to (2.34) this translates into the existence of a positive constant
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M such that for all (t, y, z)

|fn (t, y, z)| = |f (t, y, hn (z))| (2.38)

≤M
(
1 + |y|+ |hn (z)|2

)
(2.39)

≤M (1 + |y|+ (n+ 1) |z|) . (2.40)

On the other hand, since |∇zhn (z)| ≤ 1 and by (2.36) we have for any (t, y, z)

|∇zfn (t, y, z)| = |∇zf (t, y, hn (z))| |∇zhn (z)| (2.41)
≤ |∇zf (t, y, hn (z))| (2.42)

≤ M̃ (1 + |hn (z)|) (2.43)

≤ M̃ (1 + (n+ 1)) . (2.44)

Bringing (2.40) and (2.44) together and combining them with the mean value
theorem, we have for any t ∈ [0, T ], y, ỹ ∈ R and z, z̃ ∈ Rd that

|fn (t, y, z)− fn (t, ỹ, z̃)| ≤ max
(t,y,z)

∣∣∣∣ ∂∂yfn (·, ·, ·)
∣∣∣∣ |y − ỹ|+ max

(t,y,z)
|∇zfn (·, ·, ·)| |z − z̃|

(2.45)

≤M |y − ỹ|+ M̃ (n+ 2) |z − z̃| (2.46)
≤Mn (|y − ỹ|+ |z − z̃|) , (2.47)

withMn := M∨
[
M̃ (n+ 2)

]
and hence we conclude that for each n ∈ N the function

fn satisfies a standard Lipschitz condition in the spatial variables with a Lipschitz
constant depending on n.

2.4.2 Euler–Maruyama Approximation

Consider the one-dimensional BSDE

−dYt = f(t, Yt, Zt)dt− ZtdWt, YT = ξ (2.48)

where W is an m-dimensional standard Wiener process, f : R × Rm → R is Lips-
chitz. Many SDE systems do not have an analytic solution, so it is necessary to solve
these systems numerically: the simplest stochastic numerical approximation is the
Euler–Maruyama method.
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Let {εni }i=1,2,...,n be an i.i.d. Bernoulli sequence:

P(εni = 1) = P(εni = −1) =
1

2
. (2.49)

We define

W n
k =

1√
n

k∑
i=1

εni , (2.50)

∆W n
k = W n

k+1 −W n
k =

1√
n
εnk (2.51)

∆tk = tk+1 − tk (2.52)

and
ξn = Φn (εn1 , ε

n
2 , . . . , ε

n
n) , (2.53)

where Φn exists because of the inverse transform Theorem.

Note that W n converges to a brownian motion W and ξn converges to ξ.

We will use the following notations for simplification:

yk = Yt, zk = Zt

wk = Wt, fnk (y, z) = f (t, y, z) . ∀t ∈
[
k

n
,
k + 1

n

)
, k = 0, 1, . . . , n.

The Euler–Maruyama Approximation consists in solving backwadly

−
(
ynk+1 − ynk

)
= fnk (ynk , z

n
k )

1

n
− znk∆wnk+1, k = n− 1, n− 2, . . . , 1, (2.54)

with terminal condition ynn = ξn.

We can solve (2.54) setting

y+
k+1 = Φn

(
εn1 , ε

n
2 , . . . , ε

n
n−1, 1

)
, (2.55)

y−k+1 = Φn
(
εn1 , ε

n
2 , . . . , ε

n
n−1,−1

)
. (2.56)
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Now, from (2.54), we can get

ynk = y+
k+1 + fnk (ynk , z

n
k )

1

n
− znk

1√
n
, (2.57)

ynk = y+
k+1 + fnk (ynk , z

n
k )

1

n
+ znk

1√
n
, k = n− 1, n− 2, . . . , 1. (2.58)

By calculating the above equations, we get

znk =
y

(+)
k+1 − y

(−)
k+1

2
√
n

,

ynk =
y

(+)
k+1 + y

(−)
k+1

2
+ fnk (ynk , z

n
k )

1

n
.

Finally if the generator f only depends on the parameter Z and t, we obtain the
backward recursive formula:

zk =
y

(+)
k+1 − y

(−)
k+1

2
√

∆t
, ∀k = N − 1, N − 2, . . . , 0;

yk =
y

(+)
k+1 + y

(−)
k+1

2
+ fnk (znk )

1

n
, ∀k = N − 1, N − 2, . . . , 0.

2.4.3 Simulations

For this section we will retake the example of Chapter 2

Yt = ξ +

ˆ T

t

1

2
|Zs|2 ds−

ˆ T

t

ZsdWs, ∀t ∈ [0, T ] (2.59)

with ξ ∼ N (0, 1). We know that the analytic solution for Yt is

Yt = log
(
E
(
eξ
∣∣Ft)) ∀t ∈ [0, T ] (2.60)

and that E
(
eξ
)

= exp
(
µ+ σ2

2

)
= exp

(
1
2

)
. Then the analytic solution of Y0 is 0.5.

Using the Euler–Maruyama approximation with the truncation method over the
variable z, we obtain the following solutions:
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Figure 2.1: Simulation using 150 trajectories and a partition of length 1
150

, and n = 15
for the truncation.
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Partitions Trajectories Y0 Z0 time elapsed (sec.)
1000 1000 0.5042 3.8419e-004 3723.603700
700 800 0.4924 4.4922e-004 1636.662872
500 500 0.4710 0.0015 562.303576
200 300 0.5513 0.0024 48.041308
100 100 0.6469 0.0439 10.562842
10 10 0.8371 -0.0502 0.919158

Table 2.1: Number of truncation n = 25.
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Chapter 3

Optimal Control

Optimal Control theory appears in the 1950’s, especially motivated by the Space
Race between the Soviet Union (USSR) and the United States (US) for supremacy
in space exploration. Engineers became interested in the problem of controlling a
system governed by a system of differential equations. In many of the problems it
was natural to want to control the system so that a given performance index would
be minimized. In some aerospace problems large savings in cost could be obtained
with a small improvement of optimal controls. The use of this theory became com-
mon in large number of fields.

3.1 Preliminaries, DPP and verification theorem
For this chapter we consider the following

• A filtered space
(

Ω,F , {Ft}t∈[0,T ] ,P
)
.

• We say that a feasible control (ut, t ∈ [0, T ]) is a Ft- adapted and square inte-
grable process valued in a compact metric space U . The set of feasible controls
will be detonated by U .

• The state process {Xt, t ∈ [0, T ]} is a Ft- adapted and square integrable pro-
cess which takes values on a Polish space S.

The laws of the control

dXs = b (s,Xs, us) ds+ σ (s,Xs, us) dWs, t ≤ s ≤ T Xt = x, (3.1)

where:

39
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• Xs is the state of the system at time s.

• u (s) is the control applied at time s.

• W is a n−dimensional brownian motion.

• b and σ are deterministic functions, uniformly Lipschitz with respect to x and
u with b (s, 0, 0) and σ (s, 0, 0) uniformly bounded.

Definition 3.1. At a time t and for a control u, we define an objective function as

J (t, x, u) = Et,x

[ˆ T

t

L (s,Xs, us) ds+ Ψ (T,XT )

]
, (3.2)

where Et,x denotes the conditional expectation given Xt = x. The deterministic
functions L (s,Xs, us) ds and Ψ (T,XT ) correspond to the running cost associated
with control u and state X and the terminal cost respectively.

Definition 3.2. The valued function is defined by

V (t, x) := inf
u∈U

J (t, x, u) . (3.3)

An optimal control u0 has the property that for any t, x,

V (t, x) = J
(
t, x, u0

)
. (3.4)

Suppose that there exists an optimal control u0, then for t+ h ≤ T

V (t, x) = Et,x

[ˆ T

t

L
(
s,Xs, u

0
s

)
ds+ Ψ (T,XT )

]
(3.5)

= Et,x

[ˆ t+h

t

L
(
s,Xs, u

0
s

)
ds+

ˆ T

t+h

L
(
s,Xs, u

0
s

)
ds+ Ψ (T,XT )

]
(3.6)

= Et,x

[ˆ t+h

t

L
(
s,Xs, u

0
s

)
ds+ V (t+ h,Xt+h)

]
, by the tower property.

(3.7)

Now suppose that the controller uses a control u for time r ∈ [t, t+ h] and uses
an optimal control u0 after t+ h, then
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J
(
t, x, u1

)
= Et,x

[ˆ T

t

L
(
s,Xs, u

1
s

)
ds+ Ψ (T,XT )

]
(3.8)

= Et,x

[ˆ t+h

t

L (s,Xs, us) ds+

ˆ T

t+h

L
(
s,Xs, u

0
s

)
ds+ Ψ (T,XT )

]
(3.9)

= Et,x

[ˆ t+h

t

L (s,Xs, us) ds+ V (t+ h,Xt+h)

]
, by the tower property,

(3.10)
where

u1 (r, x) =

{
u (r, x) if r ∈ [t, t+ h]

u0 (r, x) if r ∈ [t+ h, T ]
. (3.11)

Note that V (t, x) ≤ J (t, x, u1) by definition and V (t+h,Xt+h) = J (t+ h,Xt+h, u
0),

hence

V (t, x) ≤ Et,x

[ˆ t+h

t

L (s,Xs, us) ds+ V (t+ h,Xt+h)

]
, (3.12)

with equality if u = u0. Now we can define the following
Definition 3.3. Dynamic Programming Principle DPP,

V (t, x) = inf
u∈U

Et,x

[ˆ t+h

t

L (s,Xs, us) ds+ V (t+ h,Xt+h)

]
, (3.13)

which means that if the controller stops at time t+ h then the best option is to find
V (t+ h,Xt+h). So that initial control problem at time t associated with terminal
value T is equivalent to the problem of minimizing the criteria associated with ter-
minal value t+ h and terminal cost V (t+ h,Xt+h).

A natural question is what happens when h ↓ 0? Is there an equivalent problem?
For answering those questions we use (3.12),

0 ≤ Et,x

[ˆ t+h

t

L (s,Xs, us) ds+ V (t+ h,Xt+h)− V (t,Xt)

]
, (3.14)

then by Itô’s formula to V (s,Xs) for all s ∈ [t, t+ h]

V (t+ h,Xt+h)− V (t,Xt) =

ˆ t+h

t

∂tV (s,Xs) ds+

ˆ t+h

t

∂xV (s, x) dXs+ (3.15)

+
1

2

ˆ t+h

t

∂2
x,xV (s, x) d 〈X〉s . (3.16)
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Now from (3.14) and (3.15) we deduce

0 ≤ Et,x

{ˆ t+h

t

[L (s,Xs, us) + ∂tV (s,Xs) + LuV (s,Xs)] ds

}
, (3.17)

where Lu is an operator of X, defined as

Lut,x :=
1

2
Tr (σσ′) (t, x, u) ∂2

x,x + b (t, x, u) · ∂x. (3.18)

Dividing by h and letting h ↓ 0 from (3.17), by the mean value theorem for
integrals

0 ≤ L (t,Xt, ut) + ∂tV (t,Xt) + LuV (t,Xt) . (3.19)

The equality holds if u = u0 , in this case we will have the Hamilton-Jacobi-
Bellman equation.

0 = ∂tV (t,Xt) + inf
u∈U

[L (t,Xt, ut) + LuV (t,Xt)] . (3.20)

This equation leads to the following theorem

Theorem 3.1. Verification theorem. If V (t, x) is a solution of (3.20) with V (T, x) =
Ψ (T, x) and u0 ∈ U such that achieves the minimum in (3.20) then

V (t, x) = J
(
t, x, u0

)
= inf

u∈U
J (t, x, u) , (3.21)

i.e., V (t, x) is the value function and u0 the optimal control.

3.2 Stochastic Control Problem
The laws of controlled processes belong to a family of equivalent measures whose
densities are given by:

dβut = βut [d (t, ut) dt+ n (t, ut)
∗ dWt] , (3.22)

where d (t, ut) and n (t, ut) are uniformly bounded predictable processes. It has an
explicit solution which is

βut = exp

{ˆ t

0

d (t, ut) dt

}
︸ ︷︷ ︸

Dut

exp

{ˆ t

0

n (t, ut) dWt −
1

2

ˆ t

0

n2 (t, ut) dt

}
︸ ︷︷ ︸

Lut

. (3.23)
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Note that Lut is an exponential martingale, Lu0 = 1, EP (Lut ) = 1. So we can define
the equivalent probability measure Q as follows

Q (A) =

ˆ
A

dQ
dP

∣∣∣∣
Ft︸ ︷︷ ︸

Lt

dP.

Then the controller acts are given by

dLut = Lut n (t, ut)
∗ dWt, (3.24)

and the controlled discount factor by

dDu
t = Du

t d (t, ut)
∗ dt. (3.25)

The problem is to minimize the objective function J(u) over all feasible control
u, where

J (u) = E

ˆ T

0

βs f (s, us, Xs)︸ ︷︷ ︸
running cost

ds+ βT g (XT )︸ ︷︷ ︸
terminal cost

 .
Using the equivalent probability measure Qu, the objective function can be rewrit-

ten

J (u) = EQ

ˆ T

0

Ds f (s, us, Xs)︸ ︷︷ ︸
running cost

ds+DT g (XT )︸ ︷︷ ︸
terminal cost

 ;

note that, J(u) = Y u
0 , where (Y u, Zu) is the BSDE with data (fu, ξu), where

fu (t, y, z) = f(t, ut) + d (t, ut) y + n (t, ut)
∗ z (3.26)

ξu = g (XT ) . (3.27)

The process βu corresponds to the adjoint process associated with (Y u, Zu) and

Y u
t =E

[ˆ T

t

βut,sf(t, ut)ds+ βut,T ξ
u

∣∣∣∣Ft] . (3.28)
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For each control u, Y u
t corresponds to the objective function at time t. Let Ȳt be

the value function at time t i.e.

Yt = ess inf
u∈U

Y u
t , 0 ≤ t ≤ T. (3.29)

In this case the DPP is

Yt = ess inf
u∈U

E
[ˆ t+h

t

βut,sf(t, ut)ds+ βut,t+hY t+h

∣∣∣∣Ft] , 0 ≤ t ≤ t+ h ≤ T. (3.30)

3.3 BSDE and Optimal Control
Let S be a system whose evolution is described by a Rd-valued stochastic process
(Xt)t≤T solution of the following standard SDE:

dXt = σ (t,Xt) dWt, 0 < t ≤ T ; X0 = x ∈ Rd. (3.31)

The matrix σ is Lipschitz continuous with respect to x, is invertible and its inverse
is bounded. A controller intervenes on this system via an adapted stochastic process
u := (ut)t∈[0,T ] taking its values in a compact metric space U and with admissible
set of controls U . When the controller acts with u, the dynamics of the controlled
system is the same as that of X under the probability measure Pu whose density
with respect to P is given by:

dPu

dP
= E

(ˆ T

0

σ−1 (s,Xs) f (s,Xs, us) dWs

)
, (3.32)

where
E (Mt) := exp

(
Mt −

1

2
〈M〉t

)
, (3.33)

is the exponential local martingale associated with the martingale M and the func-
tion f is assumed to be measurable and bounded.

Under the new probability measure Pu, the process X is a solution of a FSDE,
now driven by the Pu-BM W u, so that ∀t ∈ [0, T ]:

dXt = f (t,Xt, ut) dt+ σ (t,Xt) dW
u
t , 0 < t ≤ T, X0 = x (3.34)

where dW u
t = dWt − σ−1 (t,Xt) f (t,Xt, ut) dt. (3.35)



3.3. BSDE AND OPTIMAL CONTROL 45

Those considerations imply that the action of the controller raises a drift in the
dynamics of the system. On the other hand, the control action is not free and
generates a profit for the agent, denoted by J(u) and equal to:

J (u) := Eu

[ˆ T

0

h (s,Xs, us) ds+ Ψ (XT )

]
. (3.36)

The problem is now to find u∗ ∈ U such that J (u∗) ≥ J(u) for any u ∈ U .
We assume the following strong properties: f and h are bounded, continuous with
respect to u. The terminal cost function Ψ is also assumed to be bounded.

Theorem 3.2. Under the previous assumptions, for any admissible control u ∈ U ,
the hamiltonian processes H (t, x, z, u) and the maximal hamiltonian process H∗ (t, x, z):

H (t, x, z, u) := zσ−1 (t, x) f (t, x, u) + h (t, x, u) (3.37)
H∗ (t, x, z) := sup

u∈U
H (t, x, z, u) , (3.38)

define a family of BSDEs with terminal condition Ψ (XT ), and linear or convex coef-
ficients H,H∗ that lives in H2

T for (y, z) = (0, 0) and satisfies the uniformly Lipschitz
condition with respect to (Y, Z). The associated solutions are denoted by (Y u, Zu)
and (Y ∗, Z∗).

Moreover, there exists a measurable control process u∗t = u∗ (t, x, Z∗t ) such that
at any time t ∈ [0, T ] and for any z ∈ Rm, H∗ (t, x, z) = H (t, x, z, u∗ (t, x, z)). The
process u∗ (t, x, z) is an optimal control process since at any time t ≤ T :

Y ∗t = Y u∗

t = ess sup
u∈U

Y ut
t ; in particular Y ∗o = sup

u∈U
J (u) = J∗. (3.39)

Proof. Since σ−1 (t,Xt) f (t,Xt, ut) , h (t,Xt, ut) and Ψ (XT ) are uniformly bounded,
H (t, x, z, u) is a linear generator of a BSDE that satisfies the hypothesis of Proposi-
tion 1.2 which states that the BSDE with data (H (t, x, z, u) ,Ψ (XT )) has a unique
P−solution (Y u, Zu)

− dY u
t = H (t, x, Zu

t , ut) dt− Zu
t dWt; YT = Ψ (XT ) , (3.40)
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such that

Y u
o =Ψ (XT ) +

ˆ T

t

H (s,Xs, Z
u
s , us) ds−

ˆ T

t

Zu
s dWs (3.41)

=Ψ (XT ) +

ˆ T

t

(
Zu
s σ
−1 (s,Xs) f (s,Xs, us) + h (s,Xs, us)

)
ds+ (3.42)

−
ˆ T

t

Zu
s

[
dW u

t + σ−1 (t,Xt) f (t,Xt, ut) dt
]

(3.43)

=Ψ (XT ) +

ˆ T

t

h (s,Xs, us) ds−
ˆ T

t

Zu
s dW

u
s , (3.44)

taking the expected value in (3.44) we obtain

Y u
o = EPu

[
Ψ (XT ) +

ˆ T

t

h (s,Xs, us) ds

]
(3.45)

= J (u) . (3.46)

The comparison Theorem 1.2 suggests taking H∗ (t, x, z) as the generator of the
BSDE associated to the solution (Y ∗, Z∗) as a supremum of uniformly Lipschitz affine
coefficient, since∣∣∣∣sup

u∈U
H (t, x, z, u)− sup

u∈U
H (t, x, z̃, u)

∣∣∣∣ ≤ sup
u∈U
|H (t, x, z, u)−H (t, x, z̃, u)|

≤ k |z − z̃| ;

moreover, H∗ (t,Xt, 0) = supu∈U h (t,Xt, ut).

For the measurability of H∗ (t, x, z) given that we take a supremum over an
uncountable set. For the existence look at Appendix A.1. Therefore, for Theorem
1.1 there is a unique P−solution (Y ∗, Z∗).

3.4 An example in finance with qgBSDE
We finish this thesis with an example of pricing and hedging of derivatives. This
example envolves all the topics discussed throughout this thesis. This example uses
exponential utility and it can be seen as a stochastic optimal control problem that
can be solved via BSDE with quadratic growth.
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We calculate exponential utility-based indifference prices, and corresponding deriva-
tive hedges using the fact that they can be represented in terms of solutions of BSDE
with quadratic growth.

3.4.1 Pricing and hedging of derivatives

Let
(
Ω,Ft, {Ft}t≥0 ,P

)
be a filtered space and W be a d-dimensional brownian mo-

tion. Suppose that a derivative with maturity T is based on an Rm-dimensional
non-tradable index (think of a stock, temperature or loss index) with dynamics

dRt = b (t, Rt) dt+ ρ (t, Rt) dWt, R0 = r ∈ Rm, t ∈ [0, T ] , (3.47)

where b : [0, T ]× Rm → Rm and ρ : [0, T ]× Rm → Rm×d are measurable continuous
functions. Throughout we assume that ρ and b satisfy that there exists a positive
constant C such that for all t ∈ [0, T ] and r, r̃ ∈ Rm

|b (t, r)− b (t, r̃)|+ |ρ (t, r)− ρ (t, r̃)| ≤ C |r − r̃| , (3.48)
|b (t, r)|+ |ρ (t, r)| ≤ C (1 + |r|) . (3.49)

We consider a derivative of the form F (RT ), where F : Rm → R is a uniformly
bounded continuous function. Note that at time t ∈ [0, T ], the payoff of F (RT ),
conditioned on Rt = r ∈ Rm, is given by F

(
Rt,r
T

)
, where Rt,r

s with s ∈ [t, T ] is the
solution of the SDE

Rt,r
s = r +

ˆ s

t

b
(
u,Rt,r

u

)
du+

ˆ s

t

ρ
(
u,Rt,r

u

)
dWu, s ∈ [t, T ] , r ∈ Rm. (3.50)

Our correlated financial market consists of k risky assets and one riskless asset.
We use the riskless asset as the numeraire and suppose that the prices of the risky
assets in units of the numeraire evolve according to the SDE

dSit
Sit

= αi (t, Rt) dt+ βi(t, Rt)dWt, i ∈ {1, 2, . . . , k} , t ∈ [0, T ] , (3.51)

where αi is the i-th component of a measurable and vector-valued map α : [0, T ] ×
Rm → Rk and βi is the i-th row of a measurable and matrix-valued map β :
[0, T ] × Rm → Rk×d. The correlation between the index and the tradable assets
is determined by the matrices ρ and β. In order to exclude arbitrage opportunities
in the financial market we assume d ≥ k.

For technical reasons we suppose that:
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Assumption 6. The functions α and β are measurable continuous functions. Through-
out we assume that α and β satisfy that there exists a positive constant D such that
for all t ∈ [0, T ] and r, r̃ ∈ Rm,

|α (t, r)− α (t, r̃)|+ |β (t, r)− β (t, r̃)| ≤ D |r − r̃| , (3.52)
|α (t, r)|+ |β (t, r)| ≤ D (1 + |r|) . (3.53)

Furthermore, there exist two constants 0 < ε < K such that εIk ≤ (ββ∗) (t, r) ≤
KIk for all (t, r) ∈ [0, T ] × Rm, where β∗ is the transpose of β, and Ik is the k-
dimensional unit matrix.

Let U be the exponential utility function with risk aversion coefficient η > 0, i.e.

U (x) = −e−ηx, x ∈ R. (3.54)

In what follows let (t, r) ∈ [0, T ] × Rm. By an investment strategy we mean
any predictable process λ = (λi)i≤k with values in Rk such that the integral process´ t

0
λiu

dSiu
Siu

is well-defined for all i ∈ {1, . . . , k}. We interpret λi as the portfolio fraction
invested in the i-th asset. Investing according to a strategy λ in the time interval
[t, s] with 0 ≤ t ≤ s ≤ T leads to a total gain due to trading described by

Gλ,t
s =

k∑
i=1

ˆ s

t

λiu
dSiu
Siu

. (3.55)

We will denote by Gλ,t,r
s the gain conditional on Rt = r, with (t, r) ∈ [0, T ] × Rm,

s ∈ [t, T ] and investment strategy λ.

As one can see, for a trading strategy the wealth process conditioned on Rt = r
is given by

Gλ,t,r
s =

k∑
i=1

ˆ s

t

λiu
[
αi
(
u,Rt,r

u

)
du+ βi

(
u,Rt,r

u

)
dWu

]
, 0 ≤ t ≤ s ≤ T, r ∈ Rm.

(3.56)
Note that the wealth process does not depend on the value of the correlated price

process. This feature of the model will later imply the indifference price at time t to
depend only on the value of the index process at a given time t.

Definition 3.4. (Admissible strategy). Let (t, r) ∈ [0, T ] × Rm. Define At,r to be
the set of all strategies such that

E
[ˆ T

t

∣∣λsβ (s, Rt,r
s

)∣∣2 ds] <∞ (3.57)
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and the family{
exp

(
−ηGλ,t,r

τ

)
: τ is a stopping time with values in [0.T ]

}
(3.58)

is uniformly integrable. Then we say that a strategy λ is admissible if λ ∈ At,r.

The maximal expected utility at time T for an agent that does not have the
derivative F on his portfolio, conditioned on his actual wealth v at time t and the
level of the index Rt = r, is defined for (t, v, r) ∈ [0, T ]× R× Rm by

V 0 (t, v, r) = sup
λ∈At,r

{
E
[
U
(
v +Gλ,t,r

T

)]}
. (3.59)

One can show that there exists a strategy π, called optimal strategy, such that

E
[
U
(
v +Gπ,t,r

T

)]
= V 0 (t, v, r) , (3.60)

for (t, v, r) ∈ [0, T ]×R×Rm. The convexity of the utility function implies that π is
a.s. unique on [t, T ]. It can be proved that π ∈ At,r.

Suppose an investor is endowed with a derivative F (RT ) and is keeping it in his
portfolio until maturity T . Then his maximal expected utility is given for (t, v, r) ∈
[0, T ]× R× Rm by

V F (t, v, r) = sup
λ∈At,r

{
E
[
U
(
v +Gλ,t,s

T + F
(
Rt,r
T

))]}
, (3.61)

also in this case there exists an optimal strategy, denoted by π̂, that satisfies

E
[
U
(
v +Gπ̂,t,r

T + F
(
Rt,r
T

))]
= V F (t, v, r) , (3.62)

for (t, v, r) ∈ [0, T ]× R× Rm.

The presence of the derivative F (RT ) in the agent’s portfolio leads to a change
in the optimal strategy from π to π̂. The difference

∆ = π̂ − π (3.63)

is needed in order to hedge, at least partially, the risk associated with the derivative
in the portfolio. We therefore call ∆ the derivative hedge.
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It can be shown that ∀ (t, r) ∈ [0, T ]×Rm that there exists a real number p(t, r)
such that for all v ∈ R

V F (t, v − p (t, r) , r) = V 0 (t, v, r) . (3.64)

If an investor has to pay p(t, r) for the derivative F
(
Rt,r
T

)
, then he is indiffer-

ent between buying and not buying the derivative. Therefore, the number p(t, r)
is called indifference price at time t and level r of the derivative F . It turns out
that the derivative hedge is closely related to the indifference price of the derivative.
The derivative either diversifies or amplifies the risk exposure of the portfolio. The
difference between π̂ and π measures the diversifying impact of F . The price sensi-
tivity, i.e. the derivative of p relative to the index evolution, is also a measure of the
diversification of F .

The problem of finding the optimal strategies π̂ and π is a stochastic control
problem. One can tackle it by solving the related Hamilton-Jacobi- Bellman equa-
tion, using a verification theorem and proving a uniqueness result. For this example
we are going to use a stochastic approach, using the fact that the stochastic control
problem can be solved by finding the solution of a backward stochastic differential
equation (BSDE).

3.4.2 The BSDE

In order to find the value function

V F (t, r) = sup
λ∈At,r

{
E
[
−e−η(G

λ,t,r
T +F(Rt,rT ))

]}
, (3.65)

and an optimal strategy π, we construct a family of stochastic processes R(λ) with
the following properties:

• R
(λ)
T = −e−η(G

λ,t,r
T +F(Rt,rT )), for all λ ∈ At,r.

• R
(λ)
0 = R0 is constant for all λ ∈ At,r.

• R(λ) is a supermartingale for all λ ∈ At,r and there exists a π ∈ At,r such that
R(π) is a martingale.

To construct this family, we set

R
(λ)
t = −e−η(G

λ,t,r
t +Yt) (3.66)
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where (Y, Z) is a solution of the BSDE

Yt = v + F
(
Rt,r
T

)
−
ˆ T

t

f (s, Zs) ds−
ˆ T

t

Z∗sdWs. (3.67)

Now, by the Doob-Meyer descomposition exists a (local) martingale M (λ) and a
(not strictly) decreasing process A(λ) that is constant for some λ ∈ At,r.

Hu, Imkeller and Muller proved in [15] that the BSDE satisfies (3.67) has as
generator f : [0, T ]× Rm × Rd → R defined as follows

f (t, r, z) := zθ (t, r) +
1

2η
|θ (t, r)|2 − η

2
dist2

(
z +

1

η
θ (t, r) , C (t, r)

)
(3.68)

where θ (t, r) :=
(
β∗ (ββ∗)−1 α

)
(t, r) and C(t, r) :=

{
xβ (t, r) : x ∈ Rk

}
be the im-

posing restrictions on the investor when trading in the market and is assumed to
be a closed set. The distance of a vector z ∈ Rd to the closed and convex set
C(t, r) is defined as dist(z, C(t, r)) = min {|z−u| : u ∈ C(t, r)}. Because C(t, r) is
a linear subspace of Rd we can write for any element z ∈ Rd, dist2 (z, C (t, r)) =∣∣z − ΠC(t,r) [z]

∣∣2 where ΠC(t,r) [z] is defined to be the projection operator of elements
in Rd onto the subspace C(t, r), i.e., ΠC(t,r) [z] = z

(
β∗ (ββ∗)−1 β

)
(t, r) ∀z ∈ Rd and

(t, r) ∈ [0, T ]× Rm.

For the generator f we are going to check that it satisfies the Assumption 4.
Under Assumption 6 the mappings β and α are uniformly bounded, hence there
exists a positive constant M such that for all (t, v, r) ∈ [0, T ]× R× Rm

|f (t, r, z)| ≤M
(
1 + |z|2

)
. (3.69)

For the derivative ∇zf we use the linearity of the projection operator

∇zf (t, v, r) = ∇z

(
zθ (t, r) +

1

2η
|θ (t, r)|2 − η

2

∣∣∣∣z +
1

η
θ (t, r)− ΠC(t,r)

[
z +

1

η
θ (t, r)

]∣∣∣∣2
)

(3.70)

= ∇z

(
zθ (t, r) +

1

2η
|θ (t, r)|2 − η

2

∣∣∣∣(z +
1

η
θ (t, r)

)(
Id − ΠC(t,r) [Id]

)∣∣∣∣2
)

(3.71)

= θ (t, r)− η
(
z +

1

η
θ (t, r)

)(
Id − ΠC(t,r) [Id]

)2
, (3.72)
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hence there exists a positive constant M̃ such that for all (t, v, r) ∈ [0, T ]× R× Rm

|∇zf (t, r, z)| ≤ M̃ (1 + |z|) . (3.73)

Combining the above inequality with the mean value theorem we obtain that a
positive constant M̂ exists such that for all t ∈ [0, T ] , r ∈ Rm and z, z̃ ∈ Rd

|f (t, r, z)− f (t, r, z̃)| ≤ M̂ (1 + |z|+ |z̃|) |z − z̃| . (3.74)

Also, there exists a positive Lipschitz constant M̆ such that for any t ∈ [0, T ],
z ∈ Rd and r, r̃ ∈ Rm,

|f (t, r, z)− f (t, r̃, z)| ≤ M̆
(
1 + |z|2

)
|r − r̃| . (3.75)

We can now conclude by stating that the driver f fulfills the conditions of As-
sumption 4.

3.4.3 Solving the Optimal Control via BSDE

Consider the BSDE with data
(
F
(
Rt,r
T

)
, f
)
, then from Theorem 2.1 and Theorem

2.2 there exists a unique solution
(
Ŷ t,r, Ẑt,r

)
. The value function of the stochastic

control problem is equal to the utility of the starting point of the BSDE, i.e.

V F (t, v, r) = −e−η(v−Ŷ t,r), (3.76)

see Theorem 7 in [15].

Moreover we can reconstruct the optimal strategy π̂ from Ẑ,

π̂sβ
(
s, Rt,r

s

)
= ΠC(s,Rt,rs )

[
Ẑt,r
s +

1

η
θ
(
s, Rt,r

s

)]
, s ∈ [t, T ] . (3.77)

Analogously, let (Y t,r, Zt,r) be the solution of the BSDE with data (0, f). Which
represents a stochastic control problem as above, just without the derivative as ter-
minal condition i.e. the derivative is not in the portfolio. In this case the maximal
expected utility verifies

V 0 (t, v, r) = −e−η(v−Y t,r), (3.78)

and the optimal strategy π satisfies

πsβ
(
s, Rt,r

s

)
= ΠC(s,Rt,rs )

[
Zt,r
s +

1

η
θ
(
s, Rt,r

s

)]
, s ∈ [t, T ] . (3.79)
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Since ΠC(s,Rt,rs ) is a linear operator, the derivative hedge is given by the explicit
formula

∆sβ
(
s, Rt,r

s

)
= ΠC(s,Rt,rs )

[
Ẑt,r
s − Zt,r

s

]
, s ∈ [t, T ] . (3.80)

3.4.4 The simulation

For this example we assume the following:

• The dimensions m = d = 1.

• The risk aversion coefficient η = 5, β = 2 and α = 1.

• Number of iterations 70.

• Number of partitions 120.

• Number of truncation 25,

• Initial capital v = 1
2
.

• We consider a derivative of the form F
(
R

0, 1
2

T

)
= R

0, 1
2

T , where R
0, 1

2
s is the

solution of the SDE

R
0, 1

2
t =

1

2
+

ˆ t

0

b
(
s, R

0, 1
2

s

)
ds+

ˆ t

0

ρ
(
s, R

0, 1
2

s

)
dWs, t ∈ [0, T ] , (3.81)

where b
(
s, R

0, 1
2

s

)
= 1

10
R

0, 1
2

t and ρ
(
s, R

0, 1
2

s

)
= 3R

0, 1
2

t .
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First, we simulate the prices of the derivative F
(
R

0, 1
2

T

)
, that the follows the dynamic

(3.81), using Precios.m (A.3.1).
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Figure 3.1:
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Then, we solve the BSDE with terminal condition ξ given by the terminal value
F
(
R

0, 1
2

T

)
from Precios.m (A.3.1) and generator f described as (3.68). Also, we

calculate de BSDE with data (0, ξ) using BSDE.m (A.3.1).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

t

Y
t

BSDE(ξ,f) solution

 

 
Mean
Paths

Figure 3.2:



56 CHAPTER 3. OPTIMAL CONTROL

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

20

t

Z
t

BSDE(ξ,f) solution

 

 
Mean
Paths

Figure 3.3:



3.4. AN EXAMPLE IN FINANCE WITH QGBSDE 57

From (3.63) we calculate the hedge with the solutios of the BSDEs.
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Also, we estimate the value function from (3.76).
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Finally, from (3.64) we find the indifference price.
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Appendix A

Random Variables

A.1 Existence and uniqueness of the essential supre-
mum and essential infimum of a family of ran-
dom variables

The purpose of this section is to show the existence of the essential supremum and essential
infimum of a family of random variables, and the almost sure uniqueness. Another purpose
is to show some properties that are of interest for better understanding the Chapter 3.

Definition A.1. Let (Ω,F ,P) a probability space and let X nonempty, a family of random
variables defined on (Ω,Ft,P). The essential supremum X , denoted by ess supX , is a
random variable X, satisfying:

• ∀Y ∈ X , Y ≤ X a.s. and

• if Z is random variable that satisfying Y ≤ Z a.s. ∀Y ∈ X , then X ≤ Y a.s.

Definition A.2. Given X as in definition A.1 and given A ∈ F , we will say that π =
(H : A1, A2, . . . , AK ;X1, X2, . . . , XK) is an X−partition of A if:

• K is a positive integer,

• (A2, . . . , AK) is a disjoint partition in F of A and

• (X1, X2, . . . , XK) are random variables in X .
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Definition A.3. For λ ∈ (0,∞], we define

µλπ (A) := E

[
K∑
i=1

(XK ∧ λ) 1Ak

]
(A.1)

µλ (A) := sup
{
µλπ (A) : π is a X − partition of A

}
. (A.2)

Note. The measure µλ is a non negative function defined in F , and is finitely additive, also
by the monotone convergence theorem it follows

µ∞ (A) = sup
π

sup
λ∈(0,∞)

µλπ (A) = sup
λ∈(0,∞)

sup
π
µλπ (A) = sup

λ∈(0,∞)
µλ (A) (A.3)

Lemma A.1. For λ ∈ (0,∞], µλ is countably additive.

Proof. Consider the case λ <∞. Let {Aj}∞j=1 ∈ F with Ai ⊆ Ai+1, ∀i=1, 2, . . . such that
A = ∪∞j=1Aj . Then

µλ (A) = µλ (Aj) + µλ (A\Aj) (A.4)

≥ µλ (Aj) , (A.5)

taking limits j →∞ of (A.5)
µλ (A) ≥ lim

j→∞
µλ (Aj) . (A.6)

Given ε > 0, we take j such that P (A\Aj) < ε, then it follows from (A.1) and (A.2)

µλ (A\Aj) ≤ λε (A.7)

from (A.4)

µλ (A) ≥ µλ (Aj)− ελ, (A.8)

by hypothesis, λ <∞, then using (A.8)

µλ (A) ≥ lim
j→∞

µλ (Aj) . (A.9)

From (A.6) and (A.9) it follows

µλ (A)) = lim
j→∞

µλ (Aj) . (A.10)

For the case in which λ =∞. Is used (A.3)
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lim
j→∞

µ∞ (Aj) = sup
j

sup
λ∈(0,∞)

µλ (Aj) (A.11)

= sup
λ∈(0,∞)

sup
j
µλ (Aj) (A.12)

= sup
λ∈(0,∞)

µλ (A) (A.13)

= µ∞ (A) (A.14)

i.e., µλ is countably additive.

Theorem A.1. Let X nonempty family of nonnegative random variables. Then X=ess supX
exists.

Proof. By definition µ∞ is absolutely continuous with respect to P. Let

X =
dµ∞

dP
(A.15)

Then ∀Y ∈ X and A ∈ F , we have E (1AY ) ≤ µ∞ (A) = E (1AX), that satisfies the
first condition of the Definition A.1. If Z exists such that satisfies the second condition of
the Definition A.1 then

E (1AX) = µ∞ (A) = sup
π
µ∞π (A) ≤ E (1AZ) (A.16)

We conclude that X ≤ Z a.s.

A.2 Stochastic Calculus
Theorem A.2. Tanaka’s formula.

|Bt| =
ˆ t

0
sgn (Bs) dBs + Lt (A.17)

where Bt is the standard brownian motion, sgn denotes the sign function

sgn (x) =

{
1 if x ≥ 0;
−1 if x < 0.

(A.18)

and Lt is its local time at 0 (the local time spent by B at 0 before time t) given by the
L2-limit

Lt = lim
ε↓0

1
2ε
|{s ∈ [0, t]|Bs ∈ (−ε, ε)}| . (A.19)
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Lemma A.2. Itô’s formula . Let Xt a d-dimensional semimartingale and f ∈ C2, then

f (Xt) = f (X0) +
ˆ t

0

d∑
i=1

fi (Xs) dXi
s +

1
2

ˆ t

0

d∑
i,j=1

fi,j (Xs) d
〈
Xi, X ̂

〉
s

(A.20)

Corollary A.1. Itô’s formula for BSDE. Let Xt a d-dimensional semimartingale and f ∈
C2 and ξ := XT , then

f (Xt) = f (ξ)−
ˆ T

t

d∑
i=1

fi (Xs) dXi
s −

1
2

ˆ T

t

d∑
i,j=1

fi,j (Xs) d
〈
Xi, X ̂

〉
s
, ∀t ∈ [0, T ]

(A.21)

df (Xt) =
d∑
i=1

fi (Xs) dXi
s +

1
2

ˆ T

t

d∑
i,j=1

fi,j (Xs) d
〈
Xi, X ̂

〉
s
, ∀t ∈ [0, T ] (A.22)

Proof. Applying the Itô’s formula to f (ξ) we got

f (ξ) = f (X0) +
ˆ T

0

d∑
i=1

fi (Xs) dXi
s +

1
2

ˆ T

0

d∑
i,j=1

fi,j (Xs) d
〈
Xi, X ̂

〉
s
, ∀t ∈ [0, T ]

(A.23)

subtractingA.23 to A.20

f (Xt) = f (ξ)−
ˆ T

t

d∑
i=1

fi (Xs) dXi
s−

1
2

ˆ T

t

d∑
i,j=1

fi,j (Xs) d
〈
Xi, X ̂

〉
s
, ∀t ∈ [0, T ] (A.24)

Theorem A.3. Martingale’s representation. Let M a uniformly integrable martingale with
M0 = 0, then there exists a predectible process Z ∈ H1 such that Mt =

´ t
0 Z
∗
sdWs where W

is a standard brownian motion.

Lemma A.3. Gronwall’s Lemma. Let T > 0, c ≥ 0, u(·) a measurable non negative
function in [0, T ], and v(·) an integrable non negative function in [0, T ]. If

u(t) ≤ c+
ˆ t

0
v(s)u(s)ds, ∀t ∈ [0, T ] (A.25)

then

u(t) ≤ c exp
(ˆ t

0
v(s)ds

)
, ∀t ∈ [0, T ] (A.26)
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A.3 Code
This section presents the all the developed code that was used on this work.

A.3.1 BSDE´s simulation
For the simulations we use MATLAB 7.10 R2010a.

BSDE.m

%% Backward Stochastic Differential Equation
% -dYt = f(t, Yt, Zt)dt - Zt dWt
% YT = xi; eta=5; %risk aversion coefficient beta=2; alpha=1; theta=alpha*beta;
% Number of iterations 70
itera=75;
% Number of partitions 120
N=120;
% Number of truncation 25
n = 25;
EsperanzaY=zeros(N);
EsperanzaZ=zeros(N);
Y=zeros(N,itera);
Z=zeros(N,itera);
pi=zeros(N,itera);
x=linspace(0,1,N);
delta=1/N;
sdelta=sqrt(1/N);
tic,
for k=1:itera

z=zeros(N);
y=zeros(N);
%terminal value
y(N,:)= Precios(0.001,N);
%y(N,:)=0;

for i = N-1 :-1 : 1
for j = 1 : i

z(i,j) = (y(i + 1,j) - y( i + 1,j + 1))./(2 * sdelta);
y(i,j) = (y(i+1, j ) + y(i + 1, j + 1))/2 +

f(trunca(z(i,j), n),eta,beta,alpha) * delta;
end

end
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EsperanzaY=EsperanzaY+y;
EsperanzaZ=EsperanzaZ+z;
pi(:,k)=(z(:,1)+theta/eta)/beta;
Y(:,k)=y(:,1); Z(:,k)=z(:,1);
clear z;
clear y;

end
EsperanzaY=EsperanzaY./itera; EsperanzaZ=EsperanzaZ./itera;
toc

Precios.m

function H = Precios(dt,nPeriods)
% nPeriods # of simulated observations
% dt time increment = 1
H=zeros(nPeriods,1);
F = drift(0, 0.1); % Drift rate function F(t,X)
G = diffusion(1, 3); % Diffusion rate function G(t,X)
SDE=sdeddo(F, G);
SDE.StartState=0.5;
for i=1:nPeriods

[S,T] = SDE.simByEuler(nPeriods, ’DeltaTime’, dt);
H(i)=S(nPeriods);

end

f.m

function
generador=f(x,eta,beta,alpha)
%generador=0.5*x^2;
%generador=abs(x);
theta=alpha*beta;
generador=x*theta+(theta^2)/(2*eta); %-eta*((x+theta/eta)^2)/2; end
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A.3.2 Truncated function
trunca.m

function H = trunca(X,n)
H=zeros(numel(X),1);
for i=1:numel(X)

x=X(i);
if x <= -(n+2)

h = -(n+1);
elseif x > -(n+2) && x<= -n

h = (n^2 + 2*n*x + x*(x+4))/4;
elseif x > -n && x<= n

h = x;
elseif x>n && x< (n+2)

h = (-n^2+2*n*x-x*(x-4))/4;
else

h = n+1 ;
end
H(i)=h;

end
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